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Abstract15

The celebrated result by Ben-Or and Cleve [SICOMP92] showed that algebraic formulas are polynomially16

equivalent to width-3 algebraic branching programs (ABP) for computing polynomials. i.e., VF = VBP3.17

Further, there are simple polynomials, such as
∑8

i=1 xiyi, that cannot be computed by width-2 ABPs18

[Allender and Wang, CC16]. Bringmann, Ikenmeyer and Zuiddam, [JACM18], on the other hand,19

studied these questions in the setting of approximate (i.e., border complexity) computation, and showed20

the universality of border width-2 ABPs, over fields of characteristic ̸= 2. In particular, they showed that21

polynomials that can be approximated by formulas can also be approximated (with only a polynomial22

blowup in size) by width-2 ABPs, i.e., VF = VBP2. The power of border width-2 algebraic branching23

programs when the characteristic of the field is 2 was left open.24

In this paper, we show that width-2 ABPs can approximate every polynomial irrespective of the25

field characteristic. We show that any polynomial f with ℓ monomials and with at most t odd-power26

indeterminates per monomial can be approximated by O
(
ℓ · (deg(f) + 2t)

)
-size width-2 ABPs. Since ℓ27

and t are finite, this proves universality of border width-2 ABPs. For univariate polynomials, we improve28

this upper-bound from O(deg(f)2) to O(deg(f)).29

Moreover, we show that, if a polynomial f can be approximated by small formulas, then the30

polynomial fd, for some small power d, can be approximated by small width-2 ABPs. Therefore, even31

over fields of characteristic two, border width-2 ABPs are a reasonably powerful computational model.32

Our construction works over any field.33
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57:2 On the power of border width-2 ABPs over fields of characteristic 2

1 Introduction42

The fundamental aim in computational complexity theory is to separate computational43

complexity classes — classes of problems that can be solved using a bounded amount of44

computational resources (e.g., time, space). Despite a lot of research, separating classes has45

remained elusive because the general computational model, Turing machines, are surprisingly46

difficult to prove lower bounds against. Valiant [22] proposed a computational complexity47

theory for families of multivariate polynomials, now called algebraic complexity, where the48

computational models only use algebraic operations such as addition +, multiplication ×, etc.49

The central question in algebraic complexity is to compare the computational power of the50

permanent and determinant polynomials, for a symbolic matrix Xn = (xi,j)i,j∈[n], defined as51

follows:52

pern := pern(Xn) =
∑

σ∈Sn

n∏
i=1

xi,σ(i) ,53

detn := detn(Xn) =
∑

σ∈Sn

sgn(σ)
n∏

i=1
xi,σ(i) .54

55

The summations above are over all permutations on n elements. Efficient algorithms to56

compute the determinant of a matrix whose entries are from a suitable ring (e.g. integers)57

are known [3, 14]. However, efficient algorithms to compute the permanent would imply58

that #P = FP, which is widely believed to be false.59

A sequence (cn)n∈N of natural numbers is called polynomially bounded if there exists a60

polynomial q with ∀n : cn ≤ q(n). A p-family is a sequence of polynomials whose degree and61

number of variables are polynomially bounded. Usually, algebraic complexity theorists are62

concerned with explicit p-families (e.g., (detn)n, (pern)n) because of its intimate connections63

to Boolean complexity.64

One can define the determinantal complexity of a multivariate polynomial f ∈ F[x] over a65

field F, denoted dc(f), to be the smallest n such that f can be written as the determinant of66

an n × n matrix with entries being affine linear forms (i.e. of the form a0 + a1x1 + · · · + anxn,67

where ai ∈ F). The class VBP consists of all p-families (fn)n∈N for which the determinantal68

complexity is polynomially bounded, see e.g. [13]. Interestingly, VBP can be captured by69

algebraic branching programs (ABPs) which can be thought of as a product of w × w matrices70

with affine linear entries, and w is called the width of the ABP.71

The permanental complexity of a polynomial f , denoted pc(f), is the smallest n such that72

f can be written as the permanent of an n × n matrix of affine linear forms. The class VNP73

consists of all p-families (fn)n∈N for which the permanental complexity is polynomially74

bounded.75

It is known that VBP ⊆ VNP [22, 21]. One of the central questions in algebraic complexity76

is Valiant’s conjecture of VNP ̸⊆ VBP, or equivalently proving dc(pern) = nω(1) [22]. This is77

often known as the determinant vs permanent problem. The best known bounds for dc(pern),78

over F = C is: n2/2 ≤ dc(pern) ≤ 2n − 1 [15, 10].79

IMM-complexity. There are plausibly weaker classes than VBP, such as VF that tries to80

capture the algebraic formula complexity of polynomial families. An algebraic formula is81

a directed tree with a unique sink vertex. The source vertices are labelled by variables or82

constants from F, and each internal node of the graph is labelled by either + or ×. Nodes83

compute polynomials in the natural way by induction. The size of a formula is the number84
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of its nodes. Finally, the algebraic formula complexity of a polynomial f is the minimum85

size of a formula computing f . Ben-Or and Cleve [2] showed a surprising result that the86

polynomial family constructed using an iterated product of 3 × 3 symbolic matrices (formally87

it is called IMM3, see Definition 4) is computationally equivalent to algebraic formulas. And88

further, Valiant showed that any polynomial f with algebraic formula complexity s, has89

determinantal complexity at most 2s [22]. Therefore, separation questions like VF vs. VBP,90

and VF vs. VNP can be framed as whether immc3(detn) = nω(1), and immc3(pern) = nω(1);91

for a formal definition of IMM-complexity for 3 × 3 matrices (immc3), see Definition 6.92

Universality vs. impossibility. It is noteworthy that all the above-mentioned complexity93

measures (dc, pc, immc3) are finite for any polynomial f ∈ F[x]; in other words, the model of94

computation defined by these complexity measures are ‘universal’. Given the phenomenon95

of universality and the results of Ben-Or and Cleve and Valiant, it is natural to study the96

computational power of iterated multiplication of 2 × 2 matrices. Astonishingly, Allender and97

Wang [1] showed an impossibility result that the polynomial
∑8

i=1 xiyi cannot be computed98

using IMM2. In other words, the IMM2-complexity (Definition 6) of this polynomial is infinite!99

However, Bringmann, Ikenmeyer, and Zuiddam [4] showed that by allowing approximations,100

the polynomial family IMM2 becomes universal! In fact, they proved a stronger statement101

that the IMM2-approximation complexity, which we denote by immc2, is polynomially related102

to approximate algebraic formula complexity. However, their proofs only work over fields F103

when char(F) ̸= 2. They left open the following, which sets the fundamental basis for this104

work.105

▶ Question 1 ([4]). Determine the computational power of IMM2 with approximations over106

fields of characteristic 2.107

Border complexity & GCT. The study of border complexity measures, by allowing approx-108

imations in the algebraic model was first introduced in [17, 5]. Given f ∈ F[x] and a suitable109

associated complexity measure Γ, the border-Γ complexity of f (denoted Γ(f)) is the smallest110

n such that f can be approximated arbitrarily closely by polynomials of Γ-complexity at111

most n. Trivially, Γ(f) ≤ Γ(f), for any f . By this definition, one can talk about the border-112

complexity measures such as immc, dc, pc etc. Replacing a complexity measure by its border113

measure in a complexity class, we obtain the closure of this class, such as VF, VBP, VNP,114

and so on. The operation of going to the closure is indeed a closure operator in the sense115

of topology (See [11]). The original Geometric Complexity Theory (GCT) papers [17, 18]116

propose to use representation-theoretic techniques to separate VNP from VBP by studying117

the determinant orbit closure, but progress has been slow. Simpler models of computation118

are desirable to study the easier VNP ̸⊆ VF conjecture, for example immc3, or even the119

much simpler immc2. This was a main motivation for [4], but their result does not work in120

characteristic 2. This naturally leads to the following question.121

▶ Question 2. How is immc2 related to immc3 for fields of characteristic 2?122

Division and powering. Strassen [20] showed that we can eliminate divisions in algebraic123

circuits and formulas computing polynomials without loss of efficiency. The result relies on124

the ability to compute small powers of polynomials efficiently. This naturally leads to the125

following question.126

▶ Question 3. Given border width-2 computations for polynomials f and g, can we also compute127
f
g (given g divides f) and fr, for small r, efficiently?128

STACS 2024



57:4 On the power of border width-2 ABPs over fields of characteristic 2

More generally, one can ask, given computations for f and g, what combinations of f129

and g are possible in the model? A known approach to produce such results is to use Waring130

decompositions (See [4, 12]). Given a homogeneous degree d polynomial f , the Waring rank131

of f , denoted WR(f), is the smallest r such that there exist homogeneous linear polynomials132

ℓ1, · · · ℓr with f =
∑r

i=1 ℓd
i . Border Waring rank, denoted WR(f), can be defined analogously133

in the border setup. For example, a border Waring decomposition for xy would allow us to134

compute the product fg using only addition, scaling by constants, and squaring. Over fields135

of characteristic 2, the border Waring rank of xy is infinite and hence, this technique becomes136

infeasible.137

1.1 Our Contributions138

Our main theorem is to answer Question 1 by showing the universality of immc2:139

▶ Theorem 1 (Universality of immc2). immc2(f) is finite for every polynomial f , over all fields.140

This theorem over fields of characteristic other than two was proved by Bringmann, Ikenmeyer,141

and Zuiddam [4]. In fact, they prove the stronger statement that any polynomial family with142

small algebraic formulas approximating it can also be approximated with IMM2 with only143

a polynomial blow-up in complexity. Unfortunately, our construction yields an exponential144

complexity for even simple polynomial families, such as
∏n

i=1 xi +
∏n

i=1 yi +
∏n

i=1 zi (see145

Theorem 16). However, the next theorem proves that for every polynomial with small146

formulas approximating them, we can approximate a small power of the polynomial using147

IMM2 over any field. This partially answers Question 2.148

▶ Theorem 2 (Powering is powerful). There exists a constant k such that for any polynomial f149

with a size-s formula approximating f , there is a d ≤ sk + k such that immc2(fd) ≤ sk + k.150

The above theorem shows that the border width-2 ABPs are a reasonably powerful151

computational model. Further, Theorem 1 and Theorem 2 can be seen as weak extensions of152

[4], over any field, regardless of its characteristic and size.153

A natural question is which interesting classes of polynomials can be efficiently approx-154

imated using IMM2. In Theorem 16, we show that every sparse polynomial family (i.e.,155

the number of monomials is poly(n)) where the monomials do not have a large number of156

variables with odd degree can be efficiently approximated. A particularly interesting subset157

of this class is the class of all univariate polynomials. Applying Theorem 16 to univariate158

polynomials, we obtain a computation of any degree-d univariate polynomial using O(d2)159

operations. But, Horner’s rule gives a formula for any degree-d univariate polynomial that160

only uses O(d) operations. The following theorem is a refinement of Theorem 16 to univari-161

ates where we show that every degree-d univariate can be approximated using O(d) matrices.162

This construction is a consequence of our partial answers towards Question 3.163

▶ Theorem 3. For any degree-d univariate polynomial f , we have immc2(f) ≤ 9d+4
2 .164

We leave open the question whether immc2 is polynomially related to approximate165

algebraic formula complexity over fields of characteristic 2.166

1.2 Comparison with previous works167

As mentioned before, [4] showed that any polynomial with small border algebraic formula168

complexity have small immc2-complexity, when char(F) ̸= 2. Their proof was constructive,169
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and fundamentally (& inductively) used the following identity: x ·y = 1
2 ·
(
(x + y)2 − x2 − y2).170

One could also use even a smaller representation: x · y =
( 1

2 · (x + y)
)2 −

( 1
2 · (x − y)

)2
.171

However both representations use the constant 1
2 , and one can show that one cannot come172

up with an identity which does not use 1
2n , for some n ∈ N. In other words, WR(x · y) =173

WR(x · y) = ∞ over F with char(F) = 2. Therefore, their construction fails miserably over174

characteristic 2 fields.175

On the other hand, Kumar [12] showed that for any f ∈ C[x], a constant multiple of f can176

be approximated by
∏

i∈[m](1 + ℓi) − 1, where ℓi are linear polynomials in C(ϵ)[x]. Note that,177

this implies that immc2(f) ≤ m. The representation depends on the Waring decomposition178

of f , and further one can show that for the minimum m: WR(f) ≤ m ≤ deg(f) · WR(f) [8].179

However, over F of char(F) = 2, for any d ≥ 2, there are d-degree polynomials (e.g., x1 · · · xd)180

which has infinite border Waring rank, and hence the above universality proof fails.181

In this work, we come up with a Waring-free proof to show the universality over char-182

acteristic 2 fields, and therefore our proofs are very different (yet simple) from the known183

constructive proofs.184

1.3 Proof ideas185

The key building block in the proof of universality of border width-2 ABPs over fields186

characteristic ̸= 2 in [4] is a Q matrix. For a polynomial f , they define Q(f) =
(

f 1
1 0

)
.187

Given Q(f) and Q(g), Q(f + g) can be computed as Q(f)Q(0)Q(g). So, to prove universality,188

it suffices to show that Q(fg) can also be computed from Q(f) and Q(g). Bringmann,189

Ikenmeyer and Zuiddam [4] showed that Q(f2) can be approximately computed using Q(f),190

and then the identity fg = ( 1
2 (f + g))2 − ( 1

2 (f − g))2 can be used to compute the product191

using squaring, addition, and scaling by constants. As discussed before, such an identity does192

not exist over fields of characteristic two.193

We overcome this block by not trying to compute the product of two arbitrary polynomials.194

We observe that for universality, it is enough to be able to compute Q(fx) from Q(f) for195

an arbitrary variable x. The advantage is that since x is a variable and not an arbitrary196

polynomial, we can use any 2 × 2 matrix that contains only constants and the variable x in197

the computation of Q(fx), whereas for computing Q(fg), both f and g are available to us198

only as Q matrices (or in any other form that have been proved inductively). This is the key199

idea in Lemma 12 (see Section 4).200

The source of inefficiency of Lemma 12 is that Q(f) is used twice to compute Q(fx).201

Therefore, even computing a simple polynomial such as xn using this lemma takes Ω(2n)202

matrices. Compare this to the computation of Q(fg) in [4] where they use Q(f) and Q(g) at203

most three times which is enough to stay within a polynomial factor of formula complexity.204

In Lemma 14, we show that we can compute Q(fg2) by using Q(f) once and Q(g) twice205

(see Section 4). This lemma enables efficient computation of powers of polynomials with206

small formulas (Theorem 17), sparse polynomials where each monomial only contains a few207

variables with odd power (Theorem 16), and univariate polynomials (Theorem 21). We also208

use this lemma to compute powers of polynomials efficiently. That is, given a computation of209

Q(f) using s matrices, compute Q(fr) using O(rs) matrices (see Section 7). We also observe210

that the division Q( f
g2 ) from Q(f) and Q(g) can be performed by combining standard division211

elimination techniques [20] with Lemma 14 (see Section 8).212

STACS 2024
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2 Preliminaries213

We consider polynomial families f = (fn)n≥0 over an arbitrary field F. The nth polynomial in214

the family fn is a polynomial in F[x1, . . . , xm] where m = poly(n). The following polynomial215

family is particularly important in this paper.216

▶ Definition 4. For any fixed, natural k ≥ 1, we define the polynomial family IMMk = (IMMk,n)217

such that IMMk,n is the (1, 1)th entry of the product of n matrices of order k × k where each218

entry of each matrix is a fresh variable, i.e., the (i, j)th entry of the mth matrix is the variable219

x
(m)
i,j for all 1 ≤ i, j ≤ k and 1 ≤ m ≤ n.220

▶ Definition 5. A weakest projection from a set of variables X to another set of variables Y221

is a mapping X 7→ Y ∪ F. A weak projection is a mapping from X to affine linear forms in222

at most one variable in F[Y ]. For polynomials f and g, we say f ≤wst g (f ≤w g), if there is a223

weakest projection (resp., weak projection) that maps g to f .224

The notion of a projection is used to compare the number of algebraic operations required225

to compute polynomials. Note that if fn is computable using s operations and if gm ≤wst fn,226

then gm is also computable using s operations. The weak variant ≤w weakens this slightly227

since we can only conclude that gm can be computed using at most poly(s) operations.228

▶ Definition 6. Let f = (fn) be a polynomial family. We define the f -complexity wrt ≤wst (or229

≤w) of a polynomial g as the smallest m such that g ≤wst fm (resp., ≤w). If there is no such m,230

then the f -complexity of g is ∞. We define the f -complexity of a polynomial family g = (gn) as231

the sequence s = (sn) where sn is the f -complexity of the polynomial gn.232

We say that f computes a polynomial g wrt ≤wst (or, ≤w) if f -complexity of g wrt ≤wst
233

(resp., ≤w) is finite.234

For f = (fn), we denote f -complexity wrt ≤wst (or, ≤w) using fcwst (resp., fcw). We omit235

the projection from the notation if it is the weakest projection. For example, we denote236

det-complexity, IMM3-complexity, and IMM2-complexity under weakest projections by dc,237

immc3, and immc2 respectively.238

▶ Definition 7. A polynomial family f = (fn)n≥0 is called universal wrt ≤wst (or ≤w) if for239

any polynomial g, the f -complexity of g wrt ≤wst (resp., ≤w) is finite.240

We can now define the approximation equivalent of ≤wst and ≤w.241

▶ Definition 8. An approximate weakest projection is a map from X to Y ∪ F(ϵ). An242

approximate weak projection is a map from X to affine linear forms in at most one variable in243

F(ϵ)[Y ].244

Given f, g ∈ F[X], we say f ≤wst g (f ≤w g) if there is an approximate weakest projection245

(resp., approximate weak projection) that maps g to some polynomial that approximates f .246

We can use these to define approximate f -complexity of polynomials.247

▶ Definition 9. Let f = (fn) be a polynomial family. We define the approximate f -complexity248

of a polynomial g as the smallest m such that g ≤wst fm (or g ≤w fm). If no such m exists, we249

define the f -complexity of g as ∞. We define the f -complexity of a polynomial family g = (gn)250

as the sequence s = (sn) where sn is the f -complexity of the polynomial gn.251

We say that f approximately computes a polynomial g wrt ≤wst (or, ≤w) if the approximate252

f -complexity of g wrt ≤wst (resp., ≤w) is finite.253
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We denote approximate f -complexity wrt ≤wst (or, ≤w) fcwst (resp., fcw). As before, we omit254

the projection if it is the weakest projection.255

We now introduce some additional definitions that are applicable when f = IMM2. In256

this case, we can naturally consider computation of 2 × 2 matrices of polynomials by f .257

▶ Definition 10. Let A =
(

g1 g2
g3 g4

)
where g1, g2, g3, g4 are polynomials. We say that A is258

computed wrt ≤wst (or, ≤w) by a sequence of m matrices if there is a sequence of m 2 × 2259

matrices, where all 4m entries are variables or constants from F (resp., affine linear forms in at260

most one variable), such that the product of those matrices is A.261

The above definition can be naturally extended into the setting of approximate computa-262

tion. Following [4], we use the notation O(ϵk) to denote an arbitrary polynomial in the set263

ϵkF[ϵ, x1, . . . , xn].264

▶ Definition 11. We say that A is approximately computed wrt ≤wst (or, ≤w) by a sequence265

of m matrices if there is a sequence of m 2 × 2 matrices, where all 4m entries are variables or266

constants from F(ϵ) (resp., affine linear forms over F(ϵ) in at most one variable), such that the267

product of those matrices is
(

g1 + O(ϵ) g2 + O(ϵ)
g3 + O(ϵ) g4 + O(ϵ)

)
.268

We omit the projection if it is the weakest projection. All results in this paper except269

Theorem 23 hold wrt weakest projections.270

3 Approximately computing the Allender-Wang polynomial over fields271

of characteristic 2272

Allender and Wang showed that immc2(AW) = ∞ where AW =
∑8

i=1 xiyi. Bringmann,273

Ikenmeyer, and Zuiddam (See Example 3.8 in [4]) constructed an approximation to the AW274

polynomial when char(F) ̸= 2 thereby showing that immc2(AW) is finite when char(F) ̸= 2.275

Here, we show that it is finite when char(F) = 2 as well.276

We restate the definition of Q-matrix computing a polynomial f from [4].277

Q(f) =
(

f 1
1 0

)
278

Observe that Q(f + g) = Q(f)Q(0)Q(g). That is, if we can compute two polynomials as279

Q-matrices, then we can also compute their sum as a Q-matrix. Now, let280

F (x, y) :=
( 1

ϵ 0
0 1

)(
x 1
1 0

)(
ϵ 1
0 1

)( 1
ϵ y

−1 1

)(
x 1
1 0

)(
1 0
1 −ϵ

)
.281

Note that F (x, y) computes
(

xy 1
1 + ϵy 0

)
.282

Finally, the following sequence approximately computes AW:283

(
1 0

)
F (x1, y1)

(
0 1
1 0

)
F (x2, y2) · · ·

(
0 1
1 0

)
F (x8, y8)

(
1
0

)
= AW + O(ϵ).284

This shows that immc2(AW) ≤ 55. The above computation works over all fields, irrespect-285

ive of the characteristic.286
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4 Universality of IMM2 with approximations287

The key idea in [4] that allows IMM2 to efficiently simulate formulas is a way to compute288

Q(f2) from Q(f) (squaring). Then, the identify fg = ((f + g)2 − f2 − g2)/2 that is valid289

only when char(F) ̸= 2 is used to compute Q(fg) from Q(f) and Q(g) using addition and290

squaring. The following lemma allows one to multiply an arbitrary polynomial with any291

indeterminate when char(F) = 2.292

▶ Lemma 12. Let f be a polynomial. Suppose that there is a sequence, say σ, of N matrices293

that approximately computes Q(f). Then, for any indeterminate x, there is a sequence of 2N + 4294

matrices that approximately computes Q(fx).295

Proof. Consider the following sequence, say σ′, of 2N + 4 matrices:296 ( 1
ϵ 0
0 1

)
σ|ϵ→ϵ2

(
ϵ 1
0 1

)( 1
ϵ x

−1 1

)
σ|ϵ→ϵ2

(
1 0
1 −ϵ

)
297

where σ
∣∣
ϵ→ϵ2 denotes the sequence obtained from σ by replacing ϵ with ϵ2.298

Note that σ′ computes299 ( 1
ϵ 0
0 1

)(
f + O(ϵ2) 1 + O(ϵ2)
1 + O(ϵ2) O(ϵ2)

)(
ϵ 1
0 1

)( 1
ϵ x

−1 1

)(
f + O(ϵ2) 1 + O(ϵ2)
1 + O(ϵ2) O(ϵ2)

)(
1 0
1 −ϵ

)
300

=
( f

ϵ + O(ϵ) 1
ϵ + O(ϵ)

1 + O(ϵ2) O(ϵ2)

)(
0 ϵx + 1

−1 1

)(
f + 1 + O(ϵ2) −ϵ + O(ϵ3)

1 + O(ϵ2) O(ϵ3)

)
301

=
(

− 1
ϵ + O(ϵ) fx + f+1

ϵ + O(ϵ)
O(ϵ2) ϵx + 1 + O(ϵ2)

)(
f + 1 + O(ϵ2) −ϵ + O(ϵ3)

1 + O(ϵ2) O(ϵ3)

)
302

=
(

fx + O(ϵ) 1 + O(ϵ2)
1 + ϵx + O(ϵ2) O(ϵ3)

)
.303

304

◀305

We also provide a Macaulay program in Appendix A to verify the construction described in306

the proof of Lemma 12. Although not as powerful as multiplying two arbitrary polynomials,307

Lemma 12 is sufficient to prove universality. Let p be a polynomial with ℓ monomials. Note308

that for any monomial, say m, of p, repeatedly applying Lemma 12 gives a sequence of309

O
(
2deg(m)) matrices that approximately computes Q(m). Thus, Q(p) can be approximately310

computed using a sequence of O
(
ℓ · 2deg(p)) matrices.311

Although sufficient to show universality, this is inefficient. Even for simple polynomials312

such as xn which can be computed using n − 1 operations, we require O(2n) matrices. We313

can improve the efficiency by using the following lemma.314

▶ Remark 13. For any degree-d monomial m, we have immc2(m) = d. We can write315

m = y1 · · · yd where each yi is a variable. Then, we set the (1, 1) entry of the ith matrix to316

yi. All other entries are 0. The product now computes m at entry (1, 1) and 0 elsewhere.317

Since this construction does not compute Q(m), it is not possible to use this to compute, say318 ∏n
i=1 xi +

∏n
i=1 yi +

∏n
i=1 zi using poly(n) operations.319

▶ Lemma 14. Let f and g be polynomials. Suppose that there is a sequence, say σ, of N matrices320

that approximately computes Q(f), and a sequence, say π, of M matrices that approximately321

computes Q(g). Then, there is a sequence of N + 2M + 4 matrices that approximately computes322

Q(fg2).323
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Proof. Consider the following sequence, say σ′, of N + 2M + 4 matrices:324 (
− 1

ϵ 0
0 ϵ

)
π
∣∣
ϵ→ϵ3

(
ϵ 0
0 1

ϵ

)
σ
∣∣
ϵ→ϵ5

(
−ϵ 0
0 1

ϵ

)
π
∣∣
ϵ→ϵ3

( 1
ϵ 0
0 ϵ

)
325

where σ
∣∣
ϵ→ϵ5 denotes the sequence obtained from σ by replacing ϵ with ϵ5, and326

. π
∣∣
ϵ→ϵ3 denotes the sequence obtained from π by replacing ϵ with ϵ3.327

Note that σ′ computes328 (
− 1

ϵ 0
0 ϵ

)(
g + O(ϵ3) 1 + O(ϵ3)
1 + O(ϵ3) O(ϵ3)

)(
ϵ 0
0 1

ϵ

)(
f + O(ϵ5) 1 + O(ϵ5)
1 + O(ϵ5) O(ϵ5)

)(
−ϵ 0
0 1

ϵ

)
329 (

g + O(ϵ3) 1 + O(ϵ3)
1 + O(ϵ3) O(ϵ3)

)( 1
ϵ 0
0 ϵ

)
330

=
(

−g + O(ϵ3) − 1
ϵ2 + O(ϵ)

ϵ2 + O(ϵ5) O(ϵ3)

)(
f + O(ϵ5) 1 + O(ϵ5)
1 + O(ϵ5) O(ϵ5)

)(
−g + O(ϵ3) −ϵ2 + O(ϵ5)

1
ϵ2 + O(ϵ) O(ϵ3)

)
331

=
(

−fg − 1
ϵ2 + O(ϵ) −g + O(ϵ3)

ϵ2f + O(ϵ3) ϵ2 + O(ϵ5)

)(
−g + O(ϵ3) −ϵ2 + O(ϵ5)

1
ϵ2 + O(ϵ) O(ϵ3)

)
332

=
(

fg2 + O(ϵ) 1 + ϵ2fg + O(ϵ3)
1 − ϵ2fg + O(ϵ3) −ϵ4f + O(ϵ5)

)
.333

334

This proves Lemma 14. ◀335

We also provide a Macaulay program in Appendix A to verify the construction described336

in the proof of Lemma 14. The key improvement here is that instead of using σ for Q(f) two337

times as in Lemma 12, we can compute Q(fx2) using Q(f) only once. Crucially, this allows338

certain monomials to be computed efficiently.339

▶ Lemma 15. Consider a monomial, say m = c · xk1
1 · · · xkn

n . Let λ denote the number340

of odd ki’s in k1, . . . , kn. Then, Q(m) can be approximately computed using a sequence of341

(5 · 2λ − 4) + 3 ·
(

deg(m) − λ
)

matrices.342

Proof. Without loss of generality, assume that k1, . . . , kλ are the λ odd ki’s. At a high level,343

we start with Q(c), then repeatedly apply Lemma 12 to get Q(c · x1 · · · xλ), then repeatedly344

apply Lemma 14 to get Q(c · xk1
1 · · · xkλ

λ ), and then repeatedly applying Lemma 14 to get345

Q(c · xk1
1 · · · xkλ

λ x
kλ+1
λ+1 · · · xkn

n ). More precisely, our construction is as follows:346

We begin with the sequence Q(c). Using Lemma 12
(
with indeterminate x1

)
, we get347

a sequence of 2 · 1 + 4 = 6 matrices that approximately computes Q(c · x1). Next, using348

Lemma 12
(
with indeterminate x2

)
, we get a sequence of 2 · 6 + 4 = 16 matrices that349

approximately computes Q(c ·x1x2). Again, using Lemma 12
(
with indeterminate x3

)
, we get350

a sequence of 2 ·16+4 = 36 matrices that approximately computes Q(c ·x1x2x3). We continue351

this process until finally, using Lemma 12
(
with indeterminate xλ

)
, we get a sequence of352

2 ·
(
5 · 2λ−1 − 4

)
+ 4 = 5 · 2λ − 4 matrices that approximately computes Q(c · x1x2x3 · · · xλ).353

Now, using Lemma 14
(
with g = x1

)
k1−1

2 times, we get a sequence of (5 · 2λ − 4) + (2 +354

4) ·
(

k1−1
2
)

matrices that approximately computes Q(c · xk1
1 x2 · · · xλ). Next, using Lemma 14355 (

with g = x2
)

k2−1
2 times, we get a sequence of (5 · 2λ − 4) + (2 + 4) ·

(
k1−1

2
)

+ (2 + 4) ·
(

k2−1
2
)

356

matrices that approximately computes Q(c · xk1
1 xk2

2 x3 · · · xλ). We continue this process until357

finally, using Lemma 14
(
with g = xλ

)
kλ−1

2 times, we get a sequence of (5 · 2λ − 4) + (2 + 4) ·358
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(
k1−1

2
)

+ (2 + 4) ·
(

k2−1
2
)

+ . . . + (2 + 4) ·
(

kλ−1
2
)

= (5 · 2λ − 4) + 3 ·
(∑λ

i=1 ki − λ
)

matrices359

that approximately computes Q(c · xk1
1 xk2

2 xk3
3 · · · xkλ

λ ).360

Now, using Lemma 14
(
with g = xλ+1

) kλ+1
2 times, we get a sequence of (5 · 2λ − 4) + 3 ·361 (∑λ

i=1 ki − λ
)

+ (2 + 4) ·
(kλ+1

2
)

matrices that approximately computes Q(c · xk1
1 · · · xkλ

λ x
kλ+1
λ+1 ).362

Next, using Lemma 14
(
with g = xλ+2

) kλ+2
2 times, we get a sequence of (5 · 2λ − 4) + 3 ·363 (∑λ

i=1 ki − λ
)

+ (2 + 4) ·
(kλ+1

2
)

+ (2 + 4) ·
(kλ+2

2
)

matrices that approximately computes364

Q(c · xk1
1 · · · xkλ

λ x
kλ+1
λ+1 x

kλ+2
λ+2 ). We continue this process until finally, using Lemma 14

(
with365

g = xn

)
kn

2 times, we get a sequence of (5 · 2λ − 4) + 3 ·
(∑λ

i=1 ki − λ
)

+ (2 + 4) ·
(kλ+1

2
)

+366

(2 + 4) ·
(kλ+2

2
)

+ . . . + (2 + 4) ·
(

kn

2
)

= (5 · 2λ − 4) + 3 ·
(∑λ

i=1 ki − λ
)

+ 3 ·
∑n

i=λ+1 ki matrices367

that approximately computes Q(c · xk1
1 · · · xkλ

λ x
kλ+1
λ+1 x

kλ+2
λ+2 · · · xkn

n ). That is, we get a sequence368

of (5 · 2λ − 4) + 3 ·
(

deg(m) − λ
)

matrices that approximately computes Q(m).369

This proves Lemma 15. ◀370

Note that Lemma 15 allows us to compute xn using O(n) matrices.371

▶ Theorem 16. Let p be a polynomial with ℓ monomials, each containing at most t odd-372

power indeterminates. Then, Q(p) can be approximately computed using a sequence of at most373

ℓ ·
(
5 · 2t + 3 · deg(p)

)
matrices.374

Proof. Let m1, . . . , mℓ denote the ℓ monomials of p. For each 1 ≤ i ≤ ℓ, we use Lemma 15
to get a sequence, say σi, of at most (5 · 2t − 4) + 3 · deg(mi) matrices that approximately
computes Q(mi). Now, the following sequence approximately computes Q(p):

σ1 · Q(0) · σ2 · Q(0) · · · Q(0) · σℓ

Note that the number of matrices in this sequence is at most

(ℓ − 1) +
ℓ∑

i=1

(
(5 · 2t − 4) + 3 · deg(mi)

)
≤ ℓ ·

(
5 · 2t + 3 · deg(p)

)
This proves Theorem 16. ◀375

5 Connections to Algebraic Formulas376

In this section, we explore the relationship between the computational power of width-2377

ABPs and algebraic formulas. Our main theorem in this section is:378

▶ Theorem 17. There exists a constant k such that for any polynomial f with a size-s formula379

approximating it, there is a d ≤ sk + k such that immc2(fd) ≤ sk + k.380

Proof. If the field has characteristic ̸= 2, this can be done by using the methods in [4]. We381

consider fields of characteristic two. It is sufficient to consider IMM3,n for an arbitrary n as382

IMM3 is a VF-complete family. We can consider without loss of generality that n is a power of383

two. These polynomials have polynomial-size algebraic formulas of depth O(log(n)) where384

every path from root to leaf has the same number of product gates. We now construct a385

width-two algebraic branching program inductively from the formula as follows. For every386

polynomial p computed at a sub-formula with product depth d, we will compute Q(p2d).387

For input gates, this is trivial. Suppose f and g are sub-formulas that have product depth388

d. For the formula f + g, notice that (f + g)2d

= f2d + g2d

over fields of characteristic two.389

We can compute Q(f2d + g2d) from Q(f2d) and Q(g2d). For the formula f · g, we compute390
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Q
(
(f2d)

2
(g2d)

2)
= Q((fg)2d+1

) using Lemma 14. Notice that since the product depth is391

the same on every root to leaf path, these cases are exhaustive. Since each step can at392

most double the size and depth is O(log(n)), the size of the resulting width-two algebraic393

branching program is only poly(n). ◀394

The following remarks discuss two important consequences of this theorem. First, it allows395

us to extend the main result of [4] to more fields.396

▶ Remark 18. Over characteristic 2, it is not clear whether one can compute f from fd, for a397

polynomially-bounded d, which is a power of 2, using immc2. However, over large fields of398

characteristic ̸= 2, one can follow the efficient root-finding procedure, for e.g., see [5, 6, 19],399

to conclude a small border width-2 complexity of f .400

Second, it allows us to reduce border PIT for formulas to border PIT for width-2 ABPs.401

▶ Remark 19. The border PIT problem (for definition and further connections with lower402

bounds, see [16, Section 2.6], [9], or [7, Section 7.1]) for a computational model is to403

check whether or not the polynomial computed by the given computation is approximately 0.404

Theorem 17 shows that border PIT for formulas reduces to border PIT for width-2 ABPs over405

all fields. For fields of characteristic ̸= 2, this was already a consequence of the main result in406

[4]. Theorem 17 extends this to all fields. Notice that the proof of this theorem is constructive.407

That is, given a formula that approximately computes f , the proof of Theorem 17 can be easily408

modified to produce a polynomial-time algorithm to output a width-2 algebraic program409

approximating fd. Now, over any field, fd is approximately 0 if and only if f is approximately410

0.411

We say that a model supports efficient computation of square roots if any computation of412

f2 in the model implies the existence of a computation for f where the size is polynomially413

related to the computation for f2. The following corollary establishes that if we can efficiently414

compute square roots approximately using width-two algebraic branching programs, then415

all polynomial families with constant-depth, polynomial-size circuits can be approximately416

computed using polynomial-size width-two algebraic branching programs.417

▶ Corollary 20. Suppose k is a universal constant such that given any width-two algebraic418

branching program of size s approximately computing a polynomial f2, we can approximately419

compute f using width-two algebraic branching programs of size at most sk + k. Then, any420

polynomial family p that has constant depth algebraic circuits of size s can be approximately421

computed using width-two algebraic branching programs of size poly(s).422

Proof. Since p has polynomial-size algebraic circuits of constant depth, it also has polynomial-423

size algebraic formulas of constant depth where all root to leaf paths have the same product424

depth. We then apply Theorem 17 to obtain a width-two algebraic branching program that425

computes f2d

, where d is the product depth of the formula. Notice that the construction in426

Lemma 14 can obtain a width-two algebraic branching program that approximately computes427

(f1 · · · fk)2 in size 2
∑k

i=1 si + O(k) from those of size si for fi, where 1 ≤ i ≤ k, even when428

k is unbounded. Finally, we apply the square root computation given by the hypothesis d429

times to obtain a width-two algebraic branching program that approximately computes f in430

size O(skd). ◀431

6 Improved bound for univariate polynomials432

For univariate polynomials, a quadratic (in degree) upper bound on immc2 over fields of433

characteristic 2 follows from Theorem 16. However, we can do better. In fact, we can make434
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this asymptotically optimal by using a two-step Horner’s method.435

▶ Theorem 21. Let p be a univariate polynomial in x. Then, Q(p) can be approximately436

computed using a sequence of at most
9 · deg(p) + 4

2 matrices.437

Proof. Let d := deg(p) if deg(p) is even, and d := deg(p) − 1 otherwise.438

If deg(p) is even, p is of the following form:

adxd + ad−1xd−1 + . . . + a1x + a0.

Otherwise, p is of the following form:

ad+1xd+1 + adxd + ad−1xd−1 + . . . + a1x + a0.

Note that in both the cases, p can be expressed as follows:(
. . .
((

ax2 + ad−1x + ad−2)x2 + ad−3x + ad−4

)
x2 + . . . + a3x + a2

)
x2 + a1x + a0,

where a := ad if deg(p) is even, and a := ad+1x + ad otherwise.439

At a high level, our construction exploits the above expression by starting with Q(a), then440

obtaining Q(ax2) using Lemma 14, then obtaining Q
(
ax2 + ad−1x + ad−2) by appending a441

few matrices, then obtaining Q
((

ax2 + ad−1x + ad−2
)
x2
)

using Lemma 14, and so on, until442

we finally obtain Q(p). More precisely, we construct the desired sequence as follows:443

First, we compute Q(a). When d is even, the matrix Q(ad) computes Q(a). When d is444

odd, we could have taken Q(ad+1x)Q(0)Q(ad) as a sequence of matrices computing Q(a) if445

we were in the weak setting. However, since we are in the weakest setting, we instead use446

the length-2 sequence
(

ad+1 ad

0 1

)(
x 1

ad+1

1 0

)
to compute Q(a).447

Next, using Lemma 14
(
with g = x

)
, we get a sequence of at most 2 + 2 + 4 = 8448

matrices that approximately computes Q(ax2). Again, if we were in the weak setting, we449

could have appended this sequence with Q(0)Q(ad−1x)Q(0)Q(ad−2) to get Q(ax2 + ad−1x +450

ad−2). However, since we are in the weakest setting, we instead append this sequence with451

Q(0)
(

ad−1 ad−2
0 1

)(
x 1

ad−1

1 0

)
when ad−1 ̸= 0, and Q(0)Q(ad−2) when ad−1 = 0. This452

gives us a sequence of at most 8 + 3 = 11 matrices that computes Q(ax2 + ad−1x + ad−2).453

Again, using Lemma 14
(
with g = x

)
, we get a sequence of at most 11 + 2 + 4 = 17454

matrices that approximately computes Q
(
(ax2 + ad−1x + ad−2)x2). As before, we append455

it with Q(0)
(

ad−3 ad−4
0 1

)(
x 1

ad−3

1 0

)
when ad−3 ̸= 0, and Q(0)Q(ad−4) when ad−3 = 0.456

This gives us a sequence of at most 17 + 3 = 20 matrices that approximately computes457

Q
(

(ax2 + ad−1x + ad−2)x2 + ad−3x + ad−4

)
.458

We continue this process. Finally, we get a sequence of at most
9d + 4

2 ≤
9 · deg(p) + 4

2459

matrices that approximately computes Q(p). This proves Theorem 21. ◀460
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7 Powering461

Efficiently computing fr from f , or powering, is an essential ingredient in many constructions,462

such as division elimination.463

▶ Lemma 22. Let p be a polynomial. Let r ≥ 1 be an integer. Suppose that there is a sequence of464

M matrices that approximately computes Q(p). Then, there is a sequence of at most rM + 2r + 1465

matrices that approximately computes Q(pr).466

Proof. At a high level, we repeatedly use Lemma 14 to get Q(p2), Q(p4), . . . , Q(pr) when r467

is even, and Q(p3), Q(p5), . . . , Q(pr) when r is odd. More precisely, we construct the desired468

sequence as follows:469

Case 1: r is even.470

Using Lemma 14
(
with f = 1 and g = p

)
, we get a sequence of 1 + 2M + 4 = 2M + 5471

matrices that approximately computes Q(p2). Next, using Lemma 14
(
with f = p2 and472

g = p
)
, we get a sequence of (2M + 5) + 2M + 4 = 4M + 9 matrices that approximately473

computes Q(p4). Again, using Lemma 14
(
with f = p4 and g = p

)
, we get a sequence of474

(4M + 9) + 2M + 4 = 6M + 13 matrices that approximately computes Q(p6). We continue475

this process until finally, using Lemma 14
(
with f = pr−2 and g = p

)
, we get a sequence of476 (

(r − 2)M + 2r − 3
)

+ 2M + 4 = rM + 2r + 1 matrices that approximately computes Q(pr).477

Case 2: r is odd.478

Using Lemma 14
(
with f = p and g = p

)
, we get a sequence of M + 2M + 4 = 3M + 4479

matrices that approximately computes Q(p3). Next, using Lemma 14
(
with f = p3 and480

g = p
)
, we get a sequence of (3M + 4) + 2M + 4 = 5M + 8 matrices that approximately481

computes Q(p5). Again, using Lemma 14
(
with f = p5 and g = p

)
, we get a sequence of482

(5M + 8) + 2M + 4 = 7M + 12 matrices that approximately computes Q(p7). We continue483

this process until finally, using Lemma 14
(
with f = pr−2 and g = p

)
, we get a sequence of484 (

(r − 2)M + 2r − 6
)

+ 2M + 4 = rM + 2r − 2 matrices that approximately computes Q(pr).485

This proves Lemma 22. ◀486

8 Division Elimination487

We are now ready to prove a division elimination result. The usual division elimination488

computes f/g from f and g given that g divides f . Since we can compute Q(fg2) efficiently489

from Q(f) and Q(g). Efficient division elimination will imply that we can compute Q(fg) =490

Q(fg2/g) as well. In the following theorem, we prove a weaker version of division elimination,491

where we show how to compute f/g2 from f and g given g2 divides f . This is the only492

construction in this paper that relies on the additional power of weak projections over weakest493

projections.494

▶ Theorem 23. Let f(x) and g(x) be n-variate polynomials over a sufficiently large field of495

characteristic 2, where x = (x1, . . . , xn). Suppose that there are sequences, say σ and π, of N496

and M matrices that approximately compute Q(f) and Q(g) wrt weak projections respectively.497

Assume that g2 divides f . Then, there is a sequence, say η, of O
(
N4M(M + N)

)
matrices that498

approximately computes Q
(

f
g2

)
wrt weak projections.499

Proof. Define h(x) := f(x)
g(x)2 . Let k be the degree of h(x). If g(0) ̸= 1, then we find α such500

that g(x + α) = 1 + g1(x).501
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Using the sequence π, we can get a new sequence of O(M) matrices that approximately
computes g1(x). We have

h(x+α) = f(x + α)
(g(x + α))2 = f(x + α)

(1 + (−1 + g(x + α)))2 = f(x + α)
(1 + g1(x))2 = f(x + α)

1 + g2
1(x) =

∑
i≥0

f ·(g2
1)i

For each 0 ≤ i ≤ k/2, we get a sequence, say ηi, of O
(
k(M +N)

)
matrices, that approximately502

computes Q(f · g2i
1 ) using Lemma 14.503

Define P(x) :=
∑k/2

i=0 f · (g2
1)i. The following sequence, say λ, of O

(
k2(M + N)

)
matrices,

computes Q(P) approximately:

η0 · Q(0) · η1 · Q(0) · · · Q(0) · ηk/2.

Let R(t) := P(tx1, ..., txn). Note that R(t) is of the form, R(t) = b0 + b1t + b2t2 + . . . + bℓt
ℓ,504

where b0, b1, . . . , bℓ are polynomials in x1, . . . , xn over F. Let a0, . . . , aℓ ∈ F. Note that505

A ·


b0
b1
...
bℓ

 =


R(a0)
R(a1)

...
R(aℓ)

 , where A :=


1 a0 a2

0 . . . aℓ
0

1 a1 a2
1 . . . aℓ

1
...

...
...

...
1 aℓ a2

ℓ . . . aℓ
ℓ


For every 0 ≤ i, j ≤ ℓ, let ci,j denote the entry at the ith row and the jth column of A−1.506

Then, we have507

b0 = c0,0 · R(a0) + c0,1 · R(a1) + . . . + c0,ℓ · R(aℓ)508

509

b1 = c1,0 · R(a0) + c1,1 · R(a1) + . . . + c1,ℓ · R(aℓ)510

511
...512

513

bℓ = cℓ,0 · R(a0) + cℓ,1 · R(a1) + . . . + cℓ,ℓ · R(aℓ)514

For every 0 ≤ i ≤ ℓ, we obtain a sequence, say λi, from λ, by replacing xr with ai ·xr for every515

1 ≤ r ≤ n. Note that λi approximately computes Q(R(ai)) using O
(
k2(M + N)

)
matrices.516

Now, for every 0 ≤ i ≤ k, the following sequence, say Γi, approximately computes Q(bi)517

using O
(
k2ℓ(M + N)

)
matrices:518 [

ci,0 0
0 1

]
λ0

[
1 0
0 1

ci,0

]
Q(0)

[
ci,1 0
0 1

]
λ1

[
1 0
0 1

ci,1

]
Q(0) . . . Q(0)

[
ci,ℓ 0
0 1

]
λℓ

[
1 0
0 1

ci,ℓ

]
.519

Also, we have520

h(x + α) = hom0
(
P(x)

)
+ hom1

(
P(x)

)
+ . . . + homk

(
P(x)

)
521

= b0 + b1 + . . . + bk522
523

Therefore, the following sequence of O
(
k3ℓ(M + N)

)
matrices approximately computes

Q(h(x + α)):
Γ0 · Q(0) · Γ1 · Q(0) . . . Q(0) · Γk

Finally, we replace x by x + α in the above sequence to get a sequence, say η, that524

approximately computes Q(h(x)). Note that k ≤ deg(f) ≤ N and ℓ ≤ deg(f) + k · deg(g) ≤525

O(MN). Thus, η has O
(
N4M(M + N)

)
matrices. ◀526
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9 Conclusion527

This work successfully establishes that width-2 ABPs can approximate any polynomial regard-528

less of the characteristic of the field, thus resolving a weaker version of the open question529

from [4]. Here are some immediate questions which require rigorous investigation.530

1. Let f ∈ F[x], of degree d, where char(F) = 2. Further, let immc(f2) = s. Can we say that531

immc2(f) = poly(s, d)?532

2. Can we prove a subexponential upper bound on immc2(f), for any exponential-sparse533

polynomial f , of border formula-complexity poly(n), over fields of characteristics 2? Of534

course, proving a polynomial upper bound would settle the open question of [4], proving535

that VF = VBP2, over fields of characteristics 2 (and hence, over any field!).536
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A Macaulay2 source code for main constructions585

Listing 1 illustrates our construction of Q(fx) from Q(f). The code can be run using586

Macaulay2. The variables O1 through O8 in these programs represent (arbitrary) polynomials587

in the ring ZZ/2[eps,x1,...,xn] that appear as a result of the approximation.588

Listing 1 Q(fx) from Q(f)
589

R=ZZ /2[ eps ];590

S=frac R;591

S[f,x,O1 ,O2 ,O3 ,O4];592

M1= matrix {{1/ eps ,0} ,{0 ,1}};593

M2= matrix {{f+eps ^2*O1 ,1+ eps ^2* O2 } ,{1+ eps ^2*O3 ,eps ^2* O4 }};594

M3= matrix {{eps ,1} ,{0 ,1}};595

M4= matrix {{1/ eps ,x} ,{ -1 ,1}};596

M5= matrix {{1 ,0} ,{1 , - eps }};597

print(M1*M2*M3*M4*M2*M5);598599

Listing 2 illustrates our construction of Q(fg2) from Q(f) and Q(g).600

Listing 2 Q(fg2) from Q(f) and Q(g)
601

R=ZZ /2[ eps ];602

S=frac R;603

S[f,g,O1 ,O2 ,O3 ,O4 ,O5 ,O6 ,O7 ,O8];604

M1= matrix {{ -1/eps ,0} ,{0 , eps }};605

M2= matrix {{g+eps ^3*O5 ,1+ eps ^3* O6 } ,{1+ eps ^3*O7 ,eps ^3* O8 }};606

M3= matrix {{eps ,0} ,{0 ,1/ eps }};607

M4= matrix {{f+eps ^5*O1 ,1+ eps ^5* O2 } ,{1+ eps ^5*O3 ,eps ^5* O4 }};608

M5= matrix {{-eps ,0} ,{0 ,1/ eps }};609

M6= matrix {{1/ eps ,0} ,{0 , eps }};610

print(M1*M2*M3*M4*M5*M2*M6);611612
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