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1 | INTRODUCTION

Calculating the moments of families of L-functions has been the subject of research amongst
number theorists for many decades. Estimating these moments almost always comes down to
approximating the L-function by the corresponding Dirichlet polynomial, which in turn can be
shown to exhibit significant cancellation upon integrating. In 2008, Soundararajan [18] found
an ingenious way to obtain an upper bound on the zeta function, conditional on the Riemann
Hypothesis (RH). It essentially takes the form

A(n) (1 3 logn> N logt

0(1), 11
nl/2+1/logx+it Jog log x log x +o) (1)

log|¢(/2+i)] <R D]
n<x
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where ¢ > 2 and 2 < x < t2. Soundararajan used this to derive almost sharp upper bounds for
moments of {(s) on the critical line. In particular, he showed that under RH, for each fixed real
k > 0 one has

T
/ 1£(1/2 + i) dt < T(log T)"**.
0

This upper bound was improved by Harper [5] (under RH) to

T
/ 1€(1/2 + it)|*dt <, T(log T,
0

and this is sharp up to a constant (see [17] for the corresponding unconditional lower bound when
k > 1). Harper started with (1.1) as well, however by a careful analysis of large values of Dirichlet
polynomials he managed to bound the 2kth moment of ¢ (s) without losing more than a constant.

The upper bound (1.1) can be generalised for many classes of L-functions, which can be used to
derive moment inequalities. In [13] Munsch proved that if the Generalised Riemann Hypothesis
(GRH) holds, then

DAL /2 + ity x) - L(L/2 + ity, )+ L(1/2 + itye, )|
XEX]

<ok $@og /2 TT o2t — ;D 12)

1<i<j<2k

Here X* denotes the set of primitive Dirichlet characters mod g, k is a positive integer, and the
t; are real numbers that may grow slowly with g. Moreover, roughly speaking, g : Ry, — Rt*isa
correlation factor which is decreasing and ¢(0) = log q. In particular, (1.2) implies that

1 2% K24
— Y ILa/2, ¢ .
Q) xexgl (1/2, YI™ < (logq)

If the ¢; are relatively far apart, then (1.2) becomes stronger, which is expected as the values of the
L-functions ‘correlate’ less with each other. In our first theorem, we get rid of the (log )¢ factor in
(1.2) and also slightly improve upon the correlation function g. Our argument will be very similar
to the way Harper improved Soundararajan’s moment inequality.

Theorem 1. Let 2k > 1 be a fixed integer and a,, ..., a,, A be fixed positive real numbers. Assume
that for any Dirichlet character y mod q, the corresponding L-function L(s, y) satisfies the RH. Let X ;"

denote the set of primitive characters modulo q. Let t = (ty, ..., ) be a real 2k-tuple with |t ;| < q”.
Then

Z |L(1/2 + ity, )™ -+ |LQA/2 + ity 1)
XEX

< $(@)ogg) T T gt — ;)%

1<i<j<2k
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where g : Ry, — R is the function defined by

. 1
1 q
logq lfxslogq orx >=e
1 1
=< = < <
9(x) =9+ f gq X <10,

loglogx if10 < x <ef.
Here the implied constant depends on k, A and the a; but not on q or the t .

Recently, Curran [3] has shown essentially the same type of upper bound for shifted moments of
the Riemann zeta function, moreover his method of proof similar to ours. His theorem generalises
and improves upon previous work by Chandee [1] and Ng, Shen and Wong [15].

Let us proceed to the topic of our second theorem. In [13], Munsch used (1.2) to obtain (con-
ditional) upper bounds on integer moments of 6 functions. For a Dirichlet character y mod g
define x = x(y) = (1 — y(-1))/2, thatis, x = 1if y is odd and k¥ = 0 if y is even. The 6 function
corresponding to y is defined as

o)

0(x, ) = Y x(myn*e ™/,

n=1

Let X;r and Xq‘ denote the set of even and odd primitive Dirichlet characters, respectively. In [13],
Munsch showed that for each fixed positive integer k and € > 0 one has

S;k(q) = Z |@(1,X)|2k <ke ¢(q)qk/2(logq)(k_1)2+€,
xXexy

and

Sy(@ 1= D 1601, 01 <. $(@)g*/*(log kD,
XEXg

In our next theorem, we will remove the € from the exponent using Theorem 1. Moreover, our
result will hold for all real k > 2, not just for integers.

Theorem 2. Let q > 1 be a positive integer, and assume that for any Dirichlet character y mod g,
the corresponding L-function L(s, y) satisfies the RH. Let X ;“ and Xq_ denote the set of even and odd
primitive characters, respectively. Let k > 2 be a real number. Then

SH(@) = Y 16(L I < ¢/ *(log )V,
xexy

and

Sy = Z 16(1, Y)1** <, $(q)g*/*(log )1,
)(EX;
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These upper bounds are conjectured to be sharp up to a constant. In fact, when k is an integer
and q is a prime, matching lower bounds were proven in [14]. Our method breaks down when
k < 2. The k = 2 case has been studied before in [10], and an asymptotic formula was shown
there. When 1 < k < 2 it is expected that the same type of upper bound holds. It is interesting
to note that the extension of Theorem 2 to this region would imply a non-vanishing result for
O(1, x). In particular,let A :={y € X; 1 6(1, y) # 0}, then by Holder’s inequality, for any k > 1,
we have

k
<ﬁ Y |e(1,x>|2> <o Xl o

XEA XEA

Assuming that Theorem 2 holds for k = 1 + ¢, where € > 0 is fixed, this would imply

| Al > ¢(q)(ogq)~*,

which would improve in [4, Theorem 1.4].
When 0 < k < 1 and q is a prime, Harper has recently shown (unconditionally) that

$(q)q*/?

(1 + (1 — k)y/loglog )k

and the same type of upper bound holds for S7, (q) with q*/2 replaced by g/ (see [8, Corollary 2]).

The reason why these upper bounds take this shape is related to the fact that character sums
can be modelled by random multiplicative functions, the moments of which have been studied
extensively by Harper in [7] and [6].

When y is an even primitive character, the quantity 6(1, y) = Z,‘f’:l )((n)e_”"z/ 9 behaves
like = )
the weight e™™ n*/q quickly decays to 0. Therefore, we expect that the character sum moment
Y xeX; 1>, <q'/ x(n)|?* can be upper bounded in a similar manner as S;k(q). This turns out to be

—+
Syl <

n<gi/2 X(n). This is because when 1 < n < q/2, then e~™°/4 < 1, and when n > g'/2,

true, moreover our methods are general enough that we do not need to restrict ourselves to sum

up to g'/2. We may consider the more general quantity
2k
Skl y) = Y, [ D x(m)
XEXy ' NSy

Clearly, it is enough to consider the case 2 < y < q. Theorem 2 suggests, when k > 2 this quantity
should be

< (@)Y Qog ).

We will prove this bound holds under GRH when k > 2. When ¢'/2 < y < g we can go slightly
further and improve upon the logarithmic term. The Poisson summation formula for character
sums suggests the relation | )", < x(n)| = qu7| > <aly x(n)|. This allows us to replace the term

log y with log2q/y when q'/2 <y < q.
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Theorem 3. Let k > 2 be a fixed real number and q a large integer. Assume that for any Dirichlet

character y mod q, the corresponding L-function L(s, ) satisfies the Riemann hypothesis. If2 < y <
1/2

q/*, then

Si(@,¥) < $(@y*(log )1’

Moreover, if /% < y < g, we have

2q (k=1)?
(@) < $@y* <108 ;) :
Note that in his recent work [8], when 0 < k < 1 and q is prime, Harper gave the unconditional
upper bound

$(q)y"
1+Qa- k)\/lologlogL)k’

where L = min{y, q/y}. This upper bound is conjecturally sharp up to a constant, however what
happens when 1 < k < 2 is still an open problem.

Finally, we mention three unconditional results in the direction of Theorem 3. First,
Montgomery and Vaughan [11] showed that for any real k > 0 and 2 < y < q one has

Sk(g,y) <

Si(q,y) < $(@)g~.

In fact their statement is stronger than this, we refer the interested reader to [11, Theorem 1]. Note
that this proves Theorem 3 when y > g, however loses its strength when y gets smaller.

Second, when q is prime and k is a positive integer, Cochrane and Zheng [2] showed that for
any e > 0and 2 < y < g one has

Si(@,y) < $@(q + yrge).
When y > q'~/k, this is only worse than Theorem 3 by a factor of g.
Third, when y < ql/ k one can get an asymptotic formula for S;(q,y), as was shown in [14,

Lemma 2.3] (here one assumes that g is prime) or [9, Theorem 2] (here one assumes that g has a
bounded number of prime factors).

2 | OVERVIEW OF THE PROOFS

In this section, we give a quick overview of the proof of each of the three theorems.

2.1 | Theorem1

Let y be a primitive Dirichlet character mod g. We start with [13, Proposition 2.3], which is a
generalisation of (1.1), and roughly speaking can be written as

x(p) N logg
p1/2+it ]ogx ’

log |L(/2+it, ) SR D
psx
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forany2 < x < t?and t = qo(l) We may write

2k
|IL(1/2 + ity, )™ -+ |L/2 + ity x)|** = exp (Z a;jlog|L(1/2 + itj,)()l)

j=1
k
o %22 'y 2D loga)\ (1
~ CXP 4 pl/2+it logx '
j=1  p<x P
- exp? (m ¥ h(p)fffp) Gogq ) )
= og x

where h(p) = l(a p~i + - + ay p~iak). Choose parameters ql/(loglogq)2 =Xy <X <. <
x; = x¢, where ¢ is a small but fixed constant and x;,, = x?*. For any 1 <i < 7 and y mod q,
let us define

. h(p)x(p)
DY) =R Y i
Xj—1<PsX;
First, we handle the characters y, for which D(i, y) is not too large for any 1 < i < Z, in other

words, the corresponding Dirichlet polynomial behaves well. More precisely, let a; = ( Iogq )3/ 4

and let
={x €Xy : ID(, x)| < a;foreach1 <i< I}

Forany y € 7, we choose x = x; in (2.1). With this choice we have log q/ log x < 1. On the other
hand, as D(i, y) < «;, we may truncate the infinite series expansion

PG = Z D, y)"

|
=0 ni

atn = |100q; | with a negligible error term. So, we may write

HOX) | 1 L DG\
Sow(np o2 ) S II( 3 25

XET p<x XET i=1 \0<n<100¢;
1 .\ 2
D@, x)
<2 I 2 =
X€Xy i=1 \0<n<100a; n

The crucial point is that the expression on the right-hand side is a Dirichlet polynomial, whose
length is less than g by the choice of ;. We now may swap the order of summation and use the
orthogonality of characters to obtain significant cancellation. After a lengthy calculation, at the
end of the argument we need to upper bound expressions of the shape

h
Zl(p)l Zp( @+t + Y Tacos(lt—tllogp)>

p<Xx D<X 1<i<j<2k
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We can use Mertens’s estimate and properties of the zeta function to get the bound

3 OSEL8D) 1og () + OO),

p<q

which allows us to handle the contribution from y € 7 (here recall the definition of g(a) from
the statement of Theorem 1).

If y ¢ T, then there is some 1 <i < Z, for which D(, y) is large, but for each 1 < j <i—1,
D(j, x) is small. In this case, we repeat a similar argument, but choose our cutoff parameter at
X = X;_, so our Dirichlet polynomial behaves well. Now the problem is that % isnot abounded
quantity anymore. however we can obtain extra saving using the fact that D(i, y) is large, which
heuristically should only happen for few y.

2.2 | Theorem 2

We now outline how to deduce Theorem 2 from Theorem 1. By the theory of Mellin transforms,
for any even primitive y € X q+ and ¢ > 0 we can write

01,0 = 707 [ 165 0(2) Teoas,

where (c) denotes the straight line contour from ¢ — ico to ¢ + ico. The integral is absolutely con-
vergent because of the exponential decay of I'(s) as s — co. We shift the line of integration to
c=1/4.

For the moment, assume that 2k is an integer, in which case we may write the 2kth power of
an integral as a 2k-fold integral, so we obtain

2k
0(1, x)|* "/2/ L(1/2 +it;, Y)T(1/4 + it /2)|dt, ... dt.
Y16t <q R2k2H|</+z,x></+zJ/>|1 2%

XEXT XEXy J=1

Now the exponential decay of I'(1/4 + it/2) allows us to restrict our attention to the region
where the ¢; are small, say bounded. Moreover, by Theorem 1 we know that }; xEX; Hi’; L IL(/2+
it, x)| is small unless the ¢ j are close to each other. The most important case is when the
t; are at most 1/logq apart, in which case the expression inside the integral can be as large
as ¢(q)(log q)kz. However, the region in which this happens (assuming the ¢; are bounded)
has volume < 1/(log )21 that gives us the main contribution of size (log q)¥* /(log g)*~! =
(log q)(k‘l)z. We can handle the remaining region by appropriately splitting up the integral into
regions and apply Theorem 1 separately on the integrand in each region.

This argument works if 2k is an integer, however, we want a proof for all real k > 2. We certainly
have

o0 2k
D16, 01 < g Y, </ |L(1/2+it,)()l“(l/4+it/2)|dt> :

+ * (o5}
XEX] XEXy
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and we would like to pull the 2kth power inside the integral using Holder’s inequality to arrive
at similar expressions to the integer case. Applying Holder straight away is not sufficient, so fol-
lowing a strategy outlined in a paper by Harper (see [7, p. 8]), we pull out three copies of the 2kth
power (note k > 2)

o0 2k
> (/_ |L(1/2+it,)()l“(1/4+it/2)|dt>

)(eX; ©

* 3 e 2k—3
= Z (/_ IL(1/2+it,)()F(l/4+it/2)|dt) </_ |L(1/2+it,x)F(1/4+it/2)|dt> ,

* o0 o
)(EXq

and apply Holder to the (2k — 3)th power. Eventually, we will need to obtain a suitable upper
bound on

/[ . DL /2 + ity, )L /2 + ity, 1)L /2 + ity, 1)L /2 + i, )™ |dtdu, (2.2)
0,1 *
’ )(qu

which is possible by applying Theorem 1 with a; = a, = a; = 1and a, = 2k — 3. We have i(a% +
a2 + a2 +a}) = k* — 3k + 3, so the best upper bound we can get on (2.2) is ¢(q)(log q)*—3k+3,
This means that unless k* — 3k + 3 < (k — 1), that is, k > 2 we cannot use Theorem 1 to prove
Theorem 2. On the other hand, when k > 2 this argument works, by breaking up the integral into
regions where the distances |t; — u|, |, — u| and |¢; — u| do not change by more than a constant
factor and applying Theorem 1 on the integrand for each region. Summing up all the contributions,
we obtain Theorem 2.

Finally, we remark that pulling out only two copies would mean that the best bound we can get
on (2.2) is ¢(q)(log q)zlt(HH(Zk_z)z) = ¢(q)(log @)¥’ ~2k+3/2 but k? — 2k + 3/2 > (k — 1). So, we
do need to pull out three copies at least to make the argument work. On the other hand, pulling
out four copies would already require 2k > 4, so it would not improve the range of k, for which
the argument works.

2.3 | Theorem 3

We now turn to the proof of Theorem 3. Let y be a character mod g. A similar approach to that of
Theorem 2 starts with writing the character sum as a Perron integral

141/ log y+iT ys y
Z;{(n)z/ L(s,)()—ds+0<—logy>.
n<y 1+1/logy—iT s T

We shift the line of integration to Rs =1/2 + 1/logy instead of Rs = 1/2. This allows us to
get better upper bounds on |L(s, )| while y* < y!/2, so there we get a log y term in Theorem 3
instead of log q. This is because on the line Rs = 1/2 + 1/log y we are able to deduce a slightly
stronger version of Theorem 1, as the approximating Dirichlet polynomials may be taken to be
shorter. Using the residue theorem and ignoring the contribution from the horizontal integrals
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we get
2k ) 1/241/108y+T |1 ] 2k y "
Y| Taw| < 3 (] PO a5} + 4@+ (L1ogy)™
XX} ' n<y XEX; 1/2+1/ log y—iT |5

Because of the error term, we need essentially T > y'/2. But then the 1/|s| term in the integral
will contribute 3 (log y)?, which is not acceptable if 2k > (k — 1)2, that is, k < 1/3 + 2. We want
Theorem 3 for all k > 2 so we need to tweak our argument. First, we will consider the weighted
sum Y, f(n)x(n), where f is a continuous linear weight function defined as follows. Let y, =
y — y/(log )¢ for some large C. Define

1 ifl<n<y,
fm)=4q1-22 ify,<n<y (23)
Y=Yo
0 otherwise

The continuity of f enables us to write the weighted sum as an absolutely convergent Per-
ron integral, which solves the issue mentioned above. Moreover, y — y, is small, so it is not hard
to show that the weighted sum is ‘close’ to the original one. Handling the 2kth moment of the
resulting integrals is done similarly to the proof of Theorem 2.

The second part Theorem 3 has similar proof, but has an additional ingredient. As in the first
part, we switch to the weighted version Zn@ /y f(n)x(n) as well. However, we will shift the line
of integration to Rs = 1/2 — 1/ logy instead and use the inequality |L(s, y)| < (tq)/?>~°|L(1 —
s, ¥)|, which is a consequence of the functional equation for Dirichlet L-functions. When showing
that the weighted version is not far from the original one, we need to prove a crude bound on the
moment of Engq Iy x(n). This is done using the Poisson summation formula for character sums
discovered by Pélya in [16], and the proof is inspired by a paper of Montgomery and Vaughan [11],
where the authors show that for each k > 0 one has

Y x(n)

1<ngy

2k
< ¢(q)g~.

> oo
<<
XFXo s

3 | A CRUDE BOUND ON SHIFTED MOMENTS

Before we start proving our main theorems, we need a crude upper bound on shifted moments
of L-functions both on and off the critical line. This short section is devoted to the proof of the
following proposition.

Proposition 1. Lety > 2 be a real number and let the assumptions of Theorem 1 hold with the same
notation. We then have

Z |L(1/2+1/logy + ity, x)|™ -+ |L(1/2 + 1/ logy + ity x)|**
XEXG

< ¢(g)(minflogy + 1,log g})°W.

Here the implied constant depends on k, A (recall |tj| < qA) and the aj, but noton q, y or the £
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Note that taking y — oo, by the continuity of L(s, y) we get the corresponding moment bound
on the critical line.

For the proof of Proposition 1, we need to make use of the following lemma, which is essentially
[13, Proposition 2.3].

Lemma 1. Lety > 2 and t be real numbers and define log* t = max{0, logt}. Forany 2 < x < q
and y € XZ we have

x(MA(n) logx/n N logq + log* ¢

log |L(1/2 +1/1 it, )] < R :
og|L(1/2 +1/logy + it, )| n;cn1/2+max<1/logy,l/logxw1ogn g g

+ O0(1/ log x).

Proof. If y < x, we use [13, eq. (2.8)]. We substitute s, = 1/2+ 1/logy + it and note that the
terms involving F, (s,) have negative contribution, as F,(s,) > 0and y < x. If y > x, then in [13,
Proposition 2.3] we substitute A = 1and c = 1/2 + 1/ logy. 1

Proof of Proposition 1. Let us denote L, := min{logy + 1,1log gq}. Note that by Holder’s inequality,
as we are allowed to lose a power of L, in our estimates, it is enough to show that for any fixed
integer k > 1 and |t| < g” we have

D IL/2+1/logy +it, ) < gL
XEXG

Here, and throughout the proof, our constants are allowed to depend on k and A.
By Lemma 1 and Mertens’ estimates, there are absolute constants C; > 1 and C, > 1, such that
for any 2 < x < g we have

x(p) logx/p . .~ logq
1/24+max(1/logy,1/ log x)+it ]og X 1 log X

+ C,log L.

3.1
For any integer V > 1, let N(V) be the number of characters y € X;, such that log |[L(1/2 +
1/logy +it, x)| = V. Assume y is counted by N(V) and also that V > max{4C, log L, 100C,}.
Let us choose x = ¢'°1/V in (3.1), so for such characters, we have

log|L(1/2+1/logy +it, )| < R 2
p<x P

%Y x(p) _ logx/p . (32)
= p1/2+max(1/ logy,1/log x)+it log b 2

We now use [13, Lemma 2.8], with x = q!°“1/V k, = L%J and a(p) = p~ max(1/logy.1/logx) .
1

% (note that we use k; because the variable k has already been used before). We have xk g
q'/1%, so the lemma is applicable. As x < g, we have

la(p)|? 1
< <logL, +Cjs,
I;C p IEC p1+1/logy
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for some constant C5 > 1, so [13, Lemma 2.8] and (3.2) implies

vy (£)7 < 3 | 2 S KPDIAP) 0k log Ly + €,

1/2+lt
)(GX‘

We use the crude bound k,! < VK1, If V > e10090Cik(Jog ) 4 C;), we deduce
N(V) < ¢(qle™ V. (3.3)

Finally, let V, = [max{e!®°Cik(log L, + C;),4C, log Ly, 100C;}], so if V > V, then (3.3) holds.
Therefore, by partial summation we get

(s
Z |L(1/2 +1/logy + it,)()|2k < ¢(q)e2kV0 + Z N(V)e(V“)Zk
XEXY V=V,

(oo}
<$@e0 + ¢ Y e < gLy,
V=V,

which proves the proposition. O

4 | PROOF OF THEOREM 1

We start with a lemma that gives an upper bound on

1
R Z p1+ia ’

n<x

forany x > 2 and o > 0. Our lemma and its proof are based on the unconditional [13, Lemma 2.9].
As we are allowed to assume RH, we are able to strengthen it slightly.

Lemma 2. Leta > 0, then

loglogx + O(1) ifa <1/logxora > e*

cos(a lo
y cos(alogp) log(1/a)+0(1)  if1/logx < a <10,

px p
loglogloga + O(1) if10< a<e*,

where the first two estimates are unconditional and the third one holds under RH.

Proof. The first part is implied by Mertens’ second estimate, as for any o we have

|
3 cos(alogp) Y L <loglogx + O(V).
s b p<x
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By partial summation, we obtain

cos(a log p) 1 .
Y Tgp =RY —— =Rlog{(1+1/logx +ia) + O(1)
p<x p<x

=log|¢{(1 +1/logx + ia)| + O(1).

¢(s) has a simple pole at 1 with residue 1, so if 1/ log x < a < 10, we have

1 1
1+1/1 +ig))=——+0() x -,
0+ 1/logx +ia)] = [t +00) <
which implies
log|¢(1+1/logx + ia)| < log(1/a) + O(1),

which proves the second part. In the range 10 < a < e*, assuming RH we may use [12, Corollary
13.16] to get

log|¢(1 + 1/logx + iar)| < loglogloga + O(1),

which proves the third part. O

Our next lemma essentially restates Lemma 1, it gives an upper bound on log |[L(1/2 + it, y)|
in terms of a Dirichlet polynomial and an extra term that is easy to understand.

Lemma 3. Let y be a primitive character mod q, where q > 1, let T > 0 and x > 2. Definelog* T =
max{0, log T}. Assuming the GRH on L(s, y), for |t| < T uniformly one has

x(n)A(n) logx/n N logq +log* T
nl/2+1/logx+it Jogp logx log x

log|LA/2+it, )| <R D +0(1/logx). (4.1)

Proof. This is [13, Proposition 2.3] with1 = 1and o = 1/2. O
The main contribution in the Dirichlet polynomial comes from n = p a prime and further non-

negligible contribution comes from n = p?. The contribution from higher prime powers is O(1).

The next proposition is an easy consequence of the above lemma.

Proposition 2. Let 2k be a positive integer and let A, a,, a,, ..., ay be positive constants, x > 2. Let

a :=a; + -+ + ay + 10. Let q be a large modulus and assume that GRH holds for L(s, x), where x

is a primitive character mod q. Let t, ..., t,; real numbers with |t;| < q. For any integer n, let

h(n) := %(aln_“l + o+ ayn k),

Then

a,log [L(1/2 +ity, x)| + -+ + ay log |[L(1/2 + ityy, x)I

2%y h(P)x(p) logx/p o 3 h(p*)x(p*)
p<x

logq
A+1a—— 1). 4.2
pl/2+1/logx logx T+ )alogx +o). (42)

p<xl/2
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Proof. This is an immediate consequence of (4.1), as for each 1 < j < 2k we have

—it; —2it

%Y XA logx/n _ o 3 x(p)p™" logx/p % Y x(Hp™™"
n1/2+1/10gx+itj IOgI’l log_x p1/2+1/10gx log_x D

p<x1/2
+ 0(1). O

‘We now introduce a few definitions that will enable us to bound the Dirichlet polynomial in an

effective way. Our way of treating the problem comes from [5].
Define B, =0, 3; = % fori>1,let T =1+ max{i : B; < e~10000a*(A+1)} Note that B, <
B, < ... < B form a geometric progression, and §; should be thought of as a small fixed constant.

Recall that h(p) = %(alp‘”1 + -+ ayp k). Forany 1 <i< j< T, let

y x(p)h(p) log(q®i /p)
1/2+1/ﬁj10gq log(qﬁ]) ’

G(i,j)()() =
qﬁi—l <p<q5i b

Here the motivation is that in (4.2) we choose x = g®/ and we cut up our main Dirichlet poly-
nomial into smaller pieces where in G; ;(x) we sum over the primes between gfi-1 and gfi.
Define

={x X} : IRG (I < B/ ViisT},

and foreach0 < j < T let

3/4

S()={x €X;  IRGu00I < B, V1 <1< j, Vi <L TDut RGO > B,

forsomej+1<I1< I}

We now state three lemmas that we prove in the next section. After the statements, we show
how they imply Theorem 1.

Lemma 4. We have

ﬁl 2 2
Y exp? [ Z x(ph(p) log(@®/p)| B(@log )5 T (it — ¢ )%’

yer v<a t l/2+1/(ﬁ1 logq) log(qﬁz) J<i<j<ak

Lemma 5. We have |S(0)] < ge~(1°€1089” gnd for 1 < j < I — 1 we have

<

Y expt|m Z X(P)h(p) _log(a" /p)

X€S()) p<q® p!/?*V/Giled) 1og(gfi)

-1 -1
e P B0 g)log ) T T ol — )2,
1<i<j<2k
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Lemma 6. The statements of the previous two lemmas remain true if we replace the Dirichlet
polynomial by

%y X(P)h(p) log(@”/p) | 14 X(P)h?)

1/2+1/(Bjlogq) log(qﬁj) 2 S p
p<q

p<q’i p

We know show how these lemmas imply Theorem 1. We have

1-1
x:=71ul ]Sy
=0
For simplicity, let us denote
24042 Qs
B := ¢(q)logq) T Tt T g(lt, — 1))/, (43)
1<i<j<zk

By Proposition 2 and Lemma 6, we have

D LA/ 2+ ity )| |L(L/2 + by, )|
XeT

= Z exp(a log |L(1/2 + ity, )| + -+ + ay log |[L(1/2 + ity X)I)

XET
h log(qP Hh(p?
<Y ep|n Y 1)/(2(51)/5(11)3 og(q ﬁ/p) +%m x(pHh(p”) LA+ DE o)
XET p<gP p 70849 log(gF1) p<qf1/? P1
<B.

Foreach1 < j < T — 1, we have ,8}._:1 log(ﬁj_jl)/ZOO >2a(A+1)/B),s0

1-1
DD LA/ 2+ ity 0| - [LQ/2 + ity 20|

J=1 xeS()

-1
<B ) exp <%(A +1) - 87}, log(B)) /zoo)
j=1

J

|
<B Z exp <_5£(A + 1))
j J

j=1

< B

as the B; form a geometric progression.
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Using the bound on |S(0)| from Lemma 5 and Proposition 1, by Cauchy-Schwarz we get

Z |L(1/2 + ity )| ™ -+ |L(A/2 + ity )|
X€S(0)

1/2

SISO Y LA 2+ ity ) -+ [LQ/2 + iy, )
)(qu*

< p(q)e(108108)*/10(1g6 )0 « B.

Adding up the last three inequalities gives us Theorem 1.

5 | PROOF OF THE MAIN LEMMAS

Proof of Lemma 4. For simplicity, write

D x(p)h(p) log(g’1 /p)

Fi(x) :=Gan(0) = '
{0 = Gan(0) pl/2+1/B1l0gq  Jog(gfr)

qﬁi—l <p<qﬂi
By definition, for every y € 7 and 1 < i < Z, we have |RF;(y)| < ,8;3/ 4
if y € T, then

. Using Stirling’s formula,

i

RF.(1))! N
cpRE )=y D) +o<e—20013 >
o<j<1008; I

—3/4
say. As exp(RF;(x)) = e P , we have

exp(RF;(x)) = <1 + 01008 y (?RFi'(X))] .

J!
o<j<1008; /4

Therefore,

x(p)h(p) log(gP /p)
Z esz R Z p1/2+1/ﬁz loggq log(qﬁl) - Z exp2< Z mFi(X))

XET p<qft XeT 1<i<I
2
REC0Y
<M 3 S
XET 1<i<T 0<j<100/3i_3/4
2

(RF;,(0))
<TI| xS

XEXG1<IKT | o icr00~3

i
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Notice that in the last line we are summing over all y € X, instead of just y € 7. This can be done
because the square of a real number is always non-negative. This is why we have put our expres-
sions in the form exp?(---) instead of exp(---). Now we change the order of summation and have
D xex, 33 the innermost sum so we can use the orthogonality of characters to get cancellation.

We find that the last expression above is equal to

Z(H ,l,>2c<p DY I TI Rxi k) (Rx(gihipiy). G

7 \1<i<I Jir p.q XEX I<IKT 1<r<j;
1<s<l;

Here j = (j;,...,Jj7) and I =(l;,...,1;) are vectors of integers where 0 < j;,1; < 1008, 34,
In addition p = (py;,..,P1j,> P21s-s D2y P1,j,) and §=(qy;,.-,qz,) are vectors of
primes where the components satisfy gfi-1 < Pits s Pijis Qi1s - i), < qfi for each 1 <i<T.
Moreover,

co.o= 1 TI 1 log@®/p,) 1 log(g®/qy)
p-q 1/2+1/p1logq log(qﬁl) q_1/2+1/ﬁz logg ]og(q:@z) )
1,8

ISIKT1<r<j; Py )

1<s<l;

When j, I, P, g are fixed, let us denote

= H H DPir4is-

1<i<T 1<r<j;
1<s<y;

Using the identity Rz = (z + 2)/2 and the orthogonality of characters the innermost sum in
(5.1) (i.e. the sum Zx ...) becomes

X (P + (0 AP, x(qi)h(q;s) + 2(q:.9)h(q; )
> 11 11 :

XEX, I<IST 1<r<j; 2 2

1<s<y;

= ¢(q)< 5% > DI | [ 1 LR

1<i<T 8, 1<i<Ir<j;
s<l;

X | (P,q) =1and H lerqls =1 modq|.

1<i<T r<j;
s<I;

Here 6 = (6, 1, ..., 81,j,s->07,j,) and € = (€, ..., €, ..., €7, ) where each component is —1 or
+1. Moreover, "V(p) = h(p) and h=V(p) = h(p). Notice that

1/4 1/4

_ 200 400 01
P=[] IIpiras < [T €% <q*% <q™,
1<I<T 7<), 1<i<T
s<l;
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which means that if (P,q)=1 then [],; [Ir<; p; ’rrqle‘ss =1 mod q is equivalent to

s<l;

5i,r Ei,s 3
ITi<icz ITr<i, p;,’q;; = 1. Hence, we can rewrite the above sum as
s<l;

¢(q)< H 2(],-1+li)) Z Hh(alr)(p )h(EH)(ql 3)1 (P,q) =1and H H l;r lEl; =1|

1<i<T 8¢ 1<i<I r<j; 1<i<T r<j;
s<l; s<l;

Notice that the primes p; ,, g; ; are in different range for different i, so
1 r €l s z r el s
H H Pi, 9 = H H Piy4s =
1<i<T r<j; 1<ig<T r<jj
s<l; s<l;

Therefore, we find that (5.1) is

61) (e

11 1 & o \Ih(py) - HV(gq))l
soll X 57w 2 1(py =af' =1) T LE
ISIsT o< 1<1008, % @Pim1<py,ep g1 @i <P LA

01 seens 5j'€1 ..... ¢ €{—1,1}

1111
=¢(q) H Z Z ol
1<i<I mszooﬁ.‘s/“ j+l=2m Jib

0<j,1<1008;

@Pi-1<py....pm<qPi

3/4

Som _
th(pl) h(pm)|2 #{(qu..-,q2m,51,...,52m) . g1 Qo = p% przn and ql qun — 1}
pl"'pm #{(ql""’qm) . ql n.qm =p1...pm}

k]

(5.2)

where in the last line we substituted 2m = j + | where m is a non-negative integer. This can
be done because if j + [ is odd then l(pf1 qlil = 1) = 0. We also introduced a correction fac-
tor which ensures that when we changed variables in the summation we count everything the
right number of times. Now assume that in the prime factorisation of p, --- p,, the exponents are

ag, ay, ..., &, (o a; + -+ + a, = m). Then

2m)! = (2a;
#{(q;, ..., ,01,.,0 o = p2...p% and Sm _ 11— _ ( < l),
{(¢ Q2m> 91 2m) * Q1 Gam = PY 7 Py ql " Tom } H;=1(2“i)!i11 %
m!

#H(Q1> Q) © Q1 G = P1 o P} = H;=1 CCi!'
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Proceeding with this notation and noting that

JjHl=2m 0gj<2m
o<jil<1008,
we get that (5.2) is
h( ) h( ) __@m) Hr (Zoci)
1 |h(py) -+ h(p,)I? H'_ Qo) +H=L A
<¢(a) H Z 2m)! Z ;, P - 1 m!
1SIST 1y <a008; /4 " ¢Fir1<py e pp<dFi Lo T, !

o h 2
<4(q) H z L' Z |h(p;) (P i 1

. ) | PP )
1SIST o008, 4P <Py PP mo Il

m
1 |h(p)’| |h(p)I?
< — < ex —
¢@ 1 2_3/4 -~ 5-_12 T $(q) exp Zﬁ 5
SIST m<2008; qrim <p<ghi p<q°l
We have
2k 2
lh(p)I* = 2 + ) —cos(|t t;|log p),
i= 1<i<j<2k
so Lemma 4 follows from Lemma 2. O

Proof of Lemma 5. Let 0 < j < T — 1 and recall the definition of S(j). Foreach j+1 <1< T let

SG.D ={x € X} 1RG0l < B, V1 <i < j, Vi < I < Tbut| RG0! > 6,7
so that
1
sty = sG.D.
I=j+1

By the definition of S(j, I), for any M positive integer, we have

log(g®i
Z exp? | ® Z x(p)h(p) log(q"/p)
1/2+1/(Bjlogq) log(qﬁ.i)

x€SG.D) p<d’i P

x(P)h(p) log(@®/p) |/ 374 2M
< 2 er|R Y B RG(n(x)
2€S0D) ey PR Jog(gfr) ( i+ ) (5.3)

2

/ RGj)"
3M/2 (i.))
<<,3j+1 H Z — (mG(j+1,l)(X))2M

XEXy i=1 0<n<100:3 —3/4
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As in the proof of Lemma 4, we expand this to a Dirichlet polynomial and switch the order
of summation to get cancellation. We would get essentially the same result if it were not for
the (RG; HJ)()())ZM term. To proceed the same way we need to make sure the length of the

expanded Dirichlet polynomial is less than g. This is certainly the case if (qﬁfﬂ)z}v’ < q%2. More-
over, RG(j,, () runs through primes bigger than qPi, so these primes are distinct from the ones
occurring in RG; ;y(x) when 1 <i < j. So, the extra contribution coming from RG;,, ;(x) is

(in the first sum the numbers «;, ..., «, will denote the exponents of the prime factorisation of

D1 Pm)
2M)! Hr (Zcxl)
<L |h(py) -+ h(ppp)I? T et Hi=1 g
oM M
7V Frappebn DU PM M
@M)! Z |h(py) - h(ppy)I* 1
M. 2M r ]
M!-2 Fi<pi Fin P11 Pm | e
M
cM)! |h(p)|?
SM!.22M Z

q"i <p<gfitt

Hence, if (¢°+1)*M < ¢°2, then (5.3) is

M

h 2 ! h 2
<<¢(q)5J3JJ\:11/2 Z |h(p)| A;'ZMZ)Z'M Z |h(p)|

p<q'gj qﬁ_,' <p<qﬁ-i+1

Let us choose M := [1/(108;,,)]. As in the previous lemma, we have

|h(p)I” (2440 )4 jay/2
D o | < (o) | AR DAR

p<qﬁ] 1<i<j<2k

Also,
M

h 2
|h(p)| < CM,

I <p<gitt

where C = 10a?, where recall that a = a; + ++- ay, + 10. We have M > C'9, so

sm/2 (2M)!

3M
IO Vil 22MCM sexp(TlogﬁjH +MlogM+MlogC>

B

<exp (—%MlogM)

<exp < 100‘8” log(ﬁjﬂ))

(5.4)
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Hence, foreach 1 < j < T — 1, we have

Y expt|m Z X(P)h(p) log(q”/p))

XES() p<q1 1/2+1/(ﬁj10gq) 10g(q’3f)

x(p)h(p) log(g®i /p))
< Z Z exp’| R Z 1/2+1/(¢;logq) log(qﬁf’)

JHIKIKT yes(,b p<d’i P

< (I -)B eXP< 1005, lo g(ﬁm))
j+

< log(1/B;)B exp < 1005, log(ﬁﬁl))
j+

<<Bexp< 2008, lg(ﬁj‘l'l))
j+

which proves the lemma when j > 1. When j =0, the Dirichlet polynomial Z .. IS
empty, so what we infer is that |S(0)| < B exp(—m log(B, 1)) < ge~(0glogd’ g0 the lemma is
proved. O

Proof of Lemma 6. We show how to modify the proof of Lemma 4 to take into account the contri-
bution coming from the squares of primes, the modification of Lemma 5 is similar. The quantity C
will always denote a constant, which might depend on the fixed parameters of Theorem 1. More-
over, the value of C might not be the same at each occurrence. There can be at most one primitive
and quadratic y mod g. The contribution from one such character is negligible, as we have the
bound |L(1/2 + itj,)()l < exp(Cbg’l%) when t; = q°® (see [13, Corollary 2.4]). Let 2 < x < q.
If y is not a quadratic character, then x? is non-trivial, so under GRH a standard explicit formula
argument gives us the bound

Z 2PMAmn < x2(log gx(|t| + 2))*.

n<x

Recall that by definition h(p?) = %(a1 p~2h + ... 4+ a,, p~2i2k), Therefore, by partial summation
we obtain the bound

2 2
Z x(p)h(p?) <1

(log )4 <p<gP1 p

Moreover, by Mertens’ second estimate

2 2
x(p J)ph(p ) <1

s

log g<p<(log )14
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so in fact we may truncate the Dirichlet polynomial coming from the squares of primes at log g
instead of gf7. For each 1 < m < (loglog q)/(log 2) let

2 x(pHh(p?)

Pm()(): D

2m<p<2m+1
and let

P(m) ={x € X; : |RP, ()| > 2710 put |RP,(x)| < 27"1° Vm < n < loglogq/ log 2}.

% < 1, which contributes negligibly

If x is not inside U, ¢nqioglogq/2P(m), then X 50 0
to the final expression, so from now on we assume y € U;¢<ioglogq/2P(M), Let M = M(m) :=
[23™/4]. Then, as in the proof of Lemma 5 where we considered the contribution from RG 1,100,

we get

192M
XEX, M2 2m< pgam+l

2112 M
sy < Y |2 ORP, P < 2 Mg DL )] <¢(q>( cM )

_o3m/4
< qe 2",

hence the contribution commg from y € P(m), where m > log loglog q is negligible, so

from now on we assume m < log loglog q. By the trivial bound we have

x(p)h(p) log(gP/p)) 1 x(pHh(p?)
’m Z+1 pl/2+1/(Brloga)  log(qfr) TR Z p

p<logq

1 1 1 m/2
< ) —5t3 Y = +o@)<c2m,

p<2m+1 p p<2m+1

Note thatif 1 < m < TZZ logloglogg, then 2"/2 = 0(61_3/4) (recall that §; = m), thus
for any y € T we have

x(p)h(p) log(gP1/p))
p1/2+1/(ﬁl logq) log(qﬁl)

'm <+ ",

om+1 <p<q51

so we can run the exact same argument as in Lemma 4 on this slightly truncated polynomial.
Therefore, we get

Y exp?|m Z X(ph(p) log@”/p) 14 y x(pHh(p?)

1/2+1/(5l logq) log(qﬁl) p

XEP(m)NT p<qPt p<logq

] h(p) log(q®*/p)
- x(p)
. Z exp’ | R Z pl/2+1/(Brloga) log(qhr)

XEP(m)NT 2m+1<p<q 1
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m h log(gPr
«<e€? /2 2 (Zm/loiRPm()())2M eXp2 R Z 1/)25_11)3(5(11)0) ) g(q ﬁ/P)
xeP(m)NT amHl < peghl p 110gq) log(gPr)
M
2412 242
c2m/2 ,mM /5 (2M)! |h(p”)| |h(p?)I
<e 2 ¢(q) - ] Z > exp Z P
2m< pgamtl om+1 <PS£]'BT

<eC2"P-2"p

Summing this over 1 < m < > logloglog q, we get the desired bound. O

= 2log2

6 | PROOF OF THEOREM 2

We prove the theorem for the even case, the odd case is essentially identical. Recall, we have

Sh(@ = ), 1601, p)I*.

+
)(qu

We may write 6(1, y) as the inverse Mellin transform of L(s, y) twisted by some additional factor.
For an even character y and ¢ > 1/2, one has

6(1, y) = % /(C 10s )()(%)SI‘(S)dS.

We let f(t, x) = L(1/2 + it, x)T'(1/4 + it /2)(q/m)"/?. Shifting the line of integration to ¢ = 1/4
and noting that we sum positive quantities so we can sum over X ; instead of X;, we get

spo< Y |/ “reo(2) el
xexg TT®
< ¥ | [ reo(@) an<aal + ¥ | [ se0(2) > ga
PRV PRV
= I, + 1.

I, can be easily bounded via the exponential decay of I'(1/4 + it/2). We have |T'(1/4 + it /2)| <
e~t/10 for all t € R and also |L(1/2 + it, x)| < q(|t| + 2) for any y € X, (see [12, Theorem C.L
and Lemma 10.15]), hence the crude bound

o0 2k
L, <q- </ (qt)ze‘z/lodt> <1.
q

In the rest of the proof, we bound I,. In fact, we start by reducing the problem as follows.
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Lemma 7. Assume that for each 0 < n < q integer we have the moment inequality

2k

n+1 i
Z </n IL(1/2 + it,){)ldt) < ¢(q)(log g)k1’.

XEX]
Then Theorem 2 holds.

Proof. Note that I; involves integrals ranging from —q to q. We would like to break up these
integrals into smaller pieces of length one, which we can do using Holder’s inequality. We note
that | f(—t, y)| = |f(¢, x)| by the functional equation for L-functions, and y is even if y is, so
putting absolute values inside the integral we get

L<g?y ( 2 (n+1)/ NG )()Idt>

XEX; 0<n<q

n+1 2k 21
< gy ( D (n+1)2k</ |f(t,)()|dt> dt) ( D (n+1)—2k/<2k—1>)

)(er; 0<n<q 0sn<q

2k

1
< gk2 Z (n + 1)%en/10 Z </ " IL(1/2+it,X)|dt> ;

O<n<q

where in the last line we used |T'(1/4 + it /2)| < e~!/10. Here we introduced the auxiliary weights
s sowe do not lose more than a constant when applying Holder (see the rightmost sum in the

second line). The price we pay is that the term (n + 1)? appears in the final expression, however

this is offset by the exponential decay of the I function, which is responsible for the term e~"/1°,
We note that the exact choice of these weights is not important.
If the assumption of the lemma holds, noting that ¥, ,(n + 1)%ke=/10 « 1, we obtain
I, < ¢/ °¢(q)log ™",
which implies Theorem 2. O
Let 0 < n < g be an integer. In the rest of the proof, we show that indeed
n+1 2k )
> ( / IL(/2 + it,)()ldt) < ¢(g)log ). (6.1)
n

*
)(EXq

We first pull out three copies of the integral as outlined previously, which we can do because
2k > 4 by assumption. Using the notation dt = dt,dt,dt;, we obtain

n+l 2k 3 2k=3
< / IL(1/2 + it, )()ldt) < / [ 1ea/2+itg 0l ( / |L(1/2 + iu, )()ldu) dt
n [nn+1]3 ;=3 [n,n+1]

3

2k-3
< / [1izas2+it, ;()|< / IL(1/2 + iu, )()ldu) dt,
[nn+1]3 5= D
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where D = D(t,,t,,t3) ={u € [n,n+1] : |t; —u| < |t, —u| < [t; — u|}. Here, we may restrict
the integration over D by symmetry. In fact, later on in the argument it will be important that
we have a fixed ordering of the distances |t, — u|.

We would like to apply Holder to bring the (2k — 3)th power inside the integrand. However,
doing that directly would be too wasteful, so we first need to partition the region D according
to the distance |¢; — u|. This ensures that we extract the main contribution where variables are
close together.

We partition [—1,1] into dyadic regions as follows. Let B; = [— 1o;q logq] For 2<j <
Jj—1 J—2 Jj—2
lloglogq| +1=: K let B; = [~ fogq IQOE [fogq 10gq] Finally, we define By =[-1,1]\

U1<j<K Bj'
For any t; € [n,n + 1], we have

Dcnn+1lcy+[-11]c J 4 +B),
1<j<K

soifwelet A; = B; N (—t; + D) then (f; + A;);j<x forma partition of D. Applying Holder twice

we get
2%-3
</ [L(1/2 + iu,)()ldu) < < / |L(1/2+ iu, )()ldu)
D 1<]<K

2k—3
[IL(1/2 + iu, )()|du>

2k-3

J

2k—4
% < k=) /(2k—4)>
1<j<K

2%k-3
< Z j2k—3</ |L(1/2+iu,)()|du>
1<j<K hi+A;

< X AP [ a2 0P
5]

1<j<K +A;

where in the last line we used that |.A ;| < |B;|. Here the introduction of the weights % has similar

purpose to the weights HLH in the proof of Lemma 7. For simplicity, for t = (¢, t,, t;) let us denote

Lit,u) = ) |L(1/2 + iu, 0)|*~ 3H|L(1/2+lta,)()|

)(EX*
Hence, we have shown that
n+1 2k
D < / IL(1/2 + it, )()|dt> < Y By / / L(t,u)dudt. (6.2)
xEX* n 1<j<K [n,n+1]3 [1+Aj

q
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We are now going to partition the integral into smaller regions, where each region is such that
L(t,u) does not change by more than a fixed constant, Therefore, when applying Theorem 1 we
do not lose more than a constant.

Note that we have already restricted our integral to a region where |t; — u| is fixed up to a
constant and |f; — u| < |f, —u| < |3 — u|. We partition this region into smaller regions where
|t, —u| — |t; —u|and |t; — u| — |t, — u| are also fixed (up to a constant). More precisely, for each
1<j,l,m<K,let
C.

Jilbm

={tn,ttu)enn+1]* tuet; + Ay, |ty —ul — |ty —ul € By, |t3 —u| — |t, —u| € B,,}.

Recall that by the definitionof A;, u € t; + A;implies [t; —u| < |t, —u| < |t —ul. As|t, —u| -
|t; —u| and |t; — u| — |t, — u| are inside [0,1], for a fixed 1 < j < K we have [n,n + 1] x (t; +
A;) € Ui<imex Cjm> S0 this is a partition indeed.

Let us consider the volume of C; ; ,,,. If we fix u then ¢, is in a fixed region of size < %. If we

1
fix u and t,, then t, is in a fixed region of size < JE (as +(t, —u) € |t; — u| + B)), if we fix u and
ej+l+m

(logg)*”
We know give an upper bound on L(t u) knowing that (¢, t,,t;,u) € C;, ,, using Theorem 1.

. . . . . m .
t,, then t; is in a fixed region of size < ——. Hence, the volume of C; ; ,,, is <
loggq J.tm

By the definition of C; ,,, we have -~ <l —ul < 1s0 g(|t; —ul) < logq . By the definition of

j.lm
Aj we have |t, —u| > |t; —ul, so |t2 —u| =ty —ul+(t, —ul -1 —u|) > @ + @ hence
g(t, —ul) < —2L_ By similar considerations we obtain g(|t; — u]) < —2L - g(|t, — ,]) <

de(j DN emax(j,Lm)?
logq, g(lts — 1,]) < 1989 4nd finally g(Jt; — 1) < eloi. So, by Theorem 1, if (t1,t,,t5,u) €

em max(l,m)
Cj1m> then

logg logg loggq >(2k_3)/2<10gq logg loggq >1/2

k2—3k+3
L(t,u) <¢(q)(logq) ( el emaxijll  glilm} el em  pmax{lm}

=¢(q)(log q)k2 exp (—%—;3'(] + max{j, [} + max{j,[,m}) — %(l + m + max({l, m})).

Now that we have obtained an upper bound on the volume of C; ,, and an upper bound on L(t, u)

when (£, t,,t3,u) € Cj ,, recalling that | B;| < fogg’ We Mmay continue (6.2) as follows.
D T H / / L(t, u)dudt
1<j<K [n,n+1]3 [1+Aj

< Y FBI*t Y Volume(Cjy) - sup  L(t,u)

1<j<K 1<l,m<K (tWEC; | m
—1)? 2k—
<p(@og)" ¥
1<j,l,m<K

xexp(jlk—3/2)+1/2+m/2— (k —3/2)(max{j, [} + max{j, l, m}) — max{l, m}/2)
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<¢(q)(log q)(k—l)2 Z j2k—3e—(k—2) max{j,l,m}

1<j,l,ms<K

<p(@)logq)V N ke (R Hims

1<j,l,msK
<¢(q)(log ),

which proves Theorem 2. Note that in the last line we used k > 2.

7 | PROOF OF THEOREM 3

In this section, we prove Theorem 3. We break this section up into three subsections. In the first
one, we state a variant of Theorem 1, which concerns shifted moments of L-functions off the crit-
ical line. The statement can be proved very similarly to Theorem 1, we will indicate the changes
one has to make. In the second and third subsections, we will prove the first and second part of
Theorem 3, respectively.

7.1 | A variant of Theorem 1

Theorem 4. Let 2k > 1 be a fixed integer and ay, ..., a,, A fixed positive real numbers, 2 <y <
g. Suppose the Dirichlet L-functions modulo q satisfy the GRH. Let XZ denote the set of primitive

characters modulo q. Let t = (t1, ..., t5;) be a real 2k-tuple with |tj| < qA. Then

D |L(/2+1/logy + ity, x)| ™+ |L(A/2 + 1/ logy + ity x)|
XEX]

T 2 & -a;
<P(@ogy) W T g* Uty —t;)%”,

1<i<j<2k

where g* : Ry, — R is the function defined by

i < — > ey
logy ifx < oy orx >ev,
% 1 . 1
X)=+<= — < Xx <L
g () =97 if gy S X <10,

loglogx if10<x <€

The proofis essentially the same as that of Theorem 1, we briefly indicate the changes one needs
to make. First, we use Lemma 1 to upper bound |L(s, y)|. Recall, if 2 < x < g, then

x(MA(n) logx/n N logq + log* ¢

log |L(1/2 +1/1 it, x)| < :
og |L(1/2+1/logy +it, x)| mr;n1/2+max(1/logy,l/logx)+ttlogn g g

+ O(1/ log x).
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After that, we run the argument the same way as in the proof of Theorem 1, the only (and essen-
tial) difference is that our Dirichlet polynomials over primes are weighted by p—1/2-1/1°8” instead
of p~1/2. In particular, if we recall the definition of C(p, ) and P from the proof of Lemma 4,
there we used C(p, §) < P~'/2. In the proof of Theorem 4, this becomes C(p, §) < P~1/2-1/10gy,
This extra saving is responsible for the difference in the upper bounds in Theorems 1 and 4 (the
former involves powers of log g, the latter has powers of log y). To see this, following the proof of
Lemma 4, we get the upper bound

h 2
2 |L(1/2 +1/logy + itl’x)|al |L(1/2 +1/logy + it2k’)()|a2k < ¢(q)exp (2 p| (pl >’

1+2/1
s i<y +2/logy
where recall
1 s s
h(p) := 5(0113 Tt aypT).

We uniformly have |h(p)| <« 1 and that
1
Z 1+2/ lo; <1
P>y p gy

so the desired upper bound follows by Lemma 2.

7.2 | Proof of the first part of Theorem 3

We begin with a proposition that gives an upper bound on the integral of L-functions slightly to
the right of the critical line. It can be thought of as a generalisation of (6.1).

Proposition 3. Let 10 < B = ¢°V and 2 < y < q. Then

B
D </ IL(1/2+1/logy +it, )()ldt)
0

)(EX;

2k

< ¢(q)<B3(10g log B)°D(log »)*~1* + B*(loglog B - loglog y)°V(log y)k’ ~3k+3 )

Proof. The proof is very similar to that of (6.1), so we will not explain it in much detail, but go
through the main steps. For each y, by symmetry

2k

B
(/ [IL(1/2+1/logy + it,)()ldt)
0

3 2k-3
<</ H|L(1/2+1/logy+ita,)()|</ |L(1/2+1/logy+iu,)()|du> dt,
[0,B]? 77 D

where D = D(t;,t,,t3) ={u € [0,B] : |t; —u| < |t; —u| < [t; —ul}.
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Lt YUY iy

Let B; = [, L] For2< Jj<lloglogy] +1=:KletB; =[- fogy’ Togy oy’ Togy

logy logy
Then, for any t € [O,B] we have DcC[0,B]Ct; +[-B,B]C UlsjsK t, + Bj, so if we
let A; =B;jn(—t; + D) then (f; + A;j)i¢j<x form a partition of D. Applying Holder twice
we get

2k—3
</ [IL(1/2+1/logy + iu,)()ldu)
D

2k—3
< 2 / [IL(1/2+1/logy + iu, X)ldu)
L1+A;

1<]<K
2%k-3 2k—4
D j2k—3< / IL(1/2+1/logy + iu, )()|du) <Z j<2’<—3>/<2’<—4>>
1<j<K H+A;j 1<j<K
2%-3
< Z jAk=3 / IL(1/2 4+ 1/logy + iu, x)|du
1<j<K [1+.Aj

< Z j2k‘3|l3j|2k‘4/ IL(1/2 4+ 1/1ogy + iu, ¥)|**3du.
1<j<K h+A;

For simplicity, for t = (¢;,¢,, t3) let us denote
3
Lit,w) = Y. []ILQ/2+1/logy + ity )IILA/2 + 1/ logy + iu, x)|*~.

N
){EXq a=1

We have shown that

B 2k
D (/ |L(1/2+1/logy+it,)()|dt) < ) j2k_3|Bj|2k_4/ / L(t,u)dudt
xex; O 1<j<K [0.BP Ji,+4;
< Z 247318, |24~ 4/ L(t, u)dudt,
1<, m<K Cm
where

We now separate two cases in the summation according to the size of j.

Casel. j <K. This is essentially the same as the proof of (6.1). The volume of the region C;  ,, is

V(Cjim) < B3~ Moreover, when (t,u) € Ciim

(10g )3
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L(t, u) < $(q)(log y)** (loglog B)°™)
2k -3, . . . 1
X exp <—T(J + max{j, I} + max{j,l, m}) — 5(1 + m + max{l, m})).

J . .
We have | B il < 1063’ so in total we obtain

Z J3 B P / L(t, w)dudt

1<j<K Ciim
1<l,m<K

<¢(q)(log y)* Y’ B3(loglog B)OM.

. Z j2k_3

1<j<K
1<l,m<K

xexp(jlk—3/2)+1/2+m/2 — (k —3/2)(max{j, [} + max{j, l, m}) — max{l, m}/2)

<<¢(q)(10gy)(k—1)233(10g IOg B)O(l) Z j2k—3e—(k—2) max{j,l,m}

1<j,l,m<K

<¢(q)(log )"V’ B3(loglog B)°™.

1
Case 2. j=K. The volume of the region Cg;,, is <B* ¢ For each i=1,2,3 we

(logy)?*
have g*(|t; — u|) < loglog B, g*(|t; — t,|) < 10% loglog B, g*(|t, — t5]) < IZ% loglog B, g*(|t; —

t]) < 10% loglog B, so
L(t, u) < ¢(q)(log y)©" ~3+°/2(log log B)°We 1/

Finally, |Bx| < B, so

z K23 B |2k / L(t, u)dudt
Ck

1<l,m<K Lm

< $(g)(logy)**+92B* (loglog B)*V(loglog y)° e

1<I,m<K
< ¢(q)(log y)¥'=3+3B% (log log B)°™M(log log y)°V. -
As stated in Theorem 3, when y < q'/? we would like to show that
2k i
D12 xm)| < y*e(g)log ). (7.1)

)(EX; n<y

We first consider a weighted version of this moment. We choose the weight to be piecewise linear
and continuous. This ensures that the corresponding Perron integral is absolutely convergent.
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Lemma8. Let2<y < qand T = y/(logy)®, where C > 0 is a fixed constant. Let f(x) = 1if0 <
x<y—T,f(x):1—#ify—Tsxsy,andf(x):Oifx;y.Onehas

2

s
)(EXq

2k
> x| <y ¢(g)logy) 1. (7.2)

n<y

Proof. We have

— Sl s+1
[ et - g -,

so by Perron’s formula (or the Mellin inversion formula), for each ¢ > 1 one has

Y sexm =5k [ B e - yas

et i TS(s+1)

as the integral is absolutely convergent. We may shift the line of integration to the left and choose
¢ =1/2+1/logy. Also, by symmetry it is enough to consider the integral in the upper half-plane.
Let A := (logy)P, where D is a large constant specified later. We break up the resulting integral
into three pieces according to the size of ¢t := Js. In fact, our three regions of integration will be
[0,A], [A,q] and [q, 0]. When 0 < t < A and Rs = 1/2 + 1/ logy, we use the estimate [y**! —
y —-T)y+ < |(s + 1)y’T| < T(t + 1)y'/2, when t > A we use [y+! — (y — T)**'| < y3/2 and
recall that T = y/(log y)©. We get

AL/2+1/logy +it, )l \
> Fxm| < ) ( / e dt)
XEX] n<y XEXG
2 . 2k
+yk(10gy)2kC Z a |L(1/2 + 1/ logy +1t, X)| dt (7‘3)
yex: \J4 t?
q

®|L(1/2+1/logy +it, 2k
+y(logy)*€ )’ </2 ILa/2+1/1ogy X)ldt>
q

« t2
)(EXq

Let us deal with the integrals ranging from 0 to A. We would like to use the decay of 1/(t + 1)
efficiently, so we break up each integral via Holder’s inequality. For each y € X:]" we obtain

A . 2k 2k—1
</ [IL(1/2 +1/logy + it, )| dt> < < Z n—zk/(2k—1)>
0 t+1 n<log A+1

2k
e—1 ;
L(1/2+1/logy +it,
- (n/ IL(1/2+1/logy )()Idt>
n<log A+1 en=1-1 t+1

2k

n2k e"-1 _
< Z o /enl_1 [L(1/2+1/logy +it, y)|dt

n<log A+1
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Using this inequality and Proposition 3, we obtain

3 </A |L(1/2+1/logy+it,)()|dt>2k
)(GXZI‘ 0

t+1

2k
2k e"-1
< ) "nk D </ |L(1/2+1/logy+it,)()|dt>

e2

n<log A+2 XEX;, -l
2k
<¢@ Y, 2 ((ogy)* Ve (log2m)° + (log )+ e (log 2n)°D(loglog »)°)
n<log A+2

<¢(g)(logy)<1.
Note that we used 2k — 3 > 0 and that k? — 3k + 3 < (k — 1)? in the last line.

Next we deal with the integrals ranging from A to g?. The argument is the same as in the
previous case. We use Holder’s inequality and Proposition 3 to get the upper bound

2k
q* [IL(1/2 +1/logy + it, )| d
2 A l’2 t
XEX]

2k
2k en+l
n .
< Z e Z (/n |L(1/2+1/10gy+lt,)()|dt>
log A—1<n<3logq XEX; e
n2k

< z gl ¢(q)
log A-1<n<3logq

X <(10g y)(k'1)2e3"(log 2n)°D + 2 (1og 2n)° P (log log y)°™(log y)k2‘3k+3)

<¢(q)(log y) kDD,

Using the pointwise bound |L(1/2+1/logy + it, x)| < (qt)'/?> when t > q (see [12, Lemma
10.15]), we get

®|L(1/2+1/logy +it, ), \** _ ¢(q)
Z </q dt> Py

2 k
xex; 2 t q
Choosing D large enough in terms of C and k, we obtain (7.2). O
Next, we show that the weighted moment is close to the unweighted one.

Lemma 9. Let f be the function defined in Lemma 8 with some fixed C > 0. We then have

2

)(EX;

2k
D= fmx)| < ¢y logyy?=C/2. (7.4)

nsy
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Proof. By the Cauchy-Schwarz inequality

1/2 1/2
2k 2 4k—2
DD a-rmxm| <[ D | Da-rmxmn PR DNCEFICHE
)(GXZ; n<y )(EXZ n<y XeX; n<y
(7.5)
First, using the orthogonality of characters, we get
2
D D= femxm)| <@ Y 11— fm)* < $(q)y(logy)™°. (7.6)
XEXG ' Ny n<y
Second,
4k—2 4k—2 4k—2
YD a-fexm| < YD am  + | fmxn) (7.7)
)(EX; n<y )(EX;‘ n<y )(EX; n<y

We only need to estimate the first sum on right-hand side as the second one is already dealt with.
By Perron’s formula,

1+1/logy+iy ys
27i Y x(n) = / L(s, ) =ds + O(log? y)
1+1/log y—iy S
n<y

1/241/logy+iy 1/241/logy—iy 1+1/log y+iy ys
= / + / + / L(s, x)=ds + O(log* y)
1/2+1/logy—iy 1+1/logy—iy 1/2+1/logy+iy S

We first address the moments of the horizontal integrals. We may assume that y > 10, otherwise
the lemma is trivial. By symmetry we need to consider only one of them. We have |y*/s| < 1 in
that range, so applying Holder’s inequality we get

1+1/log y+iy yS 4k—2 1+1/log y+iy =2
/ wots| <3 ([ LG5, 20l ds]
1 N XEX: 1/2+1/log y+iy

/2+1/log y+iy
1+1/log y+iy thd
<y / 1L, 2121 dsi|
)(EX; 1/2+1/logy+iy

%
)(qu

<¢(q)(log y) K1’

Here in the last line we used thatif 1/2+1/logy < Rs <1+ 1/logy, then

D ILGs, 12 < $(q)(log y) 2,
XEXG

which is a consequence of Theorem 4 because y > 10. The vertical integral is handled by
Proposition 3 and Holder’s inequality, similarly to previous cases. We have
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1/2+1/log y+iy ys
/ Lis. 0 %ds
1/2+1/logy—iy S

4k—2

)(EXE;

Y|IL(1/2 +1/logy + i, k=2
<<y2k—1 Z </ |L(1/ /logy +i )()|dt>
){EX* 0

t+1

n
n4k—2

i 4k—2
<yl Z i ;X </€ |L(1/2+1/10gy+it,)()|dt>
XEXg

n<logy+2 € nl-1

n4k—2

<y*14(g)logy) @17V Y + ¥ 1(g)(log y) KD 343 (joglog )0

4k—2)n
n<logy+2 e( )

X Z n4k—2

n<logy+2
<y*1d(q)logy)*’.

This implies the crude bound

2

)(GX;

4k—2 ,
< y*1p(g)(log y) ™. (7.8)

D> x(m)

nsy

Thus, recalling (7.7) and using Lemma 8 we have shown

4k—2
S Ida-fexm|  <y*@ogy)*.
xex; ' n<y
Now we combine this inequality with (7.5) and (7.6) to get the lemma. O

Now adding up the inequalities in Lemmas 8 and 9 with C = 4k?, say, yields the first part of
Theorem 3.

7.3 | Proof of the second part of Theorem 3

We now show the second part of Theorem 3, that is if y < g'/2, then

Yol xm

XEXG  n<q/y

2k
< (q/y)¢(q)(log 2y)*~1", (7.9)

The proof is similar to that of (7.1), except shift the line of integration to the vertical line with real
part ¢ = 1/2 —1/logy and then use the inequality |L(s, )| < (tq)/>°|L(1 — s, 7)|, which is a
consequence of the functional equation. Again, we start with a weighted version. In addition, we
assume thaty > 10. We change the definition of f slightly. Let f(x) = 1if0 < x < q/y =T, f(x) =
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1-— % ifg/y —T <x <q/y,and f(x) = 0if x > q/y, where we choose T = where

q
y(logy)©”’
C is a sufficiently large fixed constant. Using Perron’s formula and |L(s, y)| < (tq)/?>~°|L(1 —
s, x|, we get

D> x(mfn)

n<q/y

1/2—-1/log y+ico L
< / (s,0)
1

s+1 s+l
/2-1/logy—ico  IS(s+1) ((q/yy*' =(q/y —=T)*')ds

®|L(1/2—-1/logy +it, })| 3/2-1/ logy+i _ ,
< gy+it _ -T 3/2—1/logy+it dt
/0 TG+ 1) (/) (q/y—=T) |

- /°° q'/1°e¥|L(1/2 + 1/ logy + it, ¥)|
0

T(t + 1)>1/logy |(q/y)¥/?=H/108vHit — (q/y — T)3/27 1/ Toey+it | gy,
1)

When t < A (recall A = (logy)” where D is a large constant) we use that |(q/y)>3/21/logy+it _
(q/y — T)*/271/1oey+it| « (q/y)!/2-1/198¥T(t + 1), if ¢ > A, then |(g/y)*/>~1/1e¥+it —(q/y —
T)3/2—1/10gy+it| < (q/y)3/2—1/logy' We obtain

2

%
)(EXq

</A |L(1/2 + 1/10gy+it,)()|>2k
0

2k
<@/* )] P

*
)(EXq

2 . 2k
+(q/y)*(log y)?<€ z (/Aq lL(l/ZH/lOgH”’X)ldt)

. t + 1)2-1/logy
xex; (t+1)

> fmxn)

n<q/y

</°° |L(1/2+1/logy+it,)()|dt>2k
q

+(Q/y)k(10gy)2kc Z R (t +1)21/logy

*
)(qu

This can be bounded the same way as it is done in (7.3), the only difference is that the exponent of
t + 1in the denominatoris 2 — 1/logy > 3/2 instead of 2, as y > 10, but the argument can be run
essentially the same way. However, for the third integral, which runs from g? to co, we need to
use the convexity bound on L-functions, namely that |[L(1/2 + 1/logy + it, x)| < (gt)}/*, which
implies that the third term has negligible contribution. Thus, we have shown that if y > 10, then

2

)(EX;

2k
< $(q)(g/y) (log 2y)*k~1", (7.10)

> fmxn)

n<q/y

Our remaining task is to show (7.10) without the weights f(n) and to handle the case y < 10. It
turns out that we can do these by proving the following inequality.

Proposition 4. Foralll <y < ql/ 2 we have

Yol xm

XEXG  n<q/y

2k
< ¢(q)(q/y) (log 2y)°D. (7.11)

85Ue0| 7 SuowWoD aAee.) 3|qeal|dde sy Aq peusenob ae seoiie YO ‘8sn JO S9|nJ Joy AkelqiT 8uljuO A3|1M UO (SUONIPUOD-PUR-SW.RIW0Y A3 1M ARIq 1|BU1|UO//SANY) SUONIPUOD PUe SWS 1 81 89S *[rZ02/c0/2T] Uo ARigi8ulluO /8|1 1581 Aq ZyZZT IW/ZTTT 0T/I0P/L0D A3 | Im A el 1 pul|uo-00syTeWpUO|//:Sdny woiy pepeojumod ‘2 ‘v20Z ‘Zv6LT0Z



HIGH MOMENTS OF THETA FUNCTIONS AND CHARACTER SUMS | 35 of 37

Proof'that Proposition 4 and (7.10) shows (7.9). For y < 10, the inequality (7.11) is the same as (7.9),
on the other hand when y > 10, (7.11) implies (if C is large enough)

2

.
)(qu

2k
> - fexm)| < $g)g/y) (log2y)

n<q/y

the same way as (7.8) implied (7.4). This last inequality with (7.10) then implies (7.9). O

Proof of Proposition 4. By Holder we may assume that k is an integer. Our argument is inspired
by the proof of [11, Theorem 1]. By [11, Lemma 1], we have for any H > 1,

Y aw="E 3 MWy nroarenogn. 01
n<q/y 1<|h|<H

_ q n~N - _ 27 . ..
Here, 7(y) = anl )((n)e(a) is the usual Gauss sum and e(x) = e™**. For y primitive we have
lzCOl = ¢*/2, so
2k
X xam

<s@+ @ g +q" ¥ | Y Dy -]

XEXG  n<q/y XXy ' 1<h<H
We thus choose H = g to get an acceptable contribution from the error terms. Let a;, = %,
then a;, < min(1/y,1/h), so
k
> = Y bux(h),

1<h<H h<HE

where b, < d;,(h) min(1/y*,1/h), so by the orthogonality of characters

2 2
> Y bhx(m‘ 4@ 3 | 3

X€Xq 1<h<HkK 1smsq ' 1<hgH*
(m@=1 h=m(q)

(7.13)

> XD etnsy) - 1)1

1<h<H

For each 1 < m < g, one has

max x di (h)
Y b,< i > 1 o,
q<h<HK q h<HK
h=m(q)

Therefore, if in (7.13) inside each inner sum we separate whether h < q or h > g we get that (7.13)
is

<¢@ Y dy(h? min(y>, h7?) + ",
1<h<q
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By [11, (10)], we have

dy (h)>
> d(h?*min(y=*, A7) <y Y d(R)P + Y "}(12) <y *og2y)!,

1<hgg h<yk hzyk

so we gain that if k is an integer then

X am

XEXG  n<q/y

2k
< $(q)(g/y) (g 2y)" " + ko,

This shows (7.11) when y < g/2¢. On the other hand, when y > q'/2¥ the inequality (7.11) is in
fact implied by (7.8) (note that this is the part where we use GRH for the proof of this proposition).
Therefore, the second part of Theorem 3 is proved. O
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