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Abstract

In this thesis, we study the e↵ects of a quadratic transaction tax levied

against agents in a continuous time, risk-sharing equilibrium model where

agents have heterogeneous beliefs about the dynamics of the traded risky asset.

The goal of each agent is to choose a trading strategy according to a mean-

variance criterion, for which an optimal strategy exists in closed form as the

solution to an FBSDE. This tractable setup allows us to analyse the utility loss

incurred from taxation, which will be used as a measure in order to determine

whether the transaction tax is beneficial.

When agents have homogeneous beliefs about the risky asset, we will

show that although the agents cannot benefit en masse, the less risk-averse

agents may benefit. Furthermore, when agents have heterogeneous beliefs

about the risky asset, we will show that a small transaction tax can benefit

the agents (from the planner’s perspective) if the their beliefs are su�ciently

di↵erent.

We also consider theory relating to the vague convergence of real-valued

measures. In particular, we comprehensively describe the relationship between

the vague convergence of real-valued measures and the pointwise convergence

of their distribution functions at continuity points. Using this theory, we

extend a classical continuity theorem to the case of real-valued measures and

motivate a novel stochastic control problem related to the transaction tax

model.

vi



Chapter 1

Introduction

John Maynard Keynes viewed financial transaction taxes as a reasonable mea-

sure to curb ‘the predominance of speculation’ in financial markets [47]. Simi-

lar claims about transaction taxes’ curative e↵ects have gained relevance dur-

ing periods of economic turmoil and have consequently been the source of

significant economic interest over the past century. Today, financial transac-

tion taxes are most heavily associated with James Tobin, who advocated for

their implementation in his 1978 presidential address after the collapse of the

Bretton Woods system [70] (many now call such taxes Tobin taxes). Since

then, the 1987 and 2008 financial crises have motivated economists such as

Summers and Summers, Stiglitz, and Krugman to advocate for transaction

taxes to reduce speculative trading and to redirect revenue to more socially

beneficial investments [68, 67, 50]. More recently, economists such as Je↵ery

Sachs argued in favour of financial transaction taxes to aid economic recov-

ery after the fallout from COVID. Unfortunately, most public economists base

their claims on ad-hoc heuristics, partly due to a lack of general equilibrium

models from which one can gather impartial quantitative and qualitative guid-

ance.

In this thesis, we will study the normative e↵ects of a financial trans-

action tax in a general equilibrium model that allows agents to hold heteroge-

neous beliefs about the risky asset, which they trade to hedge against fluctua-

tions in their respective endowment streams. As a consequence, the financial

market plays a dual role. Firstly, as we will assume that agents have hetero-

geneous risk aversions, the market admits trading motivated by the need to
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transfer risk to those more willing to bear them. Secondly, the market enables

participants to engage in speculative trading, or gambling, according to their

beliefs about the risky asset. This belief discrepancy will motivate trading

that may be at odds with the agents’ hedging needs, and the interplay be-

tween these motivations will characterise whether or not a transaction tax is

beneficial.

To study the e↵ects of a transaction tax, we propose a tractable con-

tinuous time model where agents hold (local) mean-variance preferences and

are penalised with a quadratic tax. It is an extension of the setup introduced

by Bouchard et al. [17], studied separately under various guises in the works

of Muhle-Karbe et al., Herdegen et al. and Gonon et al. [58, 42, 35]. Im-

portantly, our extension models the heterogeneity in agents’ beliefs so that a

unique equilibrium still exists, and we achieve explicit formulas for the optimal

portfolios.

We measure the e↵ects of the tax by the di↵erence in utility of each

agent in the market with and without tax. Whether or not an agent deems

the tax beneficial will depend on the sign of this utility loss. The planner will

consider the tax beneficial if it benefits the agents en masse. In particular,

by specifying the beliefs explicitly, we will show that if the planner holds

the average belief of the agents, a small transaction tax is beneficial when

the beliefs are su�ciently di↵erent. In this sense, as Keynes proposed, the

transaction tax is a reasonable measure to curb speculation.

1.1 Relevant Literature

Market frictions compound the di�culties in determining equilibrium prices.

Thus, it is no surprise that the foundational work on equilibrium pricing relies

on frictionless markets; see the works of Sharpe, Black and Scholes, and Cox

et al. [66, 13, 23]. When frictions are present, results often rely on numerical

methods or particular simplifying assumptions. For example, the works of

Heaton and Lucas, Buss and Dumas, and Buss et al. all use a numerical

approximation of equilibrium dynamics [39, 20, 19]. In comparison, Lo et al.

and Vayanos et al. obtain explicit formulas by focusing on continuous time

models with deterministic asset prices [74, 53], while Gârleanu and Pedersen
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assume there is a single rational agent among noise traders [37]. In our case,

the assumption of a quadratic tax enables us to get explicit solutions to our

optimisation problem, although we will argue that the resulting phenomena

generalise.

Heterogeneous beliefs about the fundamental values of a market are

a crucial motive for trading but are an additional hurdle in the presence of

transaction costs. When the market is frictionless, there is extensive literature

on asset pricing arising from subjective beliefs; see the survey by Scheinkman

and Xiong [63]. The work of Muhle-Karbe et al. [57] seems to be the most

relevant to our setup, in which they consider the equilibrium price of a traded

asset amongst N agents with heterogeneous beliefs in a continuous time model.

However, they do not allow agents to have heterogeneous risk aversions, and

the paper mainly focuses on the resulting illiquidity. Moreover, although a

quadratic transaction cost is present, they do not view it explicitly as a tax

nor investigate the beneficial implications of such a penalty.

In contrast, recent work by Davilá [29] explicitly studies the welfare-

improving e↵ect of a transaction tax in a one-period equilibrium model where

investors can trade speculatively . He models heterogeneous beliefs as disagree-

ments about the parameters of a normally distributed dividend attributed to

the traded risky asset. Assuming that a central planner rebates a lump sum

to the market participants, he shows that a beneficial proportional transaction

tax exists. Our approach di↵ers significantly as we consider a continuous time

model where we describe agents’ beliefs by idiosyncratic measure changes that

alter the risky asset’s drift components. In particular, our approach is more

in line with the framework seen in the work of Bouchard et al. [17], as we will

extend their existence results appropriately.

1.2 Overview

Chapter 2 will introduce the specifics of the model and solve the associated

stochastic control problem by means of a coupled FBSDE. Under the assump-

tion of market clearing, we then derive the equilibrium return of the risky asset

and define the utility loss. This results in a description of when the transaction

tax may be beneficial.

3



Chapter 3 explores the dynamics of the model when agents have ho-

mogeneous beliefs. By specifying how the agents’ endowments are a↵ected by

market shocks, we use custom functions in Python and Sage to compute and

approximate the agents’ utility losses when the transaction tax is small. These

expressions show that less risk-averse agents can benefit from more favourable

returns in the market with tax, explained by the dynamics of the equilibrium

portfolios.

Chapter 4 builds upon this setup by letting agents have specific het-

erogeneous beliefs about the risky asset. We again calculate the utility losses,

which results in a concise condition for when a small transaction tax is bene-

ficial. Moreover, we will consider the idiosyncratic perspectives of the agents,

resulting in a comprehensive description of the transaction tax’s e↵ects.

In Chapter 5, we change tack significantly and highlight the importance

of the vague topology on the space of real-valued Radon measures. In particu-

lar, we describe this topology’s relationship to the notion of weak convergence,

seemingly absent from the literature. Moreover, we give novel conditions to

describe when vague convergence of measures is equivalent to the convergence

of their distribution functions at continuity points.

Chapter 6 uses the abstract theory of Chapter 5 in order to derive a con-

tinuity theorem describing the relationship between the convergence of Laplace

transforms of real-valued measures and their distribution functions. The con-

tinuity theorem is then applied to derive a novel Tauberian condition for an

extended version of Karamata’s theorem. This motivates a novel stochastic

control problem that may relate the model we introduce in Chapter 3 to a

long-run average model used in the work of Gonon et al. [35].

Remark 1.2.1. Several lengthy calculations and approximations in Chapters

3 and 4 were derived using custom functions written in the computer lan-

guage Sage [69]. As such, Jupyter notebooks containing the calculations are

referenced and can be found in the GitHub repository

https://github.com/odshelley/thesis.

For more information on these calculations, please see Appendix D.1.
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Chapter 2

The Model

2.1 Model specifications

2.1.1 Preliminaries

Throughout, we fix an interval T = [0, T ] for T 2 (0,1) (‘finite time horizon’)

or T = [0,1) for T = 1 (‘infinite time horizon’). Furthermore, we consider

a stochastic basis (⌦,F1,F := {Ft}t�0,P) where F is the filtration generated

by a standard one dimensional Brownian motion (Wt)t2T and F1 :=
W

t�0 Ft.

For technical reasons we will enlarge this filtration with respect to the

natural conditions as opposed to the usual conditions; see Appendix A.1 for a

full discussion. For any probability measure Q on (⌦,F := {Ft}t�0), we denote

its restriction to Ft by Qt. We say that a probability measure Q on F1 is

locally absolutely continuous with respect to P if Qt is absolutely continuous

with respect to Pt, for all t � 0. In this case we write Q ⌧loc P. If Q ⌧loc P
and P ⌧loc Q we say that P and Q are locally equivalent and write Q ⇠loc P.

Define the space of (locally) equivalent probability measures with re-

spect to P by

P := {Q 2 M+
1 (⌦,F1) : Q ⇠loc P},

where M+
1 (⌦,F1) is the space of probability measures on (⌦,F1). Then let

the natural filtration of W (defined according to Definition A.1.4) be denoted

by FP . Henceforth, the underlying filtered probability space will be assumed

to be (⌦,FP
1,FP ,P).
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In order to discuss models with a finite and infinite time horizon simul-

taneously, for any � � 0 and p � 1 we define L p
� (Rn) to be the space of all

Rn-valued progressively-measurable processes (Xt)t2T such that

E
Z T

0

e��t kXtkp dt

�
< 1,

where k·k is any norm on Rn. Similarly, an Rn-valued local martingale (Mt)t2T

belongs to M p
� , p � 1, if

E
"����
Z T

0

e�2�sd[M ]s

����
p/2
#
< 1.

Here, k · k denotes any norm on Rn.

2.1.2 Financial Market

We study a financial market which consists of an exogenously given riskless

asset, normalised to one, and a risky asset (St)t2T with dynamics

dSt = µt dt+ � dWt. (2.1.1)

Initially both the instantaneous returns process (µt)t2T 2 L 4
� (R) and

constant volatility � 2 R\{0} are exogenous. We make these assumptions

on the volatility for maximal tractability, which becomes crucial in Chapters

3 and 4, as it allows for analytical results; see [42] for an equilibrium model

where the volatility is a free parameter. In contrast, we will later endogenise

the equilibrium return by matching market participants’ demand to a fixed

net supply of the risky asset. For simplicity, this will always be a zero net

supply.

Remark 2.1.1. One can easily generalise this set-up to where there are d risky

assets if we additionally suppose that the infinitesimal covariance matrix ⌃ :=

�|� 2 Rd⇥d is positive definite. We use the d = 1 case to avoid cumbersome

matrices in our exposition.
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2.1.3 Agents

A finite number of agents indexed by n = 1, . . . , N , trade in the market to

hedge against fluctuations of their random endowment streams (Y n
t )t2T . These

endowments have dynamics,

dY n
t = ⇣nt � dWt, n = 1, . . . , N, (2.1.2)

where ⇣n 2 L 4
� (R). One could include a finite variation drift (modelling an

absolutely continuous cash flow) or an additional orthogonal component (mod-

elling unhedgeable shocks) to the dynamics of Y n. However, this would not

change the optimiser in the following linear-quadratic goal functional (2.1.7),

so we content ourselves by focusing on the current most parsimonious specifi-

cation.

In addition to the agents’ hedging needs, we assume that the agents’

trades are motivated by a discrepancy in beliefs about the risky asset. Allowing

for idiosyncratic beliefs permits agents to engage in betting or gambling, a form

of non-fundamental trading. Davilá coined this term in [29] in opposition to

trading due to hedging, which he viewed as fundamental.

We model this phenomenon in a similar fashion to Kogan et al. [49],

by assuming that agent n = 1, . . . , N, views the risky asset under the lens of

a (locally) equivalent probability measure that shifts the equilibrium return

process according to an application of Girsanov’s Theorem (A.1.13). In par-

ticular, we assume as in [57, 29] that agents agree to disagree in the sense of

Aumann [7], such that they do not learn from each other nor the price.

To make this precise, we specify which probability measures we deem

admissible. So that we only allow shifts to the returns process that do not

blow up the linear quadratic goal functional (2.1.7), we define the set of pre-

admissible beliefs B to be the space of all predictable and locally bounded

processes " 2 L 4
� (R) such that

E (" •W ) = exp

✓Z ·

0

"s dWs �
1

2

Z ·

0

"2s ds

◆
2 M 2

� .

According to Theorem A.1.13, each " 2 B defines a unique probability measure

7



Q 2 P via

Z(")t :=
dQt

dPt
:= E (" •W )t .

Let P : B ! P be the mapping that takes each " 2 B to its aforementioned

unique probability measure.

Definition 2.1.2. We define the set of admissible beliefs to be the set of tuples

{(",P(")) : " 2 B} = graph(P).

We call both the tuple (",P(")) 2 graph(P) and " itself a belief.

We now assert that agent n = 1, . . . , N has a unique belief given by

("n,Pn) := ("n,P("n)) 2 graph(P).

The following proposition describes how agent n = 1, . . . , N views the risky

asset according to their belief.

Proposition 2.1.3. For any belief (",P(")) 2 graph(P), the risky asset S has

dynamics

dSt = µ"
t dt+ � dW "

t , (2.1.3)

where W " is a standard P(")-Brownian motion and µ" := µ+�". In particular,

agent n = 1, . . . , N views the risky asset as having dynamics

dSt = µn
t dt+ � dW n

t , (2.1.4)

where W n := W "n and µn := µ"n.

Proof. This is a direct consequence of Theorem A.1.13.

2.1.4 Goal functional

Agents’ trading strategies are described by the number of shares 't 2 L 4
� (R)

held in the risky asset at time t 2 T . When no transaction costs are present,

agents choose their strategies in order to satisfy a continuous time analogue of

a mean variance criterion with discounting. Specifically, agent n = 1, . . . , N

8



solves

argmax
'2L 4

�

EPn

Z T

0

e��t

⇢
't dSt + dY n

t � �n
2

d

⌧Z ·

0

's dSs + Y n
·

�

t

��

= argmax
'2L 4

�

EPn

"Z T

0

e��t

(
't (µ

n
t dt+ � dW n

t )�
�n
2
�2 ('t + ⇣nt )

2 dt

)#

= argmax
'2L 4

�

EPn

"Z T

0

e��t

(
'tµ

n
t �

�n
2
�2 ('t + ⇣nt )

2

)
dt

#
. (2.1.5)

Remark 2.1.4. The process �⇣nt can be interpreted as agent n’s target po-

sition in the risky asset. Hence, (2.1.5) asserts that agents trade o↵ expected

returns against the tracking error relative to this target.

Here, �n and � are positive constants representing agent n’s risk aversion

and (common) discount rate, respectively. Without loss of generality we will

always assume that

�N = max{�1, . . . , �N}.

A positive discount rate allows us to postpone the planning horizon

indefinitely to obtain stationary infinite-horizon solutions. As is argued in

Remark 2.1.8, we assume that all strategies ' lie in L 4
� to ensure that the

problem is well posed. It is important to note that the expectation in (2.1.5)

is taken under the probability measure Pn as opposed to P, indicating that

agents optimise according to their own belief.

To extend this set up to account for a transaction tax, we generalise the

approach taken in [42, 35, 17]. To do so, we need to be more specific about the

set of admissible portfolios. Note that we denote the set of R-valued absolutely

continuous processes on ⌦̄ := ⌦⇥ T by AC(⌦̄,R).

Definition 2.1.5. We define the set of admissible portfolios to be

A :=

⇢
' 2 L 4

� (R) \ AC(⌦̄,R) : d

dt
' 2 L 4

� (R) and '0� = 0

�
. (2.1.6)

Remark 2.1.6. Choosing admissible portfolios to be absolutely continuous

is a popular choice in optimal execution literature [22, 2] as it allows us to

incorporate penalties on the order flow d
dt' = '̇. We require that '̇ belongs to

9



L 4
� to avoid infinite transaction costs, but requiring the initial stock position

to be zero is a choice made for simplicity.

As in [17, 42, 57, 35], we model our transaction cost by a constant � > 0

levied on the square of each agent’s order flow. While we make this quadratic

specification for maximal tractability, the numerical results in [35] suggest that

the qualitative and quantitative characteristics of equilibrium asset prices are

robust across di↵erent convex functions of the trading rate, as was suspected

in [56].

Definition 2.1.7. We define the goal functional of an agent n = 1, . . . , N

under the belief (",P(")) 2 graph(P) to be the mapping

K"
n : A⇥ L 4

� ⇥ R+ ⇥ R+ ⇥ (0,1] ! R

where

K"
n(', µ,�, �, T )

:= EP(")

Z T

0

e��t

⇢
'tµ

"
t �

�n�2

2
('t + ⇣nt )

2 � � ('̇t)
2

�
dt

�
. (2.1.7)

For fixed returns process µ 2 L 4
� , tax levy � 2 diag(Rd

+), discount factor � � 0,

and time horizon T 2 (0,1], the optimisation problem of agent n = 1, . . . , N

is

argmax
'2A

K"n

n (', µ,�, �, T ). (2.1.8)

When any of the parameters are understood they may be omitted from the

notation.

Remark 2.1.8. For (2.1.8) to be well posed, we would like all relevant pro-

cesses to be appropriately integrable with respect to all admissible beliefs P(").

This is enforced by our choice of admissible portfolios (2.1.6). Indeed, we may

use the fact that ⇣, µ,', '̇ 2 L 4
� and Z(") 2 L 2

� along with Hölder’s inequality

to deduce that

EP(")

Z T

0
e
��t
���'tµ

"
t �

�n�
2

2
('t + ⇣

n
t )

2 � � ('̇t)
2
��� dt

�

= E
Z T

0
e
��t
���'tµ

"
t �

�n�
2

2
('t + ⇣

n
t )

2 � � ('̇t)
2
���Z(")t dt

�
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 E
"Z T

0
e
��t
���'tµ

"
t �

�n�
2

2
('t + ⇣

n
t )

2 � � ('̇t)
2
���
2
dt

# 1
2

⇥ E
"Z T

0
e
��t |Z(")t|2 dt

# 1
2

< 1.

As is often found in the literature [29, 39, 42, 17, 35, 57], the transaction

cost only depends on each agent’s individual trading rate. This rules out the

cost modelling a temporary price impact since in this case one would expect

the trades to a↵ect the price of S and for each agent’s trades to a↵ect the

others’ execution prices. An example of a partial equilibrium model which

allows agents to interact through their common price impact can be found in

[16]. Fortunately, our current setup doesn’t cause a conflict since we assume

that the cost is an exogenous tax.

2.2 Individual and equilibrium optimisers

Following the approach of Muhle-Karbe et al. [57], we asses the e↵ect of the

transaction tax on trading in equilibrium by first showing the existence and

uniqueness of a solution to the individual optimisation problem (2.1.8). When

the agents are trading in equilibrium, these optimal portfolios allow us to find

the equilibrium return process and equilibrium portfolios in turn.

Definition 2.2.1. A process ⌫ 2 L 4
� (R) is an equilibrium return if there exists

portfolios 'n 2 A for agents n = 1, . . . , N, such that

(Market clearing) The total demand
PN

n=1 '
n matches the zero net supply of

the risky asset S at all times;

(Individual optimality) The portfolio 'n solves agent n’s control problem

(2.1.8).

In this case 'n is called the equilibrium portfolio for agent n.

11



2.2.1 Frictionless baseline

Without the transaction tax, agent n = 1, . . . , N must find a portfolio ' that

solves

EPn

Z T

0

e��t

⇢
'tµ

n
t �

�n�2

2
('t + ⇣nt )

2

�
dt

�
! max! (2.2.1)

By pointwise optimisation one can readily see that the individual optimiser to

(2.2.1) is given by

'n
t :=

µn
t

�2�n
� ⇣nt . (2.2.2)

This is the classical (myopic) Merton portfolio along with the tracking error.

In particular, note that it does not depend on the discount factor, nor the time

horizon.

Assuming that the portfolios clear the market, it is immediate from

(2.2.2) that the frictionless equilibrium return is given by

µ0
t :=

PN
k=1

�
�2⇣kt � �"kt /�k

�
PN

k=1 1/�k
. (2.2.3)

Furthermore, by substituting (2.2.3) into (2.2.2), we see that the frictionless

equilibrium portfolio for agents n = 1, . . . , N is

'̄n
t :=

PN
k=1

⇣
⇣kt � "kt

��k

⌘

PN
k=1 �n/�k

+
"nt
�n�

� ⇣nt . (2.2.4)

2.2.2 Quadratic costs

We now solve (2.1.8) in the presence of the quadratic tax. Unlike its frictionless

counterpart, the goal functional is no longer myopic since current positions

a↵ect future choices. As such, the optimal strategies will also depend on the

discount factor.

Note that the optimal positions of the agents evolve forward from their

initial allocations. In contrast, one must determine the initial optimal trading

rates as part of the solution. This naturally leads to a characterisation of the

optimal portfolio by a coupled system of FBSDEs. We make this precise by

the following lemma, altered from [17, Lemma 4.1]. We include the proof for

12



completeness.

Lemma 2.2.2. Let 'n = µn

�2�n
� ⇣n be the frictionless optimiser from (2.2.2).

Then the frictional optimisation problem (2.1.8) for agent n = 1, . . . , N has a

unique solution, characterised by the FBSDE

d'�,n
t = '̇�,n dt, '�,n

0 = 0, (2.2.5)

d'̇�,n
t = Zn

t dW
n
t +

�n�2

2�
('�,n

t � 't
n) dt+ �'̇�,n

t dt. (2.2.6)

Here, the processes ('�,n
t )t2T , ('̇�,n

t )t2T are supposed to be in L 4
� , and Zn 2

L2(W n), and is determined as part of the solution. If T < 1, the dynamics

(2.2.5)-(2.2.6) are complemented by the terminal condition

'̇�,n
T = 0. (2.2.7)

For T = 1, agent n’s individually optimal strategy '�,n has the explicit rep-

resentation (B.1.4); the corresponding strategy '̇�,n is given in feedback form

(B.1.6).

Remark 2.2.3. Corresponding formulas to (B.1.4) and (B.1.6) exist when

T < 1, but they will not be used in this thesis.

Proof. For ease of exposition, let K denote the functional K"n(·, µ,�, , �, T ).
The goal functional (2.1.7) is strictly convex, whence (2.1.8) has a unique

solution if and only if

hK 0('),#i = 0, (2.2.8)

for all absolutely continuous # with #0 = 0 and #, #̇ 2 L 2
� . Here, the Gâteaux

derivative of K in the direction #̇ is given by

hK 0('),#i

= lim
⇢#0

K('+ ⇢#)�K(')

⇢

= EPn

Z T

0

e��t

⇢�
µn
t � �n ('s + ⇣ns ) �

2
�✓Z t

0

#̇s ds

◆
� 2�'̇t#̇t

�
dt

�
.

13



By Fubini’s theorem, it follows that

Z T

0

e��t

⇢�
µn
t � �n ('s + ⇣ns ) �

2
�✓Z t

0

#̇s ds

◆�
dt

=

Z T

0

✓Z T

s

e��t
�
µn
t � �n ('s + ⇣ns ) �

2
�
dt

◆
#̇s ds.

Thus, using the tower property of conditional expectation, (2.2.8) can be writ-

ten as

EPn

Z T

0

✓
EPn

Z T

t
e
��s
�
µ
n
s � �n ('s + ⇣

n
s )�

2
�
ds
���Ft

�
� 2�e��t

'̇t

◆
#̇t dt

�

= 0.

Since this needs to hold for any #̇, (2.1.8) has a (Pn-a.s.) unique solution '�,n

if and only if

'̇�,n
t =

�n�2

2�
e�tEPn

Z T

t

e��s

✓
µn
s

�2�n
� '�,n

s � ⇣ns

◆
ds
���Ft

�
(2.2.9)

has a (Pn-a.s.) unique solution for dt-a.e. t 2 T .

Let’s first assume (2.2.9) has a unique solution '̇�,n. Then we may

define the square-integrable martingale

Mt =
�n�2

2�
EPn

Z T

0

e��s
�
'n
s � '�,n

s

�
ds
���Ft

�
, t 2 T .

By an integration by parts we may rewrite (2.2.9) as

d'̇�,n
t = e�tdMt �

�n�2

2�

⇣
'n
t � '�,n

t

⌘
dt+ �'̇�,n

t dt.

By the martingale representation theorem,
R ·
0 e

�s dMs can be expressed as as

an integral Zn •W n for some Zn 2 L2(W n). Together with d'�,n
t = '̇�,n dt,

this yields the FBSDE representation (2.2.5)-(2.2.6).

Conversely, assume (2.2.5)-(2.2.6) has a unique solution

('�,n, '̇�,n, Zn) 2 L 4
� ⇥ L 4

� ⇥ L2(W n),

14



and let Mn := Zn •W n. For any t 2 R, an integration by parts yields

e��t'̇�,n
t = '̇�,n

0 +

Z t

0

e��sdMn
s +

�n�2

2�

Z t

0

e��s
�
'�,n
s � 'n

s

�
ds. (2.2.10)

We claim that

'̇�,n
0 = �

Z T

0

e��sdMn
s �

Z T

0

e��s�n�
2

2�

�
'�,n
s � 'n

s

�
ds.

If T < 1, this follows from (2.2.10) for t = T together with the terminal

condition (2.2.7). When T = 1 we argue that since '̇�,n 2 L 2
� , there must be

a sequence {tk}k2N such that e��tk'̇�,n
tk converges a.s. to zero. Furthermore,

Proposition B.1.2, the martingale convergence theorem and '�,n,'n 2 L 4
�

show that the right hand side of (2.2.10) converges (along tk) to

'̇�,n
0 +

Z T

0

e��s dMn
s +

�n�2

2�

Z T

0

e��s
�
'�,n
s � 'n

s

�
ds,

whence

'̇�,n
0 = �

Z T

0

e��s dMn
s � �n�2

2�

Z T

0

e��s
�
'�,n
s � 'n

s

�
ds. (2.2.11)

Inserting (2.2.11) into (2.2.10), taking conditional expectations and rearrang-

ing in turn yields (2.2.9).

Finally, the FBSDE (2.2.5)-(2.2.6) has a unique solution ('�,n, '̇�,n, Z ,n)

by Theorem B.1.1.

We now assume that agents clear the market in order to deduce the

equilibrium return. A crucial requirement is the solution of another system of

coupled but linear FBSDE. The following result is proved in the case where

N = 2 only. For the case where N > 2 we manipulate the FBSDE into a form

where we expect a solution exists.

Lemma 2.2.4 (Conjecture). There exists a unique solution

('�, '̇�, Z�) =
��
'�,1, . . . ,'�,N�1

�|
,
�
'̇�,1, . . . , '̇�,N�1

�|
,
�
Z ,1, . . . , Z ,N�1

�|�
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of the following FBSDE:

d'�
t = '̇�

t dt, '�
0 = 0, (2.2.12)

d'̇�
t = Z�

t dWt +
�
⇥''�

t +⇥
⇣⇣t +⇥

""t + EtZ
�
t + �'̇�

t

�
dt, (2.2.13)

satisfying the terminal condition '̇�
T = 0 if T < 1. Here (Z�

t )t2T is an

R(N�1)⇥1-valued process, determined as part of the solution, and has the form

Z� :=
�
Z ,1, . . . , Z ,N�1

�|
, (2.2.14)

where Zn 2 L2
loc(W ). Moreover,

⇣t :=
�
⇣
1
t , . . . , ⇣

N
t

�| 2 RN⇥1 8t 2 T ,

"t :=
⇣
"
1
t , . . . , "

N�1
t

⌘|
2 RN⇥1 8t 2 T ,

⇥' :=

0

BB@

��N��1
N + �1

�
�2

2� . . .
�N��N�1

N
�2

2�
...

. . .
...

�N��1
N

�2

2� . . .
��N��1

N + �N�1
�

�2

2�

1

CCA 2 RN�1⇥N�1
,

⇥⇣ :=

0

BB@

�
��1
N � �1

�
�2

2� . . . ��N�1

N
�2

2� ��n
N

�2

2�
...

. . .
...

...

��1
N

�2

2� . . . �
��N�1

N � �N�1
�

�2

2� ��n
N

�2

2�

1

CCA 2 RN�1⇥N
,

⇥" :=

0

BB@

�
1
N � 1

�
�
2� . . .

�
2N�

�
2N�

...
. . .

...
...

�
2N� . . .

�
1
N � 1

�
�
2�

�
2N�

1

CCA 2 RN�1⇥N
,

Et :=

0

BB@

"1t�"Nt
N � "

1
t . . .

"N�1
t �"Nt

N
...

. . .
...

"1t�"Nt
N . . .

"N�1
t �"Nt

N � "
N�1
t

1

CCA 2 RN�1⇥N�1 8t 2 T .

Proof. When N = 2 (2.2.13) becomes

d'̇�,1
t = Zt dWt +

(�1 + �2)�2

4�

✓
'�,1
t �


(�1⇣1t � �2⇣2t )

(�1 + �2)
� ("1t � "2t )

�(�1 + �2)

�◆
dt

� 1

2

�
"1t + "2t

�
Zt dt+ �'̇�,1

t dt
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= Zt dWt +
(�1 + �2)�2

4�

⇣
'�,1
t � '̄1

t

⌘
dt� 1

2

�
"1t + "2t

�
Zt dt+ �'̇�,1

t dt.

(2.2.15)

By defining the belief

("̄, P̄) :=

✓
"1 + "2

2
,P

✓
"1 + "2

2

◆◆
2 graph(P) (2.2.16)

we can re-write (2.2.15) as

d'̇�,1
t = Zt dW

"̄
t +

(�1 + �2)�2

4�

⇣
'�,1
t � '̄1

t

⌘
dt+ �'̇�,1

t dt.

The result now follows from Theorem B.1.1 under the measure P̄. For the

case where N > 2, define the exponential matrix process V : ⌦⇥ [0,1) !
RN�1⇥N�1 by

dVt = �VtEt dWt, V0 = 1

V will act as an integrating factor that removes Z� from the driver of (2.2.13).

Indeed, by defining Y := V '̇� it follows that

d'�
t = V �1

t Yt dt, '�
0 = 0, (2.2.17)

dYt = Z̃t dWt + Vt

�
⇥''�

t +⇥
⇣⇣t +⇥

""t
�
dt+ �Yt dt, (2.2.18)

where Z̃t =
�
VtZ�

t � VtEtYt

�
. The FBSDE (2.2.17)-(2.2.18) has a linear

driver independent of Z̃, whence we expect a unique solution (Y, Z̃) to exist.

A solution to the original system (2.2.12)-(2.2.13) then follows by noting that

'̇� = V �1Y and Z = V �1Z̃ + EY .

Remark 2.2.5. (i) We emphasise that the case N > 2 is conjectural at

present, although we are confident that a unique solution does indeed

exists. There is no conflict in Chapters 3 and 4 as we will only be

considering the N = 2 case.
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(ii) A representative agent with belief (2.2.16) holds the ‘average’ belief of

the agents. This average belief crops up in the existence of a unique

equilibrium price in [57, Proposition 5.1] and [59, II. B. Remark 3].

We now define a state process for each n = 1, . . . , N, that expresses the

deviation between the optimal portfolio in the equilibrium market with and

without friction. These deviations will drive the upcoming equilibrium returns

process and equilibrium portfolios. Moreover, they allow for a succinct analysis

of the utility losses defined in Section 2.4.

Definition 2.2.6. We define the state process �n 2 L 4
� (R) for agent n =

1, . . . , N, as

�n
t := '̄�,n

t � '̄n
t , (2.2.19)

where '̄�,n is to be characterised in Theorem 2.2.7.

We may now deduce the equilibrium return.

Theorem 2.2.7. The unique frictional equilibrium return is given by

µ�
t =

N�1X

n=1

⇢
(�n � �N)�2

N
'̄�,n
t � 2�

N
Zn

t ("
n
t � "Nt )

�
+

NX

n=1

⇢
�n�2

N
⇣nt � �

N
"nt

�

= µ0
t +

N�1X

n=1

(�n � �N)�2

N
�n

t �
N�1X

n=1

2�

N
Zn

t

�
"nt � "Nt

�
. (2.2.20)

where Zn and '̄�,n for n = 1, . . . , N�1 are taken from Lemma 2.2.4. Moreover,

'̄�,1, . . . , '̄�,N are the individually optimal trading strategies of agents n =

1, . . . , N � 1 where '̄�,N = �
PN�1

n=1 '̄�,n.

Proof. Let ⌫ 2 L 4
� be any equilibrium return and let #� = (#�,1, . . . ,#�,N)

be the corresponding individually optimal trading strategies. Due to market

clearing we have

#�,N = �
N�1X

n=1

#�,n and
NX

n=1

#̇�,n = 0.

Together with the FBSDE (2.2.5)-(2.2.6) it follows that

0 =
NX

n=1

Z
n
t dW

n
t +

NX

n=1

�n�
2

2�

⇢
#
�,n
t �

✓
(⌫t + �"

n
t )

�2�n
� ⇣

n
t

◆�
dt+

NX

n=1

�#̇
�,n
t dt
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=
NX

n=1

Z
n
t dW

n
t +

1

2�

(
N�1X

n=1

(�n � �N )�2
#
�,n
t �

NX

n=1

�
⌫t + �"

n
t � �n�

2
⇣
n
t

�
)

dt.

By the definition of the agents’ beliefs it follows that

Zn
t dW

n
t = Zn

t (dWt � "nt dt) ,

whence

0 =

 
NX

n=1

Zn
t

!
dWt

+
1

2�

(
N�1X

n=1

(�n � �N)�
2#�,n

t �
NX

n=1

�
⌫t + (� + 2�Zn

t ) "
n
t � �n�

2⇣nt
�
)

dt.

Since any continuous local martingale of finite variation is constant we have

ZN = �
PN�1

n=1 Zn and so

⌫t =
N�1X

n=1

⇢
(�n � �N)�2

N
#�,n
t � 2�

N
Zn

t ("
n
t � "Nt )

�
+

NX

n=1

⇢
�n�2

N
⇣nt � �

N
"nt

�
.

Plugging this back into agent n = 1, . . . , N�1’s individual optimality condition

(2.2.6), we deduce that

d#̇�,n
t

=
1

2�

(
�n�

2#�,n
t � �"nt + �n�

2⇣nt

�
N�1X

n=1

✓
(�n � �N)�2

N
#�,n
t � 2�

N
Zn

t ("
n
t � "Nt )

◆
�

NX

n=1

✓
�n�2

N
⇣nt � �

N
"nt

◆)
dt

+ Zn
t (dWt � "nt dt) + �#̇�,1dt

=
�2

2�

("
�n#

�,n
t +

N�1X

k=1

(�N � �k)

N
#�,k
t

#
+

"
�n⇣

n
t �

NX

k=1

�k
N

⇣kt

#

+

"
NX

k=1

1

�N
"kt � "nt /�

#)
dt�

"
Zn

t "
n
t +

N�1X

n=1

Zn
t

N
("Nt � "nt )

#
dt

+ Zn
t dWt + �#̇�,ndt.
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Hence,

⇣�
#�,1, . . . ,#�,N�1

�|
,
⇣
#̇�,1, . . . , #̇�,N�1

⌘|
,
�
Z1, . . . , ZN�1

�|⌘

solves the FBSDE (2.2.12)-(2.2.13)and therefore coincides with its unique so-

lution from Lemma 2.2.4. Having zero net supply shows #�,N
t = '�,N

t and we

may assert that the equilibrium return coincides with (2.2.20). This establishes

that if an equilibrium exists, it has to be of the proposed form.

We must now verify that the proposed equilibrium return and the cor-

responding strategies indeed form an equilibrium according to definition 2.2.1.

Market clearing follows by the definition of '�,N , so we must only check that

'�,n is the individual optimiser for agent n = 1, . . . , N . This can be seen for

agent n = 1, . . . , N � 1 by substituting µ� into condition (2.2.9) and noting

that it coincides with the respective equation in (2.2.13). For agent n = N ,

individual optimality follows from market clearing.

Finally, we use (2.2.4) and (2.2.19) to deduce that

µ
�
t =

N�1X

n=1

⇢
(�n � �N )�2

N
'
�,n
t � 2�

N
Z

n
t ("

n
t � "

N
t )

�
+

NX

n=1

⇢
�n�

2

N
⇣
n
t � �

N
"
n
t

�

=

"
NX

n=1

�n�
2

N
('̄n

t + ⇣
n
t )�

NX

n=1

�

N
"
n
t

#
+

N�1X

n=1

(�N � �n)�2

N
�n

t �
N�1X

n=1

2�

N
Z

n
t

�
"
n
t � "

N
t

�

= µ
0
t +

N�1X

n=1

(�n � �N )�2

N
�n

t �
N�1X

n=1

2�

N
Z

n
t

�
"
n
t � "

N
t

�
.

We end this section by noting that in the market with friction, the

equilibrium portfolios can be written in a form similar to their frictionless

counterparts as seen in (2.2.2).

Corollary 2.2.8. The equilibrium portfolio of agent n = 1, . . . , N , may be

written as

'̄�,n
t =

µ�,n
t

�2�n
� ⇣nt

+�n � 1

�n

NX

k=1

�k
N
�k

t +
1

�n

NX

k=1

2�

�2N
Zk

t "
k
t .
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Proof. Using (2.2.20) it follows that

(µ�
t + "nt )

�2�n
� ⇣nt = '̄n

t +
1

�n

(
N�1X

k=1

(�k � �N)

N
�k

t �
N�1X

k=1

2�

�2N
Zk

t

�
"kt � "Nt

�
)
.

The result now follows from Definition 2.2.6 and the market clearing condition.

2.3 Liquidity premium

As a direct consequence of Theorem 2.2.7 it follows that we have a formula for

the liquidity premium due to the tax

µ�
t � µ0

t =
N�1X

k=1

(�k � �N)�2

N
�k

t �
N�1X

k=1

2�

N
Zk

t

�
"kt � "Nt

�
. (2.3.1)

Under homogeneous beliefs, the first term fully encapsulates how the transac-

tion costs change the equilibrium return. In particular, as is shown in [17, 35],

if agents have homogeneous risk aversions, we see that the frictionless equi-

librium return clears the market with transaction costs. Under heterogeneous

beliefs, this is no longer the case, as equation (2.3.1) shows that there is a

non-trivial liquidity premium depending on the heterogeneity itself. That one

sees the beliefs reflected in the equilibrium pricing is to be expected, as agents

with pessimistic individual evaluations will sell to those agents who are more

optimistic.

When trading is frictionless, and agents have heterogeneous beliefs,

there is extensive literature on asset pricing; see the survey by Scheinkman

& Xiong [63] and the numerous references therein. In a market with quadratic

costs, the interplay between heterogeneous beliefs and liquidity is studied in

the paper by Muhle-Karbe et al. [57]. They derive leading-order asymptotics

for small transaction and holding costs. Although not the focus of this thesis,

we will shed further light on the dynamics of such liquidity premia in Chapter

3, where we consider concrete examples of the agents’ endowment streams and

beliefs.
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2.4 Utility loss

In order to assess the e↵ects of the transaction tax on the trading of agents

n = 1, . . . , N , we analyse the di↵erence between their value function in the

equilibrium market with and without friction. This is made precise by the

following definition.

Definition 2.4.1. Consider an admissible belief (",P(")) 2 graph(P).

(i) We define the utility loss of agent n = 1, . . . , N under belief " as

Un," := K"
n('̄

n, µ0, T, �, 0)�K"
n('̄

�,n, µ�, T, �,�).

(ii) We define the direct loss, return loss and portfolio loss of agent n =

1, . . . , N under belief " as

Un,"
d := EP(")

Z T

0

e��t�
⇣
˙̄'�,n
t

⌘2
dt

�
,

Un,"
r := EP(")

Z T

0

e��t'̄�,n
t

�
µ0
t � µ�

t

�
dt

�
,

Un,"
p := EP(")

"Z T

0

e��t

(⇣
'̄n
t � '̄�,n

t

⌘ �
µ0
t + �"t

�

� �n�2

2


('̄n

t + ⇣nt )
2 �

⇣
'̄�,n
t + ⇣nt

⌘2�
)
dt

#
,

respectively.

(iii) We define the aggregate utility loss under belief " as

U " :=
NX

n=1

Un,".

Remark 2.4.2. (a) Clearly, for any (",P(")) 2 graph(P)

Un," = Un,"
d + Un,"

r + Un,"
p , n = 1, . . . , N.
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(b) It is clear that the portfolio loss of agent n = 1, . . . , N may be written as

Un,"
p = K"

n('̄
n, µ0, T, �, 0)�K"

n('̄
�,n, µ0, T, �, 0). (2.4.1)

The right hand side of (2.4.1) encapsulates the utility loss due to deviating

from the optimal strategy '̄n to '̄�,n. It is often called the indirect loss.

2.4.1 Planner’s perspective

Suppose that a planner with belief (",P(")) sets the transaction tax �. We

assume that they view the transaction tax as beneficial if the aggregate utility

loss under their belief " is negative, i.e. the transaction tax is beneficial to the

agents en masse. The following proposition enables us to decipher when this

is the case.

Proposition 2.4.3. Let (",P(")) 2 graph(P). The portfolio loss of agent

n = 1, . . . , N under under belief " may be expressed as

Un,"
p = EP(")

Z T

0

e��t�n
t

✓
�n�2

2
�t + �("nt � "t)

◆
dt

�
. (2.4.2)

Moreover, the aggregate loss under belief " is given by

U
" = EP(")

"Z T

0
e
��t

NX

n=1

⇢
�n

t

✓
�n�

2

2
�n

t + �"
n
t

◆
+ �

⇣
˙̄'�,n
t

⌘2�
dt

#
. (2.4.3)

Proof. Using Definition 2.2.6 and (2.2.2) we see that

⇣
'̄
1
t � '̄

�,1
t

⌘ �
µ
0
t + �"t

�
� �n�

2

2


('̄n

t + ⇣
n
t )

2 �
⇣
'̄
�,n
t + ⇣

n
t

⌘2�

= ��n
t

�
µ
0
t + �"t

�
+

�n�
2

2

"
(�n

t )
2 + 2�n

t

 �
µ
0
t + �"

n
t

�

�2�n

!#

= �n
t

✓
�n�

2

2
�n

t + �("nt � "t)

◆
,

making (2.4.2) is clear. Due to market, we have
PN�1

n=1 �
n
t = ��N

t . This
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allows us to write

NX

n=1

�n
t

✓
�n�2

2
�n

t + �("nt � "t)

◆
=

NX

n=1

�n
t

✓
�n�2

2
�n

t + �"nt

◆
,

from which (2.4.3) follows trivially.

To study when the transaction tax is beneficial from the planner’s per-

spective, we will sometimes make the (näıve) assumption that we rebate the

transaction tax as a lump sum to the agents post-trading. We will not specify

under what rule the tax is rebated and will not incorporate the knowledge of

the rebate into the control problems of the agents. We do this for simplicity,

although Davilá argues in [29] that ‘since investors are small, they never in-

ternalize the impact of their actions on the rebate they receive’. In this case,

the object under scrutiny is the post-rebate aggregate loss denoted by

Ũ
" := U

" �
NX

n=1

U
n,"
d = EP(")

"Z T

0
e
��t

NX

n=1

�n
t

✓
�n�

2

2
�n

t + �"
n
t

◆
dt

#
. (2.4.4)

It follows immediately that no matter what belief the planner holds,

when agents have homogeneous beliefs about the risky asset

Ũ " = EP(")

"Z T

0

e��t
NX

n=1

�n�2

2
(�n

t )
2 dt

#
� 0,

implying that the transaction tax is detrimental.

The story changes when agents have heterogeneous beliefs about the

risky asset. We note that the planner’s belief only enters (2.4.4) via the local

Radon-Nikodym derivative Z("). Since this is nonnegative, we will focus on

the sign of the sum
NX

n=1

(��n
t )

✓
�n�2

2
�n

t + �"nt

◆
. (2.4.5)

It is clear that in order for (2.4.1) to be negative, at the very least, we need

that
1

N

NX

n=1

(��n
t ) �"

n
t > 0,

i.e. the sample covariance between the scaled beliefs �("1, . . . , "N) and the
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current deviations ('̄1
t � '̄�,1

t , . . . , '̄N
t � '̄�,N

t ) must be positive. This will be

the case when agents with optimistic (pessimistic) beliefs hold more (less) of

the risky asset in the frictionless market. In other words, the transaction tax

can only be beneficial when it punishes false beliefs, matching the intuition of

Keynes [47].

In general, after division by N , we see that (2.4.1) is the sample covari-

ance between the deviations ('̄1
t � '̄�,1

t , . . . , '̄N
t � '̄�,N

t ) and the vector

✓
�"1t �

�1�2

2
('̄1

t � '̄�,1
t ), . . . , �"Nt � �n�2

2
('̄N

t � '̄�,N
t )

◆
.

It is now clear that whether or not the transaction cost is beneficial depends

on the interplay between the heterogeneity between beliefs and the agents’

hedging needs. In particular, this showcases in a normative manner that the

transaction tax dampens the wild beliefs of the agents while impeding their

underlying need to hedge.

Note that no matter what convex function of the trading rate we choose

to model the transaction tax, the preceding argument still applies as long as

an optimal equilibrium portfolio exists. Moreover, since the sum (2.4.1) is

independent of the planner’s belief, this is a reasonably robust and general

observation.
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Chapter 3

Utility loss: Homogeneous

Beliefs

We will now shed further light on the dynamics of the model introduced in the

previous chapter by considering concrete examples. Here we analyse the case

where agents have correct beliefs about the risky asset, and the transaction

tax is small. In Chapter ?? we incorporate heterogeneous beliefs about the

risky assets into the examples. To e�ciently compute the relevant utility losses

explicitly, we will assume that there are two agents, as is the case in [42, 35].

Furthermore, we will always consider an infinite time horizon (T = 1).

We reiterate that some of the lengthier calculations in this chapter are

aided by the use of custom functions in the computer language Sage. In

particular, Jupyter notebooks containing these calculations can be found in

the GitHub repository https://github.com/odshelley/thesis.

3.1 Explicit formulae

Suppose that the agents have homogeneous beliefs about the risky asset. In

particular, we set "n = 0 for n = 1, 2. According to the discussion in Section

2.4.1, the planner will not deem the transaction tax beneficial. Nevertheless,

we can still investigate the explicit forms of the utility losses of both agents to

see whether the tax benefits an agent on an individual level.

In order to make such calculations, we suppose that the volatilities

⇣1 and ⇣2 in the dynamics of Y 1 and Y 2, are given by arithmetic Brownian
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motions (ABMs)

⇣1t := ↵1t+ �1Wt and ⇣2t = ↵2t+ �2Wt, (3.1.1)

for some ↵1,↵2, �1, �2 2 R. This is a mild generalisation of the endowment

streams considered in [42, 35], as they do not incorporate a drift component.

3.1.1 Frictionless baseline

From (2.2.4) it is immediate that the frictionless equilibrium portfolios of

agents n = 1, 2 are ABMs

'̄1
t = ↵̄t+ �̄Wt = �'̄2

t (3.1.2)

where

↵̄ :=
�2↵2 � �1↵1

(�1 + �2)
and �̄ :=

�2�2 � �1�1

(�1 + �2)
.

Moreover, by (2.2.3) the frictionless equilibrium return becomes

µ0
t =

�1�2�2

(�1 + �2)
[(↵1 + ↵2)t+ (�1 + �2)Wt] . (3.1.3)

3.1.2 Quadratic tax

In the presence of the quadratic transaction tax, we derive expressions for

the equilibrium portfolios by utilising Theorem B.1.1(b). To make expressions

succinct, we introduce the constants B and C given by

B :=
(�1 + �2)�2

4�
and C :=

r
B +

�2

4
� �

2
.

Here, B is the tracking speed in the backward component (2.2.13) of the

FBSDE seen in Lemma 2.2.4 that characterises '̄�,1.

Proposition 3.1.1. Suppose that the volatilities ⇣1, ⇣2 are described by (3.1.1).

(a) The state variable �1 is an Ornstein Uhlenbeck (OU) process with dynam-
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ics 8
<

:
d�1

t = �C
⇣

↵̄�
C(C+�) +�

1
t

⌘
dt� �̄ dWt,

�1
0 = 0.

(3.1.4)

Moreover,

'̄�,1 = '̄1 +�1 and '̄�,2 = �'̄�,1.

(b) The equilibrium trading rates are given by

˙̄'�,1
t = C

✓
↵̄

(C + �)
��1

t

◆
and ˙̄'�,2

t = � ˙̄'�,1
t . (3.1.5)

(c) The equilibrium return is given by

µ�
t = µ0

t +
(�1 � �2)�2

2
�1

t . (3.1.6)

Proof. (a) Since the equilibrium portfolio of agent 1 is characterised by the

FBSDE (2.2.12)-(2.2.13) from Lemma 2.2.4, it follows from Theorem B.1.1

that the portfolio is of the form

Z t

0

e�C(t�s)⇠̄s ds (3.1.7)

where

⇠̄t = C(C + �)E
Z 1

t

e�(C+�)(s�t)'̄1
s ds

���Ft

�
, t � 0.

Using the conditional Fubini theorem

E
Z 1

t

e�(C+�)(s�t)Ws ds
���Ft

�

=

Z 1

t

e�(C+�)(s�t)E [Ws|Ft] ds

=
1

(C + �)
Wt.
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Thus, ⇠̄ is clearly given by

⇠̄t = C

✓
↵̄

(C + �)
+ '̄1

t

◆
. (3.1.8)

Substituting (3.1.8) into (3.1.7) we see that an integration by parts gives

'�,1
t = � �↵̄

C(C + �)
(1� e�Ct)� �̄

Z t

0

e�C(t�s) dWs + '̄1
t

= �1
t + '̄1

t . (3.1.9)

(b) It follows directly from (B.1.6), (3.1.8) and (3.1.9) that

˙̄'�,1
t = C

✓
↵̄

(C + �)
��1

t

◆
.

(c) This follows immediately from (2.2.7).

Remark 3.1.2. (i) As the discount factor � tends to zero, the dynamics of

�1 given in part (a) become identical to their equivalent in the ‘long run

average’ setup considered in [35, Remark 3.6]. We will discuss this in

Section 5.4.

(ii) Since we are primarily focusing on the e↵ects of a small transaction tax,

it is useful to note that

C =
1p
�

⇢p
�1 + �2|�|

2
+O(

p
� )

�
as � # 0. (3.1.10)

In particular, part (b) tells us that for small transaction tax � ⌧ 1, we

have

˙̄'�,1
t ⇡ � 1p

�

⇢p
�1 + �2|�|

2
�1

t

�
.

We are now in a position to explicitly calculate the utility losses intro-

duced in Section 2.4. Before we do so, it is worth noting that we can also

calculate the value functions of the agents in the market with and without

friction. This allows us to see how they are a↵ected by the parameters of the

endowment streams.
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Proposition 3.1.3. When the volatilities ⇣1, ⇣2 are described by (3.1.1),

lim
�#0

K�,0('̄�,n
t )

= ��1�2�2

�2

⇢
(2 �n�n + �n�m � �m�m)(�1 + �2)

2 (�1 + �2)
2

�

� �1�2�2

�3

⇢
(2↵n�n + ↵n�m � ↵m�m)(↵1 + ↵2)

(�1 + �2)
2

�

= K0,0('̄n
t ). (3.1.11)

for (n,m) 2 {(1, 2), (2, 1)}.

Proof. This is shown via direct calculation in the notebook homogeneous.

When the agents have the same endowment stream, i.e. ↵1 = ↵2 and

�1 = �2, it follows from (3.1.11) that

K0,0('̄n
t ) = � �1�2�2

1�
2

�2(�1 + �2)
�n �

4�1�2↵2
1�

2

�3(�1 + �2)
�n, n = 1, 2.

In this case, we can clearly see in what way the size of the volatilities of the

endowments negatively impact the utilities of the agents.

3.2 Utility loss

We now present the main result of this subsection.

Theorem 3.2.1. Suppose that ⇣1, ⇣2 are described by (3.1.1).

(a) The utility loss of the agents is given by

Un,0 =

p
�

�

(
(�1�1 � �2�2)2|�|

4(�1 + �2)
5
2

(5�n � �m)

)
+O(�), (3.2.1)

as � # 0, for (n,m) 2 {(1, 2), (2, 1)}.

(b) The direct, return and portfolio losses of the agents are given by

Un,0
d =

p
�

�

(
(�1�1 � �2�2)

2|�|
4(�1 + �2)

3
2

)
, (3.2.2)
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Un,0
r =

p
�

�

(
(�1�1 � �2�2)

2 |�|
(�1 + �2)

5
2

(�n � �m)

)
+O(�), (3.2.3)

Un,0
p =

p
�

�

(
(�1�1 � �2�2)

2 |�|
2(�1 + �2)

5
2

�n

)
+O(�), (3.2.4)

as � # 0, for (n,m) 2 {(1, 2), (2, 1)}.

(c) The aggregate utility loss is given by

U0 =

p
�

�

(
(�1�1 � �2�2)

2 |�|
�(�1 + �2)

3
2

)
+O(�), (3.2.5)

as � # 0.

Proof. Note that part (a) and (c) follow directly from part (b), so we need

only derive the expressions for the direct, return and portfolio losses. We

approach this by rewriting each quantity in a form which can be computed

using a symbolic algebra package.

Proposition 3.1.1(b) lets us write the direct loss as

U1,0
d = �C2E

"Z 1

0

e��t

✓
↵̄

(C + �)
��1

t

◆2

dt

#
. (3.2.6)

Furthermore, using (2.3.1), it follows that

U1,0
r =

(�1 � �2)�2

2
E
Z 1

0

e��t('̄1
t +�

1
t )�

1
t dt

�
. (3.2.7)

Finally, using Proposition 2.4.3 we see that

U1,0
p =

�1�2

2
E
Z 1

0

e��t(�1
t )

2dt

�
. (3.2.8)

By using market clearing we get analogous expressions for the losses of

agent 2. We complete the proof via direct calculation, found in the notebook

homogeneous, which utilises (3.2.6), (3.2.7) and (3.2.8).

Remark 3.2.2. Note that the drift parameters ↵1 and ↵2 from (3.1.1) are

absent from the expressions as they are absorbed into the second order e↵ects
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when transaction costs are small.

From the discussion in Section 2.4.1, we know that the planner will find

the transaction tax detrimental since the aggregate loss is always nonnegative

when the agents have correct beliefs. However, (3.2.1) tells us that agent n = 1

can benefit from the introduction of a small transaction tax, as long as her risk

aversion parameter �1 is su�ciently small when compared to �2. This happens

without a redistributive scheme, so it may seem odd. However, one can explain

the phenomena by looking at the dynamics of the optimal portfolios.

From Lemma 2.2.2 and Theorem B.1.1, it follows that the dynamics of

the individual optimal portfolios of the agents are given by

d'̄�,n
t = Cn

⇣
⇠̄nt � '̄�,n

t

⌘
dt n = 1, 2,

where

⇠̄nt := (Cn + �)E
Z 1

t

e�(Cn+�)(s�t)⇠ns ds
���Ft

�
, (3.2.9)

⇠nt :=
µ�
t

�n�2
� ⇣nt , (3.2.10)

and

Cn :=

r
�n�2

2�
+

�2

4
� �

2
.

Thus, we can view determining the optimal portfolio of agent n as a tracking

problem, an idea formulated formally by Cai, Rosenbaum and Tankov [21].

The agent would like to keep her portfolio as close to the optimal frictionless

portfolio as possible, but the transaction tax acts as an intervention cost for

position adjustment, causing the optimal portfolios to become sluggish. Thus,

agents trade towards the deviation portfolio (3.2.9), which is an average of

the future values of the optimal frictionless portfolio (3.2.10), computed using

an exponential discounting kernel. This matches the rhetoric of Gârleanu

and Pedersen, who argue that an agent trades ‘in front of the target’ in the

presence of transaction costs [37]. Indeed, due to this it is no surprise that the

deviation process �1 is mean-reverting. As the tax � tends to zero the trading

speed Cn tends to infinity, whence ⇠̄n approaches '̄n, matching the small-cost
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asymptotics seen in [56]. This also aligns with Corollary 2.2.8, which shows

that '̄�,n is a combination of ⇠n along with a deviation term that tends to zero

with the transaction tax.

In equilibrium, market clearing intertwines the agents’ optimal portfo-

lios. The fact that Cn / �n incentivises agent 2 to track her target faster than

agent 1, thus o↵ering her favourable trades. This encapsulates that, due to

her larger risk aversion, the hedging needs of agent 2 dominate that of agent

1. Hence, one does expect the return loss of agent n = 1 (2.2.20) to be strictly

negative. However, it is notable that this e↵ect can dominate the losses in-

curred directly from taxation and indirectly from the change in equilibrium

portfolios.

This phenomenon is also related to the liquidity premium. Suppose we

have an arbitrary amount of agents in the market. Then as is remarked in

[17], when agents have homogeneous beliefs, (2.3.1) is the sample covariance

between the vector of risk aversions (�1, . . . , �N) and the deviations ('̄⇤,1 �
'̄1, . . . , '̄⇤,N � '̄N). Thus, a positive liquidity premium occurs when the more

risk-averse agents hold more risky assets in the market with friction. Since

their need to hedge against their endowment fluctuations is stronger than that

of the less risk-averse agents, they tend to be net buyers, resulting in a positive

liquidity premium and benefitting the less risk-averse agents.

Remark 3.2.3 (Analogue). Consider Merton’s optimal investment problem,

solved in [54], which studies optimal consumption and investment decisions for

an investor who has available a bank account paying a fixed rate of interest

and a stock whose price is a log-normal di↵usion. In this model, transactions

between bank and stock are costless and instant. For utility functions in the

CRRA class, the optimal proportion of wealth to invest in a stock is constant,

and one should consume at a rate proportional to total wealth. Thus, if the

investor acts optimally, the portfolio holdings always lie on a line in the plane

where the x-axis denotes holdings in the bank, and the y-axis denotes holdings

in the stock. One calls this line the ‘Merton line’.

Applying the same strategy when proportional transaction costs are

present results in immediate penury since constant trading is necessary to hold

the portfolio on the Merton line; note that trading volume is proportional to

the total variation of a portfolio, and prices follow di↵usions that have infinite
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variation, which leads to the absurd conclusion that trading volume is infinite

over any time interval. In this case, there must be some no-trade zone, or wedge

around the line in the plane mentioned above, where the portfolio is optimal

enough to make trading worthless. In this model, an agent’s optimal portfolio

lies within this wedge, where trade occurs at the boundary, allowing for wide

portfolio oscillations. This was first shown explicitly by Davis and Norman

in [25] as the solution to a singular stochastic control problem. Guasoni and

Muhle-Kabre show in [36] that if we optimise the portfolio with respect to its

long-run average, then the no-trading region reoccurs, and the width of this

wedge is inversely proportional to the risk aversion of the agent.

In the above discussion, one can view the target (3.2.9) as the analogue

of the Merton line. The no-trade zone ceases to exist in our model, but trading

is slower the closer we are to the target, which gives a similar notion. Moreover,

the tracking speed is proportional to the agent’s risk aversion, similar to the

relationship between risk aversion and wedge width when one has proportional

costs.

3.2.1 Idiosyncratic tax

For the sake of completeness, we check the e↵ect of allowing the planner to

give idiosyncratic penalties to the agents. In particular, let’s assume that the

goal functional of agent n = 1, 2, is

K0(',�n) = E
Z 1

0

e��t

⇢
'tµt �

�n�2

2
('t + ⇣nt )

2 + �n ('̇t)
2

�
dt

�
, (3.2.11)

where �1 := � 2 (0,1) and �2 := k� for some k 2 R+.

It is a straightforward generalisation of Theorem 2.2.7 to deduce an

equilibrium return in this market.

Theorem 3.2.4. The unique frictional equilibrium return is given by

⌫�
t =

�2

(k + 1)

n
(k�1 � �2) '̄

�,1
t + k�1⇣

1
t + �2⇣

2
t

o

= µ0
t +

(k�1 � �2)

(k + 1)
�2�1

t , (3.2.12)
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where the corresponding individually optimal trading strategy '̄�,1
t of agent n =

1 is given as the solution to the FBSDE

d'̄�,1
t = ˙̄'�,1

t dt, '̄�,1
0 = 0,

d ˙̄'�,1
t = ZtdWt +


(�1 + �2)

(1 + k)

�2

2�

�⇣
'̄�,1
t � '̄1

t

⌘
dt+ � ˙̄'�,1

t dt.

The corresponding individually optimal trading strategy of agent n = 2 is then

given by '̄�,2
t = �'̄�,1

t .

Proof. The proof is analogous to the proof of Theorem 2.2.7.

Remark 3.2.5. When the agents have homogeneous beliefs and have idiosyn-

cratic taxes, from (3.2.12) we see that the liquidity premium becomes

⌫�
t � µ0

t =
(k�1 � �2)

(k + 1)
�2�1

t .

Unlike the market with a blanket tax for all agents, the frictionless equilibrium

return no longer clears the market when agents have homogeneous risk aver-

sions. This is caused by the heterogeneity in taxes, which causes the tracking

speeds of the agents to di↵er, despite the homogeneous risk aversions.

Theorem 3.2.6. Suppose that ⇣1, ⇣2 are described by (3.1.1).

(a) The utility loss of the agents is given by

U1,0 =

p
�

�

(p
2(�1�1 � �2�2)2|�|

4(�1 + �2)
5
2 (k + 1)

1
2

((2 + 3k)�1 � �2)

)
+O(�), (3.2.13)

U2,0 =

p
�

�

(p
2(�1�1 � �2�2)2|�|

4(�1 + �2)
5
2 (k + 1)

1
2

((2k + 3)�2 � k�1)

)
+O(�), (3.2.14)

as � # 0.

(b) The direct, return and portfolio losses of the agents are given by

U1,0
d =

p
�

�

(p
2(�1�1 � �2�2)

2|�|
4(�1 + �2)

3
2 (k + 1)

1
2

)
+O(�), U2,0

d = kU1,0
d , (3.2.15)
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Un,0
r = (�1)n

p
�

�

(p
2(�1�1 � �2�2)

2 |�|
(�1 + �2)

5
2 (k + 1)

1
2

(�2 � k�1)

)
+O(�), (3.2.16)

Un,0
p =

p
�

�

(p
2(�1�1 � �2�2)

2 |�|
4(�1 + �2)

5
2 (k + 1)�

1
2

�n

)
+O(�), (3.2.17)

as � # 0, for n = 1, 2.

(c) The aggregate utility loss is given by

U0 =

p
�

�

(p
2(k + 1)(�1�1 � �2�2)

2 |�|
2(�1 + �2)

3
2

)
+O(�), (3.2.18)

as � # 0.

Proof. The proof is analogous to the proof of Theorem 3.2.1.

It is clear from (3.2.14) that due to the larger risk aversion of agent

n = 2,

U2,0 �
p
�

�

(
(�1 � �2)2 |�|

p
�1

16

"
(k + 3)

(k + 1)
1
2

#)
+O(�), as � # 0.

This means that the more risk averse agent does not benefit from a small

transaction tax. This statement holds even in the extreme case where only

the less risk averse agent is taxed, in which case

U2,0 �
p
�

�

⇢
3(�1 � �2)2 |�|

p
�1

16

�
+O(�) as � # 0.

The phenomena occurs due to the transaction tax making the agents trading

sluggish. In particular, in equilibrium this makes it more di�cult for the more

risk averse agent to hedge, thus making them worse o↵ even if they are not

taxed themselves.

3.2.2 Näıve rebate

One might wonder whether or not the utility losses of the agents can be covered

by a rebate funded by the tax itself. For small transaction costs, this is clearly
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not possible en-masse, since (3.2.2) and (3.2.5) show that

1

2
U0 = U1,0

d + U2,0
d +O(�),

as � # 0. Furthermore, a rebate can never cover the losses of the more risk

averse agent, since

U2,0 �
�
U1,0
d + U2,0

d

�
+O(�) =

3(�1�1 � �2�2)2 |�|
4(�1 + �2)

5
2

(�2 � �1) � 0 (3.2.19)

as � # 0.

It is often argued (e.g. by Kenneth Arrow in [6]) that the absolute risk

aversion of a typical individual falls as wealth rises. Thus, one might deduce

from (3.2.19) that when the market is in equilibrium and participants engage

in fundamental trading, no matter how one o↵ers a rebate, a transaction tax

primarily penalises the poorer agents. Therefore, for completeness, we check

whether there exist idiosyncratic taxes that would enable us to give the more

risk-averse agent a rebate that covers their losses due to the tax.

We consider the quantity

R :=
U1,0
d + U2,0

d

U2,0
,

noting that a rebate which covers agent 2’s losses is possible only when R � 1.

As in Section 3.2.1, we consider a scenario where agent 1 and 2 are penalised

by tax levies �1 := � 2 (0,1) and �2 = k�1, respectively. Furthermore, we

define k� 2 (1,1) to be the constant such that �2 = k��1. From Theorem

3.2.6, it is immediate that

R ⇡ (k� + 1)(k + 1)

k(2 k� � 1) + 3 k�
=: R̃

for �1 ⌧ 1. Furthermore,

dR̃

dk
=

(k� + 1)2

(2 k�k + 3k� � k)2
> 0.

Thus, assuming we give agent 2 the total accrued tax as a rebate, it is (almost

37



paradoxically) more beneficial to tax them at a higher rate than agent 1. This

is because a larger tax impedes agent 2’s hedging needs and thus lowers the

need to o↵er more favourable trades to agent 1 due to their mismatch in risk

aversion. We may conclude that a small transaction tax will never be favoured

by the more risk averse agent.
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Chapter 4

Utility loss: Heterogeneous

Beliefs

We now extend the set up so that agents n = 1, 2 have heterogeneous beliefs

about the risky asset, modelled by the beliefs ("n,P(")) 2 graph(P(")) where

("nt )t�0 is a zero mean reverting OU process with respect to a P("n)-Brownian

motion W n: 8
<

:
d"nt = �✓"nt dt+ �n dW n

t

"n0 = 0,
(4.0.1)

for �1, �2 2 R and ✓ 2 (0,1).

For ease of calculation, we will drop the drift terms from the shock

volatilities, i.e. we set

⇣nt := �nWt, n = 1, 2. (4.0.2)

This is a minor adjustment, as the drift terms do not enter any of the ap-

proximations seen in Theorem 3.2.1, and thus will be irrelevant when making

comparisons between the markets with and without heterogeneous beliefs.

To simplify later expressions, we introduce the constants

n := ✓ + �n n = 1, 2,

and

 :=
1

2
(1 + 2) = ✓ +

1

2
(�1 + �2) .

Moreover, in order for the expressions to be appropriately integrable, we will
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always assume that

✓ > |�1| _ |�2| . (4.0.3)

In particular, this ensures that 1,2 and  2 (0,1).

4.1 Explicit formulae

Since "1 and "2 are OU processes with respect to di↵erent Brownian motions,

it will be useful to view them under common measures. Recall that the average

belief of the agents is denoted by "̄ := 1
2 ("

1 + "2) and P̄ := P("̄).

Proposition 4.1.1. Let "1, "2 be defined by (4.0.1).

(a) The process "n is given by

"nt = �n

Z t

0

e�n(t�s) dWs (4.1.1)

= (�n � �m)

Z t

0

e�n(t�s)dWm
t + �m

Z t

0

e�✓(t�s) dWm
s , (4.1.2)

for (n,m) 2 {(1, 2), (2, 1)}.

(b) The di↵erence "1 � "2 is given by

"1t � "2t = (�1 � �2)

Z t

0

e�(t�s) dW "̄
s . (4.1.3)

(c) When �1 = ��2 = �0, the sum "1 + "2 is given by

"1t + "2t = �2�2
0

Z t

0

e�✓(t�s)(t� s) dW "̄
s . (4.1.4)

Otherwise,

"1t + "2t = 4
�1�2

(�1 + �2)

Z t

0

e�✓(t�s) dW "̄
s

+
(�1 � �2)2

(�1 + �2)

Z t

0

e�(t�s) dW "̄
s . (4.1.5)
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Proof. (a) From the dynamics (4.0.1) and Theorem A.1.13 it follows that

d"1t = �✓"1t dt+ �1

�
dWt � "1t dt

�

= �(✓ + �1)"
1
t dt+ �1 dWt,

resulting in (4.1.1). Moreover,

d"1t = �(✓ + �1)"
1
t dt+ �1

�
dW 2

t + "2t dt
�

= �(✓ + �1)"
1
t dt+ �1"

2
t dt+ �1dW

2
t .

Using the integrating factor e1t and Proposition C.1.1, it follows that

"1t = �1

Z t

0

e�1(t�s)"2s ds+ �1

Z t

0

e�1(t�s)dW 2
t

= �1�2

Z t

0

e�1(t�s)

Z s

0

e�✓(s�r) dW 2
r ds+ �1

Z t

0

e�1(t�s)dW 2
t

=
�1�2

✓ � 1

✓Z t

0

e�1(t�s) dW 2
s �

Z t

0

e�✓(t�s) dW 2
s

◆
+ �1

Z t

0

e�1(t�s)dW 2
t

= (�1 � �2)

Z t

0

e�1(t�s)dW 2
t + �2

Z t

0

e�✓(t�s) dW 2
s .

By the same argument we get an analogous expression for "2.

(b) From the dynamics (4.0.1), the definition of the belief ("̄, P̄), and Theorem

A.1.13, it follows that

d"nt = �✓"nt dt+ �1

✓
dW "̄

t +
(�1)n

2
("1t � "2t ) dt

◆
n = 1, 2. (4.1.6)

Hence,

d("1t � "2t ) = �
✓
✓ +

�1 + �2

2

◆
("1t � "2t ) dt+ (�1 � �2) dW

"̄
t .

The expression (4.1.3) is clear by noting that "10 = "20 = 0.

41



(c) Using the integrating factor e✓t, it follows from (4.1.6) that

"1t = ��1

2

Z t

0

e�✓(t�s)("1s � "2s) ds+ �1

Z t

0

e�✓(t�s) dW "̄
s

= ��1(�1 � �2)

2

Z t

0

e�✓(t�s)

✓Z s

0

e�(s�r) dW "̄
s

◆
ds

+ �1

Z t

0

e�✓(t�s) dW "̄
s . (4.1.7)

It follows from Proposition C.1.7 that when �1 6= ��2,

e�✓t

Z t

0

e�(�✓)s

✓Z s

0

er dW "̄
s

◆
ds

= � e�✓t

✓ � 

✓Z t

0

e✓s dW "̄
s � e✓t

Z t

0

e�(t�s) dW "̄
s

◆

=
2

(�1 + �2)

✓Z t

0

e�✓(t�s) dW "̄
s �

Z t

0

e�(t�s) dW "̄
s

◆
. (4.1.8)

Substituting into (4.1.8) into (4.1.7), we see that

"
1
t = ��1(�1 � �2)

(�1 + �2)

✓Z t

0
e
�✓(t�s) dW "̄

s �
Z t

0
e
�(t�s) dW "̄

s

◆

+ �1

Z t

0
e
�✓(t�s) dW "̄

s

= �1

⇢✓
2�2

�1 + �2

◆Z t

0
e
�✓(t�s) dW "̄

s +

✓
�1 � �2

�1 + �2

◆Z t

0
e
�(t�s) dW "̄

s

�
.

Similarly,

"2t = �2

⇢✓
2�1

�1 + �2

◆Z t

0

e�✓(t�s) dW "̄
s +

✓
�2 � �1

�1 + �2

◆Z t

0

e�(t�s) dW "̄
s

�
,

whence

"1t + "2t = 4
�1�2

(�1 + �2)

Z t

0

e�✓(t�s) dW "̄
s +

(�1 � �2)2

(�1 + �2)

Z t

0

e�(t�s) dW "̄
s .

When �1 = ��2 = �0, it follows from (4.1.6) and Proposition C.1.7

"nt = ��2
0

Z t

0

✓Z s

0

e�✓(t�r) dW "̄
s

◆
ds� (�1)n�0

Z t

0

e�✓(t�s) dW "̄
s
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= ��2
0

Z t

0

e�✓(t�s)(t� s) dW "̄
s � (�1)n�0

Z t

0

e�✓(t�s) dW "̄
s n = 1, 2,

and so

"1t + "2t = �2�2
0

Z t

0

e�✓(t�s)(t� s) dW "̄
s .

Remark 4.1.2. From part (a) and our assumption (4.0.3) we see that "1 and

"2 are OU processes with respect to P. Thus, it is clear that "1, "2 2 L 4
� for

any � > 0, whence "1, "2 are pre-admissible beliefs as defined in Section 2.1.3.

The following proposition is for the purpose of calculation.

Proposition 4.1.3. Let ⇣1, ⇣2 and "1, "2 be described by (4.0.1) and (4.0.2),

respectively.

(a) For n = 1, 2

�2⇣2t � �1⇣1t
(�1 + �2)

= �̄

(
W n

t � �n

Z t

0

e�✓(t�s)(t� s) dW n
s

)
. (4.1.9)

(b) When �1 + �2 6= 0

�2⇣2t � �1⇣1t
(�1 + �2)

= �̄

(
W "̄

t � 2�1�2

(�1 + �2)

Z t

0

e�✓(t�s)(t� s) dW "̄
s

� 1

2

(�1 � �2)2

(�1 + �2)

Z t

0

e�(t�s)(t� s) dW "̄
s

)
. (4.1.10)

(c) When �1 = ��2 = �0

�2⇣2t � �1⇣1t
(�1 + �2)

= �̄

⇢
W "̄

t + �2
0

Z t

0

e�✓(t�s)(t� s)W "̄
s ds

�
. (4.1.11)

Proof. (a) By the definition of the belief ("n,Pn) it follows that

�2⇣2t � �1⇣1t
(�1 + �2)

=
�2�2 � �1�1

(�1 + �2)

✓
W n

t +

Z t

0

"ns ds

◆
. (4.1.12)
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Using Proposition C.1.1, it follows that

Z t

0

"ns ds = �n

Z t

0

e�✓(t�s)(t� s) dW n
s .

By substituting back into (4.1.12) we get (4.1.9).

(b) By the definition of the belief ("̄, P̄) it follows that

�2⇣2t � �1⇣1t
(�1 + �2)

=
�2�2 � �1�1

(�1 + �2)

✓
W "̄

t � 1

2

Z t

0

("1s + "2s) ds

◆
. (4.1.13)

Thus, using Propositions 4.1.1(c) and C.1.7, it follows that

Z t

0

("1s + "2s) ds

=
4�1�2

(�1 + �2)

Z t

0

e�✓(t�s)(t� s) dW "̄
s +

(�1 � �2)2

(�1 + �2)

Z t

0

e�(t�s)(t� s) dW "̄
s .

By substituting into (4.1.13) we get (4.1.10).

(c) By Propositions 4.1.1(c) and C.1.8, it follows that

Z t

0

("1s + "2s) ds = �2�2
0

Z t

0

e�✓(t�s)(t� s)W "̄
s ds.

By substituting into (4.1.13) we get (4.1.11).

4.1.1 Frictionless baselines

From (2.2.4) it is clear that the equilibrium portfolio in the frictionless market

is given by

'̄n
t =

�2⇣2t � �1⇣1t
(�1 + �2)

+
"1t � "2t

�(�1 + �2)
and n = 1, 2.

The exact expressions for '̄1 and '̄2 under the measures P, P̄,P1 and P2 are

clear from Propositions (4.1.1) and (4.1.3). Similarly, one can get the exact
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expressions for the frictionless equilibrium return since (2.2.3) tells us that

µ0
t =

�1�2�2

(�1 + �2)


⇣1t + ⇣2t �

�2"1t + �1"2t
�1�2�

�
.

4.1.2 Quadratic costs

We now derive expressions for the equilibrium portfolios, the equilibrium trad-

ing rates and equilibrium return in the market with friction. This will allow

us to express the utility losses in the next subsection. For notational purposes

we define

C(x) :=
C(C + �)

(C + � + x)(C � x)
(4.1.14)

for any x 2 R for which C(x) is well defined. Note that C depends on � and

from (3.1.10)

C(x) ! 1 as � # 0.

Proposition 4.1.4. Suppose that "1, "2 and ⇣1, ⇣2 are described by (4.0.1) and

(4.0.2), respectively.

(a) The equilibrium portfolios are given by

'̄�,1
t = '̄1

t + �̃
1
t +O (�) and '̄�,2

t = �'̄�,1
t ,

as � # 0 for all t � 0, where

�̃1 := � [(�1 � �2)� �(�1�1 � �2�2)]

�(�1 + �2)

Z ·

0

e�C(t�s) dW "̄
s . (4.1.15)

(b) The equilibrium trading rates are given by

˙̄'�,1
t = �

r
(�1 + �2)�2

4�
�̃1

t +O (1) and ˙̄'�,2
t = � ˙̄'�,1

t ,

as � # 0 for all t � 0.

(c) The equilibrium return is given by

µ�
t = µ0

t +
�2(�1 � �2)

2
�1

t � �Z("1t � "2t )
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where

Z =

r
(�1 + �2)�2

4�

⇢
[(�1 � �2)� �(�1�1 � �2�2)]

�(�1 + �2)

�
+O(1)

as � # 0.

Proof. (a) We only calculate the equilibrium portfolio of agent 1, since agent

2’s portfolio is determined by market clearing. According to Theorem 2.2.20

and Theorem B.1.1

'�,1
t =

Z t

0

e�C(t�s)⇠"s ds (4.1.16)

+

Z t

0

e�C(t�s)⇠⇣s ds, (4.1.17)

where

⇠"t := C(C + �)EP̄

Z 1

t

e�(C+�)(s�t) "1s � "2s
�(�1 + �2)

ds
���Ft

�
,

⇠⇣t := C(C + �)EP̄

Z 1

t

e�(C+�)(s�t)�2⇣
2
s � �1⇣2s

(�1 + �2)
ds
���Ft

�
.

We will compute (4.1.16) and (4.1.17) in turn.

First, note that by Proposition C.1.3

EP̄

Z 1

t

e�(C+�)(s�t) "1s � "2s
�(�1 + �2)

ds
���Ft

�

=
(�1 � �2)

�(�1 + �2)
e(C+�)tE

Z 1

t

e�(C+�)s

Z s

0

e�(s�r) dW "̄
r ds

���Ft

�

=
(�1 � �2)

�(�1 + �2)

1

(C + � + )

Z t

0

e�(t�s) dW "̄
s . (4.1.18)

Thus, using Proposition C.1.1

Z t

0

e�C(t�s)⇠"s ds

= C()

⇢
"1t � "2t

�(�1 + �2)
� (�1 � �2)

�(�1 + �2)

Z t

0

e�C(t�s)dW "̄
s

�

=

⇢
"1t � "2t

�2(�1 + �2)
� (�1 � �2)

�(�1 + �2)

Z t

0

e�C(t�s)dW "̄
s

�
+ o(1), � # 0.
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Next we calculate (4.1.17). Suppose that �1 + �2 6= 0. By Propositions
4.1.3(a) and C.1.12, it follows that

EP̄

Z 1

t
e
�(C+�)(s�t) �2⇣

2
s � �1⇣

2
s

(�1 + �2)
ds
���Ft

�

=
�̄

(C + �)
W

"̄
t

� �̄
2�1�2

(�1 + �2)

1

(C + � + ✓)

✓Z t

0
e
�✓(t�s)(t� s) dW "̄

s +
1

(C + � + ✓)

Z t

0
e
�✓(t�s) dW "̄

s

◆

� �̄
1

2

(�1 � �2)2

(�1 + �2)

1

(C + � + )

✓Z t

0
e
�(t�s)(t� s) dW "̄

s +
1

(C + � + )

Z t

0
e
�(t�s) dW "̄

s

◆
.

(4.1.19)

Hence, using Propositions C.1.4 and C.1.10

Z t

0

e�C(t�s)⇠⇣s ds

= �̄

⇢
W "̄

t �
Z t

0

e�C(t�s) dW "̄
s

�

� �̄
2�1�2

(�1 + �2)
C(✓)

(Z t

0

e�✓(t�s)(t� s) dW "̄
s

+
2✓ + �

(C � ✓)(C + � + ✓)

✓Z t

0

e�C(t�s) dW "̄
s �

Z t

0

e�✓(t�s) dW "̄
s

◆)

� �̄
1

2

(�1 � �2)2

(�1 + �2)
C()

(Z t

0

e�(t�s)(t� s) dW "̄
s

+
2+ �

(C � )(C + � + )

✓Z t

0

e�C(t�s) dW "̄
s �

Z t

0

e�(t�s) dW "̄
s

◆)
.

From (3.1.10) it now follows that

Z t

0

e�C(t�s)⇠⇣s ds =
�2⇣2t � �1⇣2t
(�1 + �2)

� �̄

Z t

0

e�C(t�s) dW "̄
s +O (�) � # 0.

It remains to calculate (4.1.17) in the case where �1 = ��2 = �0. By
Propositions 4.1.3(b) and C.1.14 it follows that

EP̄

Z 1

t
e
�(C+�)(s�t) �2⇣

2
s � �1⇣

2
s

�(�1 + �2)
ds
���Ft

�

=
�̄

(C + �)
W

"̄
t
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+
�̄�

2
0

(C + � + ✓)2

✓
(C + � + ✓)

Z t

0
e
�✓(t�r)(t� r)W "̄

r dr +

Z t

0
e
�✓(t�r)

W
"̄
r dr � W

"̄
s

(C + �)

◆
.

(4.1.20)

Thus, by Propositions C.1.9 and C.1.8 it follows that

�
2
0

Z t

0
e
�C(t�s)

Z s

0
e
�✓(s�r)(s� r)W "̄

r dr ds

=
�
2
0

(C � ✓)

 Z t

0
e
�✓(t�s)(t� s)W "̄

s ds+
1

(C � ✓)

✓Z t

0
e
�C(t�s)

W
"̄
r dr �

Z t

0
e
�✓(t�s)

W
"̄
s ds

◆!

= � 1

(C � ✓)

 
1

2

Z t

0
("1s + "

2
s) ds

!
+

�
2
0

(C � ✓)2

✓Z t

0
e
�C(t�s)

W
"̄
r dr �

Z t

0
e
�✓(t�s)

W
"̄
s ds

◆
.

Moreover,

�
2
0

Z t

0
e
�C(t�s)

Z t

0
e
�✓(s�r)

W
"̄
r dr ds =

�
2
0

(C � ✓)

✓Z t

0
e
�✓(t�s)

W
"̄
s ds�

Z t

0
e
�C(t�s)

W
"̄
s ds

◆
.

Combining this together yields

Z t

0

e�C(t�s)⇠⇣s ds

= �̄

✓
W "̄

s �
Z t

0

e�C(t�s) dW "̄
s

◆

� �̄C(✓)

(
1

2

Z t

0

�
"1s + "2s

�
ds

+
(2✓ + �)�2

0

(C + � + ✓)(C � ✓)

✓Z t

0

e�✓(t�s)W "̄
s ds�

Z t

0

e�C(t�s)W "̄
s ds

◆

+
(C � ✓)�2

0

C(C + �)(C + � + ✓)

✓
W "̄

s �
Z t

0

e�C(t�s) dW "̄
s

◆)

= �̄

✓
W "̄

s � C(✓)

2

Z t

0

�
"1s + "2s

�
ds

◆
� �̄

Z t

0

e�C(t�s) dW "̄
s

� �̄�2
0C(✓)

✓
✓1

Z t

0

e�✓(t�s) dW "̄
s + ✓2

Z t

0

e�C(t�s) dW "̄
s + ✓3W

"̄
t

◆
,

where

✓1 := � (2✓ + �)

✓(C � ✓)(C + � + ✓)
= O(�),

✓2 :=
1

C(C + � + ✓)

✓
(2✓ + �)

(C � ✓)
� (C � ✓)

(C + �)

◆
= O(�),
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✓3 :=
�(C + �) + ✓(3C + 2� � ✓)

(C + �)(C + � + ✓)C✓
= O(�),

as � # 0. From (3.1.10) it now follows that

Z t

0

e�C(t�s)⇠⇣s ds =
�2⇣2t � �1⇣2t
(�1 + �2)

� �̄

Z t

0

e�C(t�s) dW "̄
s +O (�) , � # 0.

(b) As in part (a), we only calculate the trading rate of agent 1 since

agent 20s trading rate is determined by market clearing. From Theorem 2.2.7

and Theorem B.1.1, it follows that

˙̄'�,1 =
�⇥
⇠" + ⇠⇣

⇤
� C'̄�,1

�
. (4.1.21)

Using equations (4.1.18), (4.1.19), and (4.1.20), we see that

⇠"

C
= (C + �)EP̄

Z 1

t

e�(C+�)(s�t) "1t � "2t
�(�1 + �2)

ds
���Ft

�
=

"1t � "2t
�(�1 + �2)

+ o (1) ,

⇠⇣

C
= (C + �)EP̄

Z 1

t

e�(C+�)(s�t)�2⇣
2
s � �1⇣2s

(�1 + �2)
ds
���Ft

�
=

�2⇣2t � �1⇣2t
(�1 + �2)

+O
⇣
�

1
2

⌘
,

as � # 0. By substituting into (4.1.21) it follows that

˙̄'�,1
t = �

r
(�1 + �2)�2

4�
�̃1

t +O (1) , � # 0.

(c) It follows from part (a) and Theorem 2.2.20 that

µ�
t = µ0

t +
�2(�1 � �2)

2
�1

t � �Zt("
1
t � "2t ) (4.1.22)

From Theorem B.1.1 we see that Z is derived from the martingale representa-

tion theorem with respect to the square integrable martingale (Mt)t�0 defined

by

dMt = e(C+�)t dM̄t,
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where

M̄t = EP̄

Z 1

0

e�(C+�)sB

⇢
�2⇣2s � �1⇣1s
(�1 + �2)

+
"1s � "2s

�(�1 + �2)

�
ds
���Ft

�
. (4.1.23)

We will compute M̄ in parts in order to derive an expression for Z.

First, from Propositions 4.1.1 and C.1.2 it follows that

EP̄

Z 1

0

e�(C+�)s "1s � "2s
�(�1 + �2)

ds
���Ft

�

=
(�1 � �2)

(C + � + )

1

�(�1 + �2)

Z t

0

e�(C+�)s dW "̄
s . (4.1.24)

Next, suppose that �1 + �2 6= 0. Then Propositions 4.1.3 and C.1.11

show that

EP̄

Z 1

0

e�(C+�)s�2⇣
2
s � �1⇣1s

(�1 + �2)
ds
���Ft

�

= �̄

 
1

(C + �)
� 1

(C + � + ✓)2
2�1�2

(�1 + �2)

� 1

(C + � + )2
1

2

(�1 � �2)2

(�1 + �2)

!Z t

0

e�(C+�)s dW "̄
s . (4.1.25)

For the case where �1 = ��2 = �0, Propositions 4.1.3 and C.1.13 give

us

EP̄

Z 1

0

e�(C+�)s�2⇣
2
s � �1⇣1s

(�1 + �2)
ds
���Ft

�

=
�̄

(C + �)

 
1 +

�2
0

(C + � + ✓)2

!Z t

0

e�(C+�)s dW "̄
s . (4.1.26)

By substituting (4.1.24), (4.1.25) and (4.1.20) into (4.1.23) we get

M̄t = �

Z t

0

e�(C+�)s dW "̄
s ,

where

� :=

(
�(�1 � �2)

4�(C + � + )
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+
�
2(�2�2 � �1�1)

4�

 
1

(C + �)
� 1

(C + � + ✓)2
2�1�2

(�1 + �2)
� 1

(C + � + )2
1

2

(�1 � �2)2

(�1 + �2)

!
1A

+
�
2(�2�2 � �1�1)

4�

 
1

(C + �)
+

�
2
0

(C + �)(C + � + ✓)2

!
1Ac

)
,

and A := {�1 + �2 6= 0}. Thus,

dMt = � dW "̄
t ,

from which it is clear that Zt = � for all t � 0. In particular, due to (3.1.10),

Zt =

r
(�1 + �2)�2

4�

⇢
[(�1 � �2)� �(�1�1 � �2�2)]

�(�1 + �2)

�
+O(1)

as � # 0.

Remark 4.1.5. (i) Despite the initially complicated formulas, the equilib-

rium portfolios, trading rates and returns processes are of the same form

as their counterparts in Proposition 3.1.1 when � ⌧ 1.

(ii) In the proof we derived the expressions in full generality before making

the approximation for small �, so we actually prove a slightly stronger

statement. However, the approximations are all we need for the calcula-

tions in Theorem 4.2.1.

4.2 Utility loss

4.2.1 Planner’s perspective

We now calculate the aggregate utility loss when transaction costs are small.

Theorem 4.2.1. Suppose ⇣1, ⇣2 and "1, "2 are described by (4.0.2) and (4.0.1),

respectively.

(a) The aggregate utility loss under the belief ("̄, P̄) is

U "̄ =

p
�

�

(
[�2(�1�1 � �2�2)2 � (�1 � �2)2]

(�1 + �2)
3
2 |�|

)
+O(�),

as � # 0.
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(b) The post rebate aggregate utility loss under the belief ("̄, P̄) is

Ũ "̄ = U "̄ �
p
�

�

(
(�[�1�1 � �2�2]� [�1 � �2])

2

2(�1 + �2)
3
2 |�|

)
+O(�),

as � # 0.

Proof. From Proposition 2.4.3 and market clearing we know that the aggregate

utility loss is of the form

U
"̄ = EP̄

"Z 1

0
e
��t

2X

n=1

⇢
(�n

t )

✓
�
n
�
2

2
�n

t + �"
n
t

◆
+ �

⇣
˙̄'�,n
t

⌘2�
dt

#

= EP̄

Z 1

0
e
��t

⇢
(�1 + �2)�2

2

�
�1

t

�2
+ �("1t � "

2
t )�

1
t + 2�

⇣
˙̄'�,1
t

⌘2��
. (4.2.1)

Using Proposition 3.1.1, we see that (4.2.1) becomes

U "̄ = EP̄

Z 1

0

e��t

⇢
(�1 + �2) �

2
⇣
�̃1

t

⌘2
+ �("1t � "2t )�̃

1
t

��
+O(�)

as � # 0. Similarly, one can show that the post rebate utility loss is given by

Ũ "̄ = EP̄

Z 1

0

e��t

⇢
(�1 + �2) �2

2

⇣
�̃1

t

⌘2
+ �("1t � "2t )�̃

1
t

��
+O(�),

as � # 0. We complete the proof via direct calculation, found in the notebook

heterogeneous.

Let’s assume that the planner, in the interest of the agents, takes the

average belief ("̄, P̄) in order to decide whether or not the transaction tax

is beneficial. Assuming that the transaction tax is small, Theorem 4.2.1(a)

makes it clear that the tax is beneficial when

|�1 � �2|� |�(�1�1 � �2�2)| > 0. (4.2.2)

Condition (4.2.2) encapsulates that a transaction tax penalises agents

by impeding their ability to hedge e↵ectively while rewarding them by damp-

ening the e↵ect of their heterogeneous beliefs. Note that it is not the hetero-

geneity between an agent’s belief and the belief (0,P) that is important but
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the heterogeneity between the agents’ beliefs in general. Thus, (4.2.2) suggests

that a small transaction tax is beneficial when all trading is non-fundamental,

and there is heterogeneity in the speculative beliefs. Moreover, it shows that

the tax is detrimental when all speculative beliefs are homogeneous, as in Sec-

tion 3.1. Note that the e↵ect of (4.2.2) occurs in proportion to the square rootp
� of the transaction tax, in line with the small-cost analysis seen in [57].

The e↵ect of a näıve rebate on the aggregate utility loss is described

succinctly by Theorem 4.2.1(b). It is pleasing that the qualitative e↵ect of the

transaction tax is largely unchanged by the (unrealistic) rebate. Thus, when

there is purely speculative trading, one can advocate for a transaction tax in

favour of the agents whilst accruing the tax as capital for other means.

Despite the planner’s belief being absent from the integrand seen in

(2.4.3), we need to take the expectation with respect to P̄ in order for condition

(4.2.2) to remain intact. Fortunately, if we let the planner hold the ‘correct’

belief (0,P), the phenomena persist for many parameter combinations.

Corollary 4.2.2. Suppose that "1, "2 and ⇣1, ⇣2 are described by (4.0.1) and

(4.0.2), respectively. Then the aggregate utility loss under the belief (0,P) is

U
0 � U

"̄ +O(�)

=

p
�

�

(
2 (�1�1� � �2�2� � �1 + �2)(2�1�2 � ��1 � ��2 � 2�1✓ � 2�2✓)(�1 � �2)

(� � 2�1 + 2 ✓)(� � 2�2 + 2 ✓)(�1 + �2)
3
2 |�|

)
,

as � # 0.

Proof. To proceed we rewrite the formulae for "1, "2 and �̃1 such that their

stochastic components are with respect to the P-Brownian motion W as op-

posed to the P̄-Brownian motion W "̄. This has already been done for the

agents’ beliefs in Proposition 4.1.1(a). Thus, we need only find an appropriate

expression for the process �̃1.

It follows by the definition of the belief ("̄, P̄), Theorem A.1.13, and

Propositions 4.1.1(a) and C.1.1 that

�

[(�1 � �2)� �(�1�1 � �2�2)]

�(�1 + �2)

��1

�̃1
t

=

Z t

0

e�C(t�s) dW "̄
s
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=

Z t

0

e�C(t�s)

✓
dWs �

Z t

0

�
"1s + "2s

�
ds

◆

=

Z t

0

e�C(t�s)dWs

� �1

Z t

0

e�C(t�s)

Z s

0

e�1(s�r) dWr ds� �2

Z t

0

e�C(t�s)

Z s

0

e�2(s�r) dWr ds

=

Z t

0

e�C(t�s)dWs

+
�1

(C � 1)

✓Z t

0

e�C(t�s) dWs �
Z t

0

e�1(t�s) dWs

◆

+
�2

(C � 2)

✓Z t

0

e�C(t�s) dWs �
Z t

0

e�2(t�s) dWs

◆
. (4.2.3)

We are now in a position to conclude the proof by calculating U0 in

the same manner as we calculated U "̄. The calculations can be found in the

notebook heterogeneous.

Corollary 4.2.2 shows that when 0 <
p
� < � ⌧ 1, the di↵erence

between the aggregate utility loss under the beliefs (0,P) and ("̄, P̄) is approx-

imately

p
�

�

(
(�1�1� � �2�2� � [�1 � �2])(�1�2 � �1✓ � �2✓)(�1 � �2)

(�1 + �2)
3
2 (✓ � �1)(✓ � �2) |�|

)
. (4.2.4)

In this case, we see that if the mean reversion speed ✓ seen in the dynamics of

the beliefs (4.1.1) is large enough such that

✓ � 1 _ �1 _ �2, (4.2.5)

then (4.2.4) will be decreasing as ✓ grows. In particular, this means that the

aggregate loss under the beliefs (0,P) and ("̄, P̄) will be similar when (4.2.5)

holds. This is no surprise since the covariance function of the beliefs tends to

zero as in ✓ increases.

Despite not having an ideal formula such as (4.2.2), plots of U0 show

that a small positive transaction tax is beneficial for all parameter combina-

tions where the agents have su�ciently heterogeneous beliefs, i.e. for large

enough |�1 � �2|. The notebook heterogeneous contains the function aggre-
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gate utility loss, which creates an interactive plot in order to test such combi-

nations; figures 4.1a and 4.1b are examples of such plots. Importantly, these

plots match the intuition of Section 2.4.1 and the condition (4.2.2).

(a) The aggregate utility loss under the average belief as a function of the hetero-
geneity in beliefs.
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(b) The aggregate utility loss under the average belief as a function of the hetero-
geneity in beliefs.

Figure 4.1: We assume that �1 = ��2 = �0, so that 2�0 measures the hetero-
geneity in beliefs. The plots show the aggregate utility loss under the beliefs
("̄, P̄) and (0,P) against �0.
(a) Here we plot under the parameter combination

✓ = 1.2; � = 0.1; � = �2 = 1; �1 = ��2 = �1 = 0.5.

(b) We plot the same as in part (a) except ✓ = 5. As is suggested by Corollary
4.2.2, the di↵erence between U0 and U "̄ is smaller than in part (a).

We finish this subsection by noting that, for small transaction costs,

the direct utility loss has the same expression under all the relevant beliefs we

have considered so far.
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Lemma 4.2.3. Suppose ⇣1, ⇣2 and "1, "2 are described by (4.0.2) and (4.0.1).

Then

Un,"
d =

p
�

�

(
(�1�1� � �2�2� � �1 + �2)

2

(�1 + �2)
5
2�2 |�|

)
+O(�)

as � # 0, for n = 1, 2 and any belief (",P(")) 2 {(0,P), ("̄, P̄), ("1,P1), ("2,P2)}.

Proof. Let (n,m) 2 {(1, 2), (2, 1)}. It follows from Theorem A.1.13 and Propo-

sitions 3.1.1(a) and C.1.1 that

�

[(�1 � �2)� �(�1�1 � �2�2)]

�(�1 + �2)

��1

�̃1
t

=

Z t

0

e�C(t�s) dW "̄
s

=

Z t

0

e�C(t�s) dW n
s +

1

2

Z t

0

e�C(t�s)("1s � "2s) ds

=

Z t

0

e�C(t�s) dW n
s +

(�1 � �2)

2

Z t

0

e�C(t�s)

Z s

0

e�m(s�r) dW 1
r ds

=

Z t

0

e�C(t�s) dW n
s � 1

2

(�1 � �2)

(C � m)

(Z t

0

e�C(t�s) dW n
s �

Z s

0

e�m(t�s) dW n
s

)

=

✓
1� 1

2

(�1 � �2)

(C � m)

◆Z t

0

e�C(t�s) dW n
s +

1

2

(�1 � �2)

(C � m)

Z s

0

e�m(t�s) dW n
s .

(4.2.6)

Noting that

E
Z 1

0

e��t

✓Z t

0

e�A(t�s) dWs

◆✓Z t

0

e�B(t�s) dWs

◆
dt

�
=

1

(A+B)� + �2
,

it follows from (4.2.3), (4.2.6) and Proposition 4.1.4 that

�EQ
Z 1

0

e��t
⇣
˙̄'�,1
t

⌘2
dt

�

= EQ
Z 1

0

e��t
⇣
�̃1

t

⌘2
dt

�
+O(�)

=

p
�

�

(
(�1�1� � �2�2� � �1 + �2)

2

(�1 + �2)
5
2�2 |�|

)
+O(�) (4.2.7)
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as � # 0 for Q 2 {P, P̄,P1,P2}.

4.2.2 Idiosyncratic perspective

We now check how the agents perceive the transaction tax under their own

idiosyncratic beliefs.

Proposition 4.2.4. Suppose ⇣1, ⇣2 and "1, "2 are described by (4.0.2) and

(4.0.1), respectively.

(a) The portfolio and direct losses are given by

Un,"n

p =

p
�

�

(
(�1�1� � �2�2� � �1 + �2)

2�n

2 (�1 + �2)
5
2 |�|

)
+O(�)

Un,"n

d =

p
�

�

(
(�1�1� � �2�2� � �1 + �2)

2

4 (�1 + �2)
3
2 |�|

)
+O(�)

as � # 0, for n = 1, 2.

(b) When �1 = �2 = 0, the return loss is given by

Un,"n

r

=

p
�

�

(
[�n(�n � �m) + (n + �)(�n � �m) + �nn � �mm](�1 � �2)

2

2(� + 2n)(�1 + �2)
5
2 |�|

)

+O(�)

as � # 0, for (n,m) 2 {(1, 2), (2, 1)}.

(c) When �1 = �2 = 0, the utility loss is given by

Un,"n

=

p
�

�

(
[�(5 �n � �m) + 2(5 �nn � �mm) + 2 �n(�n � �m)](�1 � �2)

2

4 (� + n)(�1 + �2)
5
2 |�|

)

+O(�)

as � # 0, for (n,m) 2 {(1, 2), (2, 1)}.
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Proof. The calculations are explicit in the notebook heterogeneous.

Under the agents’ own beliefs, the portfolio and direct losses of each

agent have succinct forms for small �, as they are multiples of

E
Z 1

0

e��t
⇣
�̃1

t

⌘2
dt

�
.

Since they are positive, the return losses will determine whether or not the tax

is deemed beneficial by an individual agent, similar to the case with homoge-

neous beliefs.

When the transaction tax is small, expressions for the return losses

are not succinct unless one supposes that the agents have purely speculative

trading motives (i.e. �1 = �2 = 0). In this case, Proposition 4.2.4(b) shows

that when the heterogeneity between the agent’s beliefs is small, the return

loss is given by

Un,"n

r ⇡
p
�

�

(
[(n + �)(�n � �m) + �nn � �mm](�1 � �2)2

2(� + 2n)(�1 + �2)
5
2 |�|

)
+O(�),

as � # 0 for (n,m) 2 {(1, 2), (2, 1)}. In particular, this shows that when the

transaction tax is small and �1 ⌧ �2, we have U1,"1
r < 0 and thus agent n = 1

is o↵ered favourable returns. Indeed, by the same argument, one can see from

Proposition 4.2.4(c) that if there is a large enough discrepancy between the

risk aversions, then U1,"1 is negative. Thus, we see similar phenomena to those

seen in the homogeneous beliefs case, despite the endowments being absent.

Although the expressions are complex, we can easily plot U1,"1 and U2,"2

in full generality for a small transaction tax, using the function total loss found

in the notebook heterogeneous. Figures 4.2a and 4.2b give examples of such

plots. Note that Figure 4.2b shows that it is possible for U "̄, U1,"1 and U2,"2 to

all be negative when the transaction tax is small. Although there is seemingly

little economic interpretation for the parameter combination, the planner and

the agents would deem the transaction tax beneficial in this case.
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(a) The idiosyncratic utiliy losses and the aggregate utility loss (under the average
belief) as functions of the heterogeneity in the agents’ beliefs.
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(b) The idiosyncratic utiliy losses and the aggregate utility loss (under the average
belief) as functions of the heterogeneity in the agents’ beliefs.

Figure 4.2: We assume that �1 = ��2 = �0. The plots are examples of the
aggregate utility loss U "̄ and the idiosyncratic utility losses U1,"1 and U2,"2

when � ⌧ 1, as functions of �0, for specific parameter combinations. Note
that if we changed the sign of �, we would get the same plots reflected in the
vertical axis at zero.
(a) Here we plot under the parameter combination

✓ = 1.2; � = 0.1; � = �2 = 1; �1 = ��2 = �1 = 0.5.

(b) We plot the same as in part (a) except �1 = 0.03 and �2 = 0.6. The plot
shows that U "̄, U1,"1 and U2,"2 are all negative when 0.6 . �0 . 0.8 .

4.3 Optimal transaction tax

Proposition 4.1.4 shows that when agents have heterogeneous beliefs, their op-

timal strategies behave analogously to their counterparts in the homogeneous

case. Notably, the strategies’ behaviour is understandable. Thus, keeping the
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transaction tax small from a planner’s perspective makes sense to avoid in-

troducing odd behaviour. Moreover, if the transaction tax is small and the

planner takes the average belief of the agents, then (4.2.2) gives a coherent

condition as to when it is beneficial.

This begs the question of whether a transaction tax exists which is small

enough to keep the agent’s behaviour sensible but not so small that we forgo

additional benefits to the agents. Since we have considered the e↵ects of the

transaction tax at the order of �
1
2 , we will say that these e↵ects diminish once

the e↵ects of order � dominate. To investigate when this happens, we begin

by assuming that �1 = �2 = 0, since in this case, the transaction tax is always

beneficial for small enough �. To proceed, we generalise Theorem 4.2.1 to

include higher order terms in � in our expansion of U "̄.

Corollary 4.3.1. Suppose ⇣1 = ⇣2 = 0 and "1, "2 are described by (4.0.1).

Then the aggregate utility loss under the belief ("̄, P̄) is given by

U "̄ = Ū +O
⇣
�

3
2

⌘

as � # 0, where

Ū = �
p
�

�

(
(�1 � �2)2

(�1 + �2)
3
2 |�|

)
+

�

�

(
(3 � + 2(1 + 2))(�1 � �2)

2

(�1 + �2)
2�2

)
.

Proof. In the proof of Proposition 4.1.4 we get a general expression for '�,1

before approximating for small �. We can thus include higher order terms (in

�) into our calculations. Thus, the proof is analogous to the proof of Theorem

4.2.1. The calculations are explicit in the notebook optimal tax.

Using Corollary 4.3.1, we can see clearly that the second order e↵ects

(i.e. of order �) begin to dominate after the minimum of Ū . This takes place

when the transaction tax is equal to

�⇤ :=
(�1 + �2)�2

4 (3 � + 2 �1 + 2 �2 + 4 ✓)2
,

62



resulting in the minimum

�1

�

(
(�1 � �2)

2

4 (3 � + 2 �1 + 2 �2 + 4 ✓)(�1 + �2)

)
.

Despite only being optimal in a loose sense, �⇤ behaves as expected

with respect to the other parameters. For instance,

�⇤ / (�1 + �2). (4.3.1)

This is explained by looking at the goal functional (2.1.7), from which we see

that without the endowment stream present, the risk aversion parameters be-

come holding cost penalties. Indeed, this is the model and rationale taken in

[57]. Thus, agent n has a more significant motive to o✏oad the risky asset the

larger the parameter �n. Since we assume that agents have heterogeneous be-

liefs, this trading is detrimental from the planner’s perspective, whence (4.3.1)

is to be expected. Furthermore, one can see that

�⇤ / 1

✓
.

This encapsulates that as ✓ increases, the processes "1 and "2 converge to

zero, eliminating the heterogeneity in beliefs and making the transaction tax

unnecessary.

One can also compute a similar result to Corollary 4.3.1 where �1 and

�2 are not necessarily zero. In this case, we do not get a pleasant expression

for Ū , but we can easily make plots, such as Figures 4.3a and 4.3b. Such

plots suggest that Ū has local a minimum with respect to � when condition

(4.2.2) is satisfied. This warrants an e↵ort to search for a more general result

that characterises optimal taxation where we do not specify ⇣1, ⇣2 and "1, "2.

However, one may have to include a näıve rebate in order to do so, as we will

not necessarily get the practical dynamics for ˙̄'�,1
t seen in Proposition 4.1.4,

which gave us a valuable form for the direct utility losses and allowed us to

calculate U "̄ so quickly.
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(a) Ū plotted as a function of � in a scenario where agents have speculative beliefs
and �1 = �2 = 0.
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(b) Ū plotted as a function of � in a scenario where the agents’ hedging needs are
dominant.

Figure 4.3: Both figures plot Ū as a function of �, and are computed using
the function optimal in the notebook optimal tax.
(a) Here we plot under the parameter combination

✓ = 1.5; � = 0.1; �2 = �1 = 0.5; �1 = ��2 = 0.25; � = �1 = ��2 = 1.

Note that heterogeneity in beliefs dominate the hedging needs of the agents
according to condition (4.2.2) and thus a tax exists that minimises Ū .
(b) Here we plot under the parameter combination

✓ = 1.5; � = 0.1; �2 = �1 = 0.5; �1 = ��2 = 0.25; � = �1 = ��2 = 1.

Unlike part (a), the hedging needs of the agents dominate the heterogeneity
in their beliefs, whence a transaction tax is detrimental.
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Chapter 5

Vague Convergence

In this chapter, we depart from the economic model introduced in Chapter 2

and consider abstract theory about the convergence of real-valued measures.

We describe the relationship between this content and the economic model in

Chapter 6.

The so-called weak topology on the space of measures is used frequently

in the many sub-fields of analysis and probability theory [30, 11, 15], but

there are times when one needs a strictly di↵erent topology, such as the vague

topology. Indeed, it is a subtle point that vague convergence is at the heart of

König’s approach to the proof of Karamata’s Tauberian theorem (see e.g. Feller

[32, XIII.5, Theorem 1]), a seminal result in probability theory. The proof relies

on the equivalence between the vague convergence of finite positive measures

and the pointwise convergence of their distribution functions (at continuity

points of the limiting measure). As it turns out, the exact relationship be-

tween vague convergence and the convergence of their distribution functions is

seemingly absent from the literature when the measures in question are real-

valued. We fill this gap in our preprint [41], and include the arguments in this

chapter.

We aim to make the content self-contained, so we will briefly introduce

the theory of real-valued Radon measures and showcase why they are a vital

element of modern analysis. We will then concentrate on notions of conver-

gence of Radon measures, highlighting the equivalences and non-equivalences

between vague and weak convergence. Finally, we will pinpoint the relation-

ship between the vague convergence of Radon measures and their distribution
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functions, allowing us to derive a Tauberian condition for the real-valued ver-

sion of Karamata’s theorem in Chapter 6.

5.1 Convergence of measures

For any topological space (⌦, ⌧), we denote the Borel �-algebra generated by

the open sets of ⌧ by B(⌦, ⌧). When understood, we will omit ⌧ from the

notation.

For a signed measure µ on (⌦,B(⌦)), we denote its Hahn-Jordan de-

composition by µ = µ+ � µ�, and its associated variation measure by |µ| :=
µ++µ�. The total variation of a signed measure µ is denoted by kµk := |µ| (⌦),
and we say that µ is finite if kµk < 1.

For a topological space ⌦, we let C(⌦) be the space of all continuous

R-valued functions on ⌦, Cb(⌦) the subspace of all f 2 C(⌦) such that f is

bounded, C0(⌦) the subspace of all f 2 C(⌦) such that for any " > 0, there

exists a compact set K" 2 B(⌦) with |f | < " on Kc
" , and Cc(⌦) the subspace

of all f 2 C(⌦) such that f has compact support. We have the inclusions

Cc(⌦) ✓ C0(⌦) ✓ Cb(⌦) ✓ C(⌦), and they are all equal to each other when

the underlying space is compact.

5.1.1 Real-valued measures

The theory of Radon measures has its roots in the early 20th century via the

works of Johann Radon, John von Neumann, and Stefan Banach. Radon was

a Czech mathematician who introduced the concept of Radon measures in

his 1913 paper [51], which set the foundation for this theory. Neumann and

Banach significantly contributed to the theory, especially in the fields of func-

tional analysis and measure theory, which paved the way for the development

of modern integration theory, including the approach put forward by Bourbaki

in the volume Intégration [18].

Definition 5.1.1. Let ⌦ be a topological Hausdor↵ space and let µ be a

measure on (⌦,B(⌦)).
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(i) We say that µ is inner regular at B 2 B(⌦) if

µ(B) = sup{µ(F ) : F ✓ B, F closed }.

Moreover, we say that µ is inner regular if it is inner regular at all B 2
B(⌦).

(ii) We say that µ is tight at B 2 B(⌦) if

µ(B) = sup{µ(K) : K ✓ B, K compact }.

Moreover, we say that µ is tight if it is tight at all B 2 B(⌦).

(iii) We say that µ is outer regular at B 2 B(⌦) if

µ(B) = inf{µ(G) : G ◆ B, G open }.

Moreover, we say that µ is outer regular if it is outer regular at all

B 2 B(⌦).

(iv) We say that µ is regular if it is inner and outer regular.

(v) We say that µ is a Borel measure if it is locally finite.

(vi) We say that µ is a Radon1 measure if it is a tight Borel measure.

Some authors say that a measure is inner regular when they mean tight,

despite there being a distinction between the two notions; see [14, Example

7.1.6]. Fortunately, this distinction does not matter when the underlying space

is Polish. Thus, as is standard knowledge, all probability measures on R are

both Radon and regular.

Theorem 5.1.2. Let ⌦ be a metric space. Then every Borel measure µ on ⌦

is regular. If ⌦ is complete and separable, then the measure µ is Radon.

Proof. See [14, Theorem 7.1.7].

Although one usually thinks of measures as being positive, in the sequel

we will be dealing with real-valued Radon measures.

1A Radon measure is sometimes referred to as a tight measure.
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Definition 5.1.3. Let (⌦, ⌧) be a a topological Hausdor↵ space. A set function

µ : B(⌦) ! R [ {1} is called a real-valued Radon measure if there exist

mutually singular Radon measures µ+ and µ� such that for any A 2 B(⌦),

µ(A) :=

8
<

:
µ+(A)� µ�(A) if both µ+(A), µ�(A) < 1,

+1 otherwise.

We set |µ| := µ+ + µ� and kµk := |µ|(⌦). We say that µ is a finite real-

valued Radon measureif kµk < 1. We denote the space of real-valued Radon

measures on (⌦,B(⌦)) by M⇤(⌦), the set of all finite real-valued Radon mea-

sures on (⌦,B(⌦)) by M(⌦), the set of all finite positive Radon measures by

M+(⌦) and the set of all probability measures on (⌦,B(⌦)) by M+
1 (⌦), so

M⇤ � M � M+ � M+
1 .

Remark 5.1.4. (a) For a measurable space (⌦,F), one defines a signed mea-

sure as a �-additive set function µ : F ! [�1,1] that maps the empty-set to

zero. In which case µ can only ever attain one of the values in {�1,1}. Ac-
cording to this definition, signed measures can exist such that |µ| is Radon, and
µ is not a real-valued measure. However, we may be satisfied that µ will equal

a unique real-valued measure on compact sets, so we do not incur much trou-

ble. Indeed, authors such as Berg [9, Chapter 2.2] merely define signed Radon

measures as the di↵erence between Radon measures, which largely agrees with

Definition 5.1.3

(b) It is important to note that elements of M(⌦) are signed measures

in the traditional sense.

We momentarily restrict ourselves the case where ⌦ is a locally compact

Hausdor↵ (LCH) space and make two additional definitions in order for us to

state the famous Riesz Representation Theorem.

Definition 5.1.5. Let ⌦ be an LCH space.

(i) For a compact subset K ⇢ ⌦, we let C(K)(⌦) be the space of all contin-

uous functions whose support is contained in K.

(ii) We say that a linear form F on Cc(⌦) is locally-continuous if for any com-

pact set K ⇢ ⌦, the restriction F |C(K)(⌦) is continuous. We denote the

space of all locally-continuous linear mappings on Cc(⌦) by (Cc(⌦))0loc.
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Remark 5.1.6. Let ⌦ be a LCH space.

(i) For any compact set K ⇢ ⌦, C(K)(⌦) is a Banach space with respect to

the supremum norm and

Cc(⌦) =
[

K⇢⌦:K compact

C(K)(⌦).

(ii) The elements of (Cc(⌦))0loc are sometimes called relatively bounded linear

forms [18, Chapter III, §1.5].

(iii) The continuous dual space (Cc(⌦))0 is clearly a subset of (Cc(⌦))0loc. They

are equal when the underlying space ⌦ is compact.

Definition 5.1.7. Let µ 2 M⇤(⌦). For any subset V ⇢ C(⌦) we let

Vµ :=

⇢
f 2 V :

Z

⌦

|f | d |µ| < 1
�
.

We then define the mapping Iµ : Vµ ! R by

Iµ(f) :=

Z

⌦

f dµ.

When understood, we will not mention the domain of Iµ.

Theorem 5.1.8 (Riesz-Markov-Kakutani Representation Theorem). Let ⌦ be

a LCH space.

(a) The mapping µ 7! Iµ, where Iµ : C0(⌦) ! R, defines an isometric iso-

morphism from M(⌦) to (C0(⌦))⇤.

(b) The mapping µ 7! Iµ, where Iµ : Cc(⌦) ! R, defines an isomorphism

from M⇤(⌦) to (Cc(⌦))⇤loc.

Proof. For (a) see [33, Theorem 7.17] and for (b) see [9, Chapter 2, Theorem

2.5].

Remark 5.1.9. The stated iteration of the Riesz representation theorem is

actually a corollary to a more general intergal representation theorem due

to Pollard and Toposøe [60]. Although not included here, the more general

theorem also implies the abstract extension theorem of Daniell as a corollary.
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The Riesz representation theorem gives the study of measures an excel-

lent topological framework which led several authors [33, 18, 71] to restrict the

definition of Radon measures to LCH spaces. For example, this approach is

taken by Bourbaki, who defines Radon measures explicitly as the continuous

linear functionals on the space Cc(⌦) [18, Chapter 3, Definition 1]. Unfortu-

nately, a restriction to LCH spaces is not satisfactory in probability theory,

partly because no infinite-dimensional topological vector space can be locally

compact [62, Theorem 1.22]. Instead, one usually considers the class of Polish

spaces, which provide ‘the simplest and more interesting’ case when studying

the convergence of random processes (Prokhorov [61, Introduction]). In this

case, one can utilize the theory of Radon measures on arbitrary Hausdor↵

spaces as developed by Schwarz [65] and Toposøe [71].

5.1.2 Weak and vague convergence

To allow for a unified discourse, unless otherwise stated, we will assume that

⌦ is a metrisable space. We now come to the key definition of this chapter.

Definition 5.1.10.

(a) Let µ1, µ2, . . . , µ 2 M⇤(⌦). We say that µn converges vaguely to µ if

Iµn(f) ! Iµ(f) for all f 2 Cc(⌦), and we write

v-lim
n!1

µn = µ.

(b) Let µ1, µ2, . . . , µ 2 M(⌦). We say that µn converges weakly2 if Iµn(f) !
Iµ(f) for all f 2 Cb(⌦), and we write

w-lim
n!1

µn = µ.

We also note the following straightforward result that sheds light on

the relationship between parts (a) and (b) in Theorem 5.1.8. It follows di-

rectly from the Stone-Weierstraß Theorem (Theorem E.1.4) and the triangle

inequality.

2Weak convergence is sometimes referred to as narrow convergence; see [14, Section 8.1].
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Proposition 5.1.11. Let ⌦ be locally compact and {µn} [ {µ} ⇢ M(⌦) with

supn2N kµnk < 1. Then

Iµn(f) ! Iµ(f) for all f 2 C0(⌦) (5.1.1)

if and only if

Iµn(f) ! Iµ(f) for all f 2 Cc(⌦).

Given that one can find a variety of definitions for vague convergence

in the extant literature, some remarks on our definition are in order.

Remark 5.1.12. (a) Our definition of vague convergence is the most common

one found in the literature; see e.g. Berg et al [9, Chapter 2], Dieudonné and

Macdonald [27, Section XIII.4], Kallenberg [45, Chapter 5] or Klenke [48,

Section 13.2].

(b) In a setting where ⌦ is locally compact and motivated by Theorem

5.1.8, vague convergence is defined for test functions in C0(⌦) (rather than in

Cc(⌦)) by Folland [33, Section 7.3]. However, in light of Proposition 5.1.11,

this stronger definition coincides with our definition if the sequence of measures

is uniformly bounded.

(c) When ⌦ is a Polish space (i.e., complete and separable), the vague

topology on M+(⌦) (which characterises vague convergence) has alternatively

been defined to be generated by the family of mappings µ 7! Iµ(f) where f are

nonnegative continuous functions with metric bounded support. This is the

approach taken by Kallenberg [44, Section 4.1] and Daley and Vere-Jones [24,

Section A2.6]. Basrak and Planinić [8] show that this definition coincides with

our definition using the theory of boundedness due to Hue [43]. Moreover, [8]

show explicitly that these vague topologies make M+(⌦) a Polish space in its

own right. In particular, this latter fact convinces us that our definition is the

most natural one.

(d) There is often some confusion about how weak and vague conver-

gence of measures (as defined in Definition 5.1.10) relate to the topological

notions of weak and weak⇤ convergence. We give a complete comparison in

Appendix E.1, which further bolsters our definition of vague convergence.
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5.1.3 Relationship between vague and weak convergence

We first revisit the direct relationship between weak and vague convergence

for signed measures. As a warm-up, we recall that vague convergence allows

for a loss of mass in the limit, while weak convergence does not.

Example 5.1.13. Let µ be the zero measure and {µn} ⇢ M(R) be such that

µn := �n � ��n, where for x 2 R, �x denotes the Dirac measure at x. Then

v-limn!1µn = µ since for any f 2 Cc(R),

lim
n!1

Iµn(f) = lim
n!1

(f(n)� f(�n)) = 0 = Iµ(f).

Moreover, it holds that limn!1 µn(R) = µ(R), i.e. the signed mass is pre-

served.

Now take f 2 Cb(R) such that

f(x) =

8
<

:
x for x 2 (�1, 1),

sign(x) otherwise,

Thus, we do not have w-limn!1 = µ since

2 = lim
n!1

Iµn(f) 6= lim
n!1

Iµ(f) = 0.

Intuitively, what goes wrong in Example 5.1.13 is that mass is “sent to

infinity”. The precise condition that avoids this is tightness.

Definition 5.1.14. A sequence {µn} ⇢ M(⌦) is called tight if for any " > 0

there exists a compact set K" ⇢ ⌦ such that

sup
n2N

|µn| (Kc
")  ". (5.1.2)

Remark 5.1.15. Since each µ 2 M(⌦) is tight by definition, we can replace

(5.1.2) by

lim sup
n!1

|µn| (Kc
")  ". (5.1.3)

Tightness is exactly the condition that lifts vague to weak convergence

for positive measures. This remains true for signed measures. The proof of
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the next result follows from Prokhorov’s theorem for signed measures.3

Theorem 5.1.16 (Prokhorov’s Theorem). Let ⌦ be a metrisable space and

M ⇢ M(⌦) nonempty.

(a) If M is uniformly bounded and tight, then M is weakly relatively sequen-

tially compact.

(b) If the space ⌦ is Polish and M is weakly relatively sequentially compact,

then M is uniformly bounded and tight.

Proof. (a) Take any {µn} ⇢ M. Since M is a uniformly bounded and tight

sequence, both {µ+
n } and {µ�

n } are uniformly bounded and tight. By [48,

Theorem 13.29], it follows that there exists a subsequence {nk} such that

w-limk!1 µ+
nk

= ⌫, for some positive measure ⌫ 2 M(⌦). Similarly, there

exists a subsequence {nkl} ⇢ {nk} such that w-liml!1 µ�
nkl

= ⌘, for some

positive measureM(⌦). Thus it follows that w-liml!1 µnkl
= (⌫�⌘) 2 M(⌦).

(b) See [14, Theorem 8.6.2].

Proposition 5.1.17. Let {µn} [ {µ} ⇢ M(⌦).

(a) If v-limn!1 µn = µ and {µn} is tight, then w- limn!1 µn = µ.

(b) If w- limn!1 µn = µ, then v-limn!1 µn = µ. If in addition ⌦ is Polish

(i.e., complete and separable), then {µn} is tight.

Proof. (a) The statement follows from Theorem 5.1.16(a) as soon as we show

that {µn} is uniformly bounded. Since we can isometrically embed M(⌦) into

the norm dual of Cb(⌦) via the mapping Iµ, the Banach-Steinhaus theorem

lets us assert that {µn} is bounded if and only if

sup
n2N

|Iµn(f)| < 1 for every f 2 Cb(⌦). (5.1.4)

To show (5.1.4) we fix an f 2 Cb(⌦) and take any " > 0. Let K" ⇢ ⌦

be compact set such that (5.1.3) holds and find any g 2 Cc(⌦) such that g ⌘ f

on K. Then, by hypothesis and (5.1.3)

lim sup
n!1

|Iµn(f)|  lim sup
n!1

|Iµn(f � g)|+ |Iµ(g)|

3A direct proof of Proposition 5.1.17(a) follows also from a generalisation of [45, Lemma
5.20].
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 kf � gk1 sup
n2N

|µn| (Kc
") + |Iµ(g)|

 kf � gk1 "+ |Iµ(g)| < 1.

The claim (5.1.4) is now clear.

(b) This is a direct consequence of Theorem 5.1.16(b).

If ⌦ is locally compact, the heuristic that vague convergence ignores

mass “being sent to infinity” leads us to note that vague convergence in M(⌦)

(without loss of signed mass) can be viewed as weak convergence in M(⌦1),

where ⌦1 denotes the one-point compactification of ⌦; see Definition E.1.2.

To this end, note that a measure µ 2 M(⌦) can be canonically extended

to a measure µ1 2 M(⌦1) by setting µ1(A) := µ(A) for A 2 B(⌦) and

|µ1| ({1}) := 0. We then have the following result, which follows directly

from Proposition 5.1.11 and Theorem E.1.3.

Proposition 5.1.18. Let ⌦ be locally compact and {µn} [ {µ} ⇢ M(⌦) with

supn2N kµnk < 1. Denote by µ1
n and µ1 the canonical extension of µn and

µ, respectively. Then v- limn!1 µn = µ and µn(⌦) ! µ(⌦) if and only if

w- limn!1 µ1
n = µ1.

Remark 5.1.19. For signed measures, weak convergence inM(⌦1) is strictly

weaker than weak convergence in M(⌦). Indeed, Example 5.1.13 gives an ex-

ample of {µn}[{µ} ⇢ M(⌦) with supn2N kµnk < 1 such that v-limn!1 µn =

µ and µn(⌦) ! µ(⌦) (and hence w- limn!1 µ1
n = µ1), but w-limn!1 µn 6= µ.

We next investigate under which conditions vague convergence implies

the convergence of the positive and negative parts in the Hahn–Jordan de-

composition. In order to do so, we need a Portmanteau theorem and related

results.

Theorem 5.1.20 (Vague Portmanteau Theorem for positive measures). Let

⌦ be a locally compact metrisable space and {µn} [ {µ} 2 M+(⌦). Then the

following are equivalent:

(a) v-limn!1 µn = µ.
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(b) For any compact set K ⇢ ⌦,

lim sup
n!1

µn(K)  µ(K)

and for any open set ⇥ ⇢ ⌦,

lim inf
n!1

µn(⇥) � µ(⇥).

(c) For any set A ⇢ ⌦ such that A ⇢ K for some compact set K and µ(@A) =

0,

lim
n!1

µn(A) = µ(A).

Proof. See [64, Theorem 21.15]

One part of the direction “(a)) (b)” in the vague Portmanteau theorem

extends to signed measures. This result is often attributed to Varadarajan in

[73], although the cited paper only contains a proof for positive measures. A

proof for the general case will need a consequence of Urysohn’s lemma.

Lemma 5.1.21. Let ⌦ be a normal space and suppose that ⇥ ⇢ ⌦ is open and

µ 2 M(⌦). If |µ|(⇥) > ", then there exists f 2 C(⌦) such that |f |  1, f ⌘ 0

on ⇥c and Z

⇥

f dµ > ". (5.1.5)

Proof. Let P [N be the Hahn-Jordan decomposition of ⌦ with respect to µ,

and define

V + := P \⇥, V � := N \⇥

Moreover, define

� :=
1

3
(|µ|(⇥)� ") > 0

Since µ is tight, we choose compact sets K± ⇢ V ±such that |µ| (V ±\K±) < �
2 .

Furthermore, noting that ⌦ is normal, we choose disjoint open neighbourhoods

⇥+and⇥�ofK+andK�, respectively, which are contained in⇥. Using Lemma

E.1.1, we thus find f+, f� 2 C(⌦) such that |f±|  1 and

f±(x) =

8
<

:
1 for x 2 K±,

0 on x 2 (⇥±)c .
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We now define f 2 C(⌦) such that f := f+ � f�. By construction, we have

supp
�
f+
�
\ supp

�
f�� ⇢ ⇥+ \⇥� = ;,

whence |f |  1. Furthermore,

Z

⇥

f dµ =

Z

K+

f dµ+

Z

K�
f dµ+

Z

⇥\(K+[K�)

f dµ

=

Z

K+

f+dµ�
Z

K�
f�dµ+

Z

⇥\(K+[K�)

f dµ

� µ+
�
K+
�
+ µ� �K��� 2|µ|

�
⇥\
�
K+ [K���

= |µ|
�
K+
�
+ |µ|

�
K��� 2

�
|µ|(⇥)� |µ|

�
K+ [K���

= 3
�
|µ|
�
K+
�
+ |µ|

�
K���� 2|µ|(⇥)

> 3
�
|µ|
�
V +
�
+ |µ|

�
V ���� 2|µ|(⇥)� 3�

= ".

Corollary 5.1.22. Let ⌦ be a locally compact normal space, ⇥ ⇢ ⌦ be open,

and µ 2 M(⌦). Then for any " > 0, there exists f 2 Cc(⌦) such that

|f |  1, f ⌘ 0 on ⇥c and

Z

⇥

f dµ > |µ|(⇥)� "

Proof. We will only consider the case where |µ|(⇥) > ". Since µ is tight there

exists compact set K" ⇢ ⇥ such that |µ| (⇥\K")  1
2". Moreover, since ⌦ is

a locally compact Hausdor↵ space, by [1, Corollary 2.69] there exists an open

set E with compact closure Ē such that

K" ⇢ E ⇢ Ē ⇢ ⇥

Noting that |µ|(⇥\E)  |µ| (⇥\K"), it follows that

|µ|(E)� 1

2
" � |µ|(⇥)� " > 0

Thus, by Lemma 5.1.21 , there exists f 2 C(⌦) and |f |  1, f ⌘ 0 on Ec such
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that Z

⇥

f dµ =

Z

E

f dµ > |µ|(E)� 1

2
" � |µ|(⇥)� "

Since supp(f) ⇢ Ē it follows that f 2 Cc(⌦).

We can now state a version of “(a) ) (b)” in Theorem 5.1.20 for signed

measures.

Theorem 5.1.23. Let ⌦ be a locally compact normal Hausdor↵ space. Let

{µn} [ {µ} ⇢ M(⌦) and assume that v-limn!1 µn = µ. Then for any open

set ⇥ ⇢ ⌦,
|µ| (⇥)  lim inf

n!1
|µn| (⇥). (5.1.6)

In particular, kµk  lim infn!1 kµnk.

Proof. Let ⇥ ⇢ ⌦ be open and " > 0. Since µ is tight and ⌦ is normal and

locally compact, Corollary 5.1.22 tells us that there exists f 2 Cc(⌦) such that

|f |  1, supp(f) ⇢ ⇥ and

Z
f dµ � |µ| (⇥)� ".

Then by vague convergence of {µn},

|µ| (⇥)� " 
Z

f dµ = lim
n!1

Z
f dµn  lim inf

n!1

Z
|f | d |µn|  lim inf

n!1
|µn| (⇥)

Now the result follows by letting " # 0.

We are now in a position to show that the necessary and su�cient

extra condition for the convergence of the separate parts of the Hahn-Jordan

decomposition is that no mass is lost on compact sets.

Proposition 5.1.24. Let ⌦ be locally compact and {µn}[{µ} ⇢ M(⌦). Then

v-limn!1 µ±
n = µ± if and only if v-limn!1 µn = µ and

lim sup
n!1

|µn| (K)  |µ| (K). (5.1.7)

for every compact set K ⇢ ⌦.
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Proof. First, suppose that v-limn!1 µ±
n = µ±. Then clearly v-limn!1 µn =

µ, and (5.1.7) is satisfied due to the Portmanteau Theorem in the form of

Theorem 5.1.20(b).

Conversely, suppose that v-limn!1 µn = µ and (5.1.7) is satisfied. By

Theorem 5.1.23, for every open set ⇥ ⇢ ⌦,

lim inf
n!1

|µn| (⇥) � |µ| (⇥).

Thus, Theorem 5.1.20(b) gives v-limn!1 |µn| = |µ|. Now v-limn!1 µn
± = µ±

follows by noting that

µ+
n =

1

2
(|µn|+ µn) and µ�

n =
1

2
(|µn|� µn).

Note that Condition (5.1.7) does not restrict “total mass being lost at

infinity”. By imposing an additional restriction to mitigate this possibility, we

can strengthen Proposition 5.1.24 to deduce that w-limn!1 µn
± = µn

±.

Proposition 5.1.25. Let ⌦ be locally compact and {µn}[{µ} ⇢ M(⌦). Then

w-limn!1 µ±
n = µ± if and only if v-limn!1 µn = µ and

lim sup
n!1

kµnk  kµk . (5.1.8)

Proof. First, suppose that w-limn!1 µ±
n = µ±. Then w-limn!1 µn = µ and

w-limn!1 |µn| = |µ|. This implies in particular that v-limn!1 µn = µ and

lim
n!1

kµnk = lim
n!1

Z

⌦

d|µn| =
Z

⌦

d|µ| = kµk . (5.1.9)

Conversely, suppose that v-limn!1 µn = µ and (5.1.8) is satisfied. By

Propositions 5.1.24 and 5.1.17, it su�ces to show that (5.1.7) is satisfied and

the sequence {µn} is tight.

First, we establish (5.1.7). Seeking a contradiction, suppose there exists

a compact set K ⇢ ⌦ such that

lim sup
n!1

|µn| (K) > |µ| (K). (5.1.10)
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Since Kc is open, it follows from Theorem 5.1.23 that

lim inf
n!1

|µn| (Kc) � |µ| (Kc). (5.1.11)

Adding (5.1.10) and (5.1.11), it follows that

lim sup
n!1

kµnk = lim sup
n!1

|µn| (⌦) � lim sup
n!1

|µn| (K) + lim inf
n!1

|µn| (Kc) > |µ| (⌦) = kµk ,

and we arrive at a contradiction to (5.1.8).

Next, we show that the sequence {µn} is tight. Let " > 0. By tightness

of µ, there exists a compact set K ⇢ ⌦ such that |µ| (Kc)  ". By local

compactness of ⌦, there exists an open set L � K such that its closure L =: K"

is compact. Using (5.1.8) and Theorem 5.1.23, we obtain

lim sup
n!1

|µn| (Kc
") = lim sup

n!1
(kµnk � |µn| (K"))

 lim sup
n!1

(kµnk � |µn| (L))

 kµk � lim inf
n!1

|µn| (L)  kµk � |µ| (L)

 kµk � |µ| (K) = µ(Kc)  ".

Table 5.1: ⌦ is a (Polish?, locally compact??) metrisable space and {µn}[{µ} ⇢
M(⌦).

Condition(s) A Condition(s) B

v-limn!1 µn = µ,
and 8" > 0, 9 compact set K"

such that lim supn!1 |µn| (Kc
")  "

)
?( w-limn!1 µn = µ

v-limn!1 µn = µ,
and 8 compact K ⇢ ⌦

lim supn!1 |µn| (K)  |µ| (K)

??, v-limn!1 µn
± = µ±

v-limn!1 µn = µ,
and lim supn!1 kµnk  kµk

??, w-limn!1 µn
± = µ±

To summarise, starting from vague convergence v-limn!1 µn = µ, Propo-

sition 5.1.17 tells us that we get w-limn!1 µn = µ if mass is not “lost at infin-

ity”. Proposition 5.1.24 asserts that if mass is not “lost on compact sets”, then

we get v-limn!1 µ±
n = µ±. Finally, Proposition 5.1.25 tells us that if mass is
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not “lost globally”, then we even get w-limn!1 µ±
n = µ±. These results are

summarised in Table 5.1.

5.2 Distribution functions of real-valued mea-

sures

In this section, we study the particular case that ⌦ = R (with the usual order

topology) and link vague convergence on R to the pointwise convergence of

their distribution functions (at continuity points of the limiting measure). To

this end, we first need to introduce other pieces of notation.

5.2.1 Functions of bounded variation

First we recall the definition of a function of bounded variation.

Definition 5.2.1. Let I ⇢ R be an interval and let ⇧I be the set of all

partitions

⇡ = {x⇡
0 < x⇡

1 < · · · < x⇡
n} ⇢ I.

The total variation of a function F : I ! R is defined by

VarF := sup
⇡2⇧I

(
nX

i=1

��u(x⇡
i )� u(x⇡

i�1)
��
)

The function F is said to have finite variation if VarF < 1 and the space of

all functions of bounded variation on I is denoted by BV(I). We denote by

BVloc(I) the space of all functions F : I ! R such that F |[a,b] 2 BV([a, b]) for

any [a, b] ⇢ I.

For F 2 BV(I) and x 2 I, denote the total variation of F on (�1, x]\I
by VF (x) and set F "(x) := 1

2(VF (x) + F (x)) and F #(x) := 1
2(VF (x)� F (x)).

Note that VF , F ", F # : R ! [0,1] are nondecreasing functions.

Definition 5.2.2. For any ↵ 2 R and µ 2 M⇤(R), the distribution function
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of µ, centred at ↵, is the function F (↵)
µ 2 BVloc(R) defined by

F (↵)
µ (x) :=

8
>>><

>>>:

µ((↵, x]) if x > ↵,

0 if x = ↵,

�µ((x,↵]) if x < ↵.

Note that F (↵)
µ is right-continuous, and for any a  b with a, b 2 R,

F (↵)
µ (b)� F (↵)

µ (a) = µ((a, b]). (5.2.1)

The relationship (5.2.1) between distribution functions and real-valued

measures is bijective, which follows from the following result; for a proof see

[52, Theorem 5.13].

Theorem 5.2.3. Let F 2 BVloc(R) be right-continuous. Then there exists a

unique µF 2 M⇤(R) such that

µF ((a, b]) = F (b)� F (a)

for all a  b with a, b 2 R. Moreover, |µF | = µVF .

Until the next chapter, we will only focus on functions of strictly fi-

nite variation. In which case, let [�1,1] be the (a�ne) extended real line

(with the order topology). Any µ 2 M(R) can canonically be extended to

M([�1,1]) by setting |µ| ({±1}) := 0. Similarly, for ↵ 2 R, F (↵)
µ can

canonically be extended to [�1,1] by setting F (↵)
µ (±1) := limx!±1 F (↵)

µ (x).

Finally, we can define F (�1), F (+1) 2 BV(R) by

F (�1)
µ (x) := µ((�1, x]) and F (+1)

µ (x) := �µ((x,1)), x 2 R,

respectively, which again can canonically be extended to [�1,1]. Note that

F (�1)
µ is usually called the distribution function of µ and denoted by Fµ.

Last but not least, we say that x 2 R is a continuity point of µ 2 M(R)
if µ({x}) = 0.
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5.2.2 Relationship between the convergence of distribu-

tion functions and vague convergence

We start our discussion on the relationship between the convergence of distri-

bution functions and vague convergence by recalling the key result for positive

measures. This type of result is essentially known – at least under stronger

conditions, see e.g. [33, Proposition 7.19]. It will follow as a corollary of our

main result, Theorem 5.2.11 below.

Theorem 5.2.4. Let {µn} [ {µ} ⇢ M+(R) and ↵ 2 R be a continuity point

of µ. Then the following are equivalent:

(a) F (↵)
µn ! F (↵)

µ at the continuity points of µ.

(b) v-limn!1 µn = µ.

Moreover, if ↵ = �1 or ↵ = +1, the equivalence remains true if we require

in addition that limK#�1 [lim supn!1 µn((�1, K])] = 0 when ↵ = �1, or

limK"1 [lim supn!1 µn((K,1))] = 0 when ↵ = +1.

Remark 5.2.5. (a) The assumption that ↵ is a continuity point of µ in

Theorem 5.2.4 is necessary. Indeed, let µn := �1/n and µ := �0. Then

v-limn!1 µn = µ but

F (0)
µn

(x) = 0 6! �1 = F (0)
µ (x), x < 0.

(b) As a sanity check, one notes that if {µn} [ {µ} ⇢ M+
1 (R) are

probability measures, whence lim supn!1 kµnk = kµk = 1, then Theorem 5.2.4

together with Proposition 5.1.25 shows that w-limn!1 µn = µ if and only

if F (�1)
µn ! F (�1)

µ at all continuity points of µ. This is often shown as a

consequence of Portmanteau’s theorem for weak convergence.

Both implications “(a) ) (b)” and “(b) ) (a)” in Theorem 5.2.4 are

false for signed measures. The first counterexample shows that F (↵)
µn ! F (↵)

µ

at the continuity points of µ does not imply that v-limn!1 µn = µ. It relies

on {F (↵)
µn } being unbounded on a compact set.

Example 5.2.6. Let Fn : R ! R be supported on [0, 2/n] and linear between

the points {0, 1/n, 2/n} such that F (0) := 0 =: F (2/n) and F (1/n) := 2n;
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see Figure 5.1 for a clear visualisation. For n 2 N, let µn := µFn according to

Theorem 5.2.3 and denote by µ the zero measure. Then for any x 2 R, we
have F (0)

µn (x) = F (0)
n (x) ! F (0)

µ (x).

Now take f 2 Cc(R) such that

f(x) :=

8
>>><

>>>:

(1 + x) for x 2 [�1, 0),

(1� x) for x 2 [0, 1],

0 for x 2 [�1, 1]c.

Then for n � 2.

Iµn(f) = 2n
(Z 1/n

0

(1� x) dx�
Z 2/n

1/n

(1� x) dx

)
=

2n+1

n2
.

Thus, Iµn(f) 6! Iµ(f) = 0.

Figure 5.1: A visualisation of F1 and F2 defined in Example 5.2.6.

The next counterexample shows that v-limn!1 µn = µ does not imply

F (↵)
µn ! F (↵)

µ at the continuity points of µ since mass can be lost locally. This
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happens when the positive and negative parts of the singular decompositions

of {µn} cancel in the limit.

Example 5.2.7. Let µn := �0 � �1/n, and let µ be the zero measure. Then

it is straightforward to check that v-limn!1 µn = µ (even w-limn!1 µn = µ).

However, we do not have F (0)
µn ! F (0)

µ at all continuity points of µ. Indeed, fix

x > 0. Then for n � 1
x ,

F (0)
µn

(x) = �0((0, x])� �1/n((0, x]) = �1,

so

�1 = lim
n!1

F (0)
µn

(x) 6= F (0)
µ (x) = 0.

Thus, in order to ensure that the distribution functions converge at con-

tinuity points, one must ensure that mass is preserved locally. This motivates

the following definition.

Definition 5.2.8. Let {µn} ⇢ M(R).

1. We say that the sequence {µn} has no mass at a point x 2 R, if for any
" > 0, there exists an open neighbourhood Nx," of x, such that

lim sup
n!1

|µn| (Nx,")  ".

We say that the sequence {µn} has no mass at +1 (resp.�1), when the

family of canonical extensions of {µn} has no mass at +1 (resp.�1).

2. We say that the sequence {µn} is right equi-continuous at x 2 R, if for
any " > 0, there exists a h > 0 such that for all � < h

lim sup
n!1

|µn((x, x+ �])|  ".

Remark 5.2.9. Definition 5.2.8 implies that the family {µn} ⇢ M(R) is tight
if and only if it has no mass at +1 and �1.

If the family {µn} ⇢ M(R) has no mass at a point x 2 R, then it is

clearly right equi-continuous at x. The converse implication does not hold, as

shown by the following example.
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Example 5.2.10. For n 2 N, let Fn : R ! R be supported on [�2�n, 2�n]

and linear between the points {k2�2n : k 2 {�2n, . . . , 2n}} such that

Fn

�
k2�2n

�
:= (k mod(2))2�n, k 2 {�2n, . . . , 2n};

see Figure 5.2 for a clear visualisation. Set µn := µFn and let µ be the zero

measure. Then {µn} ⇢ M(R) satisfies the properties:

(i) µn is supported on [�2�n, 2�n],

(ii) |µn|([�2�n, 2�n]) = 2,

(iii)
���F (0)

µn (x)
���  2�n for all x 2 R.

In particular, property (ii) shows that {µn} does not satisfy the no-mass con-

dition at x = 0, while property (iii) shows that {µn} is right equi-continuous

everywhere.

Figure 5.2: A visualisation of F1 and F2 defined in Example 5.2.10.

For {µn} ⇢ M(R), the preceding discussion leads us to a clear char-

acterisation of vague and weak convergence of {µn} from the convergence of

Fµn , and vice versa.
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Theorem 5.2.11. Let ↵ 2 R and {µn} [ {µ} ⇢ M(R) be such that {µn} are

bounded on compact sets.

(a) If F (↵)
µn (x) ! F (↵)

µ (x) at all continuity points of µ, then v-limn!1 µn = µ.

(b) If v-limn!1 µn = µ and the sequence {µn} is right equi-continuous at the

continuity points of µ, then F (↵)
µn ! F (↵)

µ at the continuity points of µ.

Moreover, if ↵ = �1 or ↵ = +1, both parts remain true if we require

in addition in (a) that {µn} is bounded on compact neighbourhoods of ↵ (in

the extended order topology) and in (b) that {µn} has no mass at ↵ (for the

canonical extensions of {µn}).

Proof. We only establish the result for ↵ 2 R. The extension of the proof to

↵ 2 {�1,1} is straightforward.

(a) First, let f 2 C := C1(R)\Cc(R). Then f is supported by a compact

interval K ⇢ R, and we may assume without loss of generality that ↵ 2 K.

Then {F (↵)
µn } is bounded on K since

��F (↵)
µn

(x)
��  sup

n2N
|µn| (K) < 1, x 2 K.

Moreover, F (↵)
µn ! F (↵)

µ a.e. by the fact that µ has only countably many atoms.

Therefore, an integration by parts and the dominated convergence theorem

gives

Iµn(f) = �
Z

K

f 0(x)F (↵)
µn

(x) dx ! �
Z

K

f 0(x)F (↵)
µ (x) dx = Iµ(f). (5.2.2)

Next, let f 2 Cc(R) ⇢ C0(R) and " > 0. Since C is a subalgebra of C0(R)
that separates points and vanishes nowhere, it is dense in C0(R) by Theorem

E.1.4. Thus, there exists g 2 C such that kf � gk1 < ". Then f and g are

both supported by some compact interval L. Hence, the triangle inequality

and (5.2.2) give

lim sup
n!1

|Iµn(f)� Iµ(f)|  lim sup
n!1

(|Iµn(f � g)|+ |Iµn(f)� Iµ(f)|+ |Iµ(f � g)|)


✓
sup
n2N

|µn| (L) + kµk
◆
".
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Using that {µn} is bounded on compact sets and taking " # 0 establishes the

claim.

(b) Fix T > 0 and define µ(T )
n := µn|[�T,T ]

. By hypothesis, the family

{µ(T )
n } is uniformly bounded. Hence, by Helly’s selection theorem [52, Theorem

2.35], it holds that along a subsequence {nk},

F (↵)
µnk

! F 2 BV([�T, T ]).

According to Theorem 5.2.3 there exists a measure µ(T ) 2 M(R), supported
on [�T, T ], such that limy##x F (y) = F (↵)

µ(T )(x). Since the sequence {µn} is right

equi-continuous at all continuity points of µ, F = F (↵)

µ(T ) at all such points.

Taking any f 2 Cc([�T, T ]), it follows from part (a)

Iµ(f) = lim
k!1

Iµnk
(f) = lim

k!1
I
µ
(T )
nk

(f) = Iµ(T )(f).

Thus, µ|[�T,T ]
= µ(T ). By the subsequence criterion, it follows that F (↵)

µn (x) !
F (↵)
µ (x) for all x 2 [�T, T ] that are continuity points of µ. Since T was

arbitrary, the proof is complete.

In part (b) of the previous theorem, one needs that the family {µn} ⇢
M(R) is bounded on compact sets in order to utilise Helly’s selection theorem.

Assuming that the family {µn} has no mass at a continuity point of µ, one

can relax this assumption by using a di↵erent approach in the proof.

Theorem 5.2.12. Let {µn} [ {µ} ⇢ M(R) and ↵ a continuity point of µ. If

v-limn!1 µn = µ and {µn} has no mass at a continuity points x of µ, then

F (↵)
µn (x) ! F (↵)

µ (x).

Proof. Let t 2 R be a continuity point of µ. The case when t = ↵ is trivial, so

we may assume without loss of generality that t > ↵, since F (↵)
µ (t) = �F (t)

µ (↵).

For � > 0, define the cut-o↵ function ⇢� 2 Cc(R) by

⇢�(x) =

8
>>>>>><

>>>>>>:

0 if x /2 (↵� �, t+ �)

1
� (x+ � � ↵), if x 2 (↵� �,↵),

1 if x 2 [↵, t],

1
� (t+ � � x), if x 2 (t, t+ �),
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and for x 2 R, the open ball around x of radius � by B�(x). Then

lim sup
n!1

���F (↵)
µn

(t)� F (↵)
µ (t)

���

 lim sup
n!1

⇣ ����
Z
(1(↵,t] � ⇢)(x)µn(dx)

����+
����
Z

⇢(x)µn(dx)�
Z

⇢(x)µ(dx)

����

+

����
Z
(1(↵,t] � ⇢)(x)µ(dx)

����
⌘

 lim sup
n!1

⇣
|µn| ((↵� �,↵]) + |µn| ((t, t+ �)) + |µ| ((↵� �,↵]) + |µ| ((t, t+ �))

⌘

 lim sup
n!1

|µn| (B�(↵)) + lim sup
n!1

|µn| (B�(t)) + |µ| ((↵� �,↵]) + |µ| ((t, t+ �)).

(5.2.3)

Now the result follows by taking � ! 0, noting that the first two terms on

the right had side of (5.2.3) vanish by the fact that {µn} has no mass at t

and ↵, whereas the last two terms on the right had side of (5.2.3) vanish by

�-continuity of µ and the fact that ↵ is a continuity point of µ.

We proceed to prove Theorem 5.2.4, which is in fact a corollary to

Theorem 5.2.11.

Proof of Theorem 5.2.4. We only establish the result for ↵ 2 R. The extension
of the proof to ↵ 2 {�1,1} is straightforward.

“(a) ) (b)”. By Theorem 5.2.11(a), it su�ces to show that {µn} are

bounded on compact sets. So let K ⇢ R be a compact set. Then there

exists continuity points b1, b2 2 R of µ such that K ⇢ (b1, b2]. By hypothesis,

limn!1 F (↵)
µn (b) = F (↵)

µ (b) for b 2 {b1, b2}. Moreover, µn((b1, b2]) = F (↵)
µn (b2) �

F (↵)
µn (b1) for each n 2 N. Thus, by positivity of {µn},

lim sup
n!1

µn(K)  lim
n!1

µn((b1, b2])

= lim
n!1

F (↵)
µn

(b2)� lim
n!1

F (↵)
µn

(b1)

= F (↵)
µ (b2)� F (↵)

µ (b1) < 1.

“(b) ) (a)”. By Theorem 5.2.12, it su�ces to sow that {µn} has no mass

at the continuity points of µ. So let x 2 R be a continuity point of µ and fix

" > 0. For � > 0, denote by B�(x) the open ball around x of radius � and by
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B�(x) its closure. By �-continuity of µ, for any " > 0 there exists � > 0 such

that µ(B�(x))  ". Thus, by Theorem 5.1.23(b),

lim sup
n!1

µn (B�(x))  lim sup
n!1

µn

⇣
B�(x)

⌘
 µ

⇣
B�(x)

⌘
 ".

Remark 5.2.13. The direction “(a) ) (b)” in Theorem 5.2.4 (for ↵ 2 R)
follows also directly from “(a) ) (c)” in the vague Portmanteau Theorem; see

Theorem 5.1.20.

Unlike Theorem 5.2.4, Theorem 5.2.11(b) requires an extra condition

not in part (a). Fortunately, the assumption that {µn} has no mass at any

point is su�cient to establish a proper equivalence result. Note that this

slightly stronger assumption is equivalent to the original assumption in the

important case that µ does not have any atoms.

Theorem 5.2.14. Let {µn} [ {µ} ⇢ M(R) and ↵ 2 R. Suppose {µn} does

not have mass on any point of R. Then the following are equivalent:

1. F (↵)
µn ! F (↵)

µ at the continuity points of µ.

2. v-limn!1 µn = µ.

Moreover, if ↵ = �1 or ↵ = +1, the result remains to true under the

additional assumption that {µn} has no mass at ↵ (for the canonical extensions

of µn).

Proof. We only establish the result for ↵ 2 R. The extension of the proof to

↵ 2 {�1,1} is straightforward.

By Theorem 5.2.11, it su�ces to show that the assumption that {µn}
has no mass on any point of R implies that {µn} is bounded on compact sets.

So let K ⇢ R be a compact set.

By hypothesis, for each x 2 R, the exists an open neighbourhood Nx of

x such that lim supn!1 |µn|(Nx)  1. Moreover, by compactness, there exists

x1, . . . , xJ 2 R such that K ⇢
SJ

j=1 Nxj . It follows that

lim sup
n!1

|µn|(K)  lim sup
n!1

|µn|
✓ J[

j=1

Nxj

◆


JX

j=1

lim sup
n!1

|µn|(Nxj)  J < 1.
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We end this section by noting that the assumption that {µn} has no

mass at any point of R is not enough to conclude from v-limn!1 µn = µ that

v-limn!1 |µn| = |µ|.

Example 5.2.15. For n 2 N, let Fn : R ! R be supported on [�1, 1] and

linear between the points {k2�n : k 2 {0, . . . , 2n}} such that

Fn

�
k2�n

�
:= (k mod(2))2�n, k 2 {�2n, . . . , 2n};

see Figure 5.3 for a clear visualisation. Set µn := µFn and let µ be the zero

measure. Note that |µn| = |µ1| for each n 2 N. Hence it follows trivially that

v-limn!1 |µn| = |µ1|. However, using that kµnk = 2 and |F (0)
n |  2�n for each

n 2 N, it follows from Theorem 5.2.12 that v-limn!1 µn = µ. It remains to

show that {µn} has no mass at any point of R. So fix x 2 R and let " > 0 be

given. Let Nx," be the open ball around x of radius "/2. Then

lim sup
n!1

|µn| (Nx,") = ". (5.2.4)

Figure 5.3: A visualisation of F1 and F2 defined in Example 5.2.15.
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Chapter 6

Long Term Behaviour

It is well known that Laplace transforms of positive measures on R+ := [0,1)

converge if and only if their distribution functions converge at continuity points

of the limiting measure; see e.g. [32, XIII.1, Theorem 2a]. Using the results of

the previous chapter, we will extend this so-called continuity theorem to the

case of real-valued Radon measures; this is the content of our preprint [40].

This will show us how far we can extend the famous Karamata Tauberian

theorem to work for real-valued measures using König’s approach alone and

compare it to the approach used by Bingham et al.; see [51, 12]. We will apply

the extended Tauberian theorem in a novel stochastic control problem.

6.1 Laplace Transforms

Throughout this chapter, we will take the underlying space to be R+. More-

over, we will consider measures in M⇤ whose Laplace transform is well defined

on all of R++ := (0,1). Thus, we set

M :=

⇢
µ 2 M⇤ :

Z

R+

e��x |µ| (dx) < 1 for all � > 0

�
.

For µ 2 M , we define its Laplace transform  µ 2 BVloc(R++) by

 µ(�) :=

Z

R+

e��xµ(dx), � > 0.

It will be important that Laplace transforms characterise elements of M .
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Proposition 6.1.1 (Characterisation via Laplace Transforms). Any µ 2 M 

is uniquely determined by its Laplace transform  µ.

Proof. First assume that µ 2 M. Let C 0 := {e��x : � > 0} and C be the set of

finite linear combinations of elements in C 0. Then C is a sub-algebra of C0(R+)

that separates points and vanishes nowhere. Theorems E.1.11 and E.1.4 and

the observation that a dense subset (for the topology of uniform convergence)

of a separating family is again a separating family yields that C is a separating

family for M. Since the elements of C 0 correspond to  µ for di↵erent values

of � > 0, the result holds for all µ 2 M.

Next, let µ 2 M . Fix " > 0 and define µ(") 2 M(R+) via µ(")(dx) :=

e�"xµ(dx). Then for � > 0,

 µ(�+ ") =  µ(")(�). (6.1.1)

Since µ(") 2 M, it is uniquely determined by  µ(") . The latter is in turn

uniquely determined by  µ by (6.1.1). Since µ is uniquely determined by µ(")

and ", the result holds for all µ 2 M .

Note that any µ 2 M can be viewed as a measure on R where

µ|(�1,0) ⌘ 0. In order to be consistent with the previous chapter, we fix

some ⌘ < 0 such that for any µ 2 M the distribution function of µ is defined

as Fµ := F (⌘)
µ . In particular, for each µ 2 M we view Fµ as an element of

BVloc(R+) where

Fµ(x) = µ([0, x]).

6.2 Continuity Theorem

In this section, we state and prove a continuity theorem for real-valued Radon

measures. This extends the classical continuity theorem from Feller [32, XIII.1,

Theorem 2a]. They key tool will be vague convergence.

Theorem 6.2.1 (Continuity Theorem). Let {µn} [ {µ} ⇢ M be such for

any � > 0,

lim sup
n!1

 |µn|(�) < 1. (6.2.1)
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(a) Suppose  µn(�) !  µ(�) for all � > 0. If {µn} is right-equicontinuous

at a continuity point x 2 R+ of µ (see Definition 5.2.8), then Fµn(x) !
Fµ(x).

(b) If Fµn ! Fµ a.e., then  µn !  µ.

Proof. For ⌫ 2 M⇤ and " > 0, define ⌫(") 2 M by ⌫(")(dx) := e�"x⌫(dx).

Then for each " > 0, (6.2.1) and the fact that  |µn|(") < 1 for each n 2 N
gives

sup
n2N

��µ(")
n

�� = sup
n2N

 |µn|(") < 1. (6.2.2)

Moreover, if in addition v-limn!1 µ(")
n = ⌫ for some ⌫ 2 M, then for each

� > 0, (6.2.2), Proposition 5.1.11 and the fact that exp(��·) 2 C0(R+) gives

lim
n!1

 
µ
(")
n
(�) = lim

n!1

Z 1

0

e��tµ(")
n (dt) =

Z 1

0

e��t⌫(dt) =  ⌫(�) (6.2.3)

(a) By a simple generalisation of Theorem 5.2.11, it su�ces to show

that

v-lim
n!1

µn = µ.

To establish the latter, it su�ces to show that for each " > 0,

v-lim
n!1

µ(")
n = µ("), (6.2.4)

Indeed, fix " > 0 and f 2 Cc(R+). Then the vague convergence of {µ(")
n } and

the fact that f exp(�"·) 2 Cc(R+) give

Z

R+

f dµn =

Z

R+

f(x)e"xµ(")
n (dx) !

Z

R+

f(x)e"xµ(")(dx) =

Z

R+

f dµ.

To establish (6.2.4), fix " > 0. By the subsequence criterion, it su�ces

to show that for every subsequence {nk}, there exists a further subsequence

{nk`} such that

v-lim
`!1

µ(")
nk`

= µ("). (6.2.5)

So let {nk} be a subsequence. Then (6.2.1) gives

sup
k2N

��µ(")
nk

�� = sup
k2N

 |µnk |(") < 1.

94



Thus, by Theorem 5.1.8 we can view {µ(")
nk } as a bounded family in (C0(R+))⇤.

Hence, Theorem E.1.9 implies that {µ(")
nk } is �((C0(R+))⇤, C0(R+))-compact.

Furthermore, as a consequence of Theorem E.1.4, C0(R+) is separable, whence

the sequence is sequentially compact. Thus, there exists a subsequence {nk`}
and µ̃ 2 M such that

v-lim
`!1

µ(")
nk`

= µ̃ (6.2.6)

We proceed to show that µ̃ = µ("). Since by Proposition 6.1.1 each

element in M is uniquely characterised by its Laplace transform, it su�ces

to show that  µ̃(�) =  µ(")(�) for each � > 0. So fix � > 0. Then the

hypothesis together with (6.2.3) (applied to the subsequence {nk`}) give

 µ(")(�) =  µ(�+ ") = lim
`!1

 µnk`
(�+ ") = lim

`!1
 

µ
(")
nk`

(�) =  µ̃(�).

(b) It su�ces to show that for each " > 0,

F
µ
(")
n

! Fµ(") a.e. (6.2.7)

Indeed, Theorem 5.2.2(a) shows that v-limn!1µ(")
n = µ("), and this in turn

together with (6.2.3) yields for � > 0,

lim
n!1

 µn(�+ ") = lim
n!1

 
µ
(")
n
(�) =  µ(")(�) =  µ(�+ ").

Since " is arbitrary, the claim follows.

To establish (6.2.7), fix " > 0 and let t > 0 be such that limn!1 Fµn(t) =

Fµ(t). An integration by parts gives

F
µ
(")
n
(t) =

Z

[0,t]

e�"xµ(dx) = e�"tFµn(t) + "

Z t

0

e�"xFµn(x) dx.

Using that

sup
x2[0,t]

sup
n2N

F|µn|(x)  et sup
n2N

 |µn|(1) < 1

by (6.2.1) for � = 1, the hypothesis, dominated convergence and an integration
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by parts give

lim
n!1

F
µ
(")
n
(t) = e�"tFµ(t) + "

Z t

0

e�"xFµ(x) dx = Fµ(")(t).

Remark 6.2.2. (i) One can also prove part (a) by using Helly’s selection

theorem [52, Theorem 2.35] to find a convergent subsequence of the fam-

ily {F
µ
(")
n
}. The limiting function will be of bounded variation, and right

continuous due to the right-equicontinuity condition. Thus, it will be

the distribution function of a measure. The remainder of the proof is

identical.

(ii) When the measures are positive, condition (6.2.1) is clearly satisfied un-

der the hypothesis of part (a). Moreover, the right-equicontinuity condi-

tion of part (a) is no longer needed due to Theorem 5.2.4.

(iii) Under the assumption  µn(�) !  µ(�) for all � > 0, (6.2.1) is triv-

ially satisfied when the measures are positive. Otherwise, a su�cient

condition for (6.2.1) is that there exists � 2 [0, 1) such that either

 µ�
n
(�) < � µ+

n
(�) for each � > 0 or  µ+

n
(�) < � µ�

n
(�) for each � > 0.

We only establish the first case. Then

lim sup
n!1

 |µn|(�)  lim sup
n!1

(1 + �) µ+
n
(�) 

✓
1 + �

1� �

◆
lim sup
n!1

 µn(�)

=

✓
1 + �

1� �

◆
 µ(�) < 1.

The following example illustrates that the right-equicontinuity condi-

tion is indeed needed for Theorem 6.2.1(a).

Example 6.2.3. Let {µn} [ {µ} 2 M be defined by µn := �x � �x+ 1
n
for

for some x > 0, and µ ⌘ 0. Note that {µn} is not right-equicontinuous at x.

Indeed, for any � > 0

|µn((x, �])| = 1 for n � 1

�
.
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It is straightforward to check that

lim sup
n!1

 |µn|(�) = lim sup
n!1

⇣
e��x + e��(x+ 1

n)
⌘
= 2e��x < 1, � > 0

and

 µn(�) = e��x � e��(x+ 1
n) ! 0 =  µ(�), � > 0.

However, x is a continuity point of µ and

Fµn(x) = 1 6! 0 = Fµ(x).

6.3 Application: Karamata’s Tauberian The-

orem

For this section it will be useful to recall the definition of a regularly varying

function.

Definition 6.3.1. We say that a function f : R+ ! R is regularly varying at

infinity with exponent ⇢ 2 R if there exists some a > 0 such that f |[a,1) or

�f |[a,1) 2 R++ and
f(�x)

f(x)
! �⇢ 8� > 0. (6.3.1)

Regular variation at zero is defined analogously. We call a regularly varying

function with exponent ⇢ = 0 slowly varying.

Examples of slowly varying functions include the constant functions

and log(·), while polynomials of order ⇢ are the easiest examples of regularly

varying functions with exponent ⇢. In fact, the following theorem shows that

all regularly varying functions behave much like polynomials.

Theorem 6.3.2 (Representation Theorem). A function f : R+ ! R is regu-

larly varying with exponent ⇢ 2 R if and only if there exists a slowly varying

function l and some a > 0 such that f(x) = x⇢l(x) for all x � a where

l(x) = c(x) exp

⇢Z x

a

"(u)

u
du

�
,
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c and " are bounded and measurable such that

c(x) ! c̄ 2 R\{0} and "(x) ! 0,

as x ! 1.

In the study of regular variation, Karamata’s Tauberian Theorem for

Laplace-Stieltjes transforms is a classical result; see [31, Theorem 1], [12, The-

orem 1.7.1], [51, Theorem 1]. It relates regular variation of a positive monotone

functions F at infinity to the regular variation of its Laplace transforms  µF

at zero. Due to the relationship between positive monotone functions and

positive Radon measures, the theorem can be also stated for measures.

Theorem 6.3.3. Let µ 2 M be a positive measure and ⇢ � 0. The limit

statements

lim
⌧#0

 µ(⌧�)

 µ(⌧)
=

1

�⇢
, � > 0, (6.3.2)

and

lim
t"1

Fµ(tx)

Fµ(t)
= x⇢, x > 0. (6.3.3)

imply each other. In either case, we also have

 µ(t
�1) ⇠ Fµ(t)�(⇢+ 1) as t ! 1. (6.3.4)

Remark 6.3.4. The theorem may be phrased as ‘the Laplace transform of

a positive measure is regularly varying at zero if and only if its distribution

function is regularly varying at infinity’.

According to Feller, Theorem 6.3.3 has a ‘glorious history’ [32, Sec-

tion XIII.5], even though modern books on probability theory often omit the

theorem. The two implications are usually separated, where Eq. (6.3.3) )
Eq. (6.3.2) is called an Abelian theorem, while Eq. (6.3.2) ) Eq. (6.3.3) is

called a Tauberian theorem. Looking at its origins, we see that the Tauberian

implication caused the most di�culty. It was first proved via lengthy calcula-

tions in 1914 by Hardy and Littlewood in their famous paper [38]. Karamata

simplified their proof in [46], subsequently introducing the present-day class

of regularly varying functions.
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6.3.1 Karamata’s Tauberian theorem for real-valued mea-

sures

Karamata’s theorem can be extended to functions of local bounded variation,

and hence real-valued measures. While there are some results, see e.g. [12,

Section 4.0, 5], they do not seem to be well known. They always require some

additional conditions in the Tauberian direction, usually referred to as Taube-

rian conditions. The latter are needed to account for the lack of monotonicity

of Fµ in the proof of Theorem 6.3.3.

We proceed to apply our continuity theorem to obtain a version of

Karamata’s Tauberian theorem for real-valued measures.

Theorem 6.3.5 (Karamata’s Tauberian theorem for real-valued measures).

Let µ 2 M and ⇢ � 0.

(a) Suppose that

lim inf
⌧#0

| µ(⌧)|
 |µ|(⌧)

> 0 (6.3.5)

as well as

lim sup
h#0

lim sup
⌧#0

����
Fµ(⌧�1(x+ h))� Fµ(⌧�1x)

 µ(⌧)

���� = 0, x > 0. (6.3.6)

Then (6.3.2) implies (6.3.3) and (6.3.4) holds.

(b) (6.3.3) implies (6.3.2) and (6.3.4) holds.

Moreover, in either case, we have the asymptotic relationship (6.3.4).

Remark 6.3.6. The limit statements (6.3.2) and (6.3.3) show that  µ(⌧) and

Fµ(t) are non-zero for su�ciently small ⌧ and su�ciently large t, respectively.

In particular (6.3.2) implies that  µ has one sign near the origin, and (6.3.3)

implies that Fµ has one sign near infinity.

Proofs of Theorem 6.3.5. Throughout the proof, let {⌧n} ⇢ R++ be an arbi-

trary null sequence and define the sequence {tn} ⇢ (0,1) by tn := ⌧�1
n .

(a) By (6.3.5), we may assume without loss of generality that µ(⌧n) 6= 0

for all n 2 N. Thus, for each n 2 N, we may define ⌫n 2 M by

⌫n(dx) :=
µ(d(tnx))

 µ(⌧n)
.
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Moreover, define the measure ⌫ 2 M by

⌫(dx) :=

8
<

:

x⇢�1

�(⇢) dx if ⇢ > 0,

�0(dx) if ⇢ = 0.

Then (6.3.2) gives

lim
n!1

 ⌫n(�) = lim
n!1

 µ(⌧n�)

 µ(⌧n)
= ��⇢ =  ⌫(�).

This together with (6.3.5) in turn yields

lim sup
n!1

 |⌫n|(�) = lim sup
n!1

 |µ|(⌧n�)

 µ(⌧n)
= ��⇢ lim sup

n!1

 |µ|(⌧n�)

 µ(⌧n�)
< 1, � > 0.

Moreover, {⌫n} is right-equicontinuous at all points in R++. Indeed, let x 2
(0,1). Then (6.3.6) gives

lim sup
h#0

lim sup
n!1

|⌫n((x, x+ h])| = lim sup
h#0

lim sup
⌧#0

|Fµ(⌧�1(x+ h))� Fµ(⌧�1x)|
 µ(⌧)

(6.3.7)

= 0.

It now follows from Theorem 6.2.1(a) that F⌫n ! F⌫ on R++. Recalling the

definition of ⌫n, this implies that

lim
n!1

Fµ(tnx)

 µ(⌧n)
= lim

n!1
F⌫n(x) = F⌫(x) =

x⇢

�(⇢+ 1)
, x > 0. (6.3.8)

Finally, (6.3.8) for x = 1 gives (6.3.4), and then combining (6.3.8) and (6.3.4)

yields (6.3.3) via

lim
n!1

Fµ(tnx)

Fµ(tn)
= lim

n!1

Fµ(tnx)

 µ(⌧n)

 µ(⌧n)

Fµ(tn)
=

x⇢

�(⇢+ 1)
�(⇢+ 1) = x⇢, x > 0.

(b) By Remark, without loss of generality we choose X > 0 such that
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1[X,1)Fµ is strictly positive. Define the positive measure ⇠ 2 M via

F⇠(x) :=

Z x

0

1[X,1)(t)Fµ(t) dt. (6.3.9)

By Theorem 6.3.2, (6.3.3) implies there exists a slowly varying function l such

that Fµ(x) = x⇢l(x). In particular, 1[X,1)(x)Fµ(x) ⇠ x⇢l(x), and so using [12,

Proposition 1.5.8] it follows

F⇠(x) ⇠
x⇢+1l(x)

(⇢+ 1)
as x ! 1.

Since ⇠ is a positive measure, Theorem 6.3.3 lets us infer that  ⇠(⌧) ⇠
F⇠(⌧�1)�(⇢+ 2) as ⌧ ! 0, whence

 ⇠(⌧) ⇠ �(⇢+ 1)l(1/⌧)⌧�(⇢+1) as ⌧ ! 0. (6.3.10)

Noting that  ⇠(�) =
1
�

R1
X e��xµ(dx), (6.3.10) implies

 µ(⌧) ⇠ �(⇢+ 1)l(1/⌧)⌧�⇢ as ⌧ ! 0.

Equations (6.3.2) and (6.3.4) follow immediately.

We apply Theorem 6.3.5 in the following example.

Example 6.3.7. Define µ 2 M via the density fµ(x) := x
�
1
2 + cos(x)

�
.

Then one can readily check that

 µ(⌧) =
3⌧ 4 + 1

2(⌧ 3 + ⌧)2
=

1

2⌧ 2
+ o(⌧�1), ⌧ # 0.

Thus,  µ is regularly varying with exponent ⇢ = 2. Noting that

lim inf
⌧#0

| µ(⌧)|
 |µ|(⌧)

� lim inf
⌧#0

1
2⌧2 (1 + ⌧o(⌧�1))

3
2⌧2

=
1

3
> 0,

and

lim sup
h#0

lim sup
⌧#0

����
Fµ(⌧�1(x+ h))� Fµ(⌧�1x)

 µ(⌧)

����
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= lim sup
h#0

lim sup
⌧#0

����
xh+ h2/2 + ⌧ 2o(⌧�1)

1 + ⌧ 2o(⌧�1)

����

= 0,

we see that both (6.3.5) and (6.3.6) are satisfied. Hence, by Theorem 6.3.5 it

follows that

 µ(µ)(⌧) ⇠ �(2 + 1)Fµ(⌧
�1), ⌧ # 0.

The method of proof of Theorem 6.3.5(a) is due to König [51] and Feller

[31], which relies entirely on Theorem 6.2.1 for positive measures. In the case of

real-valued measures, one needs the additional right-equicontinuity condition

on the measures due to Example 5.2.7. As a byproduct, we get somewhat

awkward looking Tauberian conditions (6.3.5) and (6.3.6). One can get an

alternative condition by changing the approach.

Indeed, suppose we have µ 2 M such that its Laplace transform is

regularly varying with exponent ⇢. Then as in part (b) of the proof of Theorem

6.3.6, we define the positive measure ⇠ 2 M via

F⇠(x) :=

Z x

0

1[X,1)(t)Fµ(t) dt. (6.3.11)

Then

 ⇠(�) =
1

�

Z 1

X

e��xµ(dx) ⇠  µ(�)�
�1,

whence  ⇠ is regularly varying at zero with exponent �(⇢ + 1). By Theorem

6.3.3 it follows that F⇠ is regularly varying at infinity with exponent (⇢ + 1).

Now one can focus on extracting whether or not Fµ is regularly varying with

exponent ⇢ from the integral relationship (6.3.11). It turns out that Bingham

et al. show that this holds in the a�rmative under the following Tauberian

condition

lim
�#1

lim inf
x!1

inf
t2[1,�]

Fµ(tx)� Fµ(x)

x⇢l(x)
� 0, (6.3.12)

where l is taken from Theorem 6.3.2 with respect to F⇠; see [12, Theorem

1.7.5]. Thus, by only considering the relationship between F⇠ and Fµ we can

bypass using Theorem 6.2.1 for measures which are not positive, and replace
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conditions (6.3.5) and (6.3.6) with (6.3.12) in Theorem 6.3.5. This results in

the following proposition.

Proposition 6.3.8. Let µ 2 M and ⇢ � 0. Suppose that Fµ satisfies

(6.3.12). Then (6.3.2) implies (6.3.3) and (6.3.4) holds.

6.4 Ergodic-type Stochastic Control

We now aim to show how the content of the previous section gives rise to a novel

stochastic control problem. Note that we intend the following formulation to

be motivational and explained using a toy setup.

Consider a stochastic basis (⌦,F := {Ft}t�0,P), which we associate with

a d-dimensional Brownian motion W and a space A of admissible processes

(or controls) that are at minimum F -progressively measurable and take values

in a set A ✓ Rk. In general, we apply other conditions to the elements of A

depending on further specifications of the control problem. For any ↵ 2 A we

consider an Rd-valued state process {X↵,x
t }t�0 with di↵usion dynamics

dX↵,x
t = µ(X↵,x

t ,↵t) dt+ �(X↵,x
t ,↵t) dWt, X0 = x. (6.4.1)

It is implicitly assumed that both µ : Rd ⇥ A ! Rd and � : Rd ⇥ A ! Rd

allow for a unique strong solution to (6.4.1). Finally, for the above system we

consider a cost functional

J : Rd ⇥ A⇥ (0,1]⇥ [0,1) ! R

defined by

J(x,↵, T, �) := E
Z T

0

e��tf(X↵,x
t ,↵t) dt

�
.

We will be concerning ourselves with an ergodic-type control problem,

that is a control problem that only depends on the asymptotic behavior of the

state. A common example is the so called long run average problem [4], that

involves finding ↵⇤ 2 A that maximises

lim sup
T"1


1

T
J(x,↵, T, 0)

�
. (6.4.2)
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One often solves this problem via the solution of the discounted infinite time

horizon problem1

u(x, �) := sup
↵2A

J(x,↵,1, �). (6.4.3)

Indeed, assuming (6.4.3) is well defined, a common technique to solving the

long run average problem is to find an appropriate null sequence {�n} such

that �nu(x, �n) converges to a constant � independent of x, and argue that it

is the solution of (6.4.2). This is often dubbed the vanishing discount paradigm

(see [3, Section 2.7]) and is used in both analytical and BSDE approaches to

the problem [34, 4, 5].

In all cases, one enforces restrictions on the state processes in order

to find a solution. For instance, the BSDE approach to solving (6.4.2) is

associated with the theory of ergodic backward stochastic di↵erential equations

(EBSDE), detailed in the paper by Furhman, Hu, and Tessitore [34]. For their

setup to make sense, one requires a so-called dissipative condition on the drift

component of (6.4.1). This enforces the state process to be ergodic, giving

it beneficial asymptotic characteristics; for a detailed discussion on ergodic

processes, please see [3, Section 1.5].

What is not included in the current literature is that in some cases

one can find an asymptotic relationships between the discounted infinite time

horizon problem (6.4.3) and a weighted control problem of the type

sup
↵2A

lim sup
T"1


1

T ⇢
J(x,↵, T, 0)

�
, (6.4.4)

for some ⇢ > 0 where ⇢ need not be 1. Indeed, let us consider the setup from

Chapter 2 in the case where we have N = 2 agents, a single risky asset, a

finite time horizon T , a tax levy � > 0, and volatilities ⇣nt given by �nWt for

n = 1, 2. Furthermore, let us consider a new set of admissible portfolios Ã
which consists of all portfolios ' 2 AC(⌦⇥ [0, T ],R) with ', '̇ 2 L 2

0 satisfying

the transversality condition

lim
T!1

1

T 2
E
⇥
'2
T

⇤
= 0.

1The set of admissible controls may in fact di↵er and depend on �.
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In the paper [35], they find a long run equilibrium return and optimal strategies

according to the following definition.

Definition 6.4.1. µ 2 L 2
0 is a (long-run) equilibrium return if there exist

portfolios ⌘̄1, ⌘̄2 2 Ã for agents 1 and 2 such that:

(Market clearing) The total demand
P2

n=1 ⌘̄
n matches the zero net supply of

the risky asset S at all times;

(Individual optimality) The portfolio ⌘̄n is optimal for the long-run version

of agent n ’s control problem in that,2

lim sup
T!1

1

T

⇥
K0

n(',�, 0, T )�K0
n(⌘̄

n,�, 0, T )
⇤
 0, (6.4.5)

for all competing admissible trading rates ' 2 Ã.

The condition (6.4.5) is, to the best of our knowledge, unique to the

paper at hand. It is not the traditional long run average problem as expressed

in (6.4.2), and its form is a fix to amend for the fact that are admissible

portfolios (such as ' ⌘ 0) where

lim sup
T!1


1

T
K0

n(',�, 0, T )

�
= 1.

Despite the seemingly artificial requirement (6.4.5), we get the following asymp-

totic relationship between the equilibrium strategies from Definition 2.2.1 and

Definition 6.4.5

lim
�#0

⇥
�2K0

n('̄
�,n,�,1, 0)

⇤
= �(2 + 1) lim

T!1


1

T 2
K0

n(⌘̄
n,�, 0, T )

�
, (6.4.6)

which is shown by explicit calculation in the notebook long term behaviour.

It is even true that '̄�,n, as derived in Proposition 3.1.1, converges pointwise

to ⌘̄n for n = 1, 2, as � # 0. This suggests that under certain conditions the

vanishing discount technique may extend in order to solve the novel control

problem (6.4.4) where the underlying state process is not restricted to be

ergodic. Furthermore, it suggests that it is reasonable to replace the condition

2Recall that K0
n is defined in (2.1.7).
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(6.4.5) with finding a portfolio ' that maximises

lim sup
T!1


1

T 2
K0

n(',�, 0, T )

�
.

6.4.1 Goal functional relationship

In order to investigate the problem further, we ask under what conditions

does the goal functional J(x,↵, T, 0) display an asymptotic relationship with

J(x,↵,1, �) similar to that seen in (6.4.6). Considering Karamata’s Tauberian

theorem, we note that (6.3.4) bears a clear resemblance to (6.4.6), motivating

the following observation. Assuming that both J(x,↵, T, 0) and J(x,↵,1, �)

are well defined for all T and � in R++, by an application of Fubini’s theorem

we see that

J(x,↵, T, 0) =

Z T

0

E[f(X↵,x
t ,↵t)] dt =: Fµ↵(T ), (6.4.7)

J(x,↵,1, �) =

Z 1

0

e��tE[f(X↵,x
t ,↵t)] dt =:  µ↵(�), (6.4.8)

where µ↵ is an element of M and has the density fµ↵ := E[f(X↵,x
· ,↵·)] with

respect to the Lebesgue measure. It is now clear that if a control ↵ is selected

such that the measure µ↵ is positive, and if Fµ↵ (resp.  µ↵) is regularly varying

with exponent ⇢ � 0 at infinity (resp. zero), then according to Theorem 6.3.3

lim
�#0

[�⇢J(x,↵,1, �)] = lim
T"1


�(⇢+ 1)

T ⇢
J(x,↵, T, 0)

�
.

In general we have the following proposition.

Proposition 6.4.2. Suppose that Fµ↵ is regularly varying at infinity with ex-

ponent ⇢ � 0. Then there exists a slowly varying function l such that

lim
�#0


�⇢

l(��1)
J(x,↵,1, �)

�
= lim

T"1


�(⇢+ 1)

T ⇢l(T )
J(x,↵, T, 0)

�
. (6.4.9)

Similarly, if  µ↵ is regularly varying at zero with exponent ⇢ � 0 and either

(6.3.12) or (6.3.5) and (6.3.6) are satisfied, then there exists a slowly varying

function l such that (6.4.9) holds.
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Suppose that one has an optimal control ↵⇤ for the discounted infinite

time horizon control problem that is independent of the discount factor � and

such that ↵⇤ lies in the admissible set A associated to (6.4.4). Furthermore,

suppose that µ↵⇤ (�) = u(x, �) is regularly varying at zero with exponent ⇢ � 0

and either (6.3.12) or (6.3.5) and (6.3.6) are satisfied. Then from Proposition

6.4.2 there exists a slowly varying function l such that

sup
↵2A

lim sup
T"1


1

l(T )T ⇢
J(x,↵, T, 0)

�
� lim sup

T"1


1

l(T )T ⇢
J(x,↵⇤, T, 0)

�

= lim sup
�!0


�⇢

�(⇢+ 1)l(��1)
J(x,↵⇤,1, �)

�

= lim
�!0


�⇢

�(⇢+ 1)l(��1)
u(x, �)

�
.

In particular, if one can take l ⌘ 1, then we get a lower bound for the control

problem (6.4.4). To apply a similar method to prove the opposite inequality

is more di�cult as the value function (6.4.4) is independent of T and the goal

functional (6.4.7) is not necessarily regularly varying for an arbitrary control.

In general, when attempting to show either inequality, one will not be

able to assume that admissible controls, and thus the integrands in (6.4.7)

and (6.4.8), are independent of the time horizon or discount factor. This

fundamentally complicates the setup. However, with stronger assumptions,

one sees that a solution to the discounted infinite time horizon control problem

(6.4.3) leads to a solution of (6.4.4) as shown by the following theorem.

Theorem 6.4.3. Fix ⇢ > 0. Suppose that for all ↵ 2 A

lim
T!1

J(x,↵, T, 0)

T ⇢
(6.4.10)

exists and lies in R++. If an optimal control ↵⇤ 2 A exists for (6.4.3), then

↵⇤ is an optimal control for (6.4.4) and

lim
�#0


�⇢

�(⇢+ 1)
J(x,↵⇤, �,1)

�
= sup

↵2A
lim sup

T"1


1

T ⇢
J(x,↵, T, 0)

�
.
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Proof. By Proposition 6.4.2

sup
↵2A

lim sup
T"1


1

T ⇢
J(x,↵, T, 0)

�
= sup

↵2A
lim
T"1


1

T ⇢
J(x,↵, T, 0)

�

= sup
↵2A

lim
�#0


�⇢

�(⇢+ 1)
J(x,↵,1, �)

�

 lim
�#0


�⇢

�(⇢+ 1)
J(x,↵⇤,1, �)

�

= lim
T"1


1

T ⇢
J(x,↵⇤, T, 0)

�

 sup
↵2A

lim sup
T"1


1

T ⇢
J(x,↵, T, 0)

�
.

The previous observations warrant further exploration into this new

class of control problems, possibly leading to a new class of BSDE. In par-

ticular, this may allow us to rigorously explain the relationship between the

control problems introduced in Definitions 2.2.1 and 6.4.5. For now, we show-

case a definite class of state processes and specific goal functionals that satisfy

(6.4.9).

Example 6.4.4. Let W be a Brownian motion on (⌦,F,P). Moreover, sup-

pose that f : R+ ! R+ is defined such that f(x) = x⇢l(x) for some ⇢ > 0 and

a slowly varying function l. Then, fixing � > 0, it follows that

E [f (|W�t|)]
E [f (|Wt|)]

= �⇢/2
E
h
|Z|pl(|Z|

p
�t)
i

E
⇥
|Z|pl(|Z|

p
t)
⇤ ,

where Z ⇠ N(0, 1). By Theorem 6.3.2, l must be of the form

l(x) = c(x) exp

⇢Z x

a

✏(x)

u
du

�

for x � a > 0, where c and ✏ are both bounded and measurable such that

c(x) ! c̄ 2 (0,1), and ✏(x) ! 0 as x " 1. Supposing that ✏ is bounded

by b > 0, it follows that for any z � 1p
�
and

p
t > a > 0 there exists some

constant M > 0 such that
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l(
p
�tz)

l(
p
t)

 M exp

(Z p
�tz

p
t

✏(u)

u
du

)

 M exp

(
b log

 p
�tzp
t

!)

= M�
b
2 zb (6.4.11)

Fix " > 0. Then one may find T (") > 1p
�
_ a _ 1 such that

�����

Z 1

0

z⇢+b'(z)dz �
Z T (")

0

z⇢+b'(z)dz

�����  ", (6.4.12)

and �����

Z 1

0

z⇢'(z)dz �
Z p

�T (")

0

z⇢'(z)dz

�����  ", (6.4.13)

where ' is the pdf of a standard normal random variable. Furthermore, one

may use the uniform convergence theorem for regularly varying functions [12,

Theorem 1.5.2] to find t(T (")) > T (")2 such that

�
⇢
2w⇢

�����
l(
p
t�w)

l(
p
t)

� 1

�����  "

for all w 2 (0, T (")] when t > t(T (")). Then, using (6.4.11) and (6.4.12), we

see that for large enough t

E
h
|Z|pl(|Z|

p
�t)
i

2l(
p
t)

=

Z T (")

0

z⇢
l(
p
�tz)

l(
p
t)

'(z)dz +

Z 1

T (")

z⇢
l(
p
�tz)

l(
p
t)

'(z)dz

=

Z T (")

0

�� ⇢
2

⇣
�

⇢
2 z⇢ + "

⌘
'(z)dz +

Z 1

T (")

z⇢
l(
p
�tz)

l(
p
t)

'(z)dz


Z 1

0

z⇢'(z)dz + "
⇣
�� ⇢

2 +M�
b
2

⌘
.
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Similarly, using (6.4.13), we see that for large enough t

E
⇥
|Z|pl(|Z|

p
t)
⇤

2l(
p
t)

=

Z p
�T (")

0

z⇢
l(
p
tz)

l(
p
t)

'(z)dz +

Z 1

p
�T (")

z⇢
l(
p
�tz)

l(
p
t)

'(z)dz

�
Z p

�T (")

0

(z⇢ � ")'(z)dz

�
Z 1

0

z⇢'(z)dz � 2".

Thus, it follows that

lim sup
t!1

E [f (|W�t|)]
E [f (|Wt|)]

 �⇢/2 lim sup
"!0

8
<

:

R1
0 z⇢'(z)dz + "

⇣
�� ⇢

2 +M�
b
2

⌘

R1
0 z⇢'(z)dz � 2"

9
=

;

= �⇢/2.

By an analogous argument, we also have

lim inf
t!1

E [f (|W�t|)]
E [f (|Wt|)]

� �⇢/2

whence

lim
t!1

E [f (|W�t|)]
E [f (|Wt|)]

= �⇢/2

Thus, if we take our state process (independent of any control) to be

X↵
t = Wt + x, then one clearly has that

J(x,↵, T, �) = E
Z T

0

e��tf(X↵
t ) dt

�
.

is regularly varying at infinity with exponent ⇢+2
2 and the relationship (6.4.9)

holds with l ⌘ 1.
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Appendix A

A.1 Agents’ Beliefs: Technicalities

This section contains a series of technical definitions in order to state a general

version of the Girsanov Theorem, which is needed in Chapter 2. The definitions

and results are taken from [10, Sections 1.3 & 3.9].

A.1.1 The Natural Conditions

For a measure µ on the measurable space (⌦,F), we let µ⇤ denotes its outer-

measure. Recall that we say that N ⇢ ⌦ is µ-negligible if µ⇤(N) = 0.

Definition A.1.1. Consider a stochastic basis (⌦,F = {Ft}t�0,P) We close

the filtration at 1 with three objects,

1. the algebra of sets

A1 :=
[

0t<1

Ft.

2. the �-algebra

F1 :=
_

0t<1

Ft,

3. and the universal completion F⇤
1 of F1, i.e. the collection of all sets in

F1 that are µ-measurable for every µ 2 M(⌦,F1).

We will say that the filtration F is universally complete if Ft is univer-

sally complete for any t < 1.

Definition A.1.2. Consider a stochastic basis (⌦,F,P).
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(i) A subset A of ⌦ is P-nearly empty if there exists a family {An}n2N ⇢ A1

such that A ⇢
S

n2N An and
S

n2N An is P-negligible.

(ii) A property P of the point ! 2 ⌦ is said to hold nearly if the set N of

points of ⌦ were it does not hold is nearly empty.

(iii) Two processes X and Y are indistinguishable if the set {X· 6= Y·} ✓ ⌦ is

nearly empty.

One can think of a nearly empty set as being a set such that someone

can measure it and assert that it is negligible in finite time or a countable

union of such sets. If one must wait an infinite amount of time (i.e. check

whether N 2 F1) to check if N is negligible, then N is not nearly empty even

though it may be negligible.

With the current definition of indistinguishability, there may exist mea-

surable indistinguishable processes X and Y , where one is adapted, and the

other is not. This becomes impossible by demanding that the filtration we use

is regular.

Definition A.1.3. Let P be a family of probability measures on the filtration

(⌦,F).

(i) For any P 2 P, set

FP
t := {A ⇢ ⌦ : 9AP 2 Ft such that A4AP is P-nearly empty}

= � (Ft [ {N : N is P-nearly empty}) .

We call {FP
t }t�0 the P-regularisation of F. The filtration FP composed

of the �-algebras

FP
t :=

\

P2P

FP
t ,

is the P-regularisation of F .

(ii) The filtered space (⌦,F,P) is regular if F = FP and we say that F is

P-regular, or regular when P is understood.

We are now in a position to define the natural conditions for a filtration.
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Definition A.1.4. Let P be a collection of probability measures on the fil-

tration (⌦,F).

(i) The natural enlargement of F is the filtration FP
+ obtained by regularising

the right continuous version of F.

(ii) Suppose that X is a process. Then the natural enlargement of the raw

filtration F0[X] is called the natural filtration of X and is denoted by

F[X]. If P must be mentioned then we write FP[X].

(iii) A filtered space is said to satisfy the natural conditions if it equals its

natural enlargement.

If we were to complete F with respect to the usual conditions, then

we would enlarge it by taking its right continuous version and throw all P-
negligible sets of F1 into Ft+ for every t < 1. Thus, a probability measure

that is absolutely continuous with respect to P on F0 is automatically abso-

lutely continuous with respect to P on F1. Failure to observe this has led to

erroneous versions of Girsanov’s theorem.

Definition A.1.4 furnishes advantages such as path regularity of integra-

tors and a plentiful supply of stopping times, despite not generally containing

every negligible set of F1. For instance, the Debut theorem holds for any

progressively measurable set.

We end this subsection by defining a local version of the notion of

equivalence for probability measures.

Definition A.1.5. Let P be a family of probability measures on the filtration

(⌦,F).

(i) For any P 2 P we let Pt denote its restriction to Ft for any t < 1.

(ii) Let P 2 P. A probability measure Q on F1 is called locally absolutely

continuous with respect to P if Qt is absolutely continuous with respect

to Pt. In this case we write Q ⌧loc P.

(iii) If Q ⌧loc P and P ⌧loc Q, we say that P and Q are locally equivalent

and write Q ⇠loc P.

Remark A.1.6. If Q ⌧loc P, then all P-nearly empty sets are Q-nearly empty.
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A.1.2 The Girsanov Theorem

We now consider how much a martingale under Q ⇠ P deviates from being a P-
martingale. We will assume throughout that the underlying filtration satisfies

the natural conditions under P, and hence Q.

Note thatQ is not necessarily absolutely continuous with respect to P on

F1, whence we cannot define the standard density process of Q with respect

to P. However, due to local absolute continuity and the Radon-Nikodym

theorem, there exists the random variables ZQ
t := dQt

dPt
and ZP

t := dPt
dQt

for each

t � 0 such that ZQ
t is a P-martingale and ZP

t is a Q-martingale. Moreover, we

can choose both ZQ
t and ZP

t to be right-continuous, strictly positive such that

ZQ
t Z

P
t ⌘ 1. Note that Q is absolutely continuous with respect to P on F1 if

and only if ZQ is uniformly P-integrable.

Lemma A.1.7 (Girsanov-Meyer). Suppose M is a local Q-martingale. Then

MZQ is a local P-martingale, and

M =
�
M0 � ZP

·� •
⇥
M,ZQ⇤�+

�
ZP

·� •
�
MZQ�� (MZP)·� • ZQ� .

Reversing the roles of P and Q we see that if M is a local P-martingale then

M � ZP
·� •

⇥
M,ZQ⇤ = M + ZQ

·� •
⇥
M,ZP⇤

= M0 + ZQ
·� •

�
MZP��

�
MZQ�

·�
• ZP. (A.1.1)

Every one of the processes in (A.1.1) is a local Q-martingale.

Now let’s suppose we have a standard d-dimensional Brownian motion

with respect to the measured filtration (⌦,F,P) and let h be a d-dimensional

locally bounded F-predictable process. Note that M :=
Pd

i=1 hi • Wi is a

locally bounded local martingale and so is its Doléans-Dade exponential

Zt := exp

✓
Mt �

1

2

Z t

0

|hs|2 ds

◆
= 1 +

Z t

0

Zs dMs. (A.1.2)

Here Z is a strictly positive supermartingale and is a martingale if and only if

E[Zt] = 1 for all t > 0.
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Proposition A.1.8. Let W be a standard d-dimensional Brownian motion

and let h be a d-dimensional locally bounded F-predictable process. Suppose

that Z is defined by (A.1.2) and define

WQ := W �H, where H· :=

Z ·

0

hs ds = [M,W ]· .

If Z is a uniformly integrable martingale, then the probability measure Q de-

fined by dQ
dP := Z1 is absolutely continuous with respect to P on F1, and WQ

is a standard Q-Brownian motion.

In particular, if there is a Lebesgue square integrable function ⌘ on

[0,1) such that |ht(!)|  ⌘t for all t and all ! 2 ⌦, then Z is uniformly

integrable and moreover P and Q are absolutely continuous on F1.

Proof. First note that since Z is a uniformly integrable martingale, there in-

deed exists a limit Z1 in L1 and a.s.-convergence. Clearly, the probability

measure Q is absolutely continuous with respect ot P and locally equivalent

to P on F1. Note that

ZP • [Z,W ] = ZP • [Z •M,W ] = ZPZ • [M,W ] = H,

so by Lemma A.1.7 it follows that WQ is a vector of Q-martingales. Since it

has the same bracket as a Brownian Motion, it must be a Q-Brownian motion

by the Levy Characterisation.

The final statement of the theorem follows from Novikov’s condition.

Example A.1.9. Note that Proposition A.1.8 is rather restrictive. For ex-

ample it does not cover the simple shift WQ
t = Wt + t as in this case Zt =

exp
�
Wt � t

2

�
, which is not uniformly integrable.

It is the case that for each t, there exists a probability measure Qt on

Ft equivalent to Pt. The pairs (Ft,Qt) are consistent in as much that for

every s < t, Qt restricted to Fs equals Qs. Therefore, there exists a unique

pre-measure Q on A1, called the projective limit, such that for any s < t we

have

Q(A) = Qt(A) = Qs(A) for A 2 Fs.
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However, even if Q is �-additive on F1, Q cannot be absolutely con-

tinuous with respect to P. Namely, since limt!1
Wt
t = 0 P-a.s., the set

⇢
lim
t!1

Wt

t
= �1

�

is P-negligible, despite the fact that limt!1
WQ

t
t = 0 Q-a.s.

We now introduce a definition in order to force the projective limit

discussed in Example A.1.9 to be �-additive on F1 by an application of Kol-

mogorov’s extension theorem; see [10, Proposition 3.9.18] for further details.

Definition A.1.10. (i) The filtered space (⌦,F) is full if whenever (Ft,Pt)

is a consistent family of probabilities on F , then there exists a �-additive

probability P on F1 whose restriction to Ft is Pt for each t � 0.

(ii) The filtered space (⌦,F,P) is full if whenever (Ft, P̃t) is a consistent

family of probabilities with P̃t ⌧loc P on Ft, then there exists a �-additive

probability P̃ on F1, whose restriction to Ft is P̃t, for each t � 0.

Proposition A.1.11. Let X be a Polish space. Then X [0,1) equipped with

its raw filtration is full. Moreover, the càdlàg and continuous path spaces,

equipped with their raw filtrations, are full.

The following proposition tells us that we can discard inconsequential

nearly empty sets from ⌦ and proceed to the natural enlargement without

obliterating the fullness property.

Proposition A.1.12. (a) Suppose that (⌦,F) is full, and let N :=
S

n2N An

for some {An} ⇢ A1. Set ⌦0 = ⌦\N and define

F 0
t := {A \ ⌦0 : A 2 Ft}.

Then (⌦0,F0) is full. Similarly, if the filtration (⌦,F,P) is full and the

P-nearly empty set N is removed from ⌦, then the filtered space induced

on ⌦0 = ⌦\N is full.

(b) If the filtered space (⌦,F,P) is full then so is its natural enlargement. In

particular, the natural filtration on the canonical path space is full.
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We are now in a position to state Girsanov’s Theorem in its general

form.

Theorem A.1.13 (Girsanov’s Theorem). Assume that W is a d-dimensional

standard Brownian motion on the full filtered space (⌦,F,P), and let h be a

locally bounded predictable process. If the Doléans-Dade exponential Z of the

local martingale M :=
Pd

n=1 hi • Wi is a martingale, then there is a unique

�-additive probability Q on F1 such that Zt =
dQt

dPt
at all finite instants t, and

WQ := W � [M,W ] = W �
Z ·

0

hs ds

is a standard Brownian motion under Q.

Remark A.1.14. We reiterate that Example A.1.9 shows that Q need not be

equivalent to P on F1.
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Appendix B

B.1 Existence and uniqueness of linear FB-

SDE

In this section we provide results from [17, Appendix A] that assert the ex-

istence and uniqueness of a solution to the following FBSDE on the filtered

space (⌦,F,P), where F = {Ft}t�0 is the naturally augmented raw filtration

with respect to a P-Brownian motion W :

d't = '̇t dt, '0 = 0 t 2 T , (B.1.1)

d'̇t = Zt dWt +B('t � ⇠t) dt+ �'̇t, (B.1.2)

where T is either [0, T ] or [0,1), B 2 R`⇥` has only positive eigenvalues,

� � 0, and ⇠ 2 L 4
� (R`). If T = [0, T ] for some T < 1, then (B.1.1)-(B.1.2)

is complemented by the terminal condition

'̇T = 0. (B.1.3)

If T = [0,1) we implicitly assume that � > 0 and the terminal condition is

replaced by the transversality condition implicit in ', '̇ 2 L 4
� (R`). A solution

to (B.1.1)-(B.1.2) is a triple

(', '̇, Z) 2 L 4
� (R`)⇥ L 4

� (R`)⇥ L 4
� (R`).

The following theorem combines [17, Theorem A.2] and [17, Theorem
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A.4]. For convenience, we set

C :=

r
B +

�2

4
I` �

�

2
I` 2 R`⇥`.

Theorem B.1.1. (a) Suppose that T < 1 and the matrix B + �2

4 I` has only

positive eigenvalues. Then the FBSDE (B.1.1)-(B.1.2) with terminal con-

dition (B.1.3) has a unique solution.

(b) Suppose that T = 1, � > 0, and the matrix B + �2

4 I` has only positive

eigenvalues. Then the unique solution to the FBSDE (B.1.1)-(B.1.2) is

given by

't =

Z t

0

e�C(t�s)⇠̄s ds (B.1.4)

where

⇠̄t = C(C + �I`)E
Z 1

t

e�(C+�I`)(s�t)⇠s ds
���Ft

�
. (B.1.5)

Moreover,

'̇t = ⇠̄t � C't (B.1.6)

and Z is derived from the martingale representation theorem with respect

to the square integrable martingale M that has dynamics

dMt = e(C+�)t dM̄t,

where

M̄t := BE
Z t

0

e�(C+�)s⇠s ds
���Ft

�
.

The following is a technical condition required in Chapter 2, taken from

[17, Proposition A.1]

Proposition B.1.2. Let T = 1. If (', '̇,M) 2 L 4
� (R`)⇥L 4

� (R`)⇥L 4
� (R`)

is a solution to the FBSDE (B.1.1)-(B.1.2), then M 2 M 2
� .
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Appendix C

In Chapters 3 and 4 we often need to compute fairly complex integrals and con-

ditional expectations. Fortunately, many of these integrals and expectations

are of the same form, which we list and simplify here.

C.1 Generalised Calculations

Proposition C.1.1. Assume that A,B 2 R such that A+B 6= 0. Then

Z t

0

e�(A+B)s

Z s

0

eBrdWrds =
A

A+B

Z t

0

e�AsWsds+
B

A+B
e�(A+B)t

Z t

0

eBsWsds

=
1

A+B

✓Z t

0

e�AsdWs � e�At

Z t

0

e�B(t�s)dWs

◆
.

Proof. By repeated use of integration by parts and Fubini’s theorem, it follows

that

Z t

0

e�(A+B)s

Z s

0

eBrdWrds

=

Z t

0

e�(A+B)s

✓
eBsWs � B

Z s

0

eBrWrdr

◆
ds

=

Z t

0

e�AsWsds� B

Z t

0

e�(A+B)s

Z s

0

eBrWrdrds

=

Z t

0

eAsWsds� B

Z t

0

eBrWr

Z t

r

e(A+B)sdsdr

=

Z t

0

e�AsWsds+
B

A+B

Z t

0

eBrWr

�
e�(A+B)t � e�(A+B)r

�
dr

=
A

A+B

Z t

0

e�AsWsds+
B

A+B
e�(A+B)t

Z t

0

eBrWrdr (C.1.1)
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= � 1

A+B
e�AtWt �

Z t

0

e�AsdWs +
1

A+B
e�(A+B)teBtWt �

Z t

0

eBrdWr

=
1

A+B

✓Z t

0

e�AsdWs � e�At

Z t

0

e�B(t�r)dWr

◆
(C.1.2)

Proposition C.1.2. Assume that A,B 2 (0,1). Then

E
Z 1

0

e�(A+B)s

Z s

0

eArdWr ds
���Ft

�
=

1

A+B

Z t

0

e�As dWs

=
1

A+B

✓
e�AtWt + A

Z t

0

e�AsWs ds

◆
.

Proof. Using Proposition C.1.1 and the fact that
R t

0 e
�As dWs is an L2-bounded

martingale, it follows that

E
Z 1

0

e�(A+B)s

✓Z s

0

eBrdWr

◆
ds
���Ft

�
=

1

A+B
E
Z 1

0

e�As dWs

���Ft

�

=
1

A+B

Z t

0

e�As dWs.

Proposition C.1.3. Assume that A,B 2 (0,1). Then

E
Z 1

t

e�(A+B)s

✓Z s

0

eBrdWr

◆
ds
���Ft

�
=

e�At

A+B

Z t

0

e�B(t�s)dWs.

Proof. Using Proposition C.1.1 and Proposition C.1.2 it follows that

E
Z 1

t

e�(A+B)s

✓Z s

0

eBrdWr

◆
ds
���Ft

�

=
1

A+B

Z t

0

e�As dWs �
1

A+B

✓Z t

0

e�AsdWs � e�At

Z t

0

e�B(t�s)dWs

◆

=
e�At

A+B

Z t

0

e�B(t�r)dWt.

121



Proposition C.1.4. Assume that A,B 2 R such that A+B 6= 0. Then

Z t

0

e�(A+B)s

Z s

0

eBrWr dr ds

= �e�At

AB
Wt +

1

A+B

✓
e�At

B

Z t

0

e�B(t�s) dWs +
1

A

Z t

0

e�As dWs

◆
.

Proof. By repeated use of integration by parts and Fubini’s theorem, it follows

that

Z t

0

e�(A+B)s

Z s

0

eBrWr dr ds

= � 1

A+B

Z t

0

eBrWr

�
e�(A+B)t � e�(A+B)r

�
dr

= � 1

A+B

✓
e�(A+B)t

Z t

0

eBrWrdr �
Z t

0

e�AsWsds

◆

= � 1

A+B

✓
e�At

AB
(A+B)Wt �

e�At

B

Z t

0

e�B(t�s) dWs �
1

A

Z t

0

e�As dWs

◆

= �e�At

AB
Wt +

1

A+B

✓
e�At

B

Z t

0

e�B(t�s) dWs +
1

A

Z t

0

e�As dWs

◆
.

Proposition C.1.5. Assume that A,B 2 (0,1). Then

E
Z 1

0

e�(A+B)s

Z s

0

eBrWr dr ds
���Ft

�
=

1

A(A+B)

Z t

0

e�As dWs

=
1

A(A+B)

✓
e�AtWt + A

Z t

0

e�AsWs ds

◆
.

Proof. Using Proposition C.1.4 and the fact that
R t

0 e
�As dWs is an L2-bounded

martingale, it follows that

E
Z 1

0

e�(A+B)s

✓Z s

0

eBrWr dr

◆
ds
���Ft

�
=

1

A(A+B)
E
Z 1

0

e�As dWs

���Ft

�

=
1

A(A+B)

Z t

0

e�As dWs.
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Proposition C.1.6. Assume that A,B 2 (0,1). Then

E
Z 1

t

e�(A+B)s

✓Z s

0

eBrWr dr

◆
ds
���Ft

�

=
e�At

AB
Wt �

e�At

B(A+B)

Z t

0

e�B(t�s) dWs.

Proof. Using Proposition C.1.4 and Proposition C.1.5 it follows that

E
Z 1

t

e�(A+B)s

✓Z s

0

eBrWr dr

◆
ds
���Ft

�

=
1

A(A+B)

Z t

0

e�As dWs +
e�At

AB
Wt

� 1

A+B

✓
e�At

B

Z t

0

e�B(t�s) dWs +
1

A

Z t

0

e�As dWs

◆

=
e�At

AB
Wt �

e�At

B(A+B)

Z t

0

e�B(t�s) dWs.

Proposition C.1.7. Assume that A 2 R\{0}. Then

Z t

0

Z s

0

e�A(t�s) dWr ds =

Z t

0

e�A(t�s)Ws ds� A

Z t

0

e�A(t�s)(t� s)Ws ds

=

Z t

0

e�A(t�s)(t� s) dWs.

Proof. By repeated use of Fubini’s theorem and integration by parts it follows

that

e�At

Z t

0

Z s

0

eArdWr ds

= e�At

Z t

0

✓
eAsWs � A

Z s

0

eArWr dr

◆
ds

= e�At

Z t

0

eAsWs ds� Ae�At

Z t

0

Z s

0

eArWr dr ds

= e�At

Z t

0

eAsWs ds� Ae�At

Z t

0

eArWr

✓Z t

r

ds

◆
dr
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=

Z t

0

e�A(t�s)Ws ds� A

Z t

0

e�A(t�s)(t� s)Ws ds

= (1� At) e�At

Z t

0

eAsWs ds+
1

A
e�At

✓
(At� 1)eAtWt �

Z t

0

(As� 1)eAs dWs

◆

=
1

A
(1� At) e�At

✓
eAtWt �

Z t

0

eAsdWs

◆

+
1

A
e�At

✓
(At� 1)eAtWt �

Z t

0

(As� 1)eAs dWs

◆

=
1

A
(At� 1) e�At

Z t

0

eAsdWs �
1

A
e�At

Z t

0

(As� 1)eAs dWs

=

Z t

0

e�A(t�s)(t� s) dWs.

Proposition C.1.8. Assume that A 2 R\{0}. Then

Z t

0

Z s

0

e�A(s�r)(s� r) dWr ds

=

Z t

0

e�A(t�s)(t� s)Ws ds

=
1

A2
Wt �

1

A

Z t

0

e�A(t�s)(t� s) dWs �
1

A2

Z t

0

e�A(t�s) dWs.

Proof. From Proposition C.1.7 we see that

Z t

0

Z s

0

e�A(s�r)(s� r)dWr ds

=

Z t

0

✓Z s

0

e�A(s�r)Wr dr � A

Z s

0

e�A(s�r)(s� r)Ws dr

◆
ds

=

Z t

0

✓
e�As

Z s

0

eArWr dr � Ae�Ass

Z s

0

eArWr dr + Ae�As

Z s

0

reArWr dr

◆
ds.

(C.1.3)

We look at each of the three double integrals in turn.

Z t

0

e�As

Z t

0

eArWr ds =

Z t

0

eArWr

Z t

r

e�As ds dr

=
1

A

Z t

0

eArWr

�
e�Ar � e�At

�
dr
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=
1

A

Z t

0

Wr dr �
1

A
e�At

Z t

0

eArWr dr, (C.1.4)

Z t

0

Ae�Ass

Z s

0

eArWr dr ds = A

Z t

0

eArWr

Z t

r

e�Ass ds dt

=
1

A

Z t

0

eArWr

�
(Ar + 1)e�Ar � (At+ 1)e�At

�
dr

=

Z t

0

rWr dr +
1

A

Z t

0

Wrdr

� e�At

✓
t

Z t

0

eArWr dr +
1

A

Z t

0

eArWr dr

◆
,

(C.1.5)
Z t

0

Ae�As

Z s

0

eArrWr dr ds = A

Z t

0

eArrWr

Z t

r

e�As ds dr

=

Z t

0

eArrWr

�
e�Ar � e�At

�
dr

=

Z t

0

rWrdr � e�At

Z t

0

eArrWr dr. (C.1.6)

Thus, substituting (C.1.4), (C.1.5) and (C.1.6) into (C.1.3) we see that

Z t

0

Z s

0

e�A(s�r)(s� r) dWr ds

=

Z t

0

e�A(t�s)(t� s)Ws ds

=
1

A
e�Att

✓
eAtWt �

Z t

0

eAs dWs

◆

� 1

A2
e�At

✓
(At� 1)eAtWt �

Z t

0

(As� 1)eAs dWs

◆

=
1

A2
Wt �

1

A

Z t

0

e�A(t�s)(t� s) dWs �
1

A2

Z t

0

e�A(t�s) dWs.

Proposition C.1.9. Assume that A,B 2 R\{0} such that A+B 6= 0. Then

Z t

0

e�As

Z s

0

Z r

0

(r � q)e�B(r�q)dWq dr ds

=

Z t

0

e�(A+B)s

Z s

0

eBr(s� r)Wr dr ds
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=
1

(A+B)2

Z t

0

e�ArWr dr �
e�At

(A+B)

Z t

0

e�B(t�r)(t� r)Wr dr

� e�At

(A+B)2

Z t

0

e�B(t�r)Wr dr

= � 1

AB2
e�AtWt +

1

B(A+B)
e�At

Z t

0

e�B(t�s)(t� s) dWs

+
A+ 2B

B2(A+B)2
e�At

Z t

0

e�B(t�s) dWs +
1

A(A+B)2

Z t

0

e�AsdWs.

Proof. Using Proposition C.1.8 we see that

Z t

0

e�As

Z s

0

Z r

0

(r � q)e�B(r�q)dWq dr ds

=

Z t

0

e�(A+B)s

Z s

0

eBr(s� r)Wr dr ds (C.1.7)

We look at each of the double integrals in turn, simplifying them utilising

Fubini’s theorem and integration by parts repeatedly.

Z t

0

e�(A+B)ss

Z s

0

eBrWr dr ds

=
1

(A+B)2

Z t

0

eBrWr

�
((A+B)r + 1)e�(A+B)r � ((A+B)t+ 1)e�(A+B)t

�
dr

=
1

(A+B)

Z t

0

e�ArrWr dr +
1

(A+B)2

Z t

0

e�ArWr dr

� e�Att

(A+B)

Z t

0

e�B(t�r)Wr dr �
e�At

(A+B)2

Z t

0

e�B(t�r)Wr dr, (C.1.8)

Z t

0

e�(A+B)s

Z s

0

eBrrWr dr ds

=
1

(A+B)

Z t

0

eBrrWr

�
e�(A+B)r � e�(A+B)t

�
dr

=
1

(A+B)

Z t

0

e�ArrWr dr �
e�At

(A+B)

Z t

0

e�B(t�r)rWr dr. (C.1.9)

Substituting (C.1.9) and (C.1.8) into (C.1.7) we see that

Z t

0

e�As

Z s

0

Z r

0

(r � q)e�B(r�q)dWq dr ds
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=
1

(A+B)2

Z t

0

e�ArWr dr �
e�At

(A+B)

Z t

0

e�B(t�r)(t� r)Wr dr

� e�At

(A+B)2

Z t

0

e�B(t�r)Wr dr

= � 1

A(A+B)2

✓
e�AtWt �

Z t

0

e�ArdWr

◆

� e�At

B(A+B)

✓
1

B
Wt �

Z t

0

e�B(t�r)(t� r)dWr �
1

B

Z t

0

e�B(t�r) dWr

◆

� e�(A+B)t

B(A+B)2

✓
eBtWt �

Z t

0

eBr dWr

◆

= � 1

AB2
e�AtWt +

1

B(A+B)
e�At

Z t

0

e�B(t�s)(t� s) dWs

+
A+ 2B

B2(A+B)2
e�At

Z t

0

e�B(t�s) dWs +
1

A(A+B)2

Z t

0

e�AsdWs.

Proposition C.1.10. Assume that A,B 2 (0,1). Then

Z t

0

e�As

Z s

0

e�B(s�r)(s� r) dWr ds

=
1

(A+B)2

Z t

0

e�As dWs �
1

(A+B)
e�At

Z t

0

e�B(t�s)(t� s) dWs

� 1

(A+B)2
e�At

Z t

0

e�B(t�s) dWs.

Proof. By Proposition C.1.7, Proposition C.1.4 and Proposition C.1.9

Z t

0

e�As

Z s

0

e�B(s�r)(s� r) dWr ds

=

Z t

0

e�As

✓Z s

0

e�B(s�r)Wr dr � B

Z t

0

e�B(s�r)(s� r)Wr dr

◆
ds

=
n
� e�At

AB
Wt +

1

A+B

✓
e�At

B

Z t

0

e�B(t�s) dWs +
1

A

Z t

0

e�As dWs

◆)

+

(
1

AB
e�AtWt �

1

(A+B)
e�At

Z t

0

e�B(t�s)(t� s) dWs

� A+ 2B

B(A+B)2
e�At

Z t

0

e�B(t�s) dWs �
B

A(A+B)2

Z t

0

e�AsdWs

)
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=
1

(A+B)2

Z t

0

e�As dWs �
1

(A+B)
e�At

Z t

0

e�B(t�s)(t� s) dWs

� 1

(A+B)2
e�At

Z t

0

e�B(t�s) dWs.

Proposition C.1.11. Assume that A,B 2 (0,1). Then

E
Z 1

0

e�As

Z s

0

e�B(s�r)(s� r) dWr ds
���Ft

�
=

1

(A+B)2

Z t

0

e�As dWs.

Proof. Using Proposition (C.1.10) and the fact that
R ·
0 e

�As dWs is an L2-

bounded martingale, it follows that

E
Z 1

0

e�As

Z s

0

e�B(s�r)(s� r) dWr ds
���Ft

�

=
1

(A+B)2
E
Z 1

0

e�As dWs

���Ft

�

=
1

(A+B)2

Z t

0

e�As dWs.

Proposition C.1.12. Assume that A,B 2 (0,1). Then

E
Z 1

t

e�As

Z s

0

e�B(s�r)(s� r) dWr ds
���Ft

�

=
e�At

(A+B)

⇢Z t

0

e�B(t�s)(t� s) dWs +
1

(A+B)

Z t

0

e�B(t�s) dWs

�
.

Proof. Using Proposition (C.1.10) and Proposition C.1.11, it follows that

E
Z 1

0

e�As

Z s

0

e�B(s�r)(s� r) dWr ds
���Ft

�

=
e�At

(A+B)

⇢Z t

0

e�B(t�s)(t� s) dWs +
1

(A+B)

Z t

0

e�B(t�s) dWs

�
.
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Proposition C.1.13. Assume that A,B 2 (0,1). Then

E
Z 1

0

e�As

Z s

0

Z r

0

e�B(r�q)(r � q) dWq dr ds
���Ft

�
=

1

A(A+B)2

Z t

0

e�Ar dWr.

Proof. Using Proposition C.1.9 and the fact that
R ·
0 e

�AsdWs is an L2-bounded

martingale, it follows that

E
"Z 1

0

e�As

Z s

0

Z r

0

e�B(r�q)(r � q) dWq dr ds

�����Ft

#

=
1

A(A+B)2
E
Z 1

0

e�AsdWs|Ft

�
(C.1.10)

=
1

A(A+B)2

Z t

0

e�AsdWs. (C.1.11)

Proposition C.1.14. Assume that A,B 2 (0,1). Then

E
Z 1

t

e�As

Z s

0

Z r

0

(r � q)e�B(r�q)dWq dr ds
���Ft

�

=
e�At

(A+B)2

✓
(A+B)

Z t

0

e�B(t�r)(t� r)Wr dr +

Z t

0

e�B(t�r)Wr dr �
Wt

A

◆

Proof. Using Propositon C.1.9 and Proposition C.1.13 it follows that

E
Z 1

t

e�As

Z s

0

Z r

0

(r � q)e�B(r�q)dWq dr ds
���Ft

�

=
1

A(A+B)2

Z t

0

e�AsdWs +
1

(A+B)2

Z t

0

e�ArWr dr

+
e�At

(A+B)

Z t

0

e�B(t�r)(t� r)Wr dr +
e�At

(A+B)2

Z t

0

e�B(t�r)Wr dr

=
e�At

(A+B)2

✓
(A+B)

Z t

0

e�B(t�r)(t� r)Wr dr +

Z t

0

e�B(t�r)Wr dr �
Wt

A

◆

=
e�At

B

⇣ 1

AB
Wt �

A+ 2B

B(A+B)2

Z t

0

e�B(t�s) dWs

� 1

(A+B)

Z t

0

e�B(t�s)(t� s) dWs

⌘
.
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Appendix D

D.1 Symbolic Algebra

We compute the main results in Chapters 3 and 4 with a computer algebra

package. Originally we used the package SymPy in Python but later switched

to Sage due to performance-related issues [72, 69, 55]. All of the code used in

these chapters can be found in the GitHub repository

https://github.com/odshelley/thesis.

The calculations for which we use a symbolic algebra package are all

linear combinations of expectations of the form

E
Z 1

0

e��tX1
t X

2
t dt

�
,

where both X1 and X2 are either an ABM, an OU process, or something

similar. Hence, we write functions to calculate such expectations for the com-

binations. For instance, suppose that X1 is an ABM, and X2 is an OU process,

such that

X1
t = x1

0 + ↵t+ �Wt

and

X2
t = x2

0e
�Ct + µ

�
1� e�Ct

�
+ �

Z t

0

e�C(t�s),

for some x1
0, x

2
0,↵, �, µ, � 2 R and C 2 R++. Then a straightforward (albeit
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tedious) calculation shows that

E
Z 1

0
e
��t

X
1
t X

2
t dt

�

=
�
3
x
1
0x

2
0 + �

2
Cx

1
0x

2
0 + �

2
Cx

1
0µ+ �C

2
x
1
0µ+ �

2
↵x

2
0 + 2 �C↵µ+ C

2
↵µ+ �

2
�� + �C��

(� + C)2�2
.

The above formula is the output of the function abm times ou evaluated at

(x1
0,↵, �, x

2
0, µ, �, C) found in the notebook homogeneous:

def abm times ou ( Z11 , Z12 , Z13 , Z21 , Z22 , Z23 , c ) :

i n t e g r a l = d e f i n i t e i n t e g r a l ( exp ( c ∗ s ) ∗ s , s , 0 , t )

term1 = Z11∗Z21∗exp ( − c ∗ t )

term2 = Z11∗Z22 ∗( 1 − exp ( − c ∗ t ) )

term3 = Z12∗Z21∗exp ( −c ∗ t ) ∗ t

term4 = Z12∗Z22 ∗( 1 − exp ( −c ∗ t ) ) ∗ t

term5 = Z13∗Z23 ∗( t − c ∗ exp ( − c ∗ t ) ∗ i n t e g r a l )

summand = term1 + term2 + term3 + term4 + term5

return d e f i n i t e i n t e g r a l ( exp(− de l t a ∗ t ) ∗ ( summand ) , t , 0 , i n f i n i t y )

Example D.1.1. The following code calculates the return loss seen in Theo-

rem 3.2.6 before approximating for small transaction cost �.
bph t = ( gamma2 ∗ alpha2 − gamma1 ∗ alpha1 ) / ( ( gamma1 + gamma2 ) )

bph W = ( gamma2 ∗ beta2 − gamma1 ∗ beta1 ) / ( ( gamma1 + gamma2 ) )

bmu t = ( gamma1 ∗ gamma2 ∗ sigma ∗∗2 / ( gamma1 + gamma2 ) ) ∗ ( alpha1 + alpha2 )

bmu W = ( gamma1 ∗ gamma2 ∗ sigma ∗∗2 / ( gamma1 + gamma2 ) ) ∗ ( beta1 + beta2 )

dlta mu = bph t ∗ de l t a / ( C ∗ ( C + de l t a ) )

dlta W = − bph W

terms = [ ]

terms . append ( abm times abm ( 0 , theta1 , theta2 , 0 , theta5 , theta6 ) )

terms . append ( theta7 ∗ abm times ou ( 0 , theta1 , theta2 , 0 , theta3 , theta3 , C ) )

terms . append ( abm times ou ( 0 , theta5 , theta6 , 0 , theta3 , theta4 , C ) )

terms . append ( theta7 ∗ ou t imes ou ( 0 , theta3 , theta4 , 0 , theta3 , theta4 , C , C ) )

u t i l i t y r e t u r n = sum( terms )

u t i l i t y r e t u r n = u t i l i t y r e t u r n . subs (

theta1 == bph t

) . subs (

theta2 == bph W

) . subs (

theta3 == dlta mu

) . subs (

theta4 == dlta W

) . subs (

theta5 == bmu t

) . subs (

theta6 == bmu W

) . subs (

theta7 == ( k ∗ gamma1 − gamma2 ) ∗ sigma ∗∗2 / (k+1)

) . f a c t o r ( )
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Appendix E

E.1 Auxiliary results from Functional Analy-

sis and Measure Theory

In this appendix, we collect some key results from Functional Analysis and

Measure Theory that are referenced in Chapter 5.

E.1.1 Urysohn’s Lemma

For the convenience of the reader we recall Urysohn’s lemma as stated in

Aliprantis [1, Lemma 2.46 ].

Lemma E.1.1. Let ⌦ be a topological space. The following statements are

equivalent.

1. The space ⌦ is normal.

2. Every pair of nonempty disjoint closed subsets of ⌦ can be separated by

a continuous function.

3. If C is a closed subset of ⌦ and f : C ! [0, 1], then there is a continuous

extension f̂ : C ! [0, 1] of f satisfying

sup
x2⌦

f̂(x) = sup
x2C

f(x).

E.1.2 Locally compact spaces

Here we reference some results and concepts relating to locally compact Haus-

dor↵ spaces.
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Definition E.1.2. Let ⌦ be a non-compact locally compact Hausdor↵ space

with topology ⌧ . Set ⌦1 := ⌦ [ {1}, where 1 62 ⌦, and let

⌧1 := ⌧ [ {⌦1\K : K ⇢ ⌦ is compact}

Then ⌦1 (with the topology ⌧1) is called the one-point compactification of

⌦.

The one-point compactification of a non-compact locally compact Haus-

dor↵ space has nice properties; see [33, Proposition 4.36] for a proof.

Theorem E.1.3. Let ⌦ be a non-compact locally compact Hausdor↵ space.

Then ⌦1 is a compact Hausdor↵ space and ⌦ is an open dense subset of

⌦1. Moreover, f 2 C(⌦) extends continuously to f1 2 C(⌦1) if and only if

f = f0 + c where f0 2 C0(⌦) and c is a constant. In this case, the extension

satisfies f1(1) = c.

Next, we recall the famous Stone-Weierstraß Theorem. To this end,

recall that a subset C ⇢ C0(⌦) vanishes nowhere if for all x 2 ⌦, there exists

some f 2 C such that f(x) 6= 0, and it separates points if for each x, y 2 ⌦
with x 6= y, there exists f 2 C such that f(x) 6= f(y).

Theorem E.1.4 (Stone-Weierstraß Theorem). Let ⌦ be a locally compact

Hausdor↵ space and C be a subalgebra of C0(⌦). Then C is dense in C0(⌦)

(for the topology of uniform convergence) if and only if it separates points and

vanishes nowhere.

Proof. See [26].

E.1.3 Dual spaces

We now consider the topological notions of weak and weak⇤ convergence. This

allows us to compare the topological notions of weak convergence of measures

with the notions of weak and vague convergence as stated in Definition 5.1.10.

Along the way we will be able to state the Banach Alaoglu theorem.

Definition E.1.5. Let ⌦ and ⌦0 both be vector spaces.
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(a) We call the space of all linear forms on ⌦ its algebraic dual and denote

it by ⌦⇤. For a topology ⌧ on ⌦, we call the space of all ⌧ -continuous

linear forms on ⌦ the topological dual of ⌦ with respect to ⌧ and denote it

by (⌦, ⌧)0. When the topology is understood it will be omitted from the

notation.

(b) We say that the pair h⌦,⌦0i is a dual pair if it has an associated bilinear

form h·, ·i : ⌦⇥ ⌦0 ! R that separates points of ⌦ and ⌦0, i.e.

• if h!,!0i = 0 for all !0 2 ⌦0, then ! = 0;

• if h!,!0i = 0 for all ! 2 ⌦, then !0 = 0.

We call h·, ·i the duality of the dual pair.

(c) If we associate a norm k·k to ⌦, then we say ⌦0 is its norm dual if it is

the space L(⌦,R) of all continuous linear forms from ⌦ to R. In which

case, the operator norm on ⌦0 is also called the dual norm. In particular,

h⌦,⌦0i form a dual pair.

Suppose we have a dual pair h⌦,⌦0i. We define the weak topology on

⌦ to be the topology �(⌦,⌦0) generated by the family of seminorms on {p!0 :

!0 2 ⌦0} where

p!0(!) := |h!,!0i| 8! 2 ⌦.

Thus, (⌦, �(⌦,⌦0)) is a locally convex topological vector space. Note that

!↵
w�! ! if and only if h!↵,!0i ! h!,!0i in R for all !0 2 ⌦0. Similarly, the

weak⇤ topology �(⌦0,⌦) on ⌦0 is generated by {p! : ! 2 ⌦}, and !0
↵

w⇤
�! !0 if

and only if h!,!0
↵i ! h!,!0i in R for all ! 2 ⌦.

It is key that the spaces in a dual pair are each others continuous topo-

logical duals [1, Theorem 5.93].

Theorem E.1.6. Let h⌦,⌦0i be a dual pair. Then the topological dual of

the topological vector space (⌦, �(⌦,⌦0)) is ⌦0. That is, for any �(⌦,⌦0)-

continuous linear form F , there exists a unique !0 2 ⌦0 such that F (!) =

h!,!0i. Similarly we have (⌦0, �(⌦0,⌦))0 = ⌦.

Due to Theorem E.1.6 and the fact that for an infinite dimensional space

⌦ there are numerous subspaces ⌦0 of the algebraic dual ⌦⇤ that separate
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points, we have some elbow room in our choice of a dual. The following

definition narrows our focus.

Definition E.1.7. Let h⌦,⌦0i be a dual pair. A locally convex topology ⌧ on

a ⌦ is called consistent with h⌦,⌦0i if (⌦, ⌧)0 = ⌦0. Consistent topologies on

⌦0 are defined similarly.

Remark E.1.8. The remarkable Mackey-Arens Theorem describes exactly

which locally convex topologies on ⌦ are consistent with h⌦,⌦0i [1, Theorem
5.112].

We can now state the Banach-Alaoglu theorem [1, Theorem 5.105].

Theorem E.1.9. Let h⌦,⌦0i be a dual pair and V any neighbourhood of zero

with respect to a locally convex topology ⌧ on ⌦ that is consistent with h⌦,⌦0i.
Then

V � := {!0 2 ⌦0 : |h!,!0i|  1 8! 2 V } (E.1.1)

is weak⇤ compact. In particular, the closed unit ball of the norm dual of a

normed space is weak⇤ compact.

E.1.4 Comparing weak notions of convergence

As in Section 5.1.2 we now assume that ⌦ is a metrisable topological space,

to which we associate a metric d.

Definition E.1.10. Let F ⇢ M(⌦). We say that a family C of measurable

maps ⌦! R is a separating family for F if, for any two measures µ, ⌫ 2 F ,

✓Z
f dµ =

Z
f d⌫ 8f 2 C \ L1(µ) \ L1(⌫)

◆
) µ = ⌫.

Useful separating classes for M(⌦) are introduced in the next theorem.

For any K ⇢ ⌦ and " > 0, define ⇢K," : ⌦! R to be

⇢K," := 1�
⇥
"�1d(x,K) ^ 1

⇤
.

135



Note that ⇢K," is a Lipschitz continuous function such that

⇢K," =

8
<

:
1, x 2 K

0, d(x,K) � "

Theorem E.1.11.

(a) Lip1(⌦, [0, 1]) is separating for M(⌦).

(b) If ⌦ is additionally locally compact, then Cc(⌦) \ Lip1(⌦, [0, 1]) is a sepa-

rating class for M(⌦).

Proof. Assume that µ1, µ2 2 M(⌦) such that
R
f dµ1 =

R
f dµ2 for all f 2

Lip1(⌦; [0, 1])\L1(µ1)\L1(µ2). Since both µ1 and µ2 are tight, we need only

show that µ1(K) = µ2(K) for K compact. Indeed, suppose this is the case,

and let A 2 B(⌦). Then by tightness, for any " > 0, there exists a compact

set K" such that |µi| (A\K") < " for i = 1, 2, whence

|µ1(A)� µ2(A)| = |(µ1(K")� µ2(K")) + µ1(A\K")� µ2(A\K")|

 |µ1| (A\K") + |µ2| (A\K")

< ".

Take K 2 B(⌦) compact. Since µ1, µ2 are Radon measures, for each

x 2 K there exists some open set Ux such that x 2 Ux, |µ1|(Ux) < 1 and

|µ2|(Ux) < 1. Since K is compact we can find finitely many points x1, . . . , xn

such that K ⇢
Sn

k=1 Uxk
=: U . By construction we have |µi| (U) < 1, whence

1U 2 L1(µi) for i = 1, 2, respectively. Since U c is closed and K \ U c = ;, we
have � := d(U c, K) > 0. By definition, 1K  ⇢K,"  1U 2 L1(µi) if " 2 (0, �).

Note that ⇢K," ! 1K , so by the dominated convergence theorem

µi(K) =

Z

⌦

1k dµi =

Z

⌦

1k dµ+
i �

Z

⌦

1k dµ�
i

= lim
"#0

✓Z

⌦

⇢K," dµ
+
i �

Z

⌦

⇢K," dµ
�
i

◆

= lim
"#0

Z

⌦

⇢K," dµi.
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However, "⇢K," 2 Lip1(⌦; [0, 1]) for all " > 0, hence by assumption

Z
⇢K," dµ1 = "�1

Z
"⇢K," dµ1 = "�1

Z
"⇢K," dµ2 =

Z
⇢K," dµ2,

whence µ1(K) = µ2(K). Finally, if ⌦ is locally compact, then we can choose

the neighbourhoods Ux to be relatively compact. Hence U is relatively com-

pact, whence ⇢K," has compact support.

According to to Theorem E.1.10, Cb(⌦) is a separating class for M(⌦).

In particular, this means that hM(⌦), Cb(⌦)i forms a dual pair under the

duality

hµ, fi := Iµ(f). (E.1.2)

This lets us define the (weak) topology ⌧w := �(M(⌦), Cb(⌦)). We note

that the mapping µ 7! Iµ(f) is ⌧w-continuous for each f 2 Cb(⌦). Thus, a net

{µ↵} ⇢ M(⌦) satisfies µ↵
⌧w�! µ if and only if Iµ↵(f) ! Iµ(f) for all f 2 Cb(⌦).

The following theorem gives us the key to comparing ⌧w-convergence with the

weak convergence of Definition 5.1.10.

Theorem E.1.12. ⌦ is Polish if and only if (M(⌦), ⌧w) is Polish.

Proof. See [1, Theorem 15.15]

Note that in a metric space, we can replace the convergence of nets with

the convergence of sequences. Thus, Theorem E.1.12 shows us that when ⌦

is Polish for {µ↵} [ {µ} ⇢ M(⌦) we have µ↵
⌧w�! µ if and only if for each

subsequence {n} ⇢ ↵ we have w-lim!1 µn = µ, so the two concepts of weak

convergence coincide.

We now investigate in what sense this is weak⇤ convergence. To do so,

we include the integral representation theorem for (Cb(⌦))0 found in the work

of Dunford and Schwarz [28, Chapter IV.6, Theorem 2].

Definition E.1.13. For a Hausdor↵ pace ⌦ we define the space rba(⌦) to be

the linear space of regular bounded additive set functions defined on B(⌦).

Associated to rba(⌦) is the total variation norm.

Theorem E.1.14. Let ⌦ be a normal topological space. Then the dual norm

of Cb(⌦) is isometrically isomorphic to rba(⌦) via the mapping µ 7!
R
⌦ · dµ.
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Thus, the weak topology �(rba(⌦), Cb(⌦)) is equivalent to the weak⇤

topology �((Cb(⌦))0, Cb(⌦)). It is clear that M(⌦) ✓ rba(⌦), so {µn} ⇢
M(⌦) is weakly convergent in the sense of Definiton 5.1.10 if and only if

{Iµn} ⇢ (Cb(⌦))0 is weak⇤ convergent.

If the metrisable space is additionally locally compact, then Theorem

E.1.11 shows that Cc(⌦) is a separating class for M(⌦). In particular, we can

define the dual pairing hM(⌦), Cc(⌦)i by the duality (E.1.2) and let ⌧v :=

�(M(⌦), Cc(⌦)), which we call the vague topology on M(⌦).

It holds again that if ⌦ is Polish, then (M(⌦), ⌧v) is Polish. Thus

it is clear that for {µ↵} [ {µ} ⇢ M(⌦) we have µ↵
⌧v�! µ if and only if

for each subsequence {n} ⇢ ↵ we have v-lim!1 µn = µ. Furthermore, by

Theorem 5.1.8(a) it follows that (C0(⌦))0 is isometrically isomorphic to M(⌦).

In particular, this means that {µn} ⇢ M(⌦) is vaguely convergent in the

sense of Definiton 5.1.10 if and only if {Iµn} ⇢ (C0(⌦))0 is weak⇤ convergent.

Of course, if ⌦ is compact then M(⌦) = (Cc(⌦))0 and the notions of vague

convergence and weak⇤ convergence coincide.
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[6] K. J. Arrow, Collected papers of Kenneth J. Arrow, Volume 3: Individual

choice under certainty and uncertainty, Belknap Press, Cambridge, MA,

1984.

[7] R. J. Aumann, Agreeing to disagree, Ann. Stat. 4 (1976), no. 6, 1236–

1239.

[8] B Basrak and H. Planinić, A note on vague convergence of measures,

Statist. Probab. Lett. 153 (2019), 180–186.

[9] C. Berg, J. P.-R. Christensen, and P. Ressel, Harmonic analysis on semi-

groups, Graduate Texts in Mathematics, Springer New York, New York,

NY, 1984.

139



[10] K. Bichteler, Stochastic integration with jumps, Encyclopedia of math-

ematics and its applications, Cambridge University Press, Cambridge,

2002.

[11] P. Billingsley, Convergence of probability measures, Wiley, 1968.

[12] N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, En-

cyclopedia of mathematics and its applications, vol. 27, Cambridge uni-

versity press, Cambridge, 1989.

[13] F Black and M. Scholes, The pricing of options and corporate liabilities,

J. Pol. Econ. 81 (1973), no. 3, 637–654.

[14] V. I. Bogachev, Measure theory. Vol. I, II, Springer-Verlag, Berlin, 2007.

[15] , Weak convergence of measures, American mathematical society,

2018.

[16] M. Bonelli, A. Landier, G. Simon, and D. Thesmar, The capacity of trad-

ing strategies.

[17] B. Bouchard, M. Fukasawa, M. Herdegen, and J. Muhle-Karbe, Equi-

librium returns with transaction costs, Finance Stoch. 22 (2018), no. 3,

569–601.

[18] N. Bourbaki, Elements of mathematics: Integration I, Springer, Berlin,

Heidelberg, 2004.

[19] A. Buss, B. Dumas, R. Uppal, and G. Vilkov, The intended and

unintended consequences of financial-market regulations: A general-

equilibrium analysis, J. Monet. Econ. 81 (2016), 25–43.

[20] Adrian Buss and B. Dumas, The dynamic properties of financial-market

equilibrium with trading fees, J. FInance 74 (2019), no. 2, 795–844.

[21] J. Cai, M. Rosenbaum, and P. Tankov, Asymptotic optimal tracking: feed-

back strategies, Stochastics 89 (2017), no. 6-7, 943–966.

[22] N. Chriss and R. F. Almgren, Optimal execution of portfolio transactions,

J. Risk. 3 (2001), 5–40.

140



[23] J. C. Cox, J. E. Ingersoll, and S. A. Ross, A theory of the term structure

of interest rates, Econometrica 53 (1985), no. 2, 385–407.

[24] D. J. Daley and D. Vere-Jones, An introduction to the theory of point

processes: Vol. I, 2nd ed., Probability and its applications, Springer, New

York, 2003.

[25] M. H. A. Davis and A. R. Norman, Portfolio selection with transaction

costs, Math. Oper. Res. 15 (1990), no. 4, 676–713.

[26] Louis de Branges, The Stone-Weierstrass theorem, Proc. Amer. Math.

Soc. 10 (1959), no. 5, 822–824.
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