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ABSTRACT
We study a campaigner who wants to learn the structure of a social

network by observing the underlying diffusion process and inter-

vening on it. Using synchronous majoritarian updates on binary

opinions as the underlying dynamics, we offer upper bounds on

the campaigner’s budget for learning any network with certainty,

considering both observation and intervention resources, and fur-

ther improving them for the case of clique networks. Additionally,

we investigate the learning progress of the campaigner when her

budget falls below these upper bounds. For such cases, we design a

greedy campaigning strategy aimed at optimising the campaigner’s

information gain at each opinion diffusion step.
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1 INTRODUCTION
The study of opinion dynamics has been central for distributed

artificial intelligence, with important economic [1, 11], political

[7], epidemiological [20, 24] and marketing [10, 27] applications.

Opinion dynamics provide us with a toolbox to understand social

network properties such as network resilience, node centrality, and

community structure, as well as a useful predictor for collective

decision-making [4, 6]. When the graph structure is known, un-

derstanding the dynamics of the influence relations among agents

[14, 17] has attracted great attention in computer science. The

seminal contribution by Kempe, Kleinberg and Tardos on influ-

ence maximisation [16], for example, features a campaigner who

observes a social network where nodes hold a (typically binary)
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opinion, which is synchronously updated by a function of their

incoming connections. In it, the campaigner aims to identify the

most influential members in order to drive the network’s collective

opinion to a desired outcome. Other recent papers, e.g.,[5], add a

manipulation layer by studying the influence spread under forms

of manipulation such as modifying opinions or links.

The computational studies of influence maximisation in social

networks have been largely based on the assumption that the cam-

paigner has access to the graph structure; an assumption that is not

satisfied in many real world scenarios. For instance, a marketing

firm may want to reach out to the most influential agents without

knowing beforehand who they are. They may have to estimate the

agent’s influence power from simply observing how the opinions

change in the network as a function of what they say.

In this paper, we analyse situations where the campaigner aims

at learning an unknown network structure by modifying some of

the agents’ opinions and observing the resulting dynamics. We

carry out our analysis on social networks with binary opinions and

synchronous majority dynamics [16], which, despite its descriptive

simplicity, displays a highly complex structure [9]. We start with a

campaigner endowedwith budgets (𝑂𝑏𝑠) and (𝐼𝑛𝑡) for the costs she
incurs in terms of the observations and interventions, respectively,

carried out on the network.

Clearly, under the synchronous majority dynamics, different

graphs could be behaviourally identical when starting from the

same network labelling. Take the example in Figure 1, where the

campaigner observes the transition from time 𝑡 to time 𝑡 + 1 in

Figure 1a and notices that both networks in Figure 1b are consistent

with it. The reader may verify that, in total, there are only nine

feasible networks that admit this single observation, compared to

the original 64 possible networks that could be generated from these

three agents. Therefore, even if the campaigner cannot pinpoint the

exact underlying network after one step of the opinion diffusion, it

still refines her knowledge, allowing for a more educated guess.

We are interested in instructing the campaigner on how to spend

her budget so she can correctly identify the underlying network.

Notice that each opinion diffusion step rules out all those networks

that are not consistent with the observed behaviour.

Our contribution. First, we study the campaigner’s budget bounds

required to learn the network exactly. Specifically, Theorem 1

proves that this can be done for any loop-free network of 𝑛 agents

by spending O(𝑛2) of the observation budget and intervening on
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𝑡 𝑡 + 1

(a) Observed dynamic

or

(b) Some plausible networks

Figure 1: The campaigner’s problem. 𝐿 := { , } is the set of
labellings and is an unlabelled agent. Each directed edge
denotes a plausible influence relation under synchronous
majority dynamics, given the observations.

O(𝑛3) agents. Moreover, we improve these bounds if inquiring

about a specific network structures. We elaborate on cliques, as

agents in them are the most resilient to being manipulated and the

campaigner is forced to intervene since no additional information

can be retrieved from observing more than one opinion diffusion

step. Table 1 summarises our technical contributions to these tasks.

Furthermore, we investigate the problem of learning the network

when the campaigner has a budget that falls below the general

O(𝑛3) upper bound, and we look at optimal intervention strategies

to maximise the information gain.

Table 1: Summary of the campaigner’s budget upper bounds
for different learning tasks.

Learning task Observation
budget

Intervention
budget

Learn any network 𝐺 ∈ H O(𝑛2) O(𝑛3)
Identify an odd clique O(𝑛) O(𝑛2)
Identify an even clique O(𝑛) O(𝑛)

Related literature. Our approach connects to three prominent

lines of research in the distributed AI and multi-agent systems

literature: influence maximisation [5, 7, 16], opinion dynamics [2,

3, 9] and network inference [22, 24].

Influence Maximisation. Tracing back to the seminal contribution

by Kempe, Kleinberg, and Tardos [16] for the Independent Cascade

and Linear Threshold models, several efficient algorithms have

been devised for optimal campaigning strategies, such as DD [8],

CELF [20], TIM and TIM+ [26], under the assumption that the net-

work parameters are known. In the context of computational social

choice, Bredereck and Elkind [5] studied budgeted manipulations

of networks with synchronous majority dynamics, evaluating the

success of targeting a set of agents based on the optimistic and

pessimistic scenarios of the converging opinion distribution. Sim-

ilarly, Castiglioni et al. [7] studied how manipulators exploit the

network structure to transmit both positive and negative messages

to sway election results, trying to maximise the improvement in

the victory margin. Once again, these studies assume knowledge

of the network structure.

Online influence maximisation in graphs with unknown edge

weights has been investigated in the literature [18, 19, 24] develop-

ing a campaigner’s strategy based on a learning-through-feedback

pipeline. We draw on this approach, but without making assump-

tions on the number of influencers each node has and, instead,

introduce a temporal dimension in a similar spirit to [10].

Opinion Dynamics. Models of opinion dynamics have been widely

investigated in the multiagent systems community, studying asyn-

chronous [2, 3] and synchronous consensus-reaching majority dy-

namics [5, 9]. In [2] and [3], the authors identified computational

conditions under which a given set of agents (seeds) can determine

a consensus opinion, finding feasible complexity results for such set

being half of the agents, and infeasible otherwise. Similar consider-

ations, from a manipulation angle, are drawn in Auletta et al. [1].

In contrast, our approach focuses on minimising the campaigner’s

budget spent to learn a network, for which we found that a consen-

sus is the least informative state since any network’s opinion will

be stable once reaching it.

Network Inference. This branch of research, often found in epidemi-

ology, studies a network-learning task by using a cascade model

and solving it via convex optimisation. Myers and Leskovec [22]

and Netrapalli and Sanghavi [24] studied contagion traces over

time, knowing when a node became infected but not who infected

it. Subsequent works [12, 13] proved that finding the most likely

underlying graph is NP-hard to solve exactly given only some in-

fecting times. So, instead, they developed approximation algorithms

to retrieve core-periphery structures in social media. Additionally,

Narasimhan, Parkes and Singer [23] demonstrated the PAC learn-

ability of influence relations in social networks.

Paper structure. Section 2 provides the needed technical back-

ground. Section 3 establishes key upper bounds on the campaigner’s

budget, and Section 4 studies learning strategies under fixed bud-

gets. Section 5 concludes and suggests future directions.

2 PRELIMINARIES AND NOTATION
Social Networks. Following Easley and Kleinberg [11], we define

a social network as a directed graph 𝐺 over the set of agents 𝑁 =

{1, . . . , 𝑛}, 𝑛 ∈ N. More specifically, we think of 𝐺 as a collection

of edges, such that each edge (𝑖, 𝑗) ∈ 𝐺 represents an influence

relation of agent 𝑖 on agent 𝑗 , where we say that agent 𝑗 follows
agent 𝑖 or, equivalently, that agent 𝑖 is an influencer of agent 𝑗 .

For technical convenience, we will consider social networks with

no self-loops and define the sets 𝐺𝑖 := { 𝑗 ∈ 𝑁 | (𝑖, 𝑗) ∈ 𝐺} and
𝐺−1
𝑖

:= { 𝑗 ∈ 𝑁 | ( 𝑗, 𝑖) ∈ 𝐺} to denote the followers and influencers,
respectively, of agent 𝑖 ∈ 𝑁 .

Additionally, we assign labels to the nodes in 𝐺 to attribute

specific traits to the agents. Let 𝐿𝑁 := {ℓ : 𝑁 → 𝐿} be the space of
all 𝐿 labellings over 𝐺 , where each label in 𝐿 embodies an opinion

and each ℓ ∈ 𝐿𝑁 records the agents’ opinions at a given time. In

principle, the labelling functions in 𝐿𝑁 can be customised to fit

any opinion diffusion mechanism. Here, we focus on the binary

synchronous majority protocol, where agents can choose between

two alternative opinions, and every opinion diffusion step assigns to

each agent the strictly most popular opinion among its influencers

or maintains its previous opinion in case of a tie.

To avoid confusion between 0 and 1 as labels, integers or bits,

our binary label set will be 𝐿 := {𝑏,𝑤} for opinions black and white,
depicted as and .



Definition 1 (Labelled Social Networks). A triplet (𝑁,𝐺, ℓ) is a
labelled social network, where 𝐺 is a directed graph, 𝑁 is a set of
agents and ℓ : 𝑁 → 𝐿 is a labelling function.

Our campaigner will start with an observation budget 𝑂𝑏𝑠 and

intervention budget 𝐼𝑛𝑡 , which she will spend to learn the network.

Each time step will result in a new network configuration presented

to the campaigner. So, we can think of each time step as one unit

spent from 𝑂𝑏𝑠 , where, additionally, the campaigner can choose to

modify the opinion of a set of agents, in exchange for spending one

unit from 𝐼𝑛𝑡 per agent intervened on. Clearly, only observing is

equivalent to intervening on the empty set of agents.

Furthermore, fixing a labelled social network (𝑁,𝐺, ℓ) we denote
by 𝐴𝑖 the set of agents that agree with agent 𝑖 and by 𝐷𝑖 the agents

that do not. Also, we use 𝐴−1
𝑖

:= 𝐴𝑖 ∩ 𝐺−1𝑖
(respectively, 𝐷−1

𝑖
:=

𝐷𝑖 ∩𝐺−1𝑖
) to identify the influencers agent 𝑖 agrees (respectively,

disagrees) with.

We say that the opinion imbalance of agent 𝑖 is𝑚𝑖 ∈ Z, where
𝑚𝑖 := 𝑚𝑖 (ℓ) = |𝐴−1𝑖

| − |𝐷−1
𝑖
|. When𝑚𝑖 = 0 or𝑚𝑖 = ±1, we will

refer to agent 𝑖’s opinion as being balanced or nearly balanced,
respectively. We can now define how the network evolves.

Definition 2 (Opinion Diffusion Step). Given a labelled social net-
work (𝑁,𝐺, ℓ), a binary synchronous majority opinion diffusion

step results in the labelled social network (𝑁,𝐺, ℓ+
𝐺
), with ℓ+

𝐺
: 𝑁 → 𝐿,

ℓ+𝐺 (𝑖) :=
{
ℓ (𝑖)𝑐 if 𝑚𝑖 (ℓ) < 0,

ℓ (𝑖) otherwise,

where ℓ (𝑖)𝑐 is the complement of ℓ (𝑖) and𝑚𝑖 (ℓ) is the opinion imbal-
ance of 𝑖 in (𝑁,𝐺, ℓ).

This protocol establishes that an agent changes its opinion only

if the influencers that disagree with it on (𝑁,𝐺, ℓ) outnumber those

who agree. Furthermore, to represent the opinions after 𝑡 diffusion

steps, we will use ℓ+𝑡
𝐺

: 𝑁 → 𝐿 for 𝑡 ≤ 𝑂𝑏𝑠 .

Remark 1. Since the campaigner will not know the underlying graph
𝐺 in (𝑁,𝐺, ℓ), we omit the subscript in ℓ+

𝐺
when looking at an opinion

diffusion step from her perspective. That is, we will use ℓ+ : 𝑁 → 𝐿 to
denote that there is at least one directed graph 𝐺 among the possible
networks that satisfies that ℓ+ (𝑖) = ℓ+

𝐺
(𝑖) for every 𝑖 ∈ 𝑁 .

Exact Learning. In our framework we view the campaigner as

a learner and, drawing from computational learning theory and

query-based learning [15, 25], view the opinion states associated

with the observed diffusion steps as answers to queries submitted

to an oracle. Consequently, the campaigner’s observation budget is

simply a bound on the total number of queries. Additionally, the

campaigner uses the intervention budget to refine such queries.

Following this parallel, our hypothesis space H is the set of all

possible influence relations between the agents in 𝑁 , which the

learner shrinks to reach a target concept, the target graph 𝐺 ∈ H .

Definition 3 (Exact Learning). Let 𝐺 be a directed graph in H .
We say that the campaigner can exactly learn 𝐺 after 𝑡 opinion
diffusion steps if she can infer a nested hypothesis space sequence
H ⊇ H1 ⊇ · · · ⊇ H𝑡 such thatH𝑡 := {𝐺}.

The success of a campaign lies in the campaigner being able to

exactly learn 𝐺 without exceeding her budget. Furthermore, we

will require each element of the nested hypothesis spaces to be

consistent with the observed opinion diffusion steps.

Later in the paper, we will go beyond exact learning and require

a measure to establish the likelihood of the campaigner correctly

“guessing” the network. To do so, we assume the graphs inH to

be distributed following D and define 𝑋 ∼ D as the random vari-

able of choosing any one of them. Thus, when learning the graph

𝐺 ∈ H , we will want to estimate the probability of the event𝑋 = 𝐺 ,

as it predicts the campaigner’s success rate. Given a sequence of

observations, the campaigner gets to choose from a shrunken hy-

pothesis space H𝑡 ⊆ H , so her success probability is actually

P(𝑋 = 𝐺 | H𝑡 ) = P(𝑋 = 𝐺)/P(𝑋 ∈ H𝑡 ). In the definition of in-

formation gain that follows, we express the campaigner’s learning

progress in terms of Shannon’s information content [21].

Definition 4. Let (𝑁,𝐺, ℓ) be a labelled social network, and suppose
H𝑡 ⊆ H is the hypothesis space of networks consistent with the
opinion diffusion steps observed up to time 𝑡 < 𝑂𝑏𝑠 . If 𝑋 ∼ D is the
random variable of choosing a graph inH , for some distribution D,
then the information gained from an additional observation is1

𝐼𝑡+1 : = log
2
(P(𝑋 = 𝐺 | H𝑡 )) − log2 (P(𝑋 = 𝐺 | H𝑡+1))

= log
2

(
P(𝑋 ∈ H𝑡 )
P(𝑋 ∈ H𝑡+1)

)
,

whereH𝑡+1 ⊆ H𝑡 is the refinement ofH𝑡 given the opinion diffusion
observed at time 𝑡 + 1.

3 BOUNDS ON THE CAMPAIGNER’S BUDGET
Before trying to infer a graph 𝐺 ∈ H , we present some sufficient

conditions for determining whether there is an influence relation

between two agents with absolute certainty. We break the cost of

this sub-task into the number of opinion diffusion steps (capped

by 𝑂𝑏𝑠) the campaigner needs to observe on the network as a

whole and the number of interventions with agents she needs

to make (capped by 𝐼𝑛𝑡 ). These will be the building blocks for

establishing the general upper bounds on the campaigner’s budget,

and will come together in Algorithm 1 to equip the campaigner

with a strategy that learns any network by spending O(𝑛3) on
intervention and O(𝑛2) on observation.

Lemma 1. Let (𝑁,𝐺) be a social network and suppose ℓ1, ℓ2 ∈ 𝐿𝑁
are two network labellings such that ℓℓℓ1 := (ℓ1 (1), . . . , ℓ1 (𝑛)) and
ℓℓℓ2 := (ℓ2 (1), . . . , ℓ2 (𝑛)) satisfy that:

(1) The Hamming distance 𝑑𝐻 between ℓℓℓ1 and ℓℓℓ2, or ℓℓℓ1 and ℓℓℓ𝑐
2
:=

(ℓ2 (1)𝑐 , . . . , ℓ2 (𝑛)𝑐 ), is 1, differing only on agent 𝑗 ∈ 𝑁 .
(2) Agent 𝑖 ∈ 𝑁 K{ 𝑗} is such that
(a) if |𝐺−1

𝑖
| is even then𝑚𝑖 (ℓ1) = 0 and ℓ1 (𝑖) = ℓ1 ( 𝑗), or

(b) if |𝐺−1
𝑖
| is odd then𝑚𝑖 (ℓ1) = −1 and ℓ1 (𝑖) = ℓ1 ( 𝑗)𝑐 .

Then 𝑗 ∈ 𝐺−1
𝑖

if and only if ℓ+ (𝑖) = ℓ ( 𝑗), for ℓ ∈ {ℓ1, ℓ2}.

We obtain (⇐) by evaluating the conditions for the opinion’s

transitions given. Note that agent 𝑖 behaves differently coming from

ℓ1 and ℓ2, in the sense that, in one case it changes its opinion, while

in the other it maintains it. Still, the only possible source of opinion

discrepancies can be agent 𝑗 , the only one with ℓ1 ( 𝑗) ≠ ℓ2 ( 𝑗). Hence,
1

If 𝑋 ∼ Uniform(H) , the information gain is simply the logarithm of the ratio

between |H𝑡 | and |H𝑡+1 | .



agent 𝑖 must follow agent 𝑗 , as otherwise the sets of influencers

who agree and disagree with it would be the same.

To obtain (⇒), we observe the opinion imbalance of agent 𝑖

assuming it follows agent 𝑗 . Yet, since ℓ1 ( 𝑗) ≠ ℓ2 ( 𝑗) and𝑑𝐻 (ℓℓℓ1, ℓℓℓ2) =
1 as per [21, p. 206], we have that𝑚𝑖 (ℓ1) = 0 implies𝑚𝑖 (ℓ2) = −2
for case (2a), as agent 𝑗 ’s opinion goes from agreeing with agent 𝑖 in

(𝑁,𝐺, ℓ1) to disagreeing in (𝑁,𝐺, ℓ2). Similarly,𝑚𝑖 (ℓ1) = −1 yields
𝑚𝑖 (ℓ2) = 1 for (2b), but in this case agent 𝑗 goes from disagreeing

to agreeing. Notice how in both cases agent 𝑖’s subsequent opinion

coincides with what agent 𝑗 says.

Remark 2. Lemma 1 provides sufficient conditions for the cam-
paigner to identify with certainty the existence of the edge ( 𝑗, 𝑖) in the
underlying graph 𝐺 . These conditions make agent 𝑗 the only possible
tiebreaker for any agent whose influencers’ opinions are known to be
balanced (or nearly balanced). Yet, getting to know that is usually the
challenging part.

Algorithm 1

1: Input: A social network (𝑁,𝐺).
2: ⊲ Goal: Return a list of Influencers such that Influencers[𝑖] =

𝐺−1
𝑖

, for all 𝑖 ∈ 𝑁 . ⊳

3: Initialise Influencers = [{}] × 𝑁 .

4: for all 𝑖 ∈ 𝑁 do
5: Intervene on the network such that there is a consensus.

6: Store the network’s opinion state as vector ℓℓℓ = 𝑜𝑛𝑒𝑠 (𝑛).
7: ⊲ The consensus determines if 1 encodes opinion 𝑏 or𝑤 . ⊳

8: Set pivot = 0.

9: repeat
10: ⊲ Agents have opinion 1 if their indices are higher

than the pivot’s and 0 otherwise. ⊳

11: if pivot ≠ 𝑖 then
12: Update ℓℓℓ [𝑝𝑖𝑣𝑜𝑡] = 0

13: Intervene on the network to match the labelling in ℓℓℓ .

14: Observe an opinion diffusion step.

15: Store the network’s opinion state as vector ℓℓℓ+.
16: Update pivot = 𝑝𝑖𝑣𝑜𝑡 + 1.
17: until ℓℓℓ+ [𝑖] = 0 or (ℓℓℓ+ [𝑖] = 1 and pivot = 𝑛)

18: ⊲ Move on to the next agent if ℓℓℓ+ [𝑖] = 1 and pivot = 𝑛.

Agent 𝑖 has no influencers. ⊳

19: Add pivot − 1 to Influencers[𝑖].
20: Store the last query as the opinion state vector ℓℓℓ𝑝∗ .

21: for all 𝑗 ∈ 𝑁 K{𝑖}, 𝑗 ≠ 𝑝𝑖𝑣𝑜𝑡 do
22: Intervene on the network so it matches ℓℓℓ𝑝∗ .

23: ⊲ Induce a labelling satisfying Lemma 1’s hypothesis. ⊳

24: if 𝑗 > 𝑝𝑖𝑣𝑜𝑡 then
25: ⊲ Agent 𝑗 has not been intervened on. ⊳

26: Change the opinion of the pivot agent.
27: ⊲ Agent 𝑗 agrees with the pivot agent. ⊳

28: Change the opinion of agent 𝑗 .

29: Store the current network’s opinion state as vector ℓℓℓ .

30: Observe one opinion diffusion step.

31: Store the network’s opinion state as vector ℓℓℓ+.
32: if ℓℓℓ+ [𝑖] = ℓℓℓ [ 𝑗] then
33: Add 𝑗 to Influencers[𝑖]. ⊲ 𝑗 ∈ 𝐺−1

𝑖
by Lemma 1.

We design Algorithm 1 such that, for each agent 𝑖 ∈ 𝑁 , it first

finds an opinion state where its opinion imbalance is |𝑚𝑖 | ≤ 1

and then it artificially queries for the diffusion step of adjacent

opinion states satisfying the conditions of Lemma 1. For the first

part, the algorithm starts with a consensus and has the campaigner

progressively intervening on agents, one by one, making them

disagree with agent 𝑖 until a pivotal agent 𝑝∗ ∈ 𝑁 surfaces. This

agent 𝑝∗ will be the one who tips the opinion balance, thereby

being the first to incite agent 𝑖 to change its opinion in the diffusion

step. Furthermore, the labellings before and after intervening on

it, namely ℓ𝑝∗−1 and ℓ𝑝∗ , will serve as a reference to determine the

remaining influencers of agent 𝑖 as, in at least one of them,𝑚𝑖 must

be (nearly) balanced.

However, it turns out that finding an adjacent labelling in the

second stage of Algorithm 1, satisfying the conditions of Lemma 1 to

determine if 𝑗 ∈ 𝐺−1
𝑖

, depends only on whether the campaigner had

previously intervened on agent 𝑗 . Specifically, if ℓ𝑝∗ ( 𝑗) = ℓ𝑝∗ (𝑖)𝑐 ,
the adjacent opinions states to observe would be

ℓℓℓ1 = (ℓ𝑝∗ (1), . . . , ℓ𝑝∗ (𝑛)) and ℓℓℓ2 = (ℓ𝑝∗ (1), . . . , ℓ𝑝∗ ( 𝑗)𝑐 , . . . ℓ𝑝∗ (𝑛)),
whereas if ℓ𝑝∗ ( 𝑗) = ℓ𝑝∗ (𝑖), these would be:

ℓℓℓ1 = (ℓ𝑝∗−1 (1), . . . , ℓ𝑝∗−1 (𝑛)) and

ℓℓℓ2 = (ℓ𝑝∗−1 (1), . . . , ℓ𝑝∗−1 ( 𝑗)𝑐 , . . . ℓ𝑝∗−1 (𝑛)).

Recall that the labellings ℓ𝑝∗−1 and ℓ𝑝∗ only differ on agent 𝑝∗.
Finally, computing the costs incurred by the campaigner following

Algorithm 1 yields the learning upper bounds of Theorem 1.

Theorem 1. The campaigner can learn the underlying graph 𝐺 of
any social network (𝑁,𝐺) by spending O(𝑛2) on observation and
O(𝑛3) on intervention.

We derive these upper bounds by evaluating the number of

queries done in Algorithm 1. It queries at most𝑛−1 one-step opinion
diffusion to find the pivot agent 𝑝∗ that makes agent 𝑖 ∈ 𝑁 change

opinion for the first time. From Lemma 1, this implies that agent 𝑖 fol-

lows 𝑝∗ and provides a reference network labelling ℓ ∈ {ℓ𝑝∗−1, ℓ𝑝∗ },
chosen from the last two queries, where the campaigner knows

that |𝑚𝑖 (ℓ) | ≤ 1. After the pivot is found, Algorithm 1 observes the

opinion diffusion of another 𝑛−2 opinion states, all chosen adjacent
to ℓ , to allow the campaigner to know with certainty whether agent

𝑖 follows the remaining agents of the network. Iterating over all the

agents in 𝑁 bounds the observation budget with O(𝑛2), while the
intervention budget is O(𝑛3), with an additional order of magni-

tude coming from the campaigner having to intervene on at most

𝑛 − 1 agents to generate each one of the adjacent opinion states.

Remark 3. Theorem 1 shows that there are no two indistinguishable
graphs in our hypothesis spaceH using binary synchronous majority
opinion diffusion. Thus, the campaigner can always learn the input
network given enough resources, irrespective of the initial labelling.

3.1 Determining if a network is a clique
We enquire how much easier it would be for the campaigner to

identify a specific network structure. Take cliques, for example,

where all the agents in the network influence each other. These

structures represent tightly-knit groups where information, opin-

ions and behaviours have higher chances to spread. Yet they are



more resilient to manipulation, since the campaigner must inter-

vene on at least half of the agents to alter their consensus, unless

opinions are evenly split. Additionally, agents will reach the said

consensus in a single opinion diffusion step, meaning that no addi-

tional information can be retrieved by merely observing, forcing

the campaigner to intervene. We formalise this in Lemma 2.

Lemma 2. Let (𝑁,𝐺, ℓ) be a binary-labelled social network where
𝐺 is a clique and ℓ : 𝑁 → {𝑏,𝑤}. Then, for every 𝑖 ∈ 𝑁 we have that

(1) ℓ+
𝐺
(𝑖) = ℓ (𝑖)𝑐 and ℓ+2

𝐺
(𝑖) = ℓ (𝑖) if |{𝑖 ∈ 𝑁 : ℓ (𝑖) = 𝑏}| = 𝑛

2
,

or
(2) ℓ+

𝐺
(𝑖) = argmax𝑙∈𝐿 |{ 𝑗 ∈ 𝑁 : ℓ ( 𝑗) = 𝑙}| otherwise.

Only in even cliques opinions can split agents exactly in half. In

this case, all agents have 𝑛/2 influencers who disagree with them

and𝑛/2−1 influencers who agree since𝐺 does not have loops. Thus,

𝑚𝑖 = −1 for every 𝑖 ∈ 𝑁 , and so, every agent changes its opinion,

leading to an opinion state with swapped labels. Consequently, all

agents will behave the same for the next opinion diffusion step,

changing back to their original opinion and making a 2−cycle.
Conversely, as soon as the opinions in the clique are not balanced,

the agents will always succumb to the majority’s opinion. Note that

this will always be the case with an odd number of agents.

3.1.1 Odd cliques.

Proposition 1. Let (𝑁,𝐺, ℓ) be a binary-labelled social network
where 𝑛 is odd. The campaigner can determine if 𝐺 is a clique by
using 2𝑛 + 1 observations and making 𝑛2 interventions.

When 𝐺 is an odd clique, opinions will reach consensus in one

step, as per Lemma 2. Thus, to get the upper bound in Proposition

1, the campaigner will pick an agent 𝑖 ∈ 𝑁 in a consensus and

intervene on half of the remaining agents. If the network is a clique,

its opinion should go back to the previous consensus. Next, if she

switches again the opinions of that same half of agents together

with agent 𝑖 , all opinions in 𝐺 should converge to the opposite

consensus, which means that every agent in 𝑁 K{𝑖} follows agent
𝑖 by Lemma 1. By repeating this over all agents, the campaigner

learns that everyone follows everyone in the social network.

3.1.2 Even cliques.
We establish the upper bounds on the campaigner’s observation and

intervention budgets for even cliques by employing a contradiction-

based algorithm. She will submit a set of queries, either until observ-

ing an infeasible transition for a clique or until no other network

admits the history of opinion diffusion steps except a clique.

We present our learning technique in Algorithm 2, which we will

refer to as The Windmill. Intuitively, it takes advantage of the cyclic
behaviour presented in Lemma 2 by instructing the campaigner to

intervene on pairs of agents without disrupting the opinion balance

of the network. This way, the campaigner will still believe that

the network is a clique if and only if her intervention leads to a

complementary network labelling after one opinion diffusion step.

Intuitively, the algorithm is called The Windmill because, if the
network’s opinion is balanced, the campaigner can gather the

agents in a circle and draw an imaginary vertical line such that all

agents with opposite opinions sit on opposite sides of it. Then, to

decide which agents to intervene on, she can rotate the line, just

like a windmill, and flip the opinions of the agents who changed

sides. See Figure 2 for an example. Also, notice how it suffices to ob-

serve one step of the opinion diffusion since the resulting labelling

is equivalent to the preceding opinion state, in the sense that all

agents have their same opinion imbalance.

︷                              ︸︸                              ︷

Opinion state

𝑂𝑏𝑠 ← 𝑂𝑏𝑠 − 1

𝐵(ℓ)

𝑊 (ℓ)

Observe

︷                              ︸︸                              ︷ 𝑖

Intervene

𝑊 (ℓ+)

𝐵(ℓ+)
(𝑁, · , ℓ)H

Budgets: 𝑂𝑏𝑠 , 𝐼𝑛𝑡

Marked agents:𝑀

𝐼𝑛𝑡 ← 𝐼𝑛𝑡 − 2
𝑀 ← 𝑀 ∪ {𝑖, 𝑗}

𝑗

Expected (𝑁, · , ℓ+)H ℓ+(𝑖) ← ℓ+(𝑖)𝑐
ℓ+( 𝑗) ← ℓ+( 𝑗)𝑐

Figure 2: Graphical intuition of The Windmill.

Algorithm 2 The Windmill

Input: A social network (𝑁,𝐺, ℓ) where 𝑛 is even and ℓ ∈ 𝐿𝑁 ,

𝐿 = {𝑏,𝑤}, such that |{𝑖 ∈ 𝑁 : ℓ (𝑖) = 𝑏}| = |{𝑖 ∈ 𝑁 : ℓ (𝑖) = 𝑤}|.
Initialise the set of marked agents𝑀 = { }.
Let 𝐵(ℓ) := {𝑖 ∈ 𝑁 : ℓ (𝑖) = 𝑏} and𝑊 (ℓ) := 𝑁 K𝐵(ℓ), ∀ℓ ∈ 𝐿𝑁 .

while |𝑁 K𝑀 | > 0 do
Observe the next opinion labelling ℓ+.
if 𝐵(ℓ+) =𝑊 (ℓ) then

⊲ Opinion diffusion is consistent with Lemma 2. ⊳

Select some agents 𝑖 ∈𝑊 (ℓ+) K𝑀 and 𝑗 ∈ 𝐵(ℓ+) K𝑀 .

Mark the agents (𝑖, 𝑗) by adding them to𝑀 .

Change the opinions of agents 𝑖 and 𝑗 .

Update ℓ to coincide with the current network labelling.

else
Exit the algorithm and conclude that the social network

is NOT a clique.

⊲ So far, there is no evidence that contradicts𝐺 being a clique. ⊳

Finish The Windmill and return the set of pairs of agents𝑀 .

Definition 5. Let 𝑁 be a set of agents, ℓ a labelling function andH
a hypothesis space. Then, (𝑁, · , ℓ)H := {(𝑁,𝐺, ℓ) : 𝐺 ∈ H} is the
family of labelled social networks admitted inH .

After observing a sequence of opinion diffusion steps, the cam-

paigner refines her knowledge by discarding all inconsistent net-

work configurations. However, once the space has reduced suffi-

ciently, some influence relations may exist in either all or none of

the feasible graphs. Take for example, a reduced hypothesis space

consisting of just the two networks in Figure 1b. In it, the cam-

paigner is certain that the agent at the top follows the agent on the

left and influences the agent on the right. Still, whether the agent

on the right influences the agent on the left remains uncertain.

Similarly, there might be case where a set of agents collectively

influences another agent. That is, either all the agents in the set

are influencers, or none of them are. We call these simultaneous
influencers and they will play a key role when establishing what

the campaigner can learn from each run of The Windmill.



Definition 6. Let (𝑁, · , ℓ)H be a family of binary labelled social
networks. Then, the agents in a subset Σ ⊆ 𝑁 K{𝑘} are simultaneous
influencers of agent 𝑘 ∈ 𝑁 if, for every 𝐺 ∈ H and for all 𝑖, 𝑗 ∈ Σ,
𝑖 ≠ 𝑗 , we have that 𝑖 ∈ 𝐺−1

𝑘
if and only if 𝑗 ∈ 𝐺−1

𝑘
.

Lemma 3. If The Windmill algorithm finishes without finding a
contradiction to the clique belief and returns a sequence of agent pairs
(𝑖𝑡 , 𝑗𝑡 ), for 𝑡 = 1, . . . , 𝑛/2, then the campaigner learns that:

(1) agent 𝑖𝑡 ∈ 𝐺−1𝑗𝑡 and agent 𝑗𝑡 ∈ 𝐺−1𝑖𝑡
, for 𝑡 = 1, . . . , 𝑛/2,

(2) the agents 𝑖𝑡 and 𝑗𝑡 , 𝑡 = 1, . . . , 𝑛/2, are simultaneous influ-
encers of every agent 𝑘 ∈ 𝑁 K{𝑖𝑡 , 𝑗𝑡 }.

Proof. Part (1) follows from noting that the campaigner inter-

venes on two agents 𝑖 and 𝑗 with opposite opinions and that, thanks

to Lemma 2, they should change opinions in the next opinion dif-

fusion step. However, all agents who agreed with agent 𝑖 (and,

similarly, with agent 𝑗 ) before the intervention will then disagree,

and vice versa. The only agent who maintains its opinion relative

to agent 𝑖 is agent 𝑗 . This means that, aside from agent 𝑗 , agent 𝑖

has the same number of influencers who agree and disagree with it

on the intervened and non-intervened states. Yet, agent 𝑖 changes

its opinion in both cases. Thus, agent 𝑗 is, in fact, the tiebreaker.

For Part (2), we focus on three network labellings ℓ0, ℓ1, ℓ𝑛
2

∈ 𝐿𝑁
shown in Figure 3. Note that these states correspond to the initial

state and the first and last interventions of The Windmill. In the

initial state (𝑁,𝐺, ℓ0) we draw a vertical line and consider the four

agents 𝑖1, 𝑖2, 𝑗1, 𝑗2 ⊆ 𝑁 closest to it, such that ℓ (𝑖1) = ℓ (𝑖2) and
ℓ ( 𝑗1) = ℓ ( 𝑗2). We choose one of them, for instance 𝑘 := 𝑖1, to be

our reference and notice that the agents in 𝑁 K{𝑘, 𝑖2, 𝑗1, 𝑗2} can be

grouped into two sets 𝐴∗
𝑘
and 𝐷∗

𝑘
where agents within them agree

with one another in ℓ ∈ {ℓ0, ℓ1, ℓ𝑛
2

}.

𝑗2

𝑖2𝑗1

𝑘𝐷∗
𝑘

𝐴∗
𝑘

(a) (𝑁, · , ℓ0 )

𝐷∗
𝑘

𝐴∗
𝑘𝑗2

𝑖2𝑗1

𝑘

(b) (𝑁, · , ℓ1 )

𝐷∗
𝑘

𝐴∗
𝑘𝑗2

𝑖2𝑗1

𝑘

(c) (𝑁, · , ℓ𝑛
2

)

Figure 3: Three network labellings seen in The Windmill.

If The Windmill does not halt, it means that all agents change

their opinions after one opinion diffusion step, including agent

𝑘 . So𝑚𝑘 (ℓ) < 0 for ℓ ∈ {ℓ0, ℓ1, ℓ𝑛
2

}. This is equivalent to having

more agents disagreeing with agent 𝑘 than agreeing with it, which

can be written in terms of 𝐴∗
𝑘
, 𝐷∗

𝑘
and whether agents 𝑗1, 𝑗2 and 𝑖2

influence agent 𝑘 , as follows:

ℓ0 : |𝐷∗𝑘 | + 1𝐺−1𝑘
( 𝑗1) + 1𝐺−1

𝑘
( 𝑗2) > |𝐴∗𝑘 | + 1𝐺−1𝑘

(𝑖2), (1)

ℓ1 : |𝐷∗𝑘 | + 1𝐺−1𝑘
(𝑖2) + 1𝐺−1

𝑘
( 𝑗1) > |𝐴∗𝑘 | + 1𝐺−1𝑘

( 𝑗2), (2)

ℓ𝑛
2

: |𝐴∗
𝑘
| + 1𝐺−1

𝑘
(𝑖2) + 1𝐺−1

𝑘
( 𝑗1) > |𝐷∗𝑘 | + 1𝐺−1𝑘

( 𝑗2), (3)

where 1𝐺−1
𝑘
(𝑥), 𝑥 ∈ 𝑁 , is the indicator function that is 1 if 𝑥 ∈ 𝐺−1

𝑘
,

and 0 otherwise. From part (1), we have that 1𝐺−1
𝑘
( 𝑗1) = 1. More-

over, |𝐴∗
𝑘
| = |𝐷∗

𝑘
| since agent 𝑘 would otherwise have maintained

its opinion after at least one of the labellings ℓ1, ℓ2 or ℓ𝑛
2

. Therefore,

the system of inequalities (1), (2) and (3) simplifies into

1 + 1𝐺−1
𝑘
( 𝑗2) > 1𝐺−1

𝑘
(𝑖2) and 1 + 1𝐺−1

𝑘
(𝑖2) > 1𝐺−1

𝑘
( 𝑗2),

which holds only when 1𝐺−1
𝑘
(𝑖2) = 1𝐺−1

𝑘
( 𝑗2), showing that agents

𝑖2 and 𝑗2 are simultaneous influencers of agent 𝑘 .

Note that these results apply for any agent 𝑘 ∈ 𝑁 taken as a

reference, as once The Windmill finishes without halting, all agents
would have perceived opinion states equivalent to ℓ0, ℓ1 and ℓ𝑛

2

.

Furthermore, if 𝑖2 and 𝑗2 are simultaneous influencers of agent 𝑘 , to

establish that the next pair of agents intervened on, namely (𝑖3, 𝑗3),
are also simultaneous influencers, we update

𝐴∗
𝑘
← 𝐴∗

𝑘
K{𝑖3, 𝑗3} and 𝐷∗

𝑘
← 𝐷∗

𝑘
K{𝑖3, 𝑗3}.

Replicating our analysis leads to the same system of inequalities

since the indicator functions corresponding to 𝑖2 and 𝑗2 are always

on opposite sides and, thus, do not affect the simplifications. □

Lemma 3 describes the campaigner’s knowledge after running

The Windmill once without it taking a premature exit and returning

the set 𝑀1 := {(𝑖𝑡 , 𝑗𝑡 ) ∈ 𝑁 × 𝑁 : 𝑖𝑡 ≠ 𝑗𝑡 , 𝑡 = 1, . . . , 𝑛/2} of pairs
of agents intervened on concurrently. The Windmill will finish
after completing half a revolution of the imaginary line separating

agents with opposite opinions and, at each step, the campaigner

intervenes on two agents. Thus, a completed run consumes 𝑛/2 of
𝑂𝑏𝑠 and 𝑛 of 𝐼𝑛𝑡 . In the following Proposition 2, we will show how

to leverage the information retrieved from the first run to create

a second intervention set𝑀2, such that the campaigner can know

for sure if the underlying network is a clique or not after running

The Windmill again but targeting the agent pairs in it.

Proposition 2. Let (𝑁,𝐺, ℓ) be a binary-labelled social network
where 𝑛 is even and the labelling ℓ ∈ 𝐿𝑁 has balanced opinions.
The campaigner can determine if G is a clique by spending 𝑛 of her
observation budget and 2𝑛 of her intervention budget.

Intuitively, to prove Proposition 2 we keep track of the agents’

positions in both runs of The Windmill, moving the agents from

the first position to the second via some permutation, and then

merging the resulting simultaneous influencers. Note that there will

be many permutations that allow the campaigner to infer that the

network is a clique. We use the permutation 𝜎 : 𝑁 → 𝑁 that moves

the agents in 𝐷∗
𝑘
∪ { 𝑗1, 𝑗2} from Figure 3 one position clockwise

within themselves, while leaving the others fixed. Moreover, we set

the merging rule to be that: if two sets Σ1, Σ2 ⊆ 𝑁 of simultaneous

agents are not disjoint, then all agents in Σ := Σ1 ∪ Σ2 ⊆ 𝑁 are

simultaneous influencers. After running The Windmill the second
time, we obtain that 𝑀1 and 𝑀2 := 𝜎 (𝑀1) do not share any pair

of agents intervened on simultaneously and merging results in

𝑁 K{𝑘} being a set of simultaneous influencers of our reference

agent 𝑘 . However, because agent 𝑘 at least follows its pair in 𝑀1

(and in 𝑀2), then it must be the case that agent 𝑘 follows everyone.

Consequently, 𝐺 must be a clique, as agent 𝑘 is arbitrary.

4 LEARNING UNDER BUDGET CONSTRAINTS
Our campaigner’s approach consists of discarding all the directed

graphs that do not abide by the one-step opinion diffusion observed,

allowing her to retrieve any network structure given observation



and intervention budgets polynomial in the number of agents of

the network. However, we are also interested in the scenario where

the campaigner has a more limited budget.

We aim to explain the campaigner’s learning pipeline using a

Query-Based Learning framework. To do so, Subsection 4.1 trans-

lates the observation budget directly into the number of queries

that a learner (the campaigner) can ask an oracle and discusses how

to reduce the current hypothesis space by establishing each agent’s

feasible influencers after one opinion diffusion step. This leads to an

a posteriori measure of the campaigner’s learning progress, which

we use in Subsection 4.2 to predict the most likely answer to a cam-

paigner’s query and, subsequently, evaluate the expected learning

gain of a query compared to its intervention cost in Subsection 4.3.

4.1 Learning from a fixed observation budget
So far, we have referred toH𝑡 ⊆ H as the reduced hypothesis space

consisting of all the networks that satisfy the observed opinion

diffusion up to time 𝑡 ≤ 𝑂𝑏𝑠 . However, we can decouple the agents

in our social network and build H𝑡 as the direct product of the

feasible influencers of each agent.

Definition 7. Let (𝑁, · , ℓ)H be a family of labelled social networks
and suppose the campaigner observes the opinion diffusion step ℓ+.
Then, the set of feasible influencers of agent 𝑖 ∈ 𝑁 conditioned to ℓ+

is given by

𝐹 (𝑖, ℓ) := {𝐺−1𝑖 ⊂ 𝑁 : 𝐺 ∈ H and ℓ+ (𝑖) = ℓ+𝐺 (𝑖)}.

Thus, we can use Definition 7 to characteriseH𝑡 for an observed

sequence of one-step opinion diffusion ℓ+
1
, . . . , ℓ+𝑡 , 𝑡 ≤ 𝑂𝑏𝑠 , as

H𝑡 = {𝐺 ∈ H : 𝐺−1𝑖 ∈ 𝐹 (𝑖, ℓ) for all 𝑖 ∈ 𝑁 and ℓ = ℓ1, . . . , ℓ𝑡 }.

We can use this representation of H𝑡 to retrieve how many

networks the campaigner can still consider to make her prediction.

Lemma 4. Let (𝑁, · , ℓ𝑡 )H be a family of binary-labelled social
networks, whereH is the space of all directed graphs over 𝑁 . Then,
the hypothesis space of networks that satisfy the opinion diffusion ℓ+𝑡 ,
H𝑡 ⊆ H , is such that

|H𝑡 | =
∏
𝑖∈𝑁

|𝐴𝑖 |∑︁
𝑟=0

∑︁
𝑘∈𝑘𝑟

(
|𝐴𝑖 |
𝑟

) (
|𝐷𝑖 |
𝑘

)
, (4)

where 𝐴𝑖 := { 𝑗 ∈ 𝑁 K{𝑖} : ℓ𝑡 (𝑖) = ℓ𝑡 ( 𝑗)}, 𝐷𝑖 := (𝐴𝑖 ∪ {𝑖})𝑐 and
𝑘𝑟 (𝑖) = {0, . . . , 𝑟 } if ℓ+𝑡 (𝑖) = ℓ𝑡 (𝑖); or 𝑘𝑛 (𝑖) = {𝑟 + 1, . . . , |𝐷𝑖 |} if not.

Proof. We build (4) by counting how many networks would

admit the opinion diffusion ℓ+𝑡 . Each term in the product counts

the feasible influencer sets of a given agent 𝑖 ∈ 𝑁 . Furthermore,

each term in the double sum counts the number of possible edge

configurations where agent 𝑖 has exactly 𝑟 influencers who agree

with it and 𝑘 influencers who disagree. Notice that 𝑘𝑟 is chosen to be

less or equal to 𝑟 if the agent does not change its opinion and strictly

greater otherwise, to attain the opinion diffusion mechanism. Yet,

because the campaigner does not know how many influencers

agents have, she needs to consider all possibilities, that is, agent 𝑖

having from 0 to |𝐴𝑖 | influencers who agree with it and capping

the possible disagreeing influencers with |𝐷𝑖 |. □

Recall from Definition 4 that the information content gained for

an additional observation is given by the ratio of the probabilities

of choosing a graph in two nested hypothesis spaces. In particular,

when 𝑋 ∼ Uniform(H), the information gained from observing

the opinion diffusion step at time 𝑡 + 1 is log
2
( |H𝑡 |/|H𝑡+1 |).

Generalising this for any distribution D over H is achieved

simply by taking the weighted sum of the networks encoded in (4).

4.2 Most likely query answers
A related task to estimating the underlying network is predicting

the oracle’s response to an opinion diffusion query. Intuitively, the

more certain the campaigner is about the underlying network, the

more accurate her prediction for the subsequent labelling will be.

Moreover, in the case of synchronous majority, opinion transitions

rely solely on an agent’s influencers. Therefore, we will calculate

the probability of the next network labelling based on feasible

influencer sets as discussed in Subsection 4.1.

Definition 8. Let ℓ1, . . . , ℓ𝑡 , be a sequence of labellings over a social
network (𝑁,𝐺) for some 𝐺 ∈ H . Then, the probability that agent
𝑖 does not change its opinion, after observing the labelling ℓ ∈ 𝐿𝑁 ,
conditioned on the observations of ℓ+

1
, . . . , ℓ+𝑡 , is given by

P(ℓ+ (𝑖) = ℓ (𝑖) | ℓ1, . . . , ℓ𝑡 ) =
|{𝐺−1

𝑖
∈ ⋂𝑡

𝑘=1
𝐹 (𝑖, ℓ𝑘 ) : ⟨a𝑖 , g𝑖 ⟩ ≥ 0}|

|⋂𝑡
𝑘=1

𝐹 (𝑖, ℓ𝑘 ) |
,

(5)

where g𝑖 and a𝑖 are, respectively, the vector representations of the
influencer set 𝐺−1

𝑖
and the agents that agree with agent 𝑖 in ℓ , i.e.

g𝑖 𝑗 =

{
1 if 𝑗 ∈ 𝐺−1,

𝑖

0 if 𝑗 ∉ 𝐺−1
𝑖

,
and a𝑖 𝑗 =


1 if ℓ ( 𝑗) = ℓ (𝑖), 𝑖 ≠ 𝑗,

0 if 𝑗 = 𝑖,

−1 if ℓ ( 𝑗) ≠ ℓ (𝑖), 𝑖 ≠ 𝑗 .

(6)

Naturally, we would also like to know how the hypothesis space

shrinks based on how similar are the labels of the opinion diffusion

steps observed. This means, how can we manipulate the limits of

the double sums in (4) to find which terms are present in more than

one network labelling. In the following Lemma 5, we show how to

do this for two adjacent network labellings.

Lemma 5. Let (𝑁, · , ℓ)H , ℓ ∈ {ℓ1, ℓ2}, be two families of binary-
labelled social networks where ℓ1 and ℓ2 differ only on agent 𝑖 ∈ 𝑁 .
Then, the number of feasible influencer sets of an agent 𝑗 ∈ 𝑁 K{𝑖},
such that ℓ1 (𝑖) = ℓ1 ( 𝑗), ℓ+

1
( 𝑗) = ℓ1 ( 𝑗) and ℓ+

2
( 𝑗) = ℓ2 ( 𝑗)𝑐 , is

|𝐹 ( 𝑗, ℓ1) ∩ 𝐹 ( 𝑗, ℓ2) | =
|𝐴∗𝑗 |∑︁
𝑟=0

(
|𝐴∗

𝑗
|

𝑟

) ( |𝐷∗
𝑗
| + 1

𝑟 + 1

)
, (7)

where 𝐴∗
𝑗
:= {𝑘 ∈ 𝑁 K{𝑖, 𝑗} : ℓ (𝑘) = ℓ ( 𝑗), ℓ ∈ {ℓ1, ℓ2}} and 𝐷∗

𝑗
:=

(𝐴∗
𝑖
∪ {𝑖, 𝑗})𝑐 . Moreover, there is no graph in 𝐺 ∈ H such that

ℓ1 (𝑖) = ℓ1 ( 𝑗), ℓ+
1
( 𝑗) = ℓ1 ( 𝑗)𝑐 and ℓ+

2
( 𝑗) = ℓ1 ( 𝑗).

To obtain (7) we isolate agent 𝑖 from the set of agents who agree

and disagree with agent 𝑗 in (4). Note that 𝐴∗
𝑗
= 𝐴 𝑗 (ℓ) K{𝑖} and

𝐷∗
𝑗
= 𝐷 𝑗 (ℓ) K{𝑖}, for ℓ ∈ {ℓ1, ℓ2}. In this way, we can break the sums

distinguishing the terms where 𝑖 ∈ 𝐺−1
𝑗

and where 𝑖 ∉ 𝐺−1
𝑗
. Then,

to establish the elements of 𝐹 ( 𝑗, ℓ1) ∩ 𝐹 ( 𝑗, ℓ2) becomes a matter of



replacing the limits in 𝑘𝑟 according to the opinion diffusion ℓ+
1
and

ℓ+
2
, and finding where they match. For the first scenario, we obtain

|𝐹 ( 𝑗, ℓ1) ∩ 𝐹 ( 𝑗, ℓ2) | =
|𝐴∗𝑗 |∑︁
𝑟=0

(
|𝐴∗

𝑗
|

𝑟

) (
|𝐷∗

𝑗
|

𝑟

)
︸          ︷︷          ︸
|𝐺−1

𝑗
| is even

+
(
|𝐴∗

𝑗
|

𝑟

) ( |𝐷∗
𝑗
|

𝑟 + 1

)
︸          ︷︷          ︸
|𝐺−1

𝑗
| is odd

,

which is equivalent to (7) by applying Pascal’s Identity. Following

the same logic for the second scenario leads to |𝐹 ( 𝑗, ℓ1) ∩𝐹 ( 𝑗, ℓ2) | =
0, which means that there are no sets of influencers that could

simultaneously change agent 𝑗 ’s opinion after ℓ1 but not after ℓ2.

Remark 4. Lemma 5 provides an alternative stronger and combi-
natorial proof for Lemma 1. It shows that not all opinion diffusion
steps are permissible under the synchronous majority update rule.
In particular, we have that if agent 𝑗 ∈ 𝑁 changes its opinion after
ℓ1 ∈ 𝐿𝑁 , then it will also change its opinion in any adjacent network
that differs on an agent that agreed with it in ℓ1.

4.3 Information Gain versus Intervention Cost
In our setup, the cost incurred by the campaigner for placing a

specific query is the number of agents intervened on. But how

much information can we gain with some extra cost? To this end,

we formulate the notion of expected information gain.

Theorem 2. Let ℓ1, . . . , ℓ𝑡 , be a sequence of labellings over a social
network (𝑁,𝐺) for some𝐺 ∈ H . If every graph inH is equally likely,
then the expected information gained from observing the opinion
diffusion of the labelling ℓ ∈ 𝐿𝑁 is∑︁

𝑠∈𝐿𝑁
log

2

(
|H𝑡 |

|H𝑡 ∩H+𝑠 |

) ∏
𝑖∈𝑁
P(ℓ+ (𝑖) = 𝑠 (𝑖) | ℓ1, . . . , ℓ𝑡 ), (8)

whereH𝑡 := H1 ∩ · · · ∩ H𝑡 is the hypothesis space consistent with
the observation up to time 𝑡 , H+𝑠 is the set of networks consistent
with the opinion diffusion step ℓ+ (𝑖) = 𝑠 (𝑖), ∀𝑖 ∈ 𝑁 , and we calculate
P(ℓ+ (𝑖) = 𝑠 (𝑖) | ℓ1, . . . , ℓ𝑡 ) using (5), for every 𝑖 ∈ 𝑁 .2

Proof. In (8), log
2

(
|H𝑡 |/|H𝑡 ∩H+𝑠 |

)
is the information gained,

as per Definition 4, when the opinion diffusion step ℓ+ results in
the network labelling 𝑠 , given that all networks inH are uniformly

distributed. Moreover, we take the product over the conditional

probabilities P(ℓ+ (𝑖) = 𝑠 (𝑖) | ℓ1, . . . , ℓ𝑡 ) to obtain the joint probabil-

ity of observing the transition from ℓ to 𝑠 , since the agents in 𝑁

change (or do not change) their opinion independently from each

other. Finally, summing over all the possible subsequent network

labellings 𝑠 ∈ 𝐿𝑁 yields the desired conditional expectation. □

Theorem 2 allows the campaigner to quantify the expected infor-

mation gained from a specific query. Thus, a direct greedy approach

to identify the optimal next query would be to calculate the ex-

pected information gained from a pool of possible next queries,

while considering the intervention cost incurred, given by the Ham-

ming distance between the current opinion state and the desired

query. However, how to efficiently explore the exponential number

of potential next queries remains as an open question.

2
We choose between P(ℓ+ (𝑖 ) = ℓ (𝑖 ) | ℓ1, . . . , ℓ𝑡 ) or its complement depending on

whether ℓ (𝑖 ) = 𝑠 (𝑖 ) or ℓ (𝑖 ) = 𝑠 (𝑖 )𝑐 .

5 DISCUSSION
We study the problem of a campaigner with budget constraints aim-

ing to learn a social network structure with underlying synchronous

majority dynamics. We provide upper bounds on the campaigner’s

observation and intervention budgets for her to identify the exact

social network without any information on the network class. We

also improve these bounds for the case of clique classes, arguably

the most difficult structures to alter by intervention. The study

of other classes of networks may reveal further subtleties for the

design of the campaigner’s strategy. While it is not hard to see that

classes such as trees and simple cycles are no more difficult to learn

than even cliques, what happens with other structural information

about the network is far from clear.

When proving our results we observed that fast convergence

does not aid the campaigner’s discovery. In the case of odd cliques,

for example, one-step convergence meant that campaigner had to

use 𝑛/2 − 1 intervention budget to “reset” the network state to

maximise the information gain. Furthermore, when addressing the

campaigner’s learning task with a fixed budget, we introduced a

combinatorial representation of potential networks through sets

of feasible influencers, simplifying the exploration of the hypothe-

sis space from super-exponential to exponential. So, although the

results are generally very positive from the campaigner’s point of

view, this relies on her having sufficient budget for exact learning.

Not having this severely restricts the learning task and improves

the network resilience. What is more, in our analysis, we took a

worst-case approach and allowed the campaigner to intervene on

any node and observe the entire network. These assumptions are

rarely met in practice and real-world networks are, arguably, much

less easy to access, manipulate and observe.

Another important avenue for future work is going beyond ma-

jority dynamics. Each threshold-based update will display different

behaviours - think of unanimous updates for instance - and it is

important to understand whether fixed given thresholds can be

dealt with by directly adapting our current results.

When rules are not deterministic, such as on an independent

cascade model [16], our constructions for exact learning no longer

work. In these contexts reasoning about information gain is still

possible, although frameworks such as PAC learning [15] could

provide a more suitable toolbox. We could investigate the approxi-

mate estimation of a network to relax the exact learning condition.

For example, we could say that 𝐺 is 𝜀−learnable for 𝜀 > 0, if there

exists some 𝑡𝜀 such that P(𝑋 = 𝐺 | H𝑡 ) > 1 − 𝜀 for all 𝑡 ≥ 𝑡𝜀 , to

include PAC learning requirements in a generalised version of our

framework.
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