
Computer Physics Communications 298 (2024) 109123

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Computational Physics

Developing performance portable plasma edge simulations: A survey ✩

Steven A. Wright a,∗, Christopher P. Ridgers b, Gihan R. Mudalige c, Zaman Lantra c,
Josh Williams d, Andrew Sunderland d, H. Sue Thorne d, Wayne Arter e

a Department of Computer Science, University of York, York YO10 5GH, UK
b York Plasma Institute, University of York, York YO10 5DQ, UK
c Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
d Hartree Centre, STFC Daresbury Laboratory, Sci-Tech Daresbury, Keckwick, Daresbury, Warrington, WA4 4AD, UK
e UK Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK

A R T I C L E I N F O A B S T R A C T

Keywords:

High-performance
Parallel programming
Portability
Coupling
Plasma simulation
Reactor design

Heterogeneous architectures are increasingly common in modern High-Performance Computing (HPC) systems.
Achieving high-performance on such heterogeneous systems requires new approaches to application development
that are able to achieve the three Ps: Performance, Portability, and Productivity.
In this paper, we provide an overview of the state-of-the-art for developing high-performance, portable and
productive multi-physics applications with particular focus on the simulation of a plasma fusion reactor.
Simulating such a complex system relies on both fluid- and particle-based simulations, and coupling interfaces
between these two domains. We also review the current state-of-the-art in reasoning about the performance,
portability and productivity of HPC applications.
1. Introduction

Numerical simulation allows scientists and engineers to rapidly de-
velop physical understanding and prototype new designs in domains
where physical experimentation may be costly, impractical, or danger-
ous. As a result, computational methods have joined theory and experi-
ment as central pillars of scientific investigation. Maximising the perfor-
mance of these numerical simulations means that more calculations can
be carried out, allowing scientists to increase the size, complexity, or
resolution of their experiments. The field of High Performance Comput-
ing (HPC) exists to develop and improve the performance of scientific
applications and the supercomputers running them. In turn, increas-
ingly powerful supercomputers allow us to tackle new scientific grand
challenges [1,2]. One such grand challenge is the economic delivery of
nuclear fusion energy in the coming decades.

Project NEPTUNE (NEutrals and Plasma TUrbulence Numerics for
the Exascale) [3] aims to develop new modelling software to treat the
complex dynamics of high temperature fusion plasma for the design
of a nuclear fusion reactor, and is funded as part of the UK’s ExCAL-
IBUR programme. It is one of a number of efforts in developing new
numerical simulation software focused on nuclear fusion. Other no-

✩ The review of this paper was arranged by Prof. Andrew Hazel.
* Corresponding author.

table examples include the Whole Device Model Application (WDMApp)
project [4], funded by the Department of Energy’s Exascale Computing
Project (ECP), and the Plasma-PEPSC project [5], funded by EuroHPC.

The aim of Project NEPTUNE is to deliver expertise in, and tools for,
“in-silico” reactor interpretation and design, initially with a focus upon
the “edge” region of the tokamak plasma where hot plasma comes into
contact with the material walls of the machine (see Fig. 1). This chal-
lenging, multi-physics, multi-scale intersection between plasma physics
and engineering has long been heralded as at least an “exascale” mod-
elling and simulation problem, and its solution is widely regarded as
critical to the success of commercial fusion energy (e.g., see Mission 2
of the EUROfusion Road Map [6]).

One of the biggest challenges in developing such a complex simula-
tion application is in ensuring that it is able to achieve high performance
on current- and future-generation supercomputers, adapting to new
advancements in hardware and software. This is especially important
currently as we transition towards heterogeneous systems comprising
of CPU hosts with specialised accelerator architectures, where achiev-
ing high performance often requires the adoption of vendor-specific
programming models and tools, and appropriate algorithms for the ac-
celerator architecture.
Available online 7 February 2024
0010-4655/Crown Copyright © 2024 Published by Elsevier B.V. This is
(http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/).

E-mail address: steven.wright@york.ac.uk (S.A. Wright).

https://doi.org/10.1016/j.cpc.2024.109123
Received 30 August 2023; Received in revised form 1 February 2024; Accepted 4 Fe
an open access article under the Open Government License (OGL)

bruary 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
mailto:steven.wright@york.ac.uk
https://doi.org/10.1016/j.cpc.2024.109123
https://doi.org/10.1016/j.cpc.2024.109123
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2024.109123&domain=pdf
http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

Fig. 1. A schematic of a generic tokamak “poloidal cross section”, highlighting
the targeted regions of plasma and machine, namely the main chamber between
core plasma scrape off layer and wall (upper circle) and the so called “plasma
exhaust” or “divertor” region (lower circle) where heat and particles come into
direct contact with material surfaces [7].

For most large scientific simulation applications, maintaining mul-
tiple versions of a code-base is simply not a reasonable option given
the significant time and effort required, not to mention the expertise
needed in the many different associated technologies. Even holding
multiple versions does not guarantee a future-proof application where
the next innovation in hardware may well require yet another paral-
lel programming model or a different parallelisation strategy to obtain
best performance for the new device. These challenges are now general
and applicable equally to any scientific domain that relies on numerical
simulation software using HPC systems. As a recent review for applica-
tions in the computational fluid dynamics (CFD) domain [8] elucidates,
three key factors can be identified when considering the development
and maintenance of large-scale simulation software, particularly aimed
at production:

1. Performance: running at a reasonable/good fraction of peak per-
formance on given hardware.

2. Portability: being able to run the code on different hardware plat-
forms/architectures with minimum manual modifications.

3. Productivity: the ability to quickly implement new applications
and features, and maintain existing ones.

The last of these is particularly challenging for nuclear fusion, where
new experimental results have on several occasions suggested radical
revision of models and designs.

As more and more parallelisation features have been added to gen-
eral purpose programming languages, achieving performance, portabil-
ity and productivity in production code bases has become increasingly
difficult – with significant application rewrites required to achieve high
performance and portability. Fully automated parallelisation by a com-
piler for general purpose languages has consistently failed, requiring
2

manual intervention to achieve a satisfactory result [9–12]. Compil-
Computer Physics Communications 298 (2024) 109123

ers for imperative languages such as C/C++ or Fortran, the dominant
languages in HPC, have struggled to extract sufficient semantic infor-
mation, enabling them to safely parallelise a program from all, but the
simplest structures. Consequently, the programmer has been forced to
carry the burden of “instructing” the compiler to exploit available par-
allelism in applications, targeting the latest, and purportedly greatest,
hardware.

In many cases, the use of very low-level techniques, some only ex-
posed by a particular programming model/language extension, are re-
quired with careful orchestration of computation and communications
to obtain the best performance. Such a deep understanding of hardware
is difficult to gain and, even more so, unreasonable for domain scien-
tist/engineers to be proficient in – especially given that the expertise
required rapidly changes with the technology of the moment follow-
ing hardware trends. A good example is the many-core path originally
touted by Intel with accelerators such as the Xeon Phi, which has been
discontinued – the first US Exascale systems are all GPU based, with
two systems containing AMD GPUs, and one containing Intel GPUs.

As such, it is near impossible to keep re-implementing large science
codes for various architectures. This has led to a separation of con-

cerns approach where the description of what to compute is separated
from how the computation is implemented. This is in direct contrast
to languages such as C/C++ or Fortran, which explicitly describe the
computation.

In this paper, we provide a review of the state-of-the-art in achieving
the goal of developing software that is performant, portable and produc-
tive. Specifically we outline the key approaches and tools currently used
to develop numerical simulation applications targeting modern HPC ar-
chitectures and systems, including methods of re-engineering existing
codes appropriately. A number of these approaches and tools have been
covered in previous surveys [8,13–15], however this paper provides a
broader picture of this landscape, considering low-level architecture-
specific techniques, through to high-level domain-specific languages
that allow scientists to represent their problems in a mathematical form.
This paper additionally includes consideration of coupling frameworks,
that allow developers to couple many different solvers together.

Our review focuses on applications and algorithms from the plasma
fusion domain and related supporting applications from engineering.
Our aim is to survey and present the state-of-the-art in achieving “per-
formance portability” for fusion, where an application can achieve effi-
cient execution across a wide range of HPC architectures without signif-
icant manual modifications. For completeness, we focus on both fluid-
and particle-based computational models of plasma, and on frameworks
for coupling these approaches.

The remainder of this paper is structured as follows: Section 2
highlights the challenges in developing future-proofed scientific ap-
plications; Section 3 provides a review of the predominant general
purpose programming languages used in scientific application devel-
opment; Section 4 outlines some of the main programming models that
provide parallelism to developers; Section 5 describes of a range of im-
portant software libraries that provide common functionality to parallel
scientific applications; Section 6 gives an overview of domain specific
languages specifically targeted at fluid- and particle-based simulations;
Section 7 outlines a number of coupling interfaces that allow multi-
ple applications to be coupled together; Section 8 gives an overview of
how performance, portability and productivity may be evaluated for a
project such as NEPTUNE; finally, Section 9 concludes the paper.

2. Challenges in developing modern parallel applications

The end of CPU clock frequency scaling in 2004 gave rise to multi-
core designs for mainstream processor architectures. The turning point
came about as the current CMOS-based microprocessor technology
reached its physical limits, reaching the threshold postulated by Den-
nard in 1974 [16]. The end of Dennard scaling has meant that further

increases in clock frequency would result in unsustainably large power

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

consumption, effectively halting a CPUs ability to operate within the
same power envelope at higher frequencies.

More than a decade and a half has passed since the switch to multi-
core, where we now see a golden age of processor architecture design
with increasingly complex and innovative designs used to continue de-
livering performance improvements [17]. The primary trend continues
to be the development of designs that use more and more discrete pro-
cessor “cores” with the assumption that more units can do more work
in parallel to deliver higher performance by way of increased through-
put. This has aligned well with the hardware industries’ ambition to see
the continuation of Moore’s Law – exponentially increasing the number
of transistors on a silicon processor.

As a result, on the one hand, we see traditional CPU architectures
gaining more cores, currently over 40 cores for high-end processors,
and increasing vector widths (e.g., Intel’s 512-bit vector units) per core,
widening their ability to do more work in parallel. On the other hand,
we see the widespread adoption of separate devices, called accelerators,
such as GPUs that contain much larger numbers (over 1024) of low-
frequency (power) cores, targeted at speeding up specific workloads.

More cores on a processor has effectively resulted in making calcula-
tions on a processor, usually measured by floating-point operations per
second (FLOP/s), cheap. However, feeding the many processors with
data to carry out the calculations, measured by bandwidth (bits/sec),
has become a bottleneck. As the growth in the speed of memory units
has lagged that of computational units, multiple levels of memory hier-
archy have been designed, with significant chunks of silicon dedicated
to caches to bridge the bandwidth/core-count gap.

Memory technologies such as High Bandwidth Memory (HBM) have
produced “stacked memory” designs where embedded DRAM is inte-
grated on to CPU chips. The memory hierarchy has been further ex-
tended off-node, with burst buffers and I/O nodes serving as staging
areas for scientific data en route to a parallel file system. Larger and
more heterogeneous machines have also necessitated more complex in-
terconnection strategies. Technologies such as NVLink, Infinity Fabric
or Compute eXpress Link allow GPUs to communicate point-to-point
without requiring data to travel through the CPU. New high-speed in-
terconnects have been developed that seek to minimise the number of
hops required to move data between nodes and devices, potentially ben-
efiting both inter-node communications and file system operations.

A decade ago, the vast majority of the fastest HPC systems in the
world were homogeneous clusters based around the x86-64 architec-
ture, with a few notable exceptions such as the IBM BlueGene archi-
tectures. Now, there is a diverse range of multi-core CPUs on offer,
supported by an array of manycore co-processor architectures, complex
high-speed interconnects, and multi-level parallel file systems.

The underpinning expectation of the switch to multi-core and the
subsequent proliferation of complex, massively parallel hardware was
that performance improvements could be maintained at historical rates.
As a recent review by Leiserson et al. elicits, improvements in perfor-
mance are now likely to come from the top of the computing stack in
the form of algorithms, architecture and “big components” (e.g., soft-
ware with millions of lines of code, GPUs, CPUs, compilers) [18].

However, this has led to the need for highly skilled parallel program-
ming know-how to fully exploit the full potential of these devices and
systems. The switch to parallelism and its consequences was aptly de-
scribed by David Patterson in 2010 as a “Hail-Mary pass”, an act done
in desperation by the hardware vendors “without any clear notion of
how such devices would in general be programmed” [19].

More than a decade later, industry, academia and stakeholders of
HPC have still not been able to provide an acceptable and agile software
solution to this issue. The problem has become even more significant
with the current deployment of heterogeneous Exascale-capable HPC
systems, limiting their use for real-world applications for continued sci-
entific delivery. On the one hand, open standards have been slow to
catch up with supporting new hardware and, for many real applica-
3

tions, have not provided the best performance achievable from these
Computer Physics Communications 298 (2024) 109123

devices. On the other hand, proprietary solutions have only targeted
narrow vendor-specific devices resulting in a proliferation of parallel
programming models and technologies.

On heterogeneous platforms, a significant proportion of the avail-
able performance comes from the accelerators, with the host CPU pri-
marily providing problem setup, synchronisation, and I/O operations.
Each of the major GPU manufacturers provide a different programming
model to interact with their accelerators and, so, application devel-
opers must consider their approach when targeting a heterogeneous
system. Further consideration must also be given to vendor-supported
approaches that may lead to vendor lock-in.

Fig. 2 gives a broad outline of the various components that may
be involved when developing multi-physics simulation applications for
execution on heterogeneous systems. Higher-level representations of
physics problems (such as DSLs) allows an application to better synthe-
sise machine-code representations for various hardware, and potentially
enable more developer productivity (in many DSLs partial differential
equations can be represented directly in code). Lower-level represen-
tations are more likely to be able to exploit available parallelism on
various platforms, but may limit portability between systems.

Over the next five sections of this paper, we will focus on each of
the boxes in Fig. 2 in turn, looking at the current state-of-the-art in
(i) general purpose programming languages, (ii) parallel programming
models, (iii) software libraries, (iv) domain specific languages, and (v)
coupling frameworks. Our survey follows Reguly and Mudalige [8] to-
gether with specific considerations for algorithms of interest to the
fusion domain (in particular both fluid- and particle-representations of
plasma fusion).

3. General purpose programming languages

In this class we consider traditional programming languages with long history
of usage and support in scientific computing. These languages typically allow
fine control over every aspect of an algorithms implementation.

Scientific computing is dominated by the Fortran, C and C++ pro-
gramming languages. In the UK, Fortran-based applications currently
dwarf C/C++ applications. On ARCHER, the UK’s Tier-1 resource be-
tween 2014 and 2020, Fortran applications accounted for almost 70%
of the machine’s core hours, while C/C++ applications accounted for
around 15% [20]. This trend has somewhat continued on ARCHER2,
with usage data for April 2023 showing that Fortran applications still
account for over half of the identifiable core hours, while C/C++ ac-
counts for around a third.1 This skew towards Fortran is in part due
to a number of mature applications with large user bases, such as VASP
(24% of identified usage on ARCHER2), and its longevity in HPC, mean-
ing that it benefits from mature compiler support more than most other
languages.

Within the US Department of Energy’s Exascale Computing Project
(ECP), the opposite trend can be seen, where C/C++ is being actively
pursued for around 70% of their applications, compared to just 10% in
Fortran [21]. This is motivated by a perceived risk of relying on For-
tran for mission critical codes in the future [22]. A number of other
studies have similarly concluded that Fortran may harm portability and
productivity due to limitations in the language [23] and the develop-
ment of tooling [24]. However, there are also ongoing efforts to bridge
some of the gaps between C/C++ and Fortran, with the introduction of
the Fortran Lang community, a Fortran standard library and a Fortran
package manager [25].

Another language growing in popularity in HPC is Python. While
not traditionally a “high performance” language, it provides interfaces
to many external libraries, often written using languages such as C/C++
and Fortran. This has meant that Python can provide an easy interface

1 https://github .com /ARCHER2 -HPC /usage -data /tree /main /allusers /2023 /

04.

https://github.com/ARCHER2-HPC/usage-data/tree/main/allusers/2023/04
https://github.com/ARCHER2-HPC/usage-data/tree/main/allusers/2023/04

Computer Physics Communications 298 (2024) 109123S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

Fig. 2. Overview of the potential layers in a software stack for a multi-physics simulation application.
for developers to write their applications at a high-level, leaving the im-
plementation and execution to optimised libraries (see Section 6). Due
to Python’s use in a wide range of fields, by large corporations such
as Alphabet, the community has invested significant effort into improv-
ing the performance of pure Python. The flexibility of the language and
dynamic type system limits opportunities for static analysis and optimi-
sation; instead Just-In-Time (JIT) compilers have been developed, both
as libraries to target particular code hotspots (e.g., Numba [26]), and
whole programs (e.g., PyPy [27]). However, threading within Python,
and thus its parallel performance, has historically been poor, limited by
the Global Interpreter Lock (GIL) present in the reference CPython im-
plementation, PyPy and Stackless Python [28]. Proposals to remove this
lock, or make it optional, are on-going (see PEP 703), and until this hap-
pens, Python’s use in HPC will continue to be limited to being primarily
a “glue” language, coordinating work done in components implemented
in higher-performance languages.

There is a long history of research and development of languages
for scientific and high performance computing, including those such as
Chapel [29], Fortress [30] and X10 [31] which target parallel compu-
tation. These have tended to remain niche languages and have not been
widely adopted. A promising language, which is general purpose but de-
signed in particular for scientific computing, is the Julia language [32].
This has a syntax which is familiar to Matlab or Fortran programmers,
but is built on a sophisticated type system and language design, and
uses LLVM to perform JIT compilation for CPU and GPU hardware. It
is a relatively new language (version 1.0 was released in August 2018),
but is seeing rapid adoption in scientific and machine-learning commu-
nities, and already has some libraries which are recognised as best in
class [33]. It aims to combine the flexibility and high productivity of
Python, with high performance.

Developing applications in these general purpose programming lan-
guages presents a number of challenges:

1. The languages are very prescriptive, and optimising an application
for one system may harm performance on another system. In fact,
4

optimising for one architecture can obfuscate the science source
so much so that future maintenance and addition of new features
becomes difficult.

2. Applications developed with multiple code paths may provide
portable performance, but require duplicated effort keeping each
code path up to date.

3. Parallelism must be explicitly written into the application, almost
always using parallel programming extensions to the languages (as
discussed in the next section), significantly increasing the complex-
ity of development.

4. Parallel programming models

In this class we consider the programming models that extend from tradi-

tional general purpose programming languages to provide parallelisation both
on-node (e.g., vectorisation, threading) and off-node (e.g., message passing).
We also consider programming models that are designed specifically for het-

erogeneous computation with accelerator devices.

The parallelism available on modern supercomputers is hierarchi-
cal in nature. Vector operations (e.g., SSE, AVX, APX, SVE) provide
instruction-level parallelism within a core (using a single instruction,
multiple data (SIMD) model), while threading provides a form of shared
memory parallelism within a node. Symmetric Multithreading (SMT) al-
lows two or more threads to co-exist (with an architecture dependent
degree of concurrency) on a single compute core, potentially increasing
compute unit utilisation. Parallelism across a system is usually achieved
using message passing or shared global memory techniques.

Vectorised code can be achieved during the compilation phase, if
there are no data dependencies present in the code. All modern compil-
ers attempt to generate vectorised code through auto-vectorisation, usu-
ally when higher optimisation levels are specified (e.g., with compiler
flags such as -O2 and above). However, the compiler will only produce
vectorised code when it is absolutely certain that no dependencies ex-
ist. In almost all non-trivial (especially real-world) codes a conclusive
determination cannot be made and auto-vectorisation fails [34].

A developer can aid the compiler with the use of compiler direc-
tives or vector intrinsics. Compiler directives (or pragmas) allow a

https://peps.python.org/pep-0703/

–

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

developer to indicate that an assumed dependency can be ignored, po-
tentially resulting in the compiler being able to generate vectorisable
code that is portable across architectures. However, the compiler may
still believe there is a dependency present and, in this case, the devel-
oper must use a lower-level interface (e.g., Intel Intrinsics) to directly
manipulate the vector registers [35]. This is likely to result in higher
performance, but the instruction set specific code is likely to signifi-
cantly harm both portability and productivity [36].

Distributing execution across all cores in a node can be achieved
through threading and shared memory, or through message passing.

In HPC applications, threading is often achieved through OpenMP [37
40], while message passing is usually implemented using the Message
Passing Interface (MPI) [41]. Both threading and message passing can
be achieved through the POSIX Threads (pthreads) library; however,
like OpenMP, this approach does not extend to distributed memory sys-
tems. Consequently, many implementations of the OpenMP standard
rely on a lightweight threading library, such as pthreads [42].

In OpenMP, parallelism is achieved at the loop-level by annotating
loop structures with compiler directives (e.g., #pragma omp paral-
lel for), such that the compiler can thread each iteration for exe-
cution in parallel. In MPI, parallelisation must be implemented explic-
itly, with each process initiating inter-process communications directly
through the application programming interface (API).

Parallelisation beyond a single node requires inter-node communi-
cations. The de facto standard in HPC is MPI. MPI provides a num-
ber of functions for distributed computation, including point-to-point
communications, one-sided communications, collective operations and
reduction operations. In an MPI-parallelised program, each process op-
erates on its own data, and communicates edge values to surrounding
processes where a dependency exists.

There are also a number of programming models that treat the dis-
tributed memory space as a single homogeneous block. This partitioned
global address space (PGAS) approach is taken by Coarray Fortran [43]
and Unified Parallel C [44], among others. In this model, commu-
nications are hidden to the application developer, but are typically
implemented using MPI in the backend library.

An alternative to the data parallelism approaches described above,
is task parallelism. In a task parallel approach, the work of the appli-
cation is divided into tasks and then scheduled for execution across a
distributed architecture. Tasking was introduced in version 3.0 of the
OpenMP standard, and the standard now includes functionality for stan-
dard tasks, single tasks, task dependencies and task groups [40]. Task-
ing has been developed further by a number of asynchronous many-
tasking (AMT) frameworks. Notable examples include Charm++ [45],
Legion [46], HPX [47], and DARMA/vt [48].

4.1. Accelerator extensions

For heterogeneous systems, host code is usually written using the
programming languages and models mentioned previously to coordi-
nate between compute nodes; however, the accelerators themselves
often require a different approach. This is a consequence of the sig-
nificant differences in accelerator architectures compared to traditional
CPUs; indeed their simplified architecture often restricts developers to
a subset of language features.

Each vendor typically offers their own platform-specific program-
ming model, such as CUDA from NVIDIA and HIP/ROCm from AMD.
Moving between hardware vendors therefore requires moving between
programming models. In some cases, this may be as simple as finding
matching API calls, and in some cases this may require significant re-
engineering [49,50].

Although proprietary, CUDA has been the most dominant accelera-
tor programming extension and has maintained a high level of adoption
in HPC given the widespread use of NVIDIA GPU hardware and the ma-
turity and support that NVIDIA put into the numerical solver libraries
5

based on CUDA (e.g., cuBLAS, cuFFT) [51]. The HIP programming
Computer Physics Communications 298 (2024) 109123

model provides a near like-for-like API, and a similar number of nu-
merical solver packages [52]. Both follow a single instruction, multiple
thread (SIMT) programming model where large numbers of threads are
launched simultaneously (in contrast to SIMD, this allows for thread
divergence and additional complexity).

OpenCL [53] largely mirrors the SIMT model of CUDA, having a
similar API, but is developed as an open standard. Much like with CUDA
and ROCm/HIP, in OpenCL the programmer is given the opportunity to
write explicit computational kernels for devices, with significant control
over the orchestration of parallelism. OpenCL is supported by all major
vendors (Intel, AMD, NVIDIA) to some extent, and has been promoted as
a vendor agnostic model. However, the same OpenCL application will
not necessarily give the best performance on all architectures, where
some level of device specific optimisations are required to obtain best
performance.

While offering much less control, OpenACC [54] directives can be
used to indicate/instruct a compiler where code can be parallelised for
execution on an accelerator. OpenACC also provides directives to indi-
cate whether memory should be allocated on the host or the device,
and when to move data between the two. Memory management, such
as when data is moved to/from the device, and how often, are key con-
siderations to achieving good performance. If not handled correctly,
directives can lead to frequent data movement to/from a device and
lead to significant slowdowns. Currently OpenACC is provided in com-
mercial compilers from NVIDIA (previously PGI) and Cray, with the
latter only supporting Cray-supplied hardware. GCC also offers nearly
complete support for OpenACC 2.5, targeting both NVIDIA and AMD
devices.

OpenMP added support similar to OpenACC for offloading compu-
tation to accelerators in version 4.0 of the standard [38]. Similar to
its counterpart, data locality is controlled through compiler directives,
with parallelisable loops being specified using the #pragma omp tar-
get directive. OpenMP 4.0 is a good example of standards attempting
to catch up with evolving hardware, where support for accelerator di-
rectives (which were introduced as a proprietary solution first in 2011
with OpenACC with the adoption of NVIDIA GPUs in HPC) were only
added to the OpenMP standard in 2013. Even then OpenMP supporting
compilers took several years more to fully implement the standard for
working code [55].

Subsequent OpenMP standards (e.g., OpenMP 4.5 [39] and OpenMP
5.0 [40]) have further improved support for accelerator devices, mak-
ing target offload a viable path to producing performant GPU applica-
tions. Support for target offload can be found in commercial compilers
from Intel, IBM, AMD and Cray, with a variety of target architectures.
Support also exists in the Clang/LLVM [56] and GCC open-source com-
pilers.2

While the explicit device control provided by the CUDA, ROCm/HIP,
and OpenCL programming models may be more powerful than directive-
based approaches, it may also significantly increase developer effort.
More recently, the Khronos Group released SYCL [57], a new high-level
cross-platform abstraction layer, which can be viewed as a data-parallel
version of C++ inspired by OpenCL. Many of the concepts remain the
same, but the significant amount of “boiler-plate” code required to setup
parallelism in OpenCL applications is now not required where SYCL
uses a heavily-templated C++ API. In this way, SYCL is also able to
offer a single-source solution, similar to OpenMP and OpenACC, where
kernel code and host code can co-exist within an application (unlike
in OpenCL, where application code is typically split between host and
device code).

In SYCL, there is typically a queue that work items can be submitted
to. Loop-level parallelisation is achieved using constructs such as the
parallel_for function, while task-parallelism can be achieved using
the single_task function.
2 https://www .openmp .org /resources /openmp -compilers -tools/.

https://www.openmp.org/resources/openmp-compilers-tools/

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

Building on SYCL, Intel announced their new programming model,
OneAPI, in 2018. OneAPI is a unified programming model, that com-
bines several libraries (e.g., the Math Kernel Library), with Thread
Building Blocks (TBB) and Data Parallel C++ (DPC++). DPC++ is
a cross-architecture language built upon the C++ and SYCL standards,
providing some extensions to SYCL. Support for SYCL and DPC++ is
provided in a number of compilers from vendors such as AMD, Intel,
and Codeplay, and can target a number of device types directly, or via
existing OpenCL runtimes.3 In the case of the Intel and AMD compil-
ers, it is even possible to use SYCL to target FPGA devices. However,
the question of whether one code written in SYCL is able to obtain
the best performance on all supported hardware remains to be an-
swered [58–61].

In addition to the aforementioned programming models, there are
a number of software ecosystems that target both host and accelerator
platforms, that present themselves as parallel programming models to
developers. Notable examples are OCCA [62], Kokkos [63], RAJA [64]
and Alpaka [65]. These are discussed in more detail in Section 5.

Parallelisation based on OpenMP and MPI have a long history
in HPC application development. CUDA also now has over a decade
of development, with OpenACC, and OpenCL following close behind.
SYCL/DPC++ is the latest addition to the parallel programming ex-
tensions available. While CUDA, OpenMP, and OpenACC all support
C/C++ and Fortran, OpenCL and SYCL only support C/C++. If, indeed,
C/C++-based extensions and frameworks dominate the parallel pro-
gramming landscape for emerging hardware, there could well be a need
for porting existing Fortran-based applications to C/C++.

The key considerations and challenges when using the above pro-
gramming models and extensions to general purpose languages include:

1. Open standards lagging hardware development – especially when
the standard is developed by a large number of organisations.

2. The complete implementation of these standards into many compil-
ers can be slow [55].

3. Some of these programming models offer low-level fine control
over parallelism and therefore may lead to overly complex code. In
some cases, different code-paths are required to get the best perfor-
mance on different architectures [59], for example, to handle the
different memory layouts required to optimise for CPUs vs. GPUs.

5. Software libraries

In this class we consider libraries that facilitate scheduling and execution
of data parallel or task-parallel algorithms, and classical software libraries
that target scientific application development, implementing a diverse set of
common algorithms (often numerical).

5.1. Parallel programming abstraction libraries

There are a number of software libraries that present themselves
similarly to the parallel programming models mentioned previously.
They typically offer parallel functionality through various methods such
as macro preprocessing, JIT compilation or template metaprogram-
ming.

OCCA [62] is one such vendor neutral, open source parallel pro-
gramming framework focused on portability. OCCA supports both
C/C++ and Fortran, and can target platforms through a range of back-
ends (e.g., CUDA, HIP, DPC++, OpenMP, OpenCL).

An approach, exclusive to C++, is the use of template libraries, that
enable developers to write a generic “template” to express an operation
such as a parallel-loop iteration, but at compile-time select a specific
implementation of a method or function (known as static dispatch). This
allows users to express algorithms as a sequence of parallel primitives
6

3 https://www .khronos .org /sycl/.
Computer Physics Communications 298 (2024) 109123

executing user-defined code at each iteration, e.g., providing a loop-
level abstraction. These libraries follow the design philosophy of the
C++ Standard Template Library [66] – indeed, their specification and
implementation is often considered as a precursor towards inclusion in
the C++ STL. The largest such projects are Boost [67], Eigen [68],
Thrust [69] and HPX [47]. While there are countless such libraries,
here we focus on ones that also target performance portability in HPC.

Three notable examples of this approach are Kokkos [63] and
RAJA [64], developed as part of the US Department of Energy’s Ex-
ascale Computing Project, and Alpaka [65], developed as part of the
PIConGPU Particle-in-Cell application [70]. Each library supports exe-
cution on shared-memory parallel platforms, such as CPUs and GPUs,
through a variety of approaches. They do not provide parallelism on
distributed memory systems, rather they are designed to be used in
conjunction with MPI (or another off-node communication library).

Kokkos is a C++ performance portability layer, developed by San-
dia National Laboratories, that provides data containers, data accessors,
and a number of parallel execution patterns [63]. Its data structures
can describe where data should be stored (CPU memory, GPU memory,
non-volatile, etc.), how memory should be laid out (row/column-major,
etc.), and how it should be accessed. Similarly, one can specify where
algorithms should be executed (CPU/GPU), what algorithmic pattern
should be used (parallel for, reduction, tasks), and how parallelism is
to be organised. It is a highly versatile and general tool capable of ad-
dressing a wide set of needs, but as a result is more restricted in what
types of optimisations it can apply compared to a tool that focuses on a
narrower application domain. Kokkos is able to target CUDA, OpenMP,
pthreads, HIP or SYCL, meaning it can target all of the post-Exascale
platforms currently deployed or in development.

RAJA is a similar abstraction developed by Lawrence Livermore Na-
tional Laboratory [64]. It is similar to Kokkos in many respects, but
offers more flexibility for manipulating loop scheduling, particularly
for complex nested loops. It supports CPUs (with OpenMP and TBB), as
well as NVIDIA GPUs with CUDA.

Alpaka is a header-only C++17 abstraction library developed ini-
tially at TU Dresden [65]. It provides similar semantics to both Kokkos
and RAJA, and can achieve parallelism through OpenMP, std::thread,
TBB, CUDA, HIP and SYCL.

Both Kokkos and RAJA were designed by Department of Energy
laboratories to help move existing software to new heterogeneous hard-
ware, and this is very much apparent in their design and capabilities
– they can be used in an iterative process to port an application, loop-
by-loop, to support shared-memory parallelism. Of course, for practical
applications, one needs to convert a substantial chunk of an application;
on the CPU that is because non-multithreaded parts of the application
can become a bottleneck, and on the GPU because of the cost of moving
data to/from the device. Kokkos and RAJA are used heavily within the
Exascale Computing Project (ECP) [21,71], and due to their reliance on
template meta programming, can be used alongside almost any modern
C++ compiler.

Using parallel programming libraries comes with the following con-
siderations:

1. Future support for, and maintenance of, these libraries is not guar-
anteed.

2. Some libraries may restrict application development to modern
C++.

3. Development time may be high due to the compilation times asso-
ciated with heavily templated code.

4. Debugging heavily templated code can be difficult, with errors
obfuscated by numerous templates. This can be particularly prob-
lematic for inexperienced programmers.

5. Platform specific code can be easily integrated into templated code
to achieve higher performance on some platforms, provided that
the abstraction used is carefully designed and at a sufficiently high

level.

https://www.khronos.org/sycl/

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

5.2. Numerical algorithm libraries

Beyond the programming models mentioned previously, portability
can also be achieved using libraries provided by various vendors. These
software libraries typically provide common functionality, and are often
highly optimised for particular architectures.

The basis of many mathematical libraries is the Basic Linear Al-

gebra Subprograms (BLAS) [72], first developed in 1979. BLAS pro-
vides vector operations, matrix-vector operations and matrix-matrix
operations. The Linear Algebra Package (LAPACK) [73] builds on
BLAS, providing routines for solving systems of linear equations. The
FFTW [74] library provides functions for computing discrete Fourier
transforms, and is known to be the fastest free software implementation
of the FFT.

Architecture-tuned implementations of BLAS, LAPACK and FFTW
are often available, with notable examples being AMD Optimized
CPU Libraries, ARM Performance Libraries, Intel Math Kernel Library,
cuBLAS, clBLAS, OpenBLAS, and Boost.uBLAS. Similarly, MAGMA [75]
provides dense linear algebra kernels for multicore and accelerator ar-
chitectures.

The Portable, Extensible Toolkit for Scientific Computation
(PETSc) [76] provides a number of data structures and routines for solv-
ing PDEs. It was developed by Argonne National Laboratory and em-
ploys MPI for distributing algorithms across an HPC system. Recently,
PETSc has implemented an abstraction layer for scalable communica-
tions over MPI and between host and GPU devices, PetscSF [77].

Similarly, HYPRE [78] is a library of data structures, precondition-
ers and solvers developed at Lawrence Livermore National Laboratory.
It can be built with support for GPU devices through CUDA, OpenMP
target offload, or using RAJA or Kokkos.

Trilinos [79] is an extensive collection of open-source libraries that
can be used to build scientific software, developed by Sandia National
Laboratories. It provides over 50 self-contained, independent packages
for solving linear and non-linear systems, preconditioning, and using
sparse graphs and matrices. It supports distributed memory compu-
tation through MPI and also provides shared memory computation
through the Kokkos package.

Achieving high performance with many solvers requires that a
problem is well partitioned and load balanced. Notable examples are
METIS [80] (and its parallel incarnation ParMETIS [81]), Scotch [82]
(and the parallel PT-Scotch [83]), and KaHIP [84]. Trilinos pro-
vides the Zoltan2 [85] package that can perform partitioning through
ParMETIS, PT-Scotch, or its own GPU partitioner, Sphynx.

Using these libraries introduces a number of key considerations and
challenges:

1. While the standard interfaces to these libraries may restrict their
usefulness to some applications, it does encourage vendors to pro-
duce optimised and portable versions of performance critical func-
tions.

2. Library functions often operate in lock-step, meaning operations
cannot typically be fused. This may necessitate a number of unnec-
essary CPU-GPU transfers.

6. Domain specific languages

In this class we consider a wide range of languages and libraries – the key
commonality is that their scope is limited to a particular application or algo-

rithmic domain.

Domain Specific Languages (DSLs) and approaches by definition re-
strict their scope to a narrower problem domain, set of algorithms, or
computation/communication patterns. By sacrificing generality, it be-
comes feasible to attempt and address challenges in gaining all three of
performance, portability and productivity. A wide range of approaches
7

exist, at different levels of abstractions starting from libraries focusing
Computer Physics Communications 298 (2024) 109123

on specific numerical methods (e.g., Finite Element method) to low-
level parallel computation patterns and loop abstractions. Some are em-
bedded in general purpose languages (eDSLs) such as C/C++/Fortran
or Python allowing them to make use of the compiler and development
infrastructure (debuggers and profilers) of these languages. Others de-
velop an entirely new language of their own.

Restricting to a specific domain allows DSLs to apply more power-
ful optimisations to help deliver performance as well as portability. The
key reason being that a lot of assumptions are already built into the
programming interface (the domain specific API). As such, explicit de-
scription of the problem need not occur when programming with DSLs,
significantly improving productivity. Conversely, the key deficiency of
DSLs then is their limited applicability – if they cannot develop a consid-
erable userbase, they will lack the support required to maintain them.
As such two of the key challenges to building a successful DSL or frame-
work are: designing an abstraction wide enough to cover a range of
applications, but narrow enough such that powerful optimisations can
be applied; and, ensuring there is a feasible approach to long-term sup-
port.

DSLs can be categorised based on their level of abstraction. In some
respects, many of the solutions discussed previously in this paper could
be thought of as low-level DSLs, providing abstractions for parallel
computation (e.g., parallel for loops, parallel reductions, etc.); SYCL,
Kokkos, and RAJA could be thought of as such low-level DSLs.

However, in this review, we consider low-level DSLs to be those
that are designed for a particular class of computational pattern (e.g.,
mesh-based computations, particle-based interactions), and high-level
DSLs to be those that allow mathematical descriptions of problems to
be directly expressed in code, leaving the problem discretisation and
computational method to the solver/framework.

6.1. Low-level domain specific languages

6.1.1. Mesh-based computations

This class of DSLs are, for the most part, oblivious to the numeri-
cal methods being implemented, which in turn allows them to be used
for a wider range of algorithms, e.g., finite differences, finite volumes,
or finite elements. The key goal here is to create an abstraction that
allows the description of parallel computations over either structured
or unstructured meshes (or hybrid meshes), with neighbourhood-based
access patterns.

There are a number of notable and currently active DSLs at this
level of abstractions. Halide [86] is a DSL intended for image process-
ing pipelines, but generic enough to target structured-mesh computa-
tions [87]; it has its own language, but is also embedded into C++,
and it can target both CPUs and GPUs, as well as distributed memory
systems. YASK [88] is a C++ library for automating advanced opti-
misations in stencil computations, such as cache blocking and vector
folding. It targets CPU vector units, multiple cores with OpenMP, as well
as distributed-memory parallelism with MPI. OPS [89] is a multi-block
structured-mesh DSL embedded in both Fortran and C/C++, targeting
CPUs, GPUs and clusters of CPUs/GPUs – it uses a source-to-source
translation strategy to generate code for a variety of parallelisations.
ExaSlang [90] is part of a larger European project, ExaStencils [91],
which allows the description of PDE computations at many levels –
including at the level of structured-mesh stencil algorithms. It is em-
bedded in Scala and targets MPI and CPUs, with limited GPU support.
Another DSL for stencil computations, Bricks [92], gives transparent
access to advanced data layouts using C++, which are particularly op-
timised for wide stencils, and is available on both CPUs and GPUs.

OP2 [93] and its Python derivative, PyOP2 [94], give an abstraction
to describe neighbourhood computations for unstructured meshes. They
are embedded in C/Fortran and Python respectively, and can target
CPUs, GPUs, and distributed memory systems. Unlike the structured-
mesh motif (which uses a regular stencil), unstructured-mesh compu-

tations are based on explicit connectivity information between mesh

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

elements, leading to indirect increments. Indirect increments need to
be carefully handled when parallelising, given the existence of data de-
pendencies, and as such need different code-paths to obtain the best
performance on different architectures [59]. OP2 generates parallel
code targeting CPU and GPU clusters making use of a range of paral-
lel programming models (e.g., SIMD, OpenMP, CUDA, SYCL, and their
combinations with MPI).

A number of DSLs have emerged from the weather prediction do-
main, such as STELLA [95] and PSyclone [96]. STELLA is a C++
template library for stencil computations that is used in the COSMO dy-
namical core [97], and supports structured-mesh stencil computations
on CPUs and GPUs. PSyclone is part of the effort in modernising the UK
Met Office’s weather code; it works with LFRic, which is the Met Office’
replacement for its Unified Model. PSyclone has code-transformation
and automatic code generation functionalities, and as well as LFRic,
it has been used with the NEMO and CROCO ocean models [98]. PSy-
clone is capable of generating OpenACC, OpenMP and (in limited cases)
OpenCL [99]. Its transformation functionality allows for CPU optimisa-
tions, as well as targetting GPUs. CLAW-DSL [100], used for the ICON
model [101], targets Fortran applications and generates CPU and GPU
parallelisations – mainly for structured-mesh codes, but it is a generic
tool based on source-to-source translation using preprocessor directives.
It is worth noting that these DSLs are closely tied to larger software
projects (weather models in this case), developed by state-funded en-
tities, greatly helping their long-term survival. At the same time, it is
unclear if there are any other applications using these DSLs.

6.1.2. Particle interactions

Within the plasma domain, particle simulations are typically per-
formed using the particle-in-cell method [102], where individual par-
ticles (or macro particles) are tracked across a mesh representing the
electromagnetic (or electrostatic) fields. Particles may interact only
with the mesh (known as particle-mesh methods, or PM), with other
particles (known as particle-particle, or PP), or with both (known as
PP-PM, or P3M). There are a number of DSLs that exist at this level of
abstraction, proving support for one or more of these methods.

PPML [103] is a DSL for numerical simulations based on particle
methods and hybrid particle-mesh methods. PPML provides a concise
set of high-level abstractions through its own language, targeting re-
duced implementation times, and uses a source-to-source compiler to
generate plain Fortran code, which is then linked with the PPML back-
end. However, the use of new language constructs limits the standard
optimisation/debugging routines and is hard to extend and maintain.
The Parallel Particle-Mesh Environment (PPME) [104] overcomes
some of these issues by leveraging a meta programming system to
enhance the programmer’s experience, which is developed as an In-
tegrated Development Environment (IDE) for particle-mesh methods.
OpenFPM [105] is a framework that provides an abstraction layer
for mixed mesh-particle, and particle methods, embedded in C++. It
provides a comprehensive library that targets CPUs, GPUs, and super-
computers. The HartreeParticleDSL4 is a DSL for particle methods
implemented using the Regent programming language. It currently only
supports a limited feature set, catering for short-range pairwise interac-
tions and per-particle operations.

While many of the particle DSLs listed here are general to PM, PP
or P3M methods, some are designed with a specific scientific domain
in mind, in particular N-body and molecular dynamics applications.
HOOMD-blue [106] is a general-purpose molecular dynamics and hard
particle Monte Carlo simulation toolkit. It provides a Python-based
domain specific API and runs over a high-performance C++/CUDA
back-end with MPI, enabling the creation of simulation and analysis
workflows. MDL [107] is a molecular-dynamics DSL designed to allow
rapid prototyping, testing and debugging of efficient propagation al-
8

4 https://github .com /stfc /RegentParticleDSL.
Computer Physics Communications 298 (2024) 109123

gorithms. PPMD [108] is a portable framework for molecular dynamics
applications, providing a Python interface and parallelised computation
using OpenMP, MPI and CUDA.

At a level lower, the Cabana [109] library provides a number of
data structures, algorithms and utilities specifically for particle-based
simulations. Parallel execution of particle kernels is achieved through
Kokkos for on-node parallelism and MPI for off-node communication.
Each of these libraries can be used to abstract away some of the math-
ematical operations and data storage requirements needed by scientific
applications.

6.2. High-level DSLs

Domain specificity can be at a higher level, where the DSL focuses
on the declaration and solution of particular numerical problems. The
most widely implemented DSLs at such a high level are frameworks for
the solution of PDEs. The problem is specified starting at the symbolic
expression of the problem (e.g., in Einstein notation). An interpreter
or a compiler then (semi-) automatically discretises the problem and
generates a solution. Most are focused on a particular set of equations
and discretisation methods, and they can offer excellent productivity –
assuming the problem to be solved matches the focus of the library.

Many of these libraries, particularly ones where portability is im-
portant, are built with a layered abstractions approach; the high-level
symbolic expressions are transformed, and then passed to a layer that
maps them to a discretisation, then this is given to a layer that ar-
ranges parallel execution – the exact layering of course depends on the
library. This approach allows the developers to work on well-defined
and well-separated layers, without having to gain a deeper understand-
ing of the whole system. These libraries are most commonly embedded
in the Python language, which has the most commonly used tools for
symbolic manipulation in this field – although functional languages are
arguably better suited for this, they still have little use in HPC. Due to
the poor performance of interpreted Python, these libraries ultimately
generate low-level C/C++/Fortran code to deliver high performance.

One of the most established such libraries is FEniCS [110], which
targets the finite element method. However it only supports CPUs and
distributed memory cluster execution with MPI, with some support for
GPUs with the integration of PETSc. Firedrake [111] is a similar project
with a different feature set, that uses the aforementioned PyOP2 library
for parallelising and executing generated code. A feature of Firedrake
is that it generates code at runtime to exploit further optimisation op-
portunities, for example based on the mesh being available/input at
runtime.

The ExaStencils project [91] uses four layers of abstraction to cre-
ate code running on CPUs or GPUs from the continuous description of
the problem – its particular focus is structured meshes and multigrid.
OpenSBLI [112] is a DSL embedded in Python, focused on resolving
shock-boundary layer interactions and uses finite differences and struc-
tured meshes – it generates C code using the OPS library which provides
the stencil abstraction. As noted before, OPS then generates parallel
code targeting distributed memory machines with both CPUs and GPUs.
Devito [113] is a DSL embedded in Python which allows the symbolic
description of PDEs, and focuses on high-order finite difference meth-
ods, with the key target being seismic inversion applications. Devito
also supports CPU and GPU parallelisation, where GPU acceleration is
obtained by generating OpenACC directives.

In fusion research, the BOUT++ [114,115] framework has been de-
veloped as a flexible toolbox for solving a wide range of PDEs. Its design
was in large part driven by the need for physicist users to modify and
customise the model equations being solved. BOUT++ therefore uses
C++ features to implement models in a way which closely mimics their
mathematical form. The BOUT++ framework then solves these equa-
tions, and allows the user runtime control over the finite difference
methods and stencils used, as well as time integration solver, Laplacian

inversions, and so on.

https://github.com/stfc/RegentParticleDSL

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

BOUT++’s physics model implementation language is an example
of an eDSL, in this case C++ is the host language. eDSLs have the
advantage of the user/developer being able to easily “break out” of
the DSL and write generic code for situations not handled by the DSL,
for example to handle complicated boundary conditions. The cost of
this approach is that certain transformations of the code are harder to
achieve. For example, each physics and arithmetic operator in BOUT++
contains a loop over the whole domain for its own kernel. To achieve
the full performance with OpenMP or accelerators requires merging
these loops into a single loop. This in turn necessitates rewriting the top-
level set of equations to include this loop explicitly, or to use something
akin to expression templates (as is done in libraries such as Eigen [68]
or Blitz++ [116]), which have their own downsides.

BOUT++ currently only supports execution on CPUs with OpenMP
for multi-threading and MPI for distributed memory execution. Ex-
perimental branches exist with ongoing development to support GPU
execution. These include (1) using Hypre [78] with GPU support for
the Laplacian inversion parts of the problem (which in practice can
take about half the total time) and (2) with RAJA for putting the user
physics model on GPUs, with Umpire [117] to handle memory. This
requires modifying the physics DSL to enable operations to be fused
together, reducing the number of separate kernels which need to be
launched.

Similar to BOUT++, the Unified Form Language (UFL), used in
FEniCS and Firedrake provides a high-level language to describe varia-
tional forms. The problem to be solved is specified at a high level, which
corresponds closely to the mathematical form.

Firedrake uses the FEniCS Form Compiler (FFC) to convert UFL to an
intermediate representation, and then uses PyOP2 to generate code for
target architectures, aiming to be performance portable on both CPUs
and GPUs.

The most common challenges when using DSLs include:

1. Difficulties in debugging due to the extra hidden layers of software
between user code and code executing on the hardware. However,
DSLs generating low-level C/C++/Fortran codes can use standard
debuggers or profilers.

2. Extensibility – implementing algorithms that fall slightly outside of
the abstraction defined by the DSL can be an issue.

3. Customisability – it is often difficult to modify the implementation
of high-level constructs generated automatically.

To mitigate some of these issues, systems can be provided with “es-
cape hatches”, which provide ways for users to implement components
of the problem which cannot be expressed in the high-level DSL. An ex-
ample is custom flux-limiters, which cannot currently be expressed in
UFL; instead a user needs to be able to implement their own kernels,
and integrate these into the remainder of the system in an elegant way.
Firedrake provides such escape hatches for direct access to linear al-
gebra operators (PETSc), and allows implementation of custom PyOP2
kernels. However it should be noted that such modifications may not
deliver the best performance on all hardware and should be used only
sparingly, or for prototyping. As is the case with many complex perfor-
mance issues there is no silver-bullet to solve all cases.

7. Coupling frameworks

In this class, we consider libraries acting as interfaces to enable communica-

tion between several applications to perform multiscale simulations.

The multiscale problem of fusion modelling tackled by NEPTUNE
requires the coupling of physics at various length- and time-scales
to predict and control instabilities in the edge-region that influence
the plasma core (see Fig. 1). This requires efficient coupling be-
tween various solvers that represent physics at different scales/regimes
9

(continuum-kinetic coupling), such as the SOLPS-ITER [118] code for
Computer Physics Communications 298 (2024) 109123

simulating tokamak edge physics. Coupling libraries must be flexible
and lightweight to provide developers the ability to optimise the per-
formance and portability of each separate code. Classically, developers
have needed to hard-code various solvers together to perform coupled
simulations [119], or use file-based coupling (which may introduce
an increased I/O overhead that usually hinders performance but may
be useful for debugging) [120]. However, several third-party libraries
are now available to couple a potentially arbitrary number of solvers
used to model various physical systems. Common problems driving
these developments include fluid-structure interaction [121], conjugate
heat-transfer [119], and aeroacoustics [122]. The suite of modules de-
veloped as part of the Multiphysics Object-Orientated Simulation
Environment (MOOSE) framework [123] have been used for coupled
problems in nuclear fusion such as the breeder blanket [124]. With
the provision that data provided to the coupling middleware remains
consistent, each solver can be developed in isolation of the other; this
could be thought of as implementing a horizontal separation of concerns
approach, akin to the vertical separation of concerns achieved by afore-
mentioned DSLs [125].

One strongly developed coupling library is preCICE [121,126]. Pre-
CICE aims to couple existing solvers together, creating what is known
as ‘partitioned’ simulations. Users couple simulation codes through
adapters which interface to libprecice. These adapters are standalone
software packages that may either be provided by preCICE, the preCICE
community, or may be user-defined for in-house solver methods. These
community contributions are important to enable developer produc-
tivity. Recently, preCICE was used to couple a GPU lattice-Boltzmann
method solver coupled to OpenFOAM (CPU-based CFD code), show-
ing it can be used to couple heterogeneous simulation codes [127].
The communication between simulations coupled by preCICE is rec-
ommended to be done based on TCP/IP sockets by the developers.
Although MPI is an available option for communication, Rubin [128]
attempted to configure their simulations to communicate with MPI but
were unsuccessful. Uekermann [129] showed that MPI-based commu-
nication is between 5 and 10 times faster than TCP/IP sockets.

The Coupling With Interpolation Parallel Interface (CWIPI) [130]
and the Multiscale Universal Interface (MUI) [119] libraries per-
form coupling using the multiple-programme multiple-data (MPMD)
MPI model. A primary benefit of MUI is the availability of examples
and documentation provided by the developers, compared to a lack of
documentation or examples for CWIPI (aside from open-source contri-
butions such as Moratilla-Vega et al. [122] and, within the NEPTUNE
project, the successful demonstration of using CWIPI for the coupling of
fluid and particle regions for examples of interest to the fusion commu-
nity [131,132]). Additionally, MUI represents data as a cloud of points
whereas CWIPI represents data as a mesh. The additional information
on mesh connectivity may not be necessary in particle-based solvers
that are necessary for fusion reactor modelling, making the cloud-based
representation preferred for its generality [133]. The MUI software is
written in C++11 with wrappers for C, Fortran and Python. A header-
based approach is used for the entire library and the only external
library is MPI. As such, it can be used in the same way any other C++
standard library would be used, without the need for pre-compilation.

Another potential option for code coupling is the Adaptive I/O Sys-

tem (ADIOS) [134,135], developed as part of ECP, which is primarily
concerned with high-performance I/O. ADIOS yields minimal compu-
tational overhead, and also allows seemless switching between file-
based coupling and in-memory coupling for debugging and full-scale
runs, respectively [120]. ADIOS has been used for coupling the edge
physics code XGC (X-point Included Gyrokinetic Code) [136] with
several core plasma and stability analysis codes [137,138] as part of the
ECP-funded Whole Device Model Application (WDMApp) [4,139].
WDMApp aims to develop easy coupling for core and edge plasma
codes, improve the performance of the XGC edge physics code, and al-
low for integration of in-situ processing. ADIOS has also been used in

the CFD community for in-situ post-processing and analysis [140], sug-

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

gesting it would be a suitable tool for developers looking to integrate
their software with machine learning approaches such as reduced-order
models, without writing to disk.

Through the use of third-party coupling frameworks, developers
can optimise their code for maximal performance on HPC with mini-
mal intrusion to the codebase of each application. Specific advantages
include advanced coupling approaches such as implicit coupling, high-
order data mapping (e.g., interpolation via splines) and non-matching
time-stepping without implementing these approaches in their own
software. This also results in increased potential for scalability opti-
misations using varying domain decomposition strategies. For example,
load-balancing algorithms can be applied separately to each application
domain, individual computational grids can be redefined, coarsened or
refined, and the different applications can even be run on separate plat-
forms such as GPUs if desirable.

Using coupling libraries for multiscale simulation introduces the fol-
lowing considerations:

1. Performance and scalability of the communication and coupling
numerics when coupling various applications.

2. The ability of the coupling framework to easily be incorporated
with existing codes with minimal intrusion is crucial to maximise
developer productivity.

3. Coupling features available with the chosen library (various time-
stepping or interpolation/mapping schemes may be desirable). Of-
floading the implementation of these features to coupling library
developers is key for productivity.

8. Evaluating performance, portability and productivity

When considering the development of a new simulation application,
we are typically interested in maximising performance, portability and
productivity [8]. In terms of performance we are usually concerned
with metrics that directly measure or affect the “time-to-science”, while
for portability we are usually concerned with an application’s ability
to run correctly on different HPC systems and architectures. Productiv-
ity, on the other hand, is usually a measure of the time and expertise
required to develop and maintain the application.

There are a wide variety of metrics for assessing the performance of
an application, common examples include application runtime, floating-
point operations per second, or memory bandwidth. Portability could be
thought of as a binary decision – an application either does or does not
run correctly. Productivity is perhaps the most difficult to assess objec-
tively, but common proxies include lines-of-code written, development
time (in person-hours), and code complexity metrics [141].

These metrics (and combinations of them) allow us to analyse and
reason about an application, in order to evaluate development and op-
timisation strategies. One of the most notable methods of performance
analysis is the Roofline model [142]. In a roofline model, numerous
rooflines are drawn that correspond to the various peaks of floating
point performance (horizontal lines) and the maximum memory band-
width (diagonal lines).

Fig. 3 (reproduced from Williams et al. [142]) shows the data for an
AMD Opteron X2. The performance of an application, or an individual
computational kernel, can be placed on the plot, showing if an applica-
tion is compute-bound (blue region), memory-bound (yellow region), or
both (green region), and can therefore suggest possible routes for per-
formance optimisation (e.g., focus on improving use of ILP, improving
memory cache behaviour). Rooflines can be calculated using published
data (from processor specifications), or benchmarked empirically using
tools such as Intel Advisor, or the Empirical Roofline Toolkit [143]. An
application’s performance can then be placed on the plot using data
gathered from performance counters.

Although portability itself is a binary measure, we are usually con-
cerned with how performant a portable application is – arguably an
10

application that runs correctly but with significantly degraded perfor-
Computer Physics Communications 298 (2024) 109123

mance on an alternative architecture is not truly portable. This has led
to an effort to develop a multi-objective optimisation figure of merit to
assess performance portability. One example is the metric introduced by
Pennycook et al. [144].

PP(𝑎, 𝑝,𝐻) =
⎧⎪⎨⎪⎩

|𝐻|∑
𝑖∈𝐻

1
𝑒𝑖(𝑎, 𝑝)

if 𝑖 is supported ∀𝑖 ∈𝐻

0 otherwise

(1)

In Equation (1), the performance portability (PP) of an application 𝑎,
solving problem 𝑝, on a given set of platforms 𝐻 , is calculated by
finding the harmonic mean of an application’s performance efficiency
(𝑒𝑖(𝑎, 𝑝)). The performance efficiency for each platform can be calcu-
lated by comparing achieved performance against the best recorded
(possibly non-portable) performance on each individual target platform
(i.e. the application efficiency), or by comparing the achieved perfor-
mance against the theoretical maximum performance achievable on
each individual platform (i.e. the architectural efficiency). Should the
application fail to run on one of the target platforms, a performance
portability score of 0 is awarded.

Harrell et al. propose a code divergence metric as a measure of de-
veloper productivity [145], and this measure has been adopted by Code
Base Investigator [146] and the P3 Analysis Library [147].

CD(𝑎, 𝑝,𝐻) =
(|𝐻|

2

)−1 ∑
{𝑖,𝑗}∈𝐻×𝐻

𝑑𝑖,𝑗 (𝑎, 𝑝) (2)

In Equation (2), code divergence is a measure of the average “distance”
between the source code required to compile an application 𝑎, and ex-
ecute problem 𝑝 for each pair of platforms in 𝐻 , where 𝑑𝑖,𝑗 (𝑎, 𝑝) is any
distance metric between two source codes. Pennycook et al. [148] sug-
gest using the Jaccard distance (shown in Equation (3)), where 𝑐𝑖(𝑎, 𝑝)
represents the set of source lines required to compile application 𝑎 and
execute problem 𝑝 on a given platform 𝑖.

𝑑𝑖,𝑗 (𝑎, 𝑝) = 1 −
|𝑐𝑖(𝑎, 𝑝) ∩ 𝑐𝑗 (𝑎, 𝑝)||𝑐𝑖(𝑎, 𝑝) ∪ 𝑐𝑗 (𝑎, 𝑝)| (3)

Similarly to PP, this metric provides a single value in the range [0, 1],
where 0 means a single source code is used for every platform, and 1
means an entirely separate source code is required with no shared code.

While Equations (1) and (2) provide formal definitions for perfor-
mance portability and productivity, these single value metrics may not
answer all questions a developer might have about their application. In
recognising this a series of visualisations of performance portability and
productivity have been proposed by Sewall et al. [149] and Pennycook
et al. [148]. These visualisations are best explained with examples.

Fig. 4(a) shows a cascade plot of 6 hypothetical application imple-
mentations, across 10 platforms. The implementations are: unportable

with high performance on a single platform, but not portable to any
other platform; single target with high performance on a single plat-
form, and low performance on all others; multi target achieving high
performance on some platforms, and low performance on others; in-

consistent showing a range of performance across all platforms; and
consistent showing consistent low (30%) or high (70%) performance
across all platforms.

While we could simply apply the PP metric in Equation (1) to this
synthetic data, doing so would mean that we lose some information
about how the performance portability is spread across platforms, and
how the application efficiency changes as we add and remove platforms
from the evaluation set.

Fig. 4(b) shows a performance-portability code-convergence (PP-CC)
navigation chart with 5 hypothetical application implementations. The
implementations correspond to: an unportable implementation en-
tirely tailored for a single hardware target; an ideal implementation
that achieves PP = 1.0, from a single codebase; a per platform source
implementation that achieves PP = 1.0, but does so with specialised

Computer Physics Communications 298 (2024) 109123S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

Fig. 3. A Roofline plot for an AMD Opteron X2 processor [142].

Fig. 4. Example plots showing how the performance, portability and productivity of an implementation may be visualised [147,148].
code for each hardware target; a portability framework implemen-
tation using a parallel programming model aimed at portability, but
only achieving PP = 0.5; and a specialized implementation that strikes
a balance between portability and specialisation, achieving 0.7 in each.

Metrics and visualisations such as these provide vital information
when planning for the development of a new code, and for evaluating
progress in developing a code that maximises performance, portability
and productivity.

8.1. Previous studies of performance, portability and productivity

There are currently a large number of projects focused on preparing
scientific applications for the complexities of post-Exascale computa-
11

tion. With many of the largest Supercomputers edging towards hetero-
geneity and hierarchical parallelism, many of these efforts are in en-

suring that applications are performant and portable between different
architectures. The previous five sections of this paper have outlined a
wide number of options available for developing performance portable
applications, and each approach comes with various advantages and
disadvantages.

In this paper we are primarily concerned with applications and al-

gorithms that can be used to simulate the behaviour of plasma, using
either a fluid- or a particle-based scheme. Table 1 lists a number of ap-

plications implementing common algorithms used for the simulation of
plasma that have been the subject of performance and portability stud-
ies.

Computer Physics Communications 298 (2024) 109123S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

Table 1

A selection of performance studies performed using applications of interest to the Plasma fusion community.

Application Computational Methods Programming Models Performance metrics References

BookLeaf Unstructured Arbitrary Lagrangian-Eulerian Fortran, C++, OpenMP, CUDA, MPI, Kokkos, RAJA Time, PP [150,151]
CloverLeaf Finite Volume Fortran, C++, OpenMP, OpenACC, OpenCL, CUDA,

SYCL, Coarray Fortran, MPI, OPS
Time, Energy, PP [58,60,152–156]

EMPIRE-PIC Finite-Element, Particle-in-Cell C++, Kokkos, Trilinos Time, FLOP/s, GB/s [157–159]
EPOCH Structured Particle-in-Cell Fortran, MPI Time [160–162]
GENE Finite Difference Fortran, C++, OpenMP, MPI Time, FLOP/s, GB/s [163,164]
Heat Finite Difference C, OpenMP, OpenCL, CUDA, HIP, SYCL Time, GB/s, PP [58,61]
HERMES-3 Finite Volume C++, Bout++, PETSc, Hypre Time [165]
hipBone High-order Finite Element C++, OpenMP, OpenCL, CUDA, HIP, SYCL, OCCA FLOP/s, GB/s [166]
Laghos High-order Finite Element C++, OpenMP, CUDA, OCCA, RAJA, MFEM, METIS,

hypre
Time [167,168]

MG-CFD Multi-grid Finite Volume C/C++, OpenMP, OpenACC, MPI, CUDA, OP2 Time, FLOP/s, GB/s [59,169]
miniFE Finite Element C++, OpenMP, CUDA, HIP, SYCL, MPI, Kokkos, MKL Time, Energy, PP [61,156,170,171]
nek5000 Spectral Element Fortran, C, MPI Time, FLOP/s [172,173]
Nekbone Spectral Element Fortran, C, OpenMP, OpenACC, MPI Time, FLOP/s, GB/s, [174–176]
Nektar++ Spectral Element C++, MPI, BLAS, LAPACK Time, Energy [177]
PIConGPU Structured Particle-in-Cell C++, MPI, OpenMP, CUDA, HIP, SYCL, Alpaka Time, FLOP/s [70,178]
PUMIPic Unstructured Particle-in-Cell C++, Kokkos Time [179]
TeaLeaf Finite Difference Fortran, C, OpenMP, OpenACC, CUDA, MPI, Kokkos,

RAJA, OPS
Time, Energy, GB/s, PP [156,180–183]

vlp4d Semi-Lagrangian Scheme C++, OpenMP, OpenACC, OpenMP4.5, CUDA, HIP,
stdpar, Kokkos, Thrust

Time, FLOP/s, PP [184,185]

VPIC Structured Particle-in-Cell C++, SIMD Intrinsics, Kokkos Time, FLOP/s [186–188]
WarpX Structured Particle-in-Cell, Adaptive Mesh Refinement C++, OpenMP, CUDA, HIP, SYCL, MPI, AMReX Time, FLOP/s [189–191]
XGC/XGCm Unstructured Particle-in-Cell Fortran, C++, OpenMP, CUDA, MPI, Kokkos Time [136,192,193]
8.2. General purpose programming languages

In many cases, the applications listed in Table 1 have a “reference”
implementation written only using a general purpose programming lan-
guage. These reference versions serve as a baseline for performance
and portability studies, often only exhibiting good single core perfor-
mance on CPUs, with no portability to heterogeneous architectures.
This is certainly typical in the mini-application space, where developers
are encouraged to demonstrate portable performance with miniaturised
representative applications, prior to larger porting efforts. Notable ex-
amples of this are BookLeaf, CloverLeaf, and TeaLeaf from the UK
Mini-App Consortium (UK-MAC) [151,152,180], and miniFE, Nekbone,
and Laghos from the ECP Proxy Apps [168,171,175].

In the case of large applications such as EPOCH and nek5000, the
applications only exist written in these general purpose programming
languages, parallelised using the MPI programming model. These typ-
ically have no portability to heterogeneous systems, and instead are
subject to significant porting efforts.5

8.3. Parallel programming models

At perhaps the lowest level of parallel programming, the legacy
VPIC (Vector Particle-in-Cell) code uses hand-coded SIMD intrinsics
to achieve the highest possible performance on modern CPU architec-
tures [188]. Specialised code is required for each new instruction set,
and a particular codepath is chosen using pre-processing directives at
compile time. The maintainability and portability of such an approach
has subsequently led to the development of VPIC 2.0, which instead
uses Kokkos for portable performance [186], at the expense of perfor-
mance on some platforms.

The two pragma-based approaches of OpenMP and OpenACC are
perhaps the easiest to implement into an existing application and re-
quire only minimal code changes. There are various studies that show
that across CPUs, OpenMP can provide good performance [61,182], and
that across GPUs, OpenACC can be competitive with native solutions
such as CUDA [154]. However, applications using OpenMP with target
offload may require different directives for host and accelerator archi-
12

5 See: EPOC++ [194], NekRS [195].
tectures, in order to achieve the best performance on each [59,183],
potentially leading to code divergence and target-specific compilation.
The descriptive loop construct (introduced in the OpenMP 5.0 stan-
dard [40]) aims to address this concern, instead allowing the compiler
to generate different code paths based on architecture within a single
binary [196].

Many mini-apps are also implemented using native GPU parallel
programming models such as CUDA and HIP/ROCm. These typically
achieve the highest performance on their respective target platforms,
but they are subject to significant vendor lock-in [152,181,182].

Although significantly more portable, many studies with OpenCL
highlight degraded performance on CPUs [58,197] and productivity
challenges (with application kernels potentially requiring twice as much
code as the equivalent CUDA kernel [154]).

SYCL addresses these productivity issues, being a single-source so-
lution embedded in C++. The focus of many SYCL performance studies
has been on the maturity of the programming model and its imple-
menting compilers [58,60,61]. In the general case it is able to offer
portability and productivity at the expense of some performance. How-
ever, the performance gap has been reducing as the compilers improve.

8.4. Software libraries

Both EMPIRE-PIC and Laghos make use of numerical algorithm li-
braries for a significant proportion of their compute; Laghos through
MFEM, and EMPIRE-PIC through Trilinos (see Section 5). These li-
braries in turn use other numerical algorithm libraries through portable
interfaces such as BLAS and LAPACK. MFEM targets heterogeneous
architectures through RAJA, while Trilinos targets heterogeneous archi-
tectures through Kokkos. Since these applications have been designed
with portability in mind using a single portable programming model, it
is difficult to evaluate their performance portability, since there are no
alternative implementations for comparison.

However, their parallel programming models, Kokkos and RAJA,
have been evaluated more widely as part of many mini-application
portability studies. Studies have shown that both are typically able
to deliver good and portable performance from a single-source code
base [150,180,182,183]. The Kokkos programming model has also been

adopted by a new implementation of VPIC, enabling portability to het-

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

erogeneous architectures at the expense of performance on CPU sys-
tems [186].

8.5. Domain specific languages

In the case of many high-level DSLs, it is again difficult to objectively
measure the performance portability without alternative implementa-
tions available. Rathgeber et al. evaluate the Firedrake and FEniCS
solvers, both of which use UFL. Their study shows that Firedrake, which
uses the low-level PyOP2 DSL for performance portability, typically out-
performs FEniCS [198].

The lower-level OP DSLs, OPS and OP2, have been more widely ex-
amined as part of a number of mini-application studies [155,169,182].
Typically they show good performance on a range of heterogeneous
hardware, but they are arguably not as productive as higher-level DSLs,
where mathematics can be represented more directly. Higher-level DSL
thus can provide a productivity advantage if an application is to be
developed from scratch. However, when converting an existing appli-
cation or legacy code to a DSL, the lower-level OPS/OP2 style DSLs
are better suited and compatible for a step-by-step (e.g., loop-by-loop)
conversion co-existing with the original application [199]. Such a con-
version might not be possible with a high-level DSL, where the full
application might need to be expressed in the higher-level DSL notation
before any validation can begin.

Applications implemented in high-level DSLs, such as Firedrake, of-
ten contain multiple levels of DSL with a high-level DSL for scientists
and a lower-level DSL providing the portability. These applications fully
embody the separation of concerns paradigm, improving productivity
for domain experts who can represent their problems directly. If the
code generated at each layer is transparent to the user, this helps with
debugging and end-to-end validation. Users more often than not, do not
like to have black-box or hard to understand intermediate representa-
tions. However, changing user requirements that demand components
that break the abstraction most likely will be difficult to support with
these DSLs. Users asking for “escape hatches” to support future numer-
ics could lead to a considerable impact on performance.

9. Conclusion

Newly developed simulation applications may employ DSLs and soft-
ware at different levels of the software development stack (see Fig. 2).
High-level DSLs may allow scientists to express equations directly, while
low-level DSLs and parallel programming models will allow applica-
tions to target different parallel architectures.

In this paper we have provided an overview of many of the ap-
proaches that are available at each level of this software development
stack, highlighting many of the advantages and disadvantages in each
case. Furthermore, we have outlined some of the key metrics and meth-
ods used to evaluate the performance, portability, and productivity of
scientific simulation applications.

The focus of this paper has been on approaches and applications
from the plasma physics domain, motivated by Project NEPTUNE – a
UK effort to develop a new tokamak edge code to treat the complex
dynamics of fusion plasma. However, the discussion in this paper is
more generally applicable to the development of any new simulation
application focused on portability with high parallel performance.

Any modern HPC application is likely to use approaches from at
least the three lowest levels of the software stack, typically being im-
plemented in a general purpose programming language, using a parallel
programming model, and a distributed memory model.

Targeting portability from a single code base, and productivity for
domain specialists often requires further abstractions, at the top levels
of our development stack, allowing greater scope for code synthesis.
For multi-science/multi-scale applications, a further level of abstraction
13

may be required to couple multiple simulations/applications together.
Computer Physics Communications 298 (2024) 109123

CRediT authorship contribution statement

Steven A. Wright: Writing – review & editing, Writing – original
draft, Supervision, Resources, Project administration, Methodology, In-
vestigation, Funding acquisition. Christopher P. Ridgers: Writing –
original draft, Resources, Investigation, Funding acquisition. Gihan R.
Mudalige: Writing – review & editing, Writing – original draft, Su-
pervision, Project administration, Methodology, Investigation. Zaman
Lantra: Writing – original draft, Resources, Methodology, Investigation.
Josh Williams: Writing – review & editing, Writing – original draft,
Resources, Methodology, Investigation. Andrew Sunderland: Writing
– original draft, Resources. H. Sue Thorne: Writing – review & editing,
Writing – original draft, Resources, Project administration, Methodol-
ogy, Investigation. Wayne Arter: Writing – original draft, Project ad-
ministration, Methodology, Investigation, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:

Steven Wright reports financial support was provided by UK Atomic
Energy Authority. Christopher Ridgers reports financial support was
provided by UK Atomic Energy Authority. Gihan Mudalige reports fi-
nancial support was provided by UK Atomic Energy Authority. Josh
Williams reports financial support was provided by UK Atomic Energy
Authority. Sue Thorne reports financial support was provided by UK
Atomic Energy Authority. Andrew Sutherland reports financial support
was provided by UK Atomic Energy Authority.

Data availability

No data was used for the research described in the article.

Acknowledgements

The ExCALIBUR programme (https://excalibur .ac .uk/) is supported
by the UKRI Strategic Priorities Fund. The programme is co-delivered
by the Met Office and EPSRC in partnership with the Public Sector Re-
search Establishment, the UK Atomic Energy Authority (UKAEA) and
UKRI research councils, including NERC, MRC and STFC.

References

[1] C. Chang, V.L. Deringer, K.S. Katti, V. Van Speybroeck, C.M. Wolverton, Simula-
tions in the era of exascale computing, Nat. Rev. Mater. 8 (2023) 309–313.

[2] J. Dongarra, et al., The international exascale software project roadmap, Int. J.
High Perform. Comput. Appl. 25 (2011) 3–60.

[3] W. Arter, L. Anton, D. Samaddar, R. Akers, ExCALIBUR Fusion Modelling Sys-
tem Science Plan, Technical Report CD/EXCALIBUR-FMS/0001, UKAEA, 2019,
https://www .metoffice .gov .uk /binaries /content /assets /metofficegovuk /pdf /
research /spf /ukaea -excalibur -fms -scienceplan .pdf.

[4] A. Bhattacharjee, ECP WDMApp Team, High-fidelity whole device model of mag-
netically confined fusion plasma, in: APS Division of Plasma Physics Meeting
Abstracts, volume 2019, 2019, M9–002.

[5] S. Markidis, J.J. Williams, T. Dannert, V. Papaefstathiou, U. Ganse, L. Kos, I.B.
Peng, D. Tskhakaya, Plasma-PEPSC - Plasma Exascale-Performance Simulations
Centre of Excellence, Horizon Europe Grant Reference 101093261, 2023.

[6] Eurofusion, European Research Roadmap to the Realisation of Fusion Energy,
Technical Report SOFT 2018 Version, Eurofusion, 2018, https://euro -fusion .org /
wp -content /uploads /2022 /10 /2018 _Research _roadmap _long _version _01 .pdf.

[7] G. Federici, W. Biel, M.R. Gilbert, R. Kemp, N. Taylor, R. Wenninger, European
DEMO design strategy and consequences for materials, Nucl. Fusion 57 (2017)
092002.

[8] I.Z. Reguly, G.R. Mudalige, Productivity, performance, and portability for compu-
tational fluid dynamics applications, Comput. Fluids 199 (2020) 1–10.

[9] J.P. Singh, J.L. Hennessy, An empirical investigation of the effectiveness and lim-
itations of automatic parallelization, in: Shared Memory Multiprocessing, 1992,
pp. 203–207.

[10] R. Harel, Y. Pinter, G. Oren, Learning to parallelize in a shared-memory envi-
ronment with transformers, in: Proceedings of the 28th ACM SIGPLAN Annual
Symposium on Principles and Practice of Parallel Programming, PPoPP ’23, AMC,

New York, NY, USA, 2023, pp. 450–452.

https://excalibur.ac.uk/
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8C4FD28FFB77216C1F1381346E5F4953s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8C4FD28FFB77216C1F1381346E5F4953s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7EE75F072CBE4B61CF0E6146CDCF44C1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7EE75F072CBE4B61CF0E6146CDCF44C1s1
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/spf/ukaea-excalibur-fms-scienceplan.pdf
https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/research/spf/ukaea-excalibur-fms-scienceplan.pdf
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF87798E7847C57B1231D9C2A7E723D45s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF87798E7847C57B1231D9C2A7E723D45s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF87798E7847C57B1231D9C2A7E723D45s1
https://euro-fusion.org/wp-content/uploads/2022/10/2018_Research_roadmap_long_version_01.pdf
https://euro-fusion.org/wp-content/uploads/2022/10/2018_Research_roadmap_long_version_01.pdf
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD787BD023F53B70FBE1C96663CF6CFF5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD787BD023F53B70FBE1C96663CF6CFF5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD787BD023F53B70FBE1C96663CF6CFF5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7E4AB39A1C813FDCBAF1BEC70D75C39Cs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7E4AB39A1C813FDCBAF1BEC70D75C39Cs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib26C018BEAD56B29B3FC691E59B9A0019s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib26C018BEAD56B29B3FC691E59B9A0019s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib26C018BEAD56B29B3FC691E59B9A0019s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA2C0ED9A3B465A448126AE8FCBCEB4A1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA2C0ED9A3B465A448126AE8FCBCEB4A1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA2C0ED9A3B465A448126AE8FCBCEB4A1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA2C0ED9A3B465A448126AE8FCBCEB4A1s1

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

[11] S. Prema, R. Jehadeesan, B.K. Panigrahi, Identifying pitfalls in automatic paral-
lelization of NAS parallel benchmarks, in: 2017 National Conference on Parallel
Computing Technologies (PARCOMPTECH), 2017, pp. 1–6.

[12] K. Kennedy, C. Koelbel, H. Zima, The rise and fall of high performance Fortran:
an historical object lesson, in: Proceedings of the Third ACM SIGPLAN Conference
on History of Programming Languages, HOPL III, AMC, New York, NY, USA, 2007,
pp. 7–1–7–22.

[13] E. Belikov, P. Deligiannis, P. Totoo, M. Aljabri, H.-W. Loidl, A survey of high-level
parallel programming models, Technical Report HW-MACS-TR-0103, Heriot-Watt
University, Edinburgh, UK, 2013.

[14] H. Kasim, V. March, R. Zhang, S. See, Survey on parallel programming model, in:
J. Cao, M. Li, M.-Y. Wu, J. Chen (Eds.), Network and Parallel Computing, Springer,
Berlin Heidelberg, Berlin, Heidelberg, 2008, pp. 266–275.

[15] J. Diaz, C. Muñoz Caro, A. Niño, A survey of parallel programming models and
tools in the multi and many-core era, IEEE Trans. Parallel Distrib. Syst. 23 (2012)
1369–1386.

[16] R.H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design of
ion-implanted MOSFET’s with very small physical dimensions, IEEE J. Solid-State
Circuits 9 (1974) 256–268.

[17] J.L. Hennessy, D.A. Patterson, A new golden age for computer architecture, Com-
mun. ACM 62 (2019) 48–60.

[18] C.E. Leiserson, N.C. Thompson, J.S. Emer, B.C. Kuszmaul, B.W. Lampson, D.
Sanchez, T.B. Schardl, There’s plenty of room at the top: what will drive com-
puter performance after Moore’s law?, Science 368 (2020) eaam9744.

[19] D. Patterson, The trouble with multi-core, IEEE Spectr. 47 (2010) 28–32, 53.
[20] A. Turner, Parallel Software usage on UK National HPC Facilities 2009-2015: How

well have applications kept up with increasingly parallel hardware?, Technical
Report, Edinburgh Parallel Computing Centre, 2015.

[21] T.M. Evans, A. Siegel, E.W. Draeger, J. Deslippe, M.M. Francois, T.C. Germann,
W.E. Hart, D.F. Martin, A survey of software implementations used by application
codes in the exascale computing project, Int. J. High Perform. Comput. Appl. 36
(2022) 5–12.

[22] G.M. Shipman, T.C. Randles, An evaluation of risks associated with relying on
Fortran for mission critical codes for the next 15 years, Technical Report LA-UR-
23-23992, Los Alamos National Laboratory, 2023.

[23] J. Marks, E. Medwedeff, O. Čertík, R. Bird, R.W. Robey, Improving Fortran perfor-
mance portability, in: B. Chapman, J. Moreira (Eds.), Languages and Compilers for
Parallel Computing, Springer International Publishing, Cham, 2022, pp. 74–83.

[24] A. Hsu, D.N. Asanza, J.A. Schoonover, Z. Jibben, N.N. Carlson, R. Robey, Perfor-
mance portability challenges for Fortran applications, in: 2018 IEEE/ACM Inter-
national Workshop on Performance, Portability and Productivity in HPC (P3HPC),
2018, pp. 47–58.

[25] L.J. Kedward, B. Aradi, O. Čertík, M. Curcic, S. Ehlert, P. Engel, R. Goswami, M.
Hirsch, A. Lozada-Blanco, V. Magnin, A. Markus, E. Pagone, I. Pribec, B. Richard-
son, H. Snyder, J. Urban, J. Vandenplas, The state of Fortran, Comput. Sci. Eng. 24
(2022) 63–72.

[26] S.K. Lam, A. Pitrou, S. Seibert, Numba: a LLVM-based Python JIT compiler, in:
Proceedings of the Second Workshop on the LLVM Compiler Infrastructure in
HPC, LLVM ’15, Association for Computing Machinery, New York, NY, USA, 2015,
pp. 1–6.

[27] W.T. Lavrijsen, A. Dutta, High-performance Python-C++ bindings with PyPy and
cling, in: 2016 6th Workshop on Python for High-Performance and Scientific Com-
puting (PyHPC), 2016, pp. 27–35.

[28] D. Beazley, Understanding the Python GIL, in: PyCON Python Conference, Atlanta,
Georgia, 2010, pp. 1–62.

[29] B.L. Chamberlain, D. Callahan, H.P. Zima, Parallel programmability and the Chapel
language, Int. J. High Perform. Comput. Appl. 21 (2007) 291–312.

[30] G.L. Steele, Parallel programming and code selection in fortress, in: Proceedings
of the 11th ACM SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’06, Association for Computing Machinery, New York, NY, USA,
2006, p. 1.

[31] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, V. Sarkar, X10: an object-oriented approach to non-uniform cluster com-
puting, SIGPLAN Not. 40 (2005) 519–538.

[32] J. Bezanson, A. Edelman, S. Karpinski, V.B. Shah Julia, A fresh approach to numer-
ical computing, SIAM Rev. 59 (2017) 65–98.

[33] C. Rackauckas, Q. Nie, Differentialequations.jl–a performant and feature-rich
ecosystem for solving differential equations in julia, J. Open Res. Softw. 5 (2017).

[34] S. Maleki, Y. Gao, M.J. Garzarń, T. Wong, D.A. Padua, An evaluation of vector-
izing compilers, in: 2011 International Conference on Parallel Architectures and
Compilation Techniques, 2011, pp. 372–382.

[35] H. Amiri, A. Shahbahrami, SIMD programming using Intel vector extensions, J.
Parallel Distrib. Comput. 135 (2020) 83–100.

[36] S.J. Pennycook, C.J. Hughes, M. Smelyanskiy, S.A. Jarvis, Exploring SIMD for
molecular dynamics, using Intel Xeon processors and Intel Xeon Phi coprocessors,
in: Parallel and Distributed Processing Symposium, International, IEEE Computer
Society, Los Alamitos, CA, USA, 2013, pp. 1085–1097.

[37] L. Dagum, R. Menon, OpenMP: an industry standard API for shared-memory pro-
gramming, IEEE Comput. Sci. Eng. 5 (1998) 46–55.

[38] OpenMP Architecture Review Board, OpenMP API version 4.0, https://openmp .
14

org /wp -content /uploads /OpenMP4 .0 .0 .pdf, 2013.
Computer Physics Communications 298 (2024) 109123

[39] OpenMP Architecture Review Board, OpenMP API version 4.5, https://www .
openmp .org /wp -content /uploads /openmp -4 .5 .pdf, 2015.

[40] OpenMP Architecture Review Board, OpenMP API version 5.0, https://www .
openmp .org /wp -content /uploads /OpenMP -API -Specification -5 .0 .pdf, 2015.

[41] Message Passing Interface Forum, MPI: a message passing interface standard ver-
sion 2.2, High Perform. Comput. Appl. 12 (2009) 1–647.

[42] A. Castelló, R.M. Gual, S. Seo, P. Balaji, E.S. Quintana-Ortí, A.J. Peña, Analysis
of threading libraries for high performance computing, IEEE Trans. Comput. 69
(2020) 1279–1292.

[43] R.W. Numrich, J. Reid, Co-array Fortran for parallel programming, SIGPLAN For-
tran Forum 17 (1998) 1–31.

[44] T. El-Ghazawi, L. Smith, UPC: unified parallel C, in: Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, SC ’06, Association for Computing Ma-
chinery, New York, NY, USA, 2006, p. 27.

[45] L.V. Kale, S. Krishnan CHARM++, A portable concurrent object oriented system
based on C++, SIGPLAN Not. 28 (1993) 91–108.

[46] Michael Bauer, Sean Treichler, Elliott Slaughter, Alex Aiken, Legion: expressing
locality and independence with logical regions, in: SC ’12: Proceedings of the In-
ternational Conference on High Performance Computing, Networking, Storage and
Analysis, 2012, pp. 1–11.

[47] H. Kaiser, P. Diehl, A.S. Lemoine, B.A. Lelbach, P. Amini, A. Berge, J. Biddiscombe,
S.R. Brandt, N. Gupta, T. Heller, K. Huck, Z. Khatami, A. Kheirkhahan, A. Reverdell,
S. Shirzad, M. Simberg, B. Wagle, W. Wei, T. Zhang, HPX - the C++ standard
library for parallelism and concurrency, J. Open Sour. Softw. 5 (2020) 2352.

[48] J. Lifflander, P. Miller, N.L. Slattengren, N. Morales, P. Stickney, P.P. Pébaÿ, De-
sign and implementation techniques for an MPI-oriented AMT runtime, in: 2020
Workshop on Exascale MPI (ExaMPI), 2020, pp. 31–40.

[49] Z. Jin, J. Vetter, Evaluating CUDA portability with HIPCL and DPCT, in: 2021
IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2021, pp. 371–376.

[50] J. Fang, A.L. Varbanescu, H. Sips, A comprehensive performance comparison of
CUDA and OpenCL, in: 2011 International Conference on Parallel Processing, 2011,
pp. 216–225.

[51] M. Fatica, CUDA toolkit and libraries, in: 2008 IEEE Hot Chips 20 Symposium
(HCS), 2008, pp. 1–22.

[52] C. Brown, A. Abdelfattah, S. Tomov, J. Dongarra, Design, optimization, and bench-
marking of dense linear algebra algorithms on AMD GPUs, in: 2020 IEEE High
Performance Extreme Computing Conference (HPEC), 2020, pp. 1–7.

[53] J.E. Stone, D. Gohara, G. Shi, OpenCL: a parallel programming standard for het-
erogeneous computing systems, Comput. Sci. Eng. 12 (2010) 66.

[54] OpenACC-Standard org, The OpenACC application program interface version
3.3, https://www .openacc .org /sites /default /files /inline -images /Specification /
OpenACC -3 .3 -final .pdf, 2022.

[55] J. Kelling, S. Bastrakov, A. Debus, T. Kluge, M. Leinhauser, R. Pausch, K. Steiniger,
J. Stephan, R. Widera, J. Young, M. Bussmann, S. Chandrasekaran, G. Juck-
eland, Challenges porting a C++ template-metaprogramming abstraction layer
to directive-based offloading, in: S. Bhalachandra, C. Daley, V. Melesse Vergara
(Eds.), Accelerator Programming Using Directives, Springer International Publish-
ing, Cham, 2022, pp. 92–111.

[56] D. Truby, C. Bertolli, S.A. Wright, G.-T. Bercea, K. O’Brien, S.A. Jarvis, Pointers in-
side lambda closure objects in OpenMP target offload regions, in: 2018 IEEE/ACM
5th Workshop on the LLVM Compiler Infrastructure in HPC (LLVM-HPC), 2018,
pp. 10–17.

[57] The Khronos SYCL Working Group, SYCL 2020 specification, https://registry .
khronos .org /SYCL /specs /sycl -2020 /pdf /sycl -2020 .pdf, 2023.

[58] T. Deakin, S. McIntosh-Smith, Evaluating the performance of HPC-style SYCL ap-
plications, in: Proceedings of the International Workshop on OpenCL, IWOCL ’20,
Association for Computing Machinery, New York, NY, USA, 2020, pp. 1–11.

[59] I.Z. Reguly, A.M.B. Owenson, A. Powell, S.A. Jarvis, G.R. Mudalige, Under the
hood of SYCL – an initial performance analysis with an unstructured-mesh CFD
application, in: B.L. Chamberlain, A.-L. Varbanescu, H. Ltaief, P. Luszczek (Eds.),
Proceedings of the International Supercomputing Conference (ISC 2021), Springer
International Publishing, 2021, pp. 391–410.

[60] W.-C. Lin, T. Deakin, S. McIntosh-Smith, On measuring the maturity of SYCL im-
plementations by tracking historical performance improvements, in: International
Workshop on OpenCL, IWOCL’21, Association for Computing Machinery, New
York, NY, USA, 2021, pp. 1–13.

[61] W. Shilpage, S.A. Wright, An Investigation into the Performance and Portability
of SYCL Compiler Implementations, Lecture Notes in Computer Science (LNCS),
vol. 13999, 2023.

[62] D.S. Medina, A. St-Cyr, T. Warburton, OCCA: a unified approach to multi-threading
languages, https://doi .org /10 .48550 /ARXIV .1403 .0968, 2014.

[63] H.C. Edwards, C.R. Trott, D. Sunderland, Kokkos: enabling manycore performance
portability through polymorphic memory access patterns, J. Parallel Distrib. Com-
put. 74 (2014) 3202–3216.

[64] D.A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A.J. Kunen, O.
Pearce, P. Robinson, B.S. Ryujin, T.R. Scogland, RAJA: portable performance for
large-scale scientific applications, in: 2019 IEEE/ACM International Workshop on
Performance, Portability and Productivity in HPC (P3HPC), 2019, pp. 71–81.

[65] E. Zenker, B. Worpitz, R. Widera, A. Huebl, G. Juckeland, A. Knüpfer, W.E. Nagel,

M. Bussmann, Alpaka - an abstraction library for parallel kernel acceleration, in:

http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA9DB8A688A7EC8D19DD00E70567A35B2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA9DB8A688A7EC8D19DD00E70567A35B2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA9DB8A688A7EC8D19DD00E70567A35B2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF205C7C67BDE4C48E6506A81F22E179Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF205C7C67BDE4C48E6506A81F22E179Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF205C7C67BDE4C48E6506A81F22E179Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF205C7C67BDE4C48E6506A81F22E179Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6F2B78B18DE1E8078D841F491D1629DAs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6F2B78B18DE1E8078D841F491D1629DAs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6F2B78B18DE1E8078D841F491D1629DAs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCD9E8FD1043702F7E6D03874319DC84Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCD9E8FD1043702F7E6D03874319DC84Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCD9E8FD1043702F7E6D03874319DC84Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA5273FBE9E6F143ED6E3873807CB64D5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA5273FBE9E6F143ED6E3873807CB64D5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA5273FBE9E6F143ED6E3873807CB64D5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDA4E0226790EA32F953C44254BA0C395s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDA4E0226790EA32F953C44254BA0C395s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDA4E0226790EA32F953C44254BA0C395s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib066A015E2328EEEAFC9101AEE652EEE4s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib066A015E2328EEEAFC9101AEE652EEE4s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB948A50713E2670BA203362CEFC7646Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB948A50713E2670BA203362CEFC7646Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB948A50713E2670BA203362CEFC7646Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA0703EDED1499F3FA0C2759CA47BE633s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCB181D8E7F8E484019B6D038412C63F0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCB181D8E7F8E484019B6D038412C63F0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCB181D8E7F8E484019B6D038412C63F0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4CA949A09D5700CA6653841E0F3DDF9Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4CA949A09D5700CA6653841E0F3DDF9Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4CA949A09D5700CA6653841E0F3DDF9Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4CA949A09D5700CA6653841E0F3DDF9Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF7490A31507CE4DA75DD2B27A33AEEF2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF7490A31507CE4DA75DD2B27A33AEEF2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF7490A31507CE4DA75DD2B27A33AEEF2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1F516E8AF95B3C636AE1CEBB2A79FB29s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1F516E8AF95B3C636AE1CEBB2A79FB29s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1F516E8AF95B3C636AE1CEBB2A79FB29s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF0ADA50643099020D5BEAB0DD74AE869s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF0ADA50643099020D5BEAB0DD74AE869s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF0ADA50643099020D5BEAB0DD74AE869s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF0ADA50643099020D5BEAB0DD74AE869s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib092EBAFABFEF4E9F1FB85D2E895FA255s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib092EBAFABFEF4E9F1FB85D2E895FA255s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib092EBAFABFEF4E9F1FB85D2E895FA255s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib092EBAFABFEF4E9F1FB85D2E895FA255s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib355B7875E997E688EFDA1772A63520DBs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib355B7875E997E688EFDA1772A63520DBs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib355B7875E997E688EFDA1772A63520DBs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib355B7875E997E688EFDA1772A63520DBs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8F2268D882B914EDEF6DEAC1052488ADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8F2268D882B914EDEF6DEAC1052488ADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8F2268D882B914EDEF6DEAC1052488ADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCACF4153DF345AA7B32AABD56994ED33s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCACF4153DF345AA7B32AABD56994ED33s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDDCAF2A59BED51E77F1B5BAD00AD8312s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDDCAF2A59BED51E77F1B5BAD00AD8312s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6DE79AC11A1F1A8CAD4DD1A8BA4E8E6As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6DE79AC11A1F1A8CAD4DD1A8BA4E8E6As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6DE79AC11A1F1A8CAD4DD1A8BA4E8E6As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6DE79AC11A1F1A8CAD4DD1A8BA4E8E6As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib0F43064BD9B12F755D5CF75C9C630117s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib0F43064BD9B12F755D5CF75C9C630117s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib0F43064BD9B12F755D5CF75C9C630117s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD85D61200FCE658CC64ECD5E9B5E5AC3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD85D61200FCE658CC64ECD5E9B5E5AC3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib26F56C0205AF6949A03735081D91378Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib26F56C0205AF6949A03735081D91378Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibADBB50592E35D522FDEF3EB5ED8BD7DDs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibADBB50592E35D522FDEF3EB5ED8BD7DDs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibADBB50592E35D522FDEF3EB5ED8BD7DDs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib5817EF7BDFDF5FEE99384A38CEDCE2F9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib5817EF7BDFDF5FEE99384A38CEDCE2F9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib58E257C90EA996517478E8217A6922ADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib58E257C90EA996517478E8217A6922ADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib58E257C90EA996517478E8217A6922ADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib58E257C90EA996517478E8217A6922ADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4937201C1F6C182C014D092206B37800s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4937201C1F6C182C014D092206B37800s1
https://openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://openmp.org/wp-content/uploads/OpenMP4.0.0.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib49EF5758E5254CF2D724ADB9C7DF406Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib49EF5758E5254CF2D724ADB9C7DF406Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib0FA70822F4FDA7DEBEC2A8A8BDF13701s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib0FA70822F4FDA7DEBEC2A8A8BDF13701s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib0FA70822F4FDA7DEBEC2A8A8BDF13701s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7ABD5351CD83CFF66134FFE4174D18FFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7ABD5351CD83CFF66134FFE4174D18FFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE0090251BB1B1E2F82B2B582CF9862A2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE0090251BB1B1E2F82B2B582CF9862A2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE0090251BB1B1E2F82B2B582CF9862A2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib63FBD2E12DE03027637CC65704BAABBFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib63FBD2E12DE03027637CC65704BAABBFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8109775A9F5D1B6AD41B426B4E5D70ABs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8109775A9F5D1B6AD41B426B4E5D70ABs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8109775A9F5D1B6AD41B426B4E5D70ABs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8109775A9F5D1B6AD41B426B4E5D70ABs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib84D9161D688C267572D105AF77CAC285s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib84D9161D688C267572D105AF77CAC285s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib84D9161D688C267572D105AF77CAC285s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib84D9161D688C267572D105AF77CAC285s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB10F3E2B82E784EA00B5A3C7F4CF9696s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB10F3E2B82E784EA00B5A3C7F4CF9696s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB10F3E2B82E784EA00B5A3C7F4CF9696s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCB678BA7BE58743A3ABFEEB7E7B447B6s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCB678BA7BE58743A3ABFEEB7E7B447B6s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCB678BA7BE58743A3ABFEEB7E7B447B6s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1AA53870C680E459B6B85B0ED000E8E3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1AA53870C680E459B6B85B0ED000E8E3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1AA53870C680E459B6B85B0ED000E8E3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib27FF136093689820F2C95E9A7356C5B2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib27FF136093689820F2C95E9A7356C5B2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib99B8C62172C5A10CEA52C3772D1DD370s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib99B8C62172C5A10CEA52C3772D1DD370s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib99B8C62172C5A10CEA52C3772D1DD370s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCE6651B50388CDC10CE30578A7DA3B42s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCE6651B50388CDC10CE30578A7DA3B42s1
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.3-final.pdf
https://www.openacc.org/sites/default/files/inline-images/Specification/OpenACC-3.3-final.pdf
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibED4BC65270140E9812666E1CCD705F18s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibED4BC65270140E9812666E1CCD705F18s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibED4BC65270140E9812666E1CCD705F18s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibED4BC65270140E9812666E1CCD705F18s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibED4BC65270140E9812666E1CCD705F18s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibED4BC65270140E9812666E1CCD705F18s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib179FB11764CFD1061293EA0036EA9D21s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib179FB11764CFD1061293EA0036EA9D21s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib179FB11764CFD1061293EA0036EA9D21s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib179FB11764CFD1061293EA0036EA9D21s1
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
https://registry.khronos.org/SYCL/specs/sycl-2020/pdf/sycl-2020.pdf
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1E9B976B1789BB48E2A06C3EA4DF3D37s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1E9B976B1789BB48E2A06C3EA4DF3D37s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1E9B976B1789BB48E2A06C3EA4DF3D37s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib30B73E5ABB6C1299E5F00C5B1A9B3D3Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib30B73E5ABB6C1299E5F00C5B1A9B3D3Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib30B73E5ABB6C1299E5F00C5B1A9B3D3Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib30B73E5ABB6C1299E5F00C5B1A9B3D3Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib30B73E5ABB6C1299E5F00C5B1A9B3D3Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibC6AF9F885656BBBD43A7F6D80CDD2856s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibC6AF9F885656BBBD43A7F6D80CDD2856s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibC6AF9F885656BBBD43A7F6D80CDD2856s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibC6AF9F885656BBBD43A7F6D80CDD2856s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDEF0667903BEEDF0B6E2E58DDACF47CAs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDEF0667903BEEDF0B6E2E58DDACF47CAs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDEF0667903BEEDF0B6E2E58DDACF47CAs1
https://doi.org/10.48550/ARXIV.1403.0968
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8CE9ECAE40197ECFB781AFC4334D8392s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8CE9ECAE40197ECFB781AFC4334D8392s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8CE9ECAE40197ECFB781AFC4334D8392s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib80B967E55DAE767FC3D0522AD860FEABs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib80B967E55DAE767FC3D0522AD860FEABs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib80B967E55DAE767FC3D0522AD860FEABs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib80B967E55DAE767FC3D0522AD860FEABs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib07913A767991D4EEFE6CEE9A8D6166FBs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib07913A767991D4EEFE6CEE9A8D6166FBs1

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

2016 IEEE International Parallel and Distributed Processing Symposium Work-
shops (IPDPSW), IEEE Computer Society, 2016, pp. 631–640.

[66] P. Plauger, M. Lee, D. Musser, A.A. Stepanov, C++ Standard Template Library, 1st
ed., Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

[67] B. Schling, The Boost C++ Libraries, XML Press, 2011.
[68] G. Guennebaud, B. Jacob, et al., Eigen v3, http://eigen .tuxfamily .org, 2010.
[69] N. Bell, J. Hoberock, Chapter 26 - thrust: a productivity-oriented library for CUDA,

in: W. mei, W. Hwu (Eds.), GPU Computing Gems Jade Edition, in: Applications of
GPU Computing Series, Morgan Kaufmann, Boston, 2012, pp. 359–371.

[70] H. Burau, R. Widera, W. Hönig, G. Juckeland, A. Debus, T. Kluge, U. Schramm, T.E.
Cowan, R. Sauerbrey, M. Bussmann, PIConGPU: a fully relativistic particle-in-cell
code for a GPU cluster, IEEE Trans. Plasma Sci. 38 (2010) 2831–2839.

[71] Exascale Computing Project, ECP Proxy Applications, https://proxyapps .
exascaleproject. (Accessed 20 April 2021), 2021.

[72] L.S. Blackford, A. Petitet, R. Pozo, K. Remington, R.C. Whaley, J. Demmel, J. Don-
garra, I. Duff, S. Hammarling, G. Henry, et al., An updated set of basic linear
algebra subprograms (BLAS), ACM Trans. Math. Softw. 28 (2002) 135–151.

[73] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S.
Hammarling, J. Demmel, C. Bischof, D. Sorensen, LAPACK: a portable linear alge-
bra library for high-performance computers, in: Supercomputing ’90:Proceedings
of the 1990 ACM/IEEE Conference on Supercomputing, 1990, pp. 2–11.

[74] M. Frigo, S. Johnson, FFTW: an adaptive software architecture for the FFT, in:
Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and
Signal Processing, ICASSP ’98, 1998, pp. 1381–1384 (Cat. No. 98CH36181), vol-
ume 3.

[75] S. Tomov, J. Dongarra, M. Baboulin, Towards dense linear algebra for hybrid GPU
accelerated manycore systems, Parallel Comput. 36 (2010) 232–240.

[76] S. Balay, S. Abhyankar, M. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin,
A. Dener, V. Eijkhout, W. Gropp, D. Karpeyev, D. Kaushik, M. Knepley, D. May, L.
McInnes, R. Mills, T. Munson, K. Rupp, P. Sanan, B. Smith, S. Zampini, H. Zhang,
H. Zhang, PETSc Users Manual, 2019.

[77] J. Zhang, et al., The PetscSF scalable communication layer, arXiv :2102 .13018,
2021.

[78] R.D. Falgout, J.E. Jones, U.M. Yang, The design and implementation of hypre,
a library of parallel high performance preconditioners, in: Numerical Solution of
Partial Differential Equations on Parallel Computers, Springer, 2006, pp. 267–294.

[79] M.A. Heroux, R.A. Bartlett, V.E. Howle, R.J. Hoekstra, J.J. Hu, T.G. Kolda, R.B.
Lehoucq, K.R. Long, R.P. Pawlowski, E.T. Phipps, A.G. Salinger, H.K. Thornquist,
R.S. Tuminaro, J.M. Willenbring, A. Williams, K.S. Stanley, An overview of the
trilinos project, ACM Trans. Math. Softw. 31 (2005) 397–423.

[80] G. Karypis, V. Kumar, METIS: a Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse
Matrices, Technical Report TR 97-061, University of Minnesota, 1997.

[81] G. Karypis, K. Schloegel, V. Kumar, PARMETIS: Parallel Graph Partitioning and
Sparse Matrix Ordering Library, Technical Report TR 97-060, University of Min-
nesota, 1997.

[82] F. Pellegrini, J. Roman, Sparse matrix ordering with Scotch, in: B. Hertzberger,
P. Sloot (Eds.), High-Performance Computing and Networking, Springer, Berlin
Heidelberg, Berlin, Heidelberg, 1997, pp. 370–378.

[83] C. Chevalier, F. Pellegrini, PT-Scotch: a tool for efficient parallel graph ordering, in:
Parallel Matrix Algorithms and Applications, Parallel Comput. 34 (2008) 318–331.

[84] P. Sanders, C. Schulz, Think locally, act globally: highly balanced graph partition-
ing, in: Experimental Algorithms, 12th International Symposium, SEA 2013, Rome,
Italy, June 5-7, 2013, Proceedings, volume 7933, Springer, 2013, pp. 164–175.

[85] E.G. Boman, K.D. Devine, V.J. Leung, S. Rajamanickam, L.A. Riesen, M. Deveci,
U. Catalyurek, Zoltan2: next-generation combinatorial toolkit, in: Trilinos Users
Group Meeting, 2012.

[86] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris, F. Durand, S. Amarasinghe Halide,
A language and compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines, in: Proceedings of the 34th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, ACM, New York,
NY, USA, 2013, pp. 519–530.

[87] B. Mostafazadeh, F. Marti, F. Liu, A. Chandramowlishwaran, Roofline guided de-
sign and analysis of a multi-stencil CFD solver for multicore performance, in: 2018
IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2018,
pp. 753–762.

[88] C. Yount, J. Tobin, A. Breuer, A. Duran, YASK—yet another stencil kernel: a frame-
work for HPC stencil code-generation and tuning, in: 2016 Sixth International
Workshop on Domain-Specific Languages and High-Level Frameworks for High
Performance Computing (WOLFHPC), 2016, pp. 30–39.

[89] I.Z. Reguly, G.R. Mudalige, M.B. Giles, D. Curran, S. McIntosh-Smith, The OPS do-
main specific abstraction for multi-block structured grid computations, in: Proceed-
ings of the 2014 Fourth International Workshop on Domain-Specific Languages and
High-Level Frameworks for High Performance Computing, WOLFHPC ’14, IEEE
Computer Society, Washington, DC, USA, 2014, pp. 58–67.

[90] S. Kuckuk, G. Haase, D.A. Vasco, H. Köstler, Towards generating efficient flow
solvers with the ExaStencils approach, Concurr. Comput., Pract. Exp. 29 (2017)
e4062.

[91] C. Lengauer, S. Apel, M. Bolten, A. Größlinger, F. Hannig, H. Köstler, U. Rüde,
J. Teich, A. Grebhahn, S. Kronawitter, S. Kuckuk, H. Rittich, C. Schmitt, ExaSten-
15

cils: advanced stencil-code engineering, in: L. Lopes, J. Žilinskas, A. Costan, R.G.
Computer Physics Communications 298 (2024) 109123

Cascella, G. Kecskemeti, E. Jeannot, M. Cannataro, L. Ricci, S. Benkner, S. Petit,
V. Scarano, J. Gracia, S. Hunold, S.L. Scott, S. Lankes, C. Lengauer, J. Carretero,
J. Breitbart, M. Alexander (Eds.), Euro-Par 2014: Parallel Processing Workshops,
Springer International Publishing, Cham, 2014, pp. 553–564.

[92] T. Zhao, S. Williams, M. Hall, H. Johansen, Delivering performance-portable stencil
computations on CPUs and GPUs using bricks, in: 2018 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2018,
pp. 59–70.

[93] G.R. Mudalige, M.B. Giles, I. Reguly, C. Bertolli, P.H.J. Kelly, OP2: an active library
framework for solving unstructured mesh-based applications on multi-core and
many-core architectures, in: 2012 Innovative Parallel Computing (InPar), 2012,
pp. 1–12.

[94] F. Rathgeber, G.R. Markall, L. Mitchell, N. Loriant, D.A. Ham, C. Bertolli, P.H.J.
Kelly, PyOP2: a high-level framework for performance-portable simulations on
unstructured meshes, in: 2012 SC Companion: High Performance Computing, Net-
working Storage and Analysis, IEEE, 2012, pp. 1116–1123.

[95] O. Fuhrer, C. Osuna, X. Lapillonne, T. Gysi, B. Cumming, M. Bianco, A. Arteaga, T.
Schulthess, Towards a performance portable, architecture agnostic implementation
strategy for weather and climate models, Supercomput. Front. Innov. 1 (2014).

[96] S. Adams, R. Ford, M. Hambley, J. Hobson, I. Kavčič, C. Maynard, T. Melvin, E.
Müller, S. Mullerworth, A. Porter, M. Rezny, B. Shipway, R. Wong LFRic, Meeting
the challenges of scalability and performance portability in weather and climate
models, J. Parallel Distrib. Comput. 132 (2019) 383–396.

[97] M. Baldauf, A. Seifert, J. Förstner, D. Majewski, M. Raschendorfer, T. Rein-
hardt, Operational convective-scale numerical weather prediction with the COSMO
model: description and sensitivities, Mon. Weather Rev. 139 (2011) 3887–3905.

[98] S. Siso, A.R. Porter, R.W. Ford, Transforming Fortran weather and climate ap-
plications to OpenCL using PSyclone, in: Proceedings of the 2023 International
Workshop on OpenCL, IWOCL ’23, Association for Computing Machinery, New
York, NY, USA, 2023, pp. 1–8.

[99] S. Siso, A.R. Porter, R.W. Ford, Transforming Fortran weather and climate appli-
cations to OpenCL using PSyclone, in: 2023 International Workshop on OpenCL
(IWOCL ’23), 2023, pp. 1–8.

[100] V. Clément, S. Ferrachat, O. Fuhrer, X. Lapillonne, C.E. Osuna, R. Pincus, J. Rood,
W. Sawyer, The CLAW DSL: abstractions for performance portable weather and
climate models, in: Proceedings of the Platform for Advanced Scientific Computing
Conference, PASC ’18, ACM, New York, NY, USA, 2018, pp. 2:1–2:10.

[101] V. Clément, P. Marti, O. Fuhrer, W. Sawyer, Performance portability on GPU and
CPU with the ICON global climate model, in: EGU General Assembly Conference
Abstracts, in: EGU General Assembly Conference Abstracts, vol. 20, 2018, p. 13435.

[102] J.M. Dawson, Particle simulation of plasmas, Rev. Mod. Phys. 55 (1983) 403–447.
[103] O. Awile, M. Mitrovic, S. Reboux, I.F. Sbalzarini, A domain-specific programming

language for particle simulations on distributed-memory parallel computers, in:
CIMNE, 2013, pp. 436–447.

[104] S. Karol, T. Nett, J. Castrillon, I.F. Sbalzarini, A domain-specific language and edi-
tor for parallel particle methods, ACM Trans. Math. Softw. 44 (2018).

[105] P. Incardona, A. Leo, Y. Zaluzhnyi, R. Ramaswamy, I.F. Sbalzarini, OpenFPM: a
scalable open framework for particle and particle-mesh codes on parallel comput-
ers, Comput. Phys. Commun. 241 (2019) 155–177.

[106] J.A. Anderson, J. Glaser, S.C. Glotzer, HOOMD-blue: a Python package for high-
performance molecular dynamics and hard particle Monte Carlo simulations, Com-
put. Mater. Sci. 173 (2020) 109363.

[107] T. Cickovski, C. Sweet, J.A. Izaguirre MDL, A domain-specific language for
molecular dynamics, in: 40th Annual Simulation Symposium (ANSS’07), 2007,
pp. 256–266.

[108] W.R. Saunders, J. Grant, E.H. Müller, A domain specific language for performance
portable molecular dynamics algorithms, Comput. Phys. Commun. 224 (2018)
119–135.

[109] S. Slattery, S.T. Reeve, C. Junghans, D. Lebrun-Grandié, R. Bird, G. Chen, S.
Fogerty, Y. Qiu, S. Schulz, A. Scheinberg, A. Isner, K. Chong, S. Moore, T. Germann,
J. Belak, S. Mniszewski Cabana, A performance portable library for particle-based
simulations, J. Open Sour. Softw. 7 (2022) 4115.

[110] M.S. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson,
J. Ring, M.E. Rognes, G.N. Wells, The FEniCS project version 1.5, Arch. Numer.
Softw. 3 (2015).

[111] F. Rathgeber, D.A. Ham, L. Mitchell, M. Lange, F. Luporini, A.T.T. Mcrae, G.-T.
Bercea, G.R. Markall, P.H.J. Kelly, Firedrake: automating the finite element method
by composing abstractions, ACM Trans. Math. Softw. 43 (2016) 24:1–24:27.

[112] D.J. Lusher, S.P. Jammy, N.D. Sandham, Shock-wave/boundary-layer interactions
in the automatic source-code generation framework OpenSBLI, Comput. Fluids 173
(2018) 17–21.

[113] M. Lange, N. Kukreja, M. Louboutin, F. Luporini, F. Vieira, V. Pandolfo, P. Ve-
lesko, P. Kazakas, G. Gorman, Devito: towards a generic finite difference DSL using
symbolic Python, in: 2016 6th Workshop on Python for High-Performance and Sci-
entific Computing (PyHPC), 2016, pp. 67–75.

[114] B.D. Dudson, M.V. Umansky, X.Q. Xu, P.B. Snyder, H.R. Wilson, BOUT++: a frame-
work for parallel plasma fluid simulations, Comput. Phys. Commun. 180 (2009)
1467–1480.

[115] B.D. Dudson, P.A. Hill, D. Dickinson, J. Parker, A. Dempsey, A. Allen, A. Bokshi, B.
Shanahan, B. Friedman, C. Ma, D. Schwörer, D. Meyerson, E. Grinaker, G. Breyian-

nia, H. Muhammed, H. Seto, H. Zhang, I. Joseph, J. Leddy, J. Brown, J. Madsen,

http://refhub.elsevier.com/S0010-4655(24)00046-8/bib07913A767991D4EEFE6CEE9A8D6166FBs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib07913A767991D4EEFE6CEE9A8D6166FBs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib2AE7D2A8D1611EA7BB23FF198F17F8ADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib2AE7D2A8D1611EA7BB23FF198F17F8ADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibFA0B4E1CE868E610AB0EF04F7A31D255s1
http://eigen.tuxfamily.org
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6126BAF5117A9C430FEB156C2317B8D3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6126BAF5117A9C430FEB156C2317B8D3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6126BAF5117A9C430FEB156C2317B8D3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6499BEF862EC0871485013AF5AA37824s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6499BEF862EC0871485013AF5AA37824s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6499BEF862EC0871485013AF5AA37824s1
https://proxyapps.exascaleproject
https://proxyapps.exascaleproject
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8224C14EAD97FD28F335B63CEBDBF29Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8224C14EAD97FD28F335B63CEBDBF29Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8224C14EAD97FD28F335B63CEBDBF29Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibFF1749AD6F683F39B006406C44A0E022s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibFF1749AD6F683F39B006406C44A0E022s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibFF1749AD6F683F39B006406C44A0E022s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibFF1749AD6F683F39B006406C44A0E022s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8E6C4B7826E4BA0A57D31B124C565317s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8E6C4B7826E4BA0A57D31B124C565317s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8E6C4B7826E4BA0A57D31B124C565317s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8E6C4B7826E4BA0A57D31B124C565317s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE0FA847527F8B3F3F1B25D5A24BC3864s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE0FA847527F8B3F3F1B25D5A24BC3864s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD3747B8FB928A9AEF4B2086F14F51AADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD3747B8FB928A9AEF4B2086F14F51AADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD3747B8FB928A9AEF4B2086F14F51AADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD3747B8FB928A9AEF4B2086F14F51AADs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7731BDF386D59B974302A889957BF073s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7731BDF386D59B974302A889957BF073s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib65A67F67FBDE38A3FBF9B395CD0B4B86s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib65A67F67FBDE38A3FBF9B395CD0B4B86s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib65A67F67FBDE38A3FBF9B395CD0B4B86s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB1EEAA9A978AB27C18A2106EE4256F15s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB1EEAA9A978AB27C18A2106EE4256F15s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB1EEAA9A978AB27C18A2106EE4256F15s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB1EEAA9A978AB27C18A2106EE4256F15s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib98C2A69FAB39C09CD7F906386F05C304s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib98C2A69FAB39C09CD7F906386F05C304s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib98C2A69FAB39C09CD7F906386F05C304s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD7433464F7CD593775184C0DE9FE6EE0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD7433464F7CD593775184C0DE9FE6EE0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD7433464F7CD593775184C0DE9FE6EE0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8A23E4D08C6092FE34BD7C8A491C1CE8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8A23E4D08C6092FE34BD7C8A491C1CE8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8A23E4D08C6092FE34BD7C8A491C1CE8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib337D1641FB311A9C5A27EA0D0BAA0D74s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib337D1641FB311A9C5A27EA0D0BAA0D74s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE7382D54756C806C7B5AEAB19484887Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE7382D54756C806C7B5AEAB19484887Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE7382D54756C806C7B5AEAB19484887Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7606EA733C916CD4D8337CE30CCA38F8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7606EA733C916CD4D8337CE30CCA38F8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7606EA733C916CD4D8337CE30CCA38F8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6E4E856924E8C3B06F4B1DCB6FAB933As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6E4E856924E8C3B06F4B1DCB6FAB933As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6E4E856924E8C3B06F4B1DCB6FAB933As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6E4E856924E8C3B06F4B1DCB6FAB933As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6E4E856924E8C3B06F4B1DCB6FAB933As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF57DED0747B938654C175DD3DB574120s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF57DED0747B938654C175DD3DB574120s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF57DED0747B938654C175DD3DB574120s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF57DED0747B938654C175DD3DB574120s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7B1BF13AA8DA56CE7B4AE246A7AD7D8Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7B1BF13AA8DA56CE7B4AE246A7AD7D8Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7B1BF13AA8DA56CE7B4AE246A7AD7D8Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7B1BF13AA8DA56CE7B4AE246A7AD7D8Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib90CFC617170D8A1CAED523E0160ED594s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib90CFC617170D8A1CAED523E0160ED594s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib90CFC617170D8A1CAED523E0160ED594s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib90CFC617170D8A1CAED523E0160ED594s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib90CFC617170D8A1CAED523E0160ED594s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9F780E9DB44D04F03B5429A93D8B0121s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9F780E9DB44D04F03B5429A93D8B0121s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9F780E9DB44D04F03B5429A93D8B0121s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib47E424EE27D46B0376C6DAE954A91A11s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib47E424EE27D46B0376C6DAE954A91A11s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib47E424EE27D46B0376C6DAE954A91A11s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib47E424EE27D46B0376C6DAE954A91A11s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib47E424EE27D46B0376C6DAE954A91A11s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib47E424EE27D46B0376C6DAE954A91A11s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib47E424EE27D46B0376C6DAE954A91A11s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD9BD4CC0FCC910BE154916667C297FEDs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD9BD4CC0FCC910BE154916667C297FEDs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD9BD4CC0FCC910BE154916667C297FEDs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD9BD4CC0FCC910BE154916667C297FEDs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib21612E999368D3C6300660FD056A654Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib21612E999368D3C6300660FD056A654Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib21612E999368D3C6300660FD056A654Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib21612E999368D3C6300660FD056A654Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8C7F1DB391D29261487C3CC8F10B9A14s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8C7F1DB391D29261487C3CC8F10B9A14s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8C7F1DB391D29261487C3CC8F10B9A14s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8C7F1DB391D29261487C3CC8F10B9A14s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib754B313ED2D95FD9A71532200EEDC5BAs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib754B313ED2D95FD9A71532200EEDC5BAs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib754B313ED2D95FD9A71532200EEDC5BAs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAB48077CC03F5569564BCFE76A740360s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAB48077CC03F5569564BCFE76A740360s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAB48077CC03F5569564BCFE76A740360s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAB48077CC03F5569564BCFE76A740360s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib45DDDD1E77E16D78209CC7B740170244s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib45DDDD1E77E16D78209CC7B740170244s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib45DDDD1E77E16D78209CC7B740170244s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDF345BF326DACE29CC58EFB568072BBCs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDF345BF326DACE29CC58EFB568072BBCs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDF345BF326DACE29CC58EFB568072BBCs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDF345BF326DACE29CC58EFB568072BBCs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib75E06C9F5B15D1E178882DD31A0F82CEs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib75E06C9F5B15D1E178882DD31A0F82CEs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib75E06C9F5B15D1E178882DD31A0F82CEs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF5863ED078B7986016F42131C836D50Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF5863ED078B7986016F42131C836D50Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF5863ED078B7986016F42131C836D50Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF5863ED078B7986016F42131C836D50Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE0A5A5318F3451CE452FA03B27F3A14As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE0A5A5318F3451CE452FA03B27F3A14As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE0A5A5318F3451CE452FA03B27F3A14As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib5D078D427A00D9B997DA40421A6D9B19s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib84B7DD1EE5DF8A713350393859FE4DD1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib84B7DD1EE5DF8A713350393859FE4DD1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib84B7DD1EE5DF8A713350393859FE4DD1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6987149AEC6EA54CC0B5305001EA071Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6987149AEC6EA54CC0B5305001EA071Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib72EC03DCC81BDAE71DFF4E30E9F82CC1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib72EC03DCC81BDAE71DFF4E30E9F82CC1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib72EC03DCC81BDAE71DFF4E30E9F82CC1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib53EDB620F2C0A9BDE0AF43FC6889271Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib53EDB620F2C0A9BDE0AF43FC6889271Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib53EDB620F2C0A9BDE0AF43FC6889271Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib104D613E022B40AA012385D3637DA72Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib104D613E022B40AA012385D3637DA72Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib104D613E022B40AA012385D3637DA72Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF85A620684BB43C8C69D2ADBB45AFC0Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF85A620684BB43C8C69D2ADBB45AFC0Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF85A620684BB43C8C69D2ADBB45AFC0Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib827F65A9E933ED7DE62A389435A4B79Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib827F65A9E933ED7DE62A389435A4B79Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib827F65A9E933ED7DE62A389435A4B79Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib827F65A9E933ED7DE62A389435A4B79Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib562E43150039BD103574A2E8177ABE95s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib562E43150039BD103574A2E8177ABE95s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib562E43150039BD103574A2E8177ABE95s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib53B4215FEB254B4CBA01B19A0B3504A6s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib53B4215FEB254B4CBA01B19A0B3504A6s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib53B4215FEB254B4CBA01B19A0B3504A6s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibEFBB8F6BEE98973E014C35FC536C6E60s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibEFBB8F6BEE98973E014C35FC536C6E60s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibEFBB8F6BEE98973E014C35FC536C6E60s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7A4C12918A1D44247402BB95D90512C1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7A4C12918A1D44247402BB95D90512C1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7A4C12918A1D44247402BB95D90512C1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7A4C12918A1D44247402BB95D90512C1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib948536D25696302FA7DE493ACBC6F4B5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib948536D25696302FA7DE493ACBC6F4B5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib948536D25696302FA7DE493ACBC6F4B5s1

S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

J. Omotani, J. Sauppe, K. Savage, L. Wang, L. Easy, M. Estarellas, M. Thomas, M.
Umansky, M. Løiten, M. Kim, M. Leconte, N. Walkden, O. Izacard, P. Xi, P. Nay-
lor, F. Riva, S. Tiwari, S. Farley, S. Myers, T. Xia, T. Rhee, X. Liu, X. Xu, Z. Wang
BOUT++, https://doi .org /10 .5281 /zenodo .4046792, 2020.

[116] T.L. Veldhuizen, Arrays in blitz++, in: D. Caromel, R.R. Oldehoeft, M. Tholburn
(Eds.), Computing in Object-Oriented Parallel Environments, Springer, Berlin Hei-
delberg, Berlin, Heidelberg, 1998, pp. 223–230.

[117] D. Beckingsale, M. Mcfadden, J. Dahm, R. Pankajakshan, R. Hornung, Umpire:
application-focused management and coordination of complex hierarchical mem-
ory, IBM J. Res. Dev. (2019).

[118] S. Wiesen, D. Reiter, V. Kotov, M. Baelmans, W. Dekeyser, A. Kukushkin, S. Lisgo,
R. Pitts, V. Rozhansky, G. Saibene, et al., The new SOLPS-ITER code package, J.
Nucl. Mater. 463 (2015) 480–484.

[119] Y.-H. Tang, S. Kudo, X. Bian, Z. Li, G.E. Karniadakis, Multiscale universal interface:
a concurrent framework for coupling heterogeneous solvers, J. Comput. Phys. 297
(2015) 13–31.

[120] J.Y. Choi, C.-S. Chang, J. Dominski, S. Klasky, G. Merlo, E. Suchyta, M. Ainsworth,
B. Allen, F. Cappello, M. Churchill, et al., Coupling exascale multiphysics applica-
tions: methods and lessons learned, in: 2018 IEEE 14th International Conference
on e-Science (e-Science), IEEE, 2018, pp. 442–452.

[121] B. Gatzhammer, Efficient and flexible partitioned simulation of fluid-structure in-
teractions, Ph.D. thesis, Technische Universität München, 2014.

[122] M.A. Moratilla-Vega, M. Angelino, H. Xia, G.J. Page, An open-source coupled
method for aeroacoustics modelling, Comput. Phys. Commun. 278 (2022) 108420.

[123] C.J. Permann, D.R. Gaston, D. Andrš, R.W. Carlsen, F. Kong, A.D. Lindsay, J.M.
Miller, J.W. Peterson, A.E. Slaughter, R.H. Stogner, et al., MOOSE: enabling mas-
sively parallel multiphysics simulation, SoftwareX 11 (2020) 100430.

[124] H. Brooks, A. Davis, Scalable multi-physics for fusion reactors with AURORA,
Plasma Phys. Control. Fusion 65 (2022) 024002.

[125] A. Powell, K. Choudry, A. Prabhakar, I. Reguly, D. Amirante, S. Jarvis, G. Mudalige,
Predictive analysis of large-scale coupled CFD simulations with the CPX mini-app,
in: 2021 IEEE 28th International Conference on High Performance Computing,
Data, and Analytics (HiPC), 2021, pp. 141–151.

[126] G. Chourdakis, K. Davis, B. Rodenberg, M. Schulte, F. Simonis, B. Uekermann, G.
Abrams, H.-J. Bungartz, L.C. Yau, I. Desai, et al., preCICE v2: a sustainable and
user-friendly coupling library, arXiv preprint arXiv :2109 .14470, 2021.

[127] M. Camps Santasmasas, Hybrid GPU/CPU Navier-Stokes lattice Boltzmann method
for urban wind flow, Ph.D. thesis, The University of Manchester, School of Me-
chanical, Aerospace and Civil Engineering, 2021.

[128] P. Rubin, Comparison of code coupling libraries for high performance multi-
physics simulation, Technical Report DL-TR-2022-001, STFC, 2022.

[129] B.W. Uekermann, Partitioned fluid-structure interaction on massively parallel sys-
tems, Ph.D. thesis, Technische Universität München, 2016.

[130] E. Quemerais, B. Frisuli, A. Meyniel, S. Beyou, The CWIPI coupling library, https://
w3 .onera .fr /cwipi /bibliotheque -couplage -cwipi, 2022.

[131] H. Al Daas, N. Bootland, T. Rees, A.S.P. Rubin, S. Thorne, J. Williams, Techniques
and software relevant to the coupling of continuum (fluid) and particle models of
plasma for NEPTUNE, Technical Report 2068625-TN-05, ExCALIBUR-NEPTUNE
Programme, 2023, https://excalibur -neptune .github .io /Documents/.

[132] S. Thorne, J. Williams, Implementation and scalability analysis of coupling
continuum (fluid) and particle models of plasma for NEPTUNE, Technical Re-
port 2068625-TN-06, ExCALIBUR-NEPTUNE Programme, 2023, https://excalibur -
neptune .github .io /Documents/.

[133] S. Longshaw, R. Pillai, L. Gibelli, D. Emerson, D. Lockerby, Coupling molecular
dynamics and direct simulation Monte Carlo using a general and high-performance
code coupling library, Comput. Fluids 213 (2020) 104726.

[134] J.F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, C. Jin, Flexible IO and integra-
tion for scientific codes through the adaptable IO system (ADIOS), in: Proceedings
of the 6th International Workshop on Challenges of Large Applications in Dis-
tributed Environments, 2008, pp. 15–24.

[135] W.F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu, P. Davis, J.
Choi, K. Germaschewski, K. Huck, et al., ADIOS 2: the adaptable input output sys-
tem. A framework for high-performance data management, SoftwareX 12 (2020)
100561.

[136] S. Ku, R. Hager, C.-S. Chang, J. Kwon, S.E. Parker, A new hybrid-Lagrangian nu-
merical scheme for gyrokinetic simulation of tokamak edge plasma, J. Comput.
Phys. 315 (2016) 467–475.

[137] C. Chang, S. Klasky, J. Cummings, R. Samtaney, A. Shoshani, L. Sugiyama, D.
Keyes, S. Ku, G. Park, S. Parker, et al., Toward a first-principles integrated simula-
tion of tokamak edge plasmas, J. Phys. Conf. Ser. 125 (2008) 012042.

[138] J. Dominski, J. Cheng, G. Merlo, V. Carey, R. Hager, L. Ricketson, J. Choi, S. Ethier,
K. Germaschewski, S. Ku, et al., Spatial coupling of gyrokinetic simulations, a gen-
eralized scheme based on first-principles, Phys. Plasmas 28 (2021).

[139] E. Suchyta, S. Klasky, N. Podhorszki, M. Wolf, A. Adesoji, C. Chang, J. Choi, P.E.
Davis, J. Dominski, S. Ethier, et al., The exascale framework for high fidelity cou-
pled simulations (effis): enabling whole device modeling in fusion science, Int. J.
High Perform. Comput. Appl. 36 (2022) 106–128.

[140] Y. Ju, A. Perez, S. Markidis, P. Schlatter, E. Laure, Understanding the impact of
synchronous, asynchronous, and hybrid in-situ techniques in computational fluid
dynamics applications, in: 2022 IEEE 18th International Conference on e-Science
16

(e-Science), IEEE, 2022, pp. 295–305.
Computer Physics Communications 298 (2024) 109123

[141] S. Wienke, J. Miller, M. Schulz, M.S. Müller, Development effort estimation in
HPC, in: SC ’16: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2016, pp. 107–118.

[142] S. Williams, A. Waterman, D. Patterson, Roofline: an insightful visual performance
model for multicore architectures, Commun. ACM 52 (2009) 65–76.

[143] Y.J. Lo, S. Williams, B. Van Straalen, T.J. Ligocki, M.J. Cordery, N.J. Wright,
M.W. Hall, L. Oliker, Roofline model toolkit: a practical tool for architectural
and program analysis, in: S.A. Jarvis, S.A. Wright, S.D. Hammond (Eds.), High
Performance Computing Systems. Performance Modeling, Benchmarking, and Sim-
ulation, Springer International Publishing, 2015, pp. 129–148.

[144] S. Pennycook, J. Sewall, V. Lee, Implications of a metric for performance portabil-
ity, Future Gener. Comput. Syst. 92 (2019) 947–958.

[145] S.L. Harrell, J. Kitson, R. Bird, S.J. Pennycook, J. Sewall, D. Jacobsen, D.N. Asanza,
A. Hsu, H.C. Carrillo, H. Kim, R. Robey, Effective performance portability, in: 2018
IEEE/ACM International Workshop on Performance, Portability and Productivity
in HPC (P3HPC), 2018, pp. 24–36.

[146] J. Sewall, S.J. Pennycook, D. Jacobsen, Code base investigator, https://doi .org /10 .
5281 /zenodo .5019024, 2022.

[147] S.J. Pennycook, J. Sewall, D. Jacobsen, T. Deakin, Y. Zamora, K.L.K. Lee, Per-
formance, portability and productivity analysis library, https://doi .org /10 .5281 /
zenodo .7733678, 2023.

[148] S.J. Pennycook, J.D. Sewall, D.W. Jacobsen, T. Deakin, S. McIntosh-Smith, Nav-
igating performance, portability, and productivity, Comput. Sci. Eng. 23 (2021)
28–38.

[149] J. Sewall, S.J. Pennycook, D. Jacobsen, T. Deakin, S. McIntosh-Smith, Interpreting
and visualizing performance portability metrics, in: 2020 IEEE/ACM International
Workshop on Performance, Portability and Productivity in HPC (P3HPC), 2020,
pp. 14–24.

[150] T.R. Law, R. Kevis, S. Powell, J. Dickson, S. Maheswaran, J.A. Herdman,
S.A. Jarvis, Performance portability of an unstructured hydrodynamics mini-
application, in: 2018 IEEE/ACM International Workshop on Performance, Porta-
bility and Productivity in HPC (P3HPC), 2018, pp. 0–12.

[151] D. Truby, S.A. Wright, R. Kevis, S. Maheswaran, J.A. Herdman, S.A. Jarvis, Book-
Leaf: an unstructured hydrodynamics mini-application, in: 2018 IEEE International
Conference on Cluster Computing (CLUSTER), 2018, pp. 615–622.

[152] A. Mallinson, D. Beckingsale, W. Gaudin, A. Herdman, J. Levesque, S. Jarvis,
CloverLeaf: preparing hydrodynamics codes for exascale, in: Proceedings of the
Cray User Group (CUG), 2013, pp. 1–15.

[153] T. Deakin, A. Poenaru, T. Lin, S. McIntosh-Smith, Tracking performance portability
on the yellow brick road to exascale, in: 2020 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC), 2020, pp. 1–13.

[154] J.A. Herdman, W.P. Gaudin, S. McIntosh-Smith, M. Boulton, D.A. Beckingsale,
A.C. Mallinson, S.A. Jarvis, Accelerating hydrocodes with OpenACC, OpenCL and
CUDA, in: Proceedings of the 2012 SC Companion: High Performance Computing,
Networking Storage and Analysis, SCC ’12, IEEE Computer Society, USA, 2012,
pp. 465–471.

[155] I.Z. Reguly, G.R. Mudalige, M.B. Giles, Design and development of domain specific
active libraries with proxy applications, in: 2015 IEEE International Conference on
Cluster Computing, 2015, pp. 738–745.

[156] S.I. Roberts, S.A. Wright, S.A. Fahmy, S.A. Jarvis, The power-optimised software
envelope, ACM Trans. Archit. Code Optim. 16 (2019).

[157] M.T. Bettencourt, D.A.S. Brown, K.L. Cartwright, E.C. Cyr, C.A. Glusa, P.T. Lin, S.G.
Moore, D.A.O. McGregor, R.P. Pawlowski, E.G. Phillips, N.V. Roberts, S.A. Wright,
S. Maheswaran, J.P. Jones, S.A. Jarvis, EMPIRE-PIC: a performance portable un-
structured particle-in-cell code, Commun. Comput. Phys. 30 (2021) 1–37.

[158] D.A.S. Brown, M.T. Bettencourt, S.A. Wright, S. Maheswaran, J.P. Jones, S.A.
Jarvis, Higher-order particle representation for particle-in-cell simulations, J. Com-
put. Phys. 435 (2021) 110255.

[159] D.A.S. Brown, S.A. Wright, S.A. Jarvis, Performance of a second order electrostatic
particle-in-cell algorithm on modern many-core architectures, in: The proceedings
of UKPEW 2017, the thirty third Annual UK Performance Engineering Workshops
(UKPEW), Electron. Notes Theor. Comput. Sci. 340 (2018) 67–84.

[160] J.R. Smith, C. Orban, N. Rahman, B. McHugh, R. Oropeza, E.A. Chowdhury, A
particle-in-cell code comparison for ion acceleration: EPOCH, LSP, and WarpX,
Phys. Plasmas 28 (2021) 074505.

[161] R.F. Bird, P. Gillies, M.R. Bareford, A. Herdman, S. Jarvis, Performance optimi-
sation of inertial confinement fusion codes using mini-applications, Int. J. High
Perform. Comput. Appl. 32 (2018) 570–581.

[162] M. Bareford, minEPOCH3D Performance and Load Balancing on Cray XC30, Tech-
nical Report eCSE03-1, Edinburgh Parallel Computer Centre, 2016.

[163] K. Germaschewski, B. Allen, T. Dannert, M. Hrywniak, J. Donaghy, G. Merlo, S.
Ethier, E. D’Azevedo, F. Jenko, A. Bhattacharjee, Toward exascale whole-device
modeling of fusion devices: porting the GENE gyrokinetic microturbulence code to
GPU, Phys. Plasmas 28 (2021) 062501.

[164] T. Görler, X. Lapillonne, S. Brunner, T. Dannert, F. Jenko, F. Merz, D. Told, The
global version of the gyrokinetic turbulence code GENE, J. Comput. Phys. 230
(2011) 7053–7071.

[165] B. Dudson, M. Kryjak, H. Muhammed, P. Hill, J. Omotani, Hermes-3: multi-

component plasma simulations with BOUT++, arXiv :2303 .12131, 2023.

https://doi.org/10.5281/zenodo.4046792
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib833AB347B95A0D48E8AA7AC07CDDCDC7s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib833AB347B95A0D48E8AA7AC07CDDCDC7s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib833AB347B95A0D48E8AA7AC07CDDCDC7s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4240F87E6333F1A1B147A469D4FB364As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4240F87E6333F1A1B147A469D4FB364As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4240F87E6333F1A1B147A469D4FB364As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAF53F1710A34BA75165F2BBBCB7C11F0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAF53F1710A34BA75165F2BBBCB7C11F0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAF53F1710A34BA75165F2BBBCB7C11F0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDBAC0161170326A165D6351627707A6Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDBAC0161170326A165D6351627707A6Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDBAC0161170326A165D6351627707A6Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9330C4A43813E338775A3C050342CA2As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9330C4A43813E338775A3C050342CA2As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9330C4A43813E338775A3C050342CA2As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9330C4A43813E338775A3C050342CA2As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib35A63B041C2C81047C776F9BF9819A31s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib35A63B041C2C81047C776F9BF9819A31s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib3FAE5F62244F9C045FF7DD41D72ABD08s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib3FAE5F62244F9C045FF7DD41D72ABD08s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib63B5FE6E5C920A58F0773CB0CFE8874Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib63B5FE6E5C920A58F0773CB0CFE8874Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib63B5FE6E5C920A58F0773CB0CFE8874Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib2EC38E018990A6FAC1057794D08359D4s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib2EC38E018990A6FAC1057794D08359D4s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibC49B8CF08972D1F68D0DC87F1C9FC025s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibC49B8CF08972D1F68D0DC87F1C9FC025s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibC49B8CF08972D1F68D0DC87F1C9FC025s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibC49B8CF08972D1F68D0DC87F1C9FC025s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib135446BFF20ED627861AA30A59E3D8A5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib135446BFF20ED627861AA30A59E3D8A5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib135446BFF20ED627861AA30A59E3D8A5s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib0CAC19D56EACDCBA280163F570731D93s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib0CAC19D56EACDCBA280163F570731D93s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib0CAC19D56EACDCBA280163F570731D93s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7103D3B57A615113637C61B1E50F5F2Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7103D3B57A615113637C61B1E50F5F2Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib146E3A56DB8CF69279ED92B521BA7F1Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib146E3A56DB8CF69279ED92B521BA7F1Es1
https://w3.onera.fr/cwipi/bibliotheque-couplage-cwipi
https://w3.onera.fr/cwipi/bibliotheque-couplage-cwipi
https://excalibur-neptune.github.io/Documents/
https://excalibur-neptune.github.io/Documents/
https://excalibur-neptune.github.io/Documents/
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA5667B760DB9328EAF54EFD2F9923BAFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA5667B760DB9328EAF54EFD2F9923BAFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA5667B760DB9328EAF54EFD2F9923BAFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7F51D6352B3B0AB1DCEECBE1A6F25FF2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7F51D6352B3B0AB1DCEECBE1A6F25FF2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7F51D6352B3B0AB1DCEECBE1A6F25FF2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7F51D6352B3B0AB1DCEECBE1A6F25FF2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8EE3C042F78D5657F6C78B11C36C7028s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8EE3C042F78D5657F6C78B11C36C7028s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8EE3C042F78D5657F6C78B11C36C7028s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8EE3C042F78D5657F6C78B11C36C7028s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD6CAA6A0BF65EFBA91451416BC7420D4s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD6CAA6A0BF65EFBA91451416BC7420D4s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD6CAA6A0BF65EFBA91451416BC7420D4s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibADA9ACC0D6F29A6D9CAB358B44C047EFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibADA9ACC0D6F29A6D9CAB358B44C047EFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibADA9ACC0D6F29A6D9CAB358B44C047EFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1DF01EC2035E304450E9A4869B2D0F33s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1DF01EC2035E304450E9A4869B2D0F33s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1DF01EC2035E304450E9A4869B2D0F33s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1501C756415E3EA55CD5DD2BD0C66F25s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1501C756415E3EA55CD5DD2BD0C66F25s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1501C756415E3EA55CD5DD2BD0C66F25s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1501C756415E3EA55CD5DD2BD0C66F25s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF832BEB267918EB5CDD6EF62DD53B934s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF832BEB267918EB5CDD6EF62DD53B934s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF832BEB267918EB5CDD6EF62DD53B934s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibF832BEB267918EB5CDD6EF62DD53B934s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib3CF98B0997623D49C512DBB5027E9DA1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib3CF98B0997623D49C512DBB5027E9DA1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib3CF98B0997623D49C512DBB5027E9DA1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE23C689D8762D7FBEC2645A4D735D8AEs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE23C689D8762D7FBEC2645A4D735D8AEs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6971A349D937741F85F7C68660DA0525s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6971A349D937741F85F7C68660DA0525s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6971A349D937741F85F7C68660DA0525s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6971A349D937741F85F7C68660DA0525s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6971A349D937741F85F7C68660DA0525s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD44F06D06A60639E5D3B3EE25623E31As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD44F06D06A60639E5D3B3EE25623E31As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7E5EF044B646EC35E36E4FB5709CBFECs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7E5EF044B646EC35E36E4FB5709CBFECs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7E5EF044B646EC35E36E4FB5709CBFECs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib7E5EF044B646EC35E36E4FB5709CBFECs1
https://doi.org/10.5281/zenodo.5019024
https://doi.org/10.5281/zenodo.5019024
https://doi.org/10.5281/zenodo.7733678
https://doi.org/10.5281/zenodo.7733678
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA4ACB44D1DB99777CDBAEAD2D1D4B82Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA4ACB44D1DB99777CDBAEAD2D1D4B82Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA4ACB44D1DB99777CDBAEAD2D1D4B82Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib18F7FEBAE5791B2319A41E0B74CF89E8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib18F7FEBAE5791B2319A41E0B74CF89E8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib18F7FEBAE5791B2319A41E0B74CF89E8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib18F7FEBAE5791B2319A41E0B74CF89E8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA02666643C37B4019CC024104DC50816s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA02666643C37B4019CC024104DC50816s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA02666643C37B4019CC024104DC50816s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA02666643C37B4019CC024104DC50816s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB2FEAEF408E151C07E1B9B92EBCAC5DFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB2FEAEF408E151C07E1B9B92EBCAC5DFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB2FEAEF408E151C07E1B9B92EBCAC5DFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib07066A0D4787AA8C94D87C58F8971504s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib07066A0D4787AA8C94D87C58F8971504s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib07066A0D4787AA8C94D87C58F8971504s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibBA9EBCD15211564E26D6C4878ED9E79Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibBA9EBCD15211564E26D6C4878ED9E79Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibBA9EBCD15211564E26D6C4878ED9E79Fs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib813839B97F7F9CDF19F44D666386715Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib813839B97F7F9CDF19F44D666386715Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib813839B97F7F9CDF19F44D666386715Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib813839B97F7F9CDF19F44D666386715Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib813839B97F7F9CDF19F44D666386715Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib05FFEFA172CA231C3F7F810692314F1Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib05FFEFA172CA231C3F7F810692314F1Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib05FFEFA172CA231C3F7F810692314F1Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib5081EBAF3C83689754B1A696E7FB0B30s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib5081EBAF3C83689754B1A696E7FB0B30s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib44AFFCD3C4C1E69CCC49F43B3A705785s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib44AFFCD3C4C1E69CCC49F43B3A705785s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib44AFFCD3C4C1E69CCC49F43B3A705785s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib44AFFCD3C4C1E69CCC49F43B3A705785s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6DB3C9D2B55853F43401EE9E583F4D4As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6DB3C9D2B55853F43401EE9E583F4D4As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib6DB3C9D2B55853F43401EE9E583F4D4As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD12ECEB2611BB4A314E595A49F434E0Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD12ECEB2611BB4A314E595A49F434E0Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD12ECEB2611BB4A314E595A49F434E0Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD12ECEB2611BB4A314E595A49F434E0Bs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD7802C6B7367B8DC44C743E958808117s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD7802C6B7367B8DC44C743E958808117s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD7802C6B7367B8DC44C743E958808117s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib813B852EDE4E921AE4B741EF0DD7BDBBs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib813B852EDE4E921AE4B741EF0DD7BDBBs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib813B852EDE4E921AE4B741EF0DD7BDBBs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1DD7E047FAA240A15DFED0EDEBC4C39Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1DD7E047FAA240A15DFED0EDEBC4C39Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib881D8E1620668012753C912035D77D7Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib881D8E1620668012753C912035D77D7Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib881D8E1620668012753C912035D77D7Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib881D8E1620668012753C912035D77D7Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib3D5FA5A58173593DFCD16B5C813EBEEFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib3D5FA5A58173593DFCD16B5C813EBEEFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib3D5FA5A58173593DFCD16B5C813EBEEFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB15CF7839D47FF05883A929B6F6F278As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB15CF7839D47FF05883A929B6F6F278As1

Computer Physics Communications 298 (2024) 109123S.A. Wright, C.P. Ridgers, G.R. Mudalige et al.

[166] N. Chalmers, A. Mishra, D. McDougall, T. Warburton, HipBone: a performance-
portable graphics processing unit-accelerated C++ version of the NekBone bench-
mark, Int. J. High Perform. Comput. Appl. (0 2023) 560–577.

[167] T. Kolev, P. Fischer, M. Min, J. Dongarra, J. Brown, V. Dobrev, T. Warburton,
S. Tomov, M.S. Shephard, A. Abdelfattah, V. Barra, N. Beams, J.-S. Camier, N.
Chalmers, Y. Dudouit, A. Karakus, I. Karlin, S. Kerkemeier, Y.-H. Lan, D. Medina,
E. Merzari, A. Obabko, W. Pazner, T. Rathnayake, C.W. Smith, L. Spies, K. Swiry-
dowicz, J. Thompson, A. Tomboulides, V. Tomov, Efficient exascale discretizations:
high-order finite element methods, Int. J. High Perform. Comput. Appl. 35 (2021)
527–552.

[168] J.C. Camier, Laghos summary for CTS2 benchmark, Technical Report LLNL-TR-
770220, Lawrence Livermore National Laboratory, 2019.

[169] A.M.B. Owenson, S.A. Wright, R.A. Bunt, Y.K. Ho, M.J. Street, S.A. Jarvis, An un-
structured CFD mini-application for the performance prediction of a production
CFD code, Concurr. Comput., Pract. Exp. 32 (2020) 1–14.

[170] P.T. Lin, M.A. Heroux, R.F. Barrett, A.B. Williams, Assessing a mini-application as
a performance proxy for a finite element method engineering application, Concurr.
Comput., Pract. Exp. 27 (2015) 5374–5389.

[171] R.F. Barrett, L. Tang, S.X. Hu, Performance and Energy Implications for Hetero-
geneous Computing Systems: a MiniFE Case Study, Technical Report SAND2014-
20215, Sandia National Laboratories, 2014.

[172] E. Merzari, P. Fischer, M. Min, S. Kerkemeier, A. Obabko, D. Shaver, H. Yuan, Y.
Yu, J. Martinez, L. Brockmeyer, L. Fick, G. Busco, A. Yildiz, Y. Hassan, Toward
exascale: overview of large eddy simulations and direct numerical simulations of
nuclear reactor flows with the spectral element method in Nek5000, Nucl. Technol.
206 (2020) 1308–1324.

[173] J. Shin, M.W. Hall, J. Chame, C. Chen, P.F. Fischer, P.D. Hovland, Speeding up
Nek5000 with autotuning and specialization, in: Proceedings of the 24th ACM
International Conference on Supercomputing, ICS ’10, Association for Computing
Machinery, New York, NY, USA, 2010, pp. 253–262.

[174] J. Gong, S. Markidis, E. Laure, M. Otten, P. Fischer, M. Min, Nekbone performance
on GPUs with OpenACC and CUDA Fortran implementations, J. Supercomput. 72
(2016) 4160–4180.

[175] I. Ivanov, J. Gong, D. Akhmetova, I.B. Peng, S. Markidis, E. Laure, R. Machado, M.
Rahn, V. Bartsch, A. Hart, P. Fischer, Evaluation of parallel communication models
in nekbone, a Nek5000 mini-application, in: 2015 IEEE International Conference
on Cluster Computing, 2015, pp. 760–767.

[176] S. Markidis, J. Gong, M. Schliephake, E. Laure, A. Hart, D. Henty, K. Heisey, P.
Fischer, OpenACC acceleration of the Nek5000 spectral element code, Int. J. High
Perform. Comput. Appl. 29 (2015) 311–319.

[177] M. Bareford, N. Johnson, M. Weiland, On the trade-offs between energy to so-
lution and runtime for real-world cfd test-cases, in: Proceedings of the Exascale
Applications and Software Conference 2016, EASC ’16, Association for Computing
Machinery, New York, NY, USA, 2016, pp. 1–8.

[178] M. Bussmann, H. Burau, T.E. Cowan, A. Debus, A. Huebl, G. Juckeland, T. Kluge,
W.E. Nagel, R. Pausch, F. Schmitt, U. Schramm, J. Schuchart, R. Widera, Radiative
signatures of the relativistic Kelvin-Helmholtz instability, in: Proceedings of the
International Conference on High Performance Computing, Networking, Storage
and Analysis, SC ’13, ACM, New York, NY, USA, 2013, pp. 5:1–5:12.

[179] G. Diamond, C.W. Smith, C. Zhang, E. Yoon, M.S. Shephard, PUMIPic: a mesh-
based approach to unstructured mesh particle-in-cell on GPUs, J. Parallel Distrib.
Comput. 157 (2021) 1–12.

[180] S. McIntosh-Smith, M. Martineau, T. Deakin, G. Pawelczak, W. Gaudin, P. Gar-
rett, W. Liu, R. Smedley-Stevenson, D. Beckingsale, TeaLeaf: a mini-application to
enable design-space explorations for iterative sparse linear solvers, in: 2017 IEEE
International Conference on Cluster Computing (CLUSTER), 2017, pp. 842–849.

[181] M. Martineau, S. McIntosh-Smith, W. Gaudin, Assessing the performance porta-
bility of modern parallel programming models using TeaLeaf, Concurr. Comput.,
Pract. Exp. 29 (2017) e4117.

[182] R.O. Kirk, G.R. Mudalige, I.Z. Reguly, S.A. Wright, M.J. Martineau, S.A. Jarvis,
Achieving performance portability for a heat conduction solver mini-application
on modern multi-core systems, in: 2017 IEEE International Conference on Cluster
Computing (CLUSTER), 2017, pp. 834–841.

[183] T. Deakin, S. McIntosh-Smith, J. Price, A. Poenaru, P. Atkinson, C. Popa, J.
Salmon, Performance portability across diverse computer architectures, in: 2019
IEEE/ACM International Workshop on Performance, Portability and Productivity
in HPC (P3HPC), 2019, pp. 1–13.

[184] Y. Asahi, G. Latu, V. Grandgirard, J. Bigot, Performance portable implementation
of a kinetic plasma simulation mini-app, in: S. Wienke, S. Bhalachandra (Eds.), Ac-
celerator Programming Using Directives, Series, Springer International Publishing,
Cham, 2020, pp. 117–139.

[185] Y. Asahi, G. Latu, J. Bigot, V. Grandgirard, Optimization strategy for a performance
portable Vlasov code, in: 2021 International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2021, pp. 79–91.

[186] R. Bird, N. Tan, S.V. Luedtke, S. Harrell, M. Taufer, B. Albright, VPIC 2.0: next
generation particle-in-cell simulations, IEEE Trans. Parallel Distrib. Syst. (2021) 1.

[187] N. Tan, R.F. Bird, G. Chen, S.V. Luedtke, B.J. Albright, M. Taufer, Analysis of vec-
tor particle-in-cell (VPIC) memory usage optimizations on cutting-edge computer
architectures, J. Comput. Sci. 60 (2022) 101566.

[188] K.J. Bowers, B.J. Albright, B. Bergen, L. Yin, K.J. Barker, D.J. Kerbyson, 0.374
PFLOP/s trillion-particle kinetic modeling of laser plasma interaction on roadrun-
ner, in: SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing,
2008, pp. 1–11.

[189] L. Fedeli, A. Huebl, F. Boillod-Cerneux, T. Clark, K. Gott, C. Hillairet, S. Jaure, A.
Leblanc, R. Lehe, A. Myers, C. Piechurski, M. Sato, N. Zaim, W. Zhang, J.-L. Vay,
H. Vincenti, Pushing the frontier in the design of laser-based electron accelerators
with groundbreaking mesh-refined particle-in-cell simulations on exascale-class
supercomputers, in: International Conference for High Performance Computing,
Networking, Storage and Analysis (SC’22), 2022, pp. 1–12.

[190] J.-L. Vay, A. Huebl, A. Almgren, L.D. Amorim, J. Bell, L. Fedeli, L. Ge, K. Gott,
D.P. Grote, M. Hogan, R. Jambunathan, R. Lehe, A. Myers, C. Ng, M. Rowan, O.
Shapoval, M. Thévenet, H. Vincenti, E. Yang, N. Zaïm, W. Zhang, Y. Zhao, E. Zoni,
Modeling of a chain of three plasma accelerator stages with the WarpX electromag-
netic PIC code on GPUs, Phys. Plasmas 28 (2021) 023105.

[191] A. Myers, A. Almgren, L. Amorim, J. Bell, L. Fedeli, L. Ge, K. Gott, D. Grote, M.
Hogan, A. Huebl, R. Jambunathan, R. Lehe, C. Ng, M. Rowan, O. Shapoval, M.
Thévenet, J.-L. Vay, H. Vincenti, E. Yang, N. Zaïm, W. Zhang, Y. Zhao, E. Zoni, Port-
ing WarpX to GPU-accelerated platforms, Parallel Comput. 108 (2021) 102833.

[192] C. Zhang, G. Diamond, C.W. Smith, M.S. Shephard, Development of an unstruc-
tured mesh gyrokinetic particle-in-cell code for exascale fusion plasma simulations
on GPUs, Comput. Phys. Commun. 291 (2023) 108824.

[193] S.M. Mniszewski, J. Belak, J.-L. Fattebert, C.F.A. Negre, S.R. Slattery, A.A. Ade-
doyin, R.F. Bird, C. Chang, G. Chen, S. Ethier, S. Fogerty, S. Habib, C. Junghans,
D. Lebrun-Grandié, J. Mohd-Yusof, S.G. Moore, D. Osei-Kuffuor, S.J. Plimpton, A.
Pope, S.T. Reeve, L. Ricketson, A. Scheinberg, A.Y. Sharma, M.E. Wall, Enabling
particle applications for exascale computing platforms, Int. J. High Perform. Com-
put. Appl. 35 (2021) 572–597.

[194] T.D. Arber, K. Bennett, T. Goffrey, S.A. Wright, EPOC++: a Future-Proofed Ki-
netic Simulation Code for Plasma Physics at Exascale, EPSRC Grant References:
EP/W03008X/1, EP/W029111/1, 2022.

[195] P. Fischer, S. Kerkemeier, M. Min, Y.-H. Lan, M. Phillips, T. Rathnayake, E. Merzari,
A. Tomboulides, A. Karakus, N. Chalmers, T. Warburton, Nekrs, a gpu-accelerated
spectral element Navier–Stokes solver, Parallel Comput. 114 (2022) 102982.

[196] G. Ozen, M. Wolfe, Performant portable OpenMP, in: Proceedings of the 31st ACM
SIGPLAN International Conference on Compiler Construction, CC’22, ACM, New
York, NY, USA, 2022, pp. 156–168.

[197] S.J. Pennycook, S.A. Jarvis, Developing performance-portable molecular dynamics
kernels in OpenCL, in: 2012 SC Companion: High Performance Computing, Net-
working Storage and Analysis, 2012, pp. 386–395.

[198] F. Rathgeber, L. Mitchell, D. Ham, M. Lange, A. McRae, F. Luporini, G. teodor
Bercea, P. Kelly, Firedrake: re-imagining FEniCS by composing domain-specific
abstractions, http://kynan .github .io /fenics14, 2014, the FEniCS Conference.

[199] G.R. Mudalige, I.Z. Reguly, A. Prabhakar, D. Amirante, L. Lapworth, S.A. Jarvis,
Towards virtual certification of gas turbine engines with performance-portable sim-
ulations, in: 2022 IEEE International Conference on Cluster Computing (CLUSTER),
2022, pp. 206–217.
17

http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1C3888A15E0BAC9F418F75861CB8EF84s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1C3888A15E0BAC9F418F75861CB8EF84s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1C3888A15E0BAC9F418F75861CB8EF84s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib64407F0FCB7706126449504C32A44A07s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib64407F0FCB7706126449504C32A44A07s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib64407F0FCB7706126449504C32A44A07s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib64407F0FCB7706126449504C32A44A07s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib64407F0FCB7706126449504C32A44A07s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib64407F0FCB7706126449504C32A44A07s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib64407F0FCB7706126449504C32A44A07s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDBFB87CA01CE3488B4ADCED4539823C1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibDBFB87CA01CE3488B4ADCED4539823C1s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib315D1034D2E99AC6747316A8B985A604s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib315D1034D2E99AC6747316A8B985A604s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib315D1034D2E99AC6747316A8B985A604s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib398475AD3A28461E9604397218599C44s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib398475AD3A28461E9604397218599C44s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib398475AD3A28461E9604397218599C44s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib72DFB3C5A53C6448C31573CBFD298BE8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib72DFB3C5A53C6448C31573CBFD298BE8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib72DFB3C5A53C6448C31573CBFD298BE8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib42C03C67EE90E374FC2E3206A2DD1A49s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib42C03C67EE90E374FC2E3206A2DD1A49s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib42C03C67EE90E374FC2E3206A2DD1A49s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib42C03C67EE90E374FC2E3206A2DD1A49s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib42C03C67EE90E374FC2E3206A2DD1A49s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD7E785985152A15DD8F99860BBB3E7DFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD7E785985152A15DD8F99860BBB3E7DFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD7E785985152A15DD8F99860BBB3E7DFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD7E785985152A15DD8F99860BBB3E7DFs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9787FB5A1AED527D56B78A3B9F423498s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9787FB5A1AED527D56B78A3B9F423498s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9787FB5A1AED527D56B78A3B9F423498s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib15C0FCDCC1565F39952914558F23E0E0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib15C0FCDCC1565F39952914558F23E0E0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib15C0FCDCC1565F39952914558F23E0E0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib15C0FCDCC1565F39952914558F23E0E0s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib56914389EA607FB7CDB7EB15C3457185s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib56914389EA607FB7CDB7EB15C3457185s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib56914389EA607FB7CDB7EB15C3457185s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE43D45FF56A182244D9B312B0D9B52C3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE43D45FF56A182244D9B312B0D9B52C3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE43D45FF56A182244D9B312B0D9B52C3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibE43D45FF56A182244D9B312B0D9B52C3s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1CD9E395C40EC4224CC5D8751F972AA9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1CD9E395C40EC4224CC5D8751F972AA9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1CD9E395C40EC4224CC5D8751F972AA9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1CD9E395C40EC4224CC5D8751F972AA9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib1CD9E395C40EC4224CC5D8751F972AA9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD2F6B246E3E8A14832D36451F5449A42s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD2F6B246E3E8A14832D36451F5449A42s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibD2F6B246E3E8A14832D36451F5449A42s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4B33098AF28BDDE29C53B0E03E053001s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4B33098AF28BDDE29C53B0E03E053001s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4B33098AF28BDDE29C53B0E03E053001s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4B33098AF28BDDE29C53B0E03E053001s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib49D46E0D54379CB5CE239ABDC57AC6A7s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib49D46E0D54379CB5CE239ABDC57AC6A7s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib49D46E0D54379CB5CE239ABDC57AC6A7s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAF1CD3C222CC8CF93048E88486FC8664s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAF1CD3C222CC8CF93048E88486FC8664s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAF1CD3C222CC8CF93048E88486FC8664s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibAF1CD3C222CC8CF93048E88486FC8664s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB49896B8FDA01120EB021B192A5E861Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB49896B8FDA01120EB021B192A5E861Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB49896B8FDA01120EB021B192A5E861Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB49896B8FDA01120EB021B192A5E861Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA0B48A6ED37142CF5BB6AE37F1D0794Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA0B48A6ED37142CF5BB6AE37F1D0794Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA0B48A6ED37142CF5BB6AE37F1D0794Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA0B48A6ED37142CF5BB6AE37F1D0794Ds1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibABE6922EAF86E99F8DC5E62BA1EA86D4s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibABE6922EAF86E99F8DC5E62BA1EA86D4s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibABE6922EAF86E99F8DC5E62BA1EA86D4s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib07E5564292391FB828DF50185855F9F7s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib07E5564292391FB828DF50185855F9F7s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib5BCED22EBA0C2CF8799CBDB60BC87F0Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib5BCED22EBA0C2CF8799CBDB60BC87F0Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib5BCED22EBA0C2CF8799CBDB60BC87F0Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA753D5E6EFA18E93CB098D366E4F4FC9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA753D5E6EFA18E93CB098D366E4F4FC9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA753D5E6EFA18E93CB098D366E4F4FC9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibA753D5E6EFA18E93CB098D366E4F4FC9s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9CEB5081C845F07AEF7BC2783F1081E2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9CEB5081C845F07AEF7BC2783F1081E2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9CEB5081C845F07AEF7BC2783F1081E2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9CEB5081C845F07AEF7BC2783F1081E2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9CEB5081C845F07AEF7BC2783F1081E2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib9CEB5081C845F07AEF7BC2783F1081E2s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib372E39DBB104C214F254EF705355916As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib372E39DBB104C214F254EF705355916As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib372E39DBB104C214F254EF705355916As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib372E39DBB104C214F254EF705355916As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib372E39DBB104C214F254EF705355916As1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib546C266B0644A1B6FA0494B6BC4C4080s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib546C266B0644A1B6FA0494B6BC4C4080s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib546C266B0644A1B6FA0494B6BC4C4080s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib546C266B0644A1B6FA0494B6BC4C4080s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8393EBC49EC6A44D3E733D8DECAEC4EEs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8393EBC49EC6A44D3E733D8DECAEC4EEs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8393EBC49EC6A44D3E733D8DECAEC4EEs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB51B1128A32C2779E606D074D855B6E8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB51B1128A32C2779E606D074D855B6E8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB51B1128A32C2779E606D074D855B6E8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB51B1128A32C2779E606D074D855B6E8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB51B1128A32C2779E606D074D855B6E8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibB51B1128A32C2779E606D074D855B6E8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8C75E2D4B715D20A272DE21C8C017EC8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8C75E2D4B715D20A272DE21C8C017EC8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib8C75E2D4B715D20A272DE21C8C017EC8s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCAE2E255B90A334D9712BF2A108A5355s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCAE2E255B90A334D9712BF2A108A5355s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bibCAE2E255B90A334D9712BF2A108A5355s1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib34D6D08B1C8FDC40181890AB6E5A982Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib34D6D08B1C8FDC40181890AB6E5A982Es1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib34D6D08B1C8FDC40181890AB6E5A982Es1
http://kynan.github.io/fenics14
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4D0C1DD2E744A26F52B89AE86907ED3Cs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4D0C1DD2E744A26F52B89AE86907ED3Cs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4D0C1DD2E744A26F52B89AE86907ED3Cs1
http://refhub.elsevier.com/S0010-4655(24)00046-8/bib4D0C1DD2E744A26F52B89AE86907ED3Cs1

	Developing performance portable plasma edge simulations: A survey
	1 Introduction
	2 Challenges in developing modern parallel applications
	3 General purpose programming languages
	4 Parallel programming models
	4.1 Accelerator extensions

	5 Software libraries
	5.1 Parallel programming abstraction libraries
	5.2 Numerical algorithm libraries

	6 Domain specific languages
	6.1 Low-level domain specific languages
	6.1.1 Mesh-based computations
	6.1.2 Particle interactions

	6.2 High-level DSLs

	7 Coupling frameworks
	8 Evaluating performance, portability and productivity
	8.1 Previous studies of performance, portability and productivity
	8.2 General purpose programming languages
	8.3 Parallel programming models
	8.4 Software libraries
	8.5 Domain specific languages

	9 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

