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Heterogeneous architectures are increasingly common in modern High-Performance Computing (HPC) systems. 
Achieving high-performance on such heterogeneous systems requires new approaches to application development 
that are able to achieve the three Ps: Performance, Portability, and Productivity.
In this paper, we provide an overview of the state-of-the-art for developing high-performance, portable and 
productive multi-physics applications with particular focus on the simulation of a plasma fusion reactor. 
Simulating such a complex system relies on both fluid- and particle-based simulations, and coupling interfaces 
between these two domains. We also review the current state-of-the-art in reasoning about the performance, 
portability and productivity of HPC applications.
1. Introduction

Numerical simulation allows scientists and engineers to rapidly de-
velop physical understanding and prototype new designs in domains 
where physical experimentation may be costly, impractical, or danger-
ous. As a result, computational methods have joined theory and experi-
ment as central pillars of scientific investigation. Maximising the perfor-
mance of these numerical simulations means that more calculations can 
be carried out, allowing scientists to increase the size, complexity, or 
resolution of their experiments. The field of High Performance Comput-
ing (HPC) exists to develop and improve the performance of scientific 
applications and the supercomputers running them. In turn, increas-
ingly powerful supercomputers allow us to tackle new scientific grand 
challenges [1,2]. One such grand challenge is the economic delivery of 
nuclear fusion energy in the coming decades.

Project NEPTUNE (NEutrals and Plasma TUrbulence Numerics for 
the Exascale) [3] aims to develop new modelling software to treat the 
complex dynamics of high temperature fusion plasma for the design 
of a nuclear fusion reactor, and is funded as part of the UK’s ExCAL-
IBUR programme. It is one of a number of efforts in developing new 
numerical simulation software focused on nuclear fusion. Other no-

✩ The review of this paper was arranged by Prof. Andrew Hazel.
* Corresponding author.

table examples include the Whole Device Model Application (WDMApp) 
project [4], funded by the Department of Energy’s Exascale Computing 
Project (ECP), and the Plasma-PEPSC project [5], funded by EuroHPC.

The aim of Project NEPTUNE is to deliver expertise in, and tools for, 
“in-silico” reactor interpretation and design, initially with a focus upon 
the “edge” region of the tokamak plasma where hot plasma comes into 
contact with the material walls of the machine (see Fig. 1). This chal-
lenging, multi-physics, multi-scale intersection between plasma physics 
and engineering has long been heralded as at least an “exascale” mod-
elling and simulation problem, and its solution is widely regarded as 
critical to the success of commercial fusion energy (e.g., see Mission 2 
of the EUROfusion Road Map [6]).

One of the biggest challenges in developing such a complex simula-
tion application is in ensuring that it is able to achieve high performance 
on current- and future-generation supercomputers, adapting to new 
advancements in hardware and software. This is especially important 
currently as we transition towards heterogeneous systems comprising 
of CPU hosts with specialised accelerator architectures, where achiev-
ing high performance often requires the adoption of vendor-specific 
programming models and tools, and appropriate algorithms for the ac-
celerator architecture.
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Fig. 1. A schematic of a generic tokamak “poloidal cross section”, highlighting 
the targeted regions of plasma and machine, namely the main chamber between 
core plasma scrape off layer and wall (upper circle) and the so called “plasma 
exhaust” or “divertor” region (lower circle) where heat and particles come into 
direct contact with material surfaces [7].

For most large scientific simulation applications, maintaining mul-
tiple versions of a code-base is simply not a reasonable option given 
the significant time and effort required, not to mention the expertise 
needed in the many different associated technologies. Even holding 
multiple versions does not guarantee a future-proof application where 
the next innovation in hardware may well require yet another paral-
lel programming model or a different parallelisation strategy to obtain 
best performance for the new device. These challenges are now general 
and applicable equally to any scientific domain that relies on numerical 
simulation software using HPC systems. As a recent review for applica-
tions in the computational fluid dynamics (CFD) domain [8] elucidates, 
three key factors can be identified when considering the development 
and maintenance of large-scale simulation software, particularly aimed 
at production:

1. Performance: running at a reasonable/good fraction of peak per-
formance on given hardware.

2. Portability: being able to run the code on different hardware plat-
forms/architectures with minimum manual modifications.

3. Productivity: the ability to quickly implement new applications 
and features, and maintain existing ones.

The last of these is particularly challenging for nuclear fusion, where 
new experimental results have on several occasions suggested radical 
revision of models and designs.

As more and more parallelisation features have been added to gen-
eral purpose programming languages, achieving performance, portabil-
ity and productivity in production code bases has become increasingly 
difficult – with significant application rewrites required to achieve high 
performance and portability. Fully automated parallelisation by a com-
piler for general purpose languages has consistently failed, requiring 
2

manual intervention to achieve a satisfactory result [9–12]. Compil-
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ers for imperative languages such as C/C++ or Fortran, the dominant 
languages in HPC, have struggled to extract sufficient semantic infor-
mation, enabling them to safely parallelise a program from all, but the 
simplest structures. Consequently, the programmer has been forced to 
carry the burden of “instructing” the compiler to exploit available par-
allelism in applications, targeting the latest, and purportedly greatest, 
hardware.

In many cases, the use of very low-level techniques, some only ex-
posed by a particular programming model/language extension, are re-
quired with careful orchestration of computation and communications 
to obtain the best performance. Such a deep understanding of hardware 
is difficult to gain and, even more so, unreasonable for domain scien-
tist/engineers to be proficient in – especially given that the expertise 
required rapidly changes with the technology of the moment follow-
ing hardware trends. A good example is the many-core path originally 
touted by Intel with accelerators such as the Xeon Phi, which has been 
discontinued – the first US Exascale systems are all GPU based, with 
two systems containing AMD GPUs, and one containing Intel GPUs.

As such, it is near impossible to keep re-implementing large science 
codes for various architectures. This has led to a separation of con-

cerns approach where the description of what to compute is separated 
from how the computation is implemented. This is in direct contrast 
to languages such as C/C++ or Fortran, which explicitly describe the 
computation.

In this paper, we provide a review of the state-of-the-art in achieving 
the goal of developing software that is performant, portable and produc-
tive. Specifically we outline the key approaches and tools currently used 
to develop numerical simulation applications targeting modern HPC ar-
chitectures and systems, including methods of re-engineering existing 
codes appropriately. A number of these approaches and tools have been 
covered in previous surveys [8,13–15], however this paper provides a 
broader picture of this landscape, considering low-level architecture-
specific techniques, through to high-level domain-specific languages 
that allow scientists to represent their problems in a mathematical form. 
This paper additionally includes consideration of coupling frameworks, 
that allow developers to couple many different solvers together.

Our review focuses on applications and algorithms from the plasma 
fusion domain and related supporting applications from engineering. 
Our aim is to survey and present the state-of-the-art in achieving “per-
formance portability” for fusion, where an application can achieve effi-
cient execution across a wide range of HPC architectures without signif-
icant manual modifications. For completeness, we focus on both fluid-
and particle-based computational models of plasma, and on frameworks 
for coupling these approaches.

The remainder of this paper is structured as follows: Section 2
highlights the challenges in developing future-proofed scientific ap-
plications; Section 3 provides a review of the predominant general 
purpose programming languages used in scientific application devel-
opment; Section 4 outlines some of the main programming models that 
provide parallelism to developers; Section 5 describes of a range of im-
portant software libraries that provide common functionality to parallel 
scientific applications; Section 6 gives an overview of domain specific 
languages specifically targeted at fluid- and particle-based simulations; 
Section 7 outlines a number of coupling interfaces that allow multi-
ple applications to be coupled together; Section 8 gives an overview of 
how performance, portability and productivity may be evaluated for a 
project such as NEPTUNE; finally, Section 9 concludes the paper.

2. Challenges in developing modern parallel applications

The end of CPU clock frequency scaling in 2004 gave rise to multi-
core designs for mainstream processor architectures. The turning point 
came about as the current CMOS-based microprocessor technology 
reached its physical limits, reaching the threshold postulated by Den-
nard in 1974 [16]. The end of Dennard scaling has meant that further 

increases in clock frequency would result in unsustainably large power 
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consumption, effectively halting a CPUs ability to operate within the 
same power envelope at higher frequencies.

More than a decade and a half has passed since the switch to multi-
core, where we now see a golden age of processor architecture design 
with increasingly complex and innovative designs used to continue de-
livering performance improvements [17]. The primary trend continues 
to be the development of designs that use more and more discrete pro-
cessor “cores” with the assumption that more units can do more work 
in parallel to deliver higher performance by way of increased through-
put. This has aligned well with the hardware industries’ ambition to see 
the continuation of Moore’s Law – exponentially increasing the number 
of transistors on a silicon processor.

As a result, on the one hand, we see traditional CPU architectures 
gaining more cores, currently over 40 cores for high-end processors, 
and increasing vector widths (e.g., Intel’s 512-bit vector units) per core, 
widening their ability to do more work in parallel. On the other hand, 
we see the widespread adoption of separate devices, called accelerators, 
such as GPUs that contain much larger numbers (over 1024) of low-
frequency (power) cores, targeted at speeding up specific workloads.

More cores on a processor has effectively resulted in making calcula-
tions on a processor, usually measured by floating-point operations per 
second (FLOP/s), cheap. However, feeding the many processors with 
data to carry out the calculations, measured by bandwidth (bits/sec), 
has become a bottleneck. As the growth in the speed of memory units 
has lagged that of computational units, multiple levels of memory hier-
archy have been designed, with significant chunks of silicon dedicated 
to caches to bridge the bandwidth/core-count gap.

Memory technologies such as High Bandwidth Memory (HBM) have 
produced “stacked memory” designs where embedded DRAM is inte-
grated on to CPU chips. The memory hierarchy has been further ex-
tended off-node, with burst buffers and I/O nodes serving as staging 
areas for scientific data en route to a parallel file system. Larger and 
more heterogeneous machines have also necessitated more complex in-
terconnection strategies. Technologies such as NVLink, Infinity Fabric 
or Compute eXpress Link allow GPUs to communicate point-to-point 
without requiring data to travel through the CPU. New high-speed in-
terconnects have been developed that seek to minimise the number of 
hops required to move data between nodes and devices, potentially ben-
efiting both inter-node communications and file system operations.

A decade ago, the vast majority of the fastest HPC systems in the 
world were homogeneous clusters based around the x86-64 architec-
ture, with a few notable exceptions such as the IBM BlueGene archi-
tectures. Now, there is a diverse range of multi-core CPUs on offer, 
supported by an array of manycore co-processor architectures, complex 
high-speed interconnects, and multi-level parallel file systems.

The underpinning expectation of the switch to multi-core and the 
subsequent proliferation of complex, massively parallel hardware was 
that performance improvements could be maintained at historical rates. 
As a recent review by Leiserson et al. elicits, improvements in perfor-
mance are now likely to come from the top of the computing stack in 
the form of algorithms, architecture and “big components” (e.g., soft-
ware with millions of lines of code, GPUs, CPUs, compilers) [18].

However, this has led to the need for highly skilled parallel program-
ming know-how to fully exploit the full potential of these devices and 
systems. The switch to parallelism and its consequences was aptly de-
scribed by David Patterson in 2010 as a “Hail-Mary pass”, an act done 
in desperation by the hardware vendors “without any clear notion of 
how such devices would in general be programmed” [19].

More than a decade later, industry, academia and stakeholders of 
HPC have still not been able to provide an acceptable and agile software 
solution to this issue. The problem has become even more significant 
with the current deployment of heterogeneous Exascale-capable HPC 
systems, limiting their use for real-world applications for continued sci-
entific delivery. On the one hand, open standards have been slow to 
catch up with supporting new hardware and, for many real applica-
3

tions, have not provided the best performance achievable from these 
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devices. On the other hand, proprietary solutions have only targeted 
narrow vendor-specific devices resulting in a proliferation of parallel 
programming models and technologies.

On heterogeneous platforms, a significant proportion of the avail-
able performance comes from the accelerators, with the host CPU pri-
marily providing problem setup, synchronisation, and I/O operations. 
Each of the major GPU manufacturers provide a different programming 
model to interact with their accelerators and, so, application devel-
opers must consider their approach when targeting a heterogeneous 
system. Further consideration must also be given to vendor-supported 
approaches that may lead to vendor lock-in.

Fig. 2 gives a broad outline of the various components that may 
be involved when developing multi-physics simulation applications for 
execution on heterogeneous systems. Higher-level representations of 
physics problems (such as DSLs) allows an application to better synthe-
sise machine-code representations for various hardware, and potentially 
enable more developer productivity (in many DSLs partial differential 
equations can be represented directly in code). Lower-level represen-
tations are more likely to be able to exploit available parallelism on 
various platforms, but may limit portability between systems.

Over the next five sections of this paper, we will focus on each of 
the boxes in Fig. 2 in turn, looking at the current state-of-the-art in 
(i) general purpose programming languages, (ii) parallel programming 
models, (iii) software libraries, (iv) domain specific languages, and (v) 
coupling frameworks. Our survey follows Reguly and Mudalige [8] to-
gether with specific considerations for algorithms of interest to the 
fusion domain (in particular both fluid- and particle-representations of 
plasma fusion).

3. General purpose programming languages

In this class we consider traditional programming languages with long history 
of usage and support in scientific computing. These languages typically allow 
fine control over every aspect of an algorithms implementation.

Scientific computing is dominated by the Fortran, C and C++ pro-
gramming languages. In the UK, Fortran-based applications currently 
dwarf C/C++ applications. On ARCHER, the UK’s Tier-1 resource be-
tween 2014 and 2020, Fortran applications accounted for almost 70% 
of the machine’s core hours, while C/C++ applications accounted for 
around 15% [20]. This trend has somewhat continued on ARCHER2, 
with usage data for April 2023 showing that Fortran applications still 
account for over half of the identifiable core hours, while C/C++ ac-
counts for around a third.1 This skew towards Fortran is in part due 
to a number of mature applications with large user bases, such as VASP 
(24% of identified usage on ARCHER2), and its longevity in HPC, mean-
ing that it benefits from mature compiler support more than most other 
languages.

Within the US Department of Energy’s Exascale Computing Project 
(ECP), the opposite trend can be seen, where C/C++ is being actively 
pursued for around 70% of their applications, compared to just 10% in 
Fortran [21]. This is motivated by a perceived risk of relying on For-
tran for mission critical codes in the future [22]. A number of other 
studies have similarly concluded that Fortran may harm portability and 
productivity due to limitations in the language [23] and the develop-
ment of tooling [24]. However, there are also ongoing efforts to bridge 
some of the gaps between C/C++ and Fortran, with the introduction of 
the Fortran Lang community, a Fortran standard library and a Fortran 
package manager [25].

Another language growing in popularity in HPC is Python. While 
not traditionally a “high performance” language, it provides interfaces 
to many external libraries, often written using languages such as C/C++ 
and Fortran. This has meant that Python can provide an easy interface 

1 https://github .com /ARCHER2 -HPC /usage -data /tree /main /allusers /2023 /

04.
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Fig. 2. Overview of the potential layers in a software stack for a multi-physics simulation application.
for developers to write their applications at a high-level, leaving the im-
plementation and execution to optimised libraries (see Section 6). Due 
to Python’s use in a wide range of fields, by large corporations such 
as Alphabet, the community has invested significant effort into improv-
ing the performance of pure Python. The flexibility of the language and 
dynamic type system limits opportunities for static analysis and optimi-
sation; instead Just-In-Time (JIT) compilers have been developed, both 
as libraries to target particular code hotspots (e.g., Numba [26]), and 
whole programs (e.g., PyPy [27]). However, threading within Python, 
and thus its parallel performance, has historically been poor, limited by 
the Global Interpreter Lock (GIL) present in the reference CPython im-
plementation, PyPy and Stackless Python [28]. Proposals to remove this 
lock, or make it optional, are on-going (see PEP 703), and until this hap-
pens, Python’s use in HPC will continue to be limited to being primarily 
a “glue” language, coordinating work done in components implemented 
in higher-performance languages.

There is a long history of research and development of languages 
for scientific and high performance computing, including those such as
Chapel [29], Fortress [30] and X10 [31] which target parallel compu-
tation. These have tended to remain niche languages and have not been 
widely adopted. A promising language, which is general purpose but de-
signed in particular for scientific computing, is the Julia language [32]. 
This has a syntax which is familiar to Matlab or Fortran programmers, 
but is built on a sophisticated type system and language design, and 
uses LLVM to perform JIT compilation for CPU and GPU hardware. It 
is a relatively new language (version 1.0 was released in August 2018), 
but is seeing rapid adoption in scientific and machine-learning commu-
nities, and already has some libraries which are recognised as best in 
class [33]. It aims to combine the flexibility and high productivity of 
Python, with high performance.

Developing applications in these general purpose programming lan-
guages presents a number of challenges:

1. The languages are very prescriptive, and optimising an application 
for one system may harm performance on another system. In fact, 
4

optimising for one architecture can obfuscate the science source 
so much so that future maintenance and addition of new features 
becomes difficult.

2. Applications developed with multiple code paths may provide 
portable performance, but require duplicated effort keeping each 
code path up to date.

3. Parallelism must be explicitly written into the application, almost 
always using parallel programming extensions to the languages (as 
discussed in the next section), significantly increasing the complex-
ity of development.

4. Parallel programming models

In this class we consider the programming models that extend from tradi-

tional general purpose programming languages to provide parallelisation both 
on-node (e.g., vectorisation, threading) and off-node (e.g., message passing). 
We also consider programming models that are designed specifically for het-

erogeneous computation with accelerator devices.

The parallelism available on modern supercomputers is hierarchi-
cal in nature. Vector operations (e.g., SSE, AVX, APX, SVE) provide 
instruction-level parallelism within a core (using a single instruction, 
multiple data (SIMD) model), while threading provides a form of shared 
memory parallelism within a node. Symmetric Multithreading (SMT) al-
lows two or more threads to co-exist (with an architecture dependent 
degree of concurrency) on a single compute core, potentially increasing 
compute unit utilisation. Parallelism across a system is usually achieved 
using message passing or shared global memory techniques.

Vectorised code can be achieved during the compilation phase, if 
there are no data dependencies present in the code. All modern compil-
ers attempt to generate vectorised code through auto-vectorisation, usu-
ally when higher optimisation levels are specified (e.g., with compiler 
flags such as -O2 and above). However, the compiler will only produce 
vectorised code when it is absolutely certain that no dependencies ex-
ist. In almost all non-trivial (especially real-world) codes a conclusive 
determination cannot be made and auto-vectorisation fails [34].

A developer can aid the compiler with the use of compiler direc-
tives or vector intrinsics. Compiler directives (or pragmas) allow a 

https://peps.python.org/pep-0703/
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developer to indicate that an assumed dependency can be ignored, po-
tentially resulting in the compiler being able to generate vectorisable 
code that is portable across architectures. However, the compiler may 
still believe there is a dependency present and, in this case, the devel-
oper must use a lower-level interface (e.g., Intel Intrinsics) to directly 
manipulate the vector registers [35]. This is likely to result in higher 
performance, but the instruction set specific code is likely to signifi-
cantly harm both portability and productivity [36].

Distributing execution across all cores in a node can be achieved 
through threading and shared memory, or through message passing.

In HPC applications, threading is often achieved through OpenMP [37
40], while message passing is usually implemented using the Message 
Passing Interface (MPI) [41]. Both threading and message passing can 
be achieved through the POSIX Threads (pthreads) library; however, 
like OpenMP, this approach does not extend to distributed memory sys-
tems. Consequently, many implementations of the OpenMP standard 
rely on a lightweight threading library, such as pthreads [42].

In OpenMP, parallelism is achieved at the loop-level by annotating 
loop structures with compiler directives (e.g., #pragma omp paral-
lel for), such that the compiler can thread each iteration for exe-
cution in parallel. In MPI, parallelisation must be implemented explic-
itly, with each process initiating inter-process communications directly 
through the application programming interface (API).

Parallelisation beyond a single node requires inter-node communi-
cations. The de facto standard in HPC is MPI. MPI provides a num-
ber of functions for distributed computation, including point-to-point 
communications, one-sided communications, collective operations and 
reduction operations. In an MPI-parallelised program, each process op-
erates on its own data, and communicates edge values to surrounding 
processes where a dependency exists.

There are also a number of programming models that treat the dis-
tributed memory space as a single homogeneous block. This partitioned 
global address space (PGAS) approach is taken by Coarray Fortran [43]
and Unified Parallel C [44], among others. In this model, commu-
nications are hidden to the application developer, but are typically 
implemented using MPI in the backend library.

An alternative to the data parallelism approaches described above, 
is task parallelism. In a task parallel approach, the work of the appli-
cation is divided into tasks and then scheduled for execution across a 
distributed architecture. Tasking was introduced in version 3.0 of the 
OpenMP standard, and the standard now includes functionality for stan-
dard tasks, single tasks, task dependencies and task groups [40]. Task-
ing has been developed further by a number of asynchronous many-
tasking (AMT) frameworks. Notable examples include Charm++ [45],
Legion [46], HPX [47], and DARMA/vt [48].

4.1. Accelerator extensions

For heterogeneous systems, host code is usually written using the 
programming languages and models mentioned previously to coordi-
nate between compute nodes; however, the accelerators themselves 
often require a different approach. This is a consequence of the sig-
nificant differences in accelerator architectures compared to traditional 
CPUs; indeed their simplified architecture often restricts developers to 
a subset of language features.

Each vendor typically offers their own platform-specific program-
ming model, such as CUDA from NVIDIA and HIP/ROCm from AMD. 
Moving between hardware vendors therefore requires moving between 
programming models. In some cases, this may be as simple as finding 
matching API calls, and in some cases this may require significant re-
engineering [49,50].

Although proprietary, CUDA has been the most dominant accelera-
tor programming extension and has maintained a high level of adoption 
in HPC given the widespread use of NVIDIA GPU hardware and the ma-
turity and support that NVIDIA put into the numerical solver libraries 
5

based on CUDA (e.g., cuBLAS, cuFFT) [51]. The HIP programming 
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model provides a near like-for-like API, and a similar number of nu-
merical solver packages [52]. Both follow a single instruction, multiple 
thread (SIMT) programming model where large numbers of threads are 
launched simultaneously (in contrast to SIMD, this allows for thread 
divergence and additional complexity).

OpenCL [53] largely mirrors the SIMT model of CUDA, having a 
similar API, but is developed as an open standard. Much like with CUDA 
and ROCm/HIP, in OpenCL the programmer is given the opportunity to 
write explicit computational kernels for devices, with significant control 
over the orchestration of parallelism. OpenCL is supported by all major 
vendors (Intel, AMD, NVIDIA) to some extent, and has been promoted as 
a vendor agnostic model. However, the same OpenCL application will 
not necessarily give the best performance on all architectures, where 
some level of device specific optimisations are required to obtain best 
performance.

While offering much less control, OpenACC [54] directives can be 
used to indicate/instruct a compiler where code can be parallelised for 
execution on an accelerator. OpenACC also provides directives to indi-
cate whether memory should be allocated on the host or the device, 
and when to move data between the two. Memory management, such 
as when data is moved to/from the device, and how often, are key con-
siderations to achieving good performance. If not handled correctly, 
directives can lead to frequent data movement to/from a device and 
lead to significant slowdowns. Currently OpenACC is provided in com-
mercial compilers from NVIDIA (previously PGI) and Cray, with the 
latter only supporting Cray-supplied hardware. GCC also offers nearly 
complete support for OpenACC 2.5, targeting both NVIDIA and AMD 
devices.

OpenMP added support similar to OpenACC for offloading compu-
tation to accelerators in version 4.0 of the standard [38]. Similar to 
its counterpart, data locality is controlled through compiler directives, 
with parallelisable loops being specified using the #pragma omp tar-
get directive. OpenMP 4.0 is a good example of standards attempting 
to catch up with evolving hardware, where support for accelerator di-
rectives (which were introduced as a proprietary solution first in 2011 
with OpenACC with the adoption of NVIDIA GPUs in HPC) were only 
added to the OpenMP standard in 2013. Even then OpenMP supporting 
compilers took several years more to fully implement the standard for 
working code [55].

Subsequent OpenMP standards (e.g., OpenMP 4.5 [39] and OpenMP 
5.0 [40]) have further improved support for accelerator devices, mak-
ing target offload a viable path to producing performant GPU applica-
tions. Support for target offload can be found in commercial compilers 
from Intel, IBM, AMD and Cray, with a variety of target architectures. 
Support also exists in the Clang/LLVM [56] and GCC open-source com-
pilers.2

While the explicit device control provided by the CUDA, ROCm/HIP, 
and OpenCL programming models may be more powerful than directive-
based approaches, it may also significantly increase developer effort. 
More recently, the Khronos Group released SYCL [57], a new high-level 
cross-platform abstraction layer, which can be viewed as a data-parallel 
version of C++ inspired by OpenCL. Many of the concepts remain the 
same, but the significant amount of “boiler-plate” code required to setup 
parallelism in OpenCL applications is now not required where SYCL 
uses a heavily-templated C++ API. In this way, SYCL is also able to 
offer a single-source solution, similar to OpenMP and OpenACC, where 
kernel code and host code can co-exist within an application (unlike 
in OpenCL, where application code is typically split between host and 
device code).

In SYCL, there is typically a queue that work items can be submitted 
to. Loop-level parallelisation is achieved using constructs such as the
parallel_for function, while task-parallelism can be achieved using 
the single_task function.
2 https://www .openmp .org /resources /openmp -compilers -tools/.
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Building on SYCL, Intel announced their new programming model,
OneAPI, in 2018. OneAPI is a unified programming model, that com-
bines several libraries (e.g., the Math Kernel Library), with Thread 
Building Blocks (TBB) and Data Parallel C++ (DPC++). DPC++ is 
a cross-architecture language built upon the C++ and SYCL standards, 
providing some extensions to SYCL. Support for SYCL and DPC++ is 
provided in a number of compilers from vendors such as AMD, Intel, 
and Codeplay, and can target a number of device types directly, or via 
existing OpenCL runtimes.3 In the case of the Intel and AMD compil-
ers, it is even possible to use SYCL to target FPGA devices. However, 
the question of whether one code written in SYCL is able to obtain 
the best performance on all supported hardware remains to be an-
swered [58–61].

In addition to the aforementioned programming models, there are 
a number of software ecosystems that target both host and accelerator 
platforms, that present themselves as parallel programming models to 
developers. Notable examples are OCCA [62], Kokkos [63], RAJA [64]
and Alpaka [65]. These are discussed in more detail in Section 5.

Parallelisation based on OpenMP and MPI have a long history 
in HPC application development. CUDA also now has over a decade 
of development, with OpenACC, and OpenCL following close behind. 
SYCL/DPC++ is the latest addition to the parallel programming ex-
tensions available. While CUDA, OpenMP, and OpenACC all support 
C/C++ and Fortran, OpenCL and SYCL only support C/C++. If, indeed, 
C/C++-based extensions and frameworks dominate the parallel pro-
gramming landscape for emerging hardware, there could well be a need 
for porting existing Fortran-based applications to C/C++.

The key considerations and challenges when using the above pro-
gramming models and extensions to general purpose languages include:

1. Open standards lagging hardware development – especially when 
the standard is developed by a large number of organisations.

2. The complete implementation of these standards into many compil-
ers can be slow [55].

3. Some of these programming models offer low-level fine control 
over parallelism and therefore may lead to overly complex code. In 
some cases, different code-paths are required to get the best perfor-
mance on different architectures [59], for example, to handle the 
different memory layouts required to optimise for CPUs vs. GPUs.

5. Software libraries

In this class we consider libraries that facilitate scheduling and execution 
of data parallel or task-parallel algorithms, and classical software libraries 
that target scientific application development, implementing a diverse set of 
common algorithms (often numerical).

5.1. Parallel programming abstraction libraries

There are a number of software libraries that present themselves 
similarly to the parallel programming models mentioned previously. 
They typically offer parallel functionality through various methods such 
as macro preprocessing, JIT compilation or template metaprogram-
ming.

OCCA [62] is one such vendor neutral, open source parallel pro-
gramming framework focused on portability. OCCA supports both 
C/C++ and Fortran, and can target platforms through a range of back-
ends (e.g., CUDA, HIP, DPC++, OpenMP, OpenCL).

An approach, exclusive to C++, is the use of template libraries, that 
enable developers to write a generic “template” to express an operation 
such as a parallel-loop iteration, but at compile-time select a specific 
implementation of a method or function (known as static dispatch). This 
allows users to express algorithms as a sequence of parallel primitives 
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executing user-defined code at each iteration, e.g., providing a loop-
level abstraction. These libraries follow the design philosophy of the 
C++ Standard Template Library [66] – indeed, their specification and 
implementation is often considered as a precursor towards inclusion in 
the C++ STL. The largest such projects are Boost [67], Eigen [68],
Thrust [69] and HPX [47]. While there are countless such libraries, 
here we focus on ones that also target performance portability in HPC.

Three notable examples of this approach are Kokkos [63] and
RAJA [64], developed as part of the US Department of Energy’s Ex-
ascale Computing Project, and Alpaka [65], developed as part of the 
PIConGPU Particle-in-Cell application [70]. Each library supports exe-
cution on shared-memory parallel platforms, such as CPUs and GPUs, 
through a variety of approaches. They do not provide parallelism on 
distributed memory systems, rather they are designed to be used in 
conjunction with MPI (or another off-node communication library).

Kokkos is a C++ performance portability layer, developed by San-
dia National Laboratories, that provides data containers, data accessors, 
and a number of parallel execution patterns [63]. Its data structures 
can describe where data should be stored (CPU memory, GPU memory, 
non-volatile, etc.), how memory should be laid out (row/column-major, 
etc.), and how it should be accessed. Similarly, one can specify where 
algorithms should be executed (CPU/GPU), what algorithmic pattern 
should be used (parallel for, reduction, tasks), and how parallelism is 
to be organised. It is a highly versatile and general tool capable of ad-
dressing a wide set of needs, but as a result is more restricted in what 
types of optimisations it can apply compared to a tool that focuses on a 
narrower application domain. Kokkos is able to target CUDA, OpenMP, 
pthreads, HIP or SYCL, meaning it can target all of the post-Exascale 
platforms currently deployed or in development.

RAJA is a similar abstraction developed by Lawrence Livermore Na-
tional Laboratory [64]. It is similar to Kokkos in many respects, but 
offers more flexibility for manipulating loop scheduling, particularly 
for complex nested loops. It supports CPUs (with OpenMP and TBB), as 
well as NVIDIA GPUs with CUDA.

Alpaka is a header-only C++17 abstraction library developed ini-
tially at TU Dresden [65]. It provides similar semantics to both Kokkos 
and RAJA, and can achieve parallelism through OpenMP, std::thread, 
TBB, CUDA, HIP and SYCL.

Both Kokkos and RAJA were designed by Department of Energy 
laboratories to help move existing software to new heterogeneous hard-
ware, and this is very much apparent in their design and capabilities 
– they can be used in an iterative process to port an application, loop-
by-loop, to support shared-memory parallelism. Of course, for practical 
applications, one needs to convert a substantial chunk of an application; 
on the CPU that is because non-multithreaded parts of the application 
can become a bottleneck, and on the GPU because of the cost of moving 
data to/from the device. Kokkos and RAJA are used heavily within the 
Exascale Computing Project (ECP) [21,71], and due to their reliance on 
template meta programming, can be used alongside almost any modern 
C++ compiler.

Using parallel programming libraries comes with the following con-
siderations:

1. Future support for, and maintenance of, these libraries is not guar-
anteed.

2. Some libraries may restrict application development to modern 
C++.

3. Development time may be high due to the compilation times asso-
ciated with heavily templated code.

4. Debugging heavily templated code can be difficult, with errors 
obfuscated by numerous templates. This can be particularly prob-
lematic for inexperienced programmers.

5. Platform specific code can be easily integrated into templated code 
to achieve higher performance on some platforms, provided that 
the abstraction used is carefully designed and at a sufficiently high 

level.
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5.2. Numerical algorithm libraries

Beyond the programming models mentioned previously, portability 
can also be achieved using libraries provided by various vendors. These 
software libraries typically provide common functionality, and are often 
highly optimised for particular architectures.

The basis of many mathematical libraries is the Basic Linear Al-

gebra Subprograms (BLAS) [72], first developed in 1979. BLAS pro-
vides vector operations, matrix-vector operations and matrix-matrix 
operations. The Linear Algebra Package (LAPACK) [73] builds on 
BLAS, providing routines for solving systems of linear equations. The
FFTW [74] library provides functions for computing discrete Fourier 
transforms, and is known to be the fastest free software implementation 
of the FFT.

Architecture-tuned implementations of BLAS, LAPACK and FFTW 
are often available, with notable examples being AMD Optimized 
CPU Libraries, ARM Performance Libraries, Intel Math Kernel Library, 
cuBLAS, clBLAS, OpenBLAS, and Boost.uBLAS. Similarly, MAGMA [75]
provides dense linear algebra kernels for multicore and accelerator ar-
chitectures.

The Portable, Extensible Toolkit for Scientific Computation 
(PETSc) [76] provides a number of data structures and routines for solv-
ing PDEs. It was developed by Argonne National Laboratory and em-
ploys MPI for distributing algorithms across an HPC system. Recently, 
PETSc has implemented an abstraction layer for scalable communica-
tions over MPI and between host and GPU devices, PetscSF [77].

Similarly, HYPRE [78] is a library of data structures, precondition-
ers and solvers developed at Lawrence Livermore National Laboratory. 
It can be built with support for GPU devices through CUDA, OpenMP 
target offload, or using RAJA or Kokkos.

Trilinos [79] is an extensive collection of open-source libraries that 
can be used to build scientific software, developed by Sandia National 
Laboratories. It provides over 50 self-contained, independent packages 
for solving linear and non-linear systems, preconditioning, and using 
sparse graphs and matrices. It supports distributed memory compu-
tation through MPI and also provides shared memory computation 
through the Kokkos package.

Achieving high performance with many solvers requires that a 
problem is well partitioned and load balanced. Notable examples are
METIS [80] (and its parallel incarnation ParMETIS [81]), Scotch [82]
(and the parallel PT-Scotch [83]), and KaHIP [84]. Trilinos pro-
vides the Zoltan2 [85] package that can perform partitioning through 
ParMETIS, PT-Scotch, or its own GPU partitioner, Sphynx.

Using these libraries introduces a number of key considerations and 
challenges:

1. While the standard interfaces to these libraries may restrict their 
usefulness to some applications, it does encourage vendors to pro-
duce optimised and portable versions of performance critical func-
tions.

2. Library functions often operate in lock-step, meaning operations 
cannot typically be fused. This may necessitate a number of unnec-
essary CPU-GPU transfers.

6. Domain specific languages

In this class we consider a wide range of languages and libraries – the key 
commonality is that their scope is limited to a particular application or algo-

rithmic domain.

Domain Specific Languages (DSLs) and approaches by definition re-
strict their scope to a narrower problem domain, set of algorithms, or 
computation/communication patterns. By sacrificing generality, it be-
comes feasible to attempt and address challenges in gaining all three of 
performance, portability and productivity. A wide range of approaches 
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exist, at different levels of abstractions starting from libraries focusing 
Computer Physics Communications 298 (2024) 109123

on specific numerical methods (e.g., Finite Element method) to low-
level parallel computation patterns and loop abstractions. Some are em-
bedded in general purpose languages (eDSLs) such as C/C++/Fortran 
or Python allowing them to make use of the compiler and development 
infrastructure (debuggers and profilers) of these languages. Others de-
velop an entirely new language of their own.

Restricting to a specific domain allows DSLs to apply more power-
ful optimisations to help deliver performance as well as portability. The 
key reason being that a lot of assumptions are already built into the 
programming interface (the domain specific API). As such, explicit de-
scription of the problem need not occur when programming with DSLs, 
significantly improving productivity. Conversely, the key deficiency of 
DSLs then is their limited applicability – if they cannot develop a consid-
erable userbase, they will lack the support required to maintain them. 
As such two of the key challenges to building a successful DSL or frame-
work are: designing an abstraction wide enough to cover a range of 
applications, but narrow enough such that powerful optimisations can 
be applied; and, ensuring there is a feasible approach to long-term sup-
port.

DSLs can be categorised based on their level of abstraction. In some 
respects, many of the solutions discussed previously in this paper could 
be thought of as low-level DSLs, providing abstractions for parallel 
computation (e.g., parallel for loops, parallel reductions, etc.); SYCL, 
Kokkos, and RAJA could be thought of as such low-level DSLs.

However, in this review, we consider low-level DSLs to be those 
that are designed for a particular class of computational pattern (e.g., 
mesh-based computations, particle-based interactions), and high-level 
DSLs to be those that allow mathematical descriptions of problems to 
be directly expressed in code, leaving the problem discretisation and 
computational method to the solver/framework.

6.1. Low-level domain specific languages

6.1.1. Mesh-based computations

This class of DSLs are, for the most part, oblivious to the numeri-
cal methods being implemented, which in turn allows them to be used 
for a wider range of algorithms, e.g., finite differences, finite volumes, 
or finite elements. The key goal here is to create an abstraction that 
allows the description of parallel computations over either structured 
or unstructured meshes (or hybrid meshes), with neighbourhood-based 
access patterns.

There are a number of notable and currently active DSLs at this 
level of abstractions. Halide [86] is a DSL intended for image process-
ing pipelines, but generic enough to target structured-mesh computa-
tions [87]; it has its own language, but is also embedded into C++, 
and it can target both CPUs and GPUs, as well as distributed memory 
systems. YASK [88] is a C++ library for automating advanced opti-
misations in stencil computations, such as cache blocking and vector 
folding. It targets CPU vector units, multiple cores with OpenMP, as well 
as distributed-memory parallelism with MPI. OPS [89] is a multi-block 
structured-mesh DSL embedded in both Fortran and C/C++, targeting 
CPUs, GPUs and clusters of CPUs/GPUs – it uses a source-to-source 
translation strategy to generate code for a variety of parallelisations.
ExaSlang [90] is part of a larger European project, ExaStencils [91], 
which allows the description of PDE computations at many levels – 
including at the level of structured-mesh stencil algorithms. It is em-
bedded in Scala and targets MPI and CPUs, with limited GPU support. 
Another DSL for stencil computations, Bricks [92], gives transparent 
access to advanced data layouts using C++, which are particularly op-
timised for wide stencils, and is available on both CPUs and GPUs.

OP2 [93] and its Python derivative, PyOP2 [94], give an abstraction 
to describe neighbourhood computations for unstructured meshes. They 
are embedded in C/Fortran and Python respectively, and can target 
CPUs, GPUs, and distributed memory systems. Unlike the structured-
mesh motif (which uses a regular stencil), unstructured-mesh compu-

tations are based on explicit connectivity information between mesh 
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elements, leading to indirect increments. Indirect increments need to 
be carefully handled when parallelising, given the existence of data de-
pendencies, and as such need different code-paths to obtain the best 
performance on different architectures [59]. OP2 generates parallel 
code targeting CPU and GPU clusters making use of a range of paral-
lel programming models (e.g., SIMD, OpenMP, CUDA, SYCL, and their 
combinations with MPI).

A number of DSLs have emerged from the weather prediction do-
main, such as STELLA [95] and PSyclone [96]. STELLA is a C++ 
template library for stencil computations that is used in the COSMO dy-
namical core [97], and supports structured-mesh stencil computations 
on CPUs and GPUs. PSyclone is part of the effort in modernising the UK 
Met Office’s weather code; it works with LFRic, which is the Met Office’ 
replacement for its Unified Model. PSyclone has code-transformation 
and automatic code generation functionalities, and as well as LFRic, 
it has been used with the NEMO and CROCO ocean models [98]. PSy-
clone is capable of generating OpenACC, OpenMP and (in limited cases) 
OpenCL [99]. Its transformation functionality allows for CPU optimisa-
tions, as well as targetting GPUs. CLAW-DSL [100], used for the ICON 
model [101], targets Fortran applications and generates CPU and GPU 
parallelisations – mainly for structured-mesh codes, but it is a generic 
tool based on source-to-source translation using preprocessor directives. 
It is worth noting that these DSLs are closely tied to larger software 
projects (weather models in this case), developed by state-funded en-
tities, greatly helping their long-term survival. At the same time, it is 
unclear if there are any other applications using these DSLs.

6.1.2. Particle interactions

Within the plasma domain, particle simulations are typically per-
formed using the particle-in-cell method [102], where individual par-
ticles (or macro particles) are tracked across a mesh representing the 
electromagnetic (or electrostatic) fields. Particles may interact only 
with the mesh (known as particle-mesh methods, or PM), with other 
particles (known as particle-particle, or PP), or with both (known as
PP-PM, or P3M). There are a number of DSLs that exist at this level of 
abstraction, proving support for one or more of these methods.

PPML [103] is a DSL for numerical simulations based on particle 
methods and hybrid particle-mesh methods. PPML provides a concise 
set of high-level abstractions through its own language, targeting re-
duced implementation times, and uses a source-to-source compiler to 
generate plain Fortran code, which is then linked with the PPML back-
end. However, the use of new language constructs limits the standard 
optimisation/debugging routines and is hard to extend and maintain. 
The Parallel Particle-Mesh Environment (PPME) [104] overcomes 
some of these issues by leveraging a meta programming system to 
enhance the programmer’s experience, which is developed as an In-
tegrated Development Environment (IDE) for particle-mesh methods.
OpenFPM [105] is a framework that provides an abstraction layer 
for mixed mesh-particle, and particle methods, embedded in C++. It 
provides a comprehensive library that targets CPUs, GPUs, and super-
computers. The HartreeParticleDSL4 is a DSL for particle methods 
implemented using the Regent programming language. It currently only 
supports a limited feature set, catering for short-range pairwise interac-
tions and per-particle operations.

While many of the particle DSLs listed here are general to PM, PP 
or P3M methods, some are designed with a specific scientific domain 
in mind, in particular N-body and molecular dynamics applications.
HOOMD-blue [106] is a general-purpose molecular dynamics and hard 
particle Monte Carlo simulation toolkit. It provides a Python-based 
domain specific API and runs over a high-performance C++/CUDA 
back-end with MPI, enabling the creation of simulation and analysis 
workflows. MDL [107] is a molecular-dynamics DSL designed to allow 
rapid prototyping, testing and debugging of efficient propagation al-
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gorithms. PPMD [108] is a portable framework for molecular dynamics 
applications, providing a Python interface and parallelised computation 
using OpenMP, MPI and CUDA.

At a level lower, the Cabana [109] library provides a number of 
data structures, algorithms and utilities specifically for particle-based 
simulations. Parallel execution of particle kernels is achieved through 
Kokkos for on-node parallelism and MPI for off-node communication. 
Each of these libraries can be used to abstract away some of the math-
ematical operations and data storage requirements needed by scientific 
applications.

6.2. High-level DSLs

Domain specificity can be at a higher level, where the DSL focuses 
on the declaration and solution of particular numerical problems. The 
most widely implemented DSLs at such a high level are frameworks for 
the solution of PDEs. The problem is specified starting at the symbolic 
expression of the problem (e.g., in Einstein notation). An interpreter 
or a compiler then (semi-) automatically discretises the problem and 
generates a solution. Most are focused on a particular set of equations 
and discretisation methods, and they can offer excellent productivity – 
assuming the problem to be solved matches the focus of the library.

Many of these libraries, particularly ones where portability is im-
portant, are built with a layered abstractions approach; the high-level 
symbolic expressions are transformed, and then passed to a layer that 
maps them to a discretisation, then this is given to a layer that ar-
ranges parallel execution – the exact layering of course depends on the 
library. This approach allows the developers to work on well-defined 
and well-separated layers, without having to gain a deeper understand-
ing of the whole system. These libraries are most commonly embedded 
in the Python language, which has the most commonly used tools for 
symbolic manipulation in this field – although functional languages are 
arguably better suited for this, they still have little use in HPC. Due to 
the poor performance of interpreted Python, these libraries ultimately 
generate low-level C/C++/Fortran code to deliver high performance.

One of the most established such libraries is FEniCS [110], which 
targets the finite element method. However it only supports CPUs and 
distributed memory cluster execution with MPI, with some support for 
GPUs with the integration of PETSc. Firedrake [111] is a similar project 
with a different feature set, that uses the aforementioned PyOP2 library 
for parallelising and executing generated code. A feature of Firedrake 
is that it generates code at runtime to exploit further optimisation op-
portunities, for example based on the mesh being available/input at 
runtime.

The ExaStencils project [91] uses four layers of abstraction to cre-
ate code running on CPUs or GPUs from the continuous description of 
the problem – its particular focus is structured meshes and multigrid.
OpenSBLI [112] is a DSL embedded in Python, focused on resolving 
shock-boundary layer interactions and uses finite differences and struc-
tured meshes – it generates C code using the OPS library which provides 
the stencil abstraction. As noted before, OPS then generates parallel 
code targeting distributed memory machines with both CPUs and GPUs.
Devito [113] is a DSL embedded in Python which allows the symbolic 
description of PDEs, and focuses on high-order finite difference meth-
ods, with the key target being seismic inversion applications. Devito 
also supports CPU and GPU parallelisation, where GPU acceleration is 
obtained by generating OpenACC directives.

In fusion research, the BOUT++ [114,115] framework has been de-
veloped as a flexible toolbox for solving a wide range of PDEs. Its design 
was in large part driven by the need for physicist users to modify and 
customise the model equations being solved. BOUT++ therefore uses 
C++ features to implement models in a way which closely mimics their 
mathematical form. The BOUT++ framework then solves these equa-
tions, and allows the user runtime control over the finite difference 
methods and stencils used, as well as time integration solver, Laplacian 

inversions, and so on.
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BOUT++’s physics model implementation language is an example 
of an eDSL, in this case C++ is the host language. eDSLs have the 
advantage of the user/developer being able to easily “break out” of 
the DSL and write generic code for situations not handled by the DSL, 
for example to handle complicated boundary conditions. The cost of 
this approach is that certain transformations of the code are harder to 
achieve. For example, each physics and arithmetic operator in BOUT++ 
contains a loop over the whole domain for its own kernel. To achieve 
the full performance with OpenMP or accelerators requires merging 
these loops into a single loop. This in turn necessitates rewriting the top-
level set of equations to include this loop explicitly, or to use something 
akin to expression templates (as is done in libraries such as Eigen [68]
or Blitz++ [116]), which have their own downsides.

BOUT++ currently only supports execution on CPUs with OpenMP 
for multi-threading and MPI for distributed memory execution. Ex-
perimental branches exist with ongoing development to support GPU 
execution. These include (1) using Hypre [78] with GPU support for 
the Laplacian inversion parts of the problem (which in practice can 
take about half the total time) and (2) with RAJA for putting the user 
physics model on GPUs, with Umpire [117] to handle memory. This 
requires modifying the physics DSL to enable operations to be fused 
together, reducing the number of separate kernels which need to be 
launched.

Similar to BOUT++, the Unified Form Language (UFL), used in 
FEniCS and Firedrake provides a high-level language to describe varia-
tional forms. The problem to be solved is specified at a high level, which 
corresponds closely to the mathematical form.

Firedrake uses the FEniCS Form Compiler (FFC) to convert UFL to an 
intermediate representation, and then uses PyOP2 to generate code for 
target architectures, aiming to be performance portable on both CPUs 
and GPUs.

The most common challenges when using DSLs include:

1. Difficulties in debugging due to the extra hidden layers of software 
between user code and code executing on the hardware. However, 
DSLs generating low-level C/C++/Fortran codes can use standard 
debuggers or profilers.

2. Extensibility – implementing algorithms that fall slightly outside of 
the abstraction defined by the DSL can be an issue.

3. Customisability – it is often difficult to modify the implementation 
of high-level constructs generated automatically.

To mitigate some of these issues, systems can be provided with “es-
cape hatches”, which provide ways for users to implement components 
of the problem which cannot be expressed in the high-level DSL. An ex-
ample is custom flux-limiters, which cannot currently be expressed in 
UFL; instead a user needs to be able to implement their own kernels, 
and integrate these into the remainder of the system in an elegant way. 
Firedrake provides such escape hatches for direct access to linear al-
gebra operators (PETSc), and allows implementation of custom PyOP2 
kernels. However it should be noted that such modifications may not 
deliver the best performance on all hardware and should be used only 
sparingly, or for prototyping. As is the case with many complex perfor-
mance issues there is no silver-bullet to solve all cases.

7. Coupling frameworks

In this class, we consider libraries acting as interfaces to enable communica-

tion between several applications to perform multiscale simulations.

The multiscale problem of fusion modelling tackled by NEPTUNE 
requires the coupling of physics at various length- and time-scales 
to predict and control instabilities in the edge-region that influence 
the plasma core (see Fig. 1). This requires efficient coupling be-
tween various solvers that represent physics at different scales/regimes 
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(continuum-kinetic coupling), such as the SOLPS-ITER [118] code for 
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simulating tokamak edge physics. Coupling libraries must be flexible 
and lightweight to provide developers the ability to optimise the per-
formance and portability of each separate code. Classically, developers 
have needed to hard-code various solvers together to perform coupled 
simulations [119], or use file-based coupling (which may introduce 
an increased I/O overhead that usually hinders performance but may 
be useful for debugging) [120]. However, several third-party libraries 
are now available to couple a potentially arbitrary number of solvers 
used to model various physical systems. Common problems driving 
these developments include fluid-structure interaction [121], conjugate 
heat-transfer [119], and aeroacoustics [122]. The suite of modules de-
veloped as part of the Multiphysics Object-Orientated Simulation 
Environment (MOOSE) framework [123] have been used for coupled 
problems in nuclear fusion such as the breeder blanket [124]. With 
the provision that data provided to the coupling middleware remains 
consistent, each solver can be developed in isolation of the other; this 
could be thought of as implementing a horizontal separation of concerns 
approach, akin to the vertical separation of concerns achieved by afore-
mentioned DSLs [125].

One strongly developed coupling library is preCICE [121,126]. Pre-
CICE aims to couple existing solvers together, creating what is known 
as ‘partitioned’ simulations. Users couple simulation codes through 
adapters which interface to libprecice. These adapters are standalone 
software packages that may either be provided by preCICE, the preCICE 
community, or may be user-defined for in-house solver methods. These 
community contributions are important to enable developer produc-
tivity. Recently, preCICE was used to couple a GPU lattice-Boltzmann 
method solver coupled to OpenFOAM (CPU-based CFD code), show-
ing it can be used to couple heterogeneous simulation codes [127]. 
The communication between simulations coupled by preCICE is rec-
ommended to be done based on TCP/IP sockets by the developers. 
Although MPI is an available option for communication, Rubin [128]
attempted to configure their simulations to communicate with MPI but 
were unsuccessful. Uekermann [129] showed that MPI-based commu-
nication is between 5 and 10 times faster than TCP/IP sockets.

The Coupling With Interpolation Parallel Interface (CWIPI) [130]
and the Multiscale Universal Interface (MUI) [119] libraries per-
form coupling using the multiple-programme multiple-data (MPMD) 
MPI model. A primary benefit of MUI is the availability of examples 
and documentation provided by the developers, compared to a lack of 
documentation or examples for CWIPI (aside from open-source contri-
butions such as Moratilla-Vega et al. [122] and, within the NEPTUNE 
project, the successful demonstration of using CWIPI for the coupling of 
fluid and particle regions for examples of interest to the fusion commu-
nity [131,132]). Additionally, MUI represents data as a cloud of points 
whereas CWIPI represents data as a mesh. The additional information 
on mesh connectivity may not be necessary in particle-based solvers 
that are necessary for fusion reactor modelling, making the cloud-based 
representation preferred for its generality [133]. The MUI software is 
written in C++11 with wrappers for C, Fortran and Python. A header-
based approach is used for the entire library and the only external 
library is MPI. As such, it can be used in the same way any other C++ 
standard library would be used, without the need for pre-compilation.

Another potential option for code coupling is the Adaptive I/O Sys-

tem (ADIOS) [134,135], developed as part of ECP, which is primarily 
concerned with high-performance I/O. ADIOS yields minimal compu-
tational overhead, and also allows seemless switching between file-
based coupling and in-memory coupling for debugging and full-scale 
runs, respectively [120]. ADIOS has been used for coupling the edge 
physics code XGC (X-point Included Gyrokinetic Code) [136] with 
several core plasma and stability analysis codes [137,138] as part of the 
ECP-funded Whole Device Model Application (WDMApp) [4,139]. 
WDMApp aims to develop easy coupling for core and edge plasma 
codes, improve the performance of the XGC edge physics code, and al-
low for integration of in-situ processing. ADIOS has also been used in 

the CFD community for in-situ post-processing and analysis [140], sug-
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gesting it would be a suitable tool for developers looking to integrate 
their software with machine learning approaches such as reduced-order 
models, without writing to disk.

Through the use of third-party coupling frameworks, developers 
can optimise their code for maximal performance on HPC with mini-
mal intrusion to the codebase of each application. Specific advantages 
include advanced coupling approaches such as implicit coupling, high-
order data mapping (e.g., interpolation via splines) and non-matching 
time-stepping without implementing these approaches in their own 
software. This also results in increased potential for scalability opti-
misations using varying domain decomposition strategies. For example, 
load-balancing algorithms can be applied separately to each application 
domain, individual computational grids can be redefined, coarsened or 
refined, and the different applications can even be run on separate plat-
forms such as GPUs if desirable.

Using coupling libraries for multiscale simulation introduces the fol-
lowing considerations:

1. Performance and scalability of the communication and coupling 
numerics when coupling various applications.

2. The ability of the coupling framework to easily be incorporated 
with existing codes with minimal intrusion is crucial to maximise 
developer productivity.

3. Coupling features available with the chosen library (various time-
stepping or interpolation/mapping schemes may be desirable). Of-
floading the implementation of these features to coupling library 
developers is key for productivity.

8. Evaluating performance, portability and productivity

When considering the development of a new simulation application, 
we are typically interested in maximising performance, portability and 
productivity [8]. In terms of performance we are usually concerned 
with metrics that directly measure or affect the “time-to-science”, while 
for portability we are usually concerned with an application’s ability 
to run correctly on different HPC systems and architectures. Productiv-
ity, on the other hand, is usually a measure of the time and expertise 
required to develop and maintain the application.

There are a wide variety of metrics for assessing the performance of 
an application, common examples include application runtime, floating-
point operations per second, or memory bandwidth. Portability could be 
thought of as a binary decision – an application either does or does not 
run correctly. Productivity is perhaps the most difficult to assess objec-
tively, but common proxies include lines-of-code written, development 
time (in person-hours), and code complexity metrics [141].

These metrics (and combinations of them) allow us to analyse and 
reason about an application, in order to evaluate development and op-
timisation strategies. One of the most notable methods of performance 
analysis is the Roofline model [142]. In a roofline model, numerous 
rooflines are drawn that correspond to the various peaks of floating 
point performance (horizontal lines) and the maximum memory band-
width (diagonal lines).

Fig. 3 (reproduced from Williams et al. [142]) shows the data for an 
AMD Opteron X2. The performance of an application, or an individual 
computational kernel, can be placed on the plot, showing if an applica-
tion is compute-bound (blue region), memory-bound (yellow region), or 
both (green region), and can therefore suggest possible routes for per-
formance optimisation (e.g., focus on improving use of ILP, improving 
memory cache behaviour). Rooflines can be calculated using published 
data (from processor specifications), or benchmarked empirically using 
tools such as Intel Advisor, or the Empirical Roofline Toolkit [143]. An 
application’s performance can then be placed on the plot using data 
gathered from performance counters.

Although portability itself is a binary measure, we are usually con-
cerned with how performant a portable application is – arguably an 
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application that runs correctly but with significantly degraded perfor-
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mance on an alternative architecture is not truly portable. This has led 
to an effort to develop a multi-objective optimisation figure of merit to 
assess performance portability. One example is the metric introduced by 
Pennycook et al. [144].

PP(𝑎, 𝑝,𝐻) =
⎧⎪⎨⎪⎩

|𝐻|∑
𝑖∈𝐻

1
𝑒𝑖(𝑎, 𝑝)

if 𝑖 is supported ∀𝑖 ∈𝐻

0 otherwise

(1)

In Equation (1), the performance portability ( PP) of an application 𝑎, 
solving problem 𝑝, on a given set of platforms 𝐻 , is calculated by 
finding the harmonic mean of an application’s performance efficiency 
(𝑒𝑖(𝑎, 𝑝)). The performance efficiency for each platform can be calcu-
lated by comparing achieved performance against the best recorded 
(possibly non-portable) performance on each individual target platform 
(i.e. the application efficiency), or by comparing the achieved perfor-
mance against the theoretical maximum performance achievable on 
each individual platform (i.e. the architectural efficiency). Should the 
application fail to run on one of the target platforms, a performance 
portability score of 0 is awarded.

Harrell et al. propose a code divergence metric as a measure of de-
veloper productivity [145], and this measure has been adopted by Code 
Base Investigator [146] and the P3 Analysis Library [147].

CD(𝑎, 𝑝,𝐻) =
( |𝐻|

2

)−1 ∑
{𝑖,𝑗}∈𝐻×𝐻

𝑑𝑖,𝑗 (𝑎, 𝑝) (2)

In Equation (2), code divergence is a measure of the average “distance” 
between the source code required to compile an application 𝑎, and ex-
ecute problem 𝑝 for each pair of platforms in 𝐻 , where 𝑑𝑖,𝑗 (𝑎, 𝑝) is any 
distance metric between two source codes. Pennycook et al. [148] sug-
gest using the Jaccard distance (shown in Equation (3)), where 𝑐𝑖(𝑎, 𝑝)
represents the set of source lines required to compile application 𝑎 and 
execute problem 𝑝 on a given platform 𝑖.

𝑑𝑖,𝑗 (𝑎, 𝑝) = 1 −
|𝑐𝑖(𝑎, 𝑝) ∩ 𝑐𝑗 (𝑎, 𝑝)||𝑐𝑖(𝑎, 𝑝) ∪ 𝑐𝑗 (𝑎, 𝑝)| (3)

Similarly to PP, this metric provides a single value in the range [0, 1], 
where 0 means a single source code is used for every platform, and 1
means an entirely separate source code is required with no shared code.

While Equations (1) and (2) provide formal definitions for perfor-
mance portability and productivity, these single value metrics may not 
answer all questions a developer might have about their application. In 
recognising this a series of visualisations of performance portability and 
productivity have been proposed by Sewall et al. [149] and Pennycook 
et al. [148]. These visualisations are best explained with examples.

Fig. 4(a) shows a cascade plot of 6 hypothetical application imple-
mentations, across 10 platforms. The implementations are: unportable

with high performance on a single platform, but not portable to any 
other platform; single target with high performance on a single plat-
form, and low performance on all others; multi target achieving high 
performance on some platforms, and low performance on others; in-

consistent showing a range of performance across all platforms; and
consistent showing consistent low (30%) or high (70%) performance 
across all platforms.

While we could simply apply the PP metric in Equation (1) to this 
synthetic data, doing so would mean that we lose some information 
about how the performance portability is spread across platforms, and 
how the application efficiency changes as we add and remove platforms 
from the evaluation set.

Fig. 4(b) shows a performance-portability code-convergence ( PP-CC) 
navigation chart with 5 hypothetical application implementations. The 
implementations correspond to: an unportable implementation en-
tirely tailored for a single hardware target; an ideal implementation 
that achieves PP = 1.0, from a single codebase; a per platform source
implementation that achieves PP = 1.0, but does so with specialised 
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Fig. 3. A Roofline plot for an AMD Opteron X2 processor [142].

Fig. 4. Example plots showing how the performance, portability and productivity of an implementation may be visualised [147,148].
code for each hardware target; a portability framework implemen-
tation using a parallel programming model aimed at portability, but 
only achieving PP = 0.5; and a specialized implementation that strikes 
a balance between portability and specialisation, achieving 0.7 in each.

Metrics and visualisations such as these provide vital information 
when planning for the development of a new code, and for evaluating 
progress in developing a code that maximises performance, portability 
and productivity.

8.1. Previous studies of performance, portability and productivity

There are currently a large number of projects focused on preparing 
scientific applications for the complexities of post-Exascale computa-
11

tion. With many of the largest Supercomputers edging towards hetero-
geneity and hierarchical parallelism, many of these efforts are in en-

suring that applications are performant and portable between different 
architectures. The previous five sections of this paper have outlined a 
wide number of options available for developing performance portable 
applications, and each approach comes with various advantages and 
disadvantages.

In this paper we are primarily concerned with applications and al-

gorithms that can be used to simulate the behaviour of plasma, using 
either a fluid- or a particle-based scheme. Table 1 lists a number of ap-

plications implementing common algorithms used for the simulation of 
plasma that have been the subject of performance and portability stud-
ies.
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Table 1

A selection of performance studies performed using applications of interest to the Plasma fusion community.

Application Computational Methods Programming Models Performance metrics References

BookLeaf Unstructured Arbitrary Lagrangian-Eulerian Fortran, C++, OpenMP, CUDA, MPI, Kokkos, RAJA Time, PP [150,151]
CloverLeaf Finite Volume Fortran, C++, OpenMP, OpenACC, OpenCL, CUDA, 

SYCL, Coarray Fortran, MPI, OPS
Time, Energy, PP [58,60,152–156]

EMPIRE-PIC Finite-Element, Particle-in-Cell C++, Kokkos, Trilinos Time, FLOP/s, GB/s [157–159]
EPOCH Structured Particle-in-Cell Fortran, MPI Time [160–162]
GENE Finite Difference Fortran, C++, OpenMP, MPI Time, FLOP/s, GB/s [163,164]
Heat Finite Difference C, OpenMP, OpenCL, CUDA, HIP, SYCL Time, GB/s, PP [58,61]
HERMES-3 Finite Volume C++, Bout++, PETSc, Hypre Time [165]
hipBone High-order Finite Element C++, OpenMP, OpenCL, CUDA, HIP, SYCL, OCCA FLOP/s, GB/s [166]
Laghos High-order Finite Element C++, OpenMP, CUDA, OCCA, RAJA, MFEM, METIS, 

hypre
Time [167,168]

MG-CFD Multi-grid Finite Volume C/C++, OpenMP, OpenACC, MPI, CUDA, OP2 Time, FLOP/s, GB/s [59,169]
miniFE Finite Element C++, OpenMP, CUDA, HIP, SYCL, MPI, Kokkos, MKL Time, Energy, PP [61,156,170,171]
nek5000 Spectral Element Fortran, C, MPI Time, FLOP/s [172,173]
Nekbone Spectral Element Fortran, C, OpenMP, OpenACC, MPI Time, FLOP/s, GB/s, [174–176]
Nektar++ Spectral Element C++, MPI, BLAS, LAPACK Time, Energy [177]
PIConGPU Structured Particle-in-Cell C++, MPI, OpenMP, CUDA, HIP, SYCL, Alpaka Time, FLOP/s [70,178]
PUMIPic Unstructured Particle-in-Cell C++, Kokkos Time [179]
TeaLeaf Finite Difference Fortran, C, OpenMP, OpenACC, CUDA, MPI, Kokkos, 

RAJA, OPS
Time, Energy, GB/s, PP [156,180–183]

vlp4d Semi-Lagrangian Scheme C++, OpenMP, OpenACC, OpenMP4.5, CUDA, HIP, 
stdpar, Kokkos, Thrust

Time, FLOP/s, PP [184,185]

VPIC Structured Particle-in-Cell C++, SIMD Intrinsics, Kokkos Time, FLOP/s [186–188]
WarpX Structured Particle-in-Cell, Adaptive Mesh Refinement C++, OpenMP, CUDA, HIP, SYCL, MPI, AMReX Time, FLOP/s [189–191]
XGC/XGCm Unstructured Particle-in-Cell Fortran, C++, OpenMP, CUDA, MPI, Kokkos Time [136,192,193]
8.2. General purpose programming languages

In many cases, the applications listed in Table 1 have a “reference” 
implementation written only using a general purpose programming lan-
guage. These reference versions serve as a baseline for performance 
and portability studies, often only exhibiting good single core perfor-
mance on CPUs, with no portability to heterogeneous architectures. 
This is certainly typical in the mini-application space, where developers 
are encouraged to demonstrate portable performance with miniaturised 
representative applications, prior to larger porting efforts. Notable ex-
amples of this are BookLeaf, CloverLeaf, and TeaLeaf from the UK 
Mini-App Consortium (UK-MAC) [151,152,180], and miniFE, Nekbone, 
and Laghos from the ECP Proxy Apps [168,171,175].

In the case of large applications such as EPOCH and nek5000, the 
applications only exist written in these general purpose programming 
languages, parallelised using the MPI programming model. These typ-
ically have no portability to heterogeneous systems, and instead are 
subject to significant porting efforts.5

8.3. Parallel programming models

At perhaps the lowest level of parallel programming, the legacy 
VPIC (Vector Particle-in-Cell) code uses hand-coded SIMD intrinsics 
to achieve the highest possible performance on modern CPU architec-
tures [188]. Specialised code is required for each new instruction set, 
and a particular codepath is chosen using pre-processing directives at 
compile time. The maintainability and portability of such an approach 
has subsequently led to the development of VPIC 2.0, which instead 
uses Kokkos for portable performance [186], at the expense of perfor-
mance on some platforms.

The two pragma-based approaches of OpenMP and OpenACC are 
perhaps the easiest to implement into an existing application and re-
quire only minimal code changes. There are various studies that show 
that across CPUs, OpenMP can provide good performance [61,182], and 
that across GPUs, OpenACC can be competitive with native solutions 
such as CUDA [154]. However, applications using OpenMP with target 
offload may require different directives for host and accelerator archi-
12

5 See: EPOC++ [194], NekRS [195].
tectures, in order to achieve the best performance on each [59,183], 
potentially leading to code divergence and target-specific compilation. 
The descriptive loop construct (introduced in the OpenMP 5.0 stan-
dard [40]) aims to address this concern, instead allowing the compiler 
to generate different code paths based on architecture within a single 
binary [196].

Many mini-apps are also implemented using native GPU parallel 
programming models such as CUDA and HIP/ROCm. These typically 
achieve the highest performance on their respective target platforms, 
but they are subject to significant vendor lock-in [152,181,182].

Although significantly more portable, many studies with OpenCL 
highlight degraded performance on CPUs [58,197] and productivity 
challenges (with application kernels potentially requiring twice as much 
code as the equivalent CUDA kernel [154]).

SYCL addresses these productivity issues, being a single-source so-
lution embedded in C++. The focus of many SYCL performance studies 
has been on the maturity of the programming model and its imple-
menting compilers [58,60,61]. In the general case it is able to offer 
portability and productivity at the expense of some performance. How-
ever, the performance gap has been reducing as the compilers improve.

8.4. Software libraries

Both EMPIRE-PIC and Laghos make use of numerical algorithm li-
braries for a significant proportion of their compute; Laghos through 
MFEM, and EMPIRE-PIC through Trilinos (see Section 5). These li-
braries in turn use other numerical algorithm libraries through portable 
interfaces such as BLAS and LAPACK. MFEM targets heterogeneous 
architectures through RAJA, while Trilinos targets heterogeneous archi-
tectures through Kokkos. Since these applications have been designed 
with portability in mind using a single portable programming model, it 
is difficult to evaluate their performance portability, since there are no 
alternative implementations for comparison.

However, their parallel programming models, Kokkos and RAJA, 
have been evaluated more widely as part of many mini-application 
portability studies. Studies have shown that both are typically able 
to deliver good and portable performance from a single-source code 
base [150,180,182,183]. The Kokkos programming model has also been 

adopted by a new implementation of VPIC, enabling portability to het-
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erogeneous architectures at the expense of performance on CPU sys-
tems [186].

8.5. Domain specific languages

In the case of many high-level DSLs, it is again difficult to objectively 
measure the performance portability without alternative implementa-
tions available. Rathgeber et al. evaluate the Firedrake and FEniCS 
solvers, both of which use UFL. Their study shows that Firedrake, which 
uses the low-level PyOP2 DSL for performance portability, typically out-
performs FEniCS [198].

The lower-level OP DSLs, OPS and OP2, have been more widely ex-
amined as part of a number of mini-application studies [155,169,182]. 
Typically they show good performance on a range of heterogeneous 
hardware, but they are arguably not as productive as higher-level DSLs, 
where mathematics can be represented more directly. Higher-level DSL 
thus can provide a productivity advantage if an application is to be 
developed from scratch. However, when converting an existing appli-
cation or legacy code to a DSL, the lower-level OPS/OP2 style DSLs 
are better suited and compatible for a step-by-step (e.g., loop-by-loop) 
conversion co-existing with the original application [199]. Such a con-
version might not be possible with a high-level DSL, where the full 
application might need to be expressed in the higher-level DSL notation 
before any validation can begin.

Applications implemented in high-level DSLs, such as Firedrake, of-
ten contain multiple levels of DSL with a high-level DSL for scientists 
and a lower-level DSL providing the portability. These applications fully 
embody the separation of concerns paradigm, improving productivity 
for domain experts who can represent their problems directly. If the 
code generated at each layer is transparent to the user, this helps with 
debugging and end-to-end validation. Users more often than not, do not 
like to have black-box or hard to understand intermediate representa-
tions. However, changing user requirements that demand components 
that break the abstraction most likely will be difficult to support with 
these DSLs. Users asking for “escape hatches” to support future numer-
ics could lead to a considerable impact on performance.

9. Conclusion

Newly developed simulation applications may employ DSLs and soft-
ware at different levels of the software development stack (see Fig. 2). 
High-level DSLs may allow scientists to express equations directly, while 
low-level DSLs and parallel programming models will allow applica-
tions to target different parallel architectures.

In this paper we have provided an overview of many of the ap-
proaches that are available at each level of this software development 
stack, highlighting many of the advantages and disadvantages in each 
case. Furthermore, we have outlined some of the key metrics and meth-
ods used to evaluate the performance, portability, and productivity of 
scientific simulation applications.

The focus of this paper has been on approaches and applications 
from the plasma physics domain, motivated by Project NEPTUNE – a 
UK effort to develop a new tokamak edge code to treat the complex 
dynamics of fusion plasma. However, the discussion in this paper is 
more generally applicable to the development of any new simulation 
application focused on portability with high parallel performance.

Any modern HPC application is likely to use approaches from at 
least the three lowest levels of the software stack, typically being im-
plemented in a general purpose programming language, using a parallel 
programming model, and a distributed memory model.

Targeting portability from a single code base, and productivity for 
domain specialists often requires further abstractions, at the top levels 
of our development stack, allowing greater scope for code synthesis. 
For multi-science/multi-scale applications, a further level of abstraction 
13

may be required to couple multiple simulations/applications together.
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