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Abstract

Deep learning has pushed the boundaries of Computational Pathology
(CPath) models for the diagnosis and prognosis of cancer. Many methods have
been proposed that are fast, reliable and reproducible, but the performance
largely depends on large scale labelled data. In most cases, a large amount of
data remains unlabelled and needs to be used. Therefore, this thesis focuses on
developing semi-supervised and weakly-supervised approaches for automated
analysis of whole slide images (WSIs) leveraging unlabelled data.

To this effect, I present a semi-supervised method for simultaneously classi-
fying and detecting tumour cells in Diffuse Large B-Cell Lymphoma (DLBCL).
I first label the unlabelled data using pseudo labels and then train the frame-
work using MixUp augmentation, which enhances the generalisation capability
of the network. Next, I segment nuclei and tissue regions in WSIs using semi-
supervised and self-supervised learning. Limited labelled data challenges the
model’s robustness due to limited exposure and learning experience. Therefore,
I propose a consistency regularisation and cross-consistency training based
semi-supervised learning framework. In addition, I also incorporate entropy
minimisation to improve the confidence of pseudo labels predicted during
training.

Finally, I use multiple instance learning (MIL) frameworks for the diagnosis
(i.e., grading) and prognosis (i.e., malignant transformation) of oral epithelial
dysplasia (OED). I propose a novel digital biomarker, based on a count of peri-
epithelium lymphocytes, and demonstrate its association with poor progression-
free survival (PFS) in OED. Then, I propose a method based on graph neural
networks (GNN) in a larger cohort. Initially, I perform coarse segmentation
to delineate the epithelium into sub-layers and then train GNN models with
ranking loss. The findings reveal that nuclei from the epithelium and basal
layers are significant diagnostic digital biomarkers for grading. In contrast,
nuclei from the basal layer and peri-epithelium tissue area are found to be
significant for OED malignant transformation.
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Chapter 1

Introduction

1.1 Cancer

A cell is a fundamental building block of the human body. Cells divide through

a process called mitosis, which allows for growth and repair in the body.

Cancer is a state where cells of an organ exhibit abnormal and uncontrolled

behaviour/reproduction in such an invasive pattern that destroys surrounding

healthy tissues and eventually the organ itself [3]. In 2020, 18.1 million

cancer cases were recorded worldwide, with 10 million cancer related deaths

as reported by the International Agency for Research on Cancer (IARC) [4].

The most common types of cancer are breast and lung cancers worldwide, with

12.5% and 12.2% of the total number of cancers diagnosed respectively. In

the case of cancer, due to multiple environmental factors and a multitude of

genetic mutations in these cells, this division becomes uncontrolled, resulting in

abnormal/uncontrolled behaviour that can transform into a tumour. Changes

in a tissue cell might not be due to cancer, but it can develop into cancer if

untreated while passing through the hyperplasia and dysplasia stages before

becoming cancer.

Tumours are broadly categorised into malignant (invasive) and benign (non-

invasive) sub-types. A tumour that can invade nearby tissue and spread from

the primary site is malignant. The benign tumour shows abnormal growth but

is harmless and cannot invade or spread around [5]. Cancer can spread from

the primary site (origin) to neighbouring organs or tissues via the bloodstream

or the lymphatic system. This process is known as metastasising, where the

extent of metastases is termed as the cancer stage. Malignant tumours can be

cured to improve long-term and disease-free survival if diagnosed and treated

at the right time [6]. Cancer grading, provides the extent of damage caused by

cancer in the appearance and behaviours of the cells.
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1.1.1 Cancer Types

Cancer types can be categorised using the primary location of the tumour

and the histological type. The primary location is the site of tumour origin

(i.e., first appearance), e.g., breast, lung, colon and lung. Cancers are usually

named after the organs, and hundreds of different cancer types exist based on

only histological type [5]. Cancer can be broadly categorised into carcinoma,

sarcoma, leukaemia, lymphoma, and myeloma. Tumours originating from

the epithelium (i.e., from skin or tissue lining) are known as carcinomas and

account for 80-90% of cancers. Sarcomas are tumours arising from connective

and supportive tissues (i.e., bone, muscles and fat) and are the second biggest

after carcinomas. Leukaemia, lymphoma, and myeloma based tumours are

not solid and arise from malignant growth in blood, bone marrow and lymph

nodes.

1.1.2 Oral Dysplasia

The term dysplasia consists of two Greek letters dys meaning bad and plasia

meaning growth. Oral Dysplasia is defined as a potentially precancerous lesion

of stratified squamous epithelium diagnosed histologically based on cellular

atypia and architectural abnormalities [7]. Dysplasia is a series of subtle changes

in the oral cavity that are theoretically reversible if diagnosed and treated at

early stages with the right treatment. Not all changes are reversible, reversible

changes are characterised by accelerated cell divisions, which can lead to the

death of cells undergoing neoplastic transformations. These dysplastic lesions in

the oral cavity have more importance as they are much more likely to transform

into oral squamous cell carcinoma (OSCC) than the non-dysplastic lesions [8]

as seen in Figure 1.1. Accumulation of genetic and epigenetic alterations have

been seen during the development of malignant lesions in oral mucosa in a

series of clinical and histological experiments for changes depicting dysplasia

[9]. Genetic alteration involves changing the DNA sequences, while epigenetic

alterations do not involve changes in the DNA sequences themselves, but rather

in their interactions with other genes.
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Figure 1.1: a) WSI showing layers of the oral epithelium; top/most superficial
keratin layer, middle epithelial layer and bottom basal layer with underlying
connective tissue. b) Different grades of oral epithelial dysplasia where first
row depicts regions of interest (ROI), and the second row presents a zoomed-
in version of the highlighted patches. 1) Mild dysplasia - some cytological
and morphological changes restricted to the lower third of the epithelium.
2) Moderate dysplasia - significant cytological and morphological changes
extending into the middle third of the epithelium 3) Severe dysplasia - significant
cytological and architectural changes extending beyond the middle third and
into the superficial epithelium. (Images from own work)

OED grading relies on the extent of involvement of the intra-epithelial

layers (i.e., keratin, epithelium and basal layer), which are currently difficult to

objectively delineate as seen in Figure 1.1 a). The diagnosis of OED involves

a tissue biopsy and histological assessment using light microscopy, and the

current gold standard grading system for OED is subjective and relies on

evaluating at least 15 different cytological and architectural features. OED
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changes usually start in the basal layer of the epithelium and progress upwards

through the epithelial layers, with increasing severity. The cytological changes

include nuclear and cellular pleomorphism, anisonucleosis/anisocytosis, hyper-

chromasia, atypical mitotic figures, and increased cellularity. Architectural

changes include irregular epithelial stratification, loss of basal cell polarity,

drop-shaped rete pegs, increased mitotic figures, and loss of epithelial cohesion

[10]. The WHO 2005 system [11] grades cases as hyperplasia, mild, moderate,

severe and carcinoma in situ. However, the presence of multiple categories

was reported to add ambiguity to the treatment given to cases, and there has

been an emphasis on the need for two-tier classification systems to improve

reproducibility and clinical adoption. Kujan et al. [12] introduced a binary

grading system, categorising cases as either low or high risk depending on

the number of architectural and cytological features seen. In 2017, the WHO

also released the new three-tier grading system instead, grading cases as mild,

moderate or severe [13]. Despite the proprosed grading systems, the OED

grading suffers from significant inter- and intra-observer variation [14] due to

its subjective nature and interpretation can be hugely dependent upon the

observer’s experience and training. However, even these newer systems pose

problems, with difficulty in the treatment given to moderate cases. Further-

more, the classification is complicated because some mild cases may progress

to malignancy while some severe cases may not. Limited guidance or tools are

currently available, which is critical for correct grading and aiding treatment

decisions. This highlights the need for novel and objective approaches that can

provide prognostic abilities along with the objective diagnosis as OED grading

is vital to inform hospitals for patient management.

1.1.3 Diffuse Large B-cell Lymphoma

Malignancies derived from white blood cells (i.e., lymphocytes) are known as

lymphomas and can be categorised into B-cell and T-cell lymphoma with respect

to their origin in cells. Further, these B-cell lymphomas can be categorised

into high- and low-grade lymphoma. Diffuse large B-cell lymphoma (DLBCL)

is a high grade aggressive and fast-growing malignancy that affects the growth

of anti-bodies known as B-type lymphocytes. It is more prevalent in western

countries [15] affecting people with median age of 70 at diagnosis time [16]. The

most common test for DLBCL is to remove part or all of the enlarged lymph

node which is then checked by the hematopathologist under a microscope.

Visual examination is assessed on the basis of grading system proposed by Ann

Arbor [1] where stages I and II are considered as low or early stage DLBCL and

stages III and IV are considered as high or advanced stage as shown in Table

1.1. Early stages can be treated using simple chemotherapy while for advanced
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stages chemotherapy is combined with a drug named Rituximab. Although,

advancements in treatment have improved the overall survival [17] of DLBCL

patients with modern chemotherapy and Rituximab. However, approximately

40% of patients doesn’t show the lasting response to therapy and inevitably

die with DLBCL [18].

Table 1.1: DLBCL classification system proposed by Ann Arbor [1]

Stage Staging Description

I A single organ or site contains tumour (around a single lymph
node)

II At least two organs or sites in lymphatic regions of same side
of diaphragm contain tumour

III Lymphatic regions (including organs and lymph nodes) contain
tumour on both side of the diaphragm

IV Diffuse or disseminated association of one of multiple extra-
lymphatic organs (like liver, lung nodules, bone marrow)

1.2 Cancer Diagnosis

Pathology is the gold standard for investigating the cancer, its cause and

its effects using biopsies/resections. Cancer diagnosis usually involves phys-

ical examination, various laboratory tests, and samples of body tissues (i.e.,

biopsies and resections). The diagnostic process starts with extracting tissue

samples from different organs through biopsies/resections carefully examined

by surgeons and histopathologists, as detailed in the next section. Pathologists

look for different patterns and anomalies at the cellular and architectural levels

under the microscope, which might explain the underlying disease [19]. As a

part of diagnosis, pathologists also determine the cancer grade/aggressiveness,

which is then used in treatment options and predictive analysis along with

other factors, e.g., site of origin, type and grade. Accurate diagnosis is critical

to patient management, as a patient may be under- or over- treated based on

the diagnosis. Treatment decisions include removing the cancerous region or

using drug therapy and radiotherapy to reduce the chances of cancer relapses

and help improve the patient’s quality of life.

1.2.1 Slide Preparation

The journey of a tissue specimen from a biopsy/resection to analysis involves

various steps, namely fixation, embedding, sectioning, and staining, explained

below and shown in Figure 1.2.

Fixation: As a result of removal from an organ, cells start to die in the tissue,

known as autolysis, and the original structure of the tissue is lost. To prevent
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autolysis and preserve the original structures, the tissue specimen is first fixed

using a fixative solution, such as formalin.

Embedding: To further preserve the tissue specimen and prepare it for the

next procedures, it is hardened using an embedding medium, e.g., paraffin wax.

Before embedding, the tissue specimen is dehydrated, where water is replaced

with an organic solvent, such as ethanol, which is miscible with the embedding

medium. This dehydration not only prepares the tissue for embedding but also

facilitates the staining process as most dyes do not penetrate cells effectively if

they are not properly dehydrated.

Sectioning: To prepare glass slides from a fixed, embedded tissue specimen,

sectioning is performed using microtomy where slices of thickness 3− 5µm are

prepared and transferred to glass slides. It is an important step that ensures a

proper tissue specimen analysis later on.

Staining: Finally, before putting slides in microscopes for analysis, these are

stained with different dyes, which increases their contrast because most cells

are virtually transparent, and it is very difficult to differentiate between them.

The most commonly used stains for diagnosis is hematoxylin (blue) and eosin

(red), abbreviated as H&E. However, there are many others, e.g. Giemsa stain,

Masson’s trichrome, Periodic acid Schiff (pas) and Congo red, etc. Another

staining protocol known as Immunohistochemistry (IHC) employs specialised

antibodies to detect over-expressed proteins, e.g., estrogen (ER), progesterone

(PR), and human epidermal growth factor receptor (EGFR) etc.
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Figure 1.2: The journey of a tissue slide from resection to becoming a glass
slide before a histopathologist analyse it under the microscope for malignancy.
1) The tissue resection/biopsy is carried out of an organ and is fixed with
formalin. 2) Tissue is divided into small sections for analysis, and 3) these
small sections are then pre-processed, which involves eliminating water etc. 4)
These are then embedded in paraffin wax to make tissue blocks which are used
for 5) slicing the whole tissue blocks into multiple tissue slides for staining.
6) Different staining dyes are used to increase the contrast of the tissue cells
and other areas. 7) To safeguard the tissue when viewed under a microscope,
a slim layer of plastic or glass is placed over the stained portion on the slide.
(Images from own work.)
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1.2.2 Challenges in Routine Examination

Examining H&E stained histology slides for grading tissues is a meticulous

and potentially time-consuming task for pathologists. They must carefully

examine each case to ensure an accurate diagnosis and prognosis. It becomes

especially challenging in the case of biopsy screening, where thousands of

cases must be diagnosed in multiple hospitals each year. This challenge is

exacerbated by staff shortages in most histopathology departments worldwide

[20]. In addition, due to inherent inter- and intra- observer variability, different

pathologists may give different diagnoses, leading to significant variation in

diagnosis [14, 21]. This is because certain cancer grading guidelines, such as

oral epithelial dysplasia (OED) grading, involve various nuclear architectural

and cytological patterns and rely on the pathologist’s subjective interpretation

of the nuclei’s appearance. Trainee pathologists tend to exhibit more variability

in diagnosis compared to the experienced ones [22]. Additionally, there is often

a low agreement between pathologists when presented with a rare cancer type

[23]. Given these challenges, there is a need for a more objective measure of

histopathology slides that can help to reduce the pathologist’s workload.

1.3 Digital and Computational Pathology

Digital Pathology enables routine pathological practices to shift from a manual

to a digital environment with the involvement of acquisition, management,

and sharing of information digitally. With the advent of high-quality digital

scanners, glass slides can now be scanned at very high resolution to capture

an entire glass slide with remarkable precision. These slides can be stored,

shared over the network, and can be used to apply image analytical tools to

finding new digital biomarkers within the tissue section [24]. It has also enabled

pathologists around the globe to share their work to engage and collaborate

remotely to improve patient care with better diagnosis and prognosis of diseases

[25]. It requires one additional step of scanning the slide using a digital scanner

from the previous pipeline.
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Figure 1.3: Illustration of WSI stored in pyramid structure where a) shows the
sample ROIs of WSI at different micro per pixels (mpp) and (b) shows the the
sample ROIs from different levels of the WSI with highest magnification 40×.
(Images from own work.)

1.3.1 Whole Slide Image

Whole Slide Images (WSIs), the output of a digital scanner that converts a

glass slide into a digital slide, are large images consisting of billions of pixels

(e.g., 100,000 x 100,000). These images are stored digitally in compressed

multi-resolution pyramid structures, which are down-sampled versions of the

original image, as shown in Figure 1.3. In these pyramids, the images are
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stored in a tiled fashion to improve reading capabilities by fast retrieval from

sub-regions of an image. Because these images are compressed, opening them

in standard image viewers is quite challenging as these often cannot fit into

memory. Different compression and storing protocols are used for WSI formats,

e.g., svs (Aperio Technologies, USA), ndpi (Hamamatsu Photonics, Japan),

mexs (3DHISTECH, Hungary), isyntax (Philips, Netherlands), etc., as there

is no standard file format globally accepted for WSIs. Openslide [26] is a C

based library developed to provide an interface for reading WSI content from

various formats, which paved the way for the development of algorithms for

typical tasks. Similarly, KaKadu (C++) [27] provided the same interface for

loading jp2 images. However, apart from programming interfaces, many WSI

viewers are equipped with capabilities of performing different tasks from basic

annotation to nuclei segmentation, e.g., QuPath [28], ASAP [29], HistomicTK

[30] etc.

1.3.2 Computational Pathology

Computational Pathology (CPath) involves the analysis of raw WSI pixels with

associated metadata for diagnosis using different mathematical and statistical

models, where these models extract biological and clinically significant inform-

ation for inference and prediction [31]. It helps in better patient management

and precision medicine by assisting pathologists in their critical decision-making

by reducing inter- and intra- observer variability using quantitative measures.

The revolutionary digital developments in pathology have paved the way to-

wards the possibility of computer-assisted diagnosis, where computers can

assist a pathologist in their routine workflow by interpreting underlying hidden

patterns from WSIs.

Pre-Processing: The appearance of tissue slides in WSIs is influenced

by numerous factors, including the type of organ, staining conditions, optics,

and image acquisition devices [32, 33]. These variations in appearance can

pose challenges for computational algorithms that are used to analyse and

diagnose the tissue. While pathologists can still diagnose slides with varying

stains, the performance of CPath algorithms can be negatively affected by

these variations. To address this issue, researchers are developing algorithms to

standardise stain appearance across multiple images before analysis [34–37]. By

removing inconsistencies in staining, these algorithms can ensure that the same

tissue type and stain intensity are accurately represented across all images.

In addition, to stain variation, WSIs may contain various artefacts such as

tissue folds, ink markings, and out-of-focus regions [38]. These artefacts can

complicate the tissue analysis, potentially leading to inaccurate diagnoses.
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To address this issue, pre-processing algorithms can detect and account for

artefacts, enabling pathologists to focus their analysis on artefact-free regions

of the slide. Sometimes, these algorithms may even determine if a glass slide

needs to be re-scanned [39, 40]. Standardising the appearance of WSIs and

accounting for artefacts through pre-processing algorithms can significantly

improve the accuracy and reliability of computational algorithms, thus enabling

pathologists to make more informed and precise diagnoses.

Detection and Segmentation: WSIs are complex digital images that

contain a vast amount of information that needs to be analysed by pathologists

to reach a diagnosis. However, manual analysis of WSIs is time-consuming and

may not always provide consistent and accurate results due to the complexity

and variability of tissue structures and the staining process. Computational

algorithms have emerged as a promising solution for analysing WSIs efficiently

and accurately. These algorithms can assist pathologists in detecting, quan-

tifying, and localising tissue components, improving diagnostic accuracy and

reducing the time required for diagnosis. For example, CPath algorithms can

identify nuclei in WSIs, which can be challenging to achieve through visual

examination due to the large number of cells present on each slide [41–43].

Automated detection can also help identify difficult-to-spot objects such as

mitotic cells [44], which can aid in diagnosing cancer and other diseases. In

addition to identifying specific tissue components, segmentation algorithms

can separate different tissue structures within the WSI. This segmentation

can be particularly useful in examining morphological features associated with

cancer grade and patient prognosis, such as breast tissue or oral cancer [45, 46].

By examining the structures and relationships between different components

of the tissue, computational algorithms can help pathologists gain a more

comprehensive understanding of the sample and it’s potential disease state

[47].

Cancer Type and Grade Prediction: In routine practice, the patholo-

gists diagnose the type and grade of cancer using the glass slide or WSI, as the

grade and type of cancer significantly impacts patient treatment and manage-

ment [48, 49]. However, this task is subject to variability in diagnosis, which

can lead to differences in treatment recommendations [23]. To address this

issue, CPath is a computational tool that provides objective and reproducible

measures, thus reducing diagnostic variability in cancer grading. Specifically,

CPath can automatically perform OED grading, a grading system for oral

dysplasia, subject to significant variation in pathologist diagnosis [50, 51].

Moreover, CPath algorithms can diagnose the cancer type automatically based

on a tissue sample extracted from a specific organ, which is crucial since
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different types of cancer may require different treatment regimens. CPath

can provide a more objective measure of histopathology slides, which is a

crucial factor for accurate diagnosis and reducing the workload of pathologists.

Ultimately, these benefits can lead to improved patient outcomes.

Prediction of prognosis: Diagnosing cancer involves a standardised set

of guidelines to determine the type and grade of cancer [10, 52]. However,

predicting factors such as disease specific/free/overall survival, recurrence, and

precision medicine can be more complicated. In these cases, the latest CPath

algorithms can automatically extract a representative set of features related to

the task from the raw WSI input. These features can also be used to train new

pathologists on the most relevant diagnostic factors or patterns for a specific

task. CPath algorithms can also discover new digital biomarkers that may

enable superior diagnostic performance compared to the already established

ones [47, 53–55]. By analysing the vast amount of information in WSIs, these

algorithms can identify features that are not visible to the human eye and may

provide additional insights into the disease state.

The revolutionary digital developments in pathology have led towards the

possibility of computer based diagnosis, where computers can intelligently

assist a pathologist in their routine workflow by interpreting underlying hidden

patterns from WSIs. The main force behind the success of CPath is the use

of artificial intelligence (AI), especially machine learning and deep learning,

which enables CPath algorithms to uncover the underlying patterns and hidden

relations between different types of tasks.

1.4 Artificial Intelligence for CPath

1.4.1 Machine Learning

Machine Learning (ML) is a sub-domain of larger domain artificial intelligence

which started to gain importance in the 1990s with the manifesto of making

computers learn (i.e., from Experience E) without being explicitly programmed

for a task (i.e.,T) with some performance metrics (i.e., P). It is said to increase

in P for T with an increase in E (Tom Mitchell, 1997). Earlier, there was

not much data or computational power available for the machine to learn.

For several years it has been based on rules and heuristics being programmed

into the logic of a system, e.g., checkers-playing program [56]. Recently,

machine learning is becoming indispensable across all aspects of life, from

a smartphone, autonomous vehicles, speech recognition, visual surveillance,

healthcare, etc. Machine learning is further divided into sub-types depending on

the types of learning involved: supervised, semi-supervised, weakly supervised,
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unsupervised, and reinforcement learning.

• Supervised Learning involves training with labels given some data in

the form of X = {x1, x2, . . . , xN}, and labels Y = {y1, y2, . . . , yN}, where

xi denotes the ith data point, yi its corresponding target label, and N

the number of data points or the length of the dataset.

• Semi-supervised Learning involves training with partially labelled

data: X = {x1, x2, . . . , xn} ⊂ Ω with labels Y = {y1, y2, . . . , yn} ⊂ Ψ

and unlabelled data U = {u1, u2, . . . , um} ⊂ Ω. Here N = n + m is the

total number of data points, while n and m represent the number of

labelled and unlabelled data points. Ω represents the space of all possible

input data points and Ψ represents the space of all possible labels. The

goal is to learn from the labelled data (X,Y ) and predict pseudo labels

Z = {z1, z2, . . . , zm} for the unlabelled data U . Finally, we want to learn

a model g : Ω → Ψ, where X ′ = X ∪ U and Y ′ = Y ∪ Z, X ′ represents

the full set of data, and Y ′ represents the complete set of labels including

both original and predicted ones.

• Weakly Supervised Learning involves training with lower quality

labelled data, where the labels are not entirely informative or accurate

and are noisy. Multiple Instance Learning (MIL) is a type of weakly

supervised learning where X = {B1, B2, . . . , Bn} ⊂ Ω consists of a “bag”

Bi = {xi1, xi2, . . . , ximi
} containing mi instances for each bag Bi, where n

is the total number of bags. Each bag Bi has the label yi ∈ Ψ where Ω

represents the space of all possible input data points and Ψ represents the

space of all possible labels. The objective of MIL is to learn a function

f : Ω → Ψ that can accurately predict the label y of a new bag B based

on its instances.

• Unsupervised Learning involves training without labels or desired

output. Given some data X = {x1, x2, . . . , xN}, where N is the num-

ber of data points or the length of X, it aims to discover hidden rela-

tionships within the set X and group similar data points into clusters

C = {c1, c2, . . . , cM}, where M represents the number of desired clusters.

• Reinforcement Learning involves learning from the environment with

interactions and their associated rewards/penalties without supervision.

An agent, denoted as a, learns from its state st in an environment with

the rewards rt at each time step t, such that it maximises the cumulative

reward for an objective.

Traditional machine learning involves domain-specific hand-crafted features

for models to learn from, e.g., from images extracting features like edges, Scale-
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Invariant Feature Transform (SIFT), Speeded-Up Robust Features (SURF),

and Oriented FAST and Rotated BRIEF (ORB) features, eliminating the

possibility of learning from the raw input. Deep Learning (DL), on the other

hand, has emerged recently and taken all these tasks by storm in setting new

benchmarks with its remarkable ability to learn from raw input. DL is a further

sub-type of Machine Learning (ML) where it learns the hidden representation

in data by directly mapping input to output.

1.4.2 Deep Neural Networks

A neural network or artificial neural network (ANN) consists of multiple layers,

i.e. (input layer, hidden layer, and output layer) of highly interconnected

neurons stacked together for a task, each activating incoming input in non-

linear space. The input layer receives input of different types, e.g., features

vectors, images and text. The next layer forwardes these input values through

a weighted connection with neurons. The hidden layer activates incoming

weighted input with non-linear activation functions, e.g., Sigmoid, Tanh, ReLU.

The output layer outputs the input signal according to the learned distribution

function into the required output, i.e., continuous or discrete value. This whole

process of taking input, processing it, and predicting a value is known as

Forward Pass, as shown in Equation 1.1 where ŷ is the predicted value, W is

the learned weights matrix for all neurons, X is the input to the network and

b is the bias.

ŷ = WX + b (1.1)

Finally, the loss function calculates the error between the output predic-

tion and the target value, which estimates the difference between the two

distributions. An Optimiser, e.g., Adam, Stochastic Gradient Descent (SGD),

AdaGrad etc., adjusts the network parameters according to the loss to improve

the prediction accuracy. This whole process is known as Backward Pass, as

shown in Equation 1.2 where l is the loss between actual and predicted value

summed over all items m and is optimised on W. Neural networks, in short,

are fully interconnected neurons, i.e., all neurons are interconnected to all other

neurons of their previous and subsequent layers.

arg min
W

1

m

m∑
i=1

l(ŷi − yi) (1.2)

Real world problems are different in nature, and they require different

architectures. Relatively small problems require small or shallow networks,

while complex problems require deeper and larger networks [57, 58]. These

simple ANNs do not work for images because they do not consider the spatial
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context, as they need flattened input for processing. On the other hand,

convolutional neural networks (CNN) perform best when it comes to images

due to their intrinsic property of taking the whole image as input.

1.4.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) [59] use a special operator for processing

inputs and multiplying neurons known as convolution, where convolutions are

linear operations spatially. CNNs have three essential features because of

convolution i) they have sparse interactions, unlike ANNs where every neuron

is interconnected to every other neuron; ii) they share the same parameters

across all the input iii) they are equivariant to translation [60, 61]. CNNs

perform best where spatial context is vital in data or grid-like structure, e.g.,

images, sound and are not suitable for data where spatial structure does

not matter, like a relational database. CNNs consist of three components:

convolution operation, pooling operation and dense layers. CNNs initially

perform convolution operations over the input, and several convolutional

operators are stacked together to extract different features. Convoluted inputs

are activated using some non-linear activation function, e.g., Sigmoid, Tanh

and ReLU. Pooling operations reduce the input size and introduce tolerance

to spatial translations in the model. There are different pooling operations,

e.g., max pooling, min pooling, and average pooling. Lastly, there are dense

fully connected layers for the final computation of the underlying tasks.

CNNs in CPath

Convolutional Neural Networks (CNNs) have revolutionised the field of com-

puter vision and medical imaging, especially computational pathology, by

enabling automated analysis of large-scale and complex WSIs with high accur-

acy and efficiency [62, 63]. The power of CNNs lies in their ability to extract

and hierarchically learn image features, starting with simple low-level features

such as edges and textures and gradually learning more complex and high-level

features such as cell morphology, tissue structure, and other image-level char-

acteristics [64]. This hierarchical learning approach allows CNN based models

to effectively capture the underlying patterns and structures in histopathology

images and use this information for tasks such as tissue segmentation, nuclei

detection, cell classification, and cancer diagnosis.

Despite their remarkable success, developing effective CNN based models for

computational pathology is still challenging. The main challenges are the large

size of WSI and stain variability. Large size of WSI leads to higher memory

demands and intensive computational requirements, which in result complicates

the model training and deployment. Stain variability on the other hand can
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hinder the generalisation power of a model which can lead to poor performance

when deployed in real-time on external cohorts (i.e., data that is sourced from

outside the primary study or experiment) [34, 36, 44]. Additionally, the limited

availability of high-quality labelled data for training and validation can make

it challenging to develop robust and accurate models [65]. Moreover, the high

computational requirements of deep learning methods can make training and

inference times prohibitively long [46]. To address the challenges, ongoing

research efforts focus on developing more advanced CNN based models and

addressing the limitations of current models. For example, some studies have

proposed using multi-scale and multi-task learning techniques to improve

model accuracy and efficiency [66, 67]. Others have proposed using weakly

supervised and semi-supervised learning methods to reduce the reliance on

high-quality labelled data [54, 68]. In addition, various studies have explored

transfer learning, data augmentation, and other techniques to improve model

performance and generalisation [69, 70]. Although CNN based models show

promise in computational pathology, further research is required to improve

their accuracy, robustness, efficiency, interpretability and generalisation for

clinical use.

1.4.4 Graph Neural Networks

Graph Neural Networks (GNNs) [71] are specialised neural network architec-

tures developed to handle graph-structured data, which primarily consists of

nodes and edges. The fundamental spine of such architectures is the ‘message

passing framework’, a mechanism that collects information from adjacent nodes

and calculates a unique representation for each node. Messages typically con-

tain node features or embeddings. This message passing enables GNNs to learn

complex representations of graph data by embedding both individual node

features and their relational context. In this framework, hvl denotes the state of

a node v at the lth layer, u represents a neighbour of v, and N (v) specifies the

set of neighbours of node v. Mathematically, the framework first aggregates

the states hul of the neighbouring nodes u ∈ N (v) using the AGGREGATE

function:

mv
l = AGGREGATEl(hul : u ∈ N (v)) (1.3)

Next, it computes the state hvl+1 of node v at the next layer (l+1) by applying

the UPDATE function on the node’s current state hvl and the aggregated

message mv
l :

hvl+1 = UPDATEl(hvl ,m
v
l ) (1.4)

16



Following these operations, a READOUT function orchestrates the final

node representations into a graph-level output. The readout function combines

the information from all node representations into a unified graph-level repres-

entation. Common choice is a simple operation like summation or averaging,

but more complex operations can also be used.

This classic approach of GNNs has inspired several variations and extensions

such as Graph Attention Networks (GATs) [72] and Convolutional Graph

Networks (GCNs) [73]. Numerous applications have leveraged these models

with significant impact, from social network analysis [74] and drug discovery

[75] to recommendation systems [76]. Despite their successes, GNNs present

ongoing research challenges related to the management of large graphs, the

integration of domain knowledge, and the necessity for interpretability and

fairness.

GNN in CPath

Graph Neural Networks (GNNs) have emerged as a promising tool for compu-

tational pathology analysis due to their ability to model complex relationships

between features in histopathology images. GNNs can learn from the graph

structure of the tissue samples, which contains information about the spatial

arrangement and connectivity of the different components within the tissue

microenvironment. By leveraging this information, GNNs can better capture

the spatial dependencies between different image regions and produce more

accurate segmentation and classification results. Recent studies have demon-

strated the potential of GNNs in various computational pathology applications

from segmenting tumour regions [77] to classification [78, 79], detection of

nuclei [80] and survival analysis [81]. Despite their potential, GNNs are still

relatively new in computational pathology, and there is much room for further

exploration and optimisation. Continued research is needed to improve GNNs’

robustness, scalability, and interpretability for clinical use.

1.4.5 Evaluation Metrics

In this thesis, we utilise a range of evaluation metrics to thoroughly assess the

performance of our proposed models. These include F1-Score (also known as

Dice Score), Precision, Recall, Accuracy, Area Under the Receiver Operating

Characteristic Curve (AUROC), Mean Intersection over Union (mIoU), and

Mean Absolute Error (MAE). Each of these metrics provides a unique perspect-

ive on the effectiveness of our models in different aspects of the classification

or segmentation task. The evaluation metrics used in this thesis for both

classification and segmentation tasks are defined as follows:
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• True Positives (TP): These are the correctly predicted positive values,

meaning the model correctly predicted the positive class.

• True Negatives (TN): These are the correctly predicted negative

values, meaning the model correctly predicted the negative class.

• False Positives (FP): These occur when the negative class is incorrectly

predicted as positive.

• False Negatives (FN): These occur when the positive class is incorrectly

predicted as negative.

• F1-Score (Dice Score): This is the harmonic mean of precision and

recall. It is calculated as:

F1 − Score = 2 × Precision×Recall

Precision + Recall
(1.5)

• Precision: This is the ratio of correctly predicted positive observations

to the total predicted positive observations. It is calculated as:

Precision =
TP

TP + FP
(1.6)

• Recall (Sensitivity): This is the ratio of correctly predicted positive

observations to all observations in the actual class. It is calculated as:

Recall =
TP

TP + FN
(1.7)

• Accuracy: This is the ratio of correctly predicted observations to the

total observations. It is calculated as:

Accuracy =
TP + TN

TP + FP + FN + TN
(1.8)

• Area Under Receiver Operating Characteristic Curve (AUROC):

This is a performance measurement for classification problem at various

thresholds settings. It tells how much the model is capable of distinguish-

ing between classes.

• Mean Intersection over Union (mIoU): This measures the overlap

between the predicted segmentation and the ground truth. It is defined

as:

IoU =
TP

TP + FP + FN
(1.9)

The mIoU is then the average IoU across all classes.
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• Mean Squared Error (MSE): This is a measure of the average of the

squares of the errors or deviations. It is calculated as:

MSE = Average((TrueValue − PredictedValue)2) (1.10)

In segmentation tasks, each pixel is treated as a separate prediction, hence

the area of pixels is used in the above definitions.

1.4.6 Challenges in Computational Pathology

Despite advancements, the availability of labelled data remains a significant

challenge for deep learning algorithms. Labelled data is essential for training

machine learning models to accurately identify various pathologies, particularly

for deep learning models, as they require large amounts of labelled data to

achieve peak performance. Techniques like semi-supervised learning, weakly

supervised learning, unsupervised learning, and reinforcement learning can

perform better than fully supervised models in the absence of labelled data.

However, even with these techniques, fully supervised with largely annotated

data outperforms them, underscoring the need for more labelled data. Apart

from the labelled data, the gigapixel nature of the pathology images is another

critical challenge to training deep learning models. This can make it difficult

to train machine learning models as it is impossible to fit these images into the

memory with current hardware. One solution is the tessellation of WSI, i.e.,

dividing them into smaller patches that can be processed with batch processing.

However, this approach risks losing important contextual information, which

can be crucial for accurate diagnosis. Recent developments have focused on

compressing the WSIs into latent space, which the deep learning models can

further process without losing critical information. Computational costs for

processing and storing WSIs and intermediate results are also a significant

challenge in CPath, particularly for smaller healthcare facilities that may need

more financial resources to invest in the necessary hardware and software.

Interpretability is another major challenge in CPath, as machine learning

models can often produce accurate results but can be challenging to understand.

This is particularly important in the medical field, where experts need to be

able to justify the underlying reasons for specific diagnoses.

1.5 Aims and Objectives

This thesis seeks to develop robust deep learning based methods to overcome

the significant challenges associated with developing reliable AI models for

the diagnosis and prognosis from WSIs with limited or noisy labelled data.
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The proposed research aims to leverage limited labels to classify and segment

different tissue regions in a complex tissue microenvironment (TME). The TME

is a microscopic niche consisting of multiple cell types with unique biological

roles and spatial relationships with respect to each other. Another major

challenge addressed in the thesis is the prediction of malignant transformation

in oral epithelial dysplasia (OED) using a top-down approach via weak labels

associated with the patient outcomes.

1.5.1 Main Contributions

• I develop a semi-supervised learning based method called HydraMix-Net

[82] for the simultaneous detection and classification of tumour cells in

Diffuse Large B-Cell Lymphoma (DLBCL). The framework utilises the

concepts of MixUp and symmetric cross-entropy (SCE) for improving

performance in the absence of large annotated data.

• I develop a semi-supervised learning based semantic segmentation frame-

work for tissue regions and nuclei [70]. The framework uses contrastive

learning with cross-consistency training to make the model robust against

varying contexts and perturbation. I also incorporate entropy minimisa-

tion further to improve the accuracy and reliability of the segmentation

results.

• I investigate the top-down approach for the prognosis of oral epithelial

dysplasia using weak labels [83]. I train a MIL model for predicting

malignant transformation. Moreover, I also delve into analysing hotspots

highlighted by the model for significant prognostic digital biomarkers in

epithelium and peri-epithelium. I identify significant digital biomarkers

that are associated with malignant transformation, providing valuable

insights for prognosis in oral epithelial dysplasia.

• I further enhance the top-down approach for the diagnosis and prognosis

of oral epithelial dysplasia (OED) by incorporating the segmentation

of epithelium [46] into sub-layers and training graph neural networks

(GNNs) for analysis using sub-layer features. GNNs provide a powerful

tool for modelling large whole slide images (WSIs) as interconnected

graphs, offering explainability and interpretability at the node level. This

led to statistically significant digital biomarkers strongly correlated with

OED grading and prediction of malignant transformation. These findings

contribute to the advancement of accurate and reliable diagnostic and

prognostic approaches for OED.
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1.6 Thesis Organisation

Chapter 2: Deep Multi-Task Semi-Supervised Learning Approach

for Cell Detection and Classification. Semi-supervised techniques have

removed the barriers of large scale labelled sets by exploiting unlabelled data

to improve the performance of a model. In this chapter, I propose a semi-

supervised deep multi-task classification and localisation approach HydraMix-

Net in the field of computational pathology where labelling is time consuming

and costly. Firstly, pseudo labels are generated by using the model’s prediction

on the augmented set of unlabelled images with averaging. The high entropy

predictions are further sharpened to reduce the entropy and mixed with the

labelled set for training. The model is trained in a multi-task learning manner

with noise tolerant joint loss for classification and localisation, where it achieves

better performance when given limited data compared to a convolutional neural

network (CNN) trained in a supervised manner. On DLBCL data, it achieves

80% accuracy in contrast to the CNN, achieving 70% accuracy when given

only 100 labelled examples.

Chapter 3: Semi-Supervised Learning for Segmenting Tissue Regions

and Nuclei Histology Images. Semantic segmentation of various tissue and

nuclei types in histology images is fundamental to many downstream tasks in

the area of computational pathology (CPath). In recent years, Deep Learning

(DL) methods have been shown to perform well on segmentation tasks, but

DL methods generally require a large amount of pixel-wise annotated data.

Pixel-wise annotation sometimes requires an expert’s knowledge and time,

which is laborious and costly to obtain. In this chapter, I present a consistency

based semi-supervised learning (SSL) approach that can help mitigate this

challenge by exploiting a large amount of unlabelled data for model training,

thus alleviating the need for a large annotated dataset. However, SSL models

might also be susceptible to changing context and feature perturbations exhib-

iting poor generalisation due to the limited training data. I propose an SSL

method that learns robust features from both labelled and unlabelled images

by enforcing consistency against varying contexts and feature perturbations.

The proposed method incorporates context-aware consistency by contrasting

pairs of overlapping images in a pixel-wise manner from changing contexts

resulting in robust and context invariant features. I show that cross-consistency

training makes the encoder features invariant to different perturbations and

improves the prediction confidence. Finally, entropy minimisation is employed

to further boost the confidence of the final prediction maps from unlabelled

data. I conduct an extensive set of experiments on two publicly available large

datasets (BCSS and MoNuSeg) and show superior performance compared to
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the state-of-the-art methods.

Chapter 4: Weakly Supervised Learning for Predicting Malignancy

in Oral Epithelial Dysplasia (OED). Oral squamous cell carcinoma (OSCC)

is amongst the most common cancers worldwide, with more than 377,000 new

cases worldwide each year. OSCC prognosis remains poor, related to cancer

presentation at a late stage, indicating the need for early detection to improve

patient prognosis. OSCC is often preceded by a premalignant state known as

oral epithelial dysplasia (OED), which is diagnosed and graded using subjective

histological criteria leading to variability and prognostic unreliability. In this

work, I propose a deep learning approach for the development of prognostic

models for malignant transformation and their association with clinical out-

comes in histology whole slide images (WSIs) of OED tissue sections. I train a

weakly supervised method on OED (n= 137) cases with transformation (n=

50) status and a mean malignant transformation time of 6.51 years (±5.35

SD). Performing stratified 5-fold cross-validation achieves an average AUROC

of 0.78 for predicting malignant transformations in OED. Hotspot analysis

reveals various features of nuclei in the epithelium and peri-epithelial tissue

to be significant prognostic factors for malignant transformation, including

the count of peri-epithelial lymphocytes (PELs) (p < 0.05), Epithelial layer

nuclei count (NC) (p < 0.05) and Basal layer NC (p < 0.05). Progression

free survival (PFS) using the Epithelial layer NC (p < 0.05, C-index = 0.73),

Basal layer NC (p < 0.05, C-index = 0.70) and PEL count (p < 0.05, C-index

= 0.73) showed association of these features with a high risk of malignant

transformation in our univariate analysis. Our work shows the application

of deep learning for prognostication and prediction of PFS of OED for the

first time and has significant potential to aid patient management. Further

evaluation and testing on multi-centric data is required for validation and

translation to clinical practice.

Chapter 5: Graph Based Learning for Predicting Grade and Malig-

nancy in Oral Epithelial Dysplasia (OED). In this chapter, I investigate

the use of graph neural networks (GNNs) for diagnostic and prognostic pur-

poses in OED (n=241) cases with transformation (n=50) status and mean

transformation time of 6.51 years (±5.35 SD). The diagnostic task is predicting

the OED binary grading of low-risk vs high-risk, while the prognostic task

involves predicting the OED malignant transformation status. I employ a GNN

with EdgeConvs and multi-layer perceptrons (MLP) in the final aggregation

and show that it is able to predict OED grades with an AUROC of 0.81

and malignant transformation with an AUROC of 0.76, as determined by a

stratified 5-fold cross-validation bootstrapped using three different random
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seeds. Hotspot and cellular composition analysis within the epithelial layer

and peri-epithelial tissue regions for both tasks reveal significant diagnostic

and prognostic nuclear features, e.g., nuclei count, crowdedness, solidity etc.

In a univariate analysis, higher proportions of basal and epithelial layer nuclei

count showed a correlation with poor progression-free survival (PFS) with the

significance of (p < 0.05 , C-index = 0.81) and (p < 0.05 , C-index = 0.70 ).

Similarly, the higher proportions of nuclei count in the peri-epithelium showed

the most correlation with poor PFS in both univariate and multivariate analysis

with (p < 0.05 , C-index = 0.83 ). Our study demonstrates the use of DGNN

to predict OED grades and malignant transformation for PFS. Our work has

significant potential towards clinical adoption to aid patient management and

care. However, additional testing on data from multiple centres is required to

validate and implement our findings in clinical practice.

Chapter 6: Conclusions and Future Directions. This chapter sum-

marises the main contributions of this thesis and lists potential future research

directions for extending this work.
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Chapter 2

Deep Multi-Task

Semi-Supervised Learning

Approach for Cell Detection

and Classification

2.1 Introduction

Detecting and classifying nuclei in histology images is crucial in various down-

stream analyses, including cell counting, cell segmentation, and studying

inter-cellular connections. However, the task of detection and classification is

difficult due to the intricate texture of histology images due to stain variability

or type, the variability in the shape of nuclei, and the presence of touching

cells. Numerous techniques have been proposed to address these challenges,

with deep learning (DL) methods being the most effective in terms of per-

formance. In recent years, deep learning has revolutionised computer vision

and achieved state-of-the-art (SOTA) performance in various vision-related

tasks. The inevitable fact is that most of the DL success is attributed to the

availability of large scale datasets and compute power available these days. To

achieve SOTA performance, it is essential to train models using single-task

learning approaches on large-scale datasets with their associated labels. The

costs associated with labelling the datasets are often very high, especially for

medical imaging data involving expert knowledge to collect the ground truth.

In contrast, semi-supervised learning (SSL) approaches [84] take advantage

of the limited labelled data and leverage readily available unlabelled data to

improve the model performance.

SSL techniques have been successfully applied in computer vision, especially

in the medical domain with adaption from natural images, with popular
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methods such as Mean Teacher [85] and Virtual Adversarial Training [86]. In

recent years, they have also been used in computational pathology for tasks

such as clustering, segmentation, and image retrieval. This also alleviates the

need for the time-consuming and laborious task of manual annotations and

assists in training more complex models for better performance. Generally, SSL

techniques follow a two-step approach a) predict pseudo labels for unlabelled

data from the model trained on limited labelled data and b) retrain the model

on pseudo labels and limited labelled data to improve the performance. To

improve the learning ability of SSL by introducing regularisation [87, 88], and

entropy minimisation [89] to avoid high-density predictions and train models

into an end-to-end manner. However, due to the unique challenges posed by

the giga-pixel WSIs, multi-scale resolutions, contextual information, and stain

invariability of patches extracted from WSIs, directly applying popular semi-

supervised algorithms in pathology classification may not be straightforward.

The purpose of a semi-supervised task is to learn from unlabelled data during

learning such that it improves the model’s performance. To achieve this goal,

these approaches take advantage of different techniques to mitigate the issues

faced during learning, e.g., consistency regularisation, entropy minimisation

and pseudo label noise reduction etc. Decision boundary passing through

high-density regions can be minimised using entropy minimisation techniques

like [89], which minimise entropy with the help of a loss function for the

unlabelled data. Consistency regularisation can be achieved using standard

augmentation such that the network knows if the input was being altered in

some ways, e.g., rotation, etc. [87, 88]. Semi-supervised approaches also suffer

from noisy pseudo labels, an issue where pseudo labels used in semi-supervised

learning, can be inaccurate or false due to the false prediction of the trained

model. Labels for unlabelled data are generated using a model trained on a

small amount of labelled data. These generated labels, called pseudo-labels,

are likely to contain errors, especially if the initial amount of labelled data is

small or unrepresentative of the whole population. These wrong pseudo labels

can introduce noise in the training batches, but this can be handled using

noise reduction methods such as those proposed by [90]. Using these standard

approaches, there have been semi-supervised methods for the classification

of natural images, e.g., Berthelot et al., [91] used simple data augmentation

and MixUP technique [88] for consistency regularisation and used sharping

[92] for entropy minimisation for semi-supervised training. Tarvainen et al.,

[85] improved the temporal ensembling over labels to use the moving average

of the weights of the student model in the teacher model after comparing

the student’s prediction with its teacher’s prediction, which in turn improves

learning of the teacher model.

Regarding cell classification and detection, Cirean et al., [87] proposed a
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simple deep learning based classification model to differentiate between the

mitotic and non-mitotic cells in the breast WSI’s. Sirinukunwattana et al., [41]

used the locality sensitive information to localise the cell nuclei while using the

Neighbouring Ensemble Predictor (NEP) for classification purposes. Qaiser

et al., [93] proposed the joint multi-task framework to explore the spatial

arrangements of the tumour cells and their localisation with the collagen VI in

DLBCL by proposing the novel digital proximity signature (DPS) marker in

the tumour rich collagen regions. Inspired by all these methods and techniques,

we present our novel deep multi-task join training framework for end-to-end

classification and detection.

In this chapter, we present a multi-task SSL method to alleviate the

need for the time-consuming and laborious task(s) of manual labelling for

histology whole-slide images (WSI). In this regard, we opted to use diffuse

large B-cell lymphoma (DLBCL) data because manual annotation of cell

type and nuclei localisation is very hard due to the large number of cells

present in WSIs. The cell detection may also help in understanding the spatial

arrangement of malignant cells within the tumour micro-environment with

collagen VI. DLBCL malignancy originates from B-cell lymphocytes, and it is

the most common high-grade lymphoma among the western population with

relatively poor disease prognosis among lymphomas [94, 95]. The use of modern

chemotherapeutic treatments has improved the survival rates of patients with

DLBCL [95]. However, despite these advancements, approximately 40% of

patients do not respond well to treatment and eventually succumb to the disease.

This variability in treatment response is partly due to the tumour heterogeneity

[96]. Recently, significant progress has been made in understanding this

diversity, with studies exploring the role of the tumour microenvironment

(TME) in DLBCL [97].

We present a novel deep multi-task learning framework, HydraMix-Net, for

simultaneous detection and classification of cells, enabling end-to-end learning

in a semi-supervised manner. To the best of our knowledge, we are the

first to enhance a semi-supervised approach by improving a single loss term

with noisy pseudo labels. This advancement enables the joint training of

multi-task problems, thereby improving performance. Our main contributions

are a) a novel multi-task SSL framework (HydraMix-Net) for cell detection

and classification and b) combating noisy pseudo labels using a symmetric

cross-entropy loss function.
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2.2 Materials and Methods

2.2.1 Data

A total of 32 WSIs were collected for this study and stained with immunohisto-

chemistry and Hematoxylin counter-stain to simultaneously detect collagen VI

and nuclear morphology. The cohort for the Diffuse Large B-cell Lymphoma

(DLBCL) study consisted of twelve participants, ranging in age from 24 to 90

years. Of these, ten were female and two were male. An expert pathologist in

the VSM tool annotated the ground truth for cell detection and classification

for 10 cases, resulting in a total of 2617 annotated cells, of which 2039 were

tumour cells, 462 lymphocytes, and 116 macrophages. Patches of size 41 ×
41 pixels, with the cell centroid kept at centre, were extracted, yielding 12553

patches. Given the inherent class imbalance in patches, offline augmentations

including flipping, rotation, and crop were applied to balance the dataset. This

process resulted in 24000 patches, with each class being equally represented by

8000 patches. For training and testing purposes, 7 and 3 WSIs were employed,

respectively. Based on a 70-30 split, this resulted in 18000 training patches and

6000 test patches with three classes tumours, lymphocytes and background.

2.2.2 Methods

The semi-supervised method HydraMix-Net is a novel approach that integrates

a variety of multi-task and semi-supervised techniques to resolve different

learning challenges. The model applies techniques such as consistency regular-

isation using standard augmentations and the MixUP method [88], entropy

minimisation assisted by label sharpening [92], and addresses noisy pseudo

labels through modified loss terms like symmetric cross entropy (SCE) loss [90].

The HydraMix-Net jointly optimises the combined loss function to classify

and localise centroids for the cell patches. Our multi-task learning framework

consists of a CNN backbone model with three heads responsible for the classi-

fication and regression (i.e., localisation of cell nuclei). The schematic diagram

of the model can be seen in Figure 2.1. The following sections delineate the

data augmentation, pseudo label generation, noise handling and training in the

semi-supervised HydraMix-Net model. To facilitate the reader’s comprehension,

frequently used mathematical notations are listed and defined in Table 2.1
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Table 2.1: Frequently used mathematical notations in Chapter 2

Notation Explanation

X Set of labelled images
U Set of unlabelled images
B Total number of batches
Xb Input bth batch of labelled images
Ub Input bth batch of unlabelled images
lc One-hot encoded class labels
li Nuclei centroid x-coordinate
lj Nuclei centroid y-coordinate
U ′
b,k bth batch and kth augmentation of unlabelled images

K Number of augmentations
X ′

b Augmented bth batch of labelled images
luc Pseudo labels for unlabelled batch
lui Pseudo centroid x-coordinate for image ui
luj Pseudo centroid y-coordinate for image ui
φ Model
θ Weights of the model
ŷ Model prediction
T Temperature hyperparameter
xi Instance of image for MixUp
γ Mixing ratio between pair of images xi, xj
W Concatenated set of augmented images
N Total number of samples in W
α, η Parameters of Beta distribution for MixUp
xm Mixed image from MixUp
lcm Mixed label from MixUp

lim, ljm Centroids from xm used after MixUp
µ Weight for combining classification and regression loss

δ, ρ Weight parameters for SCE loss
Ltotal Total loss function
Lc−sce Symmetric cross-entropy loss for labelled part
Luc−sce Symmetric cross-entropy loss for unlabelled part
Lri, Lrj Mean squared error loss terms for nuclei centroid (ri, rj)

of the labelled data
Lrui, Lruj Mean squared error loss terms for nuclei centroid

(uri, urj) of the unlabelled data
augment(k, Ub) Augmentation function

sharpening(luc, T )i Label Sharpening function

2.2.3 Data Augmentation

During training, the model took an input batch of labelled images Xb from

X = {Xb}Bb=1 and unlabelled images Ub from U = {Ub}Bb=1. The number B,

representative of the total number of batches, could vary depending on the

available labelled and unlabelled images according to the annotation budget.

One-hot encoded labels lc, and point coordinates li, lj represent the type
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and nuclei centroid. To generate the pseudo labels luc and their centroids lui,

luj , the model applied k augmentations such as horizontal flip, vertical flip,

and random rotation to Ub. This yielded an augmented batch U ′
b, defined as

U ′
b,k = augment(k, Ub), where k ∈ {1, ...,K}. Xb was also subjected to a single

augmentation per image, generating X ′
b according to X ′

b = augment(k,Xb),

where k = 1.

2.2.4 Pseudo Label Generation

To generate pseudo labels luc for the batch Ub, predictions from the model φ

for k augmented images U ′
b were averaged out on class distributions. While for

pseudo centroids, prediction on only the original image from the model was

used. This is due to the fact that after various augmentations, the centroids

are not in the same place because of transformations, and hence averaging the

centroids of augmentations will lead to incorrect centroids as in Equation (2.1).

luc, lui, luj =


1
k

K∑
k=1

φ(ŷ | Ub,k; θ), for luc (classification)

φ(ŷ | Ub; θ), for lui, luj (centroids)

(2.1)

where φ is the model and θ are the corresponding weights yielding the predic-

tion ŷ which was split into patch label luc and centroids lui and luj .

Pseudo Label Sharpening The generated pseudo labels luc tend to have

large entropy in the prediction as a result of averaging different distributions.

Therefore, label sharpening [92] was used to reduce or minimise the prediction’s

entropy by adjusting the temperature like parameter as in Equation (2.2).

sharpening(luc, T )i =
l
1/T
i∑C

c=1 l
1/T
c

(2.2)

where luc is the categorical distribution of label predictions averaged over

k augmentations, T is the temperature hyperparameter falling within the

range (0,∞), which influences the output distribution, where lower values

(near 0) enhance the label sharpening effect and higher values lead to a more

uniform distribution. i denotes the i-th element in the input distribution, and

c ∈ {1, ..., C}, which is the full count of the classes. As T approaches 0, a

one-hot encoded output is produced, signifying that a lower temperature will

result in low entropy output distributions.
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2.2.5 MixUP

To bridge the gap between unseen examples, avoid over-fitting, and achieve

generalisation in semi-supervised approaches, the MixUP [88] technique was

used. Given a pair of images and their labels as (x1, l
c
1) and (x2, l

c
2), the images

were mixed with their one-hot encoded labels in an appropriate proportion

γ. However, the centroids were not mixed due to their numeric nature and

transformations. Therefore, centroids from x1 were used after MixUp as shown

in Equation (2.3). Our method used the modified MixUp [91] technique where

γ was extracted from a beta distribution. Then max between γ and 1 − γ

was taken as γ. This ensures that the maximum of the original image was

preserved and output was closer to x1.

γ = max(Beta(α, η), 1 − Beta(α, η))

xm = γx1 + (1 − γ)x2

lcm = γlc1 + (1 − γ)lc2
lim, ljm = li1, l

j
1

(2.3)

where γ is the mixing ratio derived from a Beta distribution which determ-

ines the weight on each pair of images and labels in the MixUp. α and η are

the parameters of the Beta distribution guiding the shape of the distribution

from which the mixing ratio γ is drawn. xm is the mixed image resulting from

the MixUp operation, a weighted combination of the images x1 and x2, with

the weights being γ and 1 − γ. lcm is the mixed label, a weighted combination

of the labels lc1 and lc2 with weights in line with the image mixing. lim and ljm

are the centroids of the mixed image xm, directly taken from the centroids of

the first image x1, denoted as li1 and lj1, and not subjected to the MixUp.

To implement the MixUp technique, the sets X ′
b and U ′

b are initially concat-

enated to form the set W . After a shuffle operation, the set W is used in the

MixUp process. The mixed-up set X ′
b is formed with segments of W ranging

from 0 to |X ′
b|, and similarly, U ′

b is mixed-up with the segments of W that

extend from |X ′
b| to N . Here, |X ′

b| denotes the size of the augmented mixed-up

set X ′
b, and N represents the total number of samples contained in W .

2.2.6 Noise Reduction

To handle pseudo label noise, symmetric cross entropy (SCE) loss [90] was

used for both labelled and unlabelled loss instead of relying on categorical

cross-entropy for labelled loss and mean squared loss for the guessed labels.

SCE handles the noisy pseudo labels by incorporating cross-entropy terms for

labelled loss and reverse cross-entropy for prediction loss. This also provides a

way to learn from model predictions instead of relying on given labels, as in

Equation (2.4). As with iterative progressive learning, the model gets more
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confident in its learning and predictions, which is why more weight is assigned

to predictions for unlabelled loss, and in labelled loss, more weight is assigned

to original labels.

Lsce = δ(−
C∑
c=1

q(c|xm) log p(c|xm)) + ρ(−
C∑
c=1

p(c|xm) log q(c|xm)) (2.4)

where δ and ρ are weight parameters that control the significance of input

labels and model predictions, respectively. These parameters can be tuned

according to the specific problem to balance the influence of class labels and

model’s predictions on the result. p(c|xm) and q(c|xm) represent the true and

predicted probability distributions respectively, with each data sample xm

conditioned to belong to a class c. In this context, c represents a class among

the C classes of the given classification problem, and m refers to a specific

sample within the dataset.

2.2.7 Training

The learning mechanism of the HydraMix-Net jointly optimises the combined

loss function for classification and regression to predict label and location

tuples for labelled and unlabelled batches as in Equation(2.5).

Ltotal = µ(Lc−sce + Luc−sce) + (1 − µ)(Lri + Lrj + Lrui + Lruj) (2.5)

where Lc−sce represents the symmetric cross-entropy loss for the labelled part,

where Luc−sce represents the symmetric cross-entropy loss for the unlabelled

part, both coupled together in weight µ which weights the classification head

more to provide more accurate labels. While the Lri and Lrj are the mean

squared error loss terms for the labelled data, whereas the Lrui and Lruj are

the mean squared error loss terms for the unlabelled data for the regression

head being weighted by the (1 − µ). While calculating loss for regression

heads, the predictions of the classification head were multiplied by regression

heads to avoid the loss incorporated by background patches, which is why the

classification head was given more weight in the loss term.

2.2.8 Implementation Details

The whole framework was implemented in TensorFlow 2.0, where the base CNN

was selected as WidesResNet [98] with an additional three heads i) classification

head, ii) two-regression heads. In the classification head, the final output of

the WideResNet was the global average pooled and passed through three dense

layers of sizes 128, 64 and 32 before the classification layer. In contrast, the
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regression heads take the flattened layer results of the output layer, which is

then passed through 2 dense layers of sizes 128 and 32 before going to the

regression output. The dense layers were activated using the ReLU activation

with l2 regularisation. The model was optimised with the Adam optimiser

with the adaptive learning rate from 0.001 to 0.00001 trained for 100 epochs

and a batch size of 32 and K = 2. µ, δ and ρ were selected using the empirical

evaluation as was set to 0.7, 1.0 and 0.1 for this study.

2.2.9 Experimental Settings

The experimental settings used to test the effectiveness of the HydraMix-Net

were i) fully supervised, ii) partial data iii) semi-supervised. In the first one,

all the available data was used to train a simple CNN, i.e., WideRes-Net [98],

while in a partial setting, WideRes-Net was trained on partially labelled data.

Lastly, HydraMix-Net used a semi-supervised approach for training where both

labelled and unlabelled data were used in a way discussed earlier in section 3.

Further, for labelled and unlabelled data, we tested different configurations

from 50 labelled images to 100, 200, 300, 500, 700 and so on.

2.2.10 Evaluation metrics

Patch-wise F1-score was used for evaluation purposes of the experiments as

it is a measure of a test’s accuracy that considers both the precision and the

recall to compute the score.

Table 2.2: Test F1-score of the HydraMix-Net and partial data approaches
with various amounts of labelled data provided.

labelled examples 50 100 300 500 700 1000 3000

Simple CNN 0.62 0.70 0.76 0.83 0.85 0.84 0.90

HydraMix-Net w/o SCE 0.66 0.70 0.70 0.35 0.35 0.35 0.35

HydraMix-Net 0.66 0.80 0.81 0.85 0.85 0.86 0.89

2.3 Results and Discussion

Table 2.2 shows the accuracy achieved by the HydraMix-Net in contrast to the

simple CNN on partially labelled data, e.g., when provided with the random 50

labelled examples, the simple CNN model underperformed by achieving 62%

accuracy where the HydraMix-Net leveraged the unlabelled data and achieved

superior performance with 66% accuracy. Similarly, when increasing the data

from 50 labelled examples to 100 and 300, the HydraMix-Net achieved higher

performance and reached up to 81% accuracy, while the simple CNN model

trained on only these labelled examples only gave the best performance of
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76% accuracy, which shows higher efficiency of our approach in scarcity of

the labelled examples. When trained with all the data, the highest accuracy

achieved is 90%, where this threshold is reached by approximately 3000 labelled

data by both techniques. However, it is interesting to see that performance

plateaus after a certain number of labelled examples. Figure 2.2 shows a) the

confusion matrix showing the performance of HydraMix-Net when trained on

100 labelled examples and b) the cell centroid detection in for the test set

shown in red. Figure 2.3 shows the actual predictions for the HydraMix-Net

for the 100 labelled training set. We can notice that the model is performing

good in terms of identifying the type of cell but is failing to accurately find

the centre of the cell. This is due to the inherent bias included in the dataset

as most of the nuclei were extracted around the centre of the cell.

Figure 2.2: (a) Represents the confusion matrix for the HydraMix-Net while (b)
Represents the prediction and distribution of the centroid in the HydraMix-Net
trained on 100 labelled instances.
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Figure 2.3: The prediction of labels and distribution of the centroid on an
example set where the HydraMix-Net was trained on 100 labelled examples.

Figure 2.4: (a) Represents confusion matrix for the HydraMix-Net while (b)
represents confusion matrix for simple CNN model trained on partial data of
size 100. It can be seen from the matrix that false positives in the HydraMix-
Net are less than false positives in partial data.
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Figure 2.5: (a) Represents prediction and distribution of centroid in the
HydraMix-Net trained while (b) shows the distribution of centroid learned by
simple model on partial data of size 100.

In order to compare the performance gains of HydraMix-Net over the vanilla

CNN we can look at the confusion matrix show in Figure 2.4 where it shows

comparative results models trained using only 100 labelled set. Similarly, Figure

2.6 shows the confusion matrix for both models train on 300 labelled images

set. It is evident from both the figures that the our approach performs superior

to the vanilla CNN in differentiating between the tumour and lymphocyte

cells. Furthermore, apart from correctly classifying the cell types we can see

from the Figure 2.5 that in the scarcity of enough labels the simple CNN

performance in cell detection is inferior to the proposed approach. The simple

CNN fails to diversify the x and y coordinates and predicts within a small

vicinity. Further, it can be seen that nuclei locations are biased towards the

patch’s centre because of the training data inherent biases. Figure 2.7 shows

predictions for the HydraMix-Net for the 100 labelled set in (a) while 300

labelled set in (b), it can be seen that the model is learning to classify the

patch accurately along with nuclei prediction among tumour, lymphocytes and

background patches.
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Figure 2.6: (a) Represents confusion matrix for the HydraMix-Net while (b)
represents confusion matrix for simple CNN model trained on partial data of
size 300. It can be seen from the matrix that false positives in the HydraMix-
Net are more in case of the tumour, while for background and lymphocytes,
false positives in partial data training are in abundance.

Figure 2.7: (a) Shows prediction and distribution of the centroid in the
HydraMix-Net trained on 100 labelled examples (b) shows prediction and
distribution of the centroid in the HydraMix-Net trained on 300 labelled ex-
amples.

2.3.1 Noise Reduction

In this chapter, we have included a symmetric cross-entropy loss to reduce the

effect of the noisy pseudo label and ease our learning capabilities. Labelled

37



data was given more weightage while computing the SCE loss because there

is less noise in the original labelled set and labels are not much noisy (i.e.,

MixUp doesn’t add much noise in the labels), while in the case of unlabelled

data loss, the new predictions were given more importance as it was believed

that the newly predicted values were more accurate as the model has learned

and improved the previous mistakes. Hence, we experimented with a few

configurations to see the effectiveness of SCE loss, and it turned out that

the addition of SCE made the model learn more than simple cross-entropy

and l2 loss, as it can be seen in the Figure 2.8. Interestingly, when more

data is provided, the chances of model overfitting increase as training is

sensitive towards the pseudo label noise and starts to overfit the dominant class

distribution, as seen in Table 2.2. Hence, adding SCE improves the overall

learning of the approach by making this technique less susceptible to pseudo

label noise.

Figure 2.8: (a) Represents the F1-score curves of the models trained with 100
labelled examples with the orange line showing the model with SCE and the
blue line showing the model without SCE, and it can be seen that the model
without SCE under-performs the model with SCE with a margin of 10% in
F1-score. Similarly, (b) Represents the F1-score curves of the models trained
with 300 labelled examples, with the orange line showing the model with SCE
and the blue line showing the model without SCE, and it can be seen that the
model without SCE under-performs the model with SCE with a margin of 5%
in F1-score.

2.3.2 Knowledge vs F1-score

In this chapter, we have also examined the behaviour of increasing the know-

ledge, i.e., increasing labelled samples while training corresponding to the
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model’s F1-score. It has been shown through experiments that increasing

knowledge does increase F1-score. As with a more accurate labelled data

training model, it gets a chance to learn it more accurately and performs better

on validation and test sets, as seen in Table 2.2 and in Figure 2.9.

Figure 2.9: Represents the increase in knowledge vs increase in F1-score where
the knowledge is the number of labelled samples which can help the model to
learn more accurately on the true labels, and it can be seen that the HydraMix-
Net leverages semi-supervised approach and outperformed the simple CNN
trained on partial data.

Figure 2.10: HydraMix-Net prediction of tumour cells in a large ROI show in
red dots while the cyan colour shows the collagen VI.

2.4 Chapter Summary

In this chapter, we presented a novel end-to-end novel multi-task SSL approach

for simultaneous classification and localisation of nuclei in DLBCL. Further,

we plan to extend this work by improving the technique with the help of strong
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augmentations and validating the performance of our HydraMix-Net on larger

cohorts from multiple tumour indications. The cell detection and classification

may also help in performing follow-up analysis like survival prediction and

understanding the spatial arrangement of malignant cells within the tumour

micro-environment with collagen VI as seen in Figure 2.10.
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Chapter 3

Semi-Supervised Learning for

Segmenting Tissue Regions

and Nuclei Histology Images

3.1 Introduction

Segmentation of fundamental objects and regions in histology images is key to

several downstream analysis tasks in computational pathology (CPath) [99, 100]

e.g., cancer type classification [101–104], tumour and glandular segmentation

[105], and other tasks like mutation prediction [54, 106]. Their utility is not

limited to diagnosis but has also been employed for prognostic purposes, e.g.,

tumour infiltrating lymphocytes (TILs) have been found to be a significant

prognostic bio-marker in various types of tumours [107]. Similarly, tumour

progression has been linked with the interaction between the tumour epithelial

cells and tumour associated stroma [108]. Hence, it is important to segment

different types of histological objects precisely as their quantification is vital

to downstream analysis.

Machine learning based traditional methods accomplished this task using

different hand-crafted features, e.g., colour [109], texture [110, 111] and mor-

phological features [112]. Deep learning (DL) algorithms have recently gained

increasing attention in semantic segmentation due to their superior performance

on natural and medical images [113–116]. However, DL methods are known

to be “data hungry” and require a large amount of annotated data. Precise

annotation of histology images is expensive and laborious, requiring up to ∼5-6

hours of an expert histopathologist’s time to annotate one whole-slide image

(WSI) [117]. To alleviate the annotation burden, other modes of training have

been proposed, such as patch based segmentation [47, 55], coarse segmentation

[46, 118] and interactive segmentation [99, 119]. However, these methods still

require large-scale weak annotations involving a human expert.
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Semantic segmentation is a pixel-level classification task of predicting labels

for each pixel using pixel values. Most of the early DL methods were based

on fully convolutional networks (FCN) [120] where pooling layers aggregate

the information by focusing on “what” rather than “where”, resulting in loss

of spatial information. The subsequent studies addressed this shortcoming by

using pooling layers with more advanced techniques involving skip connections,

encoders and boundary information. As semantic segmentation is more than

just assigning labels to pixels, it inevitably requires some contextual inform-

ation along with knowledge of colour, edges and resolutions. In this regard,

algorithms like UNet [113], PSPNet [121], HRNet [122], and DeepLab-v3 [114]

use techniques like encoder-decoder architecture, wider receptive fields and

dilated/atrous convolutions to improve the segmentation performance. More

recently, another line of work focused on transforming the task of semantic

segmentation to sequence-to-sequence prediction, where the self-attention mech-

anism is introduced using transformers [123] to encode the global context in

each layer [115, 124] for subsequent decoding. However, a downside of using

transformer based techniques is their computational complexity.

On the other hand, semi-supervised learning (SSL) can train DL models

with a small set of annotated data by leveraging the unlabelled data for

better representation learning, boosting performance. SSL methods consist

of different techniques to incorporate unlabelled data for learning, including

pseudo labelling [125–127], generative adversarial modelling [86, 128–130],

consistency training [127, 131–133] and entropy minimisation [68, 89, 134].

However, SSL methods have an additional issue related to overfitting small

labelled input data, which may lead to poor generalisation. Self-supervised

learning enables SSL to learn more robust representation by enabling supervised

tasks out of unlabelled data, thus improving the overall performance.

3.1.1 Semantic Segmentation

The transformation of pixel values of an image to class labels using high

level features is known as semantic segmentation and is fundamentally a

challenging task. FCN extracts meaningful visual hierarchical features for

various computer vision tasks, e.g., classification [135], segmentation [120] and

object detection [136]. However, due to the pooling layers, spatial information

is lost in aggregation, which is vital in segmentation tasks and results in

smaller output [120]. Encoder-decoder based architectures solve this issue

by recovering and refining the output spatially in a step wise fashion [62,

137, 138]. Further improvements can be made possible with the help of skip

connections which results in more refined boundaries and confident predictions

[113]. However, the downside of the encoder-decoder architectures is a limited
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receptive field resulting in missing long-range dependencies. Dilated/atrous

convolutions [46, 114, 139, 140], spatial pyramid pooling [105, 121, 141, 142] and

attention based algorithms [115, 143–145] can enable aggregation of context by

using larger receptive fields or maintaining spatial information. More recently,

attention mechanism [123] has been used to replace convolutions’ limited local

receptive field with global contexts using transformers. Images are transformed

into a sequence of patches for transformer [146] to process as transformers

capture more consistent global contexts due to their self-attention mechanisms

[115, 124, 147]. Despite the advancements and improvements in semantic

segmentation, the bottleneck for high accuracy still remains to be dependent

on pixel-wise annotations.

3.1.2 Semi-Supervised Learning

Semi-supervised learning (SSL) exploits the unlabelled data instead of lim-

ited labelled data for improving the model performance and internal feature

representation. Recently SSL based methods have been widely adopted in

the computer vision domain [148]. Popular SSL techniques include pseudo

labelling [125–127] where the model trained on limited data is used to predict

the labels for unlabelled data known as pseudo labels. Generative adversarial

based methods improve the generalisability of the trained model using vari-

ous perturbations in the direction of maximum vulnerability, resulting in

aligning the distributions of labelled and unlabelled input in latent space

[86, 129, 130, 149]. Data interpolation based methods aim to augment in-

put space to create perturbed linear inputs for training models [82, 91, 150],

Temporal ensembling based methods aim to ensemble predictions over the

epochs using momentum/moving average to enforce consistency between the

predictions [85, 151]. Self-supervised learning based consistency training aims

to contrast the unlabelled input using pre-text tasks for learning meaningful

representations [127, 133, 152–154] and entropy minimisation based method

aims to maximise label assignment to either of the labels [68, 89, 134].

3.1.3 Self-Supervised Learning

Self-Supervised learning is a hybrid technique of representation learning in the

machine learning paradigm where robust and high quality data representations

are learned from unlabelled data. The concept behind self-supervised learning

is to build supervised tasks out of unlabelled data, known as pretext tasks.

Self-supervised learning can help SSL learn high quality representations, thus

making it easy to preserve and transfer valuable key insights available in data

for downstream analysis. The key here is that the task-agnostic pre-trained

networks can help better with downstream tasks than the task specific pre-
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trained networks. Self-supervised learning started with Autoencoders [155],

where neural networks learned to compress and reconstruct the input data

and were often used for feature extraction. Famous examples in this line of

work were Word2Vec [156] and GloVe [157], which were used to map words

to word embeddings for natural language processing tasks. Moving on from

autoencoders was the concept of learning similarities from the input data using

self-organising neural networks, e.g., Siamese networks [158]. These networks

were used extensively in computer vision, from signature verification to face

recognition. Similarly, in the early days, other techniques, e.g., restricted

Boltzmann machines, autoregressive modelling and metric learning, were also

used to learn good representation. Self-Supervised learning methods can be

broken down into two broad categories, i) self-prediction and ii) contrastive

learning.

Self-prediction: Given the input data with missing parts, the self-

prediction tasks involve predicting missing parts using the available parts.

E.g., given a masked input image with missing areas, the task is to generate the

whole image using the available clues. Supervised loss functions can be used to

regularise the training as the input is being used as a label. Self-prediction can

be thought of as an intra-sample prediction task. There are different methods

of self-prediction, e.g., autoregressive generation, masked generation, innate

relation prediction and hybrid self-prediction.

• Autoregressive Generation: Innate sequence prediction is the type of

autoregressive model where it predicts the future based on the past. It

can be applied to 1-dimensional input data, e.g., audio [159], text [160]

and raster scans [161].

• Masked Generation: Masking a random portion of the input data

and predicting the masked portion using the unmasked portion. Popular

examples are masked language modelling [162] and denoising autoencoder

[163], context autoencoder [164] etc.

• Innate Relationship Prediction: Distorting the innate nature of the

input data without disturbing the semantic meaning and predicting it

using the correct pairs. Innate relations can be the relative position of

objects, rotation, jigsaw puzzle [165] etc.

• Hybrid Self-Prediction Models: Mixing the different generation

models with other self-prediction techniques, e.g., VQ-VAE with autore-

gression [166]

Contrastive learning: Learning by contrasting pairs of similar (positive)

and dissimilar (negative) images for improved representation learning is known
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as contrastive learning [152, 167, 168]. Several loss functions have been pro-

posed from maximum margin loss [169], triplet loss [170], N-pair loss [171] to

contrastive predicting coding (CPC) [172] proposing mutual information based

InfoNCE loss to improve contrastive learning. Contrastive learning has been

used in both supervised and unsupervised learning tasks in conjunction with

self-supervision [152, 153, 173]. Recently, it has been established that using

more accurate positive and negative pairs along with larger batch sizes improves

the quality of learned representations with heavy augmentations. Memory

banks are adopted when large batches are not computationally feasible (i.e.,

don’t fit the GPU memory) for contrastive loss using a large set of negative

samples. It is the task of learning the relationships among the data points.

These relationships can be of multiple types, e.g., multiple views of the same

object, augmented versions of the same object and so on. Contrastive learning

can be thought of as an inter-sample prediction task. The goal of contrastive

learning is to learn such embedding in hyperspace where similar data points are

clustered together. The main subtypes of contrastive learning are inter-sample

classification, feature clustering and multiview coding.

• Inter-Sample Classification: Given similar (i.e., positive) or dissimilar

(i.e., negative) data samples, find out the similar ones to the reference

samples (i.e., anchor). Similar data points can be made using the distorted

versions of the original input using transformation etc. For training, a

simple supervised loss can be used, but there has been a lot of research

on building contrastive loss functions, e.g., contrastive loss [169], triplet

loss [170], infoNCE loss [172] etc.

• Feature Clustering: Feature clustering works by clustering the same

data samples in feature space using clustering algorithms, e.g., K-NN, on

the learned feature representations. Pseudo labels were assigned to the

data samples based on their centroids, and then intra-sample contrastive

learning was used for training, e.g., DeepCluster [174] and InterCLR

[175].

• Multiview Coding: Multiview coding involves applying contrastive

loss, especially infoNCE, on multiple views of the same input data [176].

3.1.4 Semi-Supervised Semantic Segmentation

SSL based semantic segmentation approaches utilise the aforementioned tech-

niques to extract knowledge from unlabelled data. Recently, CutMix, MixUp,

and CutOut based augmentation techniques were used together with the

student-teacher model, where consistency was enforced between the mixed

predictions [177]. Guided collaborative training (GCT) by [178] performed

45



network perturbations with the help of different network initialisation and

enforced the dynamic consistency constraint between the predictions. Cross-

consistency training (CCT) by [132] performed perturbations on the main

encoder’s features and enforced consistency over the multiple decoders’ output,

making it robust to various perturbation types. Context-aware consistency

by [133] proposed directional consistency loss for contrasting different con-

texts by cropping two overlapping patches of the same input to improve the

representation learning. Recently, in the field of computational pathology, a

few methods for semi-supervised semantic segmentation have been proposed.

[179] proposed a semi-supervised method for signet detection using the help

of self-supervised learning for label generation. [180] proposed a two stage

SIM-FixMatch approach utilising self-supervised learning in the first stage

and then using FixMatch for pseudo label generation along with consistency

regularisation. [181] proposed an exponential moving average (EMA) student-

teacher framework where the model is trained using the noisy labels to enforce

consistency over similar and dissimilar patch pairs. Cross-patch dense contrast-

ive learning by [68] proposed a student-teacher based method to enforce EMA

based consistency over predictions and to improve the internal representations.

The pixel-wise contrastive loss was applied to background and foreground

patches to improve the internal feature representations.

In this chapter, we present a novel consistency based SSL method for

semantic segmentation which leverages unlabelled data in varying contexts and

CNN feature perturbations such as dropout and noise using self-supervised

learning techniques like consistency regularisation and cross-consistency train-

ing. Consistency regularisation is enforced by using context-aware contrastive

learning in changing contexts, and cross-consistency training is used to handle

CNN feature perturbations along with entropy minimisation for confident

predictions. The primary purpose of consistency regularisation is to enforce

the CNN model to output consistent predictions for unlabelled data under

changing conditions. For consistency to work effectively, input space must hold

the cluster assumption constraint, i.e., the same label is most likely to be shared

among the nearby samples, thus forming a cluster. Therefore, high density

regions correspond to clusters (i.e., samples with the same labels), whereas

the low density regions are separation spaces (i.e., object boundaries). As for

histology and natural images, the pixel space might not hold the constraint

of cluster assumption, as seen in distance map of the RGB space in Figure

3.1. The low density regions (i.e., high average distance) do not align well

with the class boundaries in most of the scenarios, e.g., in 1st row, we observe

low density regions throughout the image, while, in the last row there exist a

cluster of high density regions for a foreground object, i.e., road. However, the

cluster assumption holds in CNN encoders latent feature space [132], as we
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Figure 3.1: (1st column) Example images from histological (BCSS) and natural
(PASCAL VOC 2012) datasets; (2nd column) Respective masks showing the
foreground and background objects with boundaries; (3rd column) Distance
map (i.e., Average Euclidean distance L2) between the central patch of size
21 × 21 with four overlapping patches in the immediate neighbours in RGB
colour space. Note that the darker blue colour represents the low density
regions corresponding to the high average distance.

show and discuss later in Figure 3.10. Therefore, we applied the CNN feature

perturbations to the CNN encoder’s output rather than the input images. Also,

due to the limited labelled data, the CNN model may become overly depend-

ent on just context (i.e., its surrounding) overlooking the objects themselves,

losing object-awareness [133]. Changes in context refers to the changes or

shifts in the conditions, environment, or circumstances surrounding an image

or scene that can impact the interpretation, understanding, or analysis of
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Figure 3.2: (a) Images from the BCSS dataset with overlapping regions cropped
sequentially (i.e., dashed grey boxes) from the same image to mimic changing
contexts; (b) UMAP visualisations of CNN features embeddings extracted from
a fully supervised model; (c) UMAP visualisations of CNN feature embedding
extracted from our semi-supervised model. The semi-supervised model benefits
from unlabelled data, enabling it to capture the underlying data distribution
more comprehensively, resulting in more consistent representations (i.e., roughly
the same location) for each class as compared to the CNN feature embeddings
obtained from a fully supervised model. Note that the CNN feature embeddings
are represented in the same UMAP space where dots with the same colour
represents CNN feature embedding from the same class.
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that image. Therefore, to enforce consistency against changes in contexts, we

present context-aware contrastive learning, which helps the CNN model learn

high-level semantic CNN features by contrasting the positive (i.e., similar) and

negative (i.e., dissimilar) pairs of images in different contexts. As shown in

Figure 3.2, under varying contexts, the CNN model trained in a fully supervised

manner is unable to produce consistent CNN feature distributions as compared

to proposed method, Consistency Regularisation in varying Contexts and

Feature Perturbations for semi-supervised semantic segmentation of Histology

Images (CRCFP) with consistent feature distributions. While context-aware

consistency brings robustness to changing contexts, cross-consistency training

can help the CNN model learn robust invariant CNN feature representation to

small perturbations. While context-aware and cross-consistency training regu-

larisation can bring consistency in the CNN encoder’s features representations,

it often fails to optimise the pixel classifier leading to less confident prediction

maps. Finally, entropy minimisation coupled with the aforementioned tech-

niques helps the CNN model acquire high quality and confident predictions.

We extensively evaluated our CRCFP on two publicly available histology image

datasets BCSS [45] and MoNuSeg [69] for two different semantic segmentation

tasks, i.e., tissue region segmentation and nuclei segmentation. In summary,

our contributions are as follows:

• We present a consistency regularisation based SSL method against varying

contexts and perturbations using a novel combination of context-aware

consistency loss and cross-consistent training for feature generalisability.

• To improve the confidence of final predictions for pseudo labelling, entropy

minimisation is employed on top of context-aware and cross-consistent

regularisation.

• We demonstrate our method on two different semantic segmentation tasks,

i.e., cancer region and nuclei segmentation on two publicly available large

histology datasets.

• Extensive experiments showed superior performance of our method out-

performing the state-of-the-art (SOTA) SSL methods with extensive

ablation studies.

3.2 Materials and Methods

3.2.1 Data

We evaluated our framework on two publicly available datasets, the Breast

Cancer Semantic Segmentation (BCSS) [45] and Multi-organ Nucleus Segment-

ation Challenge (MoNuSeg) [69] dataset for semantic segmentation. The data
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was obtained from the respective challenge pages hosted on Grand Challenge

for Medical Image Analysis website (https://grand-challenge.org/).

MoNuSeg. The MoNuSeg challenge was organised as a MICCAI 2018

satellite event and contains 21,623 annotated nuclei from 30 H&E stained

images for training and contains 7223 annotated nuclei from 14 H&E stained

images for testing purposes. Annotations were done by engineering students,

and then an expert pathologist served as quality control for the annotated

nuclei. Each image is of size 1000 × 1000 extracted from a WSI scanned at

40× resolution of an individual patient obtained from The Cancer Genome

Atlas Program (TCGA) [25]. WSIs are sampled from 18 different centres and

seven different organs, including the breast, liver, kidney, prostate, bladder,

colon and stomach, with various tumour stages.

BCSS. The BCSS challenge was conducted in 2021 and contains over 20,000

annotated regions of interest (ROI) from 151 H&E stained WSIs with the same

number of patients from TCGA [25]. 25 annotators, including pathologists,

residents, and medical students, helped annotate this large scale data into

25 refined categories, which are later merged into five broad categories as a

tumour, stroma, inflammatory, necrosis, and others. For this work, we have

used the same five broad categories by relabelling the regions and then split

them into training and test centres according to the [45] where there were 14

centres for training and seven centres for testing.

Data Preparation

In order to validate the CRCFP framework, we evaluated it against different

labelled data proportions for each dataset. Where for BCSS different data

proportions were created using different centres (hospitals) to make training

more susceptible to variation in colours enabling domain shift. DL methods

often fail to perform well on samples from different domains (centres), mainly

due to domain shift, this also makes it a domain generalisation problem.

Therefore, the training set was divided into data portions by diving the total

training centres as 1/1 (full), 1/2 (half), 1/4 (quarter), and 1/8 (one-eighth)

centres where 1/8 results in training images coming from only 1 centre, while

the test set remains intact as it is. Similarly, for 1/4 (quarter) training images

comes from 4 centres and 7 centres for 1/2 (half). For MoNuSeg, different label

proportions were based on training images themselves and are then divided

into 1/1, 1/8, 1/16, and 1/32 proportions to make it comparable to the work of

[68]. Further, this whole process is repeated using 3 different random seeds and

then the results are reported using mean aggregation with standard deviation.

To facilitate the reader’s comprehension, frequently used mathematical

notations are listed and defined in Table 3.1
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Table 3.1: Frequently used mathematical notations in Chapter 3

Notation Explanation

L Set of labelled images

U Set of unlabelled images

N Total number of labelled images

M Total number of unlabelled images

H Height of image

W Width of image

D Depth of image

C Number of classes

xl Labelled image

xu Unlabelled image

yl Labelled image mask

g(·; θg) shared decoder

h(·; θh) shared encoder

f(·; θf ) Feature extractor

Cf Pixel classifier for final prediction

ϕ(·; θz) Projection head

θg Parameter of the shared decoder

θh Parameter of the shared encoder

θf Parameter of the feature extractor

θp Parameter of the pixel classifier

θz Parameter of the projection head

f l Feature maps for xl

fu Feature maps for xu

xu1, xu2 Overlapping patches extracted from xu

ŷl Class map for xl using pixel classifier Cf

ŷu Class map for xu using pixel classifier Cf

φu Projected feature map for xu

Lcont(φui, φuj) Directional contrastive loss xui → xuj

λ Threshold for positive feature filtration

η Negative samples for contrastive loss

U Uniform distribution

L Overall loss for training the framework

M Binary mask for positive and negative samples

Lsup Cross-entropy loss for supervised training

Lt−cont Total directional contrastive loss

Lcross Cross-consistency training loss

Lent Entropy loss for improving prediction confidence

wsup Weight for supervised loss

wt−cont Weight for direction context-aware contrastive loss

wcross Weight for cross-consistency training loss

went Weight for entropy loss
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Figure 3.4: Directional contrastive loss working for context-aware consistency,
where from φu1, φu2 overlapping area’s (yellow overlay) positive pixels with
higher confidence were used to pull each other closer (green arrows) while
negative pixels from φu2 as well as from memory bank were used to push each
other apart (red arrows). To obtain these negative samples, class masks ŷu1

and ŷu2 (depicted as dashed green arrows) are applied. These masks guide the
selection of negative samples from both φu2 and the memory bank, which is
represented by the grey overlay.

3.2.2 Methods

Figure 3.3 shows an overview of the proposed framework (CRCFP), where

L = {(xl1, y
l
1), ..., (x

l
n, y

l
n) : n ∈ {1, ..., N}} represents the N labelled images

while U = {(xu1), ..., (xum) : m ∈ {1, ...,M}} represents the M unlabelled

images. Labelled and unlabelled images xl and xu were sampled from L and U

respectively in batches. Both images xl, xu are of H×W×D spatial dimensions

with corresponding pixel-wise mask yl = RC×H×W only for labelled image

where C is the number of classes. Each labelled image xl is passed through

the supervised pathway of the CRCFP framework (blue arrows in Figure 3.3)

whereas the unlabelled images xu pass through the unsupervised pathways of

the framework (brown arrows in Figure 3.3) along with two overlapping patches

extracted randomly from xu denoted as xu1, xu2 (green arrows in Figure 3.3).

Feature maps are extracted from the input image using the shared encoder

h(·; θh) and decoder g(·; θg) as f(·; θf ) = h(·; θh) ◦ g(·; θg) resulting in feature

maps for each input as f l = f(xl; θf ), fu = f(xu; θf ), fu1 = f(xu1; θf ) and

fu2 = f(xu2; θf ). Further, f l and fu are processed by a pixel classifier Cf for

final prediction as ŷl = Cf (f l; θp) and ŷu = Cf (fu; θp) where ŷl is optimised

using the cross-entropy loss over yl as Lsup shown in Equation 3.1.

Lsup = − 1

N

C∑
c=1

N∑
i=1

ylc,i log(ŷlc,i) (3.1)

where ŷlc,i denotes predicted label map of class c of the ith instance. Similarly,

ylc,i denotes label map of class c of the ith instance
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Context-Aware Consistency

With only the supervised loss Lsup, the model may start relying excessively on

contexts due to limited labelled data. Context-aware consistency can alleviate

this issue by aligning the two different contexts of the same patch with the

help of contrastive learning. For this purpose, encoded feature maps fu1 and

fu2 are projected to a low-dimensional space using a non-linear projector

ϕ to preserve important contextual information. The choice of non-linear

projection head as compared to linear and identity projection head is due to

its superior performance [152]. The projection head ϕ(·; θz) outputs projection

maps as φu1 = ϕ(fu1; θz) and φu2 = ϕ(fu2; θz). Similar to [133], context-aware

consistency is maintained between the overlapping regions of φu1 and φu2

using the directional contrastive loss Lcont to keep the feature representation

consistent under different contexts as shown in Figure 3.4. For computing

directional consistency loss, first class maps ŷui were extracted using pixel

classifier Cf and then maximum probability among all classes C is maintained

using max probability as it is linked with higher confidence as shown in Equation

3.2.

ŷui = arg max
c ∈ C

Cf (fui; θp) (3.2)

where i ∈ {1, 2} as there are two cropped patches and higher probability

features are used to align less confident features towards the more confident

features [68, 133, 178] which can improve learning by avoiding the exchange

of unreliable knowledge from the less confident features. In order to extract

positive and negative samples, class prediction maps as ŷu1 = Cf (fu1; θp) and

ŷu2 = Cf (fu2; θp) were used as pseudo labels along with their probabilities.

For computing the directional loss between φu1 → φu2, φu1 acts as a positive

(+ve) instance where a positive feature projection φu1+ was computed from

φu1 with condition on the pseudo label ŷu1 as ŷu+ having probability greater

than ŷu2 as ŷu−. Threshold λ is further applied on the φu+ as this positive

feature filtration enables us to avoid the exchange of less confident features

while computing the loss. For negative (-ve) samples η, all other instance

meeting the criteria of (ŷu+ ≠ ŷu−) were selected, where all other samples were

treated as ŷu− as shown in Equation 3.5. The Lcont(φu1,φu2) loss for one pair is

calculated as shown below,

Lcont(φu1,φu2) = − 1

M

∑
H,W

M+. log
sim(φu1, φu2)

sim(φu1, φu2) +
∑

φu−∈η
M− · sim(φu1, φu−)

(3.3)

sim(φu1, φu2) = exp

(
(φu1)Tφu2

∥φu2∥ ∥φu2∥ τ

)
(3.4)
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M− =

{
1 if ŷu+ ̸= ŷu−,

0 otherwise.
(3.5)

M+ =

Mc+, if maxCf (fu1; θp) > λ,

0, otherwise.
(3.6)

Mc+ =

{
1 maxCf (fu1; θp) < maxCf (fu2; θp),

0 otherwise.
(3.7)

where sim(.) is the cosine similarity measure with temperature τ , Mc+ rep-

resents the binary mask for extracting confident features corresponding to

φu1+. M+ is the binary mask for positive confident samples above threshold λ.

M− is the binary mask for negative samples indicating different pseudo labels

between φu+ and φu−. To increase the negative samples, we have used the

memory bank which stores features from recent batches to further increase the

negative samples for better contrastive performance [68, 133, 152]. Similarly,

for computing the directional loss between φu2 → φu1, φu2 acts as a positive

(+ve) instance where a positive feature projection φu+ was computed from

φu2 with condition on the pseudo label ŷu2 as ŷu+ having probability greater

than ŷu1 as ŷu−. Finally, the directional contrastive loss Lt−cont is calculated

as below:

Lt−cont = Lcont(φu1, φu2) + Lcont(φu2, φu1) (3.8)

Cross-Consistency Training

As context-aware consistency improves the model’s robustness towards chan-

ging contexts without losing object-awareness, the model is still susceptible

to small perturbations in the input due to limited labelled data. Therefore,

in order to leverage unlabelled data and make the model invariant to small

perturbations, we utilise the cross-consistency training [132] where fu is per-

turbed K times for each perturbation type and consistency is maintained

between the output of pixel classifier and auxiliary classifiers. This not only

improves the model’s robustness but also regularises the main pixel classifier

towards correct predictions. We use ŷu to regularise the pixel classifier over

the mean square error (MSE) loss by measuring the distance between the

output of the main pixel classifier Cf and the output of auxiliary classifiers Cf
k .

Formally, a perturbation function pk with k ∈ {1,K} perturbations outputs a

perturbed version of the fu as fu′
k = pk(fu) for a perturbation type and the

cross-consistency training loss Lcross can be defined as below,
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Lcross =
1

M

1

K

∑
xu∈U

K∑
k=1

d(ŷu, Cf
k (fu′

k )) (3.9)

where d measures the squared distance between the output probabilities of

the main pixel classifier and perturbed pixel classifier output. The following

perturbations are applied to enforce consistency:

Feature Noise: From uniform distribution U , a uniformly sampled noise in

the interval [α, β] is added to the features map fu in two steps. First sampled

noise is multiplied with fu to scale the noise relative to feature activations.

Second, the scaled sample noise is then added to the feature map fu. This

makes the noise proportional to each feature activation, as shown below.

Ω ∼ U(α, β) (3.10)

fnoise = (fu ⊙ Ω) + fu (3.11)

where Ω is random noise sampled from U and ⊙ represents the element

wise multiplication.

Feature Dropout: From uniform distribution U , a uniform sample

threshold γ is used to prune the less confident activations to stop the model

from relying on those activations. This is done by first summing the fu over dif-

ferent channels and then normalising it using min-max normalisation resulting

in fu′
. Anything below γ is dropped, as seen below:

γ ∼ U(α, β), (3.12)

Mdrop =

1, if fu′
< γ,

0, otherwise.
, (3.13)

fdrop = Mdrop ⊙ fu′
. (3.14)

where Mdrop is the binary mask containing threshold values for pruning

the activations.

DropOut: A fraction of activations are dropped out spatially, where the

fraction is decided using the Bernoulli distribution with probability δ.

Mdropout ∼ Bernoulli(δ) (3.15)

fdropout = Mdropout ⊙ fu (3.16)
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Entropy Minimisation

Context-aware contrastive learning and cross-consistency training improves the

encoder’s features but it often fails to improve the final pixel classifier leading

to less reliable pseudo labels corrupting the training from unlabelled data.

As higher confidence means better prediction maps resulting in more refined

pseudo labels which can help train both context-ware and cross-training with

improved positive/negative pairs and pseudo labels. Hence, in order to improve

the confidence of predictions, we employ entropy regularisation following its

applications in semi-supervised learning [68, 89, 168, 182] as shown in Equation

3.17 where it penalises the uncertain prediction in the unlabelled data and

improves the overall confidence of the prediction maps.

Lent = − 1

C

C∑
c=1

M∑
m=1

ŷu log ŷu (3.17)

3.2.3 Training

Finally, the entire framework is trained in an end-to-end fashion using a

weighted combination of the above mentioned losses, as shown below,

L = wsupLsup + wt−contLt−cont + wcrossLcross + wentLent (3.18)

where wsup, wt−cont, wcross and went correspond to the weights for each loss

component respectively.

3.2.4 Implementation Details

Network Architecture

We used DeepLab-v3 [114] as the base segmentation network with ResNet-50

[135] encoder pretrained on ImageNet [183] where the projector consists of

two fully connected (FC) layers of size 128 with ReLU as an intermediate

activation layer, FC → ReLU → FC. Pixel classifiers consist of convolutional

layers with a kernel of size 1 × 1 to reduce the number of channels to total

classes with non-linear ReLU activation. The final layers upsample the output

using bi-linear interpolation to match the input size as H ×W × C.

3.2.5 Experimental Settings

In order to address the potential impact of centre selection on performance,

particularly when dealing with smaller data fractions, we randomly selected

the training centres for each trial using different random seeds. However, to
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ensure fair evaluation and mitigate any bias, we have conducted testing on

fixed and unseen test sets derived from the two challenge contests. In each trial,

we have performed a three fold cross-validation to enhance the reliability and

robustness of our results. This cross-validation approach allows us to assess

the performance of our method across multiple iterations, ensuring that the

evaluation is not biased by the specific partitioning of the data. This approach

allowed us to account for the influence of centre selection while maintaining

consistent and unbiased evaluation across our experiments. The input size for

the proposed framework for both labelled and unlabelled images was 320 ×
320. For contrastive learning, two patches xu1 and xu2 were randomly cropped

from the unlabelled image with an overlap in the range of [0.1, 1.0] and are

resized to match the input dimensions. For positive filtering mask λ was set to

0.75 by empirical evaluation and τ = 0.1 as temperature for cosine similarity.

For cross-consistency training, number of auxiliary pixel classifiers were set

to K = 4 for each perturbation type and for feature noise perturbation the

parameters α = −0.3, β = 0.3 were used. For feature dropout perturbation,

α = 0.75, β = 0.9 were used as they can help remove approximately 10% to

30% of active regions from the feature map. Also, for simple Dropout the

probability for Bernoulli distribution was set to δ = 0.5. During training,

a set of standard augmentations were applied to the input images including

horizontal and vertical flipping, gaussian blur, colour and grey scaling. PyTorch

was used for implementing this framework where for optimisation we train the

whole framework for 80 epochs. For the initial 5 epochs, only supervised loss

Lsup was used to train the whole framework as this provides a stable head

start for the semi-supervised learning. The batch size of 8 was used for labelled

and unlabelled images with stochastic gradient descent (SGD) optimiser and a

learning rate of 0.001. As a common practice, poly learning rate decay policy

was used where the learning rate is scaled using 1 − ( iter
max iter )power at each

iteration with power = 0.9. Weights with respect to different losses Lsup,

Lt−cont, Lcross and Lend were set to fixed values as wsup = 1, wt−cont = 0.1,

wcross = 0.01 and went = 0.01 respectively after empirical evaluation. All

models were trained with the same configurations for both datasets where two

Nvidia GeForce 1080Ti GPUs are used for training.

3.2.6 Evaluation metrics

In order to compare our method quantitatively with other state-of-the-art

methods (SOTA), we have used different pixel-wise quantitative measures,

including accuracy, F1-score (Dice) and mean intersection over union (mIoU)

for both datasets.
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Table 3.2: Comparison of the state-of-the-art methods with mIoU, dice score
and accuracy aggregated for 3 different random seeds as mean (standard
deviation). The first column represents the fraction of data used for training
the model.

BCSS

Fraction Method mIoU Dice Accuracy

1/8 DeepLab-v3 [114] 40.99 (7.96) 55.96 (9.1) 66.53 (6.07)
1/8 CCT [132] 22.84 (0.54) 32.01 (0.69) 56.14 (0.70)
1/8 CAC [133] 44.67 (6.32) 58.97 (7.51) 72.43 (3.40)
1/8 CRCFP 47.09 (6.18) 61.84 (6.59) 73.20 (3.31)

1/4 DeepLab-v3 [114] 53.03 (0.88) 68.52 (0.94) 75.70 (0.65)
1/4 CCT [132] 30.63 (2.19) 43.24 (3.33) 62.43 (0.89)
1/4 CAC [133] 58.65 (0.65) 73.33 (0.55) 78.60 (0.42)
1/4 CRCFP 61.06 (0.98) 75.21 (0.74) 80.87 (0.89)

1/2 DeepLab-v3 [114] 56.26 (1.19) 71.33 (0.98) 78.07 (1.031)
1/2 CCT [132] 29.78 (2.56) 41.63 (4.28) 61.94 (0.17)
1/2 CAC [133] 60.44 (1.48) 74.67 (1.16) 80.50 (0.92)
1/2 CRCFP 61.86 (0.63) 75.73 (0.59) 81.18 (0.27)

1/1 DeepLab-v3 [114] 61.29 (0.26) 75.49 (0.12) 81.10 (0.09)

3.3 Results and Discussion

The performance of our method CRCFP compared to recent SOTA semi-

supervised semantic segmentation methods, including DeepLab [114], CCT

[132], CAC [133] and CDCL [68] 1 is shown in Table 3.2 and Table 3.3. As

these methods were implemented originally using different configurations and

baseline segmentation models. We have implemented these methods within a

unified framework with the same segmentation baseline, experimental settings

and data augmentations for a fair comparisons.

Table 3.2 shows the performance of our CRCFP model compared to su-

pervised and semi-supervised methods on all matrices for the BCSS dataset.

Particularly, when 1/8 proportion of the training centres was used, it can

be seen that in terms of mIoU our method performs ∼6% better than the

supervised method and ∼3% better than the recent CAC [133]. Similarly,

its worth noting that with 1/4 of the total centres, the CRCFP performance

is almost similar to fully supervised method with all data. however, it can

also be seen that training the model on a single centre (i.e., 1/8) results in a

model with high standard deviation across the folds, this shows that training

from a single source is highly susceptible to stain variations. On the other

hand, the poor performance of CCT [132] can be attributed towards heavy

perturbations applied directly to the features where it brings perturbed fea-

tures from different contexts closer without pushing dissimilar apart whereas

1CDCL [68] cannot be applied to the multi-class problem as it divides the patches into
foreground and background only for contrastive learning.
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Table 3.3: Comparison of the state-of-the-art methods with mIoU, dice score
and accuracy aggregated for 3 different random seeds as mean (standard
deviation). The first column represents the fraction of data used for training
the model.

MoNuSeg

Fraction Method mIoU Dice Accuracy

1/32 DeepLab-v3 [114] 60.09 (2.07) 73.89 (1.77) 79.45 (1.40)
1/32 CCT [132] 41.13 (0.06) 50.31 (0.29) 74.33 (0.35)
1/32 CAC [133] 67.40 (1.12) 79.33 (0.90) 86.14 (0.62)
1/32 CDCL [68] 62.72 (1.83) 75.95 (1.35) 81.66 (1.57)
1/32 CRCFP 71.72 (0.22) 82.60 (0.24) 88.86 (0.23)

1/16 DeepLab-v3 [114] 56.20 (5.76) 70.80 (4.58) 75.27 (75.27)
1/16 CCT [132] 40.99 (0.08) 49.56 (0.29) 75.17 (0.36)
1/16 CAC [133] 71.44 (1.11) 82.47 (0.92) 88.27 (0.11)
1/16 CDCL [68] 60.63 (1.15) 74.40 (0.90) 79.99 (1.37)
1/16 CRCFP 72.08 (2.07) 82.91 (1.52) 88.58 (1.16)

1/8 DeepLab-v3 [114] 59.67 (2.99) 73.59 (2.32) 78.98 (2.89)
1/8 CCT [132] 40.9 (0.13) 50.00 (0.54) 74.63 (0.42)
1/8 CAC [133] 74.56 (0.42) 84.73 (0.30) 89.91 (0.23)
1/8 CDCL [68] 57.07 (1.45) 71.63 (1.14) 76.29 (1.48)
1/8 CRCFP 75.57 (0.85) 85.19 (0.54) 90.28 (0.42)

1/1 DeepLab-v3 [114] 71.29 (0.16) 82.49 (0.11) 87.52 (0.09)

CAC [133] not only bring them closes but also pushes away the features from

different classes. However, it focuses more on encoder feature generalisation

leaving pixel-classifier with less confident features. Figure 3.5 shows visual

comparison of CRCFP with the SOTA algorithms, where, it can be observed

that prediction maps of CRCFP are better as compared to the rest, specially

highlighted in the dashed red boxes. There are also some noticeable stitching

artefacts in some prediction maps, especially in the case of CCT. Stitching

artefacts are common in patch-based segmentation methods, especially when

using large ROI, i.e., the case in BCSS. These artefacts can be removed with

the help of overlapping patch processing, but that takes additional computing

time.

Table 3.3 shows the performance of CRCFP surpassing other SOTA methods

in all data proportions and metrics, especially in 1/32 proportion of the

MoNuSeg dataset. It can be seen that our CRCFP outperforms the CAC

[133] by 4.32% in mIoU with a smaller standard deviation of 0.22. It can

also be observed that fully supervised models are more susceptible to domain

generalisation problems from the table as in 1/32 proportion of the training

images, the performance of DeepLab-v3 [114] is 4% better than the 1/16

proportion of the training images whereas there is more data available in the

latter. This is due to the fact that in a random sampling of training images,

some training images are better indicators of the testing distribution due to
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similarities in the same stain, organ and tumour stage. However, most of the

SOTA semi-supervised algorithms solve this issue with the help of unlabelled

data, as it can be seen that the performance increase with the increase in data

for all these methods. Figure 3.6 shows a visual comparison of CRCFP with

SOTA methods where it can be seen that our approach predicts fewer false

positives as compared to CDCL [68].

Further, in order to validate the contribution of each component (i.e.,

context-aware consistency, cross-consistency training and entropy minimisa-

tion), we conducted an extensive ablation study. The ablation study is per-

formed on the BCSS dataset due to its complexity and multi-class nature, where

we studied the effect of using all data proportions for the different encoders

and stripping the framework. While studying the effect of negative samples

and the number of auxiliary pixel classifiers, we used 1/8 data proportion.

3.3.1 Encoder

To verify the performance boost by plugging in a bigger encoder in the base

segmentation network, we replaced ResNet-50 with ResNet-101 for all data

proportions. Table 3.4 shows the performance of the CRCFP framework

with a bigger encoder, and it can be seen that there is a performance boost

overall for most of the methods, especially for CCT [132]. However, it can be

observed that CRCFP with a smaller encoder (i.e., ResNet-50) still performs

comparable/better than other SOTA techniques with a bigger encoder, e.g.,

in 1/8 proportion CAC [133] with ResNet-101 achieves mIoU of 46.91 where

CRCFP with ResNet-50 achieves mIoU of 47.09 showing the superiority of

our method. Also, it is worth mentioning that with ResNet-101, the standard

deviation we observed with ResNet-50 was reduced, owing to the fact that bigger

encoders are more stable for semi-supervised learning frameworks. Overall

the CRCFP framework provides improved and stable performance with bigger

encoders as compared to the other methods.

3.3.2 Network Schemes

We validated the contribution of each component by breaking down the whole

framework with respect to different losses and called them network schemes. We

started with a baseline segmentation network, i.e., DeepLab-v3 with ResNet-50

as SupOnly, Scheme.1 consists of using context-aware consistency loss, Scheme.2

consists of using context-aware consistency loss with entropy minimisation,

and finally, Scheme.3 is our framework with context-aware consistency loss

with cross-consistency training and entropy minimisation. Table 3.5 shows

the schemes with respect to their respective losses being used. It can be

seen that with each component’s addition, we can see an improvement in
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Table 3.4: Comparison of the state-of-the-art methods on the mean (standard
deviation) of the mean intersection of union (mIoU), dice score and accuracy
with baseline encoder as ResNet-101. The first column represents the fraction
of data used for training the model.

BCSS

Fraction Method mIoU Dice Accuracy

1/8 DeepLab-v3 [114] 37.50 (6.61) 51.73 (7.51) 64.89 (5.92)
1/8 CCT [132] 31.71 (4.64) 45.66 (5.96) 59.42 (3.46)
1/8 CAC [133] 46.91 (6.79) 61.92 (6.74) 72.01 (3.85)
1/8 CRCFP 47.15 (6.76) 61.27 (7.72) 72.57 (2.82)

1/4 DeepLab-v3 [114] 55.18 (1.88) 70.30 (1.70) 77.37 (1.25)
1/4 CCT [132] 42.63 (0.98) 58.35 (1.26) 66.94 (0.73)
1/4 CAC [133] 61.48 (0.73) 75.52 (0.47) 80.78 (0.84)
1/4 CRCFP 62.01 (0.40) 75.94 (0.29) 81.18 (0.49)

1/2 DeepLab-v3 [114] 60.37 (1.89) 74.5 (1.58) 80.57 (0.86)
1/2 CCT [132] 44.01 (0.65) 59.64 (0.55) 67.66 (1.33)
1/2 CAC [133] 61.95 (0.72) 75.77 (0.67) 81.09 (0.27)
1/2 CRCFP 63.01 (0.09) 76.57 (0.09) 81.67 (0.12)

1/1 DeepLab-v3 [114] 62.33 (1.04) 76.22 (0.73) 81.68 (0.58)

overall performance. E.g., in 1/8 data proportion, the addition of context-

aware consistency brings about 4% of improvement while entropy minimisation

further bumps it up by 1%, and finally, cross-consistent training beings about

2% of improvement, accumulating the overall performance to ∼7% from baseline

supervised model. Also, for other data proportions, the performance boost is

not that much significant with the addition of these Scheme.2 and Scheme.3

as compared to Scheme.1. However, its worth mentioning that the standard

deviation of Scheme.2 and Scheme.3 as compared to Scheme.1 is smaller which

is due to the fact that these schemes brings confidence in prediction maps thus

improving the overall performance with stability.

3.3.3 Negative Samples

As increasing the negative samples in training contrastive learning framework

boosts the performance of the underlying model. This is done mostly by

increasing the batch size to 2048 or 4096 where possible, as the bigger the

batch size, the more samples you get for comparisons [152, 184]. However,

where it is not possible, another workaround is to use a memory bank where

negative samples from previous batches are stored for later use. Therefore, in

order to get the upper bound of performance in our framework with respect to

negative samples, we have experimented with the different numbers of negative

samples as seen in Table 3.6. It can be noticed that with increasing negative

samples, the performance increases for a while, and then it reaches the plateau

and then increases with very little gain, as it can also be observed visually
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Table 3.5: CRCFP breakdown with BCSS splits in different Schemes with
respect to their loss functions. SupOnly correspond to baseline segmentation
model with Lsup loss only. Scheme.1 corresponds to addition of Lt−cont loss on
top of SupOnly. Scheme.2 corresponds to addition of Lent on top of Scheme.1
and finally Scheme.3 is addition of Lcross on top of Scheme.2.

BCSS

Method Split Lsup Lt−cont Lent Lcross mIoU

SupOnly 1/8 ✓ × × × 40.99 (7.96)
Scheme.1 1/8 ✓ ✓ × × 44.67 (6.32)
Scheme.2 1/8 ✓ ✓ ✓ × 45.76 (6.12)
Scheme.3 1/8 ✓ ✓ ✓ ✓ 47.09 (6.18)

SupOnly 1/4 ✓ × × × 53.03 (0.88)
Scheme.1 1/4 ✓ ✓ × × 58.65 (0.65)
Scheme.2 1/4 ✓ ✓ ✓ × 59.97 (1.47)
Scheme.3 1/4 ✓ ✓ ✓ ✓ 61.06 (0.98)

SupOnly 1/2 ✓ × × × 56.26 (1.19)
Scheme.1 1/2 ✓ ✓ × × 60.44 (1.48)
Scheme.2 1/2 ✓ ✓ ✓ × 60.87 (1.39)
Scheme.3 1/2 ✓ ✓ ✓ ✓ 61.86 (0.63)

Table 3.6: Performance of CRCFP with respect different number of negatives
samples used while training Lt−cont loss with BCSS data split of 1/8

BCSS

# mIoU Dice Accuracy

100 45.62 (8.10) 60.46 (8.87) 67.38 (8.14)
500 45.81 (7.78) 59.86 (8.88) 70.05 (5.30)
1200 47.09 (6.18) 61.84 (6.59) 73.20 (3.31)
1600 47.16 (6.70) 61.81 (7.05) 72.68 (3.07)
2400 47.60 (6.09) 62.14 (6.80) 73.58 (3.43)
3200 48.34 (5.25) 63.83 (5.01) 73.06 (3.59)

in Figure 3.7. This can be due to the fact that there might not be many

variations to cover in training set with more negative samples, thus reaching

stable performance or very little performance gain. Also, due to gradient

checkpoint functionality in PyTorch, adding more negative samples does not

affect the training efficiency drastically but does consume more compute time

and memory. Hence, based on these observations, for this study, we set the

number of negative samples to 1200 for its memory vs accuracy trade-off.

3.3.4 Auxiliary Pixel Classifier

We employed separate auxiliary classifiers for each perturbation to ensure

accurate classification of each variation introduced by perturbations. Sharing a

single classifier or using the main classifier alone would limit the model’s ability

to differentiate between the different perturbations and accurately. Additionally,
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Figure 3.7: Performance graph with respect varying number of negatives
samples used while training Lt−cont loss with BCSS data split of 1/8

relying solely on the main classifier would provide only one supervision signal

during training, potentially insufficient for capturing the diverse variations in

the input data caused by the perturbations. To see the effect of a varying

number of auxiliary pixel classifiers with respect to different perturbations

we conducted experiments with K ∈ {1, 2, 4, 6, 8, 10} as seen in Table 3.7. It

can be seen that increasing the number of pixel classifiers per perturbation

increases the performance but the upper bound is achieved soon after it reaches

K = 4, from where the performance drops slightly as can be observed in

the Figure 3.8. Increasing the number of perturbations can result in more

aggressive penalisation of the model overall as it accumulates to K × 3 losses

which can deviate the model from learning meaningful representations. Based

on this observation we set the number K = 4 for our study for the rest of the

comparisons for both datasets.

Interpretable features from histology slides can be extracted by segmenting

objects/structures from ROIs, e.g., nuclei, glands, stroma, tumours etc. Inter-

pretable features can enable the discovery of novel digital bio-markers with

explanations for histology images for hard tasks like survival analysis [107, 185]

and mutation prediction [54, 186, 187]. Therefore, it is vital for the downstream

tasks to have good quality and precise segmentation of the region of interests.

For this purpose, utilising unlabelled data for representation learning not only

improves performance but also improves the internal representations for better

learning. The qualitative and quantitative results, along with the ablation
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Table 3.7: Performance of CRCFP with respect different number of K auxiliary
classifiers used while training Lcross loss with BCSS data split of 1/8

BCSS

# mIoU Dice Accuracy

1 43.94 (7.95) 58.9 (8.27) 69.14 (5.54)
2 45.76 (7.51) 60.44 (7.88) 71.23 (4.23)
4 47.09 (6.18) 61.84 (6.59) 73.20 (3.31)
6 46.48 (6.26) 61.01 (6.73) 72.60 (3.68)
8 46.72 (6.88) 61.38 (7.29) 72.25 (3.89)
10 45.68 (6.79) 60.64 (7.20) 71.84 (3.99)

Figure 3.8: Performance graph with respect varying number of pixel classifiers
used while trainingLcross loss with BCSS data split of 1/8

study, have shown superior performance of CRCFP with respect to other SOTA

methods. However, it’s worth exploring internal representations of the learned

models (i.e., feature embeddings) to account for (1) Consistency in feature

space and (2) Cluster assumption for the sake of validation of aforementioned

claims in the introduction section.

3.3.5 Feature Space Visualisation

In order to observe the consistency in feature space, feature embeddings were

extracted from both our SSL based CRCFP trained on 1/2 proportion of the

training data vs DeepLab-v3 trained on all data (i.e., fully supervised) since

they achieved the same performance. Extracted feature maps were upsampled

to match the size of the input image (i.e., 320 × 320) and were then mapped
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to lower dimensions using UMAP [188] for visualisation purposes. It can be

seen in Figure 3.9 that the feature embedding distributions are consistent with

varying contexts, especially in the 1st and 2nd column for our CRCFP model

as compared to fully supervised ones. Similarly, it can be observed in the other

examples where the varying context is inherent due to the sequential overlap

in the patch tessellation process. In comparison, the fully supervised model is

susceptible to perturbations in contextual cues, as can be observed. It is worth

noting the last two columns where the shape of feature embedding distribution

changes along with the orientation of the same sample points from the same

class. Especially the ones shown in yellow dots as compared to our framework,

where the distributions are almost consistent under these perturbations.

3.3.6 Cluster Assumption

Consistency regularisation based methods work on the basis of cluster assump-

tion and have achieved SOTA results in semi-supervised classification and

segmentation. The main idea behind consistency regularisation is to have high

and low density regions where samples closer to each other are likely to share

the same label forming a high density region with a low average distance. At

the same time, the class boundaries are likely to be aligned with the low density

regions, i.e., high average distance. In order to observe cluster assumption, fea-

ture embeddings were extracted from CRCFP and were compared against RGB

colour space as shown in Figure 3.10. Extracted feature maps were upsampled

to match the size of the input image, and then the average euclidean distance

between each patch of size 21 × 21 centred around its four immediate spatial

neighbours (left, right, top and bottom) was calculated. It can be seen in

Figure 3.10(d) that the class boundaries are much more aligned and apparent

in the feature space as compared to the colour space where the boundaries

don’t align well e.g., some shown with the black arrows, thus violating cluster

assumption. This can be due to the fact that the CNNs at higher layers tend

to learn more semantic based features from the basic low-level features. Also,

interestingly the background/fat represented in white colour in input images

somewhat holds the high density regions because there is not much change in

colour values for that region. In comparison, the rest of the tissue area is not

very homogeneous in pixel values due to the presence of cells of various shapes

and sizes.

3.4 Chapter Summary

In this chapter, I have presented a novel consistency based semi-supervised

learning based semantic segmentation framework for region and nuclei seg-
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mentation in histology images. Our method is invariant to varying contexts

and perturbations, making it efficient and robust for semantic segmentation

tasks. We have shown that context-aware consistency learning can exploit

unlabelled images efficiently with the help of cross-consistency training and

entropy minimisation. Extensive experiments on two publicly available large

histopathological datasets have shown the superiority of the CRCFP framework

by achieving new SOTA results for semi-supervised semantic segmentation.

Also, detailed ablation studies for different network parameters and components

show the contribution of each network component, demonstrating the effective-

ness of our method. Future directions include improvements to the presented

method with respect to improving the context-aware loss for minor classes and

finding histology specific perturbation, e.g., targeting stain variations, on a

large multi-centric histopathological dataset. Large multi-centric data is vital

for the validation of the study as the quality of downstream analysis is highly

dependent on the segmented histology primitives.
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Chapter 4

Weakly Supervised Learning

for Predicting Malignancy in

Oral Epithelial Dysplasia

(OED)

4.1 Introduction

Oral cancer is amongst the most common cancers in the world and is considered

a major health problem due to the its significant associated morbidity and

mortality [189]. The 5-year survival rate has not improved over the last few

decades, regardless of improvements in surgical and oncological treatments.

A large majority of oral cancers (>90%) are oral squamous cell carcinoma

(OSCC), with one of the biggest obstacles to improvement in prognosis being

delayed presentation of disease, as evidenced by the fact that survival for stage-I

OSCC is 80% which reduces to 20-30% for stage IV disease [190, 191]. OSCC

is caused by a multitude of genetic and environmental factors and is preceded

in a majority of cases by a potentially malignant state with the proliferation of

atypical epithelium known as oral epithelial dysplasia (OED) [10]. Dysplastic

lesions have been shown to have an increased risk of progression to malignant

transformation [192]. Currently, there are no specific clinical tools or biological

or molecular markers routinely used or recommended in clinical practice for

the prognostication of dysplastic lesions. Some clinical risk predictors have

been suggested to be helpful including size, clinical site (e.g., the floor of the

mouth, lower gums, lateral tongue), and clinical appearance (i.e. leukoplakia,

erythroplakia etc.) and can be found in a wide range of conditions collectively

referred to as oral potentially malignant disorders (OPMDs) in clinical practice

[193].

72



With the wider adaptation of digital pathology in clinical practice, AI

algorithms have also evolved and have shown promise for automated detection

and quantification of histological features for classification [41, 47, 50, 93,

194], detection [41, 42, 101, 195], segmentation [142, 145, 196] and survival

analysis [93, 107]. Digitisation of histology slides along with AI can be used

to develop algorithms to assist pathologists in diagnostic decision-making and

better prognostication for improved patient management. To the best of our

knowledge, there has been limited research on computational analysis of OED

histology images for the prediction of malignant transformation. Existing

methods in literature have used relatively small cohorts, manual elements,

or region of interest (ROI) based analyses [50, 197–202]. All these methods

have focused mainly on OED identification or grading and lack predictive or

prognostic ability. Limited computational pathology work has been reported

at the WSI level for predictive analysis of OED, including recurrence and

malignant transformation potential. Dost et al. [199] examined 368 OED

patients where 7.1% progressed to carcinoma and showed that there was no

association of OED grade with malignant transformation. Gilvetti et al. [203]

reported a study including 120 patients with a mean follow-up of 47.7 months

(±29.9 SD) and showed that the recurrence rate was significant in high grade

OED patients with erythroplakia with p = 0.023 with the mean time to

recurrence of 62 months (±31.5 SD). Malignant transformation was also shown

to have a significant association with age (p = 0.034), clinical appearance (p

= 0.030), lesion site (p = 0.007) and some other clinical features with a mean

transformation time of 50 months (±32.5 SD). A recent study by Mahmood

et al. [204] examined the correlation between individual histological features

and OED prognosis. They examined OED biopsies from 108 patients with a

minimum of five-year follow-up to analyse histological features predictive of

recurrence and malignant transformation. Two different prognostic models

based on the presence of specific histological features (bulbous rete processes,

hyperchromatism, loss of epithelial cohesion, loss of stratification, suprabasal

mitoses and nuclear pleomorphism- irrespective of grade) were proposed with

an area under the receiver-operator characteristic curve (AUROC) value of

0.77 for malignant transformation and 0.72 for recurrence. This highlights

the usefulness of individual (grade-independent) histological features for OED

prognosis prediction. A significant proportion of OED lesions can transform

into malignancy (OSCC), and at present, there are no tools available for

objective and reproducible prediction of malignant transformation. Early

prediction of malignant transformation is crucial to aid patient care and inform

appropriate treatment to improve prognosis and reduce the need for radical

and disfiguring surgery later. In this chapter, we investigate the effectiveness

of deep learning algorithms for prognostication from Haematoxylin & Eosin
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(H&E) stained WSIs in an end-to-end manner.

4.2 Materials and Methods

4.2.1 Data

The dataset used for this study comprised 163 Haematoxylin and Eosin (H&E)

stained and scanned whole slide images (WSIs) of OED cases between 2005

to 2016. WSIs were scanned at ×20 using an Aperio CS2 scanner (n = 66)

and at ×40 using a Hamamatsu scanner (n = 97) after ethical approval (REC

Reference- 18/WM/0335, NHS Health Research Authority West Midlands).

Amongst 163 cases, 137 were OED cases with 50 transformed into malignancy.

The remaining cases were non-dysplastic oral mucosal biopsies, including benign

hyperkeratosis or mild epithelial hyperplasia. The mean average age in the

dataset of OED cases was 64.64 (range 25-97), with the mean age for men

(n = 84) was 66.3 and the mean age of women (n = 53) being 64.5. The

main clinical sites of involvement were the tongue, floor of the mouth and

buccal mucosa. The mean time to malignant transformation was 6.51 years

(±5.35 SD). The inclusion criteria for WSIs were decided upon the following

conditions:

• A histological diagnosis of OED

• Sufficient availability of tissue, i.e., (excluding tangentially cut sections,

tissue with artefacts).

• Minimum five-year of follow-up data (including treatment, recurrence

and transformation information) from the initial diagnosis

• All cases were independently seen by at least two certified/consultant

pathologists.

The interobserver disagreement between the two pathologists was assessed

using Cohen’s kappa score, which resulted in a value of 0.854. The score

indicates a high level of agreement between the two pathologists. Cases

with disagreement were resolved through discussion within the team. More

information about the cohort can be seen in Table 4.1. Epithelium masks

were obtained using HoVer-Net+ [100] and then refined manually for some

cases (i.e., removing blood vessels being recognised as epithelium layers). In

contrast, slide-level labels were obtained for each case from patient records (i.e.,

clinical notes and biopsies), including histological grades, recurrence status,

and malignant transformation status (i.e., OED has progressed into OSCC at

the same diagnosed location within the follow-up time). The WSIs were split

into train and test sets using three different stratified 5-folds on transformation
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Figure 4.1: The overall workflow of the study is shown in different sections. A)
the process of getting the tissue biopsies from dysplastic lesions and correspond-
ing WSIs with their associated labels assigned by a pathologist. B) patches
of size M×N were extracted from the epithelium region of WSIs. C) fully
supervised pipeline where the patches were assigned the WSI level labels and
trained using CNNs for the downstream tasks. D) weakly supervised pipeline
where positive (+ive) and negative (-ive) batch of features/images was created
and used for training. E) heatmaps were generated using IDaRS to explore
the hotspot areas and their contribution towards the malignant transformation
prediction using nuclear analysis. Nuclear features from different layer of
epithelium i.e., keratin (blue nuclei), epithelial (green nuclei), basal (red nuclei)
and tissue area (orange nuclei) from the hotspot and cold spots were used for
progression free survival by using peri-epithelial lymphocytes (PELs) count.
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Characteristic Number (%)

OED cases 137

Cases with malignant transformation 50 (36.4%)

WHO grade

Mild 41 (29.9%)
Moderate 53 (38.6%)
Severe 43 (31.3%)

Binary grade

Low-risk 80 (58.3%)
High-risk 57 (41.6%)

Mean age [min-max] 64.64 [25-97]

Gender

Male 84 (61.3%)
Female 53 (38.6%)

Clinical (intra-oral) site

Tongue 53 (38.6%)
Floor of mouth 27 (19.7%)
Buccal mucosa 17 (12.4%)
Others 38 (27.7%)

Survival Mean (Standard Deviation)

Survival (Months) 84.75 (63.03)
Survival (Year) 6.51 (5.35)

Table 4.1: Characteristic of the cohort used for the study with clinical and
demographic information of OED cases.

status for all experiments. Patches of size 512×512 were extracted using the

epithelium mask with an overlap of 50% from all the WSIs at 0.50µ per pixel

(mpp). For extracting the deep features, ResNet-50 [135] was used as a feature

extractor pre-trained on ImageNet. A feature vector of size 1024 was extracted

for each patch resulting in a bag of shape xRn1024 for all WSIs (where n is the

number of patches extracted).

4.2.2 Methods

Malignant Transformation Prediction

Figure 4.1 shows the overall pipeline, which involves initially extracting X

patches of size M×N with slide level labels Y from WSIs with an overlap of

O using the epithelium mask. Extracted patches were utilised for training

the deep learning models for predicting malignant transformation. In this

chapter, we used iterative draw-and-rank sampling (IDaRS) [54], which works

by ranking and selecting the top and random patches from a WSI, assuming

that not all patches are equally important and predictive of the outcome. IDaRS

selects two subsets of patches for training, including random patches r and

top-ranked patches k for each WSI. Both subsets are then pre-processed using
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the standard set of augmentations and train a CNN with weak labels. We have

also compared the IDaRS with other fully supervised and weakly supervised

algorithms, e.g., multi-layer perceptron (MLP), Attention-MIL (A-MIL) [205],

clustering constrained attention multiple instance leaning (CLAM) [104], and

CNN based benchmark classification models (ResNet [135], DenseNet [206]

and Vision Transformers [146] with max pooling as an aggregator for the final

WSI label).

Table 4.2: Nuclear features extracted from layer wise nuclei and their explana-
tions.

Feature Explanation

Extent (EX) Ratio of bounding box pixels to total
region

Equivalent diameter (ED) Diameter of the circle in the bound-
ing box

Eccentricity (ECC) Ratio of focal distance over major
axis

Convex area (CA) Number of pixels in the convex hull

Centroid (C) Centre location of bounding box

Major axis length (MJL) Length of the major axis

Minor axis length (MNL) Length of the major axis

Nuclei count (NC) Total number of nuclei in the patch

Cellularity per micron (ϕ) Nuclei density in patch per micron

Nearest neighbour distance (NND) Nearest nucleus distance from nuc-
leus of interest

Cellular Composition Analysis

To further analyse and validate the hotspots being identified by the IDaRS

model, cellular compositions of top tiles (i.e., hotspots and coldspots) from

transformed and non-transformed cases were analysed. Nuclear features were

extracted from each layer (i.e., keratin, epithelial, and basal see Fig 1.1) and as-

sociated connective tissue in an automated manner using nuclear segmentation

and classification. For this purpose, input patches were first stain normalised

using a sample from The Cancer Genome Atlas (TCGA) cohort before being

fed into HoVer-Net [42], which was pre-trained on the PanNuke dataset [196]

for nuclear instance segmentation and classification. For segmentation of the

keratin, epithelial and basal layers within the epithelium, HoVer-Net+ [100] was

used. Figure 4.2 and Table 4.2 shows a range of morphological and proximity

features extracted from the segmented image patches and aggregated statist-

ically using the minimum ∧, maximum ∨, mean µ, median m and standard

deviation σ. Here, ordinary least square (OLS) was used with post-hoc t-tests

for calculating the statistical significance with Benjamini/Hochberg adjustment
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Figure 4.2: Shows the patch with nuclei instance segmentation (left) and
segmented region of a nucleus in green boundary (right) where black box
represents the bounding box and red lines represent the major and minor
axis while the green area represents the segmentation boundary. The black
concentric circles (left) represented the neighbourhood of the nucleus and were
used for extracting spatial features, e.g., distance to closest nuclei (proximity).

[2]. Cellular composition helps understand/interpret the results of IDaRS and

differentiates transformed cases from non-transformed ones in an objective

manner.

Peri-epithelial Lymphocytes (PELs) Count

Elevated PEL counts can be linked to a higher risk of malignant transformation

in oral epithelial dysplasia (OED),. To further explore the role of PEL count

in transformed and non-transformed cases, a Wilcoxon rank-sum test was

performed where p < 0.05 was considered significant. Moreover, we also

analysed the distributions of PEL count in subgroups based on two clinical

features, i.e., gender and age. Gender was divided into male and female groups.

The age subgroups were separated into ranges between 0-50, 51-70, and 71-100.

Survival Analysis

To investigate the prognostic significance of the clinical, pathological, and nuc-

lear features for progression free survival (PFS), Kaplan–Meier (KM) curves

and Cox proportional hazard (CPH) models were used for univariate and

multivariate analysis. To distinguish between the high-risk (short term sur-

vival) and low-risk (long term survival) groups, the optimal cut-off value was

calculated by taking the mean of hazard value for each instance using the CPH

model where the statistical significance is large between the high and low-risk

groups. Further, a long-rank test was performed to determine the statistical

significance and p < 0.05 was considered statistically significant.
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4.2.3 Experimental Settings

For IDaRS, we set the random patches r=30 and top-patches k=5 and trained a

pretrained ResNet-34 on ImageNet with a batch size of 16 and patch size of 256.

IDaRS was trained for 30 epochs with binary cross-entropy loss and optimised

using the Adam optimiser. For training, MLP and CLAM deep features were

then fed as input to the models for generating WSI-level outputs. MLP and

CLAM were trained for 1000 epochs using the default configurations from the

CLAM. For A-MIL and CNN models’ the same input and configurations as

IDaRS were used for the training and test purposes. All models were trained

and tested on a system with two Nvidia Titan-X with 12 GB of memory,

dedicated RAM of 128GB, and an Intel® Core i9 processor. Where, an

average epoch takes 10 minutes, and downstream analysis for a single WSI

takes 1 minute.

4.2.4 Evaluation metrics

To validate the results, stratified on transformation status, 5-fold cross-validation

was performed three times with different random seeds. Patch-wise AUROC

and F1-score (macro) aggregated at WSI level were used as performance metrics

and are averaged across the folds. F1-score (macro) computes the arithmetic

mean of the F1-score per class, treating all classes equally and regardless of

their number. AUROC evaluates the binary problems by plotting the true

positive rate (TPR) against the false positive rate (FPR) at various thresholds.

The area under the ROC curve (AUROC) measures the ability of the classifier

to differentiate between the two classes where the TPR and FPR are calculated

as:

TPR =
TruePositives

TruePositives + FalsePositives

FPR =
FalsePositives

FalsePositives + TrueNagatives

4.3 Results and Discussion

4.3.1 Malignant Transformation

The results of our experiments are shown in Table 4.3 indicate that the

performance of IDaRS is comparatively better than the other weakly and fully

supervised algorithms with an AUROC of 0.78 (±0.07 SD) and F1-score of

0.69 (±0.05 SD) as compared to MLP, CLAM, and A-MIL. It can also be

observed from the ROC plots in Figure 4.3 that the standard deviation across

different folds for IDaRS is smaller as compared to the other weakly supervised

algorithms. It is worth noting that the performance of CLAM is competitive to
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Figure 4.3: ROC curve plots on 5-fold cross-validation for OED malignant
transformation prediction using (A) MIL (B) A-MIL (C) CLAM and (D)
IDaRS.
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Table 4.3: Performance of IDaRS model as compared to other weakly supervised
and fully supervised models with deep features, IDaRS is achieving high
performance in terms of AUROC. SD = Standard Deviation

Model top-k AUC ± SD F1-score ± SD

MLP
1 0.65 ± 0.09 0.56 ± 0.11
5 0.64 ± 0.11 0.55 ± 0.01

A-MIL [205] - 0.54 ± 0.07 0.44 ± 0.30

CLAM [104]
1 0.65 ± 0.04 0.64 ± 0.04
5 0.65 ± 0.05 0.63 ± 0.01

IDaRS [54] 5 0.78 ± 0.07 0.69 ± 0.05

ResNet-50 [135] - 0.54 ± 0.10 0.43 ± 0.11

ViT [146] - 0.55 ± 0.01 0.44 ± 0.08

DenseNet [206] - 0.56 ± 0.05 0.44 ± 0.01

IDaRS as compared to the MIL in terms of the F1 score. The performance of

CLAM was competitive to IDaRS as compared to the MIL in terms of F1-score.

The fully supervised networks performed worse than other weakly supervised

models due to the inherent nature of the problem which introduces noise in

the labels and corrupting the model’s training.

Feature p > |t| p > |t| (adjusted)
Tissue NC 0.0013 0.0481*

Tissue σ Nuclei in 100 mpp 0.0.289 0.2755

Tissue max ECC 0.0428 0.3491

Basal µ minor axis length 0.0436 0.3491

Basal σ ED 0.0090 0.1672

Basal NC < 0.0001 < 0.0001*

Epithelium µ ECC 0.0015 0.0487*

Epithelium µ NND 0.0099 0.1672

Epithelium µ Nuclei in 100 mpp 0.0125 0.1273

Epithelium σ ECC 0.0028 0.0729

Epithelium σ Bounding Box 0.00106 0.0487*

Epithelium NC < 0.0001 < 0.0001*

Table 4.4: Ordinary least square regression for malignant transformation with
t-test significance of nuclear features with Benjamini/Hochberg (Benjamini &
Hochberg, 1995) adjustment. Only the top nuclear features are shown here
where the significant p-value is highlighted using *. σ represents the standard
deviation and µ represents the mean of a distribution.

4.3.2 Exploring the visual patterns

To validate and further investigate the features learnt by the top performing

IDaRS, we explored the top tiles from the heatmaps of transformed and non-

transformed WSIs. For correlating the hotspot/coldspots with the clinical

features, heatmaps were also analysed manually for corroboration purposes
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Figure 4.4: Heatmap of high-risk OED case for the malignant transformation
predicting using IDaRS. Red regions in the heatmap overlay shows a high
probability of malignant transformation in respective areas. From those high
probability region two of them are being shown in more detail in the two black
boxes.
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Figure 4.5: Heatmap of low-risk OED case for the malignant transformation
predicting using IDaRS. The red region shows a high probability of malignant
transformation in those areas. From those high probability region two of them
are being shown in more detail in the two black boxes.
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by an expert pathologist. Figure 4.4 shows the heatmap for a histologically

high-risk case where the red (hotspot) colour represents a region with a higher

probability of malignant transformation. In contrast, the blue (coldspot)

colour corresponds to a region with a low probability of transformation. Closer

examination of hotpots shows evidence of disordered stratification, dyskeratosis,

as well as nuclear and cellular pleomorphism with a dense lymphocytic infiltrate

in the adjacent peri-epithelial connective tissue. Similarly, Figure 4.5 shows

the heatmap for a histologically low-risk case where cellular pleomorphism

with a lymphocytic infiltrate can be seen in the hotspot regions. The dense

lymphocytic infiltrate is referred to as peri-epithelial lymphocytes (PELs) for

the rest of the analysis.

4.3.3 Cellular Composition Analysis

Following the manual analysis of the heatmaps, automated cellular composition

analysis was performed to uncover significant hidden patterns/features in trans-

formed vs non-transformed cases. Table 4.4 shows the prognostic significance of

the extracted nuclear features for predicting malignant transformation. For the

epithelial layer, variation in eccentricity (p = 0.048), bounding box (p = 0.0487)

and total nuclei count (p < 0.0001) showed significance along with Basal layer

NC (p < 0.0001). An increase in cell count (hyperplasia or crowding) is an

important feature observed in high-risk dysplasia in both the central epithelium

layer and specifically within the basal layer. Other features in the epithelium,

e.g., variation in nuclei count (100µm per pixel) and nearest nuclei distance,

correspond to congestion in spatial arrangements of epithelial nuclei and require

more data for validation. Similarly, changes in basal layer nuclei minor axis,

equivalent diameter corresponds to the nuclear pleomorphism and are observed

in high-risk OED cases. Interestingly, the nuclei count in the connective tissue

area also showed significance for predicting the transformation (p = 0.0004),

which corresponds to the previous observation regarding the dense lymphocytic

infiltrate in the adjacent peri-epithelial connective tissue.

4.3.4 Peri-Epithelial Lymphocytes (PELs)

Figure 4.6 shows examples of patches from both hotspots (red) and coldspots

(blue) regions of the transformed and non-transformed cases with their cor-

responding layer-wise cellular compositions. For most of the coldspots, the

epithelium and basal nuclei are dominant, whereas in the hotspots (red) PELs

are in abundance in the transformed cases compared to non-transformed cases

(Figure 4.6). As a whole, PELs were statistically significant (p = 0.02) for

differentiating between the transformed vs non-transformed cases. Gender

based subgrouping showed no significance between male and female groups.
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Figure 4.6: Patches extracted from the hotspot (red) and coldspots (blue)
of the WSIs with their layer wise nuclear composition. Most of the coldspot
regions have dominant epithelial nuclei as compared to the hotspots where
PEL can be seen dominating the overall ratio.
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However, for age, the 0-50 group showed prognostic significance with respect

to malignant transformation with p = 0.001. Figure 4.7 shows the boxen plots

for (A) the overall distribution of the PEL ratio in transformed cases versus

non-transformed cases and (B) the distribution of the PEL ratio in transformed

cases versus non-transformed cases, including age subgrouping.

Features Aggregation p C-
index

Lower
95%

Upper
95%

Clinical Parameters

Gender - >0.05 0.52 0.52 0.53
Age - >0.05 0.59 0.59 0.60

Pathological Parameters

WHO Grading
(Mild vs Mod +
Severe)

- <0.05 0.68 0.68 0.69

WHO Grading
(Mild + Mod vs
Severe)

- <0.05 0.68 0.68 0.68

Binary Grading - <0.05 0.68 0.68 0.69

Nuclear Features

PEL count

µ >0.05 0.45 0.45 0.46
σ <0.05 0.60 0.59 0.60
m >0.05 0.57 0.56 0.58
∧ <0.05 0.73 0.72 0.73
∨ >0.05 0.53 0.52 0.54

Basal NC

µ >0.05 0.45 0.44 0.46
σ <0.05 0.66 0.65 0.67
m >0.05 0.52 0.51 0.53
∧ <0.05 0.70 0.69 0.71
∨ >0.05 0.53 0.52 0.54

Epithelium NC

µ <0.05 0.65 0.64 0.65
σ <0.05 0.72 0.71 0.73
m <0.05 0.66 0.65 0.67
∧ <0.05 0.73 0.73 0.74
∨ >0.05 0.46 0.45 0.47

Table 4.5: Univariate analysis of the clinical, pathological and digital features
where p is calculated using the log-rank method, and C-index is calculated
using the Cox Proportional Hazard model bootstrapped 1000 times for lower
and upper confidence intervals. ∧ represents minimum, ∨ represents maximum,
µ represents mean, m represents median and σ represents standard deviation.

4.3.5 Survival Analysis

Table 4.5 shows the univariate analysis of the aforementioned nuclear features

mentioned in Cellular Composition Analysis with clinical and pathological

features, where it can be seen that both clinical features, age (p > 0.05, C-
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Figure 4.8: Univariate analysis of different features (blue) pathological grades
i.e., WHO grading and binary grading, (green) clinical and (red) top most
significant nuclear. For each feature, the dot represents the hazard ratio,
and the filled line shows the lower and upper confidence interval of 95%. p-
values were shown at the right, calculated using the Wald test. ∧ represents
minimum, ∨ represents maximum, µ represents mean, m represents median
and σ represents standard deviation.
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Figure 4.9: Kaplan–Meir (KM) curve for progression free survival of OED
using (a) Binary Grading, (b) PEL count, (c) Epithelium layer NC and (d)
represents the KM curve using the basal layer nuclei count.

89



index = 0.59 [95%, 0.59 – 0.60]) and gender (p > 0.05, C-index = 0.52 [95%,

0.52 – 0.53]) are nonsignificant. Conversely, the pathological features showed

significance for binary grading (p = 0.004, C-index = 0.68 [95%, 0.67 – 0.69])

and WHO based grading when moderate and severe cases were combined

against mild grade (p = 0.04, C-index = 0.68 [95%, 0.67 – 0.68]). When mild

and moderate cases were combined and compared against severe, they showed

the same significance as (p = 0.04, C-index = 0.68 [95%, 0.67 – 0.68]). The

nuclear features extracted from the epithelial layer, basal layer and connective

tissue area also showed significance for the minimum number of nuclei count

(NC) in the basal layer (p < 0.05, C-index = 0.70 [95%, 0.69 – 0.71]), epithelial

layer (p < 0.05, C-index = 0.73 [95%, 0.73 – 0.74]) and PELs (p < 0.05, C-index

= 0.73 [95%, 0.72 – 0.73]). Figure 4.9 shows the KM curves for (A) binary

grades, (B) PEL count, (C) epithelium layer NC and (D) basal layer NC, where

it can be seen that all features are statistically significant in differentiating

the high risk and low-risk lesions with a clear separation between the two

groups, especially the PEL count. Figure 4.8 shows the hazard ratio (HR) for

variation in basal layer NC and epithelium layer NC appears to be associated

with improved survival, whereas the minimum PEL count, epithelium layer NC

and basal layer NC are the adverse predictors of PFS. Furthermore, Table 4.6

shows the multivariate analysis of the most significant nuclear and pathological

features (i.e., binary grading, min epithelial layer NC, min basal layer NC

and min PEL count) to examine their combined effect on the PFS. When

these features are combined, the C-index improves by reaching 0.79 [95%, 0.78

– 0.80], with binary grading, epithelium layer NC and PEL being the most

significant prognostic features for malignant transformation. In the absence of

binary grading, the C-index achieved using nuclear features only is competitive,

reaching 0.78 [95%, 0.77 – 0.78]. Similarly, combined binary grading with

PEL counts reached the same C-index of 0.78 [95%, 0.77 – 0.78] as compared

to the other two features with binary grading, i.e., epithelium layer NC 0.76

[95%, 0.75 – 0.77] and basal layer NC 0.77 [95%, 0.76 – 0.77]. This highlights

the importance of using PEL counts as a prognostic feature for predicting

malignant transformation. Further, the combined performance of basal layer

NC and epithelium layer NC with PEL count also shows the significance of

using PEL in conjunction with other clinical and nuclear features.

In this chapter, we explored the potential of deep learning for predicting

malignant transformation from digitised OED histology slides. We trained a

weakly supervised learning framework for malignant transformation prediction

and further analysed the predictive “hotspots” in epithelial and peri-epithelial

tissue regions. We have demonstrated that deep learning based weakly super-

vised IDaRS can predict malignant transformation with an AUROC of 0.78

(±0.07 SD) on stratified 5-fold cross-validation using three different random
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Feature p HR Lower 95% Upper 95%

C-index = 0.79, 95% CI [0.78 – 0.80]

Binary Grading <0.05 2.43 1.30 4.54
Basal NC >0.05 1.04 0.79 1.37
PEL count <0.05 1.72 1.24 2.37
Epithelium NC <0.05 1.48 1.07 2.05

C-index = 0.78, 95% CI [0.77 – 0.78]

Basal NC >0.05 1.08 0.81 1.43
PEL count <0.05 1.72 1.23 2.39
Epithelium NC <0.05 1.67 1.20 2.32

C-index = 0.77, 95% CI [0.76 – 0.77]

Binary Grading <0.05 2.97 1.62 5.43
Basal NC <0.05 1.54 1.31 1.81

C-index = 0.78, 95% CI [0.77 – 0.78]

Binary Grading <0.05 3.10 1.70 5.65
PEL count <0.05 1.81 1.50 2.18

C-index = 0.76, 95% CI [0.75 – 0.77]

Binary Grading <0.05 2.76 1.44 4.93
Epithelium NC <0.05 1.84 1.27 2.66

C-index = 0.73, 95% CI [0.72 – 0.74]

Basal NC >0.05 1.13 0.84 1.52
PEL count <0.05 1.68 1.20 2.34

C-index = 0.77, 95% CI [0.77 – 0.78]

Epithelium NC <0.05 1.67 1.19 2.35
Basal layer NC <0.05 1.54 1.29 1.83

C-index = 0.78, 95% CI [0.77 – 0.78]

Epithelium NC <0.05 1.68 1.21 2.34
PEL count <0.05 1.83 1.50 2.25

Table 4.6: Multivariate analysis of the pathological and digital features where
p is calculated using the Wald test, and C-index is calculated using the Cox
Proportional Hazard model bootstrapped 1000 times for lower and upper
confidence intervals.

seeds. The higher performance of IDaRS as compared to other MIL algorithms

is because it dynamically learns important feature representations from the

patches internally, as compared to fixed feature representation of a patch as

an input limiting the learning possibilities of the model. Mahmood et al. [204]

also reported the AUROC of 0.77 for transformation using a similar but smaller

cohort with the nuclear features subjectively assessed by three pathologists.

We have also explored the cellular compositions (i.e., nuclear features) and

their role in potentially malignant areas (i.e., hotspots) of transformed cases

and compared them to the non-transformed areas (i.e., coldspots). Nuclear

features from the epithelial layer and associated connective tissue area were

found to be the most significant prognostic features for predicting malignant

transformation. Other important features found in the epithelial and basal
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layer during the experiments were variations in the number of nuclei in 100µm

per pixel (mpp), the standard deviation in cell eccentricity, mean major and

minor axis length etc. These nuclear features also correspond to the aberration

of nuclei (i.e., variation in size of nuclei captured as a variation in the minor

axis of the nuclei and convexity of the nuclear shape) and congestion due to

proliferation of nuclei in the epithelial and basal layer. However, in order to

verify the significance of these features we require more data to test these

features’ ability to indicate prognostic significance for malignancy. It has also

been reported in the literature that the PELs can play an important role in

transforming dysplasia into carcinoma [207]. There is a possible explanation

for the transformation that the epithelium is affected by the PEL. This can

be due to the release of cytokines linked with oxidative stress, transforming

the epithelial cells into premalignant ones [208, 209] as we have seen that

PELs showed significance for predicting the transformation with p < 0.05. For

PFS, we examined clinical, pathological, and nuclear features of oral epithelial

dysplasia. Our findings indicated that, in addition to binary grading, the

variation in Basal layer NC and Epithelial layer NC were associated with

improved PFS. On the other hand, we observed that the minimum number

of nuclei in Basal layer, Epithelial layer, and PEL were linked to a higher

risk of malignant transformation or poor survival. Gan et al. [207] have

also investigated the potential role of lymphocytic infiltration in malignant

transformation by analysing the RNA sequencing of the immune infiltration

sites in moderate and severe OED. The authors highlighted the importance

of immune signatures established from oral cancer to identify three distinct

subtypes of moderate and severe OED: immune cytotoxic, non-cytotoxic and

non-immune reactive from transcriptional data. Their findings suggest that

the lack of CD8 T-cells in the non-cytotoxic subtype and non-immune reactive

subtype can lead to progression in moderate and severe dysplasia. The chapter

identified binary grading as a significant indicator for malignant transformation

in oral epithelial dysplasia (OED), whereas the study performed by Dost et al.

[199] did not find any association between grading and transformation. However,

Mahmood et al. [204] demonstrated an association between nuclear features

used for OED grading (e.g., bulbus rete pegs, loss of epithelial cohesion etc.,)

and malignant transformation. Similarly, Gilvetti et al. [203] demonstrated the

importance of various clinical features, including age, in predicting outcomes

for oral epithelial dysplasia (OED). Our study also found age to be a significant

prognostic factor in one of the subgroups (0-50) with a p-value of 0.001,

corroborating the findings of. We also found in our multivariate analysis that

when we combined these pathological and nuclear features for PFS, it improved

the results specifically due to the addition of epithelium layer NC and PEL

count. However, an interesting avenue in future would be to analyse and
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investigate the role of dysplasia infiltrating lymphocytes (DILs) in malignant

transformation. Although the cohort is small and uni-centric, the department

in question is a regional and national referral centre in the UK. Nonetheless,

the practical application and adaptation of these methods in clinical practice

require substantially large and truly multicentric cohort data allowing more

rigorous validation of the proposed algorithms.

4.4 Chapter Summary

To best of our knowledge this is the first study to propose and show the associ-

ation of peri-epithelial lymphocytes (PELs) count in malignant transformation

along with other digital biomarkers, e.g., epithelium layer NC and basal layer

NC. Our multivariate feature analysis has shown that PELs and epithelial NC

have shown to improve the prognostic value in conjunction with binary OED

grading for predicting malignant transformation. Our proposed methodology

for predicting malignancy in an end-to-end manner has the potential to play

an important role in precision medicine and personalised patient management

for early prediction of malignancy risk with the potential to guide treatment

decisions and risk stratification.
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Chapter 5

Coarse Segmentation for OED

grading using Graph CNNs

5.1 Introduction

There has been a limited amount of literature available for computational

research on whole slide image (WSI) level predictive analysis of OED, as well as

on the correlation between OED grade and prediction of malignant transforma-

tion. Dost et al. [199] found no association between OED grade and malignant

transformation in their study of 368 patients, where 7.1% of the patients had

progression of OED to malignancy. While Gilvetti et al. [203] conducted a

study involving 120 patients with a mean follow-up of 47.7 months (±29.9),

which showed that patients with erythroplakia had a significant recurrence

rate (i.e., p = 0.02) and a mean time to recurrence of 62 months (±31.5).

They also found that malignant transformation was significantly associated

with age (p = 0.03), clinical appearance (p = 0.03), lesion site (p = 0.01), and

some other clinical features, with a mean transformation time of 50 months

(±32.5). Shephard et al. [51] employed nuclear size and shape characteristics to

forecast OED progression or transformation in H&E images, achieving mixed

outcomes. Mahmood et al. [204] conducted a study on OED biopsies from

109 patients with a minimum of five-year follow-up to identify histological

features that could predict recurrence and malignant transformation. They

proposed two prognostic models based on specific histological features such

as bulbous rete pegs, hyperchromatism, loss of epithelial cohesion, loss of

stratification, suprabasal mitoses, and nuclear pleomorphism. The models

had an area under the receiver-operator characteristic curve (AUROC) ≥ 0.77

for malignant transformation and AUROC ≥ 0.72 for recurrence. The study

highlighted the significant link between OED features and clinical outcomes,

although automation of the feature extraction at the WSI level without the

aid of a pathologist is yet to be achieved. Bashir et al. [46] developed a

94



weakly-supervised framework to predict the malignant transformation status

in oral epithelial dysplasia (OED) at the whole slide image (WSI) level on a

cohort of 163 cases. Their study found that peri-epithelial lymphocytes (PELs)

were a significant prognostic feature in correctly predicted cases. However, the

model required manually refined epithelial masks to extract epithelial patches

rather than additional processing for delineating the different epithelial layers

for the downstream analysis.

This highlights the significance of objective OED grading and prediction of

malignant transformation. Regardless of the success of deep learning methods

in slide-level prediction tasks, these methods struggle to capture the overall

organisation and structure of the tissue at both global and local levels. This

limitation has led to graph-based approaches in this field, which offer a more

principled way of modelling this problem by considering the relationships

between individual elements within the tissue. By representing the tissue as a

graph, where nodes represent individual elements such as cells or regions and

edges represent relationships between them, graph-based methods can capture

the complex interactions and dependencies within the tissue. One advantage

of Graph Neural Networks (GNNs) is that they are naturally resistant to

changes in the rotation and translation of nodes in a graph [210] and can learn

increasingly abstract feature embeddings for each node in the graph through

message passing between adjacent nodes as the network layers are traversed.

In this chapter, for segmenting the epithelium into sub-layers, we propose a

coarse segmentation method addressing the challenges associated with context,

accuracy, labelling and complexity. Unlike patch-based classification, it outputs

a denser prediction map but is coarser than pixel-based segmentation. We also

investigate the effectiveness of using graph neural networks (GNN) with deep,

nuclear and fusion features to predict the grade and malignant transformation

of OED from digitised WSIs of routine H&E stained histology sections in a

comprehensive manner. The tasks included differentiating between high- vs

low- risk patients (according to the binary grading system) along with the

prediction of malignant transformation. For each task, we compared GNN

with other MIL based algorithms and validated it on 5-fold cross-validation

using three random trails. We propose a simple two-layer GNN network with

an edge convolutional layer outperforming other techniques by achieving high

F1-scores and AUROCs for binary grading and malignant transformation. The

aims of our work are as follows:

• We propose a coarse segmentation method with feed forward convolutional

network only, that can be trained on sparsely annotated data, incorporate

more context than patch-based classification and is also faster than pixel-
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based segmentation.

• We conduct extensive experiments to compare the efficacy of the coarse

segmentation approach with both patch-based classification and pixel-

based segmentation methods in terms of accuracy and run time.

• Explore nuclear and deep features based graphs for prediction of OED

grades and transformation in histology WSI of lesions.

• Analysis of nuclear features found in the hotspot of heatmaps for OED

grading and transformation.

• For progression free survival (PFS), we analysed the clinical, pathological,

GNN scores and nuclear features.

Characteristic Number (%)

OED cases 241

Cases with malignant transformation 50 (20.7%)

WHO grade

Mild 80 (33%)
Moderate 95 (39.5%)
Severe 66 (27.5%)

Binary Grade

Low-risk 154 (63.7%)
High-risk 87% (36.3%)

Mean age [min-max] 64.2 [25-97]

Gender

Male 127 (52.6%)
Female 114 (47.3%)

Clinical (intra-oral) site

Tongue 103 (42.7%)
Floor of mouth 49 (20.3%)
Buccal mucosa 30 (12.4%)
Others 59 (24.4%)

Survival Mean (Standard Deviation)

Survival (Months) 84.95 (49.4)
Survival (Year) 6.74 (4.18)

Table 5.1: Characteristic of the cohort used for the study with clinical and
demographic information of OED cases.

5.2 Materials and Methods

5.2.1 Data

The dataset used for this study comprised 241 Haematoxylin and Eosin (H&E)

stained and scanned whole slide images (WSIs) of OED cases between 2005 to
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2016. WSIs were scanned at ×20 using an Aperio CS2 scanner (n = 143) and at

×40 using a Hamamatsu scanner (n = 98), with more samples available at the

time of completion of work on this Chapter. Ethical approval reference is the

same as in Chapter 4 (REC Reference- 18/WM/0335, NHS Health Research

Authority West Midlands). The mean average age in the dataset of OED

cases was 64.64 (range 25-97), with the mean age for men (n = 127) was 66.3

and the mean age of women (n = 114) was 64.5. The main clinical sites of

involvement were the tongue, floor of the mouth and buccal mucosa. The mean

time for malignant transformation was 6.51 years (±5.35 SD). The inclusion

criteria for WSIs were decided upon the following conditions:

• A histological diagnosis of OED

• Sufficient availability of tissue.

• Minimum five-year follow-up data (including treatment, recurrence and

transformation information) from the initial diagnosis.

• Review of the pathology by two independent pathologists.

More information about the cohort can be seen in Table 5.1. For coarse

segmentation 16282 ROIs for training, 3617 for validation, and 3710 for test

of size 512 × 512 at 10× magnification were extracted from 43 OED WSIs.

ROIs were annotated at a pixel-level by the pathologist. The coarse mask for

each ROI was generated by aggregating the pixel-level annotation of k × k

mini-patches. From the HNSCC dataset, 24 WSIs (12 from TCGA-HN and

12 from the inhouse dataset) were annotated at mini-patch (k = 32) level,

which resulted in 141541 training and 38893 test ROIs at 10× magnification.

Whereas slide-level labels were obtained for each case from patient records (i.e.,

clinical notes and biopsies), including histological grades, recurrence status,

and malignant transformation status (i.e., OED has progressed into OSCC at

the exact diagnosed location within the follow-up time). For the training of

coarse segmentation network, WSIs were manually annotated by an expert oral

and maxillofacial pathologist. Epithelium masks were obtained using coarse

segmentation trained on a set of annotated OED cases and were then refined

manually for few cases.
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Table 5.2: Frequently used mathematical notations in Chapter 5

Notation Explanation

xi Patch from a dataset
yi Coarse segmentation mask corresponding to patch xi

D Dataset size
L Number of patches in the dataset
H Height of patch xi

W Width of patch xi

h Height of mini-patch xi

w Width of mini-patch xi

k Kernel mini-patch in xi

ri Annotated region for the ith class
C Total number of classes in the dataset
C ‘ Number of classes with regions annotated
P Expected count of pixels per class
W i Weight for the ith class

LWSCE Weighted sparse cross entropy loss
B Bag of WSI instances
Z WSI level labels associated with the bags
T Total number of WSIs
Gb Graph representation of a WSI

F (Gb; θ) Slide level prediction
θ Trainable parameters in the GNN
h Deep or nuclear features of patches
g Geometric coordinates of patches
v Node representation in a graph
V Set of vertices in a graph
E Set of edges in a graph
uol Feature embedding of node o in layer l

H(l) MLP with trainable parameters θl

Lpair Pairwise ranking loss
wT Transpose of MLP weight vector w

Table 5.3: Mathematical notations used in this chapter.

To facilitate the reader’s comprehension, frequently used mathematical

notations are listed and defined in Table 5.3.

5.2.2 Methods

Coarse Segmentation

The proposed framework takes a whole-slide image (WSI) as an input and

processes it in a tessellated manner through CSNet to generate a WSI-level

segmentation masks. In the training phase, the CSNet model only requires

sparsely annotated coarse segmentation masks with their respective image

patches, as shown in Figure 5.1. The following sections will explain network
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Figure 5.1: The architecture of the proposed method where the input of
size M × N is fed into the coarse segmentation network outputting coarse
segmentation mask of size m × n and size of output depends on the size of
mini-patch k. This can be regarded as a type of subsampling.

input, architecture, and training in detail.

Network Input

The input to coarse segmentation network is a patch (xi) from a dataset,

D = {xi, yi; i = 1, . . . L}, containing L patches extracted from WSIs with

corresponding coarse level segmentation masks. Each patch xi is of size M ×N ,

and its corresponding coarse mask yi is of size m× n where each pixel in yi

represents a class label for mini-patch of the size of k × k in xi. In the case

of pixel-level ground truth, the coarse mask can be generated using majority

voting of the pixel-level labels in mini-patch. Generated coarse mask is m times

smaller than the original mask where m = M
k , e.g., a patch xi of size 512× 512

and mini-patch of size k = 32 will yield a coarse segmentation mask yi of size

16 × 16 where each pixel represents 32 × 32 pixels in original mask. Choice of

k depends on how much accuracy and context is needed, i.e., if k = M , then

it is equivalent to patch-based classification, whereas k = 1 is the same as

pixel-wise segmentation as seen in Figure 5.2.

Network Architecture

Any standard convolutional neural network (CNN) can be used as a coarse

segmentation network with small modifications in the network architecture,

where instead of using the fully connected (FC) layers at the end, a resize
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Figure 5.2: Coarse and pixel-wise masks: (Left) a visual field of 512 × 512
pixels showing the epithelium in oral tissue on the left and its corresponding
coarse and pixel-wise masks (Right). A coarse mask is generated using the
mini-patch window of k = 32 pixels resulting in the coarse mask of 16 × 16
pixels.

layer of size of m × n is used followed by 1 × 1 convolution to output the

coarse prediction map unlike fully convolutional network (FCN) [120] where

the output is resized M ×N . We used DenseNet [206] based CSNet, where

we replaced the last average pooling layer of DenseNet with 1 × 1 convolution.

To further improve the prediction accuracy, we introduced additional skip

connections (SC) in the network from each dense block concatenated at the

end of the network, as shown in Figure 5.1. These skip connections help the

model to improve the spatial context in the final prediction map, as with the

use of pooling layers, the spatial context is lost in the final layers. Although

the CSNet output is a segmentation mask, there is no encoder-decoder involved

in our network design as it is a simple CNN with final classification layers

replaced with convolutional layers.

Weighted Sparse Loss

To train CSNet, instead of a trivial cross-entropy (CE) loss function, a sparsely

weighted cross-entropy loss function is used to handle the sparsely annotated

data. As annotating the entire WSI is a tedious and laborious task, a WSI

is often annotated sparsely where there are some un-annotated regions that
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can act as noise if being treated as background during training. Also, this

can sometimes help in the decision where there is ambiguity for annotators

due to inter- and intra- observer variability to let the model decide the labels

during training without incorporating the loss of these un-annotated regions.

As this incorporates the loss from the annotated parts only, it can introduce a

class imbalance, which is catered by using the weights for each class calculated

during training epochs. Higher weight is assigned to the class with less number

of pixels, and less weight is assigned to the class with more pixels using the

count per class as P =

C∑
i=1

ri

C‘ where P is the expected count and ri is the

annotated region for ith class, C is the total number of classes in the dataset

and C ‘ is the number of classes with regions annotated. Final weights W i are

calculated from expected count P as W i = P
ri

where W i is the weight for ri,

it will be greater than one if the number of pixels in ri region is less than

the expected count and vice versa. Finally, the weighted sparse cross entropy

(WSCE) loss is calculated as.

LWSCE = −
∑
x∈X

p(x) log q(x) ⊙W (5.1)

OED Grading and Malignant Transformation

Once we have the epithelium segmented into sub layers the next task is to

predict the grade and malignant transformation from WSIs. Figure 5.3 shows

the overall framework of the proposed pipeline for OED diagnosis and prognosis.

OED diagnosis and prognosis can be modelled as multiple instance learning

(MIL) problem, where a bag of instances is assigned a positive label if it

contains at least one positive instance; otherwise is assigned a negative label.

We modelled OED diagnosis and prognosis as individual MIL problem where a

single MIL model is trained to predict the binary grade of OED, i.e., low-risk

and high-risk. At the same time, another MIL model is trained to predict

malignant transformation from OED with the help of ranking based loss. For

our work, we used graph representation of a WSI as a bag and trained a

graph neural network where B =
{
b1, b2, b3 . . . bt

}
and Z =

{
z1, z2, z3 . . . zt

}
represents t WSIs and their associated labels where t = {1, 2, 3, ...T} and T is

total number of WSIs. A graph representation is built using the Gi = G
(
bi
)

for

each b in B, and the graph neural network is trained with trainable parameters

θ to generate slide level prediction as F
(
G
(
bi
)

; θ
)
. Finally, trained models

were used for inference at test time for diagnosis and prognosis. The whole

process can be broken down into the following steps, i) feature extraction, ii)

graph construction, iii) graph neural network, iv) training, v) hotspot analysis

and vi) survival analysis.

101



Figure 5.3: OED diagnosis and prognosis pipeline. Traditionally, a digitised
biopsy of dysplastic lesions is analysed by the pathologist for grade prediction
and treatment decisions. On the other hand, our pipeline creates a graph
representation of the WSI for training a graph neural network using ranking
loss for diagnosis, i.e., OED grade prediction and prognosis, i.e., malignant
transformation. Hotspot analysis revealed that the nuclei count in tissue
area and basal layer along with crowdedness of nuclei in the epithelium and
peri-epithelium tissue area were found to be significant nuclear features for
differentiating between the low-risk and high-risk cases along with the progres-
sion free survival in OED cases.

Feature Extraction

We extracted deep and nuclear features from each WSI in the form of patches

for graph construction. Patches of size 512 × 512 were extracted using the

epithelium masks generated automatically using coarse segmentation with an

overlap of 50% from all the WSIs at 0.50µm per pixel (mpp). For extracting the

deep features, ResNet-50 [135] was used as a feature extractor pre-trained on

ImageNet. A feature vector of size 1024 was extracted for each patch resulting

in a bag of shape h ∈ Rn×1024 for all WSIs (where n is the number of patches

extracted) along with their top-left corner geometric coordinates as g ∈ Rn×2.

Afterwards, the patches were first stain normalised for extracting nuclear

features using a sample from the training cohort before being fed into HoVer-

Net+ [100] for nuclear instance segmentation. Twenty-four morphological and

spatial features (i.e., eccentricity, convex area, contour area, extent, perimeter,

solidity, radius, major/minor axis, equivalent diameter, nearest neighbours

distance (NNC) etc.) were extracted form nuclei in each layer per patch. They

were aggregated statistically using the mean µ, min ∧, max ∨ and standard

deviation σ. This resulted in a bag of shape h ∈ Rn×384 (i.e., 24 features × 4
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layers × 4 aggregations) for all WSIs along with their top-left corner geometric

coordinates as g ∈ Rn×2.

Graph Construction

After extracting deep and nuclear features, we constructed three types of graph

representations, i.e., deep graphs, nuclear graphs and fusion (deep + nuclear)

graphs. Nodes were represented as vj =
(
gj , hj

)
where h and g are the node

features and their geometric coordinates. A graph representation of a WSI

consists of a set of vertices V with each patch as a node and their edges as

E where G = (V,E). The set of edges, denoted as E ∈ V × V , captures the

interaction and interconnectedness of the nodes. Delaunay’s triangulation

[211] establishes the edge set based on the geometric coordinates of patches

to effectively represent communication patterns among tissue components.

This process involves setting a maximum distance connectivity threshold of

dmax = {500, 1000, 3000, 50000, 7000, 10000} pixels to ensure that the graph

resulting from the triangulation is planar, which means that no two edges in

the graph intersect each as seen in Figure 5.4.

Graph Neural Network (GNN)

We built a graph neural network inspired from SlideGraph∞ [212] where both

graph level and node level predictions from graph representations can be

generated from the input as seen in Figure 5.5. The graph neural network

(GNN) consists of multiple EdgeConv layers along with their MLP layers, as

this configuration helps in the generation of a feature embedding of a graph

node by differentiating its features from the neighbour node’s features. The

initial layer uses the original node level features, while subsequent layers use the

node embedding generated using MLP, which allows the GNN to accumulate

information from increasingly higher order neighbours of each node, leading to

progressively more abstract feature representations. Mathematically, the output

feature representation of an EdgeConv layer for a given node can be written as a

function of the node’s index and the layer index within the GNN architecture as

uos =
∑

j∈No H(s)
(
uo(s−1), u

j
(s−1) − uo(s−1); θ

s
)

where s = 1 . . . S, uo(0) = uo, No

represents the oth node neighbourhood while H(s) denotes the MLP with

trainable parameters θs. uos represents the feature embedding of node k where

vo = (go, uo) ∈ V passes through the EdgeConv and corresponding MLP for

node level features as fs (vo) = ws
Tu

o
s. In order to generate node level scores,

these node level features were aggregated using either sum, min and max.

Whereas for generating WSI level score, the node scores were further pooled

to generate layer wise WSI score as F s (G) = Σ∀v∈V f
s. Finally, these scores

were summed to generate the final WSI score as F (G; θ) = ΣS
s=0F

s (G) where
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Figure 5.4: Graph construction using different thresholds dmax in Delaunay’s
Triangulation. a) shows the graph construction with no edges between the
patches due to a small threshold of dmax = 500 pixels. b) shows the graph
construction with edges between immediate neighbours with dmax = 1000 pixels.
Similarly, c), d), e) and f) show the graph construction with dmax = 3000, 5000
and 10, 000 pixels where it can be seen by the black lines representing edges
connecting distant nodes as we increase the threshold.
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Figure 5.5: GNN architecture for graph based node and WSI prediction
composed of EdgeConv subsequent MLP layers. Node level predictions were
generated by aggregating the output of MLP layers, while for WSI level
prediction, MLP output is first pooled and then aggregated.

θ represents all trainable parameters in the GNN.

Hotspot Analysis

Once the models are trained for diagnostic and prognostic purposes, their

node level prediction can be used to identify hotspots and coldspots. In the

case of OED grading, the coldspots would correspond to low-risk areas, while

hotspots would correspond to high-risk areas. Whereas for OED malignant

transformation prediction, the coldspots would correspond to the areas with a

low chance of transformation, while hotspots would represent the higher chance

of malignant transformation. In this regard, we extract the top 15% of the

patches from the true positive and true negative cases to analyse their unique

differentiating signal. After extracting the top 15% patches, their nuclear

features extracted earlier were re-used to find out the important features, i.e.,

unique differentiating signals in coldspots and hotspots. The statistical signific-

ance of the nuclear features was calculated using ordinary least squares (OLS)

with post-hoc t-tests and Benjamini/Hochberg [2] adjustment. The cellular

composition was analysed to better understand the results obtained from GNN

and to objectively differentiate between low-risk, high-risk, transformed, and

non-transformed cases.

Survival Analysis

To determine the prognostic significance of clinical, pathological, GNN dia-

gnostic/prognostic score, and nuclear features with respect to progression-free
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survival (PFS), univariate and multivariate analyses were conducted using

Kaplan-Meier (KM) curves and Cox proportional hazard (CPH) model. To

differentiate between the high-risk (short-term survival) and low-risk (long-term

survival) groups, the optimal cut-off value was computed by averaging the

hazard value for each instance, considering the large statistical significance

between the high- and low- risk groups in the CPH model. A log-rank test

was also performed to assess the statistical significance, and a p < 0.05 was

deemed statistically significant.

5.2.3 Training

To train our GNN, pairwise ranking loss was used where during training,

positive and negative cases were chosen in a stratified manner in order to

compare them with each other. The mathematical formulation of the loss is

as follows Lpair = Σi∈BatchΣj∈Batch max
(
0, 1 −

(
F
(
Gi; θ

)
− F

(
Gj ; θ

)))
. The

loss is backpropagated to adjust the weights of EdgeConv and MLP layers

during training.

5.2.4 Experimental Settings

Coarse Segmentation

Input patches were pre-processed using standard pre-processing steps of norm-

alisation and augmentation (i.e., random rotation [0, 90, 180, and 270 degrees],

random clipping [horizontal, vertical], random jittering [0-128] pixels and ran-

dom colour perturbation). Then the model is trained using RMSProp optimiser

with an adaptive learning rate starting from 0.001 for a minimum of 100 epochs.

Using a system equipped with two Nvidia Titan-X GPUs, each with 12GB of

memory, 128GB of dedicated RAM, and an Intel® Core i9 processor. Python

language with Tensorflow deep learning framework was used to develop this

framework.

We conducted the following experiments to compare and validate the pro-

posed coarse segmentation approach and used pixel-wise F1-score for evaluation

purposes.

• DeepLab-v3 was trained for pixel-wise as well as for coarse segmentation

using OED subset as pixel-wise annotations were only available for this

dataset and were not available for the HNSCC dataset.

• To compare patch-based classification and coarse segmentation, various

standard CNNs were trained for patch-based classification. The HNSCC

dataset for tissue classification was selected for patch-based classification.
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• To compare the inference time of patch-based classification and pixel-

wise segmentation with coarse segmentation, an average sized WSI was

processed with all methods and the final time was reported.

GNN Diagnosis and Prognosis

For GNN, we used three EdgeConv layers where the first layer had the same

neurons as input data (i.e., nuclear = 388, deep = 512, fusion = 900), second and

third layers had 1024 neurons in their respective MLPs. Each layer is followed by

batch normalisation (BN) and exponential linear unit (ELU) as activation layer.

GNN is optimised using adaptive momentum based optimisation [213] (Adam)

with a learning rate of 0.0001 and a weight decay of 0.0001. The model was

trained for 300 epochs with a batch size of 96, using a system equipped with two

Nvidia Titan-X GPUs, each with 12GB of memory, 128GB of dedicated RAM,

and an Intel® Core i9 processor. In order to compare the performance of GNN

with other frameworks, we used IDaRS and CLAM. Iterative draw-and-rank

sampling (IDaRS) [54] employs a ranking strategy to select top and random

patches from a whole slide image (WSI) based on their predictive importance.

This approach acknowledges that not all patches contribute equally to the final

outcome. For each WSI, IDaRS selects two sets of patches for training, which

include a random set of patches and a set of top-ranked patches. Both subsets

undergo standard augmentations and are used to train a CNN with weak labels.

Clustering constrained attention multiple instance learning (CLAM) [104] was

designed to overcome the challenges of domain adaptation, interpretability,

and visualisation by using the attention-based sub regions of highly diagnostic

values for the classification of WSIs. CLAM initially extracts latent feature

vectors from each patch using a ResNet-50 CNN encoder and then uses those

feature vectors instead of image patches for further computation. This saves

a lot of computation and time for the model’s training. For this chapter, we

used GNN to predict two different clinical variables/outcomes.

• Low-risk vs High-risk OED (Diagnostic)

• Malignant Transformation vs No Transformation (Prognostic)

Stratified 5-fold cross-validation was performed three times with different

random seeds to validate the results. Patch-wise AUROC and F1-score (macro)

were used as performance metrics at WSI level and are averaged across the

folds.
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Table 5.4: F1-score for Patch-based classification and Coarse segmentation in
HNSCC for patch size of 256 × 256

Method k Stride F1-score

ResNet-50 k = 32 32 73.23

MobileNet k = 32 32 74.78

DensetNet k = 32 32 78.76

CSNet k = 32 256 83.11

5.3 Results and Discussion

5.3.1 Pixel-wise vs Coarse Segmentation

Table 5.5 compares the results of coarse segmentation and pixel-wise segmenta-

tion methods using DeepLab-v3 [114] and CSNet on various mini-patch sizes k.

For a fair comparison, we compared the methods with the same mini-patch, e.g.,

it can be seen that our method with mini-patch sizes of 16 and 32 performed

superior to DeepLab-v3, which shows that for coarse segmentation, we can use

CSNet like methods rather than using the pixel-wise segmentation approaches.

WSI level masks were generated using the sliding window approach with an

overlap of 80% and resizing the output size to input using linear interpolation

as it’s already a coarse output. The result is shown in Figure 5.6, where it

shows the prediction of our proposed CSNet with and mini-patch of k = 32.

Table 5.5: F1-score for pixel-wise and coarse segmentation in OED layer
segmentation for a patch size of 512 × 512

Method mini-patch k F1-score

DeepLab-v3 k = 1 78.82

DeepLab-v3 k = 16 80.57

CSNet k = 16 81.24

DeepLab-v3 k = 32 78.32

CSNet k = 32 80.54

5.3.2 Patch-based Classification vs Coarse Segmentation

Table 5.4 compares the results of patch-based classification and coarse seg-

mentation where for patch-based classification, simple standard CNNs (i.e.,

ResNet[135], MobileNet [214] and DenseNet [206]) were used. To make the

CNN’s output comparable with coarse segmentation results, the stride was set

to 32, and only 32 × 32 region was assigned a label from the CNN’s output, as

shown in Figure 5.7, because assigning a single label to 256 × 256 will result in

very low accuracy. It can be seen that CSNet performs superior by 5-10% as

compared to standard CNNs due to the additional skip connections added to

it as seen in Figure 5.1. Moreover, if we lower the patch size of standard CNN,
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Figure 5.7: Yellow boxes show the region to which label is assigned in a
32× 32 window, where the left one shows the output label to be assigned using
standard CNN while the right one shows the output to be assigned from coarse
segmentation.

the accuracy further drops below the current one due to the lack of context

in that patch as we experimented with a smaller patch size of 128 × 128, and

the F1-score achieved was 66.10 which is lower than the previous one. Figure

5.8 shows the prediction of our proposed method, where it can be seen that

the CSNet model performs better in most of the tissue regions except for some

highlighted in black circles.

5.3.3 Inference time comparison

Simple performance based comparisons are not enough to show that our

proposed CSNet is much better than the simple patch-based classification

and pixel-wise segmentation until we compare the inference time for these

methods. To compare the inference time for these approaches, we processed

an average sized WSI and calculated the total time in minutes as shown in

Table 5.6. It can be seen that the simple CNN architecture DenseNet took 20

hours to process a WSI because it has to assign a single label to 32 × 32 each

window, which increases the time required to complete the WSI as compared

to pixel-wise and the proposed CSNet where it took only 21 minutes and is

60× faster than the normal patch-based classification and 1.35× faster than

the pixel-wise segmentation.

5.3.4 Network Variations

Table 5.7 shows our network variations and their performance on the patch-

based classification of the HNSCC dataset, as we have used DenseNet-121 for
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Figure 5.8: Overlay of two visual fields from HNSCC internal data for coarse
segmentation where ground truth is smoothed before overlaying for display. It
can be seen that most of the tissue regions are being segmented correctly, with
some false predictions highlighted in black circles.

the baseline of coarse segmentation network, which is further modified with

additional skip connections between the dense blocks. The intuition was to

increase the spatial context in the final output maps, which in return, increases

the overall accuracy of the network. As it can be seen that with the additional

skip connections (SC), the F1-score of the model was improved by almost 4

points margin, and to further justify the addition of SC, the network size was

reduced to half as DenseNet-61 was used as a baseline with skip connections

and it can be seen that the smaller model still performs better than the larger

DenseNet-121 by a margin of one point.

5.3.5 Mini-Patch Variation

Table 5.5 shows the variations in mini-patch k in our proposed CSNet, where

it can be seen that using bigger k doesn’t affect the performance drastically

as the difference is only 1 point. Also, using a smaller mini-patch increases

the performance due to the fact that there is less noise and more precise

ground truth. Whereas in the pixel-wise segmentation model, DeepLab-v3,

the accuracy dropped by 2 points in using a bigger mini-patch as compared to

CSNet segmentation which shows that pixel-wise methods are not suitable for

this coarse segmentation method.
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Table 5.6: Inference time comparisons for different segmentation methods for
processing one WSI

Method Patch Size k Stride Prediction Time
(min)

DenseNet 256 × 256 256 32 1 × 1 1208.28

DeepLab-
v3

512 × 512 1 512 512 × 512 27.47

CSNet 256 × 256 8 256 32 × 32 20.98

Table 5.7: Performance comparison of different network variants for coarse
segmentation

Network Variation F1-score

CSNet-121 Standard 79.28

CSNet-121 Skip Connections 83.11

CSNet-61 Skip Connections 80.56

5.3.6 OED Grade and Malignant Transformation Prediction

OED lesions have the potential to transform into malignancy, i.e., oral squamous

cell carcinoma (OSCC). There are no effective tools to predict the likelihood

of such transformation with confidence. Therefore, predicting OED grade

along with the malignancy is critical to assessing the malignant potential of

dysplastic lesions as it can help in appropriate treatment plans, e.g., surgical

excision or close monitoring. In this regard, we train a GNN for predicting the

binary grade of OED and another for predicting malignant transformation in

OED. Figure 5.9 and Table 5.8 show the performance of GNN as compared to

recent MIL models in OED grade prediction, where our proposed GNN trained

with deep feature graphs surpasses the IDaRS’s AUROC of 0.76 (±0.06 SD)

and CLAM’s AUROC of 0.68 (±0.06 SD) by achieving an AUROC of 0.81

(±0.05 SD) and F1-score of 0.74 (±0.06 SD). Similarly, we can see that our

proposed GNN trained with fusion feature graphs outperforms IDaRS by 2%

and CLAM by a large margin for predicting OED malignant transformation

while keeping the standard deviation (SD) lower than the others. One of the

main advantages of using GNN over IDaRS and CLAM is the explainability of

the graphs and graph based features. Apart from node level prediction scores,

GNN outputs feature importance scores for each feature which can be used to

explain a particular decision. Also, IDaRS takes a lot of time to train, while

graph based models are quite efficient in terms of training time due to pre-built

graphs being used for training purposes. See Figure 5.10 for GNN performance

with different graph feature types and connectivity thresholds where a) we

can see that for OED grading, the GNN trained using graphs built on deep

features performed better than the nuclear and fusion based graphs. Whereas
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for transformation b) nuclear and fusion based graphs performed better in

terms of AUROC.

Model Task AUC ± SD F1-score ± SD

Attention-MIL

OED Grading

0.56 ± 0.08 0.43 ± 0.02
CLAM 0.68 ± 0.06 0.60 ± 0.04
IDaRS 0.76 ± 0.06 0.72 ± 0.06
Proposed GNN 0.81 ± 0.06 0.74 ± 0.06

Attention-MIL
OED Malignant

0.57 ± 0.06 0.45 ± 0.03
CLAM 0.65 ± 0.04 0.64 ± 0.02
IDaRS Transformation 0.74 ± 0.11 0.67 ± 0.08
Proposed GNN 0.76 ± 0.06 0.67 ± 0.07

Table 5.8: Performance of GNN model as compared to other weakly supervised
where GNN achieves high performance in both the tasks of grading and
malignant prediction in terms of AUROC and F1-score on a 5-fold cross-
validation bootstrapped three times with random seeds.

5.3.7 Cellular Composition Analysis

Heatmaps were used to investigate and interpret the potential differentiable

hidden signatures within the WSIs. In this regard, we used the node prediction

from our diagnostic and prognostic models and built the heatmaps as seen

in Figure 5.11. It can be seen in a) high-risk case is being identified by the

diagnostic GNN trained to predict the binary grading and b) shows the same

case processed by the prognostic GNN for predicting malignant transformation,

and we can see in the hotpots the common features of high-risk OED cases,

i.e., nuclear pleomorphism, dyskeratosis and irregular epithelial stratification

with a dense lymphocytic infiltrate in the adjacent peri-epithelial connective

tissue. Similarly, c) shows an interesting case where the patient was identified

as low-risk by pathologists but, later on, transformed into carcinoma, which

is being identified by the prognostic GNN. Following the manual heatmap

analysis, we further analysed the nuclear features for all the true positive and

true negative cases to uncover some unique signals for diagnosis and prognosis.

Table 5.9 shows the significant nuclear features extracted from the top 15% of

the patches from diagnostic and prognostic GNN models. For OED grading,

we can see that the basal nuclei count (p = 0.006) and epithelium nuclei count

(p = 0.006) were the significant nuclear features. In contrast, variation in mean

epithelium crowdedness (i.e., average distance of nearest ten nuclei) showed

potential and requires larger cohort for validation.

For OED malignant transformation prediction, basal nuclei count (p =

0.00001) and tissue area nuclei count showed the most significance (p = 0.0001).

Mean solidity representing the shape of nuclei also showed significance in the

basal layer (p = 0.0001) along with the mean basal crowdedness (p = 0.001). In
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Figure 5.9: AUROC curves plots on 5-fold cross-validation for OED grading
and malignant transformation for top two performing MIL methods, i.e., IDaRS
(a, b) and GNN (c, d).
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Figure 5.10: Performance of GNN with different graph features and connectiv-
ity. a) AUROC of GNN for binary grading, b) AURCO for OED malignant
transformation, c) and d) show the F1-score for OED grading and transforma-
tion, respectively.
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Figure 5.11: Hotspots identified by the GNN models represented as heatmaps
for both OED grading and malignant prediction. a) Shows the heatmap for
OED grading for a high-risk transformed case along with b) the heatmap for
OED malignant prediction from GNN. It can be seen from the highlighted
areas that irregular stratification of epithelium, bulbous rete ridges and peri-
epithelial lymphocytes are being highlighted by the models. c) Shows the
heatmap of OED grading for low-risk transformed case where the models were
able to correctly identify it as low-risk transformed case. d) he heatmap for
OED malignant prediction from GNN, nuclear pleomorphism can be seen from
the highlighted areas, along with the start of irregular epithelium stratification.
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high-grade OED, the changes are more visible in the basal and epithelial layer,

and it can be seen from the significant features that hyperplasia or crowding

has been picked up by the GNN. On the other hand, it can be seen that the

along with the changes in basal layer density, peri-epithelial tissue cells showed

significance, as it has been reported earlier in the studies [83]. Significant

nuclear feature distribution for OED grading and malignant transformation

can be seen in Figure 5.12. Where a rise in nuclei count for epithelial and basal

layer can be seen for OED grading while rise in basal layer and tissue area

nuclei count is evident in malignant transformation.

Feature Diagnostic Prognostic

Tissue area nuclei count × ✓
Basal layer nuclei count ✓ ✓
Epithelium layer nuclei count ✓ ×
Mean epithelial layer crowdedness ✓ ×
Mean basal nuclei solidity × ✓
Mean basal layer crowdedness × ✓

Table 5.9: Ordinary least square regression for malignant transformation with
t-test significance of nuclear features with Benjamini/Hochberg [2] adjustment.
Significant p-value is highlighted using ✓.

5.3.8 Survival Analysis

Table 5.10 shows the univariate analysis of the clinical, pathological, GNN

diagnostic/prognostic score and nuclear features with respect to progression-

free survival (PFS). Starting from the clinical attributes, namely gender and

age are nonsignificant with age (p > 0.05, C-index = 0.59 [95%, 0.59 – 0.60])

and gender (p > 0.05, C-index = 0.52 [95%, 0.52 – 0.53]). The pathological

features were composed of pathologists’ grading, where we used binary and

WHO based grades as surrogate labels for transformation. Binary grading

showed that high-risk cases are more likely to transform with significance (p =

0.004, C-index = 0.68 [95%, 0.67 – 0.69]). Whereas for WHO based grading,

we combined first (mild + moderate) against severe and then we combined

(moderate + severe) against mild for PFS, and in both combinations, we got

the significance (p = 0.04, C-index = 0.68 [95%, 0.67 – 0.68]). Our GNN

model scores for each WSI were taken as GNN diagnostic and prognostic

scores for predicting PFS. Where using the GNN score for predicting OED

grades as a surrogate label for transformation resulted in almost the same

as the original binary grading C-index with a little improvement (p < 0.05,

C-index = 0.69 [95%, 0.68 – 0.70]). Similarly, the GNN score for predicting

transformation was taken as it is for PFS, and it performed better than the

binary grading with (p < 0.05 , C-index = 0.70 [95%, 0.69 – 0.71]). Figure 5.13
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Figure 5.12: a) Boxen plot for most significant nuclear features for OED grading
where it can be seen that the nuclei count in high-risk OED is higher than the
low-risk. The lower value of crowdedness, the higher the density in a region,
meaning the nuclei are coming closer to each other in high-risk cases. b) Boxen
plot for most significant nuclear features for malignant prediction where the
nuclei count in transformed cases is greater than the non-transformed ones for
basal layer and tissue area.
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shows the Kaplan-Meier curves plotted using cox-proportional hazard ratios

with mean as a threshold between transformed and non-transformed curves. a)

shows the diagnostic score and b) the prognostic score, and we can see that

both scores can differentiate between the transformed and non-transformed

cases with a clear separation. Next, we used the top three nuclear features,

i.e., basal layer nuclei count found in the hotspots, to differentiate between

transformed and non-transformed cases. To aggregate patch level features to

WSI level score, they were aggregated using mean µ standard deviation σ and

median m. µ basal layer nuclei count showed the highest significance with (p

< 0.05 , C-index = 0.81 [95%, 0.80 – 0.81]), while the other aggregations were

competitive. Epithelial layer count based features performed comparable to

or worse than the other nuclear features and GNN diagnostic and prognostic

score with (p < 0.05 , C-index = 0.70 [95%, 0.69 – 0.70]). Finally, the tissue

area nuclei count performed better than the basal layer nuclei count in two of

the aggregation methods while achieving (p < 0.05 , C-index = 0.83 [95%, 0.82

– 0.84]) as the highest score with µ in tissue area nuclei in transformed and

non-transformed cases. Figure 5.13 c) shows the Kaplan-Meier curves plotted

using the basal layer nuclei count, and d) shows tissue area nuclei count, and

we can see that both the scores can differentiate between the transformed and

non-transformed cases with a clear separation. In order to find the significance

in a multivariate setting, we performed the multivariate analysis using the same

features. Table 5.11 shows the multivariate analysis of the clinical, pathological,

GNN diagnostic/prognostic score, and significant nuclear features with respect

to progression-free survival (PFS) where the combined C-index is 0.85 with

confidence interval [95%, 0.84 – 0.86]. Figure 5.14 shows the multivariate

forest plot showing log hazard ratio (HR) with 95% confidence interval of

aforementioned features where tissue area nuclei count turned out to be the

most significant PFS feature.

In this chapter, we investigated the potential of graph neural networks

(GNN) for diagnostic and prognostic purposes. For the diagnostic task, we

predicted the binary grading of OED, i.e., distinguishing between low-risk and

high-risk. Whereas for the prognostic task, we predicted the OED malignant

transformation status in the digitised oral epithelial dysplasia (OED) histology

slides. We developed a weakly supervised learning framework for both tasks

and trained it using the ranking loss for optimisation. We identified the most

predictive areas within the epithelial and peri-epithelial tissue regions for the

tasks and then compared their cellular compositions to find significant nuclear

features in both distributions. Our results showed that the GNN models could

predict OED grades with an AUROC of 0.81 and malignant transformation

with an AUROC of 0.76, as determined by a stratified 5-fold cross-validation

bootstrapped using three different random seeds. The higher performance of
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Figure 5.13: Kaplan-Meier curves plotted for progression free survival using
the Cox proportional hazard ratios with mean as cut-off value. a) OED grade
score, b) Malignant transformation score, d) Basal nuclei count in top 15%
of transformed and non-transformed cases, d) tissue area nuclei count for top
15% patches in transformed and non-transformed cases.
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Figure 5.14: Multivariate forest plot of the log of hazard ratios for clinical,
pathological, GNN scores, and top nuclear features using Cox Proportional
Hazard model.
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Features Aggregation p C-
index

Lower
95%

Upper
95%

Clinical Parameters

Gender - >0.05 0.52 0.52 0.53
Age - >0.05 0.59 0.59 0.60

Pathological Parameters

WHO Grading
(Mild vs Mod +
Severe)

- <0.05 0.68 0.68 0.69

WHO Grading
(Mild + Mod vs
Severe)

- <0.05 0.68 0.68 0.68

Binary Grading - <0.05 0.68 0.68 0.69

GNN scores

Diagnostic
score

- <0.05 0.69 0.68 0.70

Prognostic
score

- <0.05 0.70 0.69 0.71

Nuclear Features

Basal layer NC
µ <0.05 0.81 0.80 0.82
σ <0.05 0.75 0.74 0.75
m <0.05 0.76 0.75 0.77

Epithelial layer
NC

µ <0.05 0.62 0.61 0.63
σ <0.05 0.70 0.69 0.70
m >0.05 0.59 0.58 0.60

Tissue area NC
µ <0.05 0.83 0.82 0.84
σ <0.05 0.81 0.80 0.82
m <0.05 0.79 0.79 0.80

Table 5.10: Univariate analysis of the clinical, pathological and digital features
where p is calculated using the log-rank method, and C-index is calculated
using the Cox Proportional Hazard model bootstrapped 1000 times for lower
and upper confidence intervals.

the GNNs can be attributed to the fact that it uses graph for learning, and

the whole WSI can be efficiently represented as a graph with edges connecting

the nodes, providing enough context to learn from the neighbourhood where

other MIL techniques lack the spatial neighbourhood context and treat all

patches either using higher attention, random or both. To the best of our

knowledge, there has been very little work on oral epithelial dysplasia grading,

where Sami et al. [201] proposed a CAD system for differentiation of dysplasia

and carcinoma in-situ with the help of the epithelial border, i.e., bulbous

shaped rete processes. However, the region of interest (ROI) was manually

selected, where the pathologist selects the ROIs for further processing. Nag

et al. [200] proposed a nuclear segmentation based approach to differentiate

between normal epithelium and oral submucous fibrosis with the help of nuclear
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Features Aggregation p HR Lower
95%

Upper
95%

C-index = 0.85, 95% CI [0.84 – 0.86]

Clinical Parameters

Gender - >0.05 0.99 0.97 1.02
Age - >0.05 0.80 0.43 1.49

Pathological Parameters

WHO - >0.05 1.35 0.70 2.58
Binary Grading - >0.05 0.47 0.68 2.96

GNN scores

Diagnostic
score

- <0.05 1.65 1.12 2.43

Prognostic
score

- <0.05 1.57 1.14 2.17

Nuclear Features

Basal layer NC µ >0.05 0.99 0.49 1.98

Epithelial layer
NC

σ >0.05 0.82 0.30 2.22

Tissue area NC µ <0.05 3.23 1.99 5.23

Table 5.11: Multivariate analysis of the clinical, pathological, GNN scores and
significant nuclear features where p is calculated using the log-rank test, and
C-index is calculated using the Cox Proportional Hazard model bootstrapped
1000 times for lower and upper confidence interval.

features such as entropy, polarity and compactness where the limitation of the

study facts to the use of only 100 nuclei from each group. Adel et al. [197]

presented a CAD design where they used traditional feature extractors and

trained SVM (Support Vector Machine) and KNN (k-Nearest Neighbours) for

dysplastic and normal regions manually annotated by pathologists. Das et al.

[198] presented a patch-based epithelium segmentation approach to classify

keratin pearls for clinically relevant regions. They used a deep convolutional

neural network (CNN) model to differentiate keratinised area vs epithelial area

for segmentation and to further extract Gabor features from these areas to

classify the keratin pearls. Das et al. [215] presented a patch-based deep CNN

model for the classification of epithelium, muscle tissue, adipose tissue and

connective tissue in oral biopsies segmenting the epithelium from other regions

and artefacts for accurate ROI selection for classification purposes. Bashir et

al. [50] proposed a machine learning based approach to differentiate between

different dysplastic grades by exploiting irregular epithelium stratification as

an important feature in the epithelial layers. Silva et al. [202] proposed a deep

learning framework for nuclear segmentation and classification of OED grades

in histological images from mouse oral mucosa, employing a Mask R-CNN

for nuclei detection.We extracted 23 morphological and non-morphological

nuclear features to train a polynomial classifier for grading. Nguyen et al.
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[216] also reported the classification of epithelium vs non-epithelium regions

and grading into normal, low-risk, high-risk and carcinoma using Inception

v3 model and transfer learning. They also compared the performance of the

AI system with human performance, with a kappa score of 0.81. Liu et al.

[217] utilised DeepLab-v3 for segmenting high-risk regions from moderate and

severe cases only, which were manually marked by the pathologist. Their best

performing model achieved an overall accuracy and F1-Score of 93.3 percent and

90.9 percent, respectively, in a held-out test set of 44 WSIs. Regardless of the

advancement and improvements in the aforementioned techniques, there was an

element of manual selection of ROIs by pathologists in them, which makes them

dependent on human input. Also, these techniques focused mainly on grading

OED, lacking predictive factors for recurrence or malignant transformation in

their studies. Whereas in our proposed work, we performed OED grading in an

end-to-end manner where first epithelial layers were segmented using the coarse

segmentation model and then GNN was trained for predicting the binary grade

and malignant transformation status. Similarly, to the best of our knowledge,

there has been little work predicting malignant transformation using AI tools

from pre-cancerous lesions, i.e., in our case, OED. Mahmood et al. [204], who

achieved an AUROC of 0.77 using a similar but smaller cohort and subjective

assessment of nuclear features by three pathologists, showed an association

between the nuclear features and malignant transformation. However, the

nuclear features used correspond to OED grading, e.g., bulbous rete pegs,

loss of epithelial cohesion etc., and upon adding histological grades into the

mix, they observed improvements in their results. Zhang et al. [218] reported

that the traditional grading systems for estimating the risk of malignant

progression in oral lesions require a specially trained pathologist and suffer

from poor reproducibility. In their study, an oral mucosa risk stratification

(OMRS) model was developed, which outperformed the traditional three-tier

system and was comparable to recent binary grading approaches. Binary

classification systems have improved accuracy and shown a higher rate of

malignant transformation in high-risk cases. Gan et al. [207] reported findings

regarding potentially malignant epithelial lesions (PELs) using RNA sequencing

of immune-infiltrating sites in cases of moderate and severe OED. The authors

suggested that the absence of CD8 T-cells in the non-cytotoxic subtype and

non-immune reactive subtype may contribute to moderate and severe dysplasia

progression. Ellonen et al. [219] explored the frequency of transformation

of oral epithelial dysplasia (OED) to oral squamous cell carcinoma (OSCC)

and identified factors that influence this transformation. They concluded that

the tongue and more severe grades of OED increase the risk of malignant

transformation, and these patients might benefit from a more frequent follow-

up to ensure early diagnosis of OSCC. Once our models were trained for
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diagnostic and prognostic tasks, we investigated the cellular compositions

in the top 15% of the potential malignant areas (hotspots) of transformed

cases and non-transformed areas (coldspots). Our analysis found that nuclear

features from the epithelial and basal layers were the most significant for

diagnostic tasks, i.e., predicting OED grades. Epithelial layer nuclei count

and basal layer nuclei count were found to be the most significant nuclear

features differentiating the two grade distributions. During the experiments,

we also identified other important features in the epithelial and basal layers,

e.g., crowdedness in both layers, the solidity of cells, means major and minor

axis length, etc. These nuclear features corresponded to aberrations of nuclei,

such as variations in the size of nuclei captured as a variation in the minor axis

of the nuclei and congestion due to the proliferation of nuclei in the epithelial

and basal layers. In the same way, we found that nuclear features from the

basal layer and connective tissue area were the most significant for prognostic

tasks, i.e., predicting OED malignant transformation. Tissue nuclei count

being the most significant feature among the transformed and non-transformed

cases aligns with the finding of Bashir et al. [83] where they found peri-

epithelial lymphocytes to be one of the most significant prognostic factors in

their study. However, to further verify the significance of these features for

both tasks, we require more multi-centric data to validate these features for

their diagnostic and prognostic significance in oral pre-cancerous lesions. We

also analysed different clinical, pathological, GNN scores and nuclear features

for progression free survival and have found out that certain factors, such as

nuclei count in the sub-layer of oral epithelium, i.e., basal layer and epithelial

layer, were linked to PFS, where a higher number of nuclei count in basal

layer correspond to poor survival whereas small variation nuclei count in the

epithelium is linked with the improved survival. Also, apart from the epithelial

layer, the peri-epithelium tissue region is also very important, as in our study,

we found that the nuclei count in the adjacent connective tissue areas has

more significance in predicting PFS in a multivariate setting. Apart from the

nuclear features, the clinical and pathological factors such as age, gender, and

pathologist’s grades were nonsignificant in the presence of GNN diagnostic and

prognostic scores predicted by our trained graph neural networks. Although

the cohort is relatively small and unicentric, the department is a regional and

national referral centre in the UK. Nonetheless, the practical application and

adaptation of these methods in clinical practice require substantially large

and truly multi-centric cohort data allowing more rigorous validation of the

proposed algorithms.
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5.4 Chapter Summary

To the best of our knowledge, this is the first study to perform diagnostic

and prognostic tasks using graph neural networks and has shown that nuclear

features from the epithelial and basal layers are important for OED grading.

While nuclear features from the basal layer and peri-epithelium were found

to be more significant for predicting malignant transformation in OED. Our

proposed methodology for predicting OED grading and malignancy in an end-

to-end manner has the potential to play an important role in precision medicine

and personalised patient management for early prediction of malignancy risk

with the potential to guide treatment decisions and risk stratification.
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Chapter 6

Conclusions and Future

Directions

In this chapter, we provide a summary of the methods presented in this

thesis, along with their potential avenues for future exploration. In this thesis,

we tackled the challenges of learning with minimal labels in histopathology

images for classification, detection and segmentation. We proposed a set of

computational methods using semi-supervised and weakly-supervised learning

frameworks for automated analysis of H&E images. We start with partially

labelled data to simultaneously detect and classify cells in DLBCL using a

multi-task semi-supervised learning framework. This process includes the

segmentation of nuclei and tissue regions in histology images, which is achieved

using self-supervised and semi-supervised learning frameworks. Our results

demonstrate that the use of consistency-based self-supervised techniques can

improve performance when there is a lack of sufficient labelled data.

In the realm of weakly supervised learning, where a single label is assigned

to the whole WSI, we explored MIL methods to classify the WSI for diagnostic

and prognostic purposes. We proposed a pipeline for predicting malignant

transformation in OED using MIL based models and developed a digital bio-

marker for predicting PFS in OED patients. We first segmented the epithelium

into fine layers and created different graphs using deep and nuclear features for

training the MIL models. A GNN was trained using ranking loss for predicting

the OED grade and malignant transformation. Further, we analysed nuclear

features to find a significant digital biomarker for predicting PFS in OED.

The subsequent sections provide a summary of some methods proposed

in this study, highlighting the main contributions, limitations, and potential

future extensions.

127



6.1 Self- and Semi- supervised Learning for Histo-

logy Images

In Chapters 2 and 3, we have used semi-supervised learning for classifying and

segmenting cells and tissue regions in histology images using limited labelled

instances. We showed that using self-supervision alongside semi-supervised

learning can better cope with the challenges like generalisation, robustness and

context-awareness. Although we have used self-supervision, the performance for

smaller portions of the labelled data split suffered with high bias and variance

compared to bigger portions. This is due to the fact that the data coming from

different centres suffers highly from visual appearance (i.e., stain variation)

and class imbalance (i.e., more tumour region as compared to normal tissue).

One possible extension would be to use the latest stain augmentation

techniques, e.g., latent diffusion [220] to create more variation of the input

images for contrastive learning. Latent diffusion and stain augmentation can

also be used to balance the class representation using its near-real generative

abilities. These images can serve as a basis for self-supervised learning where

no additional labels would be required to train a network.

6.2 Recurrence in Oral Epithelial Dysplasia (OED)

In Chapters 4 and 5, we used multiple instance learning to predict the OED

grade and malignant transformation using deep neural networks (DNN) and

graph neural networks (GNN). We showed that new digital biomarkers for pro-

gression free survival (PFS) could be found using the DNN and GNN prediction

maps on whole slide imaging. OED grade and malignant transformation status

(i.e., in future) can help clinicians to exercise the best course of action for the

patients, but it may involve the excision of OED lesions with larger margins to

avoid recurrence and malignant transformation. It has been observed that in

some cases where cases from low- and high- risk dysplasia only recur and do

not transform into malignancy, such cases do not require resections with larger

margins.

One possible future direction would be to predict the recurrence status for

OED cases and explore significant digital biomarkers for predicting recurrence-

free survival. Moreover, our current findings were only validated on a large

internal dataset, so future work could look into the external validation of the

possible extension along with the aforementioned diagnostic and prognostics

digital biomarkers for clinical adaption.
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6.3 GNN based Multi-Task Learning for Oral Epi-

thelial Dysplasia analysis

In Chapter 5, we have trained single task models for diagnostic and prognostic

tasks in OED using GNNs. Recently, multi-task learning (MTL) has been

used to predict multiple outcomes in histology images [67], given the fact that

single task models fail to scale with the addition of new tasks, e.g., predicting

recurrence. Another area for improvement with the single task models is their

susceptibility to generalise specifically for that task making it hard to transfer

it to other tasks. On the other hand, MTL [221] can solve the aforementioned

issues by utilising a single encoder which not only shares weights but can also

utilise essential features across the tasks while having the flexibility to extend

to new tasks.

In the future GNN based single task learning could be extended to multi-task

learning for simultaneously predicting OED grade, recurrence and malignant

transformation status using one model. To this end, this problem can be

treated as a particular case of MTL where the same input data will have

different labels associated with the single WSI commonly known as multi-label

learning (MLL) [222]. Another advantage of solving it using MTL is that MLL

requires annotations for all three labels, whereas, for MTL, available labels for

each WSI can be utilised in each task.

6.4 Closing Remarks

In this thesis, we have proposed frameworks capable of learning from limited

data and minimal labels from histology based H&E stained whole slide images.

The frameworks we developed covered the classification, detection and segment-

ation of different nuclei and tissue regions along with the WSI level diagnostic

and prognostic labels prediction. The clinical adaption and deployment of

these AI based frameworks require strong validation using large-scale clinical

trials spanning multiple regions across the world, including different hospitals

and pathologists, covering a range of variations arising from digital scanners.

With the current momentum in AI conquering the vast majority of labour-

intensive tasks with its intelligence, it is likely that CPath will be ubiquitous in

digital pathology in the coming years. It will not only help assist pathologists in

diagnostic, prognostic and therapeutic tasks but will also alleviate the current

shortage observed in the field of histopathology.
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