
warwick.ac.uk/lib-publications

A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/183166

Copyright and reuse:

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to cite it.

Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@warwick.ac.uk

http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/183166
mailto:wrap@warwick.ac.uk

M
A

E
G
NS

I
T A T

MOLEM

UNIVERSITAS WARWICENSIS

A Materials Science-inspired Paradigm to Predict the

Physical Stability of Amorphous Drugs

by

Trent Barnard

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy in Mathematics of Systems

University of Warwick, Department of Mathematics

May 2023

Contents

Acknowledgments v

Declarations vi

Abstract vii

Chapter 1 Introduction 1

1.1 Amorphous drugs . 1

1.1.1 Crystallisation . 3

1.1.2 How amorphous drugs are made . 4

1.1.3 Using Machine Learning to Predict Stability 7

1.1.4 Tg and class . 8

1.2 Overview . 8

1.3 Datasets . 11

Chapter 2 Methods 15

2.1 Generating molecular models . 15

2.2 Molecular dynamics . 16

2.2.1 Calculating the forces . 18

2.2.2 Initialising the system . 19

2.2.3 Calculating the velocities . 19

2.2.4 Compressing the system . 20

2.2.5 Cooling the system down . 21

2.2.6 Equilibration 1 . 22

2.2.7 Annealing the system . 24

2.3 Descriptors . 25

2.3.1 Single-molecule descriptors . 26

2.3.2 Standard descriptors . 26

i

2.3.3 Cliques . 27

2.3.4 Histograms of Weighted Atom Centred Symmetry Functions 29

2.3.5 Smooth Overlap of Atomic Positions . 31

2.3.6 Solid-state descriptors . 33

2.3.7 Calculated Tg . 33

2.3.8 Pair correlation function . 34

2.3.9 Mean squared displacement . 36

2.3.10 Diffusion coefficient . 36

2.3.11 Van-Hove correlation function . 39

2.3.12 Intermediate scattering function and structural relaxation time 40

2.3.13 Velocity autocorrelation . 41

2.4 Optimisation . 42

2.4.1 Genetic algorithm . 42

2.4.2 Synthetic data generation . 43

Chapter 3 Machine Learning 47

3.1 Machine learning . 47

3.2 An overview of NNs and RFs . 47

3.2.1 Neural networks . 47

3.2.2 Random forests . 48

3.2.3 The choice of ML algorithm . 49

3.3 Model parameters for NNs . 49

3.3.1 Neural network architecture . 50

3.3.2 Activation function . 51

3.3.3 Optimiser . 52

3.3.4 Loss function . 53

3.4 Model parameters for RFs . 54

3.4.1 Number of Trees . 54

3.4.2 Max depth . 54

3.4.3 Min split size . 55

3.5 Preprocessing and forms of dimensionality reduction 55

3.5.1 Normalising the data . 55

3.6 Feature selection . 57

3.6.1 Variance threshold . 57

3.6.2 Removal of correlated variables . 58

3.6.3 Backwards Feature Elimination . 61

ii

3.6.4 Feature importance . 61

3.6.5 Regularisation . 63

3.7 Early stopping . 64

3.8 Model selection and cross validation . 65

3.8.1 Cross Validation . 65

3.9 Ensemble methods . 67

3.9.1 Bagging . 67

3.9.2 Max voting . 67

3.9.3 Ensemble of Neural Networks . 68

Chapter 4 Using MD to understand the boson peak 69

4.1 Introduction . 69

4.2 Results . 71

4.2.1 The OKE spectra . 73

4.2.2 WACS and Raman experiments . 75

4.2.3 MD simulations . 76

4.3 Conclusion . 77

Chapter 5 Genetic Algorithm for Optimisation 81

5.1 Overview . 81

5.2 Genetic Algorithms in the context of optimising SOAPs 83

5.2.1 The SOAP_GAS algorithm . 83

5.2.2 Dataset utilised . 86

5.3 Results . 88

5.3.1 Optimising individual SOAPs . 88

5.3.2 SOAP_GAS: performance tuning . 93

5.3.3 SOAP_GAS timing accuracy: comparison with grid search 96

5.3.4 Working with multiple SOAPs . 97

Chapter 6 A Materials Science-inspired Paradigm to Predict the Physical Stability of

Amorphous Drugs 102

6.1 A Materials Science-inspired Paradigm to Predict the Physical Stability of Amor-

phous Drugs . 102

6.2 Machine learning workflow . 103

6.2.1 Preprocessing . 103

6.2.2 Parameter optimisation . 103

6.2.3 Genetic algorithm . 104

iii

6.2.4 Feature Selection . 105

6.2.5 Ensemble methods . 105

6.3 On the importance of feature selection . 106

6.3.1 Methodology . 108

6.4 Results . 109

6.4.1 One-molecule descriptors . 113

6.4.2 Ensemble methods . 120

6.5 Discussion and Conclusions . 125

Chapter 7 Conclusion 132

7.1 Conclusion . 132

7.2 Further work . 135

iv

Acknowledgments

I would like to extend my heartfelt gratitude to my supervisor Gabriele for his invaluable

support, guidance, and mentorship throughout my PhD journey. Gabriele has been an ex-

ceptional supervisor, who has gone above and beyond in helping me achieve my academic

and personal goals.

From day one, he has been an unwavering source of encouragement, inspiration,

and motivation. His extensive knowledge, expertise, and passion for research have been

contagious, and he has continuously challenged me to push beyond my limits and strive

for excellence in my work.

Gabriele’s mentorship has been instrumental in shaping my academic career. His

insightful feedback, constructive criticism, and attention to detail have been crucial in im-

proving the quality of my research, and his guidance has helped me navigate through the

various challenges that arise during a PhD program.

Moreover, Gabriele’s unwavering availability, patience, and understanding have been

a source of comfort during times of stress and uncertainty. He has been a supportive and

compassionate mentor, who has consistently demonstrated his commitment to my per-

sonal and professional growth.

I feel incredibly fortunate to have had Gabriele as my supervisor, and I am grateful

for the opportunities he has provided me with to learn and grow as a researcher. I am confi-

dent that the skills, knowledge, and experiences I have gained under his guidance will serve

me well in my future endeavors.

I would also like to give a special thanks to my friends Ella, Lal, and my boy Oscar

for being wholesome and keeping me sane throughout my corrections.

v

Declarations

The work presented here is my own, except where stated otherwise. This thesis has been

composed by myself and has not been submitted for any other degree or professional qual-

ification.

Chapter 4 has been published as

1. González-Jiménez, Mario, et al. "Understanding the emergence of the boson peak in

molecular glasses." Nature Communications 14.1 (2023): 215.

Chapter 5 has been published as

1. Barnard, Trent, et al. "Leveraging genetic algorithms to maximise the predictive ca-

pabilities of the SOAP descriptor." Molecular Systems Design & Engineering (2023).

Parts of Chapter 6 have been published as

1. Barnard, Trent, et al. "Less may be more: an informed reflection on molecular de-

scriptors for drug design and discovery." Molecular Systems Design & Engineering

5.1 (2020): 317-329.

2. Barnard, Trent, et al. "Combining Machine Learning and Molecular Simulations to

Predict the Stability of Amorphous Drugs." Submitted to The Journal of Chemical

Physics

vi

Abstract

Amorphous drugs have gained attention as a promising alternative to crystalline formula-

tions due to their ability to enhance solubility. However, ensuring the physical stability of

amorphous drugs is critical for successful commercialisation. Unfortunately, predicting the

timescale of crystallisation for amorphous drugs is challenging. To address this problem,

machine learning models can be developed to predict the physical stability of amorphous

drugs.

This study presents methodological advancements in using molecular dynamics sim-

ulations to develop machine learning models for predicting the crystallisation tendency of

amorphous drugs. The study develops and computes solid-state descriptors that capture

the dynamic properties of the amorphous phase and complements the traditional single-

molecule descriptors commonly used in quantitative structure-activity relationship (QSAR)

models. We have also specifically focused on a particular molecular glass to gain insights

into the dynamical properties of materials similar to amorphous drugs.

The results show that the use of molecular simulations as a tool to enrich the tradi-

tional machine learning paradigm for drug design and discovery can lead to high accuracy

in predicting the physical stability of amorphous drugs. The net result of this work is an im-

provement over the state-of-the-art in predicting the crystallisation tendency of amorphous

drugs.

vii

Chapter 1

Introduction

1.1 Amorphous drugs

Most modern drugs are packaged as crystalline formulations[1]. The molecules within these

formulations have long range order and a relatively high density. The crystalline struc-

ture has significant effects on the physical properties of the drug, such as solubility, stabil-

ity and bioavailability [2]. The molecules in a crystalline drug form a lattice-like structure

which typically exhibits strong intermolecular attraction. This leads to poor solubility and

bioavailability, two of the most important properties of pharmaceutical drugs. Studies have

shown that over 40% of drugs that have been approved and almost 90% of molecules used

for pharmaceutical drugs are categorised as poorly water soluble [3, 4].
Amorphous formulations of drugs represent a viable, novel way forward to improve

the solubility of modern drug formulations. Amorphous drugs have been gaining popular-

ity and a resurgence of interest in them has arisen as the number of poorly soluble molecules

with therapeutic properties continues to grow [5]. Amorphous drugs lack a defined crystal

structure. They instead exist as a disordered, non-crystalline solid. Because of this, they

present several benefits in comparison to crystalline drugs:

1. Improved solubility: Amorphous drugs typically have higher solubility than their

crystalline counterparts [6, 7, 8]. This is because the lack of a crystal lattice structure

allows for the drug molecules to more readily interact with solvents. Recent stud-

ies [8] show that amorphous materials may be up to 1,600 times more soluble than

crystalline materials.

2. Enhanced bioavailability: Because of their improved solubility, amorphous drugs

may be more readily absorbed by the body, leading to higher bioavailability and po-

1

tentially more effective treatment.

3. Faster onset of action: Due to their increased solubility and bioavailability, amor-

phous drugs may act more quickly than crystalline drugs [9, 10]. It is, however, im-

portant to note that the actual onset of action will depend on several factors, such as

the specific drug and the patients individual characteristics.

4. Greater formulation flexibility: Studies suggest [11, 8] that amorphous drugs can be

more easily incorporated into different formulations, such as tablets, capsules, or sus-

pensions, as they do not require a specific crystal structure to maintain their proper-

ties. This is because the amorphous form of a drug can be more readily dissolved in

solvents, allowing for easier processing and formulation. Additionally, the lack of a

specific crystal structure can also allow for greater flexibility in designing drug deliv-

ery systems with specific properties, such as sustained release or targeted delivery[8].

While amorphous drugs do have several advantages, they also have disadvantages that can

make their development and formulation challenging.

1. Lack of stability: Amorphous drugs have a tendency to revert back to their crystalline

form. This process is known as crystallisation and poses a challenging problem for

amorphous pharmaceuticals. The main reasons for this are 1) Amorphous drugs are

generally much less thermodynamically stable than crystalline drugs. Since the amor-

phous form has a greater free energy than the crystalline form, it tends to transition

towards its more stable state over time [12]. 2) Since amorphous drugs lack a well de-

fined structure, the molecules are free to rearrange themselves and move over time.

This is known as structural relaxation [13] and can lead to changes in physical proper-

ties, such as its solubility and propensity for crystallisation. This crystallisation pro-

cess is discussed in detail in section 1.1.1.

2. Manufacturing challenges: The production of amorphous drugs can be more chal-

lenging than crystalline drugs, requiring specialized manufacturing techniques such

as spray drying, freeze-drying, and milling. This can increase the manufacturing cost

and may limit the availability of the drug. We discuss some of the ways amorphous

drugs are produced in section 1.1.2.

3. Formulation challenges: The formulation of amorphous drugs can be more chal-

lenging than crystalline drugs, as their properties can change depending on the for-

mulation conditions. This can make it more difficult to achieve consistent dosing and

can require additional testing and characterization to ensure product quality [14].

2

The main focus of this work is to try and better understand the first disadvantage i.e. the

lack of stability.

1.1.1 Crystallisation

Crystallisation, in the context of amorphous drugs, refers to the process by which the amor-

phous form of a drug converts to a crystalline form [9]. Crystallisation can occur sponta-

neously, or it can be induced by various external factors such as changes in temperature,

humidity, or mechanical stress [15, 16]. The factors that influence the crystallisation pro-

cess are multifaceted, and the mechanisms involved are still not completely understood.

However, several studies have reported on the impact of different parameters on the crys-

tallization process, such as the drug’s molecular structure, the degree of supersaturation,

and the presence of impurities or additives [9]. The control and prevention of crystallisa-

tion in amorphous drug formulations are critical factors that need to be considered during

the drug development process. Understanding the underlying mechanisms of crystallisa-

tion and identifying strategies to minimise its occurrence can help improve the stability and

efficacy of amorphous drug formulations.

Due to the fact that the amorphous phase is metastable with respect to the crys-

talline phase, amorphous drugs are thermodynamically unstable. This means that they

have a tendency to crystallise over time to get to a lower energy state. This crystallisation

will mitigate a lot of the benefits of amorphous drugs. It can also lead to changes in chemical

properties as well as decreased solubility and bioavailability.

It is not hard to imagine a case where a drug that has recrystallised can be of danger

to a patient. If the patient is not aware that the drug has recrystallised and they take their

regular dose, because of the reduced bioavailability, the drug will not be as effective. This

could have dangerous consequences for the patient.

We can attempt to delay the crystallisation of the drug by adopting different strate-

gies. Most amorphous formulations on the market are not pure amorphous solids, but in-

stead amorphous solid dispersions (ASDs) [17]. An ASD is a technique used to increase the

solubility of a drug. An ASD is created by distributing the amorphous substance within a

polymer matrix. This polymer matrix helps to stabilise the amorphous substance and pre-

vent it from crystallising. ASDs can be created using various different techniques includ-

ing spray drying and co-precipitation [18, 19]. An example of an ASD drugs currently on

the market is Tricor which is used to lower cholesterol. This contains the active ingredient

fenofibrate which is one of the molecules in our dataset, and it is formulated as an ASD with

the polymer polyvinylpyrrolidone [20]. Another drug in our dataset is celecoxib which is an

3

anti-inflamatory drug that is prepared as an ASD by mixing it with a stabilising polymer,

commonly hydroxypropyl methylcellulose [21]. By formulating an ASD, the stability, solu-

bility and bioavailability is improved [22, 23]. However, care must be taken when selecting

the polymer and the method of manufacturing the drug as they can have a significant im-

pact on the stability and efficacy [24]. Further care must be taken when storing the drug,

since the temperature and humidity can have an effect on the stability of the ASD [25].
All amoprhous solids will eventually crystallise. As such, it is important that we have

some estimate of how long this will take. In some cases it may only be a few minutes,

whereas in other cases it could take several years for the amorphous solid to return to its

crystalline form. Gauging how long this will take is not a particularly easy task. A variety of

methods exist that allow us to determine which phase a drug is in, and if it has crystallised.

Differential scanning calorimetry (DSC) [26] allows us to observe when a phase change has

occured, and diffraction techniques such as x-ray diffraction (XRD) are the tools of the trade

for looking into the structure of molecular solids. More information on these procedures is

given in section 1.1.2. These are experiments that would have to take place in a lab, so for

pharmaceuticals on the shelf it is obviously not practical to regularly test if the drug has re-

crystallised. This is why we need a method to reliably predict the stability of amorphous

pharmaceuticals, so we can have some idea of their shelf life. When we speak of the sta-

bility of a given drug in this work, we refer to its propensity to crystallise within a certain

timescale.

1.1.2 How amorphous drugs are made

There exist several experimental approaches to craft amorphous drugs. In this section we

describe some of the more commonly used techniques, and outline how the experimental

data we use was generated. There are a number of ways in which an amorphous drug can

be prepared:

1. Melt-quenching: This involves heating the drug to a temperature higher than its melt-

ing point (Tm) so that it forms a liquid. This liquid is then rapidly cooled by immersing

it in liquid nitrogen, placing it on a cold surface, or blowing cold gas over it. If the drug

is cooled rapidly enough, it is prevented from reorganising itself into its crystalline

form, and an amorphous solid is formed. To create an ASD the exact same process is

used except the amorphous drug is melted together with a polymer. This technique is

simple, effective, and can be used with a wide range of drugs and polymers. However,

the high temperatures used can lead to drug degradation [27].

4

2. Spray drying: This is a process used to create ASDs. Spray drying involves dissolving

the amorphous drug and the polymer in a solvent. This solution is then fed into a

spray drying chamber and atomised using a spray nozzle. The atomised droplets are

dried by a stream of hot gas intended to evaporate the solvent. This leaves behind

a fine powder that contains the ASD. This powder has a high surface area which can

enhance the solubility and bioavailability [18], however there may be some solvent

residue left in the final product which could be a concern.

3. Freeze drying: Another method to form an ASD is again by dissolving the drug and

polymer is a solvent and then freezing. This frozen mixture is placed in a vacuum and

the solvent is removed using a technique called sublimation. This is where a solid

is converted directly into a gas without transitioning to the liquid phase. This again

results in a fine powder containing the ASD and has similar strengths and weaknesses

to spray drying.

The experimental data generated for use in this work [28, 29]was created using melt-

quenching and here we describe the exact methodology used. To begin, the molecules were

heated up at 10� C/min until the temperature is 2� C/min above Tm . To ensure the system

is fully melted, the temperature is now kept constant for 2 minutes. When the system is in

this melted state it exhibits no long range order but it will crystallise when it is left alone.

Note that there are exceptions to this rule, we look at one such example in chapter 4.

To prevent crystallisation from happening the system is rapidly cooled at a rate of

�20� C/min to a very low temperature of �70� C. Since this cooling is done very quickly, a

glass is created. By supercooling the melt in this way, the glass is in a metastable state that

exhibits the long range disorder of a liquid, and thus the increased solubility that we seek,

while also not being thermodynamically stable.

The importance of the rate at which the system is cooled can not be understated.

Since the transition to a glass is not a thermodynamic phase transition (Tg), the cooling

speed makes a difference to the glass transition temperature, as well as other physical prop-

erties. A faster cooling rate will typically produce a glass with a greater volume and lower

density than a glass produced using a slower cooling rate. The rate of cooling also affects

the glass transition temperature whereby a slower cooling rate typically leads to a lower Tg .

This concept is illustrated in figure 1.1. Another important aspect of the cooling rate is that

if it is too slow, the melt will crystallise instead of forming a glass. This is one of the bene-

fits of using computational molecular dynamics (MD) simulations as opposed to physical

experiments. When we use MD we are able to cool the melt at a rate that is orders of magni-

tude faster than what we would be able to realistically do in a lab. This allows us to observe a

5

simulation of a glass when we may not be able to actually create that glass in the real world,

although this simulation may be unphysical.

Figure 1.1: The effects on different cooling rates on a typical glass [30]

In the publications that we used to gather our data, the authors measure physical

properties of a selection of drug-like molecules. These properties are described in section

1.1.4. Although all that is needed to create an amorphous solid is the melting and super-

cooling that has been described, for the purpose of determining these particular properties,

an additional round of heating is used. After the melt has been supercooled, the system is

heated up using heat-flux differential scanning calorimetry (DSC). DSC measures the heat

flow in a sample of material that is being heated up and compares it to the heat flow in a ref-

erence sample. If the sample has undergone a phase transition, then the amount of heat re-

quired to keep the test sample at the same temperature as the test sample will change. This

tells us what state the test sample is in. This is useful when determining the crystallisation

class as it lets us know whether the sample crystallises or stays amorphous upon reheating.

It also lets us determine the glass transition temperature if the test sample is heated up until

a glass transition is observed.

6

1.1.3 Using Machine Learning to Predict Stability

The idea of predicting the stability of amorphous drugs using machine learning (ML) is not

an entirely novel one and there is a fair amount of research on this topic already [31, 32].
The bottleneck, when it comes to making progress in this area is the lack of data. Firstly, the

process of crystallisation has to take place before we know the stability of a drug. In some

cases, this can take years to happen. Secondly, as previously mentioned, the stability of a

drug is affected by many different variables such as the temperature, the humidity, and the

method used to create the amorphous drug. This causes issues when trying to determine

the stability, as the experimental values are not necessarily consistent. As a result of these

challenges, the dataset we have for amorphous drug stability is extremely small, our largest

contains only 137 molecules.

Even though the set of data we have about amorphous stability is small, there have

still been attempts to try and predict it. Most of these attempts are made using treating

the stability as the response variable in fairly simple models. For example, the work by

Nurzyńska et al. [33] developed a model that takes measured molecular, thermodynamic,

and kinetic parameters from a dataset of 25 molecules and develops a multiple linear re-

gression model to predict stability. The best model created in this work had an adjusted

R 2 of 0.7 while using descriptors such as glass transition temperature, enthalpy of fusion,

and lipophilicity. The paper also claims that it correctly predicted the stability of 60% of the

molecules in the unseen test set. Although this may seem impressive, nurzyńska et al. de-

fined a correct prediction as one within 4 days of the true stability, and although this may

seem reasonable, their unseen test dataset only contained 5 molecules and three of them

had a stability of one day or less, so perhaps the criteria for an accurate prediction should

be less forgiving.

The current state of the art in machine learning for pharmaceutical drugs is charac-

terised by a burgeoning field that holds immense promise for revolutionising drug discov-

ery and development. Machine learning techniques, particularly deep learning and var-

ious flavors of neural networks, have gained prominence in the pharmaceutical industry

[34, 35, 36]. These algorithms are being used to analyse vast datasets, including chem-

ical structures [37], genomic data [38], clinical trial results [39, 40], and medical records

[41], to expedite the identification of potential drug candidates and predict their proper-

ties, safety, and efficacy. Furthermore, machine learning models are playing a pivotal role

in target identification [42], drug repurposing [43], and optimising clinical trial designs [44],
thus streamlining the drug development pipeline. Additionally, generative models are being

leveraged for de novo molecule design [45], allowing for the creation of novel compounds

7

with desired properties. The integration of artificial intelligence and machine learning into

pharmaceutical research has the potential to significantly reduce the time and cost associ-

ated with bringing new drugs to market, ultimately leading to more efficient and person-

alised healthcare solutions. However, challenges such as data quality, interpretability, and

regulatory considerations still need to be addressed as this field continues to evolve.

In this work we take a different approach to try and predict the stability of amor-

phous drugs. Instead of using only a handful of easily calculable properties, we opt to gen-

erate actual 3D models of drugs using molecular dynamic simulations. Using these models,

we can generate more advanced descriptors relative to both the structural and dynamical

properties of the drugs. By using this approach we are able to emulate how the drug-like

molecules would behave under certain conditions. In turn, this can give us access to de-

scriptors that would otherwise have to be calculated experimentally.

1.1.4 Tg and class

Due to the extremely limited amount of reliable data on the stability of amorphous drugs,

we seek to first predict two key properties that are closely related to the stability of amor-

phous pharmaceuticals. The first property we look at is the glass transition temperature

(Tg).The glass transition temperature describes the temperature at which an amorphous

solid transforms from a rigid, non-flowing state, known as a glass, to a more fluid-like low-

viscosity state (or vice versa). More concretely, the Tg is typically defined as the temperature

at which the shear viscosity of the system is equal to 1012 centipoise (cP) [46]. It is impor-

tant to note that unlike e.g. the melting temperature (Tm), which is fixed, the glass transition

temperature is not a thermodynamic property. This is due to the fact that Tg can change de-

pending on various factors such as the heating/cooling rate, or the method used to prepare

the amorphous substance.

Tg is defined as the temperature at which an amorphous material, such as a polymer

or a glass, transitions from a hard, brittle, glassy state to a more rubbery or viscous state,

without actually melting.

When the material is at a temperature below the Tg , it is in a glassy state, whereby the

molecules are frozen in place. This low molecular mobility causes the material to be rigid

and brittle. The mobility increases at temperatures above the Tg and the material becomes

more flexible and elastic until it transitions into a liquid at Tm .

1.2 Overview

8

Figure 1.2: DSC thermograms [47].
The spikes in the thermograms

indicate crystallisation. We see

that Class 1 molecules crystallise

on cooling, Class 2 molecules crys-

tallise when reheated, and Class 3

molecules do not crystallise at all.

Tg is a key property in the context of amorphous

formulations[28, 12, 48] in that (i.) it affects the

propensity of the system to form a disordered solid

as opposed to a crystal in the first place [49] and;

(ii.) it correlates to a good extent with the physical

stability of the amorphous phase [50], which needs

to not re-crystallize over the typical timescales in-

volved with the shelf-life of a marketed pharmaceu-

tical. When Tg is higher, the drug is more stable

and less likely to crystallise [51]. The higher Tg indi-

cates a higher degree of molecular mobility restric-

tion and reduced free volume. Conversely, a low Tg

could mean that the drug is too unstable to use.

The second property we focus on in this work

is the so-called crystallisation class. This is a classifi-

cation system developed by Baird et al. [52]whereby

51 organic molecules were separated into 3 distinct

classes based on their propensity to crystallise dur-

ing the heat/cool/heat cycle described in section

1.1.2. These classes are defined as:

1. Crystallisation is observed whilst cooling the

melt at temperatures greater than the Tg .

2. No crystallisation is observed when cooling

from the melt to below the Tg . However, the

system will crystallise when reheated above

the Tg . This is perhaps the most interesting

class of amorphous drugs from a fundamental

perspective.

3. No crystallisation is observed at all throughout

the heat/cool/heat cycle.

An illustrative diagram showing the differ-

ence in heat flow between these three classes is

shown in figure 1.2. These classes are useful for the

formulation and development of amorphous drugs. If the drug-like molecule falls into Class

9

1 we know that it will not make a good amorphous drug, so it is not worth synthesising

and testing in a lab. If the molecule is a class 3 molecule then we can deduce that it could

be a good candidate for an amorphous drug. The ability to accurately predict this class

would represent a step forward in being able to increase the efficiency of bringing amor-

phous drugs to market.

Overall, the objectives of this work are to develop a method of accurately and reliably

predicting which crystallisation class a molecule will fall into, and to also develop some sort

of paradigm for estimating the glass transition temperature of a given molecule.

The present work is structured into six chapters, each of which aims to address dif-

ferent aspects of the research project. The current chapter provides the background and

context for the study, outlining the problem under investigation and describing the datasets

used in the analysis. In this chapter, we provide details on the sources of data, the methods

of data collection and preparation, and the characteristics of the datasets that were utilized

in the study.

The second chapter is dedicated to explaining the methods employed in the study.

This chapter delves into the theoretical and practical aspects of the methods used to analyze

the data, including statistical and mathematical techniques, as well as computational tools.

In this chapter, we explore the strengths and limitations of the methods used and how they

were applied in the context of the study.

The third chapter focuses on the machine learning protocol and workflow. Here, we

describe the process of designing and implementing machine learning algorithms to ana-

lyze the datasets. This chapter provides details on the steps involved in data preprocessing,

feature selection, model building, and performance evaluation.

Chapter four presents a specific example that is particularly relevant for understand-

ing the dynamical and structural properties of molecular liquids and the changes they un-

dergo as they approach the glass transition. In this chapter, we discuss the latest develop-

ments in this area and their significance for the broader field of amorphous drugs.

The fifth chapter outlines the genetic algorithm framework used in the study. This

chapter explains the design and implementation of the genetic algorithm used to optimize

the machine learning models. Here, we provide an in-depth discussion of the key features

of the genetic algorithm and its performance in optimizing the models.

Finally, the last chapter presents the results of the study. This chapter outlines the

findings of the analysis, including the insights gained from the data, the performance of the

machine learning models, and the implications of the study for the broader field of amor-

phous drugs. Additionally, the chapter discusses the limitations of the study and suggests

future research directions. Overall, this work offers a comprehensive overview of the re-

10

search project, covering the entire process from data collection and analysis to the devel-

opment of machine learning algorithms and the presentation of the findings.

This work goes beyond the current state-of-the-art by harnessing a novel set of de-

scriptors, so far unexplored in the context of predicting the stability of amorphous phar-

maceuticals. In doing so, it not only advances the scientific understanding in this domain

but also enhances the precision and reliability of predictions pertaining to crystallisation

classification. By incorporating the techniques showcased in this work, we aim to unlock

deeper insights into the complexities of molecular structures and also seeks to optimise the

performance of these descriptors in predicting the stability of amorphous drugs, pushing

the boundaries of what is currently achievable in the field.

1.3 Datasets

The majority of the results in this work pertain to two similar datasets:

• Amorphous Tg [Amo-Reg]: This is a dataset we have curated from literature data

(refs [28, 29]). These are the only sources that were available to us that contained

datasets of drug-like molecules and their experimental Tg . Fortunately, the experi-

mental methodology to compute the Tg is the same for both of these works and is

described in section 1.1.2. This contains 136 molecules with the entries consisting of

the name of the molecule, a representation of the molecule in the form of Simplified

Molecular Input Line Entry System (SMILES) [53], and the experimental value for Tg .

• Amorphous Class [Amo-Class]: This dataset is a subset of the Amo-Reg dataset and

is compiled from literature [47]. This dataset contains the crystallisation class (see

section 1.1.4) of 124 molecules present in the Amo-Reg dataset. This data allows us to

explore the behaviour of certain drug-like molecules when they are heated and rapidly

cooled in an attempt to create amorphous drugs.

The majority of our results are generated through these datasets. Although Amo-

Class is a subset of Amo-Reg, they are treated as separate datasets. This means that we do

not use the experimental Tg to predict the class or vice-versa. We have chosen to use these

as our main datasets since the overlap in molecules allows us to minimise computational

costs for molecular dynamics simulations as the same simulations can be used for both Tg

and class tasks.

We summarise in Fig. 1.3 some information about the target properties of both datasets.

The distribution of Tg across the whole Amo-Reg dataset (Fig. 1.3a) appears to be peaked

11

a) b)

c)

d) e) f)

Figure 1.3: a) Probability density function (PDF) of the Tg re: the Amo-Reg dataset. The
continuous distribution has been obtained via a kernel density estimation (KDE). b) The
population of each crystallisation class re: the Amo-Class dataset. The smallest molecule is
urea with 8 atoms and the largest is ritonavir with 98. c) The correlation between Tg and Tm

re: the Amo-Reg dataset. The marginal distributions refers to all the available data, notwith-
standing the crystallisation class. d) PDFs (via KDE) of the molecular weight re: the Amo-
Reg dataset. e) PDFs (via KDE) of Tg re: the Amo-Reg dataset, with information about each
different crystallisation class. f) PDFs (via KDE) of Tm re: the Amo-Reg dataset.

at around room temperature. However, the Tg of molecules belonging to Class III is rarely

< 250 K (Fig. 1.3e), which is consistent with the assumption that molecules characterised

by high Tg are less prone to crystallise. Note that Class II is substantially under populated

if compared with either Class I or III (Fig. 1.3b) - an issue we will discuss in greater detail

in the following chapters. It is also instructive to look at the distributions of the molecular

weight across the different classes, reported in Fig. 1.3d) specifically, Class I molecules ap-

pear to be characterised by, on average, lower molecular weight if compared to molecules in

either Class II or Class III. This suggests that smaller molecules have a stronger tendency to

crystallise. Intuitively, this might be explained in terms of diffusivity, as smaller molecules

tend to be characterised by higher self-diffusion coefficients, which in turn might facilitate

12

Chemical Amo-Reg Amo-Class
element Atoms Molecules Atoms Molecules

H 2138 136 2092 124
C 2138 136 1874 124
O 410 133 355 121
N 227 98 205 89
F 48 19 38 16
Cl 43 28 40 25
S 37 31 34 28
P 1 1 1 1

Table 1.1: Frequency by which chemical elements appears in either the Amo-Reg or the
Amo-Class datasets (see text). We report the overall occurrence of a given chemical element
(”Atoms” columns) as well as the number of molecules containing a given chemical element
(”Molecules” columns).

the crystallisation process. In contrast, is is challenging to extract any meaningful trend

from the distributions of Tm (Fig. 1.3f), despite the fact that there exist a strong correlation

between Tm and Tg , as illustrated in Fig. 1.3c).

In terms of the chemical composition of the drug molecules in the dataset, we have

summarised in Table 1.1 the frequency by which the relevant chemical elements appears in

either the Amo-Reg or the Amo-Class datasets. The relative populations of these chemical

elements are in line with those expected when considering small drug-like organic molecules.

Throughout this work we also use a number of other datasets to validate our tech-

niques and see how applicable they are to datasets not related to amorphous pharmaceu-

ticals. Some tasks benefit from larger datasets, and it is important for testing methods such

as our genetic algorithm that we validate them on different types of data. The other datasets

we use are:

• Lipohilicity [Lipo]: this dataset is publicly available via the moleculenet.aiproject [54].
It contains⇠ 4000 molecular structures as SMILEstrings [55] and their corresponding

lipophilicity [56], measured experimentally as octanol/water distribution coefficients

(logD at pH 7.4). In the context of pharmaceuticals, the lipophilicity of a certain drug

provides a measure of its affinity for a lipid environment - thus including the cellular

membrane. It is a majorly important biophysical target, as it affects the pharmacoki-

netics and the absorption of many drugs formulations.

• Hepatocytes [Hepa]: this dataset has been provided to us by AstraZeneca. It contains

⇠ 400 molecular structures as SMILES strings and their corresponding human hepa-

13

tocytes intrinsic clearance (clint) [57], measured experimentally as log(Volume/Time).

Clint values quantify the ability of the human liver (particularly of the hepatocytes

cells that constitute more than half of it) to remove a given drug: as the liver plays a

very important role in dictating drug metabolism in our bodies, clint values are con-

sidered as crucial biological targets for drug design. We note that this is a very "chal-

lenging" dataset, in that it features only a small number of data points while dealing

with exceptionally complex biomedical activity.

• Solubility [Sol]: this dataset contains 6,119 drug-like molecules and their solubility.

The solubility (S) i.e. the extent to which a chemical substance can dissolve in a sol-

vent and form a homogeneous solution. It is customarily represented using the base

10 logarithm as log S , with S in moles per litre units [58, 59]. Based on the informa-

tion contained in Refs 60, 61, we believe that the solubility values in question refer to

the thermodynamic solubility of these molecules. This dataset was curated by merg-

ing several sub-datasets containing solubility values characterised by an uncertainty

inferior to 0.4 log S so as to maximise the reliability of the experimental data (a noto-

rious issue when dealing with solubility measures) quality. This particular threshold

in terms of uncertainty corresponds to the standard deviation relative to the sets of

experimental measurements of S obtained for the same compounds by different re-

search groups [62]. Prior to use, we discarded 35 compounds that were either inor-

ganic (i.e. they contained no C atoms) or contained counter-ions.

• QM7b [QM]: In order to validate the robustness of the results we have obtained in

chapter 5, we have used an additional dataset, namely the QM7b dataset[63, 64]. This

dataset is routinely used in the context of machine learning for molecular properties.

It is a relatively low-noise dataset that contains 7,211 molecules and features 13 target

properties - we have chosen to focus on the polarisability.

• Stability [Stab]: This dataset is a subset of the Amo-Reg dataset and it contains the

stability of 20 molecules. The stability is measured in days and this dataset is used to

see how well our models can predict the time taken for amorphous drugs to crystallise

14

Chapter 2

Methods

In this chapter, we present an overview of the two types of descriptors, namely single-molecule

and solid-state descriptors, and describe the general process of obtaining them. Subse-

quently, we provide a detailed, step-by-step description of this process. We then proceed to

discuss each descriptor individually, elucidating its calculation and relevance in our work.

Finally, we detail the optimisation techniques employed to enhance the performance of

these descriptors.

2.1 Generating molecular models

An innovative aspect of this study is the utilisation of MD simulations to obtain descrip-

tors that cannot be obtained by examining single molecules in isolation. This is particu-

larly noteworthy since the data sets available for many QSAR models, including those in

our possession, typically only offer information about the molecular structure in the form of

SMILES strings. To generate a three-dimensional model for each drug molecule in the Amo-

Reg dataset, hydrogen atoms were added where necessary and OpenBabel [65] was em-

ployed. Following this, relevant topologies and force field parameters were obtained using

CGenFF (version 4.6) based on the CHARMM36 force field (version July 2021) [66, 67, 68, 69].
For our MD simulations, we utilised the GROMACS package in version 5.1.4 with-

out GPU acceleration and in single precision. Periodic boundary conditions were applied

in all three Cartesian directions.The hardware used for these simulations is the same used

for the machine learning described in Sec 3.1. We assumed that both the glass and liquid

phases are isotropic and adopted cubic simulation boxes accordingly. The dimensions of

the boxes were determined by the equilibrium density of each system. In general, the edge

of the cubic boxes for the glass phases ranged between four and 6 nm. We set the cutoff for

15

both van der Waals and electrostatic interactions to 12 Å, with van der Waals interactions

being switched to zero between 10 and 12 Å. We constrained the hydrogen bonds within

each molecular species using the P-LINCS algorithm. The equations of motion were inte-

grated using a leap-frog integrator with a time step of 2 fs. For sampling in the NVT and NPT

ensemble, we employed the Bussi-Donadio-Parrinello thermostat and the Berendsen baro-

stat with coupling constants of 0.5 and 4 ps, respectively. While the Berendsen barostat may

not be the most accurate barostat for sampling the isothermal-isobaric ensemble [70], we

chose it due to the frequent and substantial changes in simulation conditions that occurred

during our study. This decision was made to ensure the robustness of the simulations over

the accuracy of more complex barostats.

In the following sections, we provide a detailed account of the precise steps under-

taken in the MD protocol, while concurrently illuminating our rationale for the selection of

simulation parameters.

2.2 Molecular dynamics

In order to step away from the general methods used to predict Tg , as well as access addi-

tional information that can only be accessed by looking at models of the glasses, we have

simulated the process of making every drug-like molecule in our database into an amor-

phous system using computer simulations.

There are various types of computer simulations used to study the behavior of molecules

and materials. One common approach is Monte Carlo simulation, which uses random sam-

pling to model the behavior of complex systems. In Monte Carlo simulations, a large num-

ber of random samples are generated and used to estimate the behavior of the system. This

approach is commonly used in fields such as finance, engineering, and physics.

In this work, we use molecular dynamics (MD) simulations, which employ numer-

ical methods to model the behavior of individual atoms and molecules over time. These

simulations typically use classical mechanics to solve the equations of motion.

In an MD simulation, the forces acting on the particles in a system cause their po-

sitions and velocities to change at each time step (dt). One approach to determining the

forces between particles in MD simulations is to use a potential energy function, such as the

Lennard-Jones potential or Coulombic interactions between charged particles. While these

methods are commonly used, they may not provide the most accurate characterization of

the forces. A more accurate approach involves solving the Schrödinger equation to obtain

the potential energy function and forces. However, this method is computationally expen-

sive and not practical for simulating large systems like molecular glasses, especially when

16

using ab-initio methods. The timescales for ab-initio simulations can be much longer than

for classical MD, due to the increased computational demands. Therefore, while ab-initio

simulations may provide more accurate results, they may not be feasible for simulating large

systems on practical timescales.

These simulations have the capacity to investigate diverse phenomena, ranging from

the dynamics of large proteins and complex biomolecular systems to the behavior of small

molecules [71, 72]. These simulations prove to be particularly advantageous in predicting

the properties of new materials that are yet to be synthesized and assessing the performance

of materials under various conditions, such as alterations in temperature or pressure. Fur-

thermore, MD simulations enable the simulation of scenarios that may be infeasible or ex-

orbitantly expensive to achieve in real life, such as extremely high or low temperatures. Be-

cause of this, they have developed into a crucial tool in many branches of engineering and

science, including as biophysics, materials science, and, in our case, drug development.

They offer an effective way to comprehend the fundamental molecular mechanisms that

control the behaviour of complex systems and to forecast how these systems will behave in

various scenarios.

Using Newton’s equations of motion to determine the paths of individual atoms in a

system based on their initial positions and velocities, as well as the forces acting upon them,

is the core idea underpinning MD simulations. Spheres or particles are used to represent the

atoms in MD simulations, and force fields are used to characterise the interactions between

atoms. A force field is a mathematical function that models the interatomic forces between

atoms in a molecular system. The force field is used to compute the potential energy of the

system at every time step of the simulation. By integrating the equations of motion using

the potential energy, the positions and velocities of the atoms are propagated forward in

time, allowing for the simulation of the system’s dynamic behavior.

A force field consists of a set of parameters that define the nature of the interactions

between atoms in the system. These parameters include the strength and range of the non-

bonded van der Waals forces, which govern the attraction and repulsion between atoms, as

well as the strength and directionality of the bonded forces, such as covalent bonds, angle

bending, and dihedral rotation. These parameters are typically obtained from experimental

data or quantum chemical calculations and are fitted to reproduce the observed behavior

of the molecules of interest. Force fields are often specific to a particular class of molecules,

such as proteins or nucleic acids, and can vary in their accuracy and applicability to different

molecular systems.

The simulation is typically run by breaking time into small time steps, and for each

time step, the atoms’ positions and velocities are modified in accordance with the forces

17

acting on them. The simulation can capture the dynamics and behaviour of the system

over a period of time by repeating this process for thousands or even millions of time steps.

Our MD simulations are designed to emulate the manufacturing process that is out-

lined in section 1.1.2 whereby the molecule is heated up to a melt, rapidly cooled, and then

reheated. In order for us to do this, we need to know the Tg of each molecule. Unfortunately,

an artifact of compiling our data from different sources is that we do not have uniform in-

formation about each molecule. As a result, the Tg is missing from a significant portion of

the molecules we are looking at. To ensure fairness with all descriptors, it would not make

sense for us to get the Tg from a different source since the Tg can be calculated in a number

of different ways that can impact the results you get. In fact, when attempting to obtain

the glass transition temperature of molecules through literature or online databases, it is a

frequent occurrence for multiple distinct values to be reported.

In order to make the Tg we use for each molecule as consistent and fair as possible,

we endeavour to calculate the Tg computationally using MD simulations. More detail on

this process can be found in section 2.2. We note that table 2.1 explains this process in a

more digestible way and would suggest that the reader refers to this table when reading

section 2.2.

After we have computed Tg for each molecule, we then perform a very similar MD

protocol to simulate the creating of an amorphous system of the given molecule. Unfor-

tunately, this results in doing two very similar MD simulations for each molecule. This is

a costly process but it is one that can not be avoided. As a result of this effort we have a

dataset where the Tg is calculated in a consistent way, and all the steps of the MD are done

at temperatures proportional to their calculated Tg .

In the following sections we detail the exact process that we use to create both the

calculated Tg , and the MD simulation protocol that uses that Tg to get the descriptors that

require simulation.

2.2.1 Calculating the forces

The selection of a force field is a crucial aspect of MD simulations, and in this study, we

opted for the CHARMM36 force field [66]. The decision to use this force field was based

on our prior experience with it and our success in using it to study a range of problems,

including ice formation at biological interfaces [73, 74, 75, 76, 77] and molecular glasses [78].
It should be noted that the purpose of this study was to extract descriptors for build-

ing ML models, rather than obtaining accurate parameterisation of each molecule in the

dataset. Therefore, we argue that optimising the parameterisation of over 100 molecules

18

in an efficient manner is not feasible in this context, regardless of the choice of force field.

Additionally, while penalties associated with the parameterisation of each drug molecule

were available, we chose not to include them in our ML models. This decision could have

impacted the predictive power of the solid-state descriptors, as discussed in the following

sections, but it did not impede us from utilising these descriptors to enhance the overall

accuracy of our ML models.

The calculation of the force acting upon each particle is computationally expensive

and is of order O (n 2) since we are considering the sum of all pairwise interactions for each

particle. It is possible to speed up this process by estimating long range force interactions

and only calculating interactions within a certain cutoff (except for in the case of electro-

static interactions), but obviously this leads to reduced accuracy. Note that in the case of

electrostatic interactions, because they decay very slowly, we use the Particle Mesh Ewald

method. More information on this method can be found in [79]

2.2.2 Initialising the system

We begin the simulation by placing all the molecules in the system within a box. The box is

subdivided into a cubic lattice with a molecule being placed into individual sections of the

lattice, see figure 2.5 d) for a visualisation of this. This prevents molecules from overlapping

with each other and creating systems that are physically impossible. Each particle is then

assigned a velocity that is taken randomly from a pre-defined distribution and subsequently

shifted so that the system has a total momentum of zero. The velocities are then scaled to

achieve a mean kinetic energy of a given temperature.

2.2.3 Calculating the velocities

The velocities of particles can be calculated using a variety of methods, the most common

is the Verlet algorithm which we use for all the simulations in this work. We begin by noting

that the force acting on each particle is calculated by solving Newtons second law,

F̄ =mā (2.1)

where F̄ is the force acting on the particle, given by the force field, m is the mass of the

particle, and ā is the acceleration of the particle that is trivially computed by rearranging

equation 2.1.

As mentioned in section 2.2.2, the velocities are initialised randomly from a distri-

bution. So we now have the initial position x̄ (0), velocity v̄ (0), and acceleration ā (0) of each

19

particle.

Following this we can work out the position of a particle at some timestep�t as

x̄ (�t) = x̄ (0) + v̄ (0)�t +
1
2

ā (0)�t 2+O (�t 3) (2.2)

which is a Taylor expansion of the coordinates of a particle around time t . Higher-order

Taylor series expansions can be used to increase the accuracy, however, this is generally not

necessary and will lead to greater computational expense.

The position of each particle can be updated using the following equation

x̄ (t +�t) = 2x̄ (t)� x̄ (t ��t) + ā (t)�t 2+O (�t 3) (2.3)

It is now possible to get the position of a particle at a given timestep. From this, the velocity

can be calculated by working out the rate of change of position, given by

v̄ (t) =
x̄ (t +�t)� x̄ (t ��t)

2�t
(2.4)

where v̄ (t) is the velocity of the particle at time t .

Since the initial velocities are generated using a random distribution, it is likely that

the initial velocities are not accurate representations of the true velocities of the particles

in the system. It is also possible that the thermal energy may not be evenly distributed

amongst the particles. Structurally, the system may also not be representative of something

that is physically plausible. Equilibration allows the system to reach a representative state

where the particles are in realistic positions.

2.2.4 Compressing the system

After initial velocities are determined and the initial conditions of the system are met we

begin the initial equilibration process. The MD simulation is run at a high temperature and

pressure for 10ns, this was achieved at 1,000 K and 1,000 bar for the systems in this work, one

of the benefits of MD simulations are that we can construct systems that would be either

extremely expensive or physically impossible to create. By running the system at such a

high temperature and pressure, we compress the system in a way that allows the molecules

to be packed in a way that is similar to what we would typically see in reality.

There are other methods to achieve this, one of the more common ways is to use

software specifically designed to achieve a similar result, such as PACKMOL [80]. Similar

to our compression protocol, this software packs the molecules into a system in a way that

20

satisfies various spacial restrictions imposed by user defined input.

2.2.5 Cooling the system down

Figure 2.1: Correlation between the experi-

mental Tg and the computed Tg of molecules

in our dataset. The computed Tg values have

been uniformly shifted by -70K to account for

systematic errors and this adjustment has re-

duced the MSE from 5,425 to 481. The purple

dashed line simply represents the best possi-

ble result, whereas the red dotted line shows

the experimental Tg shifted by 50K . Since our

simulations start at 50K below the computed

Tg , all points to the right of the red dotted line

will start the MD simulation below their ex-

perimental Tg . Details of how the computed

Tg values were obtained are given in section

2.3.7

Once we are satisfied that the system con-

formation is realistic and well-behaving,

we now cool the system slowly to the

temperature that we wish to begin the

heat/cool/heat cycle from. This is done

while instead of keeping the pressure con-

stant as in section 2.2.4 we instead keep the

volume constant. Note that since for each

system we are performing two similar MD

simulations, one to calculate an estimate of

the Tg (section 2.2) and one to use for our

dynamic descriptors (section 2.3.6) we give

details on both protocols.

In the case of performing MD to es-

timate Tg , the first phase of the cooling in-

volves cool the system from 1,000 K to 550

K over 20 ns. Then the second phase takes

the system to 100 K over another 20 ns. Our

testing showed that at the temperature of

100 K, all the molecules in our systems were

frozen as there was not enough energy for

the molecules to move, In fact, at any tem-

perature below Tg the diffusion should be

negligible. Since all our systems have neg-

ligible diffusion, we can be confident that

100 K is below the Tg of all the molecules in

our dataset.

Our MD simulations to create an

amorphous system for analysis follow a

similar idea but are instead influenced by

the molecule of interests computed Tg , for the rest of this section when we refer to the Tg of

a molecule, we are talking about the computed Tg , not its actual Tg since this is unknown

21

in some cases. The first phase of cooling at a high pressure anneals the system temperature

down to the half way point between 1000K and Tg - 50K . The second phase of annealing

takes the system all the way down to Tg - 50K at atmospheric pressure. Both of these phases

take 20ns each. By doing this, we can assume that our system is at a temperature below its

true Tg even if the calculated Tg is somewhat incorrect. As shown in fig 2.1, based on the

data for the Tg that we do have, this is a fairly safe assumption to make.

2.2.6 Equilibration 1

Most physical experiments in a lab take place using a constant number of particles, N,

pressure, P, and temperature, T. We can emulate this computationally by utilising a com-

mon technique in MD simulations. A simulation where N,P and T is known as isobaric-

isothermal ensemble simulation, or more succinctly, an NPT simulation. By calculating the

dynamics of these constant NPT equilibration periods, the constant pressure and temper-

ature allow the system to settle on a state of lowest potential energy. In an attempt to make

our results as accurate as possible and mimic physical experiments, we perform NPT sim-

ulations after every change in system temperature. These NPT simulations are important

for analysis, the data that we take from the MD simulations is always obtained at the end of

these equilibration periods. The first occurrence of this is after the cooling phase described

in section 2.2.5. It is important to perform NPT simulations for a long enough period of time

to allow the system to reach a state of lowest potential energy, for this reason we simulate

this ensemble for 10 ns.

To verify that the isobaric-isothermal ensemble is working as intended, in figure 2.2

we have included plots of temperature, pressure and density for Aceclofenac, a prototypi-

cal system in our dataset, during the first equilibration stage directly after the initial cooling.

We notice that the temperature fluctuates between 240-226 K even though it is set to remain

constant at 233 K, the same thing happens to the pressure albeit with much larger fluctua-

tions between ± 1,500 bar. The reason for these fluctuations can be attributed to a number

of factors such as finite size effects, the integration algorithm used, or the initial simulation

conditions chosen. However, as we can see the rolling average value of temperature and

pressure are close to the specified value of 233k and 1 bar respectively. Further investiga-

tion of this simulation shows that the temperature of the system has an average of 232.89k

± 0.57k, this is very close to the specified value of 233k. We notice that when we look at

the average value for the pressure we get 29.88 bar ± 162.53 bar. Although this seems like a

significant difference to the specified 1 bar, pressure typically has very large fluctuations in

MD simulations.

22

To further verify that the fluctuations in pressure are not causing any issues, we can

look at the density plot in fig 2.2.

Figure 2.2: Temperature, pressure and density for Aceclofenac, a prototypical system in our
dataset, during the first equilibration stage directly after the initial cooling. This molecule
has a calculated Tg of 273k and therefore the system is set to keep the temperature at a con-
stant 233k during this phase. The dashed purple line represents the 100ps running average.

23

2.2.7 Annealing the system

After the equilibration 1 phase described in section 2.2.6, we have a system that is at a very

low temperature and total energy. We can also be fairly confident that this temperature is

below the molecules true Tg , so the next thing to do is to heat up the system past the Tg

so we can study the melt. This process is intentionally done in many different ’steps’ in

order to have multiple equilibrated configurations for a selection of temperatures. All of

the following simulations are performed at 1 bar.

In the case of MD to calculate the Tg , we start at 100K , then gradually increase the

temperature in steps of 40 K over 5 ns. After this, an NPT simulation is performed at 140

K to equilibrate the system. This process of increasing the temperature by 40 K and then

equilibrating at the new temperature is repeated 9 times until a temperature of 460 K has

been reached. Upon reaching this final temperature, the NPT simulation is run for 20 ns

instead of 5 ns. The reason for the extended NPT is that a lot of descriptors can be calculated

using the trajectories at this temperature, so having a longer ensemble of value will only lead

to more accurate results.

For the MD to simulate an amorphous system, the process is almost identical, except

we do not start at 100 K. For these simulations, we start at 50 K below the calculated Tg

value obtained from the first simulations. We start at this temperature because we can say

with a high level of certainty that 50K below the computed Tg is below the experimental Tg .

Evidence for this claim is shown in fig 2.1 where we see the computed Tg plotted against the

experimental Tg . For all molecules to the right of the red dotted line the following inequality

holds true

computed Tg �50K  experimental Tg

The only other difference to the MD simulation used to calculate an estimate for Tg ,

is instead of increasing the temperature by 40K 9 times, we only do this process 6 times.

This is because we know we are starting much closer to the true Tg than in the previous

simulation and therefore the temperature does not need to be increased by the same mar-

gin to reach the amorphous phase. The timescale for the simulations and the final, high

temperature, NPT is identical to the calculating Tg simulation.

Finally, we now decrease the temperature back to the starting temperature. This is

done by reversing the step up protocol. So where we stepped up the temperature 9 times

by 40K , we instead now decrease it 9 times by 40K . Likewise when we increased the tem-

perature 6 times by 40K , we decrease the temperature 6 times by 40K . Again, each change

in temperature is followed by a 5ns NPT simulation to equilibrate the system.

There are a handful of reasons that we decrease the temperature in the simulation

24

after we have reached the desired amorphous phase. Firstly, this is necessary for when we

are trying to calculate an estimate of the Tg since this estimate is based on the cooling and

heating rate of the system, more information on this can be found in section 2.2. Secondly,

our reason for decreasing the temperature is that it allows us to create statistically indepen-

dant conformations of the system. Since we have such a small dataset, it may be useful to

have multiple representations of the same molecule for the purposes of model training and

data generation. This is particularly useful when dealing with our classification dataset due

to the fact that we have a rather bad case of mismatching class representation, so having a

way to equalise the number of datapoints in each class is necessary.

The process of creating these statistically independent conformations of the same

molecule is fairly straightforward. Instead of beginning the step down process after the 20

ns equilibration simulation at high temperature, we can simply wait another 5 ns and begin

the step down after 25 ns. Since the starting conformation is different, the trajectories for

the following step down simulations will also be different. We can do this as many times as

we want. By waiting an additional 5 ns and then doing the step down MD, we create a new

trajectory for the same model each time.

An overview of the entire MD process for both the simulations to estimate the Tg and

to simulate the amorphous phase is available in table 2.1, as well as a schematic available

in fig 2.5 a) .

2.3 Descriptors

In this study, the molecular descriptors used can be classified into two distinct categories,

single-molecule descriptors and solid-state descriptors. Single-molecule descriptors are

derived solely from the molecular structure of an isolated drug molecule in a vacuum. This

type of descriptor is widely used in the development of quantitative structure-activity rela-

tionship (QSAR) models. On the other hand, solid-state descriptors are derived from molec-

ular dynamics (MD) simulations, which provide insights into the structural and dynamic

properties of the actual material. The central premise of this study is that by incorporat-

ing solid-state descriptors derived from MD simulations, it is possible to augment and im-

prove the existing portfolio of single-molecule descriptors used in QSAR modeling. This ap-

proach can potentially lead to more accurate and reliable predictions of the properties and

behavior of amorphous drugs. By leveraging the information obtained from both types of

descriptors, this study aims to provide a more comprehensive understanding of the molec-

ular mechanisms underlying the behavior of amorphous drugs and pave the way for the

development of more effective drug formulations.

25

Phase Calculating Tg Amorphous simulation

Compression
1,000K
1,000 bar
10 ns

1,000K
1,000 bar
10 ns

Cooling (phase 1)
1,000 K! 550K
1,000 bar
20 ns

1,000 K!1000 + (Tg �50) 2 K
1,000 bar
20 ns

Cooling (phase 2)
550 K! 100K
1 bar
20 ns

1000+(Tg�50)
2 K! (Tg - 50) K

1 bar
20 ns

Equilibration 1
100 K
1 bar
20 ns

(Tg - 50) K
1 bar
20 ns

Step Up i
100 + 40i K for i 2 {1, 2, ..., 9}
1 bar
5 ns

(Tg - 50) + 40i K for i 2 {1, 2, ..., 6}
1 bar
5 ns

Step Up NPT i
100 + 40i K for i 2 {1, 2, ..., 9}
1 bar
5 ns

(Tg - 50) + 40i K for i 2 {1, 2, ..., 6}
1 bar
5 ns

Equilibration 2
460 K
1 bar
20 ns

(Tg + 190) K
1 bar
20 ns

Step Down i
460 - 40i K for i 2 {1, 2, ..., 9}
1 bar
5 ns

(Tg + 190) - 40i K for i 2 {1, 2, ..., 6}
1 bar
5 ns

Step Down NPT i
100 + 40i K for i 2 {1, 2, ..., 9}
1 bar
5 ns

(Tg + 190) - 40i K for i 2 {1, 2, ..., 6}
1 bar
5 ns

Table 2.1: Table showing an overview of the entire MD protocol for generating an estimate
of the Tg , and then generating a simulation of the amorphous system using the previously
calculated Tg .

2.3.1 Single-molecule descriptors

2.3.2 Standard descriptors

The most rudimentary descriptor we have used is an array of what we are going to label

as ’standard’ descriptors. These are physical properties that are easily calculable through

many different software packages, such as the RDKit.Chem [81] Python package. This pack-

age gave us access to a set of 170 2D and 3D descriptors calculated from only the molecular

SMILES. In order to make use of the 3D descriptors we had to generate 3D conformers of the

26

molecules. We deliberately used a very basic procedure to do this whereby we leveraged the

ETKDG conformation generation protocol [82] followed by UFF forcefield optimisation [83].
These descriptors ranged from very basic properties such as molecular weight and number

of hydrogen atoms, to more complicated ones such as the spherocity index [84]. Although a

number of these parameters (such as the WHIM descriptor [85]) can be optimised, we have

mimicked the minimal effort methods used in our previous work where we show that using

a large number of descriptors is not as effective as using a few carefully selected descrip-

tors [86].

2.3.3 Cliques

These descriptors are inspired by the work of Jin et al. [87], where the authors have decom-

posed a given molecular structure into sub-graphs ("cliques" in graph theory), thus pro-

viding a coarse-grained representation such as the one illustrated in Fig. 2.3 for the case of

caffeine. Instead of connecting these components into a tree (as it was done Ref. 87), we

have created a vocabulary of the unique cliques across the entire dataset of interest. Thus,

different sets are typically characterised by cliques vocabularies of different length. Then,

we index each of the cliques in the vocabulary via an integer i = 0, 1, ..., Nc l q �1, where Nc l q

is the total number of unique cliques in the vocabulary. Through one-hot encoding (see

Fig. 2.3), each molecule in the dataset is converted into a vector of length Nc l q : the value of

the i � t h element of said vector is equal to the number of occurrences of the i � t h clique

within that particular molecule.

In the context of natural language processing, we are thus treating the clique vocab-

ulary as a "bag of words" to form sentences - i.e. molecules, in a similar fashion to the "bag

of bonds" descriptor explored in e.g. Ref. 88. As the meaning of a given sentence may usu-

ally be determined to a good extent from its word content alone (i.e. without considering

syntax), we are assuming that the presence of the cliques alone, without any information

about the order by which they appear in a given molecular structure, would be enough to

allow us to establish a structure-function relation between SMILES strings and the func-

tional property of interest. It is thus reasonable to treat the cliques as a descriptor that is

looking exclusively at the "chemistry" of the molecules, in that it highlights the presence or

absence of specific molecular fragments and/or functional groups as opposed to the over-

all structure, albeit information about the size of the molecule is indirectly contained into

the cliques vector. As we shall see in the Results section, this incredibly simple descrip-

tor possesses a surprising predictive power, and it lends itself to feature selection in a very

straightforward manner.

27

N

N

N

N
ON

Caffeine
=

[0,0,1,0,…,2,0]

Molecule

Cliques

N

N

N

N

N

N

O

O

N

[all unique cliques
in the whole dataset]

Unique
cliques

Cliques
vocabulary

One hot encoding

Figure 2.3: Constructing the molecular cliques descriptor. In line with the work of Jin et
al. [87], a given molecular structure (we started from SMILES strings) is decomposed in
molecular fragments known in graph theory as “cliques“. All the Nc l q unique cliques across
the entire molecular dataset are then indexed and collected into a single cliques vocabulary.
Each molecule in the dataset can thus be represented by means of one hot encoding as a
Nc l q -long vector with each i � t h element equal to the number of occurrences the i � t h
clique appears in the molecule. Following an analogy with natural language processing, we
are treating molecular fragments as words that we can combine together into sentences, i.e.
molecules. Note the transparency of this descriptor, which requires as a starting point the
molecular graph only and it does not include any information about the connectivity of the
molecular fragments.

28

2.3.4 Histograms of Weighted Atom Centred Symmetry Functions

Atom-centred symmetry functions are popular three-dimensional descriptors in the con-

text of ML-based interatomic potentials for molecular simulations (see e.g. Refs. 91, 92, 93).

While different flavours exist, they usually comprise sets of both radial and angular sym-

metry functions (SFs). In a nutshell, one sits on each atom i (see Fig. 2.4) and computes

the value of (typically Gaussian) functions which depend on either ri j = |r̄ j � r̄i | distances

(radial SFs) or ✓i j k angles (angular SFs) between pairs or triplets of atoms up to a certain

cutoff radius Rc . The interested reader can find a thorough introduction to SFs in Ref. 94.

Here, we have used as radial SFs:

G r a d
i =

NX

j 6=i

e �⌘(ri j�µ)2 fi j (2.5)

and as angular SFs:

G a ng
i =

NX

j 6=i

NX

k 6=i , j

�
1+�cos✓i j k

�

⇥ e �⌘(ri j�µ)2 ⇥ e �⌘(ri k�µ)2 ⇥ e �⌘(rj k�µ)2

⇥ fi j ⇥ fi k ⇥ f j k

(2.6)

whereµ and⌘ represent the mean and width of the Gaussian respectively. The func-

tion fi j is given by:

fi j =

8
<
:

1
2

î
cos

Ä⇡ri j
Rc

ä
+1

ó
if ri j Rc

0, otherwise
(2.7)

Two sets of angular symmetry functions were calculated, one set with�=1, the other

with �=�1. Values for µ and ⌘ are determined by the number of SFs N used and the cutoff

radius. For N SFs, the value of µ for function n is given by:

µ= 0.5+ (n �1)rr (2.8)

where

rr =
Rc �1
N �1

(2.9)

and ⌘ is given by:

29

⌘=
1

2 (rr)2
. (2.10)

Crucially, the original formulation of SFs [89] required a distinct set of SFs for each

combination of the different elements in a given molecule. While this is a perfectly sensible

option in most materials science applications, where the number of elements involved is

usually well below five (in fact, it is incredibly challenging to build ML-based interatomic

potential for multi-component systems [91, 95, 96]), in the context of drug design and dis-

covery a molecular dataset may very well contain more than ten elements, which leads to a

huge number of SFs. Gastegger et al. have recently devised [90] a clever workaround to this

issue by introducing so-called weighted SFs such as:

W r a d
i =

PN
j 6=i Zi e �⌘(ri j�µ)2 fi j (2.11)

W a ng
i =

PN
j 6=i

PN
k 6=i , j Z j Zk

�
1+�cos✓i j k

�

⇥e �⌘(ri j�µ)2 ⇥ e �⌘(ri k�µ)2 ⇥ e �⌘(rj k�µ)2 (2.12)

⇥ fi j ⇥ fi k ⇥ f j k

where element-dependent weighting functions depending on Zi (the atomic weight

of atom i) are used to eliminate the need for separate sets of SFs for each combination of

different elements, thus massively reducing the number of SFs needed as a whole.

Even weighted SFs, however, suffer from an issue of consistency, in that molecules

with different elements and/or number of atoms are characterised by different numbers

of SFs. As a result, the SFs vectors we would like to use as inputs for our ML algorithms

are not of the same length. This problem may be circumvented in several ways, none of

them optimal. As a start, if one seeks to predict a functional property that can be written as

the sum of atomic contributions, the original approach of Behler and Parrinello [89] can be

straightforwardly used. However, while one can think of some thermodynamic quantities

such as energy or enthalpy as additive, functional properties or biomedical activities can

often not be treated as such.

Here, we have decided to build histograms of weighted-SFs (H-wACSFs): by binning

the values of all the weighted SFs for each molecule, we obtained a representation which is

independent from the number of atoms in a given molecule. While the number of bins

is one of the parameters we seek to optimise (see the following section), broadly speaking

low and high numbers of bins provide more or less coarse-grained representations of the

molecular structure. This interesting feature can be easily leveraged in the context of three-

30

dimensional models of crystalline or amorphous drugs - where we believe that materials

science-inspired descriptors such as H-wACSFs could deliver important contributions.

As the starting point for our H-wACSFs sets we have arbitrarily chosen the following

baseline parameter values: N r a d = N a ng = 8, R R a d
c = R Ang

c = 20 and NH�b i n s = 10, where

N R a d , N Ang , R R a d
c , R Ang

c and NH�b i n s stand for the number of radial SFs, the number of

angular SFs, the cutoff radius for the radial SFs, the cutoff radius for the angular SFs and the

number of bins we have used to build the histograms, respectively.

2.3.5 Smooth Overlap of Atomic Positions

One descriptor that in many cases has been proven to be self-sufficient in offering an ac-

curate representation of any given molecular structure is the Smooth Overlap of Atomic

Potentials (SOAP) descriptor [97], even though its most commonly used form only encodes

up to three-body correlations [98]. The SOAP descriptor has been gaining popularity lately

given its impressive performance across a plethora of widely different classes of materials

and problems ranging from hydrogen absorption of nano-clusters [99] to the development

of bespoke interatomic potentials [100, 101]. The premise of the SOAP descriptor is that it

offers a convenient method to describe atomic environments that are invariant to any form

of rotation, translation, reflection or permutation of equivalent atomic species.

The SOAP descriptor formalism[97] is based on representing atomic environments

by a scalar field centred on atom a , composed of Gaussian functions

⇢a (r) =
X

j2a

exp

✓
�
|r� r j |

2

2�2

◆
|sj i fcut(rj) (2.13)

where the sum is performed over the neighbours j of atom a that are situated within

a spatial cutoff. sj denotes the atom species of atom j , forming specie-dependent basis

functions |sj i, which allow distinction of different species within the atomic environment[102].
The cutoff function fcut ensures that neighbouring atoms enter and leave the atomic envi-

ronment in a smooth fashion. Summing the Gaussian functions representing the neigh-

bouring atoms ensures permutational invariance to the atomic indices within the same

species. The atomic density ⇢ is expanded in a basis formed of spherical harmonic Yl m ,

and orthogonal radial basis functions gn (r)

⇢a (r) =
X

s2S

|s i
X

n ,l ,m

c a
s ,n ,l ,m · gn (r) ·Yl ,m (r̂) (2.14)

where the first sum is performed over the set of neighbouring species Sn . Invariant features

31

can be formed from the basis set coefficients by calculating the power spectrum

p a
s ,s 0,n ,n 0,l =

X

m

Ä
c a

s ,n ,l ,m

ä⇤
c a

s 0,n 0,l ,m

which can be shown to be invariant to rotations and reflections of the environment with

respect to its central atom. Defined as such, each atomic environment is described by a

single power spectrum. In addition, the formalism can be extended to describe molecules

or condensed matter structures by averaging the representing density field across the con-

stituent atoms. The basis set coefficients belonging to the same central atom speciesS are

accumulated as:

c Ss ,n ,l ,m =
X

sa2S

c a
s 0,n 0,l ,m (2.15)

which can be used to form a set of power spectrum components pS for each distinct atom

species within the structure. In order to reduce the complexity of the descriptors, it is also

possible to sum all individual coefficients regardless of the central atom species informa-

tion, although this leads to a loss of information.

SOAPs are not the only way to generate rotationally invariant molecular descrip-

tors [103, 104], however, some other rotationally invariant descriptors may be unsuitable

to represent a heterogeneous dataset for ML purposes. For example, it is very challenging

to perform ML with varying descriptor lengths without information being lost. When using

SOAPs for ML it is possible to ensure the generated descriptor length does not scale with the

number of atoms in the system leading to a uniform length descriptor vector for every ele-

ment in the dataset. This is not the case for some other structural descriptors whereby they

scale in length with the number of atoms in the molecule [90, 86]. The main drawback of

SOAP descriptors is the potentially large computational cost, as the lengthL of their power

spectrum can be written as L = 1
2 nma x Sn (nma x Sn + 1)(lma x + 1), where Sn is the number

of neighbour species, nma x is the number of radial basis functions and lma x is the number

of angular basis functions. In fitting ML models based on SOAP descriptors it is common

to incur another factor proportional to Sn if a different model is defined for each centre

species. This can lead, depending on the number of species used as centres and neighbors,

to extremely large descriptor vectors which can be a challenge to compute due to the large

amounts of computer memory required. As we show in Sec. 5 however, it is possible to

compress these vectors with a relatively small decrease in predictive performance.

SOAPs work by using a series of orthonormal radial and angular basis functions to

expand the local neighbourhood density around each atom. An individual expansion is

used for each species of atom in the neighbourhood. In this paper we attempt to maximise

32

the predictive capabilities of SOAPs by optimising the following parameters that are stipu-

lated when generating SOAPs:

– nma x - The number of radial basis functions gn .

– lma x - The maximum degree of the spherical harmonics Yl m .

– cutoff - The cutoff distance for the basis function (Å)

– atom_sigma - The Gaussian smearing width of atom density� (Å).

– centres - The atomic species used as centres for the basis functions.

– neighbours - The atomic species used as neighbours for the basis function.

The optimisation of these parameters is no easy feat, particularly when dealing with

heterogeneous datasets. It is not obvious which sets of parameters will work when working

with datasets that contain diverse molecular structures or models characterised by a variety

of atomic species or environments. Initially, it may seem intuitive to simply use trial-and-

error or even an exhaustive grid search strategy to optimise these parameters, however due

to the large computational costs of generating SOAP descriptors, these methods are rather

inefficient. A number of approaches have been proposed in the last few years to optimise

the performance of the SOAP descriptor [101, 105, 106].
In this work, we have leveraged genetic algorithms (GAs) [107, 108] in order to opti-

mise the above mentioned SOAP parameters for one or multiple SOAP descriptors - given a

certain choice of centres and neighbours. This idea is explored in significant detail in chapter

5

2.3.6 Solid-state descriptors

2.3.7 Calculated Tg

One of the most important descriptors we have generated in this work is the calculated Tg .

Since we do not have data on the Tg for all molecules in our dataset, this descriptor has a

practical use in our MD simulations and is an instrumental part of generating the amor-

phous phase used to calculate all of the dynamic descriptors in the following section. More

information on the specifics of how and why this value is used in the simulations can be

found in section 2.2.

To understand how the glass transition temperature is calculated using MD simu-

lations it is first important to understand that, in most cases, when a system undergoes a

33

phase transition, the particles in the system fundamentally change their arrangement. This

typically leads to a change in the volume of the system. For example, when a liquid trans-

forms into a solid, the particles in the system generally become more ordered and densely

packed, this results in an overall decrease in the volume of the system. There are excep-

tions to this, for example the process of water turning into ice is somewhat unique in this

regard. This is because the hydrogen bonds between water molecules in the solid phase

are arranged in a more open structure than in the liquid phase, this leads to a decrease in

density and inversely an increase in volume. For the systems that we are concerned with

though, a phase transition to the solid phase results in a decrease in volume. The arrange-

ment of the particles in an amorphous solid lacks long-range order [109], and they are often

packed closer together than in a crystalline solid [110]. As a result, when an amorphous

phase transition takes place, the volume of the system typically decreases.

During our MD simulations, a barostat is used to enforce the pressure at each timestep.

The formula for the barostat that we use is as follows:

P =⇢kb T +
1

DV

*
X

i< j

f(rij) · rij

+
(2.16)

where P = pressure, ⇢ = density, Kb = Boltzmann’s constant, T = temperature, D

= dimensionality, V = volume, f(rij) = force between atoms i and j. Since we are using the

isobaric-isothermal ensemble, the simulation attempts to keep the pressure constant. By

equation 2.16 this can be done by adjusting V .

So when the system undergoes an amorphous phase transition by moving above/
below the Tg on heating/cooling, the volume of the system has to change to accommodate

the change in density. We can use this to estimate the Tg by finding the average temperature

of where the phase transition appears to occur. This process is depicted in figure 2.5 e).

2.3.8 Pair correlation function

The pair correlation function (PCF) denoted as g (r) is related to the probability of finding

an atom at a given distance (r) from another atom in the system. This framework gives us

an idea of the order of a structure over a given distance and can be used to describe both

the short range and long range structure of a system.

For our data, the g (r)was calculated using the following algorithm:

The algorithm for calculating the pair correlation function (PCF) involves the follow-

ing steps. Firstly, the range of interest is defined as R and divided into sections of thickness

dr. Each of these sections becomes the particular value of r that we will be analyzing. For

34

Algorithm 1 Pair Correlation Function g (r)
Parameters:

• R - The range you wish to search, in our case we set the range to be between 0 and
half the system size.

• r - The particular distance to place the shell and search for atoms within.

• N - The number of atoms in the system.

• dr - The thickness of the ’shell’. For example, when r = 1 Å, and d r = 0.25 Å, we
will be considering the atoms that are between 1-1.25 Å away from each other.

1: Divide R into sections of distance dr. This will give you R/dr sections and these sections
become your r values.

2: for each value of r in the range R do
3: for each atom in the system do
4: Count the number of other atoms that are a distance d away where r d  r+dr
5: end for
6: Divide the total count by N
7: Normalise this value by dividing by the volume of the spherical shell, 4⇡r2

dr

8: Normalise with respect to density by dividing by ⇢⇥ 4
3⇡(r+dr)

3
�⇢⇥ 4

3⇡(r)
3, where

⇢ is the number density of atoms in the system.
9: end for

each r, the number of atoms within a shell of thickness dr centered at r is counted. This is

done for every atom in the system.

Once the count is complete, it is divided by the total number of atoms in the system,

N. Next, the resulting value is normalized by dividing it by the volume of the spherical shell,

4⇡r2
dr. Finally, to account for the density variation in different parts of the system, the

value is further normalized by dividing it by ⇢ ⇥ 4
3⇡(r+ dr)

3
�⇢ ⇥ 4

3⇡(r)
3, where ⇢ is the

number density of atoms in the system. This gives the normalized PCF value at the distance

r.

In amorphous drugs, the PCF provides insight into the extent of molecular ordering

and packing in the system. For example, the presence of distinct peaks in the PCF indicates

the presence of well-defined intermolecular distances and a degree of structural ordering.

On the other hand, a featureless PCF suggests that the molecules are more randomly dis-

tributed and the system is less ordered. The stability of amorphous drugs is influenced by

the degree of molecular ordering and packing, as disordered systems are more prone to re-

laxation and crystallization over time. Therefore, the PCF can be used as a tool to investigate

the relationship between molecular structure and the stability of amorphous drugs, and to

guide the development of more stable amorphous formulations. We note that in many cases

35

we look at the centre of mass to calculate descriptors such as the PCF.

After the MD simulation protocol outlined in this chapter has been completed, we

are left with a huge amount of data that we can analyse to learn about how the molecules

in our dataset behave in the amorphous phase. In this section we go through the various

descriptors that we used to extract information from the output trajectories of these simu-

lations.

2.3.9 Mean squared displacement

The mean squared displacement (MSD) is a measure of how far a particle has moved from

its starting position over time. Although we do not use the MSD directly as a descriptor, we

use it to calculate the diffusion coefficient (see section 2.3.10) as well as verifying that the

simulations are behaving as expected.

The MSD is an ensemble average of displacements, with the MSD at time t being

given by

M SD =
⌦
|r (t)� r (0)|2

↵
=

1
N

NX

i=1

|ri (t)� ri (0)|2 (2.17)

Where N is the number of particles and ri (t) is the position of particle i at time t . This is a

relatively easy quantity to calculate and is computationally fairly cheap. It is important to

note that the MSD can be affected by boundary conditions of the simulation.

In MD simulations, periodic boundary conditions are frequently employed to make

a small system behave as though it were a component of a larger, repeating unit. This en-

ables the simulation to simulate a small portion of an effectively infinite system. Particles

that go past the simulation box’s edges are wrapped around to the other side, creating the

impression that they are still inside the simulation box. This generally does not cause any

issues for a crystal given that it is identical to itself. However, this is not the case for amor-

phous systems, and as a result, this wrapping can cause problems when calculating the

MSD. Therefore it is necessary to ’unwrap’ the system. This unwrapping allows us to ob-

serve the particles as they would behave in an infinite system, free of the wrapping effects

of the periodic boundary conditions. This is achieved by modifying the particles positions

to represent their true positions outside the simulation box. This generally entails adding or

subtracting a multiple of the simulation box dimensions to the coordinates of the particle.

2.3.10 Diffusion coefficient

Brownian motion is the random movement of particles in a fluid due to colliding with other

particles or molecules. This is often modeled as a random walk whereby collisions cause

36

Algorithm 2 Ensemble Mean Squared Displacement
Parameters:

• N - The number of particles in the system.

• M - The number of time averages to be calculated.

• �t -The time lags of the simulation. e.g a simulation with timesteps of 1ps would
have time lags of 1ps, 2ps, 3ps, ...

1: for each time average do
2: for each�t you wish to calculate the MSD for do
3: for each particle in the system do
4: Record the position of the particle at time t = 0
5: Calculate and then square the displacement of the particle at time t +�t

with respect to its position at t = 0
6: end for
7: Sum the squared displacement over all N particles in the system
8: end for
9: Average the summed squared displacement over all�t

10: end for

particles to change direction. Diffusion coefficient is a measure of how quickly the particles

in a fluid diffuse under this Brownian motion. In the general case, diffusion is defined as the

process whereby particles that are suspended in a fluid will move around due to the thermal

motion of the fluid

During his studies of Brownian motion, Einstein showed that for a particle following

a random walk, the MSD of the particle grows linearly with the elapsed time. The diffusion

coefficient D , is defined as the constant of proportionality between the MSD of a particle

that exhibits brownian motion, and time and is given by the following equation.

MSD(t) = 2d D t (2.18)

Where MSD(t) is the Mean squared displacement at time t, and d is the dimensionality (3

in our case).

If we treat the movement of particles in our simulation as following a random walk,

we can quite easily use this equation to get a value for the diffusion coefficient. Taking the

slope of the linear portion of the MSD when plotted against t then dividing by 6 (2 * d) gives

a value for the diffusion coefficient. It is important that we only use the MSD values that

grow linearly with time though, since these can be accurately represented as a random walk.

At the beginning of the simulations, this is often not the case. Since particles initially are

heading in a straight trajectory, it takes some time before they collide with other particles.

37

The particles colliding causes them to change direction and allow us to treat the MSD as a

random walk, since there are less collisions during this time, we can not do this. This part

of the MSD plot is often known as the ballistic regime, a schematic showing this ballistic

regime is given in figure 2.6.

It is also important to note that at large timescales, towards the end of the simulation,

the data can often be averaged poorly. Due to the fact the time lags are large, we therefore

have less data and so our results lose accuracy when the average is calculated. In the context

of calculating the MSD from MD simulations, the choice of time lag determines the number

of displacement values that can be obtained for each molecule.

Figure 2.6: An example of a typical MSD plot.

This was generated using the trajectories of

Aceclofenac at 110K above the estimated Tg .

The red portion of the MSD is the ballistic

regime where the MSD does not scale linearly

with time. The blue portion is the poorly av-

eraged long lag time MSD. The green section

is the linear portion that is used to calculate

the gradient.

For example, suppose a 500 ps MD

simulation is performed, and the MSD is

calculated using a time lag of 500 ps. In this

case, for each molecule, only one value for

how far the particle has been displaced in

500 ps is obtained. However, if a time lag

of 1 ps is used, then there are 499 displace-

ment values available to track how far the

particle has moved over 499 different time

intervals.

The choice of time lag affects the

resolution of the MSD data, with smaller

time lags providing more detailed infor-

mation on the particle’s movement over

shorter time intervals. However, smaller

time lags require longer simulation times

to obtain statistically significant results.

Therefore, the choice of time lag must be

carefully balanced with the computational

resources available and the desired level of

resolution in the MSD data.

As we have non-linearity at the

short and long timescales, we elect to ignore the first 500 ps and last 500 ps of the MSD

when calculating the slope of the linear portion. These various sections of the MSD are

illustrated in figure 2.6. Convergence of the MSD in MD simulations is determined by ob-

serving a plateau or steady-state behavior in the MSD vs. Time plot, as well as considering

the variability of the MSD within that region. Longer simulation times and larger system

38

sizes often facilitate faster convergence.

The diffusion coefficient can be a useful tool to gather information about the Tg

of a molecule as it gives us an insight into the transport properties and dynamics of the

molecule. Since the molecular mobility decreases with temperature, so does D , and at tem-

peratures below the glass transition temperature, D drops dramatically as the material be-

gins to behave as a solid. In a heuristic sense, we are seeing how much the molecules in our

system ’spread out’ over a given time. The rationale behind using D as a descriptor is that it

gives us some information about how much the system is moving about and thus how close

it is to crystallising/forming a glass.

2.3.11 Van-Hove correlation function

Named after the American physicist Leland Van Hove, the Van Hove function describes the

probability distribution of finding a particle at a certain distance away from its origin at a

given time [111]. In other words, if a particle is at position r (0) at time t = 0, then the VHF

G (r, t) gives us the probability that the particle is at position r (0)+r at time t . Note that this

is a more generalised form of the pair correlation function described in section 2.3.8.

Similarly to how we used the MSD to easily calculate other descriptors, we leverage

the Van Hove function to more easily calculate other descriptors in this work.

The VHF can be split into two parts, the self part Gs , and the distinct part Gd

G (r, t) = Gs (r, t) +Gd (r, t) (2.19)

Gs (r, t) =
1
N

Æ
NX

i=1

�(r+ ri (0)� ri (t)

∏
(2.20)

Gd (r, t) =
1
N

*
NX

i 6=1

�(r+ r j (0)� r j (t)

+
(2.21)

Where t > 0 and � is the delta function defined as

�(x) =

8
<
:

1, if x = 0

0, otherwise

By splitting the VHF into two parts, we now have the self part that shows us the probability

density of a particle moving a distance r in time t , and the distinct part that gives us the

probabilty that there is a particle a distance r at time t from a position where there was a

different particle at time t = 0. Interestingly, the VHF can also be related to the MSD of a

39

system using the following equation

G (r, t) =
1

4⇡r 2

@

@ r
MSD(t) (2.22)

2.3.12 Intermediate scattering function and structural relaxation time

The Intermediate Scattering Function (ISF) is a function that describes how much radiation

is scattered in a scattering experiment as a function of time. Although we do not use the ISF

as a descriptor for ML, it is instrumental in our work in chapter 4, so we include a brief

overview of it here.

The ISF measures the correlation of particle positions as a function of time and wave

vector. In other words, it gives the probability that at a certain wave vector, q, and time t , a

particle will scatter. The ISF is defined as:

F (q , t) =
1
N

NX

j=1

NX

k=1

hexp
�
i q · [r j (t)� rk (0)]

�
i (2.23)

where F (q , t) is the ISF, N is the total number of particles in the system, r j (t) is

the position of particle j at time t , rk (0) is the position of particle k at time zero, q is the

wave vector of the incident radiation or the scattering vector in the reciprocal space, and

the brackets denote the ensemble average.

The ISF is related to some of the previously mentioned descriptors. It can be calcu-

lated by taking the Fourier transform of the Van Hove function, and it can also be used to

calculate the self-diffusion coefficient and relaxation time.

The structural relaxation time ⌧ is a measure of the timescale required for the struc-

ture of the system to evolve to a ”significant” extent. In the context of the dynamics of

strongly supercooled liquids and glasses, we can identify three separate relaxation timescales:

1. the ballistic regime, observed for very short timescales within which molecules do not

have time to even collide with each other; 2. the cage-motion/rattling regime, which is ab-

sent in the hydrodynamic regime (it is a hallmark of supercooled liquids and to an even

greater extent of glassy systems) and corresponds to the timescale involved with the ”rat-

tling” of the molecules within the ”cages” formed by their neighbors. The relevant timescale

is often indicated as the � -relaxation of the system; 3. the ↵-relaxation regime, which cor-

responds to a significant structural change of the system due to the molecules leaving their

”cages”. These three timescales can all be probed by means of the (self part of the) interme-

diate scattering function (equation 2.23)

We have explicitly verified this is the case by computing Eq. 2.23 by choosing q vec-

40

tors along each Cartesian direction. Note that the intermediate scattering function we ob-

tained from our MD simulations can in principle be directly compared to experimental re-

sults from, e.g., inelastic neutron or X-ray scattering measurements. This is done in chapter

4.

As illustrated in Fig. 2.5f, for a liquid in its hydrodynamic regime (see e.g., the data

re: T= Tg + 150 K in Fig. 2.5f), there is no � -relaxation regime, and Fs (q , t) decays smoothly

from one to zero via a single exponential decay. For a supercooled liquid, however, the emer-

gence of the cage-rattling motion results in a characteristic plateau of the Fs (q , t) (see e.g.,

the data re: T = Tg + 30 K in Fig. 2.5f), which only decays to zero from the onset of the ↵-

relaxation regime. To extract a single metric that reflects the timescale associated with the

onset of the↵-relaxation regime, a common choice we have also adopted in this work is that

of choosing as the structural relaxation time, ⌧, the time for which Fs (q , t) is equal to 1/e =
0.368. Longer relaxation times are indicative of a dynamics, which in turn are characteristic

of a lower propensity for the drug molecules in either the supercooled liquid or the glass to

crystallise. ⌧must be related to D in some fashion, albeit ⌧ is a much more robust quantity

for a supercooled/glassy system, where not just one D exists. In fact, one can define a D

characteristic to each of the time scales we have discussed. In this work, we have attempted

to focus on the D associated with the ↵-relaxation regime, which should be directly corre-

lated with ⌧. Note that, below and/or in proximity of Tg , ⌧might be longer than the extent

of our MD simulations (see e.g., the data re: T = Tg -10 K in Fig. 2.5f).

2.3.13 Velocity autocorrelation

The velocity autocorrelation function (VACF) is not directly used to calculate any descrip-

tors in this work, however, it is used in chapter 4 to generate representations of the TBOS

frequencies

Velocity autocorrelation (VAC) is a mathematical tool used in the study of molecular

dynamics to analyze the fluctuations of a particle’s velocity over time. VAC can be used to

determine the properties of a system by examining the correlation of a particle’s velocity at

different times. The VAC function is defined as the time-dependent correlation between the

velocity of a particle at time t and its velocity at time t + ⌧.

The VAC function can be expressed mathematically as follows:

C (⌧) =
1
N

NX

i=1

hvi (t)vi (t +�⌧)i (2.24)

where N is the number of particles, vi (t) is the velocity of the i th particle at time t ,

41

and<...> denotes an ensemble average over all particles in the system. The VAC function is

often plotted as a function of time lag (�⌧) and provides information about the dynamics

of the system.

In the case of amorphous drugs, the VAC function can provide insight into the stabil-

ity of the drug. Amorphous drugs are metastable and tend to undergo relaxation processes

over time that can lead to degradation and loss of efficacy. The VAC function can be used

to determine the time scale of these relaxation processes and to identify any changes in the

dynamics of the system that may indicate degradation or instability.

2.4 Optimisation

Now that the descriptors used in this work have been established, in this section we talk

about how we have attempted to improve the quality of predictions using the descriptors.

We have used optimisation techniques as well as synthetic data generation in an attempt to

get the best possible performance out of the descriptors.

2.4.1 Genetic algorithm

A genetic algorithm (GA) has been developed to optimise the hyperparameters of the SOAP

descriptor (section 2.3.5). This descriptor has a large hyperparameter space and it is com-

putationally expensive to compute, so it is essential that our optimisation technique con-

verges quickly.

There are many different optimisation techniques but we decided to focus mainly

on a genetic algorithm. The reason for this is twofold, firstly, a GA is highly customisable, we

can easily change population sizes, convergence criteria, number of generations etc. to suit

our needs. This is particularly useful when dealing with large systems where the SOAPS are

very computationally expensive to generate. Secondly, the GA is easily parallelisable, again

this is invaluable when computational expense is an issue.

Since the objective of this work is to create a transferable method of getting accu-

rate predictions for properties related to recrystallisation for amorphous drugs, the GA was

intended to work ’out the box’ and be as general as possible without any prior knowledge

of the molecules in the database. We have demonstrated that this was successful, as well as

thoroughly explained how the GA works and the kind of results that can be expected from

it in section 5.

42

2.4.2 Synthetic data generation

An issue that we faced from the beginning of this project was a lack of data. This is a com-

mon problem that is often tackled by generating synthetic data. This can be a fairly compli-

cated process and there are many techniques available to complete this task such as varia-

tional autoencoders [112] and generative adversarial networks [113].
Generating synthetic data using these advanced techniques can have its pitfalls.

Since the data is often generated using a neural network, it is hard to eliminate bias as a

result of the underlying real data, and also it is a challenge to know whether poor final re-

sults are an artifact of poor data generation.

Figure 2.7: A representation of how SMOTE

can be used to generate synthetic data. The

descriptor used is a ’vanilla’ symmetry func-

tion that has been visualised using t-SNE di-

mensionality reduction [114]. The dots repre-

sent real data in our dataset, while the crosses

are datapoints generated using SMOTE. The

units are arbitrary.

One prevalent challenge when work-

ing with molecules is determining whether

synthetically generated molecules are phys-

ically viable and quantifying how challeng-

ing they would be to synthesise in a lab.

Of course solutions exist for this problem

too, such as the G-SchNet software [115],
but since these methods are also based

on learning the underlying distribution via

neural networks it suffers many of the same

problems.

It is clear that the process of gener-

ating reliable synthetic data using machine

learning is a complex and arduous one.

Thus, due to time constraints, we elected to

use a simpler method that does not rely on

learning any underlying distribution and is

computationally inexpensive.

The Synthetic Minority

Over-sampling Technique (SMOTE) is a

method for generating synthetic data in a

relatively simple way for classification datasets [116]. This method does not learn any un-

derlying distribution and it does not verify that the generated data is physically viable, how-

ever, we argue that this is not an issue. This is because SMOTE is used on individual descrip-

tors instead of the underlying dataset and it generates artificial descriptors as opposed to

artificial molecules. For this reason it does not matter if a physically viable molecule can be

43

reconstructed using this descriptor. We simply have a descriptor for a molecule in a given

class.

SMOTE works on a class by class basis. It chooses two descriptors from the same

class and draws a line between those descriptors in feature space. A point along that line

is then randomly selected and that point is mapped to a descriptor vector. This is a simple

and straightforward approach to data generation, and although perhaps not as robust as

other methods, it has been responsible for significant improvements in our ML results.

An illustration of how the synthetic data fits in with the real data is shown in figure

2.7. There are some caveats with using data generated with SMOTE. Firstly, SMOTE is only

intended to equalise how many datapoints are in each class, it is not intended to create new

datapoints. This is why no new class 1 descriptors were created in figure 2.7.

Secondly, data generated using SMOTE is obviously not independent of the under-

lying data. So we must be very careful when training models on this data. When it comes

to machine learning it is recommended that a validation set of data is held aside and not

used to generate new descriptors using SMOTE. If this is not done, it is possible that the

training data can contain a significant amount of information about the test data leading to

inaccurate results.

Finally, as we mentioned previously, SMOTE is not necessarily a very robust algo-

rithm. SMOTE-generated datapoints, meant to alleviate class imbalance, have been created

within the class 1 cluster but end up as outliers themselves. While it can be argued that pre-

dictive models should be robust enough to handle outliers in real-world data, this outcome

raises concerns about the effectiveness of SMOTE.

This occurrence is not an isolated incident; it is a recurring challenge when employ-

ing SMOTE. The algorithm’s tendency to produce synthetic instances that deviate signifi-

cantly from the original data distribution can have adverse consequences. These artificially

created outliers might mislead the learning process and hinder model generalization.

Researchers and practitioners should be acutely aware of these shortcomings when

employing SMOTE and should carefully assess whether its use is appropriate for their spe-

cific dataset and problem domain. In some cases, alternative techniques or more robust

oversampling methods may be more suitable to mitigate class imbalance without intro-

ducing such pronounced deviations from the underlying data distribution. In conclusion,

while SMOTE can be a valuable tool, its limitations regarding outlier sensitivity and their

impact on model performance must not be underestimated.

44

Molecule

weighted
ACSFs

histogram-
wACSFs

R[Å]

wA
CS

Fs

wACSFs values

Figure 2.4: Constructing the H-wACSFs descriptor. A three-dimensional conformer (ide-
ally, an ensemble of them) has to be generated for each molecule. Then, in line with the
work of Behler [89], radial and angular symmetry functions are computed by sitting on
each atom within the molecule and calculating the value of (usually Gaussian) functions
that depends on either ri j = |r̄ j � r̄i | distances (radial SFs) or ✓i j k angles (angular SFs) be-
tween pairs or triplets of atoms - up to a certain cutoff radius Rc . In principle, different sets
of symmetry functions are needed for each combination of elements in a given molecule.
Gastegger et al. have recently [90] introduced a weighting scheme that substantially reduces
the number of functions needed to encode the structure of multi component systems such
as drug-like molecules. As molecules with different number of atoms and or elements are
characterised by different number of symmetry functions, we regularise these features by
building histograms of weighted atomic symmetry functions. Each molecule can then be
represented by a vector with as many elements as the bins chosen to build said histogram:
low and higher number of bins thus provide more or less coarse-grained representations of
the molecular structure. Note that this descriptor can straightforwardly applied to three-
dimensional models of crystalline or amorphous drugs.

45

a) b)

d) e) f)

c)

Figure 2.5: Molecular dynamics simulations. a) Computational protocol used to generate
the amorphous phases of each molecule in the Amo-Reg dataset (see section 2.2). b) A rep-
resentative snapshot of an amorphous phase (for celecoxib) from a MD trajectory at 100 K.
c) Mean-squared displacement (MSD see text) for chrysin as a function of temperature -
with respect to Tg . Solid and dashed lines refer to heating and cooling ramps, respectively.
d) Initial configuration for the celecoxib system. e) Volume V as a function of temperature
T for chrysin, reported along either the heating and cooling ramp. Tg can be estimated as
the temperature at which the two V (T) lines (obtained via linear regression, also shown)
cross (see section 2.3.7) f) Self part of the intermediate scattering function (SISF, see section
2.3.12), for chrysin as a function of temperature - with respect to Tg . Solid and dashed lines
refer to heating and cooling ramps, respectively. The intersection between each curve and
the horizontal line (at y = 1/e) marks the structural relaxation time ⌧ for the system.

46

Chapter 3

Machine Learning

3.1 Machine learning

By calculating the single-molecule and solid-state descriptors described in the previous

chapter gives us several ways to numerically represent the physical properties as well as

the behaviour of molecules in our datasets. In this chapter we outline the various machine

learning techniques that we use to find patterns in these numerical representations that we

can use to make predictions about the properties of interest.

There are many different flavours of ML algorithm that are available for us to use,

and after careful consideration, the two types of model that we use are neural networks

(NNs) and random forests (RFs) the justification for this choice is discussed in section 3.2.3.

The machine learning in this work was computed using Tensorflow 2.9.0 on Dell

PowerEdge C6420 compute nodes each with 2 x Intel Xeon Platinum 826 (Cascade Lake) 2.9

GHz 24-core processors with 48 cores per node, 192 GB DDR4-2933 RAM per node, and 4

GB RAM per core.

3.2 An overview of NNs and RFs

3.2.1 Neural networks

Neural networks are arguably the most popular type of machine learning algorithm model.

They are modeled after the structure of the human brain and composed of connected ’neu-

rons’ known as nodes that process and pass on information. Each node receives an input

signal from other nodes and then processes that signal using an activation function. This

activation function determines the output of the node that is passed on and propagated

47

through the network.

The nodes are connected to each other, much like how neurons are connected by

synapses. These connections in a neuron are weighted, meaning that the connection be-

tween certain nodes can be adjusted to be stronger or weaker, making the output of that

node more or less significant. The weight of these connections is optimised when the neu-

ral network is trained. In this work we are only concerned with a specific type of machine

learning known as supervised machine learning, where the correct result for each input is

known. In a supervised neural network, information is passed through the network with ini-

tially random weights and the output is compared against the true value. The error between

the predicted and actual value is evaluated using a cost function, and the goal of the NN is

to minimise this cost function. At each iteration of the neural network, the cost function

is calculated and the error is propagated backwards throughout the network. The gradient

of the cost function with respect to the weights of each neuron is calculated and used to

update the weights to minimise the cost. This process is known as backpropagation. Back-

propagation is repeated a number of times (known as epochs) until either a certain number

of iterations have elapsed, or the cost function has converged.

There are many parameters of the neural network that can be fine-tuned such as

the activation functions of nodes, the cost function, the method to update the weights of

the nodes, and the number of nodes. In this chapter we explain how these parameters were

chosen and the processes used to optimise them.

3.2.2 Random forests

In order to understand random forests, one must first have an understanding of what a de-

cision tree is. A decision tree is a ML algorithm that builds a tree-like structure where each

node represents a feature and each branch of the tree represents a possible value (or set

of values) for that feature. At each node, the decision tree algorithm splits the data into

subsets that are as ’pure’ as possible. The purity can be determined using a number of dif-

ferent methods, the most common is the Gini coefficient (see equation 3.6. The process

of splitting the data into subsets continues until some stopping criteria are met, such as a

pre-determined maximum depth is achieved, or there are a minimum number of instances

in each leaf node (a leaf node is a node without any branches).

Once the decision tree is built, a feature vector can be passed into it and it will tra-

verse the tree based on its values. The value (or class) associated with the leaf node that it

ends up in is the output of the tree.

A random forest is simply a collection of decision trees where the output is the av-

48

erage result from traversing various different trees. The trees in a random forest are trained

using a process called bagging that is described in section 3.9.1.

3.2.3 The choice of ML algorithm

Neural networks and random forests are both suitable for regression and classification tasks.

The reason we chose to use these two algorithms in particular is because the strengths and

weaknesses of each algorithm can compliment each other, and combining them can result

in a more effective and robust model.

Neural Networks strengths lie in their ability to learn complex nonlinear relation-

ships in the data. This is because they are more flexible than random forests as RFs are lim-

ited by simple decision based rules. Neural networks also are more robust to noisy data than

random forests. This is because NNs can learn to ignore noisy features as well as learning

the underlying pattern of the noise in order to smooth it out. Random forests are suscep-

tible to noise, especially if the noise is structured in such a way that it affects the decision

boundaries of the algorithm.

NNs do have some weaknesses however, they can be computationally expensive to

train. Random forests are easily parallelisable so they can be much quicker to train using

multi-processing. Also, one of the biggest criticisms of neural networks is that they are a

’black box’ in that it is given an input and produces an output but it is very unclear how it

arrived at that output and which features had an effect on its decision. This is not the case

with random forests as it is easy to see the decision boundaries for each feature and we can

extract the importance of each feature based on how much it reduces the impurity of the

decision trees.

3.3 Model parameters for NNs

The design and implementation of neural network models requires careful consideration

of several parameters, including the number and size of the layers, the activation functions

used in each layer, the learning rate, and the optimization algorithm used to train the net-

work. Each of these parameters plays a critical role in determining the accuracy and per-

formance of the neural network model, and must be chosen carefully to ensure optimal

results.

In this section, we provide a comprehensive overview of each of these parameters,

discussing their individual roles and how they interact with one another to affect the per-

formance of the neural network model. We also provide examples and best practices for

49

selecting and tuning these parameters to achieve optimal performance.

3.3.1 Neural network architecture

The network architecture describes the number of nodes and hidden layers in the network.

Unlike the previous parameters we have mentioned, we cannot simply choose a network

architecture that reasonably works with all of our different types of features.

In order to determine which architecture to use, we must first understand the rela-

tionship between the number of layers/nodes and the performance of the neural network.

The capacity of a neural network is a measure of how well the model can fit to a wide variety

of functions. A high capacity will be able to fit to a large number of functions but will be at

risk of overfitting to the training data. This is a cause of high variance and low bias. On the

other side of the spectrum, if a model’s capacity is too low, it will not fit the data very well and

will suffer from underfitting. The capacity of a network is directly related to its architecture

with a larger number of nodes/layers increasing the capacity.

We therefore seek to find a network architecture that is as simple as possible while

also able to fit our data. There are many sophisticated techniques that can be used to ac-

complish this [117] but due to the large number of different features we are working with,

we elect to go for a simple, easily generalised method.

It is shown in [118] that theoretically a two layer ReLU neural network with 2Ns +d

nodes in each layer is capable of perfectly representing a dataset of Ns samples with feature

dimensionality d . With this in mind we proceed with the assumption that the optimal num-

ber of nodes will between d and 2Ns+d . To find the number of nodes in this interval that are

sufficient for our use, we multiply 2Ns +d by a scaling factor k where k 2 {0.2, 0.4, 0.6, 0.8, 1}

The impact of the scaling factor on each descriptor is shown in table 3.1. What we

can see from this is that 0.2 < k < 0.8 seems to give the best result for every descriptor.

We also note that the descriptors with a larger dimensionality tend to perform better with

a lower scaling factor whereas the lower dimensionality prefer a larger k . Intuitively this

makes perfect sense.

A choice needs to be undertaken regarding whether to employ separate scaling fac-

tors for each descriptor or to utilize a universal variable k for all descriptors. While the

variation in scaling factors doesn’t notably alter the majority of descriptors, it’s not insignif-

icant. Furthermore, it significantly influences the efficacy of the relaxation time feature. So

we conclude that it is sensible to use an individually selected scaling factor for each differ-

ent descriptor network. This choice is made manually by inspecting table 3.1 and selecting

the scaling factor that correlates to the lowest combines test and train MSE.

50

Descriptor Nodes
Time per
epoch (s)

Average
epochs

Average
time (s)

Test
MSE

Train
MSE

191 0.128 176.4 23.467 1448.8 1037.3
382 0.163 136.4 21.776 1346.7 1009.6

Std 573 0.228 135.4 30.497 1431.2 975.6
764 0.572 126.8 58.876 1475.2 991.7
955 0.818 126.8 84.279 1484.4 982.4
27 0.093 284.0 31.306 1567.7 1123.2
54 0.102 216.8 24.84 1632.7 1071.6

Cliques 82 0.104 149.2 19.298 1633.8 1081.4
109 0.092 177.2 23.213 1398.7 1013.6
137 0.135 198.4 26.235 1494.4 992.2
50 0.217 231.6 26.271 1384.1 1076.1
101 0.155 178.8 23.147 1485 1017.4

H-wACSF 152 0.132 148.6 18.173 1355 1012.6
203 0.146 147.2 20.123 1513.7 1009.5
254 0.12 153.6 22.158 1401.4 995.8
128 0.132 181.0 21.601 1489.7 1013.9
257 0.119 147.0 21.806 1381.9 1015.1

SOAP 385 0.166 137.6 22.31 1520.6 1021.6
514 0.16 136.8 26.709 1424.3 965.5
643 0.418 139.8 43.071 1453.3 983.3
12 0.164 377.0 37.467 1453.3 1130
24 0.167 233.6 24.248 1533.3 1181.4

DC 36 0.168 234.8 26.523 1398.9 1070.6
48 0.165 184.2 20.823 1506.7 1050.1
61 0.103 212.6 25.224 1539.2 1102.8
12 0.135 326.6 31.808 1618.9 1262.1
24 0.131 211.2 22.516 1945.6 1177.7

RT 36 0.189 201.6 22.917 1599.8 1138.7
48 0.097 298.4 32.569 1323.2 1002.2
61 0.092 185.0 21.562 1669 1090.5

Table 3.1: The effect the number of nodes has on a two layer ReLU network using the vari-
ous descriptors at our disposal. DC and RT represent the results obtained for the diffusion
coefficient and relaxation time descriptors respectivley. Note that in the case of descriptors
with hyperparameters, namely SOAP and H-wACSF, we have used the vanilla parameters
described in section 5.3.1 in this analysis

3.3.2 Activation function

The activation function is a function applied to each neuron of a neural network. This func-

tion introduces non-linearity to the model and is what gives neural networks their ability to

51

model complex relationships between the features and targets. The activation function we

have used is the Rectified Linear Unit (ReLU) function. This activation function is defined

as:

f (x) =ma x (0, x)

ReLU is a popular activation function that has the benefits of being more computa-

tionally efficient than other popular functions such as the sigmoid function. Since ReLU can

return 0, not all neurons are necessarily activated, unlike with the sigmoid function which

always returns a value greater than 0. Additionally, since the function is piecewise linear it

is inherently easier to optimise than a non-linear function and also does not suffer from the

vanishing gradient problem since the value of the node activations are proportional to the

gradients [119]. For these reasons, we have used a ReLU activation function for all of the

hidden layers in all the neural networks in this work.

When it comes to the output layer, we use a linear activation function for the regres-

sion tasks. This is standard practice because the linear activation function can output any

value as it is unbounded. For the classification tasks, it is also standard practice to use the

softmax function. The reason the softmax function is so ubiquitous for classification tasks is

because it is capable of converting the outputs of the neural network into k probablities that

sum up to one, where k is the number of classes. The softmax function is also differentiable

everywhere which is a requirement for activation functions.

3.3.3 Optimiser

An optimiser is the algorithm that is used to minimise the loss function, this algorithm is re-

sponsible for updating the weights of the neural network. The choice of optimiser can have

a fairly profound effect on the performance of a neural network. A good optimiser helps

prevent overfitting while converging quickly. The optimisation algorithms can be divided

into two categories, manual and adaptive. The manual algorithms require the user to set

a learning rate which then has to be tuned. A learning rate that is too small will result in a

large number of steps until convergence, whereas a learning rate that is too big may never

converge. Adaptive algorithms automatically adjust the learning rate based on previous

gradients.

For simplicity and to prevent us from having yet another parameter (the learning

rate) to tune, we opt to use the Adaptive Moment Estimation (Adam) optimiser [120] since

Adam is generally regarded as the best gradient decent optimisation algorithm to use [121].
An argument could be made that stochastic gradient descent (SGD) can generalise better

than Adam [122], and while this may be true we show that it does not make any significant

52

difference

3.3.4 Loss function

A loss function is a mathematical function that measures the difference between predicted

values and actual values of a given dataset. The loss function serves as a guide for the model

to adjust its parameters in order to reduce the difference between the predicted output and

the true output. The goal of the loss function is to minimize the error between the predicted

and actual values, and thus, it is also known as an objective function or cost function.

The loss function is a crucial component of any machine learning algorithm, as it

defines the optimization problem that the algorithm tries to solve. The choice of loss func-

tion depends on the type of problem being addressed and the desired output of the model.

The selection of an appropriate loss function is important because it affects the per-

formance of the model. A poorly chosen loss function can lead to inaccurate predictions

and poor performance of the model. Therefore, the choice of loss function should be made

carefully, taking into account the specific requirements of the problem being addressed.

For regression, one might use the mean squared logarithmic error for values that are

all positive with a long tail. A mean average error loss function can be used to try and miti-

gate the significance of outliers in the data. The distribution of our regression data is shown

in figure 1.3 and by inspection we see that there are no significant outliers and the distri-

bution is roughly normal. For this reason it makes sense to simply use the conventional

mean squared error (MSE) as the loss function. The MSE is generally the default choice in

the absence of any unusual trends in the data and is given by the formula:

MSE=
1
N

NX

i=0

�
yi � ŷi

�2
(3.1)

where y is the models predicted value and ŷ is the actual value.

When it comes to classification for neural networks, the categorical cross entropy

is ubiquitous so we use this for all output layers in our classification neural networks. The

formula for categorical cross entropy is:

H (y , ŷ) =�
NX

i=1

yi log(ŷi) (3.2)

where y is a one-hot encoded vector representing the true label, ŷ is a vector of probabilities

outputted by the model for each class, and N is the number of classes.

53

3.4 Model parameters for RFs

Here we describe the parameters used to define the RF models. Much like the NN parame-

ters, these can have a large impact on the overall performance of the model. Some examples

of how much influence these parameters have can be found in table 3.2.

3.4.1 Number of Trees

The number of trees parameter in a Random Forest is the number of decision trees that

are created during the training process. Increasing the number of trees generally improves

the performance of the model, but at the cost of increased computational complexity and

memory requirements. The optimal number of trees depends on the size of the dataset, the

complexity of the problem being addressed, and the available computational resources.

There are several ways to determine the optimal number of trees for a Random For-

est. One common approach is to use cross-validation to evaluate the performance of the

model for different numbers of trees. Another approach is to monitor the out-of-bag error,

which is the error rate of the model on the training data that was not used to build a par-

ticular tree. The out-of-bag error provides an estimate of the model’s performance on new

data and can be used to select the optimal number of trees.

3.4.2 Max depth

The max depth parameter in a Random Forest is a hyperparameter that specifies the max-

imum depth of each decision tree in the forest. The depth of a decision tree refers to the

number of levels in the tree, where each level represents a decision based on one of the in-

put features. A shallow tree has a low maximum depth, while a deeper tree has a higher

maximum depth.

Setting the max depth too low can result in underfitting, where the model is too sim-

ple and cannot capture the complex relationships in the data. On the other hand, setting

the max depth too high can result in overfitting, where the model becomes too specific to

the training data and performs poorly on new data.

Choosing the optimal value for the max depth parameter is crucial for achieving

good performance in a Random Forest model. In general, the optimal value for max depth

depends on the complexity of the problem being addressed, the size of the dataset, and the

available computational resources. In some cases, a larger max depth may be necessary to

capture complex relationships in the data, while in other cases a smaller max depth may be

sufficient.

54

3.4.3 Min split size

The min split size parameter in a Random Forest is an important hyperparameter that af-

fects the complexity of the decision trees and the overall performance of the model.

During the construction of a decision tree in a Random Forest, the algorithm recur-

sively splits the data based on the feature that provides the highest information gain. The

splitting process continues until a stopping criterion is reached, such as when all the data

points in a node belong to the same class or when the number of samples in a node falls

below a certain threshold.

The min split size parameter specifies the minimum number of samples required

in a node to perform a split. If the number of samples in a node falls below the specified

threshold, the node is not split further, and the decision tree is considered to have reached

its maximum depth. By setting a minimum threshold for the number of samples in a node,

the min split size parameter helps to control the complexity of the decision trees and pre-

vent the creation of small sub-trees that may only be effective at fitting noise in the data.

A low value of the min split size parameter allows the algorithm to split the data

more aggressively, resulting in more complex decision trees. However, this can also lead

to overfitting, where the model performs well on the training data but poorly on new data.

On the other hand, a high value of the min split size parameter limits the complexity of the

decision trees and can result in underfitting, where the model is too simple and unable to

capture the underlying patterns in the data.

3.5 Preprocessing and forms of dimensionality reduction

3.5.1 Normalising the data

Normalising the data is an important preprocessing step in neural networks for a number

of reasons:

1. Prevents vanishing/exploding gradients: We can prevent the gradients from becom-

ing too small/large during backpropigation by normalising the data. Very small gra-

dients can lead to slow convergence or getting stuck in a local minima, whereas large

gradients can cause the model to be unable to converge.

2. Reduces impact of scales: Often the input data can have different scales, this is very

common in our standard descriptors as they are all measuring different properties

and not in the same units. Without normalisation, features that typically have larger

values can have more influence over the training of the model. By normalising the

55

data before training we ensure that each feature has equal contribution to the model

and it generalises to new data better.

There are different methods of normalising the most simple method to use min-max scal-

ing so that each feature falls in the range (0,1) where the largest value is scaled to be 1 and

the smallest is scaled to be 0. We found that the method of normalisation for the single-

molecule descriptors does not have a significant impact on the results and since min-max

scaling is robust, easy to interpret, and simple to implement we decided to use it. Note that

one of the criticisms of min-max scaling is is that it is sensitive to outliers, so it was impor-

tant that we checked each feature for outliers before applying the scaler.

Parameters MCC Train MCC Test

n_est-80

md-4

mss-2

0.726±0.019 0.151

n_est-80

md-4

mss-4

0.715±0.02 0.176

n_est-80

md-32

mss-2

1.0±0.0 0.279

Table 3.2: How the parameters of the ran-

dom forest impact the results for the cliques

descriptor for the Amo-Class dataset. n_est is

the number of trees used (see section (3.4.1),

md is the Max depth (see section 3.4.2), and

mss is the Min split size (see section)

In cases where the data spans a large

range, min-max scaling is less appropriate,

and it is standard practice to use logarith-

mic scaling. In this technique, a logarith-

mic function is applied to the data points,

which compresses the range of values while

preserving the order of magnitude. Loga-

rithmic scaling works by transforming each

feature by taking its logarithm.

In Machine Learning, logarithmic

scaling is often used to transform skewed or

heavily skewed data, as it can help to mit-

igate the effect of extreme values. More-

over, this technique can be particularly use-

ful when dealing with data that has a wide

range of values, as it can help to normalize

the data and improve the accuracy of the

model.

One of the key advantages of loga-

rithmic scaling is that it can help to reduce the impact of outliers, which are data points

that are significantly different from the rest of the data. By compressing the range of values,

outliers are less likely to have a significant effect on the model, and the resulting predictions

are typically more accurate.

56

3.6 Feature selection

Feature selection in machine learning is the process of selecting a subset of relevant features

or variables from a larger set of available features or variables for use in model building. The

goal of feature selection is to improve the performance of the machine learning algorithm by

reducing the dimensionality of the dataset and removing irrelevant or redundant features.

Feature selection can help to improve the accuracy of a model by reducing overfit-

ting and increasing its generalisation capabilities. It can also help to reduce the computa-

tional complexity and training time required for building the model.

In this section we highlight some common methods of feature selection and assess

their strengths and weaknesses.

3.6.1 Variance threshold

The first method we used is a simple variance threshold. This can be used for both classifica-

tion and regression. A variance threshold is the most simple method of feature selection and

it removes features where their variance is below some threshold. Generally the threshold is

set to 0 so that this simply removes features with constant value as they add no information

to the model and only serve to add noise. It is not unusual to use a threshold greater than 0

but one must be careful to normalise the data before doing this if the values of the features

measure different types of quantities. Since we seek to create a general workflow for feature

selection we simply used a threshold of 0 so that we did not need to take into account the

properties of each descriptor individually.

This method of feature selection is particularly useful when dealing with the H-

wACSF descriptor. Since a large number of the histogram bins are empty for every molecule

in the dataset, they contain no additional information. We can easily remove these redun-

dant features using a variance threshold. With this being said, when we use a variance

threshold on the H-wACSF descriptor to move features with no variance, it does not have

any noticeable effect on the performance of the model. The changes in MSE for both the

training and test set are negligible and much more likely to be attributed to the changes

in network architecture based on the different input dimensionality. Nonetheless we still

elect to use variance thresholds because even if they do not improve performance, at the

very least, they improve computational efficiency.

The likely reason for this lack of improvement in the case of the H-wACSF descrip-

tor is that since we are using the ReLU activation function, the nodes that handle the zero

variance features are not being activated and therefore are having no impact on the model.

This may not be the case for more complicated ensembles that we discuss in section 3.9 and

57

in general for ML it is not wise to include redundant features as they may just add noise. So,

we elect to use a variance threshold on all of our descriptors. Another reason that we use a

variance threshold is that it prevents unexpected results in the other feature selection meth-

ods that we use, for example if we have a feature of zero variance it is impossible to define

the correlation of that feature with another which causes a problem with the removal of

correlated features described in section 3.6.2.

3.6.2 Removal of correlated variables

Correlation is a measure of how changes in one variable relate to changes in the other vari-

able. We can quantify exactly how closely related two variables are by using the Pearsons

Correlation Coefficient (PCC). PCC measures the (linear) relationship between two vari-

ables, X and Y and is given by the equation:

⇢X ,Y =
c o v (X , Y)
�X�Y

(3.3)

For obvious reasons we seek to use features that are highly correlated with the target

value. Since multicollinearity is a source of noise in regression it is important to identify

features that are highly correlated with each other and eliminate this relationship as best

as possible. A common technique for identifying correlations is by plotting a colour scaled

correlation matrix as is shown in fig 3.1. This plot clearly shows some very strong positive

correlations for some of the descriptors. The diffusion coefficient and relaxation time obvi-

ously have highly correlated features, this is to be expected. Disappointingly they seem to

have almost no correlation with Tg. We also see areas of strong correlation with our stan-

dard descriptors, again this is to be expected as things like molecular weight/heavy atom

count , and the number of hydrogen bond donors/number of hydrogen bond acceptors are

strongly correlated. We also see areas of correlation within the SOAP descriptor and it is

much harder to pinpoint exactly why this is the case.

To explore how these correlations can impact our model’s performance we look at

removing highly correlated features and observing how the model performs. This is done by

finding all pairs of features where the absolute value of their PCC is above a given threshold

and removing the feature that has the lowest correlation with the target. Since the standard

descriptor has the highest number of correlated variables, we use this to illustrate how cor-

relation based feature selection impact the model. The results of this are shown in table

3.3.

We can see from this testing that interestingly there is a drop in performance on the

58

Figure 3.1: Heatmap showing the correlation of features with the Tg and with each other.
The Tg is shown in the leftmost column and bottom row. The white space in the H-wACSF
plot is an artefact of the histogram binning. Some histograms, particularly for the ’wider’
symmetry functions, have bins that are empty for all molecules in the dataset thus result-
ing in a null value for the PCC. These features are of course removed during the variance
threshold feature selection and are only shown in this plot for illustrative purposes.

test dataset when we use a threshold of 0.95 compared to when no features are removed.

Using a lower threshold seems to increase the performance up to an optimal threshold of

somewhere between 0.8 and 0.85. Decreasing the threshold below 0.8 appears to result in

59

a performance drop off. A point of interest about these results is the initial large drop in

prediction quality when the threshold changes from 1 (no features removed) to 0.95. It is

hard to know exactly why this is the case, but the most reasonable explanation is that there

are some non-linear relationships between some of the features and the target. For exam-

ple, if two features were highly correlated with each other and had little correlation with the

target, it is likely that one of them would be dropped by the feature selection method. How-

ever, it is entirely possible for the NN to find some non-linear relationship between the two

features that is correlated with the target. So by removing one of these variables in the fea-

ture selection process, we are hindering how well the model can learn to predict the target

value.

Threshold Test MSE Train MSE Dim.

1.00 1592.340 166.798 901

0.95 1713.828 86.965 423

0.90 1711.653 43.785 307

0.85 1511.507 38.109 220

0.80 1544.859 36.101 168

0.75 1894.682 53.535 129

Table 3.3: Table showing the relationship between

the PCC threshold and the MSE when using stan-

dard descriptors. The Dim. column shows the

dimensionality of the feature vector after features

with a correlation above the threshold have been

removed. A threshold of 1 means that no features

have been removed.

In order to ensure that this is

not happening, we adopt an intuitive

approach to selecting the threshold to

remove correlated variables. As previ-

ously mentioned, in the case of the Std

descriptor for the Amo-Reg dataset, we

choose a threshold of 0.825. This is

the sensible choice since it has reduced

the dimensionality of our descriptor

vector by 82% while keeping the test

MSE relativley similar when compared

to no threshold. We perform a simi-

lar analysis on each of the descriptors

and our results are given in table 3.4.

We decided to impose a very limited

threshold on the symmetry functions

and SOAP descriptor. The reason for

this is that since those descriptors are purely structural, we believe there may be some com-

plex non-linear relationships between the variables and, especially in the case of H-wACSFs,

there will be a high level of correlation between some of the features due to the nature of

the descriptor.

Due to the fact that the H-wASCF values are binned, it is possible that the first bin

will have the same number of atoms for almost every molecule, with only a small number

of molecules having a different number. This is important information, however it would

lead to a large correlation between these two features. For similar reasons we choose to

use no threshold on the diffusion coefficient and relaxation time; these descriptors already

60

have a very low dimensionality and are intrinsically correlated, so it would not make sense

to remove correlated variables.

3.6.3 Backwards Feature Elimination

Threshold Descriptor

0.825 Std

0.9 Cliques

0.98 H-wACSF

0.98 SOAP

1 DC

1 RT

Table 3.4: Table showing the corre-

lation thresholds when performing

dimensionality reduction for each of

the descriptors.

The next method we will discuss is the backward fea-

ture elimination approach. This methodology in-

volves the utilization of all available features initially,

and subsequently computes a measure of the indi-

vidual feature’s effectiveness in assessing the target

variable. This evaluation is carried out using the

MDI (see section 3.6.4), which is determined by the

SKlearn RandomForest function. The feature with

the lowest score is then eliminated iteratively until

a certain stopping criterion is met. In the case of

the regression tasks, we stop after 5 iterations with

no improvement in the lowest MSE of the test set.

For classification tasks we continue until 5 iterations

have elapsed with no improvement in the best test

set MCC.

It is important to note that this method necessitates the retraining of a new model

each time a feature is removed, resulting in a significant computational expense, especially

when implementing LOOCV. Despite this, the advantage of this approach lies in its ability

to ensure the attainment of the most optimal outcomes due to the iterative nature of the

algorithm.

3.6.4 Feature importance

We have explored the possibility of using the intrinsic ability of random forests (RFs) to pro-

vide a measure of importance for each individual feature that makes up the descriptor via

a measure called the Mean Decrease in Impurity (MDI) [123]. An RF uses an impurity func-

tion i (⌧) as a criterion for how to best split the dataset at each node⌧ such that similar target

values will be in the same set [124]. In general, the impurity function for RF regression is the

variance [124]; however, for illustrative purposes, we consider the simplest regression prob-

lem, one of binary classification, which utilises the Gini impurity function:

i (⌧) = 1�p 2
1 �p 2

0 , (3.4)

61

where pk =
nk
n is the fraction of the nk samples of class k = {0, 1} out of n samples at

node ⌧, to measure how well a potential split at each node ⌧ within the binary trees T will

separate the data [125]. A decrease in i (⌧) or �i resulting from a split that sends a sample

point to two sub-nodes, ⌧l and ⌧r , by a threshold t✓ on feature ✓ is defined as:

�i (⌧) = i (⌧)�pl i (⌧l)�pr i (⌧r), (3.5)

whereby the RF classifier considers a random subset of the features ✓ available at

the node and all possible thresholds t✓ to determine the pair {✓ ,t✓ } giving the maximal�i ,

i.e. �i✓ (⌧, T) [125]. This procedure is performed for all nodes ⌧ in all trees T , to obtain the

Gini importance for each ✓ :

IG (✓) =
X

T

X

⌧

�i✓ (⌧, T), (3.6)

when averaged by the total number of trees in the forest gives the MDI for feature

✓ , i.e. how relevant was its overall value [125, 126]. This framework may be generalized to

more complex regression problems through using the total variance at each node⌧ in place

of the Gini importance (see Refs. 124, 127). Accordingly, the MDI is a direct by-product of

training an RF model.

This strategy is easily implemented through the use of standard random forests algo-

rithms. We have used the RandomForestRegressor model from the Scikit-learn [128] pack-

age. Once the MDI for each feature has been reliably assessed, we sort all the features in our

descriptor vector according to their importance.

The most important feature is the molecular weight (MW) with a significance of

0.220. This was somewhat expected since it has been shown that there is a correlation be-

tween the glass transition temperature and the MW [129]. This is also fairly intuitive since

molecules with a greater MW will naturally require more energy to increase their temper-

ature and as shown in section 1.1.2 the glass transition temperature is determined by the

rate of heating or cooling.

The second most significant feature is the total spatial autocorrelation of the rela-

tive atomic mass with a lag of 0. This descriptor has a feature importance of 0.00215. The

equation for this descriptor is given by

AT Sk =
AX

i=1

AX

j=1

wi ·w j ·�
�
k ; di j

�
k = 0, 1, 2, 3, ...d (3.7)

where A is the number of atoms, wn is the atomic mass of atom n , di j is the topological

62

distance between atoms i and j , and �
�
k ; di j

�
is a Dirac-delta defined as

�
�
k ; di j

�
=

8
<
:

1 if �i j = k

0 if �i j 6= k
(3.8)

Since we are looking at the case where k = 0, this descriptor turns out to be the same as the

molecular weight. The reason for the (minor) discrepancy in feature importance is due to

the fact that the molecular weight is calculated using a slightly different method for each

descriptor. The fact that our two most significant descriptors are describing the same prop-

erty highlights the very significant need for the removal of highly correlated variables. By

having a number of highly correlated variables we only add noise to the inputs of our model.

Finally, the feature with the third most importance is the Crippen Molar refractivity.

The Crippen molar refractivity is a measure of the molecular size and polarisability of a com-

pound, and it has been found to be relevant to the glass transition temperature of a material.

Generally, compounds with higher molar refractivity have stronger intermolecular forces

and higher packing density, leading to a higher glass transition temperature [130, 131].

3.6.5 Regularisation

The final type of feature selection we trialled was regularisation. Regularisation is particu-

larly useful for complicated models that tend to overfit, such as NN’s. In essence, regular-

isation is a way of desensitising the predicted value to small changes in the features. It is

designed to reduce variance and increase bias.

Regularisation works by adding additional constraints or penalties to the model’s

optimisation process, discouraging it from fitting the noise or intricacies of the training data

too closely. There are two main types of regularisation where their objective functions are

given below:

Objective(L1)=
nX

i=1

yi �

pX

j=1

xi j� j

!2

+�
pX

j=1

|� j | (3.9)

Objective(L2)=
nX

i=1

yi �

pX

j=1

xi j� j

!2

+�
pX

j=1

� 2
j (3.10)

In the objective functions above, yi represents the observed value for the i -th sam-

ple, and xi j represents the value of the j -th predictor for the i -th sample. The coefficient

63

for the j -th predictor is denoted as � j . The parameter n denotes the total number of sam-

ples, and p denotes the number of predictors. The first term in each objective function rep-

resents the sum of squared errors between the observed values and the predictions made

using the linear regression model. The second term in each objective function introduces

a regularisation parameter �, which controls the size of the coefficients.

Equation 3.9 and 3.10 are known as Lasso (L1) regularisation and Ridge (L2) regu-

larisation respectively. Clearly they are very similar, the only difference is that L1 penalises

the model by the sum of the absolute value of the weights, whereas L2 uses the sum of the

squared value. Intuitively this can be interpreted as L1 regularisation seeking to estimate

the median of the data where L2 tries to estimate the mean.

Both of these methods are used to reduce overfitting, although only L1 can be clas-

sified as a feature selection method. This is because it is possible for the optimal value of

weights to be exactly 0 in L1 regularisation, whereas for L2 the weights get asymptotically

close to 0 but never reach it. For this reason it is generally the case that L1 works better when

not all features are relevant to the target, whereas L2 works where all features are relevant.

3.7 Early stopping

The process of early stopping is a technique used in machine learning to terminate the train-

ing process of a model when it is no longer improving on a particular metric. The early

stopping technique aims to prevent overfitting, which occurs when a model becomes too

complex and fits the training data too closely, leading to poor generalization to new, unseen

data.

Early stopping involves monitoring a metric, in our case the loss of the test set, dur-

ing the training process. If the metric fails to improve over a specified number of epochs,

known as the "patience", the training process is halted. The number of epochs is a hyper-

parameter that can be tuned to achieve optimal performance on a given problem. For this

work we set this hyperparameter to be 50 epochs.

The early stopping technique is especially useful when training deep neural net-

works or other complex models, as these models can require a large number of epochs to

converge. By using early stopping, the training process can be halted before the model over-

fits to the training data, leading to better performance on new data.

64

3.8 Model selection and cross validation

When discussing performance of models, up until now we have simply been using the mean

squared error given in equation 3.1. In this work we also use a few other scoring metrics to

evaluate how certain models and techniques perform. The metric that we used with our

genetic algorithm in chapter 5 is a combination between the MSE and the PCC given in 3.3.

Finally, we also use the accuracy of predictions. This is the percentage of predictions that

fall within 1 standard deviation of the true values. Although this is not particularly useful for

the training of the models, it is useful when we assess how well the model is doing - being

able to predict the target properties within one standard deviation is incredibly useful.

Now that we have set out the evaluation metrics it is important that we ensure they

are as accurate as possible. NN’s are sensitive to pertubations in initial conditions such as

the subset of data used to train the model. In order to ensure that we are as confident of our

results as possible, we use cross validation (CV).

The purpose of CV is to evaluate the performance of a model by seeing how well

it will generalise to an independent set of data. CV uses various parts of the data, known

as splits, as train and test sets for numerous iterations. This allows us to get a measure

of uncertainty for our predictions by measuring the variance in predictions based on each

different training set.

3.8.1 Cross Validation

Cross validation is sometimes referred to as k-fold cross validation, the method for perform-

ing k-fold cross validation is given in algorithm 3

When we are working with smaller datasets, such as the regression and classification

datasets, it is preferable to use a special type of k-fold cross validation called leave-one-out

cross validation (LOOCV). LOOCV is equivalent to choosing k equal to the number of points

in the dataset. So in our case, each molecule will form a test set by itself and every other

molecule will be used to train the model. This is done for each molecule in the dataset and

the accuracy of the predictions can then be evaluated. The benefits of this are that it allows

us to train on a larger training set, mitigating some of the pitfalls of using a small amount of

data to train. The problem with LOOCV is the large computational cost - you have to train

a model for each datapoint. Clearly this method is only suitable for smaller datasets, so it is

used for our classification and regression tasks. When CV is performed on larger datasets it

is much more common to use cross validation with a much lower number of folds since the

amount of training data is less of a problem and computational cost can be limiting.

A benefit of using cross validation in general is that it allows us to plot error bars for

65

Algorithm 3 K-fold Cross Validation
Input:

• D -Dataset containing n samples, represented by feature vectors x1, x2, ..., xn and
their corresponding labels y 1, y2, ..., yn .

• k - Number of folds.

Output:

• scores - Array of length k containing evaluation scores for each fold.

1: Shuffle the dataset D randomly.
2: Divide the dataset D into k equally sized folds.
3: for each fold i in range k do
4: Take fold i as the validation set, and use the remaining folds as the training set.
5: Train the model on the training set.
6: Evaluate the model on the validation set and record the evaluation score.
7: end for
8: Calculate the average score across all folds.
9: Return the array of scores.

our predictions. These error bars give an insight into the bias and variance of the model.

Bias and variance are always inversely correlated. Bias is the inability for the model be-

ing used to adapt to the data, for example trying to use a linear model to predict a non-

linear dataset. Variance is defined in machine learning as the amount the objective function

changes when trained on different data and is a symptom of overfitting.

Small error bars represent a high bias and low variance, while large error bars repre-

sent the opposite, a low bias and high variance. So we seek ’reasonable’ error bars, although

it is hard to quantify exactly what this means. To try and ensure sensible error bars, the re-

sults of the cross validation are manually inspected and the model is adjusted accordingly.

A high bias means that we need to change either the architecture of the network by adding

more nodes or hidden layers, or by training the data for longer by increasing the number of

epochs. We can fix a high variance by using regularisation, simplifying the network archi-

tecture, or training for less time/using some sort of stopping criteria.

We can further increase our confidence in the outcome of the CV by repeating the

process. Whenever we refer to repeated cross validation in this work, we have repeated the

cross validation 5 times. With each repeat the data is shuffled so that the subset of data that

makes up the training and test split for each fold is different. Obviously it does not make

sense to repeat LOOCV since the training set will be the same each time.

66

3.9 Ensemble methods

Ensemble methods in machine learning are defined as the process of combining multiple

models to improve the accuracy of predictions. The purpose of this is to reduce overfitting,

improve how well the model generalises to new data, and reduce the significance of outliers.

There are various ways in which this can be done that we explore in this work.

3.9.1 Bagging

Bootstrap Aggregating (Bagging) is a powerful and commonly used ensemble learning method

that forms an integral part of the random forest model. The essence of Bagging is to generate

multiple training sets from a single original training set using a technique called bootstrap-

ping. Bootstrapping is performed by repeatedly sampling the original training dataset with

replacement, until a new dataset of the same size is created. Due to the sampling with re-

placement, the new dataset may contain duplicate samples and some samples that were

present in the original set may be missing.

By using each bootstrapped dataset, a decision tree is trained on each one, resulting

in an ensemble of trees that are diverse and theoretically more robust. This is because each

tree is trained on a slightly different dataset, leading to a different set of internal rules and

decision boundaries.

Once the trees have been trained, the outcomes of each tree’s predictions are aggre-

gated to produce the final prediction. Specifically, a test sample is passed through every tree

in the ensemble and the outcomes are averaged to produce the final prediction.

In modern machine learning techniques like AdaBoost [132], the aggregation pro-

cess is further optimized by assigning weights to each tree’s prediction based on its perfor-

mance on the training data. A tree with better predictive capabilities will contribute more

to the final aggregation than one with poor performance.

3.9.2 Max voting

Max voting, also known as majority voting, is an ensemble method that aggregates the re-

sults of multiple ML models. This method is a generalised term for the aggregation step of

the bagging algorithm, as described in Section 3.9.1, and can be used with any type of ML

model, not just limited to random forests. The process involves training multiple models

and running the test set through each model. For regression tasks, the final prediction is the

mean of all the models’ outcomes, while for classification, the final prediction is the mode

of all the outcomes. It is important to note that in the case of classification, when the vote

67

of each model is not weighted, an even number of models cannot be used. This is due to

the fact that if the votes are tied, the final prediction would be ambiguous.

3.9.3 Ensemble of Neural Networks

This is a technique that we have leveraged heavily in this work. In our work we have nu-

merous descriptors and we hypothesise that by combining these descriptors in a neural

network we can outperform a neural network with only a single descriptor or even a max

voting ensemble of individual descriptor models.

One might be tempted to simply concatenate each feature into one long feature be-

fore feeding that into a neural network. However, as we have shown in Table 3.2, each de-

scriptor can be optimised by using different L2 regularisation rates and network architec-

ture.

To make sure that each descriptor is performing optimally we can train a separate

network for each descriptor. These networks are then concatenated in a concatenation

layer which is then trained to produce an output. A schema of what this looks like is given

in fig 6.1. What happens when using this architecture is that the first layer of networks learn

some representation of the descriptor they are assigned. This representation is then fed into

a layer where the concatenation layer is then trained as a regular neural network to output

a prediction. The error at each epoch is backpropagated throughout the entire ensemble

neural network.

68

Chapter 4

Using MD to understand the boson

peak

4.1 Introduction

This chapter delves into a phenomenon that takes place during the formation of glasses.

It also offers an additional application of the simulation protocol previously established

and described in section 2.2. The findings demonstrate that the descriptors derived from

the protocol have practical uses beyond their original purpose of predicting the stability of

amorphous drugs.

Our journey into this intriguing realm is significantly informed by collaborative work

with Gonzalez-Jiminez et al. [78], in which my primary contribution revolved around con-

ducting MD simulations of the system. In the following sections, we provide contextual in-

formation to elucidate why MD simulations were essential for this research and underscore

their significance beyond the confines of this thesis.

When a liquid is (super)cooled, the primary or ↵-relaxation rate—directly related to

viscous flow—decreases and decreases dramatically somewhere near the Tg, where calorime-

try measurements identify a rapid decrease in heat capacity[133]. Below the glass transition,

secondary or � -relaxation processes can be observed due to faster dynamic processes that

become uncoupled from the ↵-relaxation on vitrification and are the dominant relaxation

channel in the glassy state[134].
The molecular origin of these secondary relaxations is still unclear[135]. Because

secondary relaxations were first observed in polymer glasses, they were assumed to orig-

inate in the small angle orientational diffusion of the side chains or functional groups of

the polymers and therefore of essentially intramolecular character. However, the observa-

69

tion of secondary relaxations in rigid polymer glasses and even metallic glasses [134] implies

that at least some (now referred to as “Johari–Goldstein”) secondary relaxations are of an in-

termolecular character. One suggestion is that they are caused by spatial inhomogeneities

[136] giving rise to more loosely packed regions, distinct relaxing domains, defects[137, 138],
or regions of different packing such as locally favoured vs. liquid-like structures[139]. An-

other approach starts from the liquid’s potential energy landscape and views secondary re-

laxations as transitions between neighbouring potential energy minima while primary re-

laxation corresponds to the higher energy transitions between mega basins[133]. This pic-

ture explains why ↵ relaxation is frozen out before � relaxations.

Another phenomenon often associated with the glass is the boson peak [133, 140],
which is observed as an excess intensity of low-frequency modes around about 1 THz in

spectroscopic studies or as an excess heat capacity signature. The boson peak represents a

peak in the vibrational density of states [141] corresponding to an excess in the density of

states over that expected from phonons in a perfect Debye crystal. This gives rise to anoma-

lous behaviour of the low-temperature heat capacity Cp and a peak in Cp/T 3 at a few 10 s of

K. The origin of the phenomenon has been assigned various interpretations, ranging from

the occurrence of "two-level" excitations associated with broken bonds or other defects in

glasses[142], to other mechanisms for creating an excess in the low-frequency vibrational

density of states in the terahertz range over that expected for dispersive phonons in a perfect

crystal, giving rise to an additional contribution to the very low-temperature heat capac-

ity Cp leading to a peak in Cp/T 3[143]. The presence of the boson peak has been linked to

fluctuating elastic constants within a structurally disordered amorphous matrix[144], quasi-

localised soft potential defects[145, 146], localisation of transverse phonons associated with

defective soft structures[147, 148] (quasi) localised vibrational modes of locally favoured

structures [149, 150], a crystal-like van Hove singularity near the pseudo-Brillouin zone edge

washed out by structural disorder[151], may be caused by diffusive damping rather than

spatial disorder[152], and might not even contribute any extra heat capacity[153].
To gain insights into these intriguing phenomena, we utilise a combination of ex-

perimental techniques, including depolarized Raman spectroscopy, X-ray scattering, and

calorimetry, alongside the powerful tool of MD simulations. The MD simulations allow us

to probe the intermolecular structure and dynamics in supercooled and vitrified liquids,

offering a unique perspective on the behavior of molecules at the atomic scale.

Our results from MD simulations reveal key changes in the coordination and net-

work topology of the studied liquid, which are pivotal in preventing crystallisation as the

material transitions to the glassy state. These structural transformations are further corrob-

orated by experimental data, such as the evolution of Raman spectra and X-ray scattering

70

patterns. Together, these findings provide a comprehensive understanding of the physical

processes at play during glass formation.

In summary, the integration of MD simulations into our investigation not only en-

hances our comprehension of these complex phenomena but also establishes a vital link

between computational and experimental approaches. This multidisciplinary approach

bridges the gap between atomic-scale insights and macroscopic observations, ultimately

deepening our understanding of glass formation and the associated dynamic processes.

4.2 Results

Tetrabutyl orthosilicate (TBOS) is a viscous liquid that does not crystallise and has a glass

transition temperature Tg as measured by calorimetry of 120 K.

Femtosecond optical Kerr-effect (OKE) spectroscopy[154, 155]was used to measure

the Bose–Einstein corrected depolarised Raman spectrum using a time-resolved pump–probe

technique and numerical Fourier deconvolution. In our set-up[156, 157, 158, 159] which

has a time resolution of about 20 fs, the pump–probe delay can be as large as 4 ns result-

ing in spectra with a maximum spectral range from 125 MHz to 50 THz but is limited here

to the range 10 GHz to 10 THz to maximise the signal to noise. The low-frequency depo-

larised Raman spectra of liquids typically contain (overlapping) contributions from orienta-

tional relaxation, translational relaxation, intermolecular cage rattling motions, librations,

and vibrations[160, 161]. We have shown that—at least within the accessible frequency

range >1 GHz—the orientational and translational relaxations in nearly all liquids follow

the Stokes–Einstein–Debye and Stokes–Einstein laws tracking the macroscopic shear vis-

cosity and are therefore representative of primary or ↵ relaxations[157].
The amplitudes of orientational relaxation and librations in the spectra are propor-

tional to the anisotropic molecular polarisability tensor, which vanishes in a molecule with

tetrahedral, octahedral, or icosahedral symmetry. Quantum chemistry calculations were

carried out on TBOS and stability calculations of dimers, trimers, and higher aggregates

show that TBOS is expected to remain monomeric under normal conditions. The calculated

infrared spectrum in the Si–O–C stretch region (around 1100cm�1) matches the experimen-

tal one,

confirming that TBOS is monomeric and the silicon atom tetrahedrally coordinated

as expected. Temperature-dependent 13°C NMR spectroscopy from 20°C to 50 °C shows

four sharp bands as expected for a monomer. Calculation of the molecular polarisability

tensor of 100 structures randomly picked from 31,500 low-energy conformers shows that

the anisotropic polarisability remains an order of magnitude smaller than the isotropic one,

71

Figure 4.1: Optical Kerr-effect (OKE) spectra of supercooled and vitrified tetrabutyl or-
thosilicate (TBOS). a All data from 90 to 440 K. b, c Two representative temperatures and
fits. The black line in (b) is the component due to diffusive relaxation fitted to a Havril-
iak–Negami function, which freezes out below the glass transition and is therefore absent
in (c). The two green bands at low frequency are intermolecular modes fitted to two Gaus-
sian functions. The blue band is an intramolecular vibration fitted to a Brownian oscilla-
tor function with constant amplitude. The yellow curves are additional intra-molecular
vibrations. d Temperature-dependent amplitudes of the low-frequency (AG1, red disks)
and high-frequency (AG2, blue squares) inter-molecular modes. The lines are guides to the
eye. While these amplitudes change, the amplitude of the higher frequency intramolecular
modes remain unchanged with temperature as expected.

demonstrating that the deviation from perfect tetrahedrality due to the flexibility of the bu-

toxy side chains has a minimal effect. Therefore, the spectrum of TBOS should be greatly

simplified due to symmetry, only showing translational relaxation, intermolecular cage rat-

tling motions, and vibrations.

72

4.2.1 The OKE spectra

OKE spectra of TBOS were obtained over a temperature range from 90 to 440 K, as shown

in Fig. 4.1 . The spectra are largely temperature independent � 3 THz as this region only

features intramolecular modes. The low-frequency ( 3THz) part of the spectra has a strong

temperature dependence with changes in shape as well as amplitude.

The spectra in this low-frequency range could be fitted consistently with four func-

tions: a Havriliak–Negami function representing the diffusive ↵ relaxation, two Gaussian

functions representing the intermolecular modes, and a Brownian oscillator function for

the lowest frequency intramolecular mode. As expected, the diffusive↵ relaxation is strongly

temperaturedependent and freezes out below the glass transition.

Figure 4.2: Temperature dependence of the fit parameters for the intermolecular modes.
a) Ratio of the amplitude of the low-frequency intermolecular mode over that of the high-
frequency one. The solid red line is an exponential fit to guide the eye (The data point at
200 K was omitted in this fit on account of the noise at low frequencies in the corresponding
OKE data). b) Centre frequency!0 of the two intermolecular modes (blue squares and red
disks, also shown are linear and exponential fits to guide the eye) and the corresponding
widths� (green triangles and yellow diamonds respectively, also shown are an exponential
fit and a horizontal line to guide the eye).

The amplitudes of the two Gaussians (see Fig. 4.1) are proportional to temperature,

showing that they are collision-induced intermolecular “cage rattling” modes. The spectra

below the glass transition (e.g., at 90K in Fig. 4.1) clearly show the two intermolecular bands

as a peak at 2 THz and a shoulder at 0.9 THz. As can be seen in Fig. 2, the two intermolec-

ular bands evolve differently as a function of temperature. The ratio of the amplitudes of

the low and high-frequency bands stays approximately constant at high temperature but

doubles on cooling to the glass transition. The width of the high-frequency band is essen-

73

Figure 4.3: Analysis of temperature-dependent WAXS data. a) Experimental SAXS and WAXS
data taken at 298 K (red) and 92 K (blue) and fit to four Gaussians and a Lorentzian (black).
The average of the nine data sets at 110 K and below is shown (yellow) with a fit including
an additional Gaussian to account for the prepeak (black). b) Variation of the peak of the
first (q3, red) and second (q5, blue) sharp diffraction peaks in the WAXS data obtained from
fits to a Gaussian and a Lorentzian, respectively. The green line is an exponential fit to guide
the eye. c) Variation of the width of the first (�3, red) and second (�5, blue) sharp diffraction
peaks.

tially temperature independent suggesting the corresponding inhomogeneity is constant.

The width of the low-frequency band slightly increases on cooling and plateaus below 200

K but this is a minor effect. The centre frequency of both bands increases on cooling in a

linear fashion for the high-frequency and a nonlinear fashion for the low-frequency band,

the latter plateauing below the glass transition.

74

Figure 4.4: Results of the temperature-dependent molecular dynamics simulations of
TBOS. a) Power spectra obtained from the Fourier transform of the Si–Si velocity–velocity
autocorrelation functions. b) Static structure factor, including Si, O and C atoms. c) Si–Si
pair correlation functions. d) running Si–Si coordination number

4.2.2 WACS and Raman experiments

Structural information can be obtained using small (SAXS) and wide-angle X-ray scattering

(WAXS) experiments carried out over a similar temperature range as the OKE experiments

with a 2 K step size (see Fig. 4.3). The first sharp diffraction peak at 0.65 Å�1 is consistent

75

with the Si–Si nearest neighbour distance of 10.4 Å calculated from the liquid density

The SAXS/WAXS intensity data were analysed by curve fitting, requiring a Gaussian

function to fit the first sharp diffraction peak and a Lorentzian for the second The fits were

used to calculate the radial distribution functions using analytical transformation, showing

a reduction of the first and second solvation shell radius on cooling as expected.

Figure 4.4b), c) shows the evolution of the peak position and width of the first and

second sharp diffraction peak as a function of temperature. The first sharp diffraction peak

shifts in a nonlinear fashion to lower q on cooling, while the second peak linearly shifts

to higher q. Both show a distinct change in their evolution at 110 K, which is slightly be-

low the glass transition temperature as determined using calorimetry (124K). Temperature-

dependent Raman spectra of the CH-stretch band show that, on lowering the temperature,

the TBOS molecules reduce the number of gauche defects in the alkoxide side chains, con-

sistent with the lowering of the peak position of the first sharp diffraction peak on cooling.

Close inspection of the data at the lowest temperatures shows the presence of a weak

pre-peak at q 0.2 Å�1, however, the signal-to-noise in the SAXS–WAXS transition region is

insufficient for full temperature-dependent analysis of this feature. The nine lowest tem-

perature data sets ( 110K) were averaged for improved signal-to-noise revealing a clear

pre-peak. This spectrum could be fitted with an additional Gaussian, allowing a determi-

nation of the pre-peak position as 0.234 Å�1.

In conclusion, the analysis of SAXS/WAXS intensity data has provided valuable in-

sights into the structural changes occurring in TBOS upon cooling. The curve fitting of the

diffraction peaks using Gaussian and Lorentzian functions has enabled us to calculate ra-

dial distribution functions, which clearly indicate a reduction in the radii of the first and

second solvation shells as the temperature decreases, in line with our expectations.

4.2.3 MD simulations

Atomistic MD simulations (see Sec 2.2 for details) were used to generate a 512-molecule

model of liquid TBOS, quenched from 440 K to 90 K at a rate of 7.5 × 108 K/s into the glass.

The resulting Tg is 249 ± 20 K, significantly higher than the experimental value (124 K) due

to the much faster cooling rate. The Fourier transform of the Si–Si velocity–velocity auto-

correlation function (Fig. 4.4a), which thanks to the molecular symmetry of TBOS should

display the same features of the OKE spectra, indeed shows a decrease of signal intensity

and a shift to higher frequencies on cooling. Computation of the total Si–Si (static) struc-

ture factor (Fig. 4.4b) shows the emergence of a low-q feature on cooling between 0.25 and

0.45 �1, consistent with the pre-peak observed experimentally (Fig. 4.3a). The occurrence

76

of this structural feature was verified by generating three additional models of TBOS. The

Si–Si pair correlation function (Fig. 4.4c) shows a significant increase in short-range order,

particularly in the second coordination shell. The first coordination shell (up to 8 Å, see Fig.

4.4d) only contains, on average, about 2.5 molecules, showing a lack of tetrahedral order in

both liquid and glassy TBOS. However, the second coordination shell (up to 12 Å) contains

about 12 molecules. A Voronoi analysis using the Si atoms was performed (Fig. 4.5a) to

gain further insight into these structural changes and to provide an effective coordination

number. Overall, it is clear that the network of Si atoms is predominantly 12-coordinate at

any given temperature. However, below Tg , the probability density of the volumes of the

Voronoi polyhedra (VP) splits (Fig. 4.5b), indicating the emergence of specific structural

features. These can be identified (Fig. 4.5c) as VP with 15 and 16 faces, which are unique

to the glassy state. VP characteristic of ordered phases (see Fig. 4.5c) are very infrequently

observed. VP characteristics of FCC order, such as the <0, 3, 6, 4 >VP, are found in the su-

percooled liquid but disappear below Tg , where the <0, 4, 4, 2 >VP, characteristic of HCP

order, makes an appearance. This is consistent with both the local environment analysis

and the bond-orientation order analysis, which show that TBOS displays a weak tendency

toward HPC order—which however is frustrated by the overcoordinated, largely disordered

network emerging in the proximity of Tg . In fact, the overcoordinated VP tend to form larger

clusters as the liquid is cooled below Tg . The analysis of the orientation of TBOS molecules

as a function of temperature, indicates that TBOS is perfectly isotropic even below Tg and

that the degree of orientational order in the supercooled liquid is higher than that observed

for the glass. The simulations also reproduce the reduction of the number of gauche de-

fects in the alkoxide side chains on cooling . Below Tg the self-diffusion of the system is so

slow that it is possible to relate the power spectrum of the system to specific polyhedra. It is

found that the high-frequency region of the power spectra is mostly linked to the polyhedra

with 16 faces (Fig. 4.5d) at 90 K. Thus, the increase in the local coordination may be part

responsible for the blueshift of the OKE spectra on cooling.

4.3 Conclusion

Due to the nearly tetrahedral symmetry exhibited by TBOS, and consequently, its almost

uniform molecular polarisability, the OKE spectra do not display any evidence of orienta-

tional relaxation or librational motions. It’s important to note that this absence of observa-

tion does not imply that molecular orientation relaxation or librational processes are nonex-

istent; rather, it suggests that these particular phenomena are not discernible within the

context of the OKE spectra. The OKE spectra primarily manifest the lowest-frequency re-

77

laxational component, which, to the extent that rotational and translational motions can be

distinguished, arises predominantly from translational relaxation. This relaxational behav-

ior becomes apparent in the spectra as a result of a collision-induced process [162, 156, 157].
However, it’s worth highlighting that the lowest detectable frequency in these OKE

experiments stands at 10 GHz. In contrast, � relaxations, which are typically observed

around the glass transition temperature, tend to occur at significantly lower frequencies,

roughly in the vicinity of 1 kHz[134, 135]. Consequently, the presence of � relaxations in

TBOS cannot be conclusively ruled out. Similarly, the possibility of a deviation from the

Stokes-Einstein law for translational relaxation, occurring much closer to the glass transi-

tion temperature, cannot be dismissed either.

Atomistic MD simulations provide further insights into TBOS’s behavior, revealing

the presence of a low-q peak at 0.25 Å�1. Moreover, these simulations successfully replicate

the essential characteristics observed in the OKE spectra and WAXS data. While establish-

ing a precise quantitative link between these simulated structures and the supramolecu-

lar arrangements responsible for the boson peak identified in OKE measurements remains

challenging (requiring even slower cooling rates and more extensive models), the MD simu-

lations do demonstrate that these structures correspond to clusters of TBOS molecules with

higher-than-usual coordination. If not for the extended side chains atop the tetrahedral sil-

icon, these clusters would tend to exhibit a more crystalline structural order.

In summary, this chapter has underscored the versatility of our MD simulation pro-

tocol, demonstrating that it extends beyond the scope of this thesis. These simulations not

only have the potential to predict functional properties of drug-like molecules but also serve

as valuable tools for enhancing and validating physical experiments conducted on other

molecular glasses.

78

Figure 4.5: Temperature-dependent Voronoi analysis of TBOS models. a) Probability den-
sity function of the number of faces characterising the Voronoi polyhedra (VP) for each Si
atom, averaged over 1000 frames across a 10 ns long MD trajectory. b) Probability density
function of the volume of the VP. c) Frequency of the occurrence of selected VP as a func-
tion of temperature. green dotted line indicated the value of (computationally obtained)
Tg . d) Power spectra obtained from the Fourier transform of the Si–Si velocity–velocity au-
tocorrelation functions at 90 K. The purple and light blue lines refer to the result obtained
considering all the Si atoms (same as Fig. 4.4a) and those Si atoms characterised by VP with
16 faces only, respectively.

79

Figure 4.6: Model of TBOS. Structure obtained by wB97X-D3/ma-def2-SVP. Based on the
molecular weight of TBOS of 320.54 g/mol and its density at 25°C of 0.899 kg/l (Sigma-
Aldrich), one calculates a molecular volume of 592Å3 or (assuming a spherical shape) a hy-
drodynamic radius of 5.2 Å.

80

Chapter 5

Genetic Algorithm for Optimisation

5.1 Overview

Within the scope of this chapter, we embark on an exploration of a hyperparameter opti-

misation approach, delving into the intricacies of this method. Through our investigation,

we aim to demonstrate the efficacy of these techniques in fine-tuning the parameters as-

sociated with the SOAP descriptor. Importantly, we endeavor to illustrate that through the

application of these novel optimization strategies, we can achieve parameter optimization

in a manner that not only yields superior results but also significantly enhances computa-

tional efficiency when compared to conventional grid search methodologies.

Genetic Algorithms (GAs) are a metaheuristic optimisation method based on the

principles of natural selection and evolution proposed by Charles Darwin [163, 108]. In

essence, GAs are a relatively straightforward optimisation method and can be explained

best by drawing analogies to natural selection. Let n be the number of parameters that

require optimisation, we will refer to these parameters as genes. An individual is comprised

of n genes and a population is comprised of N individuals where N is a hyperparameter

that will affect the rate at which the algorithm converges and the parameter space that is

explored. These individuals are then evaluated and assigned a ’fitness’ score, which is a

measure of how well they performed in the test. The fittest individuals and a handfull of

randomly selected individuals are then paired together while the least fit individuals are

discarded. The pairs of individuals then ’breed’ together where a number of new individuals

are created by taking a random selection of genes from either parent with a small chance

that one of the genes will ’mutate’ by transforming into a random value. This is repeated

until a specified number of generations have occurred or some convergence criterion is

met.

81

Algorithm 4 SOAP_GAS
Parameters:

• popSize The number of individuals in the population.

• bestSample The number of fittest individuals chosen for breeding.

• luckyFew The number of individuals that are randomly selected for breeding
(This is done after bestFew have been selected.

• numChildren The number of children that each pair of individuals will produce.
Note: popSize must remain constant at each generation, therefore the following
equation must hold true:

popSize= numChildreṅ

bestSample+luckyFew2 (5.1)

• mutationChance The probability that a gene will mutate to a random value after
a new individual is created.

• earlyStop Tolerance criterion for any two generations to be considered equally
accurate. In conjunction with textbfearlyNum (see below) it determines the early
stopping criterion for the GA. E.g., earlyStop=0.04 implies that two generations
which best score is within 4% of each other are to be considered as equally accu-
rate.

• earlyNum Number of equally accurate generations (according to the earlyStop
threshold, see above) that must be generated in order for the GA to stop. Note that
the earlyNum do not need to be generated consecutively, but at any point along
the GA instead.

• numGenerations The number of generations that the GA will continue for if the
conditions for early stopping are not met.

1: Initialise popSize individuals with random values for each gene.
2: Second step
3: Evaluate the fitness of each individual.
4: Select the bestSample individuals with the highest fitness and luckyFew individuals

from the remaining population. These individuals are then paired together randomly.
5: Each pair of individuals producesnumChildren individuals by selecting each gene uni-

formly randomly from each parent. After every gene has been selected there is then a
mutationChance chance that it randomly changes to a random value.

6: Go to step 3 and repeat until the early stop criteria are met or numGenerations have
been completed

7: The optimised set of parameters are the genes for the individual with the best fitness
score out of every generation.

82

5.2 Genetic Algorithms in the context of optimising SOAPs

Now that an understanding of how Genetic Algorithms operate has been established, we

can discuss GAs in the context of SOAPs.

5.2.1 The SOAP_GAS algorithm

. In this section we describe the SOAP_GAS algorithm in detail, the work in this chapter uses

exclusively the solubility dataset described in section 1.3. The exact steps performed in the

SOAP_GAS are given in algorithm 4 and a schematic is provided in fig 5.1.

An initial population containing a certain number (popSize) of individuals is con-

structed. Each individual corresponds to a SOAP descriptor characterised by a fixed selec-

tion of atomic species as centres and neighbours as well as a randomly selected set of SOAP

parameters (i.e., nmax, lmax, cutoff and atom_sigma), see section 2.3.5 for more informa-

tion on these parameters. The user has the freedom to specify lower and upper boundaries

(usually dictated by physical intuition and/or computational cost) for each of the four SOAP

parameters.

Build Initial
Population

(random selection within
the search space)

Dataset analysis
Frequency of atoms species

Input
• Choose centre(s) and neighbour(s)

• Multiple SOAPs allowed

• Average keyword

• Compression options

• Specify the search space for each

of the four parameters:

- n_max
- l_max
- cutoff
- atom_sigma

Score each Individual
• Any machine learning algorithm of

choice (scikit-learn)

• concurrent.features is used

to enable parallel processing

• Cross-validation recommended

• A time attribute is assigned to each

individual based on how long it
took to compute the score from
the initial parameters

Ranking
• Select the bestSample individuals

that performed the best in terms of
the score, plus luckyFew individuals
(notwithstanding their Score)

• The bestSample and luckyFew are
then printed to the output file along
with the sum of the time attributes of
each individual

Breeding
• Pair the bestSample + luckyFew

individuals into pairs of Parents

• Generate one Offspring / pair of

Parents. Each SOAP parameter of
the Offspring is chosen randomly,
(50% chance) form each parent.

Mutation
Each parameter of each SOAP
descriptor within each individual
has a mutationChance
probability to be replaced with a
random value selected within
the search space

Write to disk
RAM is freed by writing to disk info

about each individual and their score

New generation
The resulting (bestSample +
luckyFew)/2 x numberChildren
individuals represents the new
generation

Early stopping
If the best score re: the current
generation is within earlyStop of that
of any earlyNum previous generation,
the genetic algorithm is terminated

Visualisation
• Learning curves

• Time analysis

• Predictions available for any

individual within any generation
across the entire GA

SOAP_GAS

Figure 5.1: Schematics of the genetic algorithm framework implemented in the SOAP_GAS
code.

The choice of which atomic species are to be selected as centres and neighbours for

the SOAP descriptor is left to the user. The average keyword within the SOAP descriptor

[164] implements the structure-wise SOAP descriptor described in Eq. 2.15, resulting in fea-

ture vectors of the same dimensionality across heterogeneous datasets containing different

molecules or different number of molecules in a given structure. A simple script included

in the SOAP_GAS package can be used to analyse a dataset of N molecular structures and

gain information about the frequency by which a given atomic species is present within the

dataset.

83

For each individual descriptor within the initial population we compute a score (or

“fitness”, as customary in the GA literature), i.e. a metric that quantifies the accuracy of the

individual in predicting the functional property of interest - in this case, the solubility of a

given molecular species. In particular, in our case we have chosen to combine two popular

metrics, the mean squared error (MSE) and the Pearson correlation coefficient (PCC), for

both the training and test sets, as follows:

Fitness= 2 ·M S Et r · (1�P C Ct r) +M S Et e · (1�P C Ct e), (5.2)

where M S Et r and M S Et e are the mean squared error of the training and test sets

respectively, and P C Ct r and P C Ct e are the Pearson correlation coefficients of the two sets.

This unusual score metric was used to balance the contributions of training and test

sets for our relatively small dataset. We decided to include the P C C as opposed to just using

M S E to fit the tail of the distribution where there is less data, but this score metric can be

straightforwardly modified if necessary.

To obtain this fitness score, we have employed a straightforward random forests (RF)

model. RF is an ensemble learning technique that averages the predictions from a collec-

tion of decision trees and may be utilized for both classification and regression [126]. Each

decision tree is built on N data points that are bootstrapped, i.e., sampled with replace-

ment, from the N -sized training data, with the results collected and averaged to obtain a

single prediction, a procedure called bootstrap aggregation or “bagging”. The split at each

node is selected only from a subset of the features, with the feature that minimizes the error

being selected. This framework randomizes the ensemble of decision trees, creating a set of

independent predictions from weak learners that may not be as good individually but once

aggregated and averaged, produces a better result. Furthermore, as bootstrapping creates

multiple datasets that are distinct from the original to construct each decision tree, RFs are

effective for modeling small datasets [165, 166]. In terms of the training/test split, we have

used 33% of the dataset as the test set.

Once we have a fitness score for each of the popSize individuals, we select a cer-

tain number (bestSample) of them according to their fitness scores, plus a usually small

number (luckyFew) of individuals regardless of their score. These selected individuals con-

stitute the so-called ”parents” of the next generation of SOAP parameters. At this point,

we move onto the “breeding” procedure, where we randomly split the (even number of)

parents into (bestSample + luckyFew)/2 pairs. Each pair of parents produces a “child”,

i.e. a new SOAP descriptor characterised by a new set of SOAP parameters - randomly

picked with a 50% chance from either of the parents. We then proceed to apply “mutations”:

84

each SOAP parameter within each child has a certain probability (mutationChance) to be

changed into a randomly picked value (within the boundaries specified for that SOAP pa-

rameter). Note that the resulting population size,popSize= [(bestSample+luckyFew)/2)

⇥ numberChildren)] is identical to the size of the initial population.

Figure 5.2: PDF of the solubility values (as log

S) across the dataset.

Once we have obtained the new

generation, we repeat the process until we

reach the desired level of accuracy. The

idea at the heart of SOAP_GAS and GA algo-

rithms in general is that they allow to pro-

gressively explore the search space in an

efficient, targeted fashion, while introduc-

ing mutations and other degrees of free-

dom (such as the number of luckyFew) to

avoid getting stuck in local minima of the

parameter space. SOAP_GAP also features

an early-stopping criterion: if the current

generation is within a certain threshold (in

terms of fitness score) earlyStop of that

of a specific number earlyNum of any pre-

vious generations, the algorithm is consid-

ered to be converged.

Note that, depending on the size of

the dataset, the choice of centres and neighbours as well as the choice of nma x , lma x and

cutoff, the dimensionality if the SOAP vector can grow to the point of causing issues in terms

of memory requirements. In fact, the usage of high-memory nodes is often necessary when

working with SOAP. Aside from the compression strategy discussed in the next sections, in

order to free memory the SOAP_GAS algorithm writes to disk the information about each

individual in a bespoke class that contains the SOAP parameters, the target values of the

whole database as well as the fitness score and each of the train/test splits used for the cross

validation relative to that particular fitness score.

It is worth noting, however, that grid search approaches can trivially and effectively

leverage parallel computing in that each grid point can be evaluated independently from

the others. Conversely, SOAP_GAS is by its very nature a sequential algorithm, as the con-

struction of given i�th generation of individuals depends on the accuracy of the individuals

within the (i �1�th generation. However, we can still take advantage of parallel computing

for the evaluation of different individuals within a given generation. To this end, we have

85

adopted the concurrent.futures Python module, which provides a simple platform to

allocate different instances of the same task (in our case the evaluation of the different in-

dividuals using the very same RF model) to the available computing cores. A scaling test,

demonstrating the quasi-linear scaling of SOAP_GAS with the number of CPU cores, can be

found in figure 5.3.

Figure 5.3: Scaling test for SOAP_GAS using

concurrent.futures with a popSize of 48

The SOAP_GAS code is freely avail-

able on GitHub at https://github.com/

gcsosso/SOAP_GAS.git.

5.2.2 Dataset utilised

Unlike the other chapters in this work, a dif-

ferent dataset has been utilised for testing

the capabilities of our GA. The main limi-

tation of the datasets used in the previous

chapters is that they are very small. In order

to assess the performance of the SOAP_GAS

algorithm fairly and determine how well it

will work on a larger range of molecular

structures, we decided to use a significantly

larger dataset.

The dataset we used is a prototyp-

ical dataset for drug design and discov-

ery, which includes ⇠ 6000 small drug-like

molecules and the values of their solubility

in water as the target functional property. We stress that the aim of this chapter is not to ad-

vance the state-of-the-art with respect to this specific application of ML for drug design and

discovery. Instead, we have picked this rather popular ML application so as to showcase the

potential and general applicability of SOAP_GAS to any given molecular dataset.

We have found that, at least in the case of this particular “solubility” dataset, a num-

ber of significantly different combinations of SOAP parameters can result in similarly accu-

rate models. Whilst some weak correlations exists between the different SOAP parameters,

it may be concluded that pinpointing efficient combinations based on physical intuition

alone is not an efficient strategy. Instead, SOAP_GAS offers a straightforward framework to

identify these optimal combinations of SOAP parameters. It represents a solid alternative to

the commonly used randomised grid search approach, which can prove rather inefficient

86

https://github.com/gcsosso/SOAP_GAS.git
https://github.com/gcsosso/SOAP_GAS.git

H 80119 (6068) Cl 3319 (1270) P 269 (246) K 8 (5) As 3 (3)
C 65389 (6119) S 1383 (990) I 114 (78) Sn 5 (5) Ge 2 (1)
O 14738 (4894) F 699 (321) Si 35 (16) Hg 5 (5) Ba 2 (2)
N 7302 (3289) Br 373 (224) Se 9 (6) Zn 4 (4) Ca 1 (1)
Mn 1 (1) Cu 1 (1) Sr 1 (1) Ag 1 (1)

Table 5.1: Frequency by which each atomic species appears in the dataset. The overall
occurrences are reported in bold text, whilst the number of molecules containing a given
atomic species are reported in parenthesis.

/ sub-optimal when dealing with the concurrent optimisation of the SOAP parameters of

multiple SOAP vectors - which we have found to often result in more accurate descriptors

when compared to concatenation of individually optimised SOAP vectors.

We have chosen to apply the SOAP_GAS algorithm to a dataset containing the SMILES

[53] strings of 6,119 drug-like molecules and their solubility [62]. The solubility (S) i.e. the

extent to which a chemical substance can dissolve in a solvent and form a homogeneous

solution, is customarily represented using the base 10 logarithm as log S , with S in moles

per litre units [58, 59]. This dataset was curated by merging several sub-datasets contain-

ing solubility values characterised by an uncertainty inferior to 0.4 log S so as to maximise

the reliability of the experimental data (a notorious issue when dealing with solubility mea-

sures) quality. This particular threshold in terms on uncertainty corresponds to the stan-

dard deviation relative to the sets of experimental measurements of S obtained for the same

compounds by different research groups [62]. Prior to use, we discarded 35 compounds that

were either inorganic (i.e. they contained no C atoms) or contained counter-ions.

To generate three-dimensional molecular models from the SMILES strings, we em-

ployed the make3D()method from Pybel, by performing 50 steps of geometry optimisation

via the MMFF94 force field [167]. We note that this is not a sophisticated approach [168],
particularly if compared to methods such as ensemble descriptors [169], where several dif-

ferent conformations are generated, optimised and evaluated for any given molecular struc-

ture. However, as previously stated, this work does not seek to improve on the current per-

formance of ML methods in the context of predictive models for solubility. Instead, we

are aiming to illustrate the potential of SOAP_GAS – and to that end, any realistic three-

dimensional rendition of the SMILES strings will serve to illustrate the differences between

optimised and non-optimised SOAP descriptors.

As shown in Figure 5.2, the dataset is characterised by a log S range between �13.2

and 1.58, and a mean of �2.78. Overall, the target values are distributed rather homoge-

neously, albeit one can notice a tail in the distribution corresponding to low solubility val-

87

ues (i.e. logS < -6) which we expect to prove difficult to deal with in that they are under-

represented within the dataset.

Table 5.1 reports instead the frequency by which each atomic species occurs within

the dataset. Unsurprisingly, given the nature of the dataset, C, N, O and H are the most nu-

merous, with a significant population of Cl and S as well. Several species such as K or Mn are

only present within a handful of molecules, hence they will be omitted when constructing

most SOAP vectors.

5.3 Results

5.3.1 Optimising individual SOAPs

As a first test of the SOAP_GAS framework, we have applied it to a number of different SOAP

vectors characterised by different combinations of atomic species as centres and neigh-

bours. In particular, we have built an “all-all” SOAP where the ten most abundant species

(see Table 5.1) have been used as both centres and neighbours [164]. We have also built

ten different SOAP vectors where each of the ten most abundant species has been used as

c e n t r e whilst all of the ten have been used as neighbours. Finally, we have also consid-

ered what we call a “double” SOAP, i.e. “all-all(double)”, which consists of two all-all SOAP’s

using different values for the cutoff and a t o m_s i g ma , allowing for short and long range

structure to be described with different resolutions.

In terms of the search space for the SOAP_GAS algorithm, we have chosen the follow-

ing, rather wide range: 2 < nma x < 10, 2 < lma x < 10, 5 < cutoff < 20, and 0.1 < atom_sigma

< 1.5. Note that these boundaries of the cutoff have been superseded by the following limits

in the case of short/long SOAP in the context of the all-all(double) SOAP: 5< cutoff < 12 and

12 < cutoff < 20 for short and long all-all SOAP, respectively.

The results are reported in Table 5.3 relative to the solubility discussed in 1.3. The

“Vanilla” data refer to the results obtained via the following non-optimised set of SOAP pa-

rameters: cutoff=5, lma x=6, nma x=12 and atom_sigma=0.5 which have been taken off-the-

shelf from the online documentation of the SOAP descriptor [164]. The “Vanilla” parame-

ters are a set of sensible parameters that should work fairly well in most usecases. The “GA”

data refer to the results obtained via the SOAP_GAS algorithm. We report the score metric

described in Eq. 5.2 together with both the MSE and PCC (including the associated uncer-

tainties as the standard deviation accumulated of a 5-fold cross validation). It is clear that

applying the SOAP_GAS algorithm consistently results in SOAP vectors corresponding to

more accurate models in all cases.

88

The greatest improvements in terms of accuracy can be appreciated for those SOAP

vectors whose centres correspond to frequently occurring atomic species in the data set,

such as C, H, and O. Conversely, the gains are only marginals for SOAP vectors with e.g., P

or I as centres. This is expected, as the predictive power of those descriptors is bound to be

rather weak given the only minimal occurrence of those species in the data set.

We note that the computational cost of dealing with the all-all SOAP stretched the

capabilities of "regular" computing nodes. Dedicated high-memory computing nodes are

often needed when dealing with SOAP vectors. Rather than adopting that approach, here we

instead chose to take advantage of the compression scheme described in Ref. 170. Within

this scheme the SOAP power spectrum is compressed through a combination of projecting

the atomic neighbour density onto the surface of the unit sphere, which reduces the radially

sensitive body order, and summing over the neighbour densities of different species, which

reduces the element sensitive body order. Combining these operations in different ways

leads to nine distinct options ranging from the full power spectrum, where the length scales

as O (n 2
ma x S 2lma x) to the most extreme compression which scales as O (lma x).

µ µ̂ ⌫ ⌫̂ Dim. Score

0 2 0 0 8 3.756

2 0 0 0 22 2.845

1 1 0 0 15 2.587

0 1 0 1 71 0.739

0 0 0 2 386 0.584

0 1 1 0 141 0.445

1 0 1 0 281 0.442

0 0 2 0 1471 0.368

0 0 1 1 1401 0.366

Table 5.2: Compressing the SOAP

vector allows to substantially reduce

the dimensionality of the descriptor

whilst retaining most of its predic-

tive power. Dimensionality (Dim.)

and Score (see text) for the all-all

SOAP according to different choices

of compression.

In Table 5.2, we report the dimensionality

as well as the accuracy of the all-all SOAP obtained

with these different levels of compression and de-

note them using the same notation as in Ref. 170;

note that the µ=0, µ̂=0, ⌫=2 and ⌫̂=0 option corre-

sponds to the original uncompressed SOAP vector.

A schematic taken from Ref. 170 is shown in Fig.5.4

depicts how these compression parameters work. In

light of the results reported in Table 5.2, we chose to

apply the µ=0, µ̂=1, ⌫=1 and ⌫̂=0 option as it pro-

vides an excellent compromise between accuracy

and compression. In particular, this combination re-

tains much of the accuracy of the non-compressed

SOAP vector (with a score of 0.445 against a score of

0.368) whilst drastically reducing the dimensionality

from 1471 to 141 elements. The loss of accuracy is

to be expected, as this level of compression does not

preserve information, although it is interesting that

accuracy is no worse than with µ=1, µ̂=0, ⌫=1 and

⌫̂=0, which, subject to certain conditions, is known

to preserve information. All the results presented in

89

this section have been obtained using µ=0, µ̂=1, ⌫=1 and ⌫̂=0.

Figure 5.4: different combinations of µ, µ̂, ⌫

and ⌫̂ values. In the case of 3-body terms,

where µ+ µ̂+⌫+ ⌫̂ equals 2, we exclude zero

indices. The vertices highlighted in blue and

red are responsive to specific elements, while

the ones in grey are not. The dashed grey

line represents the unit sphere. If the pro-

jection yields two separate triangles, both are

displayed; otherwise, only one is presented.

It is informative to look for correla-

tions between the four SOAP parameters, as

well as the resulting fitness score. To this

end, we have chosen the all-all SOAP, where

every atomic species within the dataset is

used as both centre and neighbor - with

the exception of atomic species occurring

in less than fifty molecules across the en-

tire dataset (see Table 5.1) so that S = 10.

We have run 96, independent instances of

SOAP_GAS, where the initial values of each

set of SOAP parameters for each individual

within the initial population have been ran-

domly selected. The SOAP parameters that

resulted in the best fitness score for each

run are collected in Fig. 5.5. Overall, it is fair

to say that there are no strong correlations

between any of the SOAP parameters. This

is quite interesting, as one might think that

an increase in e.g., cutoff should be accom-

panied by a larger nma x , as the greater spa-

tial extent of the local atomic environment

might need a greater number of radial basis functions. However, this is not the case. In fact,

none of the SOAP parameters seem to be strongly correlated with the fitness score. Again,

this is somehow counter intuitive, as one might expect the SOAP vector to capture a greater

deal of information about the molecular structure when increasing e.g., the number of ba-

sis functions. As such, it appears that physical intuition alone might not suffice to guide the

choice of the SOAP parameters - hence the need for an optimisation strategy such as the

one offered by SOAP_GAS.

The results reported in Fig. 5.5 also allow us to draw some conclusions in terms of the

reproducibility of the SOAP_GAS results. Namely, there are specific combinations of SOAP

parameters that tend to feature much more prominently than others, as illustrated by the

histograms in Fig. 5.5. Whilst it is perfectly possible for the SOAP_GAS to yield very different

combinations of SOAP parameters that ultimately offer the same accuracy, the nma x = 9,

lma x = 9, cutoff=11 and atom_sigma = 0.8 scenario appears to be consistent in improving

90

the fitness score for the all-all SOAP vector.

The performance of SOAP_GAS itself might depend to an extent upon the choice of

specific GA parameters. This aspect is investigated in the next section.

91

Score
Vanilla GA

all-all 0.483 0.309
all-all (double) 0.317 0.269
C-ten 0.573 0.341
H-ten 0.749 0.402
O-ten 2.66 1.963
Cl-ten 3.925 3.677
N-ten 6.047 5.428
S-ten 10.987 10.529
F-ten 11.688 11.369
Br-ten 12.412 12.114
P-ten 12.207 12.159
I-ten 14.361 14.267

MSE
Vanilla GA

Test Train Test Train

all-all 1.43 ± 0.108 1.152 ± 0.018 1.154 ± 0.065 0.929 ± 0.015
all-all (double) 1.186 ± 0.095 0.924 ± 0.015 1.106 ± 0.069 0.855 ± 0.015
C-ten 1.569 ± 0.107 1.252 ± 0.016 1.209 ± 0.067 0.973 ± 0.013
H-ten 1.748 ± 0.105 1.427 ± 0.037 1.293 ± 0.076 1.074 ±0.02
O-ten 2.935 ± 0.235 2.683 ± 0.055 2.580 ± 0.202 2.325 ± 0.044
Cl-ten 3.394 ± 0.189 3.192 ± 0.037 3.265 ± 0.176 3.12 ± 0.38
N-ten 4.068 ± 0.178 3.83 ± 0.042 3.869 ± 0.17 3.676 ± 0.037
S-ten 4.891 ± 0.192 4.758 ± 0.044 4.812 ± 0.181 4.708 ± 0.04
F-ten 4.945 ± 0.229 4.841 ± 0.058 4.877 ± 0.238 4.823 ± 0.06
Br-ten 5.003 ± 0.176 4.915 ± 0.041 4.948 ± 0.176 4.902 ± 0.043
P-ten 4.968 ± 0.211 4.908 ± 0.05 4.955 ± 0.212 4.905 ± 0.05
I-ten 5.077 ± 0.208 5.057 ± 0.053 5.071 ± 0.208 5.057 ± 0.053

PCC
Vanilla GA

Test Train Test Train

all-all 0.85 ± 0.008 0.884 ± 0.001 0.881 ± 0.003 0.907 ± 0.001
all-all (double) 0.877 ± 0.005 0.908 ± 0.001 0.887 ± 0.002 0.916 ± 0.001
C-ten 0.835 ± 0.006 0.875 ± 0.001 0.875 ± 0.002 0.902 ± 0.001
H-ten 0.812 ± 0.006 0.853 ± 0.003 0.867 ± 0.002 0.893 ± 0.002
O-ten 0.654 ± 0.019 0.694 ± 0.005 0.705 ± 0.013 0.742 ± 0.004
Cl-ten 0.577 ± 0.016 0.61 ± 0.002 0.598 ± 0.014 0.621 ± 0.003
N-ten 0.45± 0.022 0.503 ± 0.005 0.49 ± 0.023 0.53 ± 0.005
S-ten 0.194 ± 0.019 0.259 ± 0.004 0.231 ± 0.011 0.275 ± 0.004
F-ten 0.166 ± 0.021 0.219 ± 0.006 0.202 ± 0.027 0.225 ± 0.006
Br-ten 0.124 ± 0.023 0.183 ± 0.005 0.161 ± 0.023 0.188 ± 0.005
P-ten 0.151 ± 0.021 0.186 ± 0.003 0.157 ± 0.018 0.186 ± 0.003
I-ten 0.03 ± 0.015 0.067 ± 0.004 0.047 ± 0.003 0.067 ± 0.053

Table 5.3: SOAP_GAS improves the accuracy of any given SOAP vector. Search space:
2<nma x<10, 2<lma x<10, 5<c u t o f f <20, and 0.1< atom_sigma < 1.5. We report the score
metric described in Eq. 5.2 together with both the MSE and PCC (including the associated
uncertainties as the standard deviation accumulated of a 5-fold cross validation). The µ=0,
µ̂=1, ⌫=1 and ⌫̂=0 combination has been used in terms of compression (see text).

92

5.3.2 SOAP_GAS: performance tuning

As opposed to brute-force optimisation approaches such as grid searches, genetic algo-

rithms are characterised by a number of parameters that allow for the fine tuning of the

algorithm. In this section, we explore the impact of these parameters on both the accuracy

of the resulting SOAP descriptors as well as the computational time needed, on average, to

converge the GA to a satisfactory accuracy. In particular, we have:

• The mutation chance, mutationChance.

• The population size, popSize.

• The early stopping criteria earlyStop and earlyNum

• The ratio between the number of children numChildren and the number of individ-

uals luckyFew that are randomly selected as parents notwithstanding their fitness

score.

We begin with Fig. 5.6 a), where we report the evolution of the fitness score with the

number of generations for a set of GA characterised by different mutationChance. It is

clear that introducing a sufficient level of mutation is key for the GA to avoid getting stuck

into a particular region of the phase space (mutationChance = 0.1 in Fig. 5.6 a)). Moving

from a specific GA to the result reported in Fig. 5.6 c), which has been averaged over 48 dif-

ferent GA, we conclude that a mutationChance greater or equal to 0.20 introduces, for this

specific dataset at least, a sufficient degree of flexibility into the GA. Broadly speaking, we

envisage the occurence of a compromise between accuracy and computational effort, as

lower and higher values results in terms of mutationChance might result in inferior accu-

racy and substantially higher number of generations, respectively. However, it is important

to note that - exception made for very low mutationChance - the extent of mutation has a

relatively minor impact on the performance of SOAP_GAS in this case.

A similar compromise in terms of accuracy vs computational effort can be observed

when varying popSize, i.e. the size of the GA population. As illustrated in Fig. 5.6 b), in-

creasing popSize results in an improvement in terms of the fitness score. As a larger pop-

ulation size allows the GA to explore the search space more effectively, the number of gen-

eration needed to converge SOAP_GAS tends to shrink as popSize increases. However, in

terms of computational time we need to consider that the total number of machine learn-

ing models evaluated within the GA is equal to the number of generations multiplied by

popSize. As such, increasing popSize appears to be a feasible strategy to improve the

93

Figure 5.5: There are no simple (cor)relations between the different SOAP parameters. Corre-
lations between the SOAP parameters for the all-all SOAP, as well as the fitness score. The
scatter plots refer to the best set of SOAP parameters obtained for 96 statistically indepen-
dent GA.

94

Figure 5.6: SOAP_GAS offers a reliable performance notwithstanding the choice of pa-
rameters concerning the underlying GA. Impact of the different SOAP_GAS parameters on
both accuracy (fitness score) and computational cost (n. of generations). a) Learning
curves for different mutation chances for a specific GA. b) Impact of popSize c) Impact
of mutationChance d) Impact of ratio between numChildren and luckyFew. The data
in panels b)/c) and d) have been averaged over 48 and 96 statistically independent GAs re-
spectively.

95

overall accuracy of the SOAP descriptors - bearing in mind the associated increase in com-

putational effort.

Interestingly, we have found that the early stopping criteria (i.e. earlyStop and

earlyNum) have a negligible impact on the performance of SOAP_GAS. This is encourag-

ing, as it serves to highlight the robustness of the algorithm. On the other hand, the ratio

between numChildren and luckyFew can have a significant impact as illustrated in the

heat map reported in Fig. 5.6 d). In principle, increasing the fraction ofluckyFew relative to

numChildren equates to increase the flexibility of the GA, by introducing an element of ran-

domness that should be akin to the effect of the mutation process. However, we have found

that this particular parameter behaves much more erratically than mutationChance, in

that specific numChildren / luckyFew ratios seems to lead to fairly different accuracy.

Note that as many as 96 statistically independent GA (i.e. started with different random

combinations of SOAP parameters for each individual within the initial population) have

been used to obtain the heat map in Fig. 5.6 d). Thus, while the impact of this parameter is

not drastic, it is certainly worth exploring different choices.

In light of these findings, we can conclude that SOAP_GAS is rather robust with re-

spect to the choice of the GA parameters.

5.3.3 SOAP_GAS timing accuracy: comparison with grid search

Having established that SOAP_GAS provides robust results, notwithstanding the specific

choice of the GA parameters discussed in the previous section, we can now attempt to make

a comparison between SOAP_GAS and what is potentially the most straightforward alter-

native approach to optimise SOAP parameters, namely a randomised grid search (RSCV).

The latter simply involve a trial-and-error procedure whereby a certain number of SOAP

characterised by randomly chosen SOAP parameters are evaluated and scored.

To offer a fair comparison, we have used the same search space for both RSCV and

SOAP_GAS (see Sec. 5.3.1). In terms of centres and neighbors, we have used C atoms exclu-

sively, and we have not applied any compression. The results are summarised in Fig. 5.7,

where we report the fitness score for both RSCV and SOAP_GAS as a function of the number

of individuals. In the case of SOAP_GAS, the number of individuals corresponds to the total

number of SOAP descriptors evaluated across all the generations needed to converge the

algorithm. As the time needed to obtain the fitness score for a given SOAP vector (which is

the computational intensive step for both approaches) is exactly the same for either RSCV

or SOAP_GAS, we can compare directly the interplay between accuracy and computational

effort for the two methodologies. We have accumulated 84 and 96 statistically indepen-

96

dent instances of RSCV and SOAP_GAS respectively to obtain a robust statistics. Whilst the

SOAP_GAS results are reported as a scatter plot (as different GA require different number of

individuals to converge), the nature of the RSCV results allows us to assign (min-max, in this

particular case) error bars to the accuracy corresponding to specific numbers of individuals.

Figure 5.7: The performance of SOAP_GAS is

similar to that of a randomised grid search ap-

proach when dealing with the optimisation of

a single SOAP descriptor. Accuracy (fitness)

as a function of the number of individuals

taken into account for either the RSCV (pur-

ple markers and line) and the SOAP_GAS al-

gorithm (orange markers). The error bars rel-

ative to the RSCV data are min-max error bars.

The results for both RSCV and SOAP_GAS

show a substantial degree of variability,

thus strengthening the concept that multi-

ple combinations of potentially even quite

dissimilar SOAP parameters can provide

similar results in terms of the accuracy of

the SOAP vector. The number of individ-

uals required to achieve a significant im-

provement in terms of accuracy is similar

for RSCV and SOAP_GAS, albeit we found

that in some cases SOAP_GAS manages

to outperform the RSCV results, given the

same number of individuals. This suggests

that, overall, SOAP_GAS provides a frame-

work which is equally efficient to the RSCV

approach, with the potential to identify

combinations of SOAP parameters which

lead to greater accuracy.

5.3.4 Working with multiple SOAPs

We would expect the accuracy of multiple

SOAPs optimised at the same time (Conc. in

Table 5.4) to be higher than that of multi-

ple SOAPs optimised individually and sub-

sequently concatenated (Ind. in Table 5.4).

This is indeed the case, as illustrated by the results summarised in Table 5.4. In particular,

we have chosen to focus on 5 different combinations of the tenX -ten SOAP vectors (where

X stand for one of the most abundant atomic species in the dataset, see Table 5.1). The

gains in terms of accuracy are small but suggestive of the possibility that the set of the “best”

SOAP parameters for different SOAP vectors considered as part of concatenated descriptor

does depend to an extent on whether or not the individual SOAP vectors are considered in

97

Performance

Ind. Conc.
Score Time

(s)
Gens. Score Time

(s)
Gens

[C,H] 0.297 6061 8 0.291 1302 5.3
[C, H, O] 0.287 7201 11 0.29 1305 5
[C, H, O, Cl] 0.289 7966 14 0.281 1452 5.2
[C, H, O, Cl, N] 0.282 9019 17 0.271 1454 5.4
[Br, C, Cl, F, H, I,

N, O, P, S] 0.283 12121 32 0.268 3655 4

MSE

Ind. Conc.
Test Train Test Train

[C,H] 1.144 ± 0.067 0.905 ± 0.014 1.14 ± 0.07 0.898 ± 0.013
[C, H, O] 1.138 ± 0.061 0.883 ± 0.011 1.141 ± 0.062 0.89 ± 0.011
[C, H, O, Cl] 1.139 ± 0.058 0.889 ± 0.01 1.165 ± 0.070 0.926 ± 0.013
[C, H, O, Cl, N] 1.125 ± 0.051 0.880 ± 0.011 1.105 ± 0.07 0.866 ± 0.011
[Br, C, Cl, F, H, I,

N, O, P, S] 1.125 ± 0.051 0.88 ± 0.011 1.113 ± 0.067 0.872 ± 0.016

PCC

Ind. Conc.
Test Train Test Train

[C,H] 0.883 ± 0.002 0.91 ± 0.001 0.884 ± 0.002 0.911 ± 0.001
[C, H, O] 0.884 ± 0.002 0.913 ± 0.001 0.883 ± 0.001 0.912 ± 0.001
[C, H, O, Cl] 0.883 ± 0.001 0.912 ± 0.001 0.885 ± 0.002 0.913 ± 0.001
[C, H, O, Cl, N] 0.885 ± 0.002 0.913 ± 0.001 0.888 ± 0.003 0.915 ± 0.001
[Br, C, Cl, F, H, I,

N, O, P, S] 0.885 ± 0.002 0.913 ± 0.001 0.887 ± 0.003 0.915 ± 0.002

Table 5.4: SOAP_GAS improves on both the accuracy and the computational cost for combi-
nations of SOAP descriptors, optimised concurrently as opposed to individually - and subse-
quently concatenated. Performance (Score, MSE and PCC, see main text) of individually op-
timised (and subsequently concatenated) combinations of SOAP (Ind.) compared with that
of concurrently optimised combinations of SOAP (Conc.). The ”Gens” columns report the
number of generations needed to converge the SOAP_GAS algorithm. In the case of Ind.,
this number is the sum of the number of generations needed to converge the SOAP_GAS
for each individual SOAP, whilst for Conc. this number is the average (taken over ten dif-
ferent runs) number of generations needed to converge the SOAP_GAS algorithm for the
concurrent optimisation of the SOAP combinations. The ”Time” columns refer to the to-
tal time needed to converge the SOAP_GAS algorithm. In the case of Ind., this number is
the sum of the time needed to converge the SOAP_GAS for each individual SOAP, whilst for
Conc. this number is the average (taken over ten different runs) time needed to converge
the SOAP_GAS algorithm for the concurrent optimisation of the SOAP combinations.

98

Figure 5.8: A visual comparison of the accuracy improvement obtained via the SOAP_GAS al-
gorithm applied to a specific SOAP descriptor. "Vanilla" refers to the results obtained without
optimising the SOAP parameters, whilst "GA" refers to the results obtained by applying the
SOAP_GAS algorithm. Purple and green markers correspond to train and test prediction
(obtained over a 5-fold cross-validation.). The results refer to the C-ten SOAP, with com-
pression: µ=0, µ̂=1, ⌫=1 and ⌫̂=0. The SOAP parameters for the Vanilla results are: cut-
off=5, lma x=6, nma x=12 and atom_sigma=0.5, which upon optimisation (GA) changed to
cutoff=12, lma x=8, nma x=5 and atom_sigma=1.1.

99

isolation. To strengthen this claim, it appears that the accuracy gains increase when con-

sidering longer combinations of SOAP vectors - which in turn offer a larger parameter space

to be optimised as a whole.

Figure 5.9: SOAP_GAS outperforms the ran-

domised grid search approach when dealing

with the concurrent optimisation of multi-

ple SOAP descriptors. Interplay between ac-

curacy and timing (as in, n. of ML mod-

els generated) for the concurrent optimisa-

tion of multiple SOAPs at the same time, RSCV

vs GAs. The blue and red lines correspond

to the best score of the same SOAP com-

binations where the different SOAP vectors

have been optimised individually and sub-

sequently concatenated. The performance

of the SOAP_GAS algorithm was evaluated 5

times to ensure consistent results.

Importantly, the optimisation of

multiple SOAP vectors at the same time

is a situation where SOAP_GAS outper-

forms the RSCV approach, as illustrated in

Fig. 5.9. Not only the results of SOAP_GAS

are consistently more accurate than the

RSCV ones, but it turns out that in this case

the RSCV can barely manage to improve

on the accuracy of the individual (concate-

nated) SOAP (obtained via RSCV), which

corresponds to the blue, dashed line in

Fig. 5.9. Conversely, SOAP_GAS pushes well

below the red dashed line corresponding

to the accuracy of the individual (concate-

nated) SOAP obtained via SOAP_GAS.

This finding is not entirely surpris-

ing, as when attempting to optimise mul-

tiple SOAPs at the same time via RSCV the

number of grid points needed to converge

increases massively. On the other hand,

SOAP_GAS is inherently better equipped to

explore the search space in a more clever

fashion, steering the SOAP parameters to-

ward different local minima without wast-

ing time in probing regions of the phase

space that result in very low accuracy.

In addition, we have found that -

when using SOAP_GAS - optimising multi-

ple SOAP vectors at the same time is less

computationally expensive then optimising each SOAP vector individually. This is illus-

trated in Table 5.4, where we compare the number of generations (“Gens.” column - or,

equivalently, the time) needed for the SOAP_GAS to converge in these two distinct scenar-

ios. Crucially, the more SOAP vectors we include, the larger the divide in terms of com-

100

putational cost between individual and concurrent optimisations. For instance, a total of

32 generations are needed to converge the [Br,C,Cl,F,H,I,N,O,P,S] SOAP vectors individually,

whilst only 4 generations are - on average - required to converge this combination of SOAP

vectors concurrently. Note that the same number of individuals per generation has been

used to craft this comparison. This is important, as it demonstrates that the SOAP_GAS

framework can be used to efficiently optimise combinations of different SOAP vectors at

the same time, which, as we have seen, also typically leads to further (if rather small) gains

in terms of the overall accuracy of the descriptor as well.

We conclude our discussion by offering a visual comparison of the improvement, in

terms of accuracy, obtained by applying SOAP_GAS to this particular dataset. The result in

Fig. 5.8 have been obtained with the C-ten SOAP, µ = 0, µ̂ = 1, ⌫ = 1 and ⌫̂ = 0 compression.

The initial SOAP parameters were cutoff = 8, lma x = 6, nma x = 2 and atom_sigma = 0.5,

which upon optimisation changed to cutoff = 12, lma x = 8, nma x = 5 and atom_sigma =
1.1. The MSE(PCC) for the Test set improved from 1.515(0.839) to 1.209(0.875).

Solubility measurements found in literature are usually characterised by experimen-

tal uncertainties of the order of ±0.5� 0.7 log S [171]. On account of that, ML models for

predicting solubility having MSEs (for the test set) in the range of 0.5�1.2 are generally con-

sidered to be good [61]. Additionally, recent solubility models leveraging ML algorithms, in-

cluding random forest regression, have produced PCCs (again, for the test set) in the range

of 0.81� 0.95 [172, 58, 173, 174]. As shown in Table 5.4, the SOAP_GAS solubility model re-

sulted in MSE and PCC values that lie in those ranges for both the training and test sets, this

is not always the case for the vanilla parameters. Although our model MSE values may fall

in the upper range of what is favourable, we highlight that most of the models cited used

comparatively much smaller test sets (less than 100 molecules, to be compared with⇠ 2000

in our case) than the ones we have considered in this work.

To conclude, our research endeavors have culminated in a compelling demonstra-

tion of the tangible benefits derived from the integration of GAs into the optimisation pro-

cess. These advancements have notably and substantially enhanced the overall perfor-

mance and efficacy of the SOAP descriptor. Moreover, we have introduced and employed

our specialized SOAP_GAS package, which has proven to be a remarkably efficient and user-

friendly tool for the systematic optimisation of SOAP descriptor parameters. Importantly,

our investigations have extended to encompass a diverse spectrum of SOAP variants, en-

compassing not only simple single SOAP implementations but also more complex config-

urations, such as double concatenated SOAPs and SOAPs with single species centres.

101

Chapter 6

A Materials Science-inspired

Paradigm to Predict the Physical

Stability of Amorphous Drugs

6.1 A Materials Science-inspired Paradigm to Predict the Physical

Stability of Amorphous Drugs

The present chapter aims to explicate the outcomes derived from our predictive models

concerning the Amo-Reg and Amo-Class datasets. Specifically, we shall delve into the per-

formance of our machine learning models and highlight their inherent strengths and limi-

tations.

To commence, we shall provide a detailed description of the methods employed in

constructing, improving, and evaluating the models. Furthermore, we shall furnish a case

study that elucidates the significance of feature selection in the modeling process.

Moreover, this chapter encompasses an exhaustive analysis of the ensemble meth-

ods utilized in our study, and we shall assess their efficacy in comparison to the individual

models. We shall also present information on how the number of models included in the

ensemble influences the results obtained.

In conclusion, we shall propose areas of future research that can improve the mod-

els’ performance. We shall accentuate the constraints of our study and offer recommenda-

tions on how to overcome these limitations in subsequent research endeavors. In essence,

this chapter offers a comprehensive overview of the machine learning analysis results and

provides a fundamental basis for further deliberation and interpretation of our research

102

findings.

6.2 Machine learning workflow

In this section we outline the workflow we used for creating, optimising, and testing the

models used for the Amo-Tg and Amo-Class datasets.

6.2.1 Preprocessing

For both the Amo-Reg and Amo-Class datasets, we follow the same preprocessing steps for

all the single-molecule descriptors. We begin by normalising the data to values between 0

and 1 using min-max scaling as detailed in section 3.5.1. However, in the case of solid-state

descriptors we must take care with the normalisation. Firstly, in the case of the computed

Tg we do not normalise the data. This is because the descriptor is only a single feature and

is the same magnitude as the target. There were also no outliers in the data, so in theory,

normalisation be superfluous. Then, for the DC and RT descriptors, we have a range of val-

ues in the features that spans from very small to very large. This is especially prevelant in

the case of relaxation time where we have molecules that do not reach the 1/e threshold

mentioned in section 2.3.12. In these cases, we set the relaxation time to simply be a very

large number, in our case 9,999. We acknowledge that this is not ideal, however it is chal-

lenging to deal with missing data elegantly in these sort of cases, especially when data is so

limited that it is not feasible to drop null data. Now, due to the large range that each feature

may take, using min-max scaling would be ineffective. We instead use logarithmic scaling

as described in section 3.5.1.

Next, we eliminate features with zero variance as described in section 3.6.1. For most

descriptors, this does not remove any features since most have some degree of variance.

However, as previously mentioned, in the case of the H-wACSF descriptor, features with

zero variance are relatively prevalent.

6.2.2 Parameter optimisation

Once the preprocessing is completed, we must now select the best parameters to use for

our models. As shown in section 3.3 and 3.2, the parameters we choose for our NNs and

RFs can have a profound effect on the overall results.

Since this is such an important step, we invest a significant amount of computational

resources to find the optimal parameters. The methodology for this involves a comprehen-

103

sive grid search of a number of parameter sets.

Neural Networks have two parameter values we need to optimise, namely the regularisation

parameter � (see section 3.6.5) that can take values in the set [0.01, 0.001, 0.0001] and the

scaling factor (see section 3.3.1) which dictates the network architecture and can take values

in the set [0.2, 0.4, 0.6, 0.8, 1].
Random Forests have three parameters that we seek to optimise, the number of estimators

(see section 3.4.1) which can be any of the values in the set [80, 100, 120, 140]. Max depth

(see section 3.4.2) which takes values in the set [4, 8, 16, 32, None], and finally the minimum

split size (see section 3.2) which takes values in the set [2, 4, 6, 8].
For both NNs and RFs, models are trained using every permutation of values for each

parameter. Clearly this results in a lot of models being trained, in the case of RFs we have

to train 100 models to find the optimal parameters. Furthermore, since these models are

validated using LOOCV, that means for each set of parameters we have N test sets where N

is the number of molecules in the dataset. So in the case of RFs for the Amo-Reg dataset we

need to train 13,600 models to optimise a single descriptor. Admittedly, with some thought

and exploratory analysis of each descriptor, it may be possible to manually choose a smaller

set of parameters that would be suitable for each descriptor. However due to the scope of

this work, it was more efficient to simply train a large number of models for each descriptor.

Once the optimal set of parameters have been found, the results from the LOOCV

are reported in tables 6.1 - 6.4.

6.2.3 Genetic algorithm

To further improve our results, we use a GA on appropriate descriptors that require hyper-

parameter optimisation, namely the SOAP and H-wACSF descriptors. In depth details of

the GA, as well as a case study on their effectiveness with different datasets can be found in

chapter 5. The GA for the results in this chapter is performed in the same way as chapter

5 with a key difference. The set of hyperparameters is evaluated using the parameter op-

timisation method outlined in section 6.2.2. This means that for each individual created

in the GA, we are computing training up to 100 models and evaluating them using LOOCV.

Obviously this leads to a very computationally expensive algorithm, but unfortunately it is

unavoidable. If we did not use the parameter optimisastion or CV method then we can not

be sure that the GA is going to result in the best overall result. For example, if we used 5-fold

CV instead of LOOCV, the computational time would be much better, but we would not be

able to fairly compare it to the models for which we used LOOCV as LOOCV has a signif-

104

icantly larger training set. The results of the GA optimsiation on the SOAP and H-wACSF

descriptor for both RF and NN models can be found in tables 6.4 - 6.7.

6.2.4 Feature Selection

In order to reduce noise and remove redundant parameters that have not been removed

with the variance threshold, we use backwards feature elimination as outlined in section

3.6.3. Again, each time a feature is removed, we must train models for every possible set of

parameters in order to remain consistent with our results.

The results of the backwards feature elimination are given in tables 6.4 - 6.7 for NN

and RF models. We do note that the feature selection appeared to perform in a rather un-

derwhelming way for these datasets, it often failed to improve the results when compared

to the descriptors with no features removed. This was especially prevelant in the optimised

descriptors. We attribute this to the fact that since those parameters are optimised using a

GA, by removing features we are actually losing information and thus the performance does

not improve. However, we include a closer look at feature selection in section 6.3 where we

make an argument for the importance of feature selection.

6.2.5 Ensemble methods

We use ensemble methods to further improve the predictive capabilities of our models. At

this stage, each descriptor has two optimised models, one random forest and one neural

network, that provide the best score for their type of model. By combining a selection of

these models we can produce predictions that outperform that of the individual descriptors

by themselves.

• Max voting An outline of the protocol for max voting can be found in section 3.9.2. We

use this max voting strategy for both the Amo-Res and Amo-Class datasets with NN

and RF models. We found that by combining the predictions from our two best per-

forming models, the quality of predictions improved. The results of this max voting

framework are shown in Fig. 6.7

• Ensemble neural networks As described in section 3.9.3, we utilise an ensemble of

NN’s to see if multiple, concatenated NN’s using different descriptors can learn to pro-

duce more accurate predictions than individual NN’s using a single descriptor. The

way that this has been evaluated is by choosing every possible combination of two

or more descriptors. Once these descriptors have been chosen, a complex NN is then

created using the parameters that yielded the best results for the respective descriptor.

105

These NNs are concatenated in a concatenation layer which is then linked through a

hidden layer to the output node/s. A schema for an example of this NN structure can

be found in 6.1.

This model assumes that the optimised values for the individual descriptors NNs also

represent the optimal values for their respective portions of the complex NN ensem-

ble. We understand that this may not be the case, however we argue that on the basis

that they were the best parameters for the individual NNs, they are highly unlikely to

be below average parameters when used in a more complex, deep learning approach.

Furthermore, since the number of combinations of descriptors is very high, perform-

ing optimisation techniques on these parameters would be exceptionally computa-

tionally expensive and in reality offer little benefit to the final result. With this being

said, we do seek to optimise the parameters between the concatenation layer and the

output layer. Using a similar methodology to optimising the individual NN models,

we seek to optimise the parameters of the network going between the concatenation

layer and the final hidden layer. This is done by again performing a grid search of the

regularisation rate and scaling factor parameters for the NNs..

For this process we have 7 descriptors. This means that there are 120 possible com-

binations of descriptor
�
27
�

�7
1

�
�

�7
0

��
. For each of these combinations we perform a

grid search that has 20 possible combinations. This gives us a total of 2,400 possible

NN models that need to be trained. Again, these models are validated using LOOCV

which multiplies the number of models required by 136 and 124 for the Amo-Reg and

Amo-Class datasets respectively.

6.3 On the importance of feature selection

As reported throughout this chapter, we see that the gains in performance from FS are rel-

atively negligible, in this section we provide results on different datasets that highlight the

importance of FS.

Feature selection is often an overlooked part of developing machine learning mod-

els, in particular neural networks. It is tempting, given the availability of so many different

molecular descriptors, to leverage as many of them as possible: for instance, the DRAGON

software [175] can calculate more than 4800 descriptors [176]. As such, this approach is not

only incredibly simple these days, but it may also enhance the flexibility of the ML algo-

rithm of choice, in that the more descriptors we add into the mix, the higher the chances to

include those features that are actually of relevance to improve the predictive capabilities

106

Figure 6.1: Ensemble neural network architecture example

of the framework [177]. However, this strategy suffers from at least two major issues: (1.) re-

dundancy/correlation: the more descriptors we choose to use, the higher the chance they

will feed similar if not identical information to the ML algorithm [178], with the risk of in-

troducing artificial noise that can be detrimental to both the accuracy and the reliability of

the predictive framework; (2.) lack of transparency [179, 180]: it becomes quite challenging

to pinpoint the structural features that have the largest impact on the functional properties

of interest. While from a purely practical perspective one may not care about this pitfall,

understanding the structure-function relation is key to achieve the truly rational design of

the novel generation of drugs [181].
Both redundancy and lack of transparency can be mitigated by using feature selec-

tion [28] and/or by optimising the parameters that often enter the formulation of advanced

molecular descriptors. In this section, we compare how well Cliques and H-wACSFs com-

pare to standard descriptors obtained from RDKit. Note that we do not consider SOAPs here

as the purpose of this section is simply to highlight the importance of FS and calculating

SOAPs for the large datasets we are using here would be computationally very expensive.

We make this comparison on the Hepa, Lipo and Amo-Reg datasets, and we show

that, in some cases, utilising just a handful (10-20) of carefully designed molecular descrip-

tors may yield results comparable - or even better - than those obtained by using a large

107

number (⇠ 100) of standard descriptors. We find that this is especially true when dealing

with small datasets containing 100-500 molecular structures, where the number of STD de-

scriptors that we may want to use can get dangerously close to the number of data points

we intend to feed into our ML framework - an obviously over-determined problem.

We choose in particular to probe the efficiency of feature selection on cliques and

H-wACSFs because the nature of cliques and H-wACSFs makes them perfectly suitable to

exploit feature selection and optimisation, respectively. We find that a surprisingly small set

of tailored descriptors, as obtained upon either feature selection (cliques) and optimisation

(H-wACSFS), can provide results comparable, if not of better quality, than those we have

obtained by employing large numbers of STD descriptors. While an analysis of the most

relevant cliques obtained upon feature selection allows us to draw interesting conclusions

about the influence of specific functional groups on biomedical activities of pharmaceuti-

cal interest such as human hepatocytes intrinsic clearance [57], the H-wACSFS offer a very

convenient opportunity to bridge the ML gap from a single molecule in vacuum to 3D mod-

els of e.g. amorphous drugs. While an ongoing effort within our research group is probing

the benefits of bringing together "chemistry and structure" by combining these two classes

of descriptors, we have made available via a public GitHub repository [182] the entirety of

our ML framework, in an effort to promote transparency and cross-fertilisation between

different groups.

6.3.1 Methodology

In terms of the specific ML algorithm, we have been experimenting with multiple options,

including neural networks, Gaussian processes and random forests. We have found that

the choice of the ML algorithm has very little impact on our results. The numbers reported

in the Results section have been obtained by using feed-forward neural networks, built us-

ing the Keras API [183] with Tensorflow [184] as a backend. The descriptors and the target

properties for each dataset (Lipo, Hepa and Amo, see above) have been pre-processed by

scaling them between zero and one and by removing the mean and scaling to unit vari-

ance, respectively. In terms of the neural networks optimisation, a simple parameter space

grid search optimisation has been employed, taking into consideration different neural net-

works architectures (in terms of number of layers and nodes), different activation functions,

and different solvers for the optimisation of the weights. Further details are included in the

MSDE_Sosso_alpha GitHub repository [182].
As many as 300 epochs have been accumulated for each combinations of these pa-

rameters. The “optimal“ number of epochs was determined according to an early stopping

108

criterion based on the mean square error relative to the test set. 80% and 20% of the datasets

have been randomly selected as training and test data, respectively, according to a k -fold

cross validation [185] procedure with k=5 which allowed us to reliably assess the average

performance of each neural network architecture. The “best“ model was then selected and

used to compute the results reported in Section 6.4. We note that while it is certainly pos-

sible to leverage more advanced techniques (e.g. some form of ensemble learning [186])
to improve the accuracy of these algorithms, we have focused in here to provide a rather

unbiased picture of the performance of the different descriptors under consideration. As a

result, the numerical quality of our results is on average not very impressive, albeit we en-

visage that both the Hepa and Amo-Reg datasets will probably provide a tough challenge in

terms of accuracy for more advanced ML frameworks as well.

6.4 Results

The overall performance of the three classes of descriptors discussed in the previous sec-

tion is summarised in Table 6.1: STD, Cliques and H-wACSFs refers to the ⇠ 100 "standard"

RDKit descriptors, the vocabularies of molecular cliques and the histograms of weighted

atom-centred symmetry functions, respectively. We report the mean squared error (MSE)

and the Pearson correlation coefficient (PCC) [187] for both the training and the test sets;

averages and uncertainties (included as ±�2) have been obtained according to the cross-

validation procedure detailed in Section 3.8.1.

Concerning the Lipo dataset, STD outperform both cliques and H-wACSFs. The lat-

ter are clearly not very suitable to deal with this particular dataset. As discussed in fur-

ther detail below, this was expected, given the nature of the target property to be predicted.

On the other hand, by using the full set of cliques (i.e. without feature selection) one can

achieve results of similar quality to those obtained via the STD - quite impressive, consider-

ing how basic the cliques descriptors are. Upon feature selection, specifically utilising only

15 cliques (out of 246), the performance of the cliques degrades further; however, being

able to retain some predictive capabilities using 15 molecular fragments is indicative of the

potential of this descriptor.

In fact, the cliques consistently outperform the STD in the case of both the Hepa

and the Amo-Reg dataset: we remind the reader that while the Lipo dataset is relatively

109

-1

 0

 1

 2

 3

-1 0 1 2 3

P
re

di
ct

io
ns

Experiments

Cliques [18]

Train
Test

-1

 0

 1

 2

 3

-1 0 1 2 3

P
re

di
ct

io
ns

Experiments

Cliques

Train
Test

-1

 0

 1

 2

 3

-1 0 1 2 3

P
re

di
ct

io
ns

Experiments

STD

Train
Test

Figure 6.2: Scatter plots of the predicted vs experimental values of human hepatocytes in-
trinsic clearance for the Hepatocytes dataset, using ⇠ 100 "standard" RDKit descriptors
(STD), the full vocabulary of molecular cliques (Cliques), and just 18 out of 132 cliques
(Cliques [18]) according to the outcomes of the feature selection procedure discussed in
Section 3.8.1. The results obtained for five different training-test splits are plotted on the
same graph, which thus contains 406x5 = 2030 points. Note the improvement of the pre-
dictions upon the cliques feature selection.

large (⇠ 4000 molecules), the Hepa and particularly the Amo dataset are quite small (⇠ 400

and ⇠ 150 molecules, respectively). Interestingly, in the case of the Hepa dataset, using just

the most relevant (according to the MDI-based feature selection procedure discussed in

Sec. 3.6) 18 cliques (out of the 132 contained in the full set) results in even better outcomes

compared to what we have obtained for the full set of cliques, as illustrated in Tabl. 6.2.

This is an impressive result: just 18 molecular components appear to capture some of the

structure-function relation at the heart of a complex biomedical activity such as human

hepatocytes intrinsic clearance. As detailed in Table 6.2, these 18 cliques are characterised

by an MDI about one order of magnitude larger compared to that of the least important

cliques. We also note that the RF-based feature selection procedure we have used is capa-

ble to assign MDIs characterised by very small uncertainties, thus making the selection pro-

cess quite reliable indeed. Amongst these 18 cliques we find molecular components such

as CC, C=O, C1CCCCC1 (cyclohexane) and C1=CC=CC=C1 (benzene) which are ubiqui-

tous in small drug-like molecules: in fact, they possess quite high MDI scores for the Lipo

and Amo datasets as well. On the contrary, we also find cliques whose role in the context

of human hepatocytes intrinsic clearance is perhaps not immediately obvious: CF, CS and

C1=CSCN1/C1=NCCS1 (2,3/4,5-dihydrothiazole).

110

-3

-2

-1

 0

 1

 2

 3

-3 -2 -1 0 1 2 3

P
re

di
ct

io
ns

Experiments

SF [GAs]

Train
Test

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

SF
Pr
ed
ic
tio
ns

Experiments

Train
Test

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

STD

Pr
ed
ic
tio
ns

Experiments

Train
Test

Figure 6.3: Scatter plots of the predicted vs experimental values of the glass transition tem-
perature Tg for the Amorphous dataset, using ⇠ 100 "standard" RDKit descriptors (STD),
H-wACSFs (SF), and H-wACSFs optimised according to the genetic algorithms-based pro-
cedure describe in Chapter 5 (SF [GAs]). The results obtained for five different training-test
splits are plotted on the same graph, which thus contain 132x5 = 660 points. Note the im-
provement of the predictions upon the H-wACSFs optimisation.

The situation is slightly different in the case of the Amo-Reg dataset: while using the

full set of cliques results in a substantial improvement with respect to the STD outcomes,

using 13 out of 87 cliques (according to the results of feature selection) worsens the numer-

ical accuracy of our prediction. Nonetheless, this small set of cliques provides predictive

capabilities of the same quality of STD - i.e. using 13 molecular components gives similar

results to those obtained by using ⇠ 100 different descriptors. Appropriately, our findings

suggest that molecular cliques may represent, despite their simplicity, an interesting way

forward to identify structural patterns of interest in the context of drug design and discov-

ery.

As opposed to cliques, which captures the main elements of the chemistry of the

system, H-wACSFs provide information about the whole molecular structure. Thus, it is

reasonable to expect them to perform their best when deployed to predict target properties

largely determined by structure as opposed to chemistry. Indeed, we find that H-wACSFs

score best when applied on the Amo-Reg dataset, where the property we seek to predict is

the Tg of amorphous drugs. Using the non-optimised values of the H-wACSFs parameters

N R a d , N Ang , R R a d
c , R Ang

c and B (see Table 6.3), we obtain a marginal improvement in the

111

MSE when compared to the STD results (see Table 6.1), but also a significantly worse value

for the PCC, as evident from Fig. 6.2. However, upon the optimisation of the above men-

tioned parameters via the genetic algorithms, we obtain a significant improvement of our

predictions across all metrics, as illustrated in Fig. 6.2. It is interesting to note that the opti-

mised parameters obtained for the three different datasets (see Table 6.3) vary significantly,

with no robust trends emerging - the potential benefits of introducing constraints within

our genetic algorithms would be addressed in future work.

For the Hepa and Amo-Reg datasets, where the H-wACSFs have outperformed STD,

the genetic algorithms seem to have emphasised the connectivity of the molecular network

as opposed to geometry of the specific conformers, in that N R a d
⇠ 2N Ang . As discussed

in Section 6.3.1, the procedure we have used to generate said conformers is very basic, and

as such, we expect the angular contributions to H-wACSFs to feature more prominently

for ensembles of thoroughly (e.g. from first principles) optimised molecular conformers,

and even more so in the case of actual three-dimensional models of either crystalline or

amorphous drugs. Further support to this hypothesis comes from the fact that H-wACSFs

did not perform especially well in the case of the Hepa dataset, where upon optimisation,

we obtained results of similar, but not better quality when compared to the STD descriptors.

In contrast to the Amo-Reg dataset, the Hepa dataset - and in fact, the Lipo dataset as well

- seeks to predict a target property which may very well be ruled chiefly by chemistry as

opposed to structure. While the distinction between cliques and H-wACSFs is not absolute

in this respect (the cliques hold some structural information, and the H-wACSFs indirectly

contains information about all cliques), we believe there is scope to bring the two classes of

descriptors together, perhaps by using some sort of clique centred symmetry function, thus

combining chemistry and structure - within a reasonably small number of descriptors, as

opposed to harnessing the whole array of STD currently available.

Overall, our results are suggestive of the fact that while for relatively large datasets

there might be value in trying to take advantage of the many descriptors readily available

via open source computational packages, for small datasets containing hundreds of molec-

ular structures, one might very well obtain better results by using just a handful of carefully

crafted descriptors. In this work, we focused on cliques and H-wACSFs, but countless other

options are obviously available. Despite the still limited scope of our investigation, we feel

confident in saying that feature selection and optimisation should be treated as a necessary

step of any ML algorithm for drug design and discovery, much as data pre-processing - as

opposed to be considered as optional possibilities. We also note that many datasets of inter-

est to the pharmaceutical companies are very limited in size: the Hepa dataset considered

in here is just one example, but broadly speaking it is still challenging, despite the speed

112

with which the field is progressing, to collect large amounts of experimental measurements

of complex biomedical activities. While it should be very clear at this point in time that

no universal recipe exists that can provide a general-purpose framework to treat any given

dataset, we believe this is yet another reason to be selective with respect to the choice of

molecular descriptors.

6.4.1 One-molecule descriptors

As a first attempt to predict either the Tg or the crystallisation class of the drug molecules

in the Amo-Reg and Amo-Class datasets, respectively, we have used different one-molecule

descriptors (see Sec, 2.3.1).

In Table 6.4 and Table 6.5, we report the results we have obtained regarding the

prediction of Tg (Amo-Reg dataset) with the NN and RF models. In particular, we report

the MSE for both the training and the test sets (MSE - Train and MSE - Test, respectively).

Please note that, due to the unique nature of our LOOCV approach (see Sec. 3.8.1), the MSE

calculated for our test set may appear unusually large. This is because we derive the MSE

by comparing experimental and predicted values of Tg for individual molecules or models,

with each prediction coming from a model trained on slightly different data due to LOOCV.

These seemingly high MSE values in the test set should not be taken as a direct indi-

cator of poor model performance or substantial prediction errors. Instead, they primarily

serve as a relative measure of the variation in our predictions when different descriptors

are used in our models. In essence, these values reflect how much our predictions can dif-

fer due to the LOOCV process, rather than conveying the absolute accuracy or uncertainty

of our results.

We also report the Pearson correlation coefficient (PCC) for both the training and

the test sets (PCC - Train and PCC - Test, respectively). The lack of an error bar regarding

PCC - Test is due to the above mentioned nature of the LOOCV.

The Std descriptor is the most accurate overall, which is to be expected as it is in fact

a collection of 170 descriptors. Surprisingly, the Cliques descriptor alone, despite its sim-

plicity, shows similar accuracy. This is important, as the Cliques descriptor is a very trans-

parent feature that can be straightforwardly leveraged to, e.g., identify specific functional

groups that have an impact on, in this case, the value of Tg . The usage of our GA is effective

in improving the accuracy of the SOAP descriptor, which is consistent with our recent re-

sults [188], but only marginally effective in doing the same for H-wACSFs. FS further serves

to improve the accuracy of some - but not all - descriptors. Overall, Std (with FS), Cliques

and SOAPs (with FS) provide similarly accurate predictions. We will discuss how exactly our

113

results compare to the state-of-the-art (particularly Ref. 28) in Sec. 6.5.

We also note that the RF seems to perform significantly better than NNs for Amo-

Reg dataset. Although they do tend to have a much smaller error for the training set which

indicates that there may be some overfitting of the data going on. Overall we see similar

relative levels of performance for each descriptor in both the RF and NN models. With this

being said, the NNs seem to be more receptive to feature selection, we did not include the

FS results for descriptors where the score saw no improvement over the descriptor with no

feature selection. For RFs the only descriptor that saw an improvement due to FS was the Std

descriptor, whereas NNs with FS improved the score of the SOAP and H-wASCF descriptor

as well as the Std. Both RF and NN models saw no improvement with FS on the GA optimised

descriptors.

The results we have obtained regarding the prediction of the crystallisation class for

the drug molecules in the Amo-Class dataset are reported in Table 6.6 and 6.7. In this case,

we have chosen the Matthew’s correlation coefficient (MCC [189]) to quantify the accuracy

of our ML models. The MCC is much more robust than, say, the traditional definition of

classification accuracy, namely the ratio between the number of correctly classified samples

and the overall number of samples, and it especially well-suited to deal with unbalanced

datasets such as the Amo-Class dataset [190]. Again, the absence of error bars regarding the

MCC for the test set is due to the nature of the LOOCV we have used. Clearly, the usage of

the SMOTE oversampling technique (see Sec. 2.4.2) substantially improves the predicting

capabilities of every descriptor we have considered, nearing perfect accuracy regarding the

training set and leading to very robust results for the test sets as well. Interestingly, the per-

formance of each individual descriptor appears to be more uniform across the Amo-Class

dataset then what we have observed for the Amo-Reg dataset (where specific descriptors

performed significantly better or worse). Our best result for the Amo-Class dataset has been

obtained by applying SMOTE, GA and FS on H-wACSFs - but the resulting accuracy is not

drastically superior to that of any other descriptor we have considered. This is encouraging,

as the prediction of the crystallisation class is the most useful aspect for practical consid-

erations related to the physical stability of amorphous drugs. Again, we will discuss how

exactly our results compare to the state-of-the-art (particularly Ref. 47) in Sec. 6.5.

6.4.1.1 Solid state descriptors

Before we analyse the accuracy of the ML models we have built by using solid state de-

scriptors, it is instructive to discuss the dynamical properties we have obtained across our

datasets. It is worth pointing out that, to our knowledge, this is the first, consistent col-

114

b) c)

d) e) f)

T = Tg + 110 K

a)

200

Figure 6.4: Solid state descriptors. a) Correlation between the experimental values of Tg

(Tg - Exp.) and the estimate of Tg obtained via our MD simulations (Tg - Sim.). The raw
MD results correspond to the empty, grey circles. The points colored according to the crys-
tallisation class of the corresponding molecule have been obtained by shifting the raw MD
results by -70 K (see text). b) PDF of the self-diffusion coefficient D of the supercooled liq-
uids, labelled by crystallisation class, at T = Tg + 110 K for each molecular specie in the
Amo-Reg dataset. c) PDF of the structural relaxation time ⌧ (see text) of the supercooled
liquids, labelled by crystallisation class, at T = Tg + 110 K for each molecular specie in the
Amo-Reg dataset. d) PDF of the self-diffusion coefficient for each molecular specie in the
Amo-Reg dataset at different temperatures. For visualisation purposes, we have taken the
logarithm (base 10) of the values of D . e) PDF of the structural relaxation time for each
molecular specie in the Amo-Reg dataset at different temperatures. For visualisation pur-
poses, we have taken the logarithm (base 10) of the values of ⌧. f) Correlation between the
(logarithm, base 10, of the) diffusion coefficient and the (logarithm, base 10, of the) struc-
tural relaxation time, color-coded according to different temperatures.

115

lection of dynamical properties computed via MD simulations for 100+molecular glasses,

which required almost 30 µs of simulation time (roughly 3 million CPU hours).

We begin by comparing the estimates of Tg we have obtained from our MD simu-

lations (see Sec. 2.2) with the experimental data. The results are summarised in Fig. 6.4a.

The raw data (grey circles in Fig. 6.4a) is very strongly correlated (Pearson Correlation Co-

efficient, PCC = 0.96) with the experimental data, albeit it systematically overestimates the

latter. This is to be expected, as the cooling rates we are forced to use in MD simulations are

orders or magnitude faster than the rates achievable experimentally. However, this discrep-

ancy appears to be entirely systematic in nature: in fact, upon shifting the raw simulation

data by -70 K, we recover a very good quantitative agreement with the experimental data, as

illustrated in Fig. 6.4a (coloured points). This result demonstrates the robustness of our MD

protocol and suggests that MD can indeed be used to estimate the Tg of molecular glasses

with good accuracy - once the systematic error due to the nonphysically fast cooling rates

characteristic of typical MD timescale has been corrected for.

Next, we move onto the self-diffusion coefficient D . As we now have an estimate

of the Tg from our MD simulations, we can measure D for the different drugs utilising their

different Tg as our reference. For instance, with ”Tg + 30 K” we label the result obtained for a

MD simulations at a temperature 30 K above the Tg of each specific drug. The distribution of

D across the whole Amo-Reg dataset is reported in Fig. 6.4d at different temperatures. Note

that we have taken the logarithm (base 10) of the actual values for visualisation purposes.

As expected, the higher the temperature, the higher the diffusion coefficient, which spans

almost three orders of magnitude. The opposite trend can be observed for the structural

relaxation time ⌧, also reported as a function of temperature in Fig. 6.4e. In fact, D decays

exponentially as ⌧ increases, as shown by the log-log plot of D as a function of ⌧ reported

in Fig. 6.4f. Whilst intuitive, we are not necessarily aware of a universal relation between D

and ⌧ for molecular glasses - an interesting finding in itself.

The crucial question is whether any of these dynamical quantities is related to ei-

ther Tg and/or the crystallisation class. Interestingly, we observe no simple relationship

between either D or ⌧ and Tg . However, there is a strong correlation between D or ⌧ and

the crystallisation class, as illustrated in Fig. 6.4b and Fig. 6.4c, respectively. In particular,

the diffusion coefficient of Class I molecules is on average much higher than Class II or Class

III molecules. The distributions reported in Fig. 6.4b refer to the data obtained at a specific

temperature above Tg (T= Tg + 110 K), but for the diffusion coefficient this trend is present

to some extent for each temperature we have considered. Note that there is no point in con-

sidering temperatures below T= Tg - 10 K, as the vast majority of the glasses has impossibly

low(long) diffusion coefficients(structural relaxation times). In fact, one can easily discard

116

any drug with a D > 50 Å2/ps at T = Tg + 110 K for the practical purposes of determining

whether it might be suitable as an amorphous formulation. The same can be said for ⌧,

albeit we note that the correlation between ⌧ and the crystallisation class is less strong - in

that it holds to different extents according to the specific temperature chosen. These find-

ings are of great practical relevance, as they can offer a rather inexpensive route to probe

whether novel candidates for amorphous drugs would fall in Class I.

Regression [Tg]: We have used these three solid state descriptors (Tg , D and ⌧) to predict

the experimental Tg . The results are summarised in Table 6.8. Unsurprisingly, given the

strong correlation between simulated and experimental Tg that we have discussed above,

the simulated Tg gives very accurate results: the MSE for both training and test set is an

order of magnitude lower than that obtained for any other descriptor we have used (one-

molecule descriptors included, see Sec. 2.3.1).

For D and⌧, we have not just one value, but multiple values for each drug molecule,

as we have computed these dynamical quantities at several temperatures below and above

their corresponding Tg . In fact, the descriptor vector for both D or⌧ relative to each molecule

contains five elements for Tg � 10 K, Tg + 30 K, Tg + 70 K, Tg + 110 K, Tg + 150 K. This allow

us to use information about the dynamical behavior of each system as a function of tem-

perature. Whilst we do have data at lower/higher temperatures as well (down/up to Tg �50

K, Tg +190 K), virtually every system behaves in exactly the same fashion - the dynamics is

either impossibly slow at Tg �50 K or similarly fast at Tg +190 K. As such, including D or⌧ for

those temperatures does not increase the accuracy of our models - if anything, it introduces

noise.

The results for the diffusion coefficient are as accurate as our best results we have

obtained for the one-molecule descriptors upon both optimisation (GAs) and feature selec-

tion - which is quite impressive. Interestingly, ⌧ performs very poorly in terms of predicting

the experimental Tg . This is not entirely unexpected, as D varies much more smoothly than

⌧ as a function of temperature. For low/high temperatures, ⌧ tends to be either beyond the

timescale that we have simulated, or equally short notwithstanding the molecular species.

Upon examining the performance of the NN and RF models, it is apparent that their

results on the test sets are strikingly alike. However, a noticeable contrast exists between

the two models in terms of their Train sets. Specifically, the RF models, once again, display

a propensity to overfit, indicating that they may have learned the noise present in the data

rather than the underlying patterns. Nevertheless, it is challenging to determine if overfit-

ting has indeed occurred without a validation set. It is noteworthy that a low MSE on the

training set does not necessarily imply the presence of overfitting. This underscores the

importance of utilizing a validation set to assess the generalisability of the models.

117

Tg D !

Figure 6.5: Confusion matrices for the solid-state descriptors. Confusion matrices relative to
our prediction of the crystallisation class regarding the Amo-Class dataset, via different solid
state descriptors. These results have been obtained upon applying the SMOTE technique
and refer to the test sets only - as we adopted a LOOCV approach(see text).

Classification [Crystallisation Class]: We now move onto the results we have obtained with

the three solid state descriptors (Tg , D and ⌧) in terms of the prediction of the crystallisa-

tion class of the drug molecules in the Amo-Class dataset. The results are summarised in

Table 6.6, Table 6.7 and Fig. 6.5. Similarly to what we have observed in the case of the one-

molecule descriptors, the usage of the SMOTE technique consistently improves the accu-

racy of our results. In terms of numerical accuracy, the results we have obtained via our solid

state descriptors perform slightly worse than the one-molecule descriptors. To be specific,

our best result for the one-molecule descriptors (H-wACSFs, upon FS and SMOTE, see Ta-

ble 6.6 and 6.7) is a MCC - for the test set - of 0.757, whilst our best result for the solid state

descriptors (⌧, upon SMOTE, see Table 6.6, Table 6.7) is 0.605.

In stark contrast to one-molecule descriptors, however, the solid state descriptors

are characterised by a very low dimensionality - just one for T g and five for both D and ⌧,

whilst descriptors such as SOAPs can easily count 103 elements per SOAP vector. As such,

the fact that the solid state descriptors can achieve a respectable accuracy in terms of our

ML models is quite encouraging indeed. In addition to this, the solid state descriptors are

very much transparent - in that they are representative of well-defined dynamical proper-

ties of the system. Again, this is substantial advantage with respect to most one-molecule

descriptors: in our case, the Cliques descriptor alone can be considered as a transparent

descriptor.

Thus, it is instructive in the case of solid state descriptors, to inspect the confusion

matrices relative to our predictions. These are reported in Fig. 6.5, and refer to the results

118

we have obtained upon applying SMOTE - for the test set only. We report a single confusion

matrix per descriptor as these have been obtained via LOOCV (see Sec. 6.5 for discussion of

these results).

We begin with Tg , which appears to be able to classify correctly the vast majority of

Class II and Class III molecules, whilst it almost entirely mislabels Class I molecules as Class

II molecules. By looking at the PDFs of the Tg for each crystallisation class (see Fig. 1.3e; the

PDFs for the simulated Tg are very similar, given the strong correlation between the two, see

Fig. 6.4a), the Tg of Class II and Class III molecules is very rarely lower than ⇠ 250 K. This

helps in explaining why Class II and Class III are never predicted as Class I molecules in our

Tg ML model, but it does not explain the close-to-perfect distinction between Class II and

Class III, nor the mislabeling of almost every Class I molecule as Class II molecules.

The accuracy we have obtained when using the diffusion coefficient D as our de-

scriptor is very similar (in terms of MCC) to that of Tg . However, as illustrated in Fig. 6.5, the

model sacrifices some accuracy in telling apart Class II from Class III molecules to improve

on the labelling of Class I molecules. Similarly to what we have observed for Tg , however,

no Class II or Class III molecules are ever predicted as Class I molecules.

The relaxation time⌧ gave us our best result in terms of accuracy. This was somehow

expected, as ⌧ is a rather "binary" measure, in our case, of whether the system is behaving

like a supercooled liquid (for which we observe a⌧well within the timescale of our MD sim-

ulations) or a glass (in which case, we simply assign a blanket value of 9999 to the descriptor

at that given temperature, as we have no way to probe ⌧ across the relevant timescale). On

the contrary, ⌧ performed rather poorly as a descriptor for the regression problem of Tg ,

particularly compared to D (see Table 6.4 and Table 6.5). The confusion matrix we have

obtained for ⌧ (see Fig. 6.5) is more balanced across the different Classes. However, the two

distinct features of all our classification models we have obtained via solid state descriptors

persist, namely: 1. a substantial mislabeling of Class I molecules as Class II molecules and

2. no Class II or Class III molecules ever classified as Class I molecules.

As it stands, our models seem to be able to predict with incredible accuracy whether

a drug molecule belongs to Class II or Class III - but not Class I. This is a practically impor-

tant aspect. However, ideally one would be able to either ”filter out” Class I molecules with

great accuracy or to classify correctly Class III molecules - which are the most suitable can-

didates in terms of amorphous drugs formulations. For now, these models cannot achieve

the former and only partially meet the expectations of the latter. We shall put our results

into context regarding the state-of-the-art in the next section, where we will combine our

descriptors into an ensemble learning framework.

119

6.4.2 Ensemble methods

With our optimised descriptors we now attempt to further improve their performance using

the ensemble methods of max voting and ensemble NNs. These methods combine multiple

models and therefore should be less prone to overfitting as well as providing more accurate

predictions. These ensemble methods were all performed using the computational frame-

work explained in Sec 3.1.

6.4.2.1 Max voting:

The first ensemble method we assess is the max voting ensemble described in section 3.9.2.

In summary, we have chosen to perform max voting so by training (and crucially, optimis-

ing) models for each descriptor in isolation and combine the different predictions. The re-

sults of this ensemble approach are summarised in Fig. 6.7. For discussion on these results,

please see section 6.5

Regression [Tg]: We begin by discussing the results with respect to the prediction of the ex-

perimental Tg . As illustrated in Fig. 6.7a, averaging our predictions over multiple descriptors

does indeed lead to an improvement in the overall accuracy of our models. It is important

to distinguish between two sets of results: ensemble models that did not include the simu-

lated Tg as a descriptor (”no Tg” label in Fig. 6.7a) and models that did include the simulated

Tg as a descriptor (”Tg” label in Fig. 6.7a). In the latter scenario, we are effectively using a

computational estimate of the target property as a descriptor - which clearly leads to much

more accurate predictions.

It is interesting to look at representative scatter plots (Fig. 6.7b) of predicted versus

experimental Tg for our best regression models. The ”no Tg” model has been obtained by

combing Std descriptors and the diffusion coefficient D . The ”Tg” model has been obtained

by combining the simulated Tg and the diffusion coefficient D . From these outcomes, it is

evident that the diffusion coefficient brings important information about the dynamical

properties of the system into the model. This is key, as it demonstrate the potential of the

solid state descriptors, obtained via MD simulations, which we are putting forward in this

work. Interestingly, it appears that our models tend to underestimate the experimental Tg

when the latter is higher than 350 K. This is somehow counter intuitive in that MD simula-

tions systematically over-estimate the values of Tg (see Fig. 6.4a) due to the non-physically

rapid quenching rates of the supercooled liquid into the glass.

We can now attempt to put our results into context with respect to the state-of-

the-art, particularly Ref. 28. In that work, the authors considered a smaller dataset - 71

molecules, to be compared with the 136 molecules in our Amo-reg dataset (see Sec. 1.3 for

120

C
la
ss

ifi
ca

tio
n

Re
gr
es

si
on

a) b)

c)

d)

Figure 6.6: Ensemble learning. a) MSE relative to the test set for our predictions of the exper-
imental Tg (Amo-reg dataset), as a function of the number of descriptors we have combined
via ensemble learning (see text) using NN model. The simulated Tg is included as a descrip-
tor in the ”Tg” results, but it has not been included in the ”no Tg” results. b) Scatter plot of
the predicted versus the experimental Tg for our best regression models. The color code is
the same as in panel a). c) MCC relative to the test set for our predictions of the crystallisa-
tion class (Amo-class dataset), as a function of the number of descriptors we have combined
via ensemble learning. d) Confusion matrix for our best classification model.

121

further details). The authors have reported their results regarding a single, specific test set of

24 molecules (which implies that they have used a single, specific training set containing 47

molecules). We believe that this approach is not ideal, in that - particularly given the small

size of the dataset - the variability associated with the choice of a specific test set is bound

to be very large indeed. In particular, the best result reported in Ref. 28 might have been

obtained with an especially ”unlucky” or even especially ”lucky” test set, which prevents us

from a direct comparison with our results. In contrast, by adopting the LOOCV approach

we have used in this work, we are confident that our results are independent on the choice

of a specific test set.

With this in mind, the MSE regarding the test set obtained in Ref. 28 is 686.44. This

number refers to a model leveraging NNs in a similar fashion to our work, using a set of

”molecular descriptors” - none of which have been obtained from the outcomes of MD

simulations. As such, the descriptor we used which is closer to the set of descriptors used

in Ref. 28 is the Std descriptor (see Sec. 6.4.1). The PCC relative to the very same model in

Ref. 28 is 0.78. In comparison, our best regression model (see Fig. 6.7b) including the sim-

ulated Tg as a descriptor gave a MSE for the test set of 628.47, and a PCC of 0.83. Our best

regression model (see Fig. 6.7b) obtained without including the simulated Tg as a descriptor

gave a MSE for the test set of 1102.50, and a PCC of 0.60. In Ref. 28 we can also find a more

accurate result (MSE= 349.69 and PCC= 0.88) obtained via support vector regression (SVR).

At this stage we do not have an explanation as to why SVR would perform significantly better

than NNs, but we intend to explore alternative ML algorithms in the future.

Overall, our results in terms of regression are probably comparable to that of Ref. 28.

Our combination of one-molecule and solid state descriptors gave only slightly more accu-

rate results than the set of molecular descriptors used in Ref. 28 - if we are to compare these

in the context of NNs only. However, the results obtained in Ref.Ref. 28 via SVR appear to be

significantly more accurate than ours, albeit it is difficult to make direct comparisons given

both the different datasets and the choice of using a single, specific test set.

Classification [Crystallisation Class]: We have seen in Sec. 6.4.1.1 that the relaxation time

⌧ showed significant potential as a descriptor to identify the crystallisation class. As such, it

comes as no surprise that our best classification ensemble models, obtained via the straight-

forward max-voting approach described in Sec. 3.9.2, would include ⌧. The confusion ma-

trix relative to our best classification model, which has been obtained by combining ⌧,

wACSFs, and Std, is reported in Fig. 6.7d. Note that, overall, combining multiple descrip-

tors together did consistently improve the accuracy of our models (see Fig. 6.7c). In con-

trast to the results obtained with the solid state descriptors in isolation (see Fig. 6.5, Class II

molecules appear to be the most problematic ones to label correctly. This is expected - as

122

we discussed in section 1.3.

We can now compare our results with those of Ref. 47, where the dataset utilised (131

molecules) is almost identical to the Amo-Class dataset (124 molecules). There are two main

differences between the approach of Ref. 47 and our work. The first one is that, in a similar

fashion to Ref. 28, the authors have opted for single, specific test set, which in this case

encompasses 31 molecules (whilst the training set includes 100 molecules). Again, we do

not believe this approach to be ideal. The second difference is that in Ref. 47, the authors do

not take into account Class I molecules at all for the purposes of their classification models.

This has been justified on the basis of a fixed threshold regarding the molecular weights

of the molecules. Specifically, the authors argue that drug molecules characterised by a

molecular weight (MW) < 200 g/mol can be considered as Class I molecules. Whilst it is

definitely true that a strong connection between MW and crystallisation class exists (see

Fig. 1.3d), only 20 molecules belonging to Class I have a MW < 200 g/mol. The remaining

35 Class I molecules are all characterised by MW > 200 g/mol. As such, we believe that it

is not fair to exclude Class I molecules from a classification model, as the MW criterion is

not robust enough to provide a practical indication in terms of choosing a given drug-like

molecule as a potential candidate for an amorphous formulation.

In Ref. 47, the authors have built a model (based on decision trees) that distinguish

between Class II and Class III molecules (as we discussed, Class I molecules have not been

taken into account) with an accuracy of 69% relative to the single, fixed test test discussed

above. Given than Class II is severally under-populated with respect to Class III, we argue

that the usage of a metric such the MCC we have employed here gives a better representation

of the accuracy of the model. Nevertheless, for the purposes of comparing the results of our

best model with that of Ref. 47, the model which confusion matrix is reported in Fig. 6.7d

predicts Class I, II and III molecules with an accuracy of 89%, 84% and 86%, respectively.

Not only these numbers indicate a substantially more accurate model, but - crucially - our

classification model does include Class I molecules as well.

Overall, our results in terms of classification are very encouraging - albeit it needs

to be said that in order to achieve a truly predictive model, additional experimental data

are probably needed. The fact that our model identifies Class I molecules with an accuracy

of almost 90% is especially intriguing for practical purposes - as we shall discuss in greater

detail in the conclusion.

123

Figure 6.7: Ensemble learning. a) MSE relative to the test set for our predictions of the exper-
imental Tg (Amo-reg dataset), as a function of the number of descriptors we have combined
via ensemble learning (see text) using ensemble NN. The simulated Tg is included as a de-
scriptor in the ”Tg” results, but it has not been included in the ”no Tg” results. b) Scatter plot
of the predicted versus the experimental Tg for our best ensemble NN regression models.
The color code is the same as in panel a). c) MCC relative to the test set for our predictions
of the crystallisation class (Amo-class dataset), as a function of the number of descriptors
we have combined via ensemble learning. d) Confusion matrix for our best classification
model.

124

6.4.2.2 NN ensemble

When we analyse the results of the ensemble NN model (see section 3.9.3) we observe that

the max voting ensemble performs better for both the Amo-Reg and Amo-Class dataset. The

reason for this is likely due to the fact that it is very challenging to optimise the model. The

descriptors perform optimally individually due to the rigorous parameter tuning, however,

this is not possible when combining NNs as shown in figure 6.1. For example, if we have a

different optimal regularisation parameter for two different descriptors, in the max voting

ensemble, we are able to get predictions for each descriptor using their optimal parameter.

In the ensemble NN case it is not possible to train the different portions of the network with

a different regularisation rate and as a result, the quality of predictions is not as good.

6.5 Discussion and Conclusions

Packaging drug molecules as amorphous solids represents an intriguing possibility for the

pharmaceutical industry to circumvent the long-standing issue of the low solubility of tra-

ditional crystalline formulations. One of the major hurdles in implementing this approach,

however, is the physical stability of the amorphous phase - i.e., the timescale required for

it to transition into the crystal. Clearly, in order for an amorphous formulation to be mar-

ketable, the amorphous phase needs to be stable for the entire shelf life of the product -

which is very difficult to predict a priori.

Herein lies the motivation for our research: to harness the power of machine learn-

ing and molecular simulations to enhance our ability to forecast the stability of drug molecules

in their amorphous state. While we have made significant progress in classifying these

molecules into different crystallisation classes, we recognize that this is just the beginning.

Our journey has underscored the importance of expanding both our dataset and our mod-

eling techniques to unlock the full potential of amorphous solid formulations. As we stand

at the intersection of computational innovation and experimental exploration, our work

highlights the need for a collaborative effort that combines the strengths of both domains

to revolutionise the pharmaceutical landscape.

Machine learning can help in this context, by developing models capable to predict

the stability of a given drug molecules in its amorphous phase. However, the limited data

in our possession only enable us to devise classification models aimed at predicting the

so-called ”crystallisation class” relative to a given molecule. Class I, II and III correspond,

loosely, to classes of drug-like molecules with very low, intermediate and rather high phys-

ical stability. In this work, we build on the datasets and the previous results of Alhalaweh,

125

Mahlin, Bergström et al. (particularly Ref. 28 and Ref. 47) to deliver regression and par-

ticularly classification models that represent a step forward regarding the state-of-the-art

in terms of both accuracy and reliability. In particular, we adopt an approach that lever-

ages the outcomes of molecular dynamics simulations to build bespoke descriptors that

can be used to complement the picture offered by the traditional, ”one-molecule” descrip-

tors commonly used in QSAR models.

We combine these ”solid state” descriptors with an array of optimisation strategies,

including genetic algorithms, feature selection, over-sampling and ensemble learning, to

craft a portfolio of classification models that - despite the very limited size of the dataset at

our disposal - can correctly label drug-like molecules as Class I, II and III with accuracies

of ⇠85%. The ability of our models to ”filter out” Class I molecules - which are unsuitable

as candidates for amorphous formulations - is especially intriguing from a practical stand-

point. The outcomes of our work demonstrate the usefulness of combining molecular sim-

ulations with traditional machine learning approaches, not only to increase the predictive

power of the latter, but also to enable the usage of more transparent descriptors that can

effectively be used to build genuine structure-function relationships between molecular

structure and functional properties. Much work remains to be done in the context of ma-

chine learning to predict the physical stability of amorphous drugs. As already mentioned,

the limited size of the datasets available severely limits the accuracy of our models. We do

hope that the encouraging results we have obtained here will motivate further experimental

measurements aimed at increasing the size of said datasets.

It is also worth noting that many amorphous drugs are packaged as amorphous

solid dispersions: these are heterogeneous systems including amorphous drugs dispersed

in (typically) polymeric matrices. Expanding the scope of our models to take into account

such systems will only be possible given a substantial amount of experimental data that, to

our knowledge, is largely missing from the current literature.

In summary, we have advanced the state-of-the-art by bringing molecular simula-

tions into the mix: at this stage, whilst further computational improvement are certainly

possible, we believe that any decisive step forward in the field can only be achieved in con-

junction with bespoke experimental efforts.

126

MSE

STD Cliques Cliques [FS]

Lipo
0.198 ± 0.098
(0.682 ± 0.023)

0.412 ± 0.016
(0.950 ± 0.019)

0.690 ± 0.005
(1.032 ± 0.040) [15]

Hepa
0.253 ± 0.063
(0.413 ± 0.059)

0.176 ± 0.007
(0.317 ± 0.029)

0.125 ± 0.005
(0.304 ± 0.028) [18]

Amo
0.460 ± 0.127
(0.806 ± 0.171)

0.130 ± 0.009
(0.950 ± 0.360)

0.497 ± 0.029
(0.994 ± 0.167) [13]

H-wACSFs H-wACSFs [GAs]

Lipo
0.889 ± 0.020
(0.939 ± 0.022)

0.746 ± 0.019
(0.920 ± 0.031)

Hepa
0.590 ± 0.055
(1.238 ± 0.171)

0.314 ± 0.010
(0.350 ± 0.037)

Amo
0.362 ± 0.041
(1.348 ± 0.465)

0.124 ± 0.019
(0.838 ± 0.084)

PCC

STD Cliques Cliques [FS]

Lipo
0.933 ± 0.003
(0.737 ± 0.019)

0.859 ± 0.003
(0.623 ± 0.010)

0.727 ± 0.003
(0.554 ± 0.020) [15]

Hepa
0.687 ± 0.043
(0.295 ± 0.031)

0.731 ± 0.012
(0.359 ± 0.054)

0.826 ± 0.007
(0.450 ± 0.041) [18]

Amo
0.873 ± 0.008
(0.637 ± 0.058)

0.935 ± 0.007
(0.400 ± 0.218)

0.733 ± 0.015
(0.349 ± 0.111) [13]

H-wACSFs H-wACSFs [GAs]

Lipo
0.336 ± 0.011
(0.273 ± 0.020)

0.503 ± 0.020
(0.0327 ± 0.013)

Hepa
0.641 ± 0.035
(0.148 ± 0.033)

0.417 ± 0.037
(0.136 ± 0.077)

Amo
0.802 ± 0.028
(0.261 ± 0.101)

0.936 ± 0.009
(0.497 ± 0.134)

Table 6.1: Comparing the performance of three classes of descriptors: ⇠ 100 "standard"
RDKit descriptors (STD), molecular cliques (Cliques) and histograms of weighted atom-
centred symmetry functions (H-wACSFs). For each dataset: Lipophilicty (Lipo), Hepato-
cytes (Hepa) and Amorphous (Amo) we report the mean square error (MSE) and the Pear-
son correlation coefficient (PCC) for both the training and, in brackets, the test sets. All the
numbers have been averaged according to the cross validation procedure discussed in Sec-
tion 3.8.1. Uncertainties are included as ±�2 . Cliques [FS] and H-wACSFs [GAs] refer to the
results obtained for cliques upon feature selection (the numbers in square brackets specify
the number of selected cliques) and H-wACSFs upon optimisation, respectively. See text for
further details about both datasets and descriptors.

127

Feature selection - Cliques
Hepatocytes dataset

Smiles MDI (mean) MDI (�)
CC 0.082263 0.002642
CO 0.069692 0.002545
CN 0.069352 0.001979
C 0.054925 0.002775

C1=CC=CC=C1 0.052196 0.002532
C=O 0.032964 0.001487

CF 0.031491 0.002122
C1=CN=CCC1 0.030531 0.005510
C1=COC=CC1 0.028628 0.003882

C1COCCN1 0.027860 0.002575
C1CCNCC1 0.025989 0.002891

CCl 0.025489 0.001000
C1=CSC=C1 0.024680 0.003132
C1CCCCC1 0.021090 0.002438

CS 0.017693 0.001977
C1CNCCN1 0.017380 0.002165
C1=CSCN1 0.017038 0.002653
C1=NCCS1 0.013932 0.001524
C1CNSC1 0.015341 0.003452

C#N 0.013333 0.001248
[. . .]

C1=CCOCC1 0.005135 0.000685
C1CNC1 0.005111 0.001257

C1CNCN1 0.004771 0.000744
C1=CCNC=C1 0.004578 0.000439
C1=CCCCC1 0.004489 0.000649

Table 6.2: Feature selection for the cliques descriptor in the case of the Hepatocytes dataset.
The full cliques vocabulary contains in this case 132 cliques. For the 18 most important
cliques (bold font) as well as for the 5 least important cliques we report the corresponding
MDI (mean and standard deviation�), computed as discussed in Section 3.6. Note that the
most and least important cliques are characterised by values of the MDI that differ roughly
by an order of magnitude.

128

Optimisation - H-wACSFs

Non-optimised Lipo Hepa Amo-Reg
NR a d i a l 8 3 14 22

NAng ul a r 16 14 8 10
Rc ,R a d i a l (Å) 20 2 21 7
RcA ng ul a r (Å) 20 21 12 2

NH�b i n s 10 16 19 12

Table 6.3: Parameters of the H-wACSFs before and after optimisation via the genetic
algorithms-based procedure described in Chapter 5. N R a d , N Ang , R R a d

c , R Ang
c and B stand

for the number of radial symmetry functions (SFs), the number of angular SFs, the cutoff
radius for the radial SFs, the cutoff radius for the angular SFs and the number of bins we
have used to build the histograms, respectively. Results for the three datasets: Lipophilicty
(Lipo), Hepatocytes (Hepa) and Amorphous (Amo) are shown. Note the absence of any solid
trend for any of the SFs parameters across the different datasets.

Descriptor MSE - Train (K 2) MSE - Test (K 2) PCC - Train PCC - Test

Std 1455.899 ± 333.474 1625.971 ± 2637.659 0.442 ± 0.096 0.459
Cliques 1967.728 ± 608.089 1995.273 ± 2690.114 0.266 ± 0.212 0.393

H-wACSFs 1916.213 ± 508.731 2594.003 ± 6422.134 0.326 ± 0.121 0.157
H-wACSFs - GA 2203.201 ± 359.928 2356.687 ± 4482.981 0.19 ± 0.105 0.166

SOAPs 2101.346 ± 796.46 3001.488 ± 13712.585 0.353 ± 0.079 0.285
SOAPs - GA 2063.968 ± 321.171 2237.609 ± 3135.72 0.293 ± 0.061 0.316

Feature selection

Std 1331.376 ± 244.329 1458.926 ± 2095.038 0.495 ± 0.066 0.511
H-wACSFs 1818.283 ± 428.084 2446.945 ± 4816.482 0.351 ± 0.109 0.186

SOAPs 1706.709 ± 516.041 2105.706 ± 6532.711 0.407 ± 0.109 0.359

Table 6.4: ML predictions regarding the Amo-Reg dataset: one-molecule descriptors. Accu-
racy of our ML models in predicting the Tg regarding the Amo-Reg dataset, via different
one-molecule descriptors using NNs (see text).For a discussion on how this compares to
the literature, see section 6.5. We note that the Std descriptors do not perform particularly
well in this regime and we see that the model struggles to learn from the training set.

129

Descriptor MSE - Train (K 2) MSE-Test (K 2) PCC-Train PCC-Test

Std 198.025 ± 7.056 1315.096 ± 1930.636 0.969 ± 0.002 0.49
Cliques 624.233 ± 15.543 1645.365 ± 2261.237 0.883 ± 0.005 0.261

H-wACSF 659.248 ± 17.181 1656.536 ± 2249.296 0.865 ± 0.007 0.256
H-wACSFs - GA 256.874 ± 6.78 1310.202 ± 1804.481 0.962 ± 0.002 0.494

SOAP 246.778 ± 5.737 1518.32 ± 2234.844 0.968 ± 0.002 0.358
SOAP - GA 287.72 ± 7.881 1393.164 ± 2065.139 0.95 ± 0.002 0.444

Feature selection

Std 1245.319 ± 368.329 1230.619 ± 2420.128 0.459 ± 0.086 0.535

Table 6.5: ML predictions regarding the Amo-Reg dataset: one-molecule descriptors. Accu-
racy of our ML models in predicting the Tg regarding the Amo-Reg dataset, via different
one-molecule descriptors using RFs (see text). We note that again, the Std descriptor does
not perform well and we see some overfitting.

Descriptor MCC - Train MCC-Test
MCC-Train
SMOTE

MCC - Test
SMOTE

Std 0.837 ± 0.101 0.573 0.999 ± 0.003 0.746
Cliques 0.982 ± 0.016 0.282 0.99 ± 0.011 0.655
H-wACSF 0.957 ± 0.06 0.405 0.421 ± 0.023 0.579
H-wACSF - GA 0.421 ± 0.104 0.726 0.401 ± 0.111 0.601
SOAP 0.543 ± 0.055 0.432 0.955 ± 0.057 0.659
SOAP - GA 0.349 ± 0.104 0.59 0.979 ± 0.048 0.694

Feature selection

STD - FS 0.993 ± 0.014 0.544 0.999 ± 0.04 0.747
H-wACSF - FS 0.687 ± 0.133 0.49 0.991 ± 0.013 0.673
H-wACSF - GA - FS 0.738 ± 0.175 0.464 1 ± 0.02 0.757
SOAP - FS 0.693 ± 0.154 0.399 1 ± 0 0.746
SOAP - GA - FS 0.918 pm 0.093 0.418 - -

Table 6.6: ML predictions regarding the Amo-Class dataset: one-molecule descriptors. Ac-
curacy of our ML models in predicting the crystallisation class regarding the Amo-Class
dataset, via different one-molecule descriptors (see text) for the NN descriptor.

130

Descriptor MCC - Train MCC-Test
MCC-Train
SMOTE

MCC - Test
SMOTE

Std 1.0 ± 0.0 0.572 1.0 ± 0.0 0.719
Cliques 1 ± 0 0.279 0.978 ± 0.005 0.555
H-wACSF 0.958 ± 0.012 0.414 1.0 ± 0.0 0.665
H-wACSF - GA 0.99 ± 0.008 0.532 1.0 ± 0.0 0.691
SOAP 0.967 ± 0.016 0.357 1.0 ± 0.0 0.675
SOAP - GA 1.0 ± 0.0 0.503 0.993 ± 0.001 0.693

Feature selection

STD - FS - - 1.0 ± 0.002 0.728
H-wACSF - FS 0.687 ± 0.133 0.49 0.96 ± 0.011 0.585
H-wACSF - GA - FS - - 1.0 ± 0.0 0.701
SOAP - FS 0.693 ± 0.154 0.399 0.997 ± 0.004 0.7

Table 6.7: ML predictions regarding the Amo-Class dataset: one-molecule descriptors. Ac-
curacy of our ML models in predicting the crystallisation class regarding the Amo-Class
dataset, via different one-molecule descriptors (see text) for the RF descriptor.

Descriptor MSE - Train MSE - Test PCC - Train PCC - Test

Tg 421.759 ± 103.799 432.236 ± 902.112 0.859 ± 0.22 0.866
D 1404.177 ± 502.664 1444.206 ± 1886.394 0.487 ± 0.106 0.441
⌧ 1690.3 ± 233.864 1864.22 ± 2522.985 0.14 ± 0.151 0.058

Table 6.8: ML predictions regarding the Amo-Reg dataset: solid state descriptors. Accuracy of
our ML models in predicting the Tg regarding the Amo-Reg dataset, via different solid state
descriptors with a NN model (see text).

Descriptor MSE - Train MSE - Test PCC - Train PCC - Test

Tg 200.842 ± 4.009 483.013 ± 913.996 0.941 ± 0.001 0.851
D 279.16 ± 7.411 1586.628 ± 2148.29 0.953 ± 0.002 0.336
⌧ 603.565 ± 12.349 1826.099 ± 2291.228 0.856 ± 0.005 0.192

Table 6.9: ML predictions regarding the Amo-Reg dataset: solid state descriptors. Accuracy of
our ML models in predicting the Tg regarding the Amo-Reg dataset, via different solid state
descriptors with a RF model (see text).

131

Chapter 7

Conclusion

7.1 Conclusion

In this thesis, we present an investigation of how molecular dynamics (MD) simulations

and novel descriptors can be used to predict important characteristics of amorphous drugs

that affect their stability, such as the glass transition temperature and the crystallization

class. The use of computational methods to predict these properties is becoming increas-

ingly popular due to the significant cost and time savings they offer in comparison to tradi-

tional experimental methods.

We focus on predicting the glass transition temperature and the crystallization class

of amorphous drugs, as these are key factors that impact the stability of these drugs. Our

results demonstrate that the combination of solid-state descriptors derived from MD simu-

lations with machine learning algorithms can provide accurate predictions of these proper-

ties, indicating that it has the potential to be a valuable tool in the pharmaceutical industry.

Our approach provides an efficient way to screen large numbers of potential drug formula-

tions and identify those that are likely to have good stability properties.

While the accuracy of our models for directly predicting the stability of amorphous

drugs cannot be evaluated due to the limited availability of data, we hope that this work

serves as a foundation for future research. We anticipate that as more data becomes avail-

able, our approach can be further developed and optimised to improve its predictive capa-

bilities.

The key deliverables of this work are as follows:

• Advancing Classification: This work contributes to the field of class classification,

specifically in the context of predicting important characteristics of amorphous drugs,

such as the glass transition temperature and crystallisation class.

132

• Application of Computational Methods: We demonstrated the application of com-

putational methods, including MD simulations and novel descriptors, to predict cru-

cial properties of amorphous drugs.

• Cost and Time Savings: We highlighted the cost and time-saving benefits of using

computational approaches compared to traditional experimental methods in the phar-

maceutical industry.

• Predictive Models: Our work results in the development of predictive models that

combine solid-state descriptors from MD simulations with machine learning algo-

rithms. These models offer accurate predictions of Tg and crystallisation class, mak-

ing them valuable tools for pharmaceutical formulation screening.

• Foundation for Future Research: Despite data limitations, our thesis serves as a foun-

dation for future research in this area, with the potential for further improvements in

predictive accuracy as more data becomes available.

• Optimisation of Descriptors: In Chapter 5, we optimised the SOAP descriptor, en-

hancing its efficacy in machine learning applications and materials science.

• Potential for Industry Impact: Our research holds potential for significant advance-

ments in the pharmaceutical industry by improving the development of stable amor-

phous drug formulations.

In chapter 4 we give a special example of how MD simulations can be useful in other

similar fields of study. In this chapter, we aimed to investigate the microscopic origins of the

boson peak, which is a common feature observed in glasses as an excess in heat capacity

or an additional peak in the terahertz vibrational spectrum. To achieve this, we studied

liquids that are made up of highly symmetric molecules and used depolarised Raman scat-

tering to isolate and observe the boson peak from the liquid state into the glass state. We

observed that the boson peak becomes more intense as the temperature is lowered, and we

also detected the simultaneous appearance of a pre-peak due to molecular clusters con-

sisting of about 20 molecules through wide-angle x-ray scattering. By conducting atomistic

molecular dynamics simulations, we were able to identify that these clusters were caused

by over-coordinated molecules. Our findings represent an essential contribution towards

understanding the physics of vitrification.

In chapter 5 we focused on the optimisation of the Smooth Overlap of Atomic Posi-

tions (SOAP) descriptor, which is a relatively new descriptor gaining popularity in machine

133

learning applications. Specifically, we utilised a genetic algorithm to optimise the SOAP de-

scriptor for a large dataset, and we demonstrated that it outperforms a random grid search.

Our genetic algorithm is capable of searching the parameter space for optimal SOAP de-

scriptor parameters in a more efficient manner, as compared to conventional random grid

searches.

In addition to improving the performance of the SOAP descriptor, our work has im-

portant implications for the field of machine learning and materials science. The SOAP

descriptor has been shown to be highly effective in describing the structural and chemical

properties of materials, and is therefore an important tool for developing accurate machine

learning models. By optimising the SOAP descriptor using a genetic algorithm, we have en-

hanced the predictive power of machine learning models that rely on the SOAP descriptor.

Overall, we believe that the results of this chapter will help to accelerate the adoption

of the SOAP descriptor in machine learning applications. Our genetic algorithm provides

a more efficient way of optimising the SOAP descriptor, which can improve the accuracy

of predictive models, reduce computational costs, and enhance the efficiency of materials

design. This nature of our SOAP_GAS package also allows researchers to use the GA for other

descriptors, and we show that for H-wACSF the GA provides a substantial improvement in

the accuracy of predictions.

In chapter 6, we present the results of our study, which demonstrate the potential of

descriptors derived from molecular simulations in predicting two important characteristics

of amorphous drug formulations - Tg and crystallisation class. Our approach involved the

use of molecular dynamics simulations to generate bespoke descriptors that capture the

structural and thermodynamic properties of amorphous drug molecules.

Our results indicate that the combination of molecular simulations with machine

learning techniques can lead to highly accurate predictions of Tg and crystallisation class.

We compare our results with the current state-of-the-art in this area and find that in some

cases, our approach outperforms existing methods. This suggests that our approach has

the potential to significantly improve the development of amorphous drug formulations.

Furthermore, we believe that there is still room for further improvement. For in-

stance, more advanced machine learning techniques and optimisation strategies could po-

tentially be employed to enhance the accuracy of our predictions. Additionally, the use

of more sophisticated molecular dynamics simulations may also lead to the generation

of more informative descriptors that can better capture the behavior of amorphous drug

molecules under different conditions.

This study advances beyond the prevailing state of the art by not only enhancing

the predictive accuracy in the domains of crystallisation class classification and glass tran-

134

sition temperature prediction but also by introducing a novel array of molecular descriptors.

The framework established herein not only optimises these descriptors effectively through

a GA but also substantiates their efficacy on our specific dataset. This innovation poten-

tially paves the way for broader applicability, as these descriptors may find utility in diverse

datasets in future research endeavors by others.

Overall, our study highlights the potential of combining molecular simulations with

machine learning techniques for the development of amorphous drug formulations. The

results of this work provide a foundation for further research in this area and demonstrate

the potential for significant advancements in the field of pharmaceutical science.

7.2 Further work

One of the key limitations of this work has been the lack of available data for training and

validating our models. As we have seen, with the limited data available, our models were

able to predict the physical stability of amorphous drugs with reasonable accuracy. How-

ever, there is a clear need for more data to improve the accuracy and reliability of these

models. If we had additional time and resources, it would have potentially been very bene-

ficial to increase the size of our dataset using computationally generated molecules, this is

definitley something that could be done in future work.

In this context, generative machine learning methods represent a promising avenue

for future research. Specifically, generative adversarial networks (GANs) and other genera-

tive AI techniques could be used to create computationally generated molecules that mim-

ics the characteristics of our real-world data. This computationally generated data could

then be used to train and validate machine learning models, providing a larger and more

diverse dataset than is currently available. As far as we are aware, there is currently no on-

going research using computationally generated data to predict crystallisation class.

One potential advantage of generative methods is that they can be used to create

data that reflects the underlying distribution of the real data, rather than simply replicating

the patterns present in the limited existing dataset. This could help to overcome the issue of

data imbalance, which can be a problem when training machine learning models on small

datasets.

Of course, there are also potential challenges and limitations associated with using

generative methods for this purpose. For example, it may be difficult to ensure that the

synthetic data accurately reflects the real-world data distribution, or to generate data that

is sufficiently diverse to capture all relevant features of the data.

Additionally, further exploration of advanced machine learning techniques and op-

135

timization strategies is warranted. By continuously refining and evolving our modeling ap-

proaches, we can expect enhanced predictive accuracy and more robust models. Moreover,

the incorporation of state-of-the-art molecular dynamics simulations may unlock the po-

tential for generating even more informative descriptors. This, in turn, could enable us to

capture and comprehend the nuanced behavior of amorphous drug molecules under an

extensive range of conditions.

Also, reinforcement learning (RL) holds intriguing potential within the context of

pharmaceutical science and predictive modeling. Specifically, RL algorithms could be em-

ployed to optimise and automate the process of molecular simulation and descriptor gen-

eration. By setting up a reinforcement learning framework, researchers can develop agents

that learn to navigate the vast parameter space of molecular dynamics simulations, au-

tonomously selecting simulation conditions that maximise the informativeness of gener-

ated data. Furthermore, RL can facilitate the dynamic adaptation of simulation parame-

ters based on the evolving needs of predictive models, ensuring that descriptors are con-

tinuously refined for enhanced accuracy. This not only expedites the descriptor optimi-

sation process but also empowers researchers to harness the full potential of computa-

tional resources efficiently. Additionally, RL can play a pivotal role in automating the se-

lection of appropriate machine learning algorithms and hyperparameters, streamlining the

model-building process and paving the way for more comprehensive predictive models in

the realm of pharmaceutical science.

In conclusion, the completion of this thesis marks a significant milestone in the pur-

suit of predictive modeling for amorphous drug formulations. However, the road ahead

is paved with opportunities for further research and innovation. By addressing data limi-

tations through generative methods, exploring advanced modeling techniques, and refin-

ing molecular simulations, we can collectively contribute to the continued advancement of

pharmaceutical science, ultimately benefiting the industry and society at large.

136

Bibliography

[1] E. Hadjittofis, M. A. Isbell, V. Karde, S. Varghese, C. Ghoroi and J. Y. Heng, Pharmaceu-

tical Research, 2018, 35, 1–22.

[2] S. Datta and D. J. Grant, Nature Reviews Drug Discovery, 2004, 3, 42–57.

[3] S. Kalepu and V. Nekkanti, Acta Pharmaceutica Sinica B, 2015, 5, 442–453.

[4] T. Loftsson and M. E. Brewster, Journal of pharmacy and pharmacology, 2010, 62,

1607–1621.

[5] R. Laitinen, K. Löbmann, C. J. Strachan, H. Grohganz and T. Rades, International jour-

nal of pharmaceutics, 2013, 453, 65–79.

[6] S. B. Murdande, M. J. Pikal, R. M. Shanker and R. H. Bogner, Journal of pharmaceutical

sciences, 2011, 100, 4349–4356.

[7] G. Chawla and A. K. Bansal, European journal of pharmaceutical sciences, 2007, 32,

45–57.

[8] B. C. Hancock and M. Parks, Pharmaceutical research, 2000, 17, 397–404.

[9] C. Leuner and J. Dressman, European journal of Pharmaceutics and Biopharmaceu-

tics, 2000, 50, 47–60.

[10] T. Vasconcelos, S. Marques, J. das Neves and B. Sarmento, Advanced drug delivery re-

views, 2016, 100, 85–101.

[11] D. Q. Craig, P. G. Royall, V. L. Kett and M. L. Hopton, International journal of pharma-

ceutics, 1999, 179, 179–207.

[12] E. O. Kissi, H. Grohganz, K. Lobmann, M. T. Ruggiero, J. A. Zeitler and T. Rades, The

Journal of Physical Chemistry B, 2018, 122, 2803–2808.

137

[13] A. D. Phan, K. Wakabayashi, M. Paluch and V. D. Lam, RSC advances, 2019, 9, 40214–

40221.

[14] S. Huang and R. O. Williams, AAPS PharmSciTech, 2018, 19, 1971–1984.

[15] A. T. Serajuddin, Journal of pharmaceutical sciences, 1999, 88, 1058–1066.

[16] C. Bhugra, R. Shmeis and M. J. Pikal, Journal of pharmaceutical sciences, 2008, 97,

4446–4458.

[17] X. Ma and R. O. Williams III, Journal of Drug Delivery Science and Technology, 2019,

50, 113–124.

[18] A. Singh and G. Van den Mooter, Advanced drug delivery reviews, 2016, 100, 27–50.

[19] M. Myślińska, M. W. Stocker, S. Ferguson and A. M. Healy, Journal of Pharmaceutical

Sciences, 2023.

[20] A. H. Ibrahim, H. M. Ibrahim, H. R. Ismael and A. M. Samy, Pharmaceutical Develop-

ment and Technology, 2018, 23, 358–369.

[21] A. N. Bristol, M. S. Lamm and Y. Li, Molecular Pharmaceutics, 2021, 18, 4299–4309.

[22] X. Lin, Y. Hu, L. Liu, L. Su, N. Li, J. Yu, B. Tang and Z. Yang, Pharmaceutical research,

2018, 35, 1–18.

[23] A. Schittny, J. Huwyler and M. Puchkov, Drug Delivery, 2020, 27, 110–127.

[24] S. V. Bhujbal, B. Mitra, U. Jain, Y. Gong, A. Agrawal, S. Karki, L. S. Taylor, S. Kumar and

Q. T. Zhou, Acta Pharmaceutica Sinica B, 2021, 11, 2505–2536.

[25] S. Greco, J.-R. Authelin, C. Leveder and A. Segalini, Pharmaceutical research, 2012, 29,

2792–2805.

[26] B. Cassel and B. Twombly, American laboratory (Fairfield), 1998, 30, 24–27.

[27] J. E. Patterson, M. B. James, A. H. Forster, R. W. Lancaster, J. M. Butler and T. Rades,

Journal of pharmaceutical sciences, 2005, 94, 1998–2012.

[28] A. Alzghoul, A. Alhalaweh, D. Mahlin and C. A. Bergström, Journal of Chemical Infor-

mation and Modeling, 2014, 54, 3396–3403.

[29] D. Mahlin and C. A. Bergström, European Journal of Pharmaceutical Sciences, 2013,

49, 323–332.

138

[30] R. Fulchiron, I. Belyamani, J. U. Otaigbe and V. Bounor-Legaré, Scientific reports, 2015,

5, 8369.

[31] R. Han, H. Xiong, Z. Ye, Y. Yang, T. Huang, Q. Jing, J. Lu, H. Pan, F. Ren and D. Ouyang,

Journal of Controlled Release, 2019, 311, 16–25.

[32] H. Lee, J. Kim, S. Kim, J. Yoo, G. J. Choi and Y.-S. Jeong, Journal of Chemistry, 2022.

[33] K. Nurzynska, J. Booth, C. J. Roberts, J. McCabe, I. Dryden and P. M. Fischer, Molecular

pharmaceutics, 2015, 12, 3389–3398.

[34] S. Ekins, Pharmaceutical research, 2016, 33, 2594–2603.

[35] Y. Yang, Z. Ye, Y. Su, Q. Zhao, X. Li and D. Ouyang, Acta pharmaceutica sinica B, 2019,

9, 177–185.

[36] S. A. Kumar, T. D. Ananda Kumar, N. M. Beeraka, G. V. Pujar, M. Singh, H. S.

Narayana Akshatha and M. Bhagyalalitha, Future Medicinal Chemistry, 2022, 14, 245–

270.

[37] Y. Xu, K. Lin, S. Wang, L. Wang, C. Cai, C. Song, L. Lai and J. Pei, Future medicinal

chemistry, 2019, 11, 567–597.

[38] F. Raimundo, L. Meng-Papaxanthos, C. Vallot and J.-P. Vert, Current Opinion in Sys-

tems Biology, 2021, 26, 64–71.

[39] E. H. Weissler, T. Naumann, T. Andersson, R. Ranganath, O. Elemento, Y. Luo, D. F.

Freitag, J. Benoit, M. C. Hughes, F. Khan et al., Trials, 2021, 22, 1–15.

[40] P. Shah, F. Kendall, S. Khozin, R. Goosen, J. Hu, J. Laramie, M. Ringel and N. Schork,

NPJ digital medicine, 2019, 2, 69.

[41] G. Szarvas, R. Farkas and R. Busa-Fekete, Journal of the American Medical Informatics

Association, 2007, 14, 574–580.

[42] X. Zeng, S. Zhu, W. Lu, Z. Liu, J. Huang, Y. Zhou, J. Fang, Y. Huang, H. Guo, L. Li et al.,

Chemical Science, 2020, 11, 1775–1797.

[43] F. Yang, Q. Zhang, X. Ji, Y. Zhang, W. Li, S. Peng and F. Xue, Interdisciplinary Sciences:

Computational Life Sciences, 2022, 14, 15–21.

[44] M. I. Miller, L. C. Shih and V. B. Kolachalama, Neurotherapeutics, 2023, 1–15.

139

[45] E. Lin, C.-H. Lin and H.-Y. Lane, Molecules, 2020, 25, 3250.

[46] J. C. Mauro, Y. Yue, A. J. Ellison, P. K. Gupta and D. C. Allan, Proceedings of the National

Academy of Sciences, 2009, 106, 19780–19784.

[47] A. Alhalaweh, A. Alzghoul, W. Kaialy, D. Mahlin and C. A. Bergström, Molecular Phar-

maceutics, 2014, 11, 3123–3132.

[48] M. Rams-Baron, Amorphous drugs: benefits and challenges, Springer Berlin Heidel-

berg, New York, NY, 2018.

[49] M. Chanda, Introduction to polymer science and chemistry: a problem-solving ap-

proach, CRC Press, 2006.

[50] A. Alhalaweh, A. Alzghoul, D. Mahlin and C. A. Bergström, International journal of

pharmaceutics, 2015, 495, 312–317.

[51] S. Baghel, H. Cathcart and N. J. O’Reilly, Journal of pharmaceutical sciences, 2016, 105,

2527–2544.

[52] J. A. Baird, B. Van Eerdenbrugh and L. S. Taylor, Journal of pharmaceutical sciences,

2010, 99, 3787–3806.

[53] D. Weininger, Journal of chemical information and computer sciences, 1988, 28, 31–36.

[54] Datasets, http://moleculenet.ai/datasets-1.

[55] E. Anderson, G. Veith and D. Weininger, Environmental Research Laboratory-Duluth.

Report No. EPA/600/M-87/021, 1987.

[56] E. Rutkowska, K. Pajak and K. Jóźwiak, Acta Pol Pharm, 2013, 70, 3–18.

[57] C. Lu, P. Li, R. Gallegos, V. Uttamsingh, C. Q. Xia, G. T. Miwa, S. K. Balani and L.-S. Gan,

Drug Metab Dispos, 2006, 34, 1600–1605.

[58] S. Boobier, A. Osbourn and J. B. Mitchell, Journal of cheminformatics, 2017, 9, 1–14.

[59] C. Saal and A. Nair, Solubility in pharmaceutical chemistry, Walter de Gruyter GmbH

& Co KG, 2020.

[60] A. Llinàs, R. C. Glen and J. M. Goodman, J. Chem. Inf. Model., 2008, 48, 1289–1303.

[61] A. Llinas, I. Oprisiu and A. Avdeef, Journal of chemical information and modeling,

2020, 60, 4791–4803.

140

http://moleculenet.ai/datasets-1

[62] M. C. Sorkun, J. V. A. Koelman and S. Er, Iscience, 2021, 24, 101961.

[63] L. C. Blum and J.-L. Reymond, J. Am. Chem. Soc., 2009, 131, 8732.

[64] G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen, A. Tkatchenko,

K.-R. Müller and O. A. v. Lilienfeld, New J. Phys., 2013, 15, 095003.

[65] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch and G. R. Hutchi-

son, Journal of Cheminformatics, 2011, 3, 33.

[66] K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian,

O. Guvench, P. Lopes, I. Vorobyov et al., Journal of computational chemistry, 2010, 31,

671–690.

[67] W. Yu, X. He, K. Vanommeslaeghe and A. D. MacKerell Jr, Journal of computational

chemistry, 2012, 33, 2451–2468.

[68] K. Vanommeslaeghe and A. D. MacKerell Jr, Journal of chemical information and mod-

eling, 2012, 52, 3144–3154.

[69] K. Vanommeslaeghe, E. P. Raman and A. D. MacKerell Jr, Journal of chemical informa-

tion and modeling, 2012, 52, 3155–3168.

[70] Q. Ke, X. Gong, S. Liao, C. Duan and L. Li, Journal of Molecular Liquids, 2022, 365,

120116.

[71] J. R. Perilla, B. C. Goh, C. K. Cassidy, B. Liu, R. C. Bernardi, T. Rudack, H. Yu, Z. Wu and

K. Schulten, Current opinion in structural biology, 2015, 31, 64–74.

[72] J. Norberg and L. Nilsson, Quarterly Reviews of Biophysics, 2003, 36, 257–306.

[73] F. Bachtiger, T. R. Congdon, C. Stubbs, M. I. Gibson and G. C. Sosso, Nature Commu-

nications, 2021, 12, 1323.

[74] C. A. Stevens, F. Bachtiger, X.-D. Kong, L. A. Abriata, G. C. Sosso, M. I. Gibson and H.-A.

Klok, Nat Commun, 2021, 12, 2675.

[75] C. M. Miles, P.-C. Hsu, A. M. Dixon, S. Khalid and G. C. Sosso, Phys. Chem. Chem. Phys.,

2022, 24, 6476–6491.

[76] M. T. Warren, I. Galpin, F. Bachtiger, M. I. Gibson and G. C. Sosso, J. Phys. Chem. Lett.,

2022, 13, 2237–2244.

141

[77] G. C. Sosso, P. Sudera, A. T. Backes, T. F. Whale, J. Fröhlich-Nowoisky, M. Bonn,

A. Michaelides and E. H. G. Backus, Chem. Sci., 2022, 13, 5014–5026.

[78] M. González-Jiménez, T. Barnard, B. A. Russell, N. V. Tukachev, U. Javornik, L.-A.

Hayes, A. J. Farrell, S. Guinane, H. M. Senn, A. J. Smith, M. Wilding, G. Mali, M. Nakano,

Y. Miyazaki, P. McMillan, G. C. Sosso and K. Wynne, Nat Commun, 2023, 14, 215.

[79] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee and L. G. Pedersen, The

Journal of chemical physics, 1995, 103, 8577–8593.

[80] L. Martínez, R. Andrade, E. G. Birgin and J. M. Martínez, Journal of computational

chemistry, 2009, 30, 2157–2164.

[81] G. Landrum et al., 2016.

[82] S. Riniker and G. A. Landrum, J. Chem. Inf. Model., 2015, 55, 2562–2574.

[83] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. Goddard and W. M. Skiff, J. Am. Chem.

Soc., 1992, 114, 10024–10035.

[84] R. Todeschini and V. Consonni, Handbook of Chemoinformatics: From Data to Knowl-

edge in 4 Volumes, 2003, 1004–1033.

[85] P. Gramatica, QSAR & Combinatorial Science, 2006, 25, 327–332.

[86] T. Barnard, H. Hagan, S. Tseng and G. C. Sosso, Molecular Systems Design & Engineer-

ing, 2020, 5, 317–329.

[87] W. Jin, R. Barzilay and T. Jaakkola, arXiv:1802.04364 [cs, stat], 2018.

[88] C. R. Collins, G. J. Gordon, O. A. von Lilienfeld and D. J. Yaron, The Journal of Chemical

Physics, 2018, 148, 241718.

[89] J. Behler and M. Parrinello, Phys. Rev. Lett., 2007, 98, 146401.

[90] M. Gastegger, L. Schwiedrzik, M. Bittermann, F. Berzsenyi and P. Marquetand, The

Journal of Chemical Physics, 2018, 148, 241709.

[91] G. C. Sosso, V. L. Deringer, S. R. Elliott and G. Csányi, Molecular Simulation, 2018, 44,

866–880.

[92] A. Singraber, T. Morawietz, J. Behler and C. Dellago, J. Phys.: Condens. Matter, 2018,

30, 254005.

142

[93] J. Li, K. Song and J. Behler, Physical Chemistry Chemical Physics, 2019, 21, 9672–9682.

[94] J. Behler, The Journal of Chemical Physics, 2011, 134, 074106.

[95] F. C. Mocanu, K. Konstantinou, T. H. Lee, N. Bernstein, V. L. Deringer, G. Csányi and

S. R. Elliott, J. Phys. Chem. B, 2018, 122, 8998–9006.

[96] V. Quaranta, J. Behler and M. Hellström, J. Phys. Chem. C, 2019, 123, 1293–1304.

[97] A. P. Bartók, R. Kondor and G. Csányi, Physical Review B, 2013, 87, 184115.

[98] S. N. Pozdnyakov, M. J. Willatt, A. P. Bartók, C. Ortner, G. Csányi and M. Ceriotti, Phys.

Rev. Lett., 2020, 125, 166001.

[99] M. O. Jäger, E. V. Morooka, F. Federici Canova, L. Himanen and A. S. Foster, npj Com-

putational Materials, 2018, 4, 1–8.

[100] J. L. Priedeman, C. W. Rosenbrock, O. K. Johnson and E. R. Homer, Acta Materialia,

2018, 161, 431–443.

[101] M. A. Caro, Physical Review B, 2019, 100, 024112.

[102] S. De, A. P. Bartók, G. Csányi and M. Ceriotti, Physical Chemistry Chemical Physics,

2016, 18, 13754.

[103] R. Todeschini and P. Gramatica, 3D QSAR in drug design, Springer, 2002, pp. 355–380.

[104] V. Zaverkin and J. Kästner, Journal of Chemical Theory and Computation, 2020, 16,

5410–5421.

[105] A. Goscinski, F. Musil, S. Pozdnyakov, J. Nigam and M. Ceriotti, The Journal of Chem-

ical Physics, 2021, 1–12.

[106] M. O. J. Jäger, E. V. Morooka, F. F. Canova, L. Himanen and A. S. Foster, npj Computa-

tional Materials, 2018, 1–8.

[107] K. De Jong, Machine learning, Elsevier, 1990, pp. 611–638.

[108] J. J. Grefenstette, 1993, 3–4.

[109] P. K. Gupta, Journal of Non-Crystalline Solids, 1996, 195, 158–164.

[110] Y.-T. Cheng and W. L. Johnson, Science, 1987, 235, 997–1002.

143

[111] L. Van Hove, Physical Review, 1954, 95, 249.

[112] D. P. Kingma and M. Welling, arXiv preprint arXiv:1312.6114, 2013.

[113] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville

and Y. Bengio, Communications of the ACM, 2020, 63, 139–144.

[114] A. Gisbrecht, A. Schulz and B. Hammer, Neurocomputing, 2015, 147, 71–82.

[115] N. Gebauer, M. Gastegger and K. Schütt, Advances in neural information processing

systems, 2019, 32, year.

[116] N. V. Chawla, K. W. Bowyer, L. O. Hall and W. P. Kegelmeyer, Journal of artificial intel-

ligence research, 2002, 16, 321–357.

[117] C. Guo, G. Pleiss, Y. Sun and K. Q. Weinberger, 2017, 1321–1330.

[118] C. Zhang, S. Bengio, M. Hardt, B. Recht and O. Vinyals, Communications of the ACM,

2021, 64, 107–115.

[119] X. Glorot, A. Bordes and Y. Bengio, 2011, 315–323.

[120] D. P. Kingma and J. Ba, arXiv preprint arXiv:1412.6980, 2014.

[121] S. Ruder, arXiv preprint arXiv:1609.04747, 2016.

[122] P. Zhou, J. Feng, C. Ma, C. Xiong, S. C. H. Hoi et al., Advances in Neural Information

Processing Systems, 2020, 33, 21285–21296.

[123] L. Breiman, 2004.

[124] G. Biau and E. Scornet, Test, 2016, 25, 197–227.

[125] B. H. Menze, B. M. Kelm, R. Masuch, U. Himmelreich, P. Bachert, W. Petrich and F. A.

Hamprecht, BMC Bioinformatics, 2009, 10, 213 – 213.

[126] L. Breiman, Machine learning, 2001, 45, 5–32.

[127] G. Louppe, arXiv preprint arXiv:1407.7502, 2014.

[128] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,

M. Brucher, M. Perrot and E. Duchesnay, Journal of Machine Learning Research, 2011,

12, 2825–2830.

144

[129] C. Asgreen, M. M. Knopp, J. Skytte and K. Löbmann, Pharmaceutics, 2020, 12, 483.

[130] B. M. Spowage, C. L. Bruce and J. D. Hirst, Journal of cheminformatics, 2009, 1, 1–13.

[131] S. A. Wildman and G. M. Crippen, Journal of chemical information and computer sci-

ences, 1999, 39, 868–873.

[132] R. E. Schapire, Empirical Inference: Festschrift in Honor of Vladimir N. Vapnik, 2013,

37–52.

[133] C. A. Angell, K. L. Ngai, G. B. McKenna, P. F. McMillan and S. W. Martin, Journal of

applied physics, 2000, 88, 3113–3157.

[134] H. B. Yu, W. H. Wang, H. Y. Bai and K. Samwer, National Science Review, 2014, 1, 429–

461.

[135] R. Boyer, Polymer Engineering & Science, 1968, 8, 161–185.

[136] K. Ueno and C. A. Angell, The Journal of Physical Chemistry B, 2011, 115, 13994–13999.

[137] G. Johari, The Journal of Physical Chemistry B, 2019, 123, 3010–3023.

[138] G. Johari, Journal of non-crystalline solids, 2002, 307, 317–325.

[139] H. Tanaka, Physical Review E, 2004, 69, 021502.

[140] M. A. Ramos, Low-Temperature Thermal and Vibrational Properties of Disordered

Solids: A Half-Century of Universal “Anomalies” of Glasses, World Scientific, 2023, pp.

1–20.

[141] T. S. Grigera, V. Martín-Mayor, G. Parisi and P. Verrocchio, Nature, 2003, 422, 289–292.

[142] D. Parshin, H. Schober and V. Gurevich, Physical Review B, 2007, 76, 064206.

[143] C. Alvarez-Ney, J. Labarga, M. Moratalla, J. Castilla and M. Ramos, Journal of Low Tem-

perature Physics, 2017, 187, 182–191.

[144] W. Schirmacher, G. Ruocco and T. Scopigno, Physical review letters, 2007, 98, 025501.

[145] S. Taraskin, Y. Loh, G. Natarajan and S. Elliott, Physical review letters, 2001, 86, 1255.

[146] E. Lerner and E. Bouchbinder, The Journal of chemical physics, 2021, 155, 200901.

[147] H. Shintani and H. Tanaka, Nature materials, 2008, 7, 870–877.

145

[148] Y.-C. Hu and H. Tanaka, Nature Physics, 2022, 18, 669–677.

[149] H. Tanaka, The Journal of chemical physics, 1999, 111, 3163–3174.

[150] E. Lerner and E. Bouchbinder, arXiv preprint arXiv:2210.10326, 2022.

[151] A. Chumakov, G. Monaco, A. Monaco, W. Crichton, A. Bosak, R. Rüffer, A. Meyer,

F. Kargl, L. Comez, D. Fioretto et al., Physical Review Letters, 2011, 106, 225501.

[152] M. Baggioli and A. Zaccone, Physical review letters, 2019, 122, 145501.

[153] A. I. Chumakov, G. Monaco, A. Fontana, A. Bosak, R. P. Hermann, D. Bessas, B. We-

hinger, W. A. Crichton, M. Krisch, R. Rüffer et al., Physical review letters, 2014, 112,

025502.

[154] J. S. Bender, M. Zhi and M. T. Cicerone, Soft Matter, 2020, 16, 5588–5598.

[155] H. Cang, J. Li, H. C. Andersen and M. Fayer, The Journal of chemical physics, 2005, 123,

064508.

[156] J. Reichenbach, S. A. Ruddell, M. Gonzalez-Jimenez, J. Lemes, D. A. Turton, D. J.

France and K. Wynne, Journal of the American Chemical Society, 2017, 139, 7160–7163.

[157] A. J. Farrell, M. Gonzalez-Jimenez, G. Ramakrishnan and K. Wynne, The Journal of

Physical Chemistry B, 2020, 124, 7611–7624.

[158] F. Walton, J. Bolling, A. Farrell, J. MacEwen, C. D. Syme, M. G. Jiménez, H. M. Senn,

C. Wilson, G. Cinque and K. Wynne, Journal of the American Chemical Society, 2020,

142, 7591–7597.

[159] M. González-Jiménez, G. Ramakrishnan, N. V. Tukachev, H. M. Senn and K. Wynne,

Physical Chemistry Chemical Physics, 2021, 23, 13250–13260.

[160] A. Farrell, M. G. Jiménez, N. Tukachev, D. A. Turton, B. A. Russell, S. Guinane, H. M.

Senn and K. Wynne, 2021.

[161] P. Lunkenheimer, U. Schneider, R. Brand and A. Loid, Contemporary Physics, 2000, 41,

15–36.

[162] D. A. Turton and K. Wynne, The Journal of chemical physics, 2009, 131, 201101.

[163] C. Darwin, The origin of species, 1909.

146

[164] B. N. Bartok, Albert and J. Kermode, GAP and SOAP documentation - GAP documen-

tation.

[165] M. Olson, A. Wyner and R. Berk, Advances in Neural Information Processing Systems,

2018, 31, year.

[166] T. Shaikhina, D. Lowe, S. Daga, D. Briggs, R. Higgins and N. Khovanova, Biomedical

Signal Processing and Control, 2019, 52, 456–462.

[167] N. M. O’Boyle, C. Morley and G. R. Hutchison, Chemistry Central Journal, 2008, 2, 1–7.

[168] K. Chen, C. Kunkel, K. Reuter and J. T. Margraf, Digital Discovery, 2022, 1, 147–157.

[169] S. Axelrod and R. Gomez-Bombarelli, Molecular machine learning with conformer en-

sembles, 2021, http://arxiv.org/abs/2012.08452, Number: arXiv:2012.08452

arXiv:2012.08452 [physics].

[170] J. P. Darby, J. R. Kermode and G. Csányi, arXiv preprint arXiv:2112.13055, 2021.

[171] D. S. Palmer and J. B. Mitchell, Molecular Pharmaceutics, 2014, 11, 2962–2972.

[172] S. Boobier, D. R. Hose, A. J. Blacker and B. N. Nguyen, Nature communications, 2020,

11, 1–10.

[173] A. Avdeef, ADMET and DMPK, 2020, 8, 29–77.

[174] M. Lovrić, K. Pavlović, P. Žuvela, A. Spataru, B. Lučić, R. Kern and M. W. Wong, Journal

of Chemometrics, 2021, 35, e3349.

[175] A. Mauri, V. Consonni, M. Pavan and R. Todeschini, Match, 2006, 56, 237–248.

[176] I. Olier, N. Sadawi, G. R. Bickerton, J. Vanschoren, C. Grosan, L. Soldatova and R. D.

King, Mach Learn, 2018, 107, 285–311.

[177] A. Bender, J. L. Jenkins, J. Scheiber, S. C. K. Sukuru, M. Glick and J. W. Davies, J. Chem.

Inf. Model., 2009, 49, 108–119.

[178] M. Dehmer, F. Emmert-Streib and S. Tripathi, PLOS ONE, 2013, 8, e83956.

[179] S. Lapuschkin, S. Wäldchen, A. Binder, G. Montavon, W. Samek and K.-R. Müller, Nat

Commun, 2019, 10, 1–8.

[180] D. Castelvecchi, Nature News, 2016, 538, 20.

147

http://arxiv.org/abs/2012.08452

[181] J. Drews, Science, 2000, 287, 1960–1964.

[182] G. C. Sosso, Less may be more: an informed reflection on molecular descriptors for

drug design and discovery: gcsosso/MSDE_Sosso_alpha, 2019, https://github.

com/gcsosso/MSDE_Sosso_alpha, original-date: 2019-08-16T09:23:18Z.

[183] F. Chollet et al., Keras, https://keras.io, 2015.

[184] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia,

R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Mur-

ray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Van-

houcke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu

and X. Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems,

2015, https://www.tensorflow.org/, Software available from tensorflow.org.

[185] K. A. Ross, Encyclopedia of Database Systems, Springer US, Boston, MA, 2009, pp. 301–

304.

[186] S. Raschka, Python Machine Learning, Packt Publishing, 2015.

[187] K. Pearson, Proceedings of the Royal Society of London, 1895, 58, 240–242.

[188] T. Barnard, S. Steng, J. Darby, A. P. Bartók, A. Broo and G. C. Sosso, Mol. Syst. Des. Eng.,

2022.

[189] B. W. Matthews, Biochimica et Biophysica Acta (BBA) - Protein Structure, 1975, 405,

442–451.

[190] D. Chicco and G. Jurman, BMC Genomics, 2020, 21, 6.

148

https://github.com/gcsosso/MSDE_Sosso_alpha
https://github.com/gcsosso/MSDE_Sosso_alpha
https://keras.io
https://www.tensorflow.org/

	Acknowledgments
	Declarations
	Abstract
	Chapter Introduction
	Amorphous drugs
	Crystallisation
	 How amorphous drugs are made
	Using Machine Learning to Predict Stability
	 Tg and class

	Overview
	Datasets

	Chapter Methods
	 Generating molecular models
	Molecular dynamics
	 Calculating the forces
	 Initialising the system
	 Calculating the velocities
	 Compressing the system
	 Cooling the system down
	 Equilibration 1
	 Annealing the system

	Descriptors
	 Single-molecule descriptors
	 Standard descriptors
	 Cliques
	 Histograms of Weighted Atom Centred Symmetry Functions
	 Smooth Overlap of Atomic Positions
	Solid-state descriptors
	 Calculated Tg
	 Pair correlation function
	 Mean squared displacement
	 Diffusion coefficient
	 Van-Hove correlation function
	 Intermediate scattering function and structural relaxation time
	 Velocity autocorrelation

	Optimisation
	Genetic algorithm
	Synthetic data generation

	Chapter Machine Learning
	 Machine learning
	An overview of NNs and RFs
	Neural networks
	Random forests
	The choice of ML algorithm

	Model parameters for NNs
	Neural network architecture
	Activation function
	Optimiser
	Loss function

	Model parameters for RFs
	Number of Trees
	Max depth
	Min split size

	Preprocessing and forms of dimensionality reduction
	Normalising the data

	 Feature selection
	 Variance threshold
	Removal of correlated variables
	 Backwards Feature Elimination
	Feature importance
	Regularisation

	Early stopping
	 Model selection and cross validation
	 Cross Validation

	 Ensemble methods
	 Bagging
	Max voting
	Ensemble of Neural Networks

	Chapter Using MD to understand the boson peak
	Introduction
	Results
	The OKE spectra
	WACS and Raman experiments
	MD simulations

	 Conclusion

	Chapter Genetic Algorithm for Optimisation
	Overview
	Genetic Algorithms in the context of optimising SOAPs
	The SOAP_GAS algorithm
	Dataset utilised

	Results
	 Optimising individual SOAPs
	 SOAP_GAS: performance tuning
	 SOAP_GAS timing accuracy: comparison with grid search
	 Working with multiple SOAPs

	Chapter A Materials Science-inspired Paradigm to Predict the Physical Stability of Amorphous Drugs
	A Materials Science-inspired Paradigm to Predict the Physical Stability of Amorphous Drugs
	Machine learning workflow
	Preprocessing
	 Parameter optimisation
	Genetic algorithm
	 Feature Selection
	Ensemble methods

	On the importance of feature selection
	Methodology

	Results
	One-molecule descriptors
	Ensemble methods

	Discussion and Conclusions

	Chapter Conclusion
	Conclusion
	Further work

