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A B S T R A C T

Mathematical models of genetic evolution often come in pairs, connected by a so-called duality relation. The
most seminal example are the Wright–Fisher diffusion and the Kingman coalescent, where the former describes
the stochastic evolution of neutral allele frequencies in a large population forwards in time, and the latter
describes the genetic ancestry of randomly sampled individuals from the population backwards in time. As
well as providing a richer description than either model in isolation, duality often yields equations satisfied
by quantities of interest. We employ the so-called Bernoulli factory – a celebrated tool in simulation-based
computing – to derive duality relations for broad classes of genetics models. As concrete examples, we present
Wright–Fisher diffusions with general drift functions, and Allen–Cahn equations with general, nonlinear forcing
terms. The drift and forcing functions can be interpreted as the action of frequency-dependent selection. To
our knowledge, this work is the first time a connection has been drawn between Bernoulli factories and duality
in models of population genetics.
1. Introduction

The Bernoulli factory problem is to construct a realisation of a
Bernoulli(𝑓 (𝑝)) random variable (or an 𝑓 (𝑝)-coin) using an almost
surely finite number of independent 𝑝-coins, where 𝑓 ∶ [0, 1] ↦
[0, 1] is a known function but 𝑝 ∈ [0, 1] is unknown. The special
case 𝑓 (𝑝) = 1∕2 was formulated and solved by John von Neumann
in 1951 (von Neumann, 1951). Later, Keane and O’Brien provided a
necessary and sufficient condition for a given function 𝑓 to have a
Bernoulli factory (Keane and O’Brien, 1994). In brief, 𝑓 has a Bernoulli
factory if and only if it is identically equal to zero or one, or it is
continuous and polynomially bounded, i.e.

min{𝑓 (𝑝), 1 − 𝑓 (𝑝)} ≥ min{𝑝, 1 − 𝑝}𝑛 (1)

for all 𝑝 ∈ [0, 1] and some 𝑛 ∈ N. However, the proof of Keane
and O’Brien is only partly constructive: it relies on a recursively de-
fined sequence whose explicit solution is intractable. Constructions of
algorithms have relied on approximation of 𝑓 by Bernstein polynomi-
als, which are naturally associated with 𝑝-coins (Holtz et al., 2011;
Łatuszyński et al., 2011; Nacu and Peres, 2005), or on other series
expansions of 𝑓 with non-negative coefficients (Mendo, 2019).

Many seminal models of population genetics rely on the random
propagation of alleles from one generation to the next. A prototypical
example is the Wright–Fisher model, in which a population of fixed size

∗ Corresponding author at: School of Mathematics, Statistics and Physics, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
E-mail addresses: jere.koskela@newcastle.ac.uk (J. Koskela), k.g.latuszynski@warwick.ac.uk (K. Łatuszyński), d.spano@warwick.ac.uk (D. Spanò).

𝑁 ∈ N evolves in discrete generations. Individuals carry one of two
alleles, 𝑎 or 𝐴, and each individual inherits the allele of a parent which
it samples independently and uniformly from the previous generation.
The mechanism of sampling alleles by sampling parents ensures that
the model carries information of the forward-in-time evolution of allele
frequencies, as well as the backward-in-time genealogies of samples
of individuals. Frequently, these two modelling perspectives satisfy a
duality relation which renders both models more tractable than they
would be in isolation. We direct interested readers to e.g. Durrett
(2008) for an introduction to Wright–Fisher and genealogical models
in population genetics.

In the absence of mutation, inheriting an allele from a uniformly
sampled parent models neutral evolution, where the conditional mean
allele frequency in a generation equals that in the previous generation.
Non-neutral models in which the mean is not constant can be obtained
by sampling offspring alleles as 𝑓 (𝑝)-coins when the allele frequency in
the previous generation is 𝑝, and 𝑓 models so-called frequency-dependent
selection. In order to retain the aforementioned backward-in-time ge-
nealogical picture and its associated duality, it is desirable to generate
the 𝑓 (𝑝)-coins in a given generation by sampling parental alleles from
the previous generation. Since the allele frequency in the parental
generation is 𝑝, parental alleles can be thought of as 𝑝-coins, motivat-
ing a connection to Bernoulli factories. Our contribution is to use a
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Bernoulli factory to extend two standard models of population genetics
to more general settings than has been done previously. They are (i) the
non-neutral Wright–Fisher diffusion and its ancestral selection graph
dual (Cordero et al., 2022; Etheridge et al., 2010; Gonzalez Casanova
and Spanò, 2018; Krone and Neuhauser, 1997), for which the function
𝑓 models frequency-dependent selection as described above, and (ii)
the Allen–Cahn PDE which models stationary allele frequencies in a
spatial continuum, in which 𝑓 appears as external forcing (Etheridge
t al., 2022).

The remainder of the manuscript is organised as follows. In Sec-
ion 2, we review the Bernoulli factory of Keane and O’Brien (1994)
hich turns out to be convenient for our purposes. In Sections 3 and 4
e introduce the Wright–Fisher diffusion with frequency–dependent se-

ection and the Allen–Cahn equation. In each case, we also demonstrate
ow Bernoulli factories facilitate the construction of very large classes
f these models. Section 5 concludes with a discussion on connections
o earlier results, as well as some potential extensions.

. The Keane–O’Brien factory

Let 𝑓 ∶ [0, 1] ↦ [0, 1] be continuous and polynomially bounded
s in (1). Let 𝑋̄𝑛(𝑝) be the sample mean of 𝑛 independent 𝑝-coins.

Define sequences of functions 𝑓𝑘 and integers 𝜂(𝑓, 𝑘) as follows: set
𝑓1(𝑝) ∶= 𝑓 (𝑝), and

𝑓𝑘+1(𝑝) ∶=
4
3

(

𝑓𝑘(𝑝) −
1
4
P
(

𝑓𝑘(𝑋̄𝜂(𝑓,𝑘)(𝑝)) ≥
1
2

)

)

,

where each 𝜂(𝑓, 𝑘) is finite, independent of 𝑝, and large enough that

𝑓𝑘(𝑝) −
1
4
P
(

𝑓𝑘(𝑋̄𝜂(𝑓,𝑘)(𝑝)) ≥
1
2

)

∈ [0, 3∕4].

y Keane and O’Brien (1994, page 218) such an 𝜂(𝑓, 𝑘) exists, and
oreover, each 𝑓𝑘 is polynomially bounded.

Algorithm 1 Bernoulli factory for continuous 𝑓 ∶ [0, 1] ↦ [0, 1]
satisfying (1).
Require: Sequences {𝑓𝑘}𝑘≥1, {𝜂(𝑓, 𝑘)}𝑘≥1.
1: Sample 𝐿 ∼ Geo(1∕4).
2: Sample 𝑋𝜂(𝑓,𝐿)(𝑝) ∼ Bin(𝜂(𝑓, 𝐿), 𝑝).
3: if 𝑓𝐿(𝑋𝜂(𝑓,𝐿)(𝑝)∕𝐿) ≥ 1∕2 then
4: Return 1.
5: else
6: Return 0.
7: end if

Let 𝐿 ∼ Geo(1∕4) be independent of all 𝑝-coins. Then
{

𝑓𝐿(𝑋̄𝜂(𝑓,𝐿)(𝑝)) ≥
1
2

}

∼ Ber(𝑓 (𝑝))

s a Bernoulli factory for 𝑓 (Keane and O’Brien, 1994, pages 217–219)
ased on the series expansion

(𝑝) =
∞
∑

𝑘=1

( 3
4

)𝑘−1 1
4
P
(

𝑓𝑘(𝑋̄𝜂(𝑓,𝑘)(𝑝)) ≥
1
2

)

=
∞
∑

𝑘=1

( 3
4

)𝑘−1 1
4

𝜂(𝑓,𝑘)
∑

𝑗=0

(

𝜂(𝑓, 𝑘)
𝑗

)

𝑝𝑗 (1 − 𝑝)𝜂(𝑓,𝑘)−𝑗1
{

𝑓𝑘
( 𝑗
𝜂(𝑓, 𝑘)

)

≥ 1
2

}

, (2)

which converges uniformly in 𝑝. Pseudocode for this Bernoulli factory
s shown in Algorithm 1. We will refer to Bernoulli factories based on
2) as Keane–O’Brien factories. They have two features which will turn
ut to be essential.

emark 1. The Keane–O’Brien factory is defined for all 𝑝 ∈ [0, 1] and
(𝑝) ∈ [0, 1]. Factories based on Bernstein polynomial approximation

ypically have to constrain the range (and sometimes the domain) of
to (subsets of) (0, 1) to avoid degenerate distributions (Holtz et al.,

011; Łatuszyński et al., 2011; Nacu and Peres, 2005). In population
enetics applications, it is essential to allow the whole range 𝑝 ∈ [0, 1],

and desirable to allow 𝑓 (0) = 0 and 𝑓 (1) = 1 to model fixation.
41
Fig. 1. Illustration of {𝐙(𝑁)
𝑘 }𝑘≥0 with 𝑁 = 5 and 4 generations. The second generation

from the bottom includes a merger of three lineages, as well as an individual which
samples three parents, two of which ended up overlapping. The generation at the top
includes two binary mergers. Alleles for all individuals in all generations could be
generated given alleles for the generation at the top, as well as a rule for deciding the
allele of the three-parent child.

Remark 2. The random variable 𝐿, and hence the number of 𝑝-
oins 𝜂(𝑓, 𝐿) needed to determine the allele of a child, is independent
f the realisations of those coins. This will facilitate the construction
f ancestral graphs containing all possible ancestors before the alleles
arried by any of those ancestors are known.

Any Bernoulli factory for which Remark 2 holds can be thought of
s a mixture of finite factories, that is, a mixture of Bernoulli factories
ith a deterministic number of coins each.

. The frequency-dependent Wright–Fisher diffusion

Consider a population of 𝑁 individuals {𝐙(𝑁)
𝑘 }𝑘≥0 evolving in dis-

rete time, where the state of the system at time 𝑘 is 𝐙(𝑁)
𝑘 ∶= (𝑍(𝑁)

1 (𝑘),…
(𝑁)
𝑁 (𝑘)) with 𝑍(𝑁)

𝑘 ∈ {𝑎, 𝐴}. Let

̃ (𝑁)
𝑘 ∶= 1

𝑁

𝑁
∑

𝑖=1
1{𝐴}(𝑍

(𝑁)
𝑖 (𝑘))

e the frequency of the 𝐴 allele in generation 𝑘. Each individual in
eneration 𝑘 + 1 samples its allele conditionally independently given
̃ (𝑁)
𝑘 , where the probability of an 𝐴 allele is 𝑓 (𝑁)(𝑌 (𝑁)

𝑘 ) with

𝑓 (𝑁)(𝑝) ∶=
(

1 − 𝜎
𝑁

)

𝑝 + 𝜎
𝑁

𝑓 (𝑝)

for a fixed constant 𝜎 > 0, a continuous function 𝑓 ∶ [0, 1] ↦ [0, 1]
atisfying (1), and where we assume the population size is large enough
hat 𝑁 ≥ 𝜎.

Concretely, the realisation of each allele is implemented as follows.
ith probability 1 − 𝜎∕𝑁 , a given individual samples one parent and

nherits its allele. With the complementary probability, the individual
amples an independent copy of 𝐿, followed by 𝜂(𝑓, 𝐿) parents chosen
niformly at random with replacement. Conditional on 𝐿 and 𝑌 (𝑁)

𝑘 ,
he allele of the individual is 𝐴 if event {𝑓𝐿(𝑋̄𝜂(𝑓,𝐿)(𝑌

(𝑁)
𝑘 )) ≥ 1∕2}

happens. By (2), the marginal probability of an 𝐴 allele is 𝑓 (𝑁)(𝑌 (𝑁)
𝑘 ).

A realisation of the process of children sampling parents is depicted in
Fig. 1.

Sampling parents with replacement is essential for the connec-
tion with Bernoulli factories, as each parent can then be thought
of as an i.i.d. coin on the two-point space of alleles {𝑎, 𝐴}. How-
ever, sampling with replacement also permits a child to choose the
same individual as a parent many times, which is unnatural from
a biological point of view. Formally, the 𝜂(𝑓, 𝐿) parents are merely
a mechanism for generating alleles for children in a parent-driven
way which turns out to facilitate duality with a genealogical pro-
cess. A biologically interpretable genealogy with one parent per child

can be recovered by selecting, for each multi-parent child, one of
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the child-parent connections to denote the ‘‘real’’ parent, with all
other child-parent connections designated ‘‘virtual’’ and hence non-
biological. The way in which the real parent is chosen can be arbitrary
as long as it has no impact on the distribution of the child allele, and
is independent of the child-parent connections of other individuals.
However, retention of virtual parents is essential for constructing both
the genealogical and allele frequency processes simultaneously, and
hence obtaining the duality result in Theorem 3.

Our aim is to verify convergence of the allele frequency process
{𝑌 (𝑁)

𝑘 }𝑘≥0 in the infinite population limit. To that end, we define the
continuous-time process (𝑌 (𝑁)

𝑡 )𝑡≥0 via

𝑌 (𝑁)
𝑡 ∶= 𝑌 (𝑁)

⌊𝑁𝑡⌋.

Theorem 1. Let 𝑓 be polynomially bounded and Lipschitz continuous
on [0, 1]. Then, in the Skorokhod topology, (𝑌 (𝑁)

𝑡 )𝑡≥0 → (𝑌𝑡)𝑡≥0 weakly as
𝑁 → ∞, where 𝑌𝑡 solves

d𝑌𝑡 = 𝜎(𝑓 (𝑌𝑡) − 𝑌𝑡)d𝑡 +
√

𝑌𝑡(1 − 𝑌𝑡)d𝑊𝑡 (3)

subject to appropriate initial conditions, where (𝑊𝑡)𝑡≥0 is a Brownian mo-
tion.

Proof. Existence, uniqueness, and the Feller property of the putative
limiting process all follow from Ethier and Kurtz (1986, Theorem 2.8)
because the drift function 𝜎(𝑓 (𝑦) − 𝑦) is Lipschitz continuous.

The discrete-time process 𝑌 (𝑁)
𝑘 has discrete generator

𝐿𝑁ℎ(𝑦) ∶=
𝑁
∑

𝑘=0

(

𝑁
𝑘

)

( 𝜎
𝑁

)𝑘(
1 − 𝜎

𝑁

)𝑁−𝑘 𝑁−𝑘
∑

𝑥=0

(

𝑁 − 𝑘
𝑥

)

𝑦𝑥(1 − 𝑦)𝑁−𝑘−𝑥

×
𝑘
∑

𝑧=0

(

𝑘
𝑧

)

𝑓 (𝑦)𝑧(1 − 𝑓 (𝑦))𝑘−𝑧ℎ
(𝑥 + 𝑧

𝑁

)

− ℎ(𝑦),

which is well-defined for any bounded, measurable function ℎ ∶ [0, 1] →
R. To show the claimed convergence, let ℎ be a 𝐶2([0, 1]) function with
bounded third derivatives, which is a convergence-determining class.
Expanding ℎ around 𝑦 on the right-hand side yields

𝐿𝑁ℎ(𝑦) =
𝑁
∑

𝑘=0

(

𝑁
𝑘

)

( 𝜎
𝑁

)𝑘(
1 − 𝜎

𝑁

)𝑁−𝑘 𝑁−𝑘
∑

𝑥=0

(

𝑁 − 𝑘
𝑥

)

𝑦𝑥(1 − 𝑦)𝑁−𝑘−𝑥

×
𝑘
∑

𝑧=0

(

𝑘
𝑧

)

𝑓 (𝑦)𝑧(1 − 𝑓 (𝑦))𝑘−𝑧

×

[

(𝑥 + 𝑧
𝑁

− 𝑦
)

ℎ′(𝑦) + 1
2

(𝑥 + 𝑧
𝑁

− 𝑦
)2

ℎ′′(𝑦)

]

,

up to terms which are of lower order since ℎ′′′ is bounded. Evaluating
the binomial expectations yields

𝑁𝐿𝑁ℎ(𝑦) = 𝜎(𝑓 (𝑦) − 𝑦)ℎ′(𝑦) + 1
2
𝑦(1 − 𝑦)ℎ′′(𝑦) + 𝑜(1),

s 𝑁 → ∞. The proof of weak convergence is completed by using the
seudo-Poisson approximation of Kallenberg (2002, Theorem 19.28)
ith time step 1∕𝑁 , because the limiting diffusion is Feller. □

emark 3. The requirement of a Lipschitz drift could be slightly re-
axed by using the more cumbersome conditions for a Feller semigroup
iven in Xi et al. (2019, Theorem 3.3). They cover drifts satisfying a
ondition akin to

𝑓 (𝑦) − 𝑓 (𝑧)| ≤ −𝐶|𝑦 − 𝑧| log(|𝑦 − 𝑧|),

r small variations thereof, where 𝐶 > 0 is a constant. See Xi et al.
2019, equations (14) and (15), as well as Remark 2.3) for a precise
lass of non-Lipschitz functions which can be handled.

Next we consider a sample of 𝑛 ∈ N individuals from a given
eneration (which we arbitrarily set as generation 0) in the pre-limiting
right–Fisher model {𝐙(𝑁)} . We define the ancestral process 𝐴(𝑁) as
42

𝑘 𝑘≥0 𝑘 𝑃
he number of lineages which are ancestral to the sample 𝑘 generations
in the past. The number of lineages decreases by one when two lineages
find a common ancestor, decreases by more than one if multiple
lineages find common ancestors (which will happen with negligible
probability when 𝑁 → ∞), or increase by 𝜂(𝑓, 𝐿) − 1 whenever a
lineage samples 𝜂(𝑓, 𝐿) ancestors. In the pre-limiting particle system,
ny number of these events can co-occur in one generation, particularly
hen 𝑛 ≥ 3. But transitions other than isolated binary mergers and

ingle multifurcations turn out to vanish in a suitably rescaled infinite
opulation limit. To that end, we define the continuous time Markov
ump process

𝑡 ∶= lim
𝑁→∞

𝐴(𝑁)
⌊𝑁𝑡⌋ (4)

hose existence we prove next.

heorem 2. The limit in (4) exists, and (𝐴𝑡)𝑡≥0 has generator

ℎ(𝑛) =
(

𝑛
2

)

[ℎ(𝑛 − 1) − ℎ(𝑛)] + 𝜎𝑛
∞
∑

𝑘=1

( 3
4

)𝑘−1 1
4
[ℎ(𝑛 + 𝜂(𝑓, 𝑘) − 1) − ℎ(𝑛)].

Proof. The pre-limiting, discrete-time process {𝐴(𝑁)
𝑘 }𝑘≥0 undergoes a

myriad of transitions involving subsets of individuals finding common
ancestors, as well as individuals branching into many potential an-
cestors, potentially in the same generation. However, only transitions
with a per-generation probability 𝛩(1∕𝑁) will contribute to the time-
rescaled limit with a finite rate. Events with probability 𝑜(1∕𝑁) will
not occur in the limit at all, while events with probability 𝜔(1∕𝑁) will
appear at a dense set of times. However, it will turn out that the latter
only result in identity transitions in 𝐴𝑡, and hence do not affect the
limit.

The probability of two lineages originating from a common ancestor
one generation earlier, with neither being involved in a branching
event, is
(

1 − 𝜎
𝑁

)2 1
𝑁

= 1
𝑁

+ 𝑜(1∕𝑁), (5)

implying that two lineages will merge to a common ancestor at rate 1
in the limit. A triple merger, or more than one simultaneous merger,
has probability at most
(

1 − 𝜎
𝑁

)3 1
𝑁2

= 𝑜(1∕𝑁),

and hence will not appear in the limit.
A single individual branches into 𝜂(𝑓, 𝑘) ancestral lineages with

robability
𝜎
𝑁

( 3
4

)𝑘−1 1
4
, (6)

while any event involving more than two lineages branching in one
generation has probability at most
( 𝜎
𝑁

)2
= 𝑜(1∕𝑁).

Hence, only isolated branching events appear in the limit. It is also
clear from (5) and (6) that the probability of at least one merger and
branching event in one generation is 𝑜(1∕𝑁).

All other transitions involve no mergers or branching events, and
hence do not affect the limiting ancestral process. Noting that there are
(𝑛
2

)

pairs of individuals to merge with probability (5) and 𝑛 individuals
to branch with probabilities (6) yields the claimed generator 𝐺. □

Duality between the Wright–Fisher diffusion (3) and the ancestral
process (4) is a relation

E𝑦[ℎ(𝑌𝑡, 𝑛)|𝑌0 = 𝑦] = E𝑛[ℎ(𝑦, 𝐴𝑡)|𝐴0 = 𝑛],

here 𝑦 ∈ [0, 1] and 𝑛 ∈ N are respective initial conditions, and ℎ is a
uality function, the specification of which will require some exposition.

We follow Cordero et al. (2022) and define the random function

𝑡(𝑦) as the conditional probability that all 𝑛 leaves at time zero in the
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ancestral process carry allele 𝐴, given that the 𝐴 allele frequency at
time 𝑡 in the past is 𝑦 ∈ [0, 1], and given the realisation of the ancestral
process 𝐴0∶𝑡 ∶= (𝐴𝑠)𝑠∈[0,𝑡] started from the 𝑛 lineages. For example, in
he absence of branching events we have 𝑃𝑡(𝑦) = 𝑦𝐴𝑡 , while when 𝑛 = 1,
single branching event into 𝜂(𝑓, 𝑘) ancestors and no mergers in the

istory 𝐴0∶𝑡 yields

𝑡(𝑦) ∶=
𝜂(𝑓,𝑘)
∑

𝑗=0

(

𝜂(𝑓, 𝑘)
𝑗

)

𝑦𝑗 (1 − 𝑦)𝜂(𝑓,𝑘)−𝑗1
{

𝑓𝑘
( 𝑗
𝜂(𝑓, 𝑘)

)

≥ 1
2

}

,

here 𝑓𝑘 is as specified in Section 2. Other patterns of merger and
ranching events will result in a more complicated Bernstein polyno-
ial of degree 𝐴𝑡,

𝑡(𝑦) ∶=
𝐴𝑡
∑

𝑗=0
𝑉𝑡(𝑗)

(

𝐴𝑡
𝑗

)

𝑦𝑗 (1 − 𝑦)𝐴𝑡−𝑗 ,

where 𝑉𝑡(𝑗) is the random Bernstein coefficient which equals the prob-
ability that the 𝑛 leaves all carry allele 𝐴, given that 𝑗 of 𝐴𝑡 roots do.
As in Cordero et al. (2022, Definition 2.12 and Proposition 2.13), the
vector (𝑽 𝑡)𝑡≥0 ∶= (𝑉𝑡(0),… , 𝑉𝑡(𝑛))𝑡≥0 is also a Markov jump process with
transitions

𝒗 ↦

( 𝑖∧𝜂(𝑓,𝑘)
∑

𝑗=0

(𝑖
𝑗

)(𝑛+𝜂(𝑓,𝑘)−1−𝑗
𝜂(𝑓,𝑘)−𝑗

)

(𝑛+𝜂(𝑓,𝑘)−1
𝑖

)

[1{𝑓ℎ(𝑗∕𝜂(𝑓, 𝑘)) ≥ 1∕2}𝑣𝑖+1−𝑗

+ 1{𝑓𝑘(𝑗∕𝜂(𝑓, 𝑘)) < 1∕2}𝑣𝑖−𝑗 ]

)

𝑛+𝜂(𝑓,𝑘)−1
𝑖=0 (7)

at rate 𝑛𝜎P(𝐿 = 𝑘), and

𝒗 ↦
( 𝑖
𝑛 − 1

𝑣𝑖+1 +
𝑛 − 1 − 𝑖
𝑛 − 1

𝑣𝑖
)𝑛−1

𝑖=0
(8)

t rate
(𝑛
2

)

. Also, let

𝑛(𝑥) ∶=

(

(

𝑛
𝑖

)

𝑥𝑖(1 − 𝑥)𝑛−𝑖
)𝑛

𝑖=0

e the vector of order 𝑛 Bernstein polynomials, and for vectors 𝒖 and 𝒗
f common length 𝑛 + 1, let

𝒖, 𝒗⟩ ∶=
𝑛
∑

𝑖=0
𝑢𝑖𝑣𝑖

e the usual inner product.

heorem 3. The processes (𝑌𝑡)𝑡≥0 and (𝑉𝑡)𝑡≥0 are dual with duality
unction 𝐻 ∶ (𝑦, 𝒗) ↦ ⟨𝑩dim(𝒗)−1(𝑦), 𝒗⟩, in that

E[⟨𝑩𝑛(𝑌𝑡), 𝒗⟩|𝑌0 = 𝑦] = E[⟨𝑩dim(𝑽 𝑡)−1(𝑦),𝑽 𝑡⟩|𝑽 0 = 𝒗] (9)

for all 𝑡 ≥ 0, each 𝑦 ∈ [0, 1], every 𝑛 ∈ N, and each 𝒗 ∈ R𝑛+1.

Proof. The proof is a small adaptation of that of Cordero et al.
(2022, Theorem 2.14) to our more general setting. Duality between
the coalescing mechanism of the ancestral process (8) and the diffusion
coefficient of the Wright–Fisher diffusion (3) is standard, and we omit it
to focus on establishing the same relation for the branching mechanism
(7) and the drift term in (3).

Following Cordero et al. (2022, Section 4.3), let 𝑌 𝑦
𝑘 ∼ Bin(𝑘, 𝑦)

and 𝐾𝑛
𝑘,𝑖 ∼ Hyp(𝑛 + 𝑘 − 1, 𝑘, 𝑖) be independent random variables,

where Hyp(𝑎, 𝑏, 𝑐) denotes the hypergeometric distribution with 𝑏 draws
without replacement from a population of size 𝑎 containing 𝑐 successes.
Then, for 𝒗 ∈ R𝑛+1 we have

𝜕𝑦𝐻(𝑦, 𝒗) = 𝑛E[𝑣𝑌 𝑦
𝑛−1+1

− 𝑣𝑌 𝑦
𝑛−1

],

𝐻(𝑦, 𝒗) = E[𝑣𝑌 𝑦
𝑛
] = E[(1 − 𝑦)𝑣𝑌 𝑦

𝑛−1
+ 𝑦𝑣𝑌 𝑦

𝑛−1+1
],

𝑓 (𝑦) = E[1{𝑓𝐿𝑋̄𝜂(𝑓,𝐿)(𝑦) ≥ 1∕2}],
43
where 𝐿 ∼ Geo(1∕4) and the third equality is due to (2). We also have

(𝜂(𝑓, 𝐿)𝑋̄𝜂(𝑓,𝐿)(𝑦), 𝑌
𝑦
𝑛−1)

𝑑
= (𝐾𝑛

𝜂(𝑓,𝐿),𝑌 𝑦
𝑛+𝜂(𝑓,𝐿)−1

, 𝑌 𝑦
𝑛+𝜂(𝑓,𝐿)−1−𝐾𝑛

𝜂(𝑓,𝐿),𝑌 𝑦
𝑛+𝜂(𝑓,𝐿)−1

),

(10)

as can be seen by considering the event that the left-hand side takes
value (𝑗, 𝑘), which requires 𝐾𝑛

𝜂(𝑓,𝐿),𝑌 𝑦
𝑛+𝜂(𝑓,𝐿)−1

= 𝑗 and 𝑌 𝑦
𝑛+𝜂(𝑓,𝐿)−1 = 𝑘 + 𝑗

on the right-hand side. Using the shorthand 𝜂 = 𝜂(𝑓, 𝐿), the probability
of the event on the left can be written as
(

𝜂
𝑗

)

𝑦𝑗 (1 − 𝑦)𝜂−𝑗
(

𝑛 − 1
𝑘

)

𝑦𝑘(1 − 𝑦)𝑛−1−𝑘 =

(𝜂
𝑗

)(𝑛+𝜂−1−𝜂
𝑘+𝑗−𝑗

)

(𝑛+𝜂−1
𝑘+𝑗

)

×
(

𝑛 + 𝜂 − 1
𝑘 + 𝑗

)

𝑦𝑘+𝑗 (1 − 𝑦)𝑛+𝜂−1−𝑘−𝑗 ,

which is the claimed probability of the event on the right. Intuitively,
(10) expresses the fact that flipping 𝜂 coins and 𝑛− 1 coins in separate
groups is statistically identical to flipping 𝑛+ 𝜂 − 1 coins and randomly
allocating them into groups of size 𝜂 and 𝑛 − 1 afterwards. Using (10),
the drift of the Wright–Fisher diffusion (3) satisfies

𝜎(𝑓 (𝑦) − 𝑦)𝜕𝑦𝐻(𝑦, 𝒗)

= 𝜎E[1{𝑓𝐿(𝑋̄𝜂(𝑓,𝐿)(𝑦)) ≥ 1∕2} − 𝑦]𝑛E[𝑣𝑌 𝑦
𝑛−1+1

− 𝑣𝑌 𝑦
𝑛−1

]

= 𝑛𝜎E[1{𝑓𝐿(𝑋̄𝜂(𝑓,𝐿)(𝑦)) ≥ 1∕2}𝑣𝑌 𝑦
𝑛−1+1

− 1{𝑓𝐿(𝑋̄𝜂(𝑓,𝐿)(𝑦)) ≥ 1∕2}𝑣𝑌 𝑦
𝑛−1

− 𝑦𝑣𝑌 𝑦
𝑛−1+1

+ 𝑦𝑣𝑌 𝑦
𝑛−1

+ 𝑣𝑌 𝑦
𝑛−1

− 𝑣𝑌 𝑦
𝑛−1

]

= 𝑛𝜎(E[1{𝑓𝐿(𝑋̄𝜂(𝑓,𝐿)(𝑦)) ≥ 1∕2}𝑣𝑌 𝑦
𝑛−1+1

+ 1{𝑓𝐿(𝑋̄𝜂(𝑓,𝐿)(𝑦)) < 1∕2}𝑣𝑌 𝑦
𝑛−1

]

− 𝐻(𝑦, 𝒗))

= 𝑛𝜎

( ∞
∑

𝑘=1

( 3
4

)𝑘−1 1
4

𝑛+𝜂(𝑓,𝑘)−1
∑

𝑗=0
E
[

1

{

𝑓𝑘

(

𝐾𝑛
𝜂(𝑓,𝑘),𝑗

𝜂(𝑓, 𝑘)

)

≥ 1∕2

}

𝑣𝑗−𝐾𝑛
𝜂(𝑓,𝑘),𝑗+1

+ 1

{

𝑓𝑘

(

𝐾𝑛
𝜂(𝑓,𝑘),𝑗

𝜂(𝑓, 𝑘)

)

< 1∕2

}

𝑣𝑗−𝐾𝑛
𝜂(𝑓,𝑘),𝑗

]

(

𝑛 + 𝜂(𝑓, 𝑘) − 1
𝑗

)

× 𝑦𝑗 (1 − 𝑦)𝑛+𝜂(𝑓,𝑘)−1−𝑗 −𝐻(𝑦, 𝒗)

)

,

which is precisely (7) applied to the 𝒗-argument of 𝐻(𝑦, 𝒗) =
⟨𝑩dim(𝒗)−1(𝑦), 𝒗⟩. □

4. The Allen–Cahn model of spatial genetics

The Allen–Cahn equation on a Lipschitz domain 𝛺 ⊆ R𝑑 is

𝜕𝑡𝑢 − 𝛥𝑢 = 𝜆𝑓 (𝑢), (11)

for a given 𝜆 > 0 and 𝑓 ∶ [0, 1] ↦ [0, 1], and subject to suitable
initial and boundary conditions. In Etheridge et al. (2022), the authors
consider a model of the spatially structured frequency 𝑢(𝑥, 𝑡) of an allele
𝐴 governed by

𝜕𝑡𝑢 − 𝛥𝑢 = 1
𝜀2

𝑢(1 − 𝑢)(2𝑢 − 1 + 𝜈𝜀) for 𝑥 ∈ 𝛺, 𝑡 > 0, (12)

𝜕𝑛𝑢 = 0 for 𝑥 ∈ 𝜕𝛺, 𝑡 > 0,

𝑢(𝑥, 0) = 𝑢0(𝑥) for 𝑥 ∈ 𝛺,

where 𝜀 > 0, 𝜈 > 0, 𝜕𝑛 denotes the normal derivative at the boundary,
and 𝑢0 ∶ 𝛺 → [0, 1] (see also Gooding (2018)). They construct a
solution to (12) by using a particle system in which a single particle
started at a location 𝑥 ∈ 𝛺 undergoes a Brownian motion with speed 2,
branches into three independent copies at rate (1+𝜀𝜈)∕𝜀2, and particles
are reflected from the boundary. At a given end time 𝑡 > 0, a leaf
article at location 𝑧 ∈ 𝛺 samples one of two alleles, 𝑎 and 𝐴, with

respective probabilities (1−𝑢0(𝑧), 𝑢0(𝑧)). All particles sample their alleles
independently. Then, particles propagate their alleles rootwards along
the realisation of the Brownian tree. The allele of an internal branch
is decided by a majority vote among its three children unless exactly
one child carries allele 𝐴, in which case the parent branch carries 𝐴
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with probability 2𝜈𝜀∕(3 + 3𝜈𝜀), and 𝑎 otherwise. The probability that
the root particle 𝑥 ∈ 𝛺 carries allele 𝐴 under these dynamics solves
(12) (Etheridge et al., 2022, Proposition 2.4).

The ingredients of the particle system can be read off from (12).
The Laplacian 𝛥 is the generator of Brownian motion run at speed 2,
the branching rate (1+𝜀𝜈)∕𝜀2 is an upper bound for the right-hand side,
and

1
𝜀2

𝑢(1− 𝑢)(2𝑢−1+ 𝜈𝜀) = 1 + 𝜈𝜀
𝜀2

(

𝑢3 +3𝑢2(1− 𝑢) + 2𝜈𝜀
3 + 3𝜈𝜀

3𝑢(1− 𝑢)2 − 𝑢

)

,

which demonstrates that the nonlinearity in (12) has an interpretation
as the voting system described above. It would be straightforward to
adapt the proof of Etheridge et al. (2022, Proposition 2.4) to any other
polynomial right-hand side of the form

𝜆
𝑚
∑

𝑗=0
𝑝𝑗

(

𝑚
𝑗

)

𝑢𝑗 (1 − 𝑢)𝑚−𝑗 − 𝑢,

for some 𝑚 ∈ N, 𝜆 > 0, and coefficients 𝑝𝑗 ∈ [0, 1] by setting 𝜆 as
the branching rate into 𝑚 particles, and suitably adapting the voting
scheme. Our contribution is to prove an analogous result for (11),
subject to the same initial and boundary conditions as (12), when 𝑓
s merely continuous and polynomially bounded.

Consider a branching Brownian motion reflected off the boundary
𝛺, with branching rate 𝜆, started from a single particle at 𝑥 ∈ 𝛺
t time 0. At a branching event, the number of offspring is given by
(𝑓, 𝐿), where 𝐿 ∼ Geo(1∕4). At a terminal time 𝑡 > 0, a leaf particle
t 𝑧 ∈ 𝛺 samples allele 𝑎 (resp. 𝐴) with probability 1 − 𝑢0(𝑧) (resp.
0(𝑧)), and each leaf carries out this choice independently. Alleles are
ropagated rootwards along the tree: a branch with 𝜂(𝑓, 𝑘) offspring,
of whom carry allele 𝐴, carries allele 𝐴 if 𝑓𝑘(𝑗∕𝜂(𝑓, 𝑘)) ≥ 1∕2, and

carries allele 𝑎 otherwise. Let 𝐹 (𝑥, 𝑡) be the allele carried by the root
particle at position 𝑥 ∈ 𝛺 when the branching process is run until time
𝑡 > 0.

Theorem 4. Suppose 𝑓 is continuous and polynomially bounded as in (1).
Viewed as a function of 𝑥 ∈ 𝛺, the probability P(𝐹 (𝑥, 𝑡) = 𝐴) solves (11)
subject to the initial and boundary conditions in (12).

Proof. The proof is an adaptation of that of Etheridge et al. (2022,
Proposition 2.4) to our more general setting. To verify that 𝑞(𝑥, 𝑡) ∶=
P(𝐹 (𝑥, 𝑡) = 𝐴) solves (11) on the interior of 𝛺, let 𝑆 denote the first
branching time of the initial particle and (𝑊𝑡)𝑡≥0 be a Brownian motion.
For small ℎ > 0,

𝑞(𝑥, 𝑡 + ℎ) = P(𝐹 (𝑥, 𝑡 + ℎ) = 𝐴|𝑆 > ℎ)P(𝑆 > ℎ) + P(𝐹 (𝑥, 𝑡 + ℎ)

= 𝐴|𝑆 ≤ ℎ)P(𝑆 ≤ ℎ)

= E𝑥[𝑞(𝑊ℎ, 𝑡)|𝑆 > ℎ]P(𝑆 > ℎ) + P(𝑆 ≤ ℎ)
∞
∑

𝑘=1

( 3
4

)𝑘−1 1
4

𝜂(𝑓,𝑘)
∑

𝑗=0

× 1

{

𝑓𝑘
( 𝑗
𝜂(𝑓, 𝑘)

)

≥ 1
2

}

(

𝜂(𝑓, 𝑘)
𝑗

)

× E𝑥[𝑞(𝑊𝑆 , 𝑡 + ℎ − 𝑆)𝑗

× (1 − 𝑞(𝑊𝑆 , 𝑡 + ℎ − 𝑆))𝜂(𝑓,𝑘)−𝑗 |𝑆 ≤ ℎ]

= E𝑥[𝑞(𝑊ℎ, 𝑡)|𝑆 > ℎ]𝑒−𝜆ℎ + E𝑥[𝑓 (𝑞(𝑊𝑆 , 𝑡 + ℎ − 𝑆))|𝑆 ≤ ℎ](1 − 𝑒−𝜆ℎ),

where the subscript in E𝑥 denotes the starting point of (𝑊𝑡)𝑡≥0 and the
last equality follows via (2). Since 𝑓 is continuous, regularity of the
heat semigroup and the tower law (viewing 𝑞(𝑥, 𝑡) as the expectation of
an indicator function) yield

E𝑥[𝑓 (𝑞(𝑊𝑆 , 𝑡 + ℎ − 𝑆))|𝑆 ≤ ℎ] = 𝑓 (E𝑥[𝑞(𝑊𝑆 , 𝑡 + ℎ − 𝑆)|𝑆 ≤ ℎ]) + 𝑂(ℎ)

= 𝑓 (𝑞(𝑥, 𝑡)) + 𝑂(ℎ).

Hence,

𝜕 P(𝐹 (𝑥, 𝑡) = 𝐴) = lim
E𝑥[P(𝐹 (𝑊ℎ, 𝑡) = 𝐴)|𝑆 > ℎ] − P(𝐹 (𝑥, 𝑡) = 𝐴)

𝑒−𝜆ℎ
44

𝑡 ℎ→0 ℎ w
+ lim
ℎ→0

𝑓 (P(𝐹 (𝑥, 𝑡) = 𝐴)) − P(𝐹 (𝑥, 𝑡) = 𝐴)
ℎ

(1 − 𝑒−𝜆ℎ)

= 𝛥P(𝐹 (𝑥, 𝑡) = 𝐴) + 𝜆[𝑓 (P(𝐹 (𝑥, 𝑡) = 𝐴)) − P(𝐹 (𝑥, 𝑡) = 𝐴)].

he boundary condition is inherited from reflecting Brownian mo-
ion (Bass and Hsu, 1991) since branching events occur at a finite rate
nd hence will not take place on the boundary. □

. Discussion

In Cordero et al. (2022), the authors prove analogues of Theo-
ems 1–3 for the case

(𝑥) − 𝑥 ∶=
𝑚
∑

𝓁=2
𝛽𝓁

𝓁
∑

𝑖=0

(

𝓁
𝑖

)

𝑥𝑖(1 − 𝑥)𝓁−𝑖
(

𝑝𝑖,𝓁 − 𝑖
𝓁

)

, (13)

for a fixed 𝑚 ∈ N, positive coefficients {𝛽𝓁}𝑚𝓁=2, and a sequence of [0, 1]-
alued coefficients {{𝑝𝑖,𝓁}𝓁𝑖=0}

𝑚
𝓁=2. Earlier work by González Casanova

and Spanò also covered the case

𝑓 (𝑥) ∶=
∞
∑

𝑗=0
𝜋𝑗𝑥

𝑗 ,

where {𝜋𝑗}∞𝑗=0 is a probability mass function (Gonzalez Casanova and
Spanò, 2018). Our results cover all Lipschitz continuous, polynomially
bounded functions 𝑓 ∶ [0, 1] ↦ [0, 1], which includes both of these
classes as special cases. Furthermore, Cordero et al. (2022, Section
2.10) mentions that their approach should extend to the 𝑚 = ∞ case.
Our Bernoulli factory approach demonstrates that this is true, and also
that there is no further difficulty in handling our more general class of
drift functions.

The works of Gonzalez Casanova and Spanò (2018) and Cordero
et al. (2022) are more general than our results in two ways: they tackle
sequences of drift functions 𝑓𝑁 → 𝑓 as 𝑁 → ∞, and they incorporate
jumps in the limiting forward-in-time Wright–Fisher diffusion, along
with multiple mergers into the reverse-time ancestral process. Both of
these generalisations could be incorporated into our model at the cost
of increased technicality. We have chosen to omit them to focus on the
class of drift functions, which is our main interest.

The link our work establishes between individual-based models and
diffusive scaling limits provides rigorous justification for a range of
diffusive approximations which have been obtained for non-neutral
finite-population models (Taylor and Nowak, 2006; Lessard and Ladret,
2007). In addition, we provide an associated genealogical description
and a formal duality relation between the two processes. Genealogical
processes of Wright–Fisher diffusions with frequency-dependent selec-
tion are also considered in Coop and Griffiths (2004), though their
approach is to condition on the allele frequency trajectory and hence
avoid the need for branching events in the ancestral process. Their
setting is formulated for generic drift functions of the form 𝛽(𝑥)𝑥(1−𝑥),
though in practice they focus on Bernstein polynomials of degree no
more than two.

Approaches based on moment duality, with duality function ℎ(𝑥, 𝑛) =
𝑥𝑛, have been used to obtain series expansions of Wright–Fisher dif-
fusion transition functions (Barbour et al., 2000), and Cordero et al.
(2022) uses the Bernstein duality in (9) and the Bernstein coefficient
process (𝐕𝑡)𝑡≥0 to study fixation for drifts of the form (13). It is unclear
whether similar results can be usefully obtained in our setting in
practice because the sequences {𝑓𝑘}𝑘≥1 and {𝜂(𝑓, 𝑘)}𝑘≥1 are difficult
o compute. Hence, so are the Bernstein coefficients.

The construction of the solution to the Allen–Cahn Eq. (11) from
branching Brownian motion is also an example of duality between

hese two processes. This result could also be generalised by replacing
he Laplacian with a more general second order differential operator,
rovided that it has suitable regularity and generates a diffusion with
ractable reflecting behaviour at boundaries.

The key advantage of the Keane–O’Brien factory is that it covers the
hole class of continuous, polynomially bounded functions 𝑓 . Other
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factories could be used to obtain different ancestral processes, Wright–
Fisher diffusions, and constructions of the solution to the Allen–Cahn
equation. However, it is essential that the number of coins needed
by the factory is independent of the realisations of those coins, or at
least that there is a almost surely finite upper bound on the number
of coins regardless of realisations. Otherwise, the trick of keeping track
of all resulting branches to fill in alleles (or votes) later cannot work,
because the number of branches cannot be determined until earlier
alleles have been resolved. As far as we are aware, the only other
somewhat general Bernoulli factory with this independence property is
that of Mendo (2019), which is identical to the branching mechanism
used in Gonzalez Casanova and Spanò (2018) and applies to exactly
the same functions. Seminal Bernoulli factories, such as that of Nacu
and Peres (2005) based on Bernstein polynomial approximation of 𝑓 ,
inherently link the decision to keep flipping coins to the outcomes of
earlier coins.

Finally, there are multivariate analogues of Bernoulli factories,
in which independent, 𝑚-sided dice with probability mass function
(𝑝1,… , 𝑝𝑚) are used to construct a 𝑣-sided die with mass function
𝑓 (𝑝1,… , 𝑝𝑚). To date, attention has focused on domains which exclude
boundaries, and where the coordinates of 𝑓 are rational functions (Mo-
rina, 2021; Morina et al., 2022), or where 𝑣 = 1 (Paes Leme and
Schneider, 2023). We believe a suitable extension of such dice enter-
prises to cases including boundaries could be used to obtain analogues
of the convergence and duality results presented here in the case with
more than two non-neutral alleles.
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