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Abstract

The improved availability and quality of molecular profiling data has driven
the identification and use of predictive biomarkers within the drug develop-
ment process. This has facilitated a shift towards personalised healthcare,
where treatments are tailored to specific individuals at a genetic level using
biomarker information. The motivation of this thesis is to develop methodol-
ogy which utilises such biomarker information to optimally identify responding
patient subgroups, helping to make clinical trial design and implementation
safer and more e�cient. The optimisation of biomarker defined patient sub-
groups is explored within a confirmatory clinical trial setting. Specifically, it
is of interest to generalise work identifying an optimal dichotomising thresh-
old for a continuous biomarker to the setting of dual biomarkers, where two
biomarkers are simultaneously predictive of increased treatment e↵ect and a
dichotomising threshold value is sought for both.

Work in this thesis explores embedding dual biomarker threshold identifi-
cation techniques into confirmatory clinical trial design. Feasibility is initially
demonstrated by extending an existing trial design to the dual biomarker case.
A variety of statistical methods are then implemented within a two-stage phase
III adaptive trial design and their performance contrasted. It is shown that
recursive partitioning displayed the best performance among the implemented
methods, with respect to threshold identification accuracy and trial operating
characteristics.

Novel research is also carried out to investigate how to optimally control the
multiplicity arising from the optimisation of the patient population alongside
the testing of multiple independent hypotheses. The use of resampling based
techniques to control the family wise error rate (FWER) is investigated in the
setting where e�cacy assessments are carried out simultaneously within highly
correlated subgroups. By implicitly accounting for the dependence structure
between test statistics, it is shown that one can gain increased power over
traditional methods of FWER control, whilst maintaining strong control of
the FWER.
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Chapter 1

Introduction

1.1 Thesis Motivation and Research Questions

The motivation of this thesis stems from the increased interest in the use of

personalised healthcare, both within the pharmaceutical industry and research.

Tailoring treatment regimes to individual patients is an attractive option to

all parties involved; patients receive the most appropriate treatment regime

and healthcare providers and payers no longer fund treatments that are of no

benefit. The main driver of the increased use of personalised healthcare is the

improved availability and quality of molecular profiling data for patients, taken

from advanced technologies such as genomic sequencing. This has allowed for

the discovery and development of biomarkers that can be used to identify which

patients will receive most benefit from a treatment, and so guide treatment

decisions within healthcare. Incorporating biomarker information, particularly

any uncertainty around the exact form of the biomarker, into the already

complex drug development and evaluation process is challenging and therefore

requires proper investigation.

A patient subgroup showing increased level of benefit from some targeted

treatment will often be defined by a continuous biomarker, alongside a thresh-

old value used to split patients into biomarker-positive and biomarker-negative.

Such thresholds can be defined using clinical knowledge, but are often identified

using data-intensive methods. Achieving identification of an optimal thresh-
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old within a confirmatory clinical trial is a challenging procedure and much

research has gone into solving this problem, with a variety of methodologies

and trial designs put forward. Moreover, with increased biomarker informa-

tion available and the use of novel trial designs such as umbrella trials, there is

increasing evidence to suggest that multiple biomarkers may be necessary to

su�ciently identify patient subgroups for some treatments or treatment com-

binations.

Some natural questions then arise when thinking of possible extensions to

the described work: is it feasible to identify optimal dichotomising thresh-

olds for two or more biomarkers simultaneously? If so, how does this a↵ect

trial operating characteristics? Is control of the family wise error rate feasible

when designing a hypothesis testing structure with two or more biomarkers

instead of one? Work in this thesis extends research conducted on identifying

a cuto↵ value for a single continuous biomarker to the case where there are

two predictive biomarkers of interest. Specifically, it is of interest to identify

dichotomising thresholds for two continuous, predictive biomarkers within a

confirmatory clinical trial. This thesis presents novel work within this scenario

and investigates accuracy of threshold identification, power of e�cacy analyses

within the proposed trial (both in the overall trial population and biomarker-

subgroup specific) and control of the family wise error rate.

There are two main research questions of interest within this thesis:

1. Explore the optimisation of the cutpoint of a continuous biomarker within

a confirmatory study, whilst still controlling the overall false positive rate.

Generalise this setting to incorporate multiple biomarkers to identify the

patient population of interest. Explore methods to optimise the patient

population and embed these into confirmatory trial design

2. Explore complex patient selection tools based on multiple variable mea-

surements as well as other novel statistical approaches. How can these

methods be used to address multiplicity arising from the optimisation

of a patient population, as well as the multiplicity associated with test-
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ing multiple independent hypotheses within a confirmatory clinical trial

setting

The remainder of this chapter is dedicated to introducing important aspects

of this thesis. Clinical trials are introduced in Section 1.2; personalised health-

care is introduced in Section 1.3; biomarkers are introduced in Section 1.4.

Some key statistical concepts are then discussed in Section 1.5. An overview

of the thesis is then given in Section 1.6, providing details on thesis structure

and content layout.
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1.2 Clinical Trials

Clinical trials are research studies carried out on human beings in order to

assess the safety and e�cacy of a medical, surgical or behavioural intervention.

This thesis is concerned with the design and analysis of clinical trials in which

a new drug therapy is being evaluated. With this in mind, the following section

aims to give an overview of the drug development process and how central the

proper design and analysis of clinical trials is to successfully navigating this

process. Within this thesis, di↵erent terms for a drug based intervention are

used interchangeably, such as ‘treatment’, ‘drug’, ‘therapy’ and ‘intervention’.

1.2.1 Clinical Trial Phases

The drug development process is the name given to the broad process that

involves bringing a new medicine from discovery to approval and use on the

market for patients. It is a hugely time consuming and expensive process that

comes with a very small chance of success. It takes more than 10 years on

average to bring a newly discovered drug from the lab workbench to approval

and costs an average of $2.6 billion (DiMasi et al. 2016). Although there is

a massive wealth of funding, both from private and public sources that goes

into drug development and testing, between 10-20% of drugs that reach the

clinical trial stage will receive regulatory approval (Yamaguchi et al. 2021,

Mullard 2016). The drug development process begins with drug discovery

and pre clinical testing, which allow researchers to begin to establish the drug

pharmacokinetics, toxicities and interactions, as well as ensuring the drug is

safe enough to be used in human trials. Once the drug has been approved

safe enough to move onto human testing, it goes through the established four

phases of clinical trials.

Phase I

The first step in the clinical trial process is the phase I trial, often referred

to as ‘first-in-human’ studies as this is the first point at which the drug is
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administered to humans. Phase I trials are usually conducted on a small

number of healthy volunteers and are implemented in order to establish the

pharmacodynamics and pharmacokinetics of the drug, whilst assessing the

drug’s safety profile. In cases where the new treatment is highly toxic, which is

common in oncology studies investigating cytotoxic agents, the trial population

can be made up of patients who have tried and failed existing treatments.

It should be noted that phase 0 trials are a recent introduction into the

clinical trial process. They are early, exploratory trials designed to speed

up the development of certain promising therapies. By administering a sub

therapeutic dose of the drug to a small number of healthy volunteers (⇠10),

researchers can establish whether the drug behaves as expected by observing

the pharmacokinetics and pharmacodynamics (Thorat et al. 2010).

Phase II

Once an acceptable safety profile of the drug has been established, a phase II

trial is implemented. The primary aim of a phase II trial is to explore the level

of treatment e↵ect that the drug has in patients with the disease of interest

(Friedman et al. 2015), though further safety information is also collected.

Some phase II trials carry out formal comparisons of treatment e↵ect to a

control arm, though this is not a necessity and often trials are single arm with

the drug’s e�cacy compared to a current clinical standard or historical control.

These trials are larger than phase I trials and typically recruit 50-100 patients

who have the disease of interest. Phase II is the most common point in the

drug development process where a new drug fails, as the drug is discovered to

not work as intended, not have high enough e�cacy or is too toxic.

Phase II trials can also be split into two categories: phase IIa and phase

IIb. Phase IIa trials are designed to further explore dosage e↵ects and related

toxicities. Findings from the phase I trial can be explored using a larger

patient group which could consist of patients with di↵erent types/stages of

the same disease or di↵erent diseases entirely, in order to identify the best

5



target population. Phase IIb trials instead focus on the e↵ectiveness of the

drug at a single dose and aim to demonstrate the new drug’s e�cacy in order

to move onto phase III (Thorat et al. 2010).

Phase II trials also help to determine the most e�cacious dosage that

should be given to patients and investigated in further clinical trials. Common

types of dose finding studies include:

• Parallel Dose Comparison (Ting 2007): Patients are randomised to re-

ceive one of several potential doses of the treatment or placebo for the

study. At trial completion, comparisons of each treatment dose with

placebo can be drawn and the e�cacy and safety of each examined.

• Cross Over Design (Patterson et al. 2014): In a crossover study, patients

receive multiple treatments during the trial period, often separated by

wash out periods. In the simplest case, patients are randomised to one

of two treatment sequences: treatment-placebo or placebo-treatment.

Patients then act as their own ‘control’, allowing for within-subject com-

parisons of treatment vs placebo. Di↵erent groups of patients can be

given di↵erent doses of treatment, allowing for the optimal dose to be

identified. Multiperiod crossover designs can also be used in cases where

multiple doses are under consideration.

• Dose Titration (Patterson et al. 2014): Each subject starts at a low dose

of the treatment, with the dose increased incrementally until a desired

level of treatment benefit is observed or patients no longer tolerate the

given dose. This allows the e�cacy and safety of the drug at di↵erent

doses to be observed. The point of stopping can also be determined by

the pharmacokinetics and pharmacodynamics of the drug at di↵erent

doses.

Within oncology, dose finding is often carried out in phase I instead of phase

II, as drugs are given directly to patients instead of healthy volunteers due to

their high toxicity. The optimal dose in this case is defined as the maximum

dose level that can be given to a patient without causing an unacceptable

level of toxicity; this is known as the maximally tolerated dose (MTD). The
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MTD is found using rule or model-based methods (Le Tourneau et al. 2009).

The most widely used is the 3+3 design (Le Tourneau et al. 2009), which

implements a simple algorithm based on limiting the number of dose limiting

toxicities (DLTs). Patients are enrolled in groups of 3 (hence the name),

whether the dose is increased is defined by pre-defined rules relating to the

number of DLTs. Model-based designs take advantage of statistical modelling

techniques and Bayesian methodology to describe the relationship between

dose levels and toxicity. The continual reassessment method (CRM) is the

most prominent of these techniques and was developed by O’Quigley et al

(O’Quigley et al. 1990); the parameters of a dose-toxicity model are continually

updated to reflect all accrued data and the model can suggest the next dosage

i.e. stay/escalate/stop.

Phase III

Once su�cient indication has been obtained of the drug’s e�cacy in the

disease area of interest, a phase III trial can be carried out. Phase III trials are

the final point of the drug development process, representing the last hurdle

for a drug to be considered for approval. Phase III trials are usually large,

randomised, multi-centre trials which aim to provide definitive evidence of the

drug’s e�cacy compared to a control; for this reason they are referred to as

confirmatory clinical trials. In most settings, the control arm is usually the

current standard of care for the disease area of interest. In cases where no such

standard exists, a placebo is implemented as a comparator. A large number

of patients are usually required for phase III trials, in order to gain enough

statistical power to draw accurate conclusions regarding the treatment e↵ect.

Because of this, phase III trials are often conducted across a number of medical

centres simultaneously (multi-centre), so that patients can be recruited from

di↵erent population sources.

An important aspect of phase III trials is the randomisation; patients are

randomly allocated to receive either treatment or control (for a two-arm trial),

the result of this allocation is unknown to both the patient and the clinician.

Randomisation is key when carrying out phase III trials to limit the intro-
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duction of any sources of bias (Suresh 2011). By keeping both clinicians and

patients blind to the treatment allocation (double-blind), there can be no a

priori knowledge of treatment assignments, reducing the introduction of selec-

tion bias (Schulz & Grimes 2002). Moreover, by properly randomising patients,

there will be no systematic di↵erences between patient groups, meaning that

any observed di↵erences in outcome between the groups can be appropriately

attributed to the treatment. If there were systematic di↵erences between pa-

tients on each treatment group, then any di↵erences in patient outcomes may

be due to this imbalance and incorrectly attributed to the treatment.

Phase IV

After providing definitive evidence of treatment e�cacy and an acceptable

safety profile, a drug will be approved following regulatory review and will be

licensed for use on the market. It is at this point that phase IV trials are

carried out. Phase IV trials, also known as post marketing surveillance trials,

aim to assess the e�cacy and safety of the drug when used by a much larger

patient population. Surveillance of the drug’s safety profile can also detect rare

and long term side e↵ects of the drug, due to it’s use in the public market.

Any findings from phase IV trials can cause the drug to be restricted to certain

patient populations or even recalled from public use entirely.

1.2.2 Adaptive Trial Designs

In 2006, the FDA called for more innovative trial designs via the Critical Path

Opportunities List (US Food and Drug Administration 2004), in order to ad-

dress the low success rate and high cost of the drug development process.

The Critical Path Opportunities List encouraged the use of innovative adap-

tive designs, Bayesian methods, prior experience and accumulated information

within clinical trials. By implementing adaptive designs, the investigator of

the trial gains more flexibility when addressing the design and analysis of a

trial, without violating its validity or integrity (Chow et al. 2005). Permitting

the use of adaptive designs also improves the e�ciency of all stages of the drug

development process (Chow & Chang 2008).

8



The PhRMA Working Group defines an adaptive design as follows: A

clinical trial design that uses accumulating data to decide on how to modify

aspects of the study as it continues, without undermining the validity and

integrity of the trial (Gallo et al. 2006). By adapting various aspects of the

trial design or implemented statistical procedures whilst the trial is ongoing,

one aims to arrive at any appropriate conclusions of the study more quickly

or with reduced cost. The ability to make such adaptations whilst the trial is

ongoing also facilitates better decision making. Increased flexibility can lead

to better treatment of patients on trials, by reducing the overall number of pa-

tients needed or by limiting the number of patients exposed to non e�cacious

treatments. Adaptations to a clinical trial can be categorised as prospective,

concurrent or retrospective. Prospective adaptations are the most common

types and include early trial terminations (futility or e�cacy), sample size

re-estimation and dropping of treatment arms. Concurrent (or ad hoc) adap-

tations are made as the trial is ongoing and include changing study endpoints

or hypotheses, changes to treatment dosage or implementation and modifi-

cations to inclusion criteria. Retrospective adaptations are less common and

generally encompass changes to the analysis plan following lock of trial data.

Some commonly implemented adaptive designs include (Pallmann et al.

2018):

- Adaptive Randomisation: Allows the modification of treatment ran-

domisation ratios to increase the number of patients receiving the ‘better’

treatment.

- Group Sequential Design: Allows for early stopping of the trial at an

interim analysis for safety, futility or e�cacy.

- Sample Size Re-estimation Design: Adjust sample size based on

interim data to ensure desired power is achieved.

- Multi Arm Multi Stage: Explore multiple treatments/combinations
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of treatments/dosages with the option to remove under performing treat-

ment arms or focus on certain treatment arms.

- Adaptive Enrichment: Focus patient recruitment on those most likely

to benefit from the treatment.

- Biomarker-Adaptive: Incorporate biomarker information into trial de-

sign and potentially adapt recruitment procedures.

- Adaptive Dose Finding: Used in early phase trials to find the optimal

treatment dose.

- Adaptive Seamless Phase I/II: Combine objectives that would usu-

ally be split across two trials into one. In this case, the safety assessments

of a phase I design and the demonstration of e�cacy of a phase II.

- Adaptive Seamless Phase II/III: Combines phase IIb and phase III

objectives with a learning stage and a confirmatory stage to identify the

dose level and demonstrate treatment e�cacy.
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1.3 Personalised Healthcare

Personalised healthcare (PHC) is the process of tailoring medical treatment

to a patient, with the goal of obtaining the best outcome for each individual.

PHC represents a move away from a one-size-fits-all approach to treatment

with medical decisions and interventions customised for each patient. The

terms personalised healthcare, personalised medicine, precision medicine and

stratified medicine are generally used interchangeably, but personalised health-

care shall be used throughout this thesis.

The concept of tailoring treatments to a specific patient is not new, in fact

it can be dated back to Hippocrates’ time, with the historic physician quoted

as saying “It is more important to know what sort of person has a disease,

than to know what sort of disease a person has” (Abrahams & Silver 2011).

However, recent advances in biotechnology have deepened our understanding

of both patients and their diseases. Genomic sequencing has allowed us to

understand patient physiology at a molecular level, thus enabling prediction

of how a patient will respond to a certain treatment by observing their genetic

profile. Moreover, our increased understanding of genotypic and phenotypic

properties of disease have also allowed us to observe that the same disease can

in fact be heterogeneous between patients, which has driven the design and use

of molecularly targeted treatments. This increased understanding of patient

and disease has brought personalised healthcare to the forefront of medicine,

both within research and industry, in recent years.

There are many areas where personalised healthcare has made, and con-

tinues to make, a large impact. In the fields of diagnosis and intervention, the

use of genomic level data for a patient allows for more accurate diagnosis and

thus the design of specific treatment plans. A patient’s full DNA sequence

can be contrasted with a reference genome, to identify any genetic variations

which could account for observed disease presentation. Knowing an individ-

ual’s genome can also provide information on how they will respond to certain

treatments, thus enabling the design of tailored treatment regimes. This is
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known as pharmacogenomics, the practice of using a patient’s genomic profile

to provide a better informed drug prescription (Dudley & Karczewski 2013);

achieving higher e�cacy, appropriate dosage and reduced adverse events. For

example, warfarin is an FDA approved anticoagulant given orally to patients

with blood clots, though it is associated with a very high rate of adverse events

(Lesko 2007). It was discovered that two genes, CYP2C9 and VKORC1 en-

coded an individuals anticoagulant response (Breckenridge et al. 1974, Rieder

et al. 2005), therefore using a patient’s gene profile, physicians were able to

prescribe the optimal warfarin dose to minimise adverse events while still pro-

viding acceptable e�cacy.

Within drug development, utilising a patient’s genetic information can in-

crease patient safety and decrease trial cost and implementation time (US

Food and Drug Administration 2013). Incorporating detailed patient genetic

information into inclusion/exclusion criteria for clinical trials allows the trial

population to be restricted to those most likely to benefit from the treatment

under consideration (US Food and Drug Administration 2013). This increases

patient safety by limiting the number of adverse events and allows smaller and

faster trials to be implemented, as the trial population can be optimised to

explore the e↵ect of the proposed treatment. Moreover, in cases where the

treatment is ine↵ective in an overall population, regulatory approval can still

be attained by demonstrating e�cacy in some patient subgroup defined by

their genomic profile (Hamburg & Collins 2010). The concept of identifying

a patient subgroup showing increased levels of treatment benefit is central to

this thesis and is discussed further in Section 1.4.

Incorporating personalised healthcare into the drug development process

is not a hope for the future, but something that has seen great success in

recent years. In 2021, the FDA’s centre for Drug Evaluation and Research

(CDER) approved 48 new therapeutic new molecular entities (NMEs). Of

these 48 NMEs, 17 of them were medicines falling under the classification

of personalised healthcare (classified by the Personalised Medicine Coalition)

(Personalized Medicine Coalition 2021). In 2020, 39% of all approved NMEs
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were so called personalised medicines and since 2015, more than a quarter of

all approved therapies have been personalised medicines. Some examples of

the 17 personalised medicines approved in 2021 are (Personalized Medicine

Coalition 2021):

- Tepotinib. A treatment in NSCLC which is informed by the status of

the mesenchymal-epithelial transition (MET) exon 14 biomarker

- Dostarlimab-gxly. A treatment for recurrent or advanced endometrial

cancer informed by the status of the mismatch repair deficient (dMMR)

biomarker. Can be further informed by the level of PD-L1 expression in

patient tumours

- Belzutifan. A treatment for adult patients with von Hippel-Lindau

(VHL) disease. The dosage and use of this treatment is informed by

the status of UGT2B17 and CYP2C19 pharmacogenetic biomarkers

Personalised healthcare also has a great impact on how approved drugs are

utilised within healthcare environments. The best treatment for a patient is

often found through a trial and error approach (US Food and Drug Admin-

istration 2013), which can be costly and potentially dangerous for patients.

Using a patients genetic information to predict how they will respond to a

variety of treatments helps to guide optimal treatment decisions. An example

of this being used in practice is the use of Tamoxifen in patients with ER+

breast cancers; 65% of women who are prescribed this treatment develop re-

sistance, making it an ine↵ective treatment for them. The cause of this was

discovered to be a mutation in their CYP2D6 gene, which meant they were not

able to properly break down the Tamoxifen (E. Ellsworth et al. 2010). Thus,

by screening patients for certain mutations, the most e↵ective treatment plan

can be chosen.

As personalised healthcare becomes more widely accepted and implemented,

a number of limitations and challenges become apparent. Firstly, regulatory

oversight needs to be redefined and updated to incorporate the changes that

personalised healthcare will have on the healthcare landscape. The FDA has
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been proactive, in 2013 they released a report titled ‘Paving the Way for Per-

sonalised Medicine: FDA’s role in a New Era of Medical Product Development’

(US Food and Drug Administration 2013). In this report, they described the

actions that would need to be taken in order to allow genetic and biomarker

data to be used within the drug development process. These actions included

developing scientific regulatory standards and research methods specific to the

area as well as providing reference material and other tools to aid in the in-

corporation of personalised healthcare into their current practices. Closely

related to updated regulatory oversight is the need to consider patient privacy

and confidentiality with respect to the use of their genetic information. A

leading issue within personalised healthcare is ensuring appropriate consent

has been given by patients and institutions before any genetic screening can

be carried out.

Although the use of personalised healthcare has the potential to greatly re-

duce the costs associated with patient care, considerable investment is required

initially to fund research and development as well as the associated diagnostic

methods and genetic testing. This increased cost of personalised treatments

will be of concern to insurance companies, buyers and other third party payers

and steps will need to be taken to mitigate cost to patients. One such solution

that has been put forward is value-based healthcare financial models (Garrison

& Towse 2017), where the payments or prices for therapeutics are intrinsically

linked to the clinical outcomes and cost of treating the associated conditions.

Implementing genetic testing and interpreting their results can be extremely

challenging and requires a large amount of expert knowledge and skill. Whether

within the clinical trial setting or when treating patients, in order to imple-

ment personalised healthcare e↵ectively, the results of genetic tests need to be

interpreted correctly. In a clinical trial, an incorrect conclusion drawn from a

genetic test could lead to incorrect inclusion/exclusion of a patient or even in-

accurate conclusions regarding response to treatment. In a patient facing role,

the incorrect interpretation of results from a genetic test could lead to an inac-

curate diagnosis or the patient being provided with false information regarding
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their health or treatment. As precision medicine becomes more prevalent in

healthcare, there will be an increased need to provide training at all levels so

that interpretation of such results in correct and consistent.

The possible introduction of bias is something that is also present within

personalised healthcare. If genetic samples to be tested are drawn from a bi-

ased population and the algorithms developed to assess them are biased, then

outcomes will be biased. For instance, if the genetic samples to be assessed

do not incorporate sources from di↵ering populations, the samples will exhibit

the same selection bias that arises in sampling and decision making, leading

to biased outcomes. In the Framingham Heart Study, the sample was drawn

from only a white population and results were applied to a non-white pop-

ulation, resulting in biased results with inaccurate estimation of the risks of

cardiovascular disease (Gijsberts et al. 2015).

Finally, there are many computational challenges associated with the im-

plementation of personalised healthcare. The storage and analysis of genetic

data is a serious challenge, the data processing alone of next generation se-

quencing data prior to analysis exacts a vast computational burden (Huser

et al. 2014). Moreover, errors are unavoidable when processing huge amounts

of genetic data. Error rates of 1 for every 100 kilobases (1 in 100,000 nucleotide

bases read) have been achieved, but even with an error rate this low processing

an entire patients genomic profile could result in approximately 30,000 errors

(Fernald et al. 2011). Errors of this magnitude can cause di�culties in the

verification of certain discoveries, particularly specific markers.

Although the challenges associated with implementing personalised health-

care are numerous, the potential benefits vastly outweigh them (Ricciardi &

Stefania 2017). The benefits to patients include improved health outcomes,

reduction of incorrect diagnoses and unnecessary interventions and increased

patient autonomy. Individual level patient benefits also translate into improved

clinical practice and will allow for increased confidence for physicians when de-
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ciding on treatment plans. The medical community and health system as a

whole also benefit from the use of personalised healthcare. Improved decision

making directly translates into getting the right treatment to the right pa-

tients more quickly, saving time and money from being wasted on non optimal

treatment plans.
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1.4 Biomarkers

1.4.1 Definition

A biomarker is an objective indication of some medical state observed exter-

nally to a patient which can measured and reproduced accurately (Strimbu

& Tavel 2010). A vast literature is available on the use of biomarkers within

healthcare, and so there are many further definitions which describe biomark-

ers in more detail. A definition that is frequently cited as the standard is

that given by the National Institutes of Health Biomarkers Definitions Work-

ing Group: “a characteristic that is objectively measured and evaluated as an

indicator of normal biological processes, pathogenic processes, or pharmaco-

logic responses to a therapeutic intervention” (Biomarkers Definitions Working

Group 2001). The World Health Organisation International Programme on

Chemical Safety define a biomarker as “any substance, structure, or process

that can be measured in the body or its products and influence or predict the

incidence of outcome or disease” (World Health Organization and International

Programme on Chemical Safety 2001). The WHO have also given an expanded

definition to incorporate treatment e↵ects, interventions and accidental expo-

sure: “almost any measurement reflecting an interaction between a biological

system and a potential hazard, which may be chemical, physical, or biological.

The measured response may be functional and physiological, biochemical at

the cellular level, or a molecular interaction.” (World Health Organization and

International Programme on Chemical Safety 1993). Clearly, under these defi-

nitions, a biomarker can measure a wide variety of medical states and examples

are numerous. They can vary hugely in complexity, some of the simplest be-

ing health measurements like blood pressure and heart rate. Increasing in

complexity are measurements taken from laboratory assessments of blood and

tissue such as creatinine level and red blood cell count; biomarkers coming

from genetic testing are also becoming increasing utilised.

Biomarkers can be broadly categorised into 3 types: diagnostic, predic-

tive and prognostic. Diagnostic biomarkers allow for the early detection of a

disease and aids in narrowing down a diagnosis. The detection of a certain sub-
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stance may be indicative of disease, much like how the presence of antibodies

may indicate that the patient has some kind of infection. An example of this is

the detection of mutant proteins, such proteins can only come from a tumour,

so their detection can inform on the presence of a cancer (Wang et al. 2011).

Similarly, a traceable biomarker can be introduced to a patient to examine

organ function, for example sodium chloride is used as a radioactive isotope

when exploring perfusion of the heart muscles. Predictive biomarkers allow

investigators to predict how a patient will respond to a certain treatment. This

allows the identification of patient subgroups that are most likely to respond

to a treatment. Predictive biomarkers also show great utility as targets for

some treatments, such as the ER and PR genes in breast cancer and EGFR1

mutations in NSCLC (Oldenhuis et al. 2008). Prognostic biomarkers pro-

vide information to investigators on the likely course of the disease and give

information on the expected outcome of the patient, without intervention (Old-

enhuis et al. 2008).

1.4.2 Prognostic vs Predictive Biomarkers

It can often be di�cult to distinguish a prognostic from a predictive biomarker,

particularly in cases where there has been no comparison of the experimen-

tal treatment to a control. To illustrate the di↵erence between prognostic

and predictive biomarker e↵ects, Figure 1.1 shows three potential scenar-

ios represented graphically. In all Figures, the ‘outcome’ for four possible

patient groups within a simple two-arm randomised trial have been plot-

ted. The four groups are split by binary biomarker status and treatment

received: 1) biomarker-positive patients that received the experimental treat-

ment; 2) biomarker-negative patients that received the experimental treat-

ment; 3) biomarker-positive patients that received control; 4) biomarker-negative

patients that received control. On all Figures, a more positive clinical outcome

along the y axis represents a better outcome for patients.

In Figure 1.1a, there is no treatment e↵ect for biomarker-positive or -
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negative patients as both lines remain flat. However, the clinical outcome

for biomarker-positive patients is consistently higher than that of biomarker-

negative patients. This is an example of a purely prognostic biomarker e↵ect,

the biomarker gives information on expected clinical outcome but does not

inform on expected treatment e↵ects. Figure 1.1b shows an example of a

purely predictive biomarker e↵ect. On the control arm, there is no di↵erence

in clinical outcome between biomarker-positive and -negative patients. On

the treatment arm however, there is a clear treatment benefit for biomarker-

positive patients but none for biomarker-negative. The biomarker informs on

the expected treatment benefit for biomarker-positive patients, but does not

provide any information regarding expected clinical outcome of the patient

without intervention. Figure 1.1c represents a scenario in which the biomarker

is both predictive and prognostic. There is a clear increase in clinical out-

come on the control arm for biomarker-positive patients and this di↵erence in

outcome increases when the experimental treatment is introduced.

19



Control Experimental

C
lin

ic
al

 O
ut

co
m

e

Biomarker Negative Biomarker Positive

(a) Prognostic biomarker

Control Experimental

C
lin

ic
al

 O
ut

co
m

e

Biomarker Negative Biomarker Positive

(b) Predictive biomarker

Control Experimental

C
lin

ic
al

 O
ut

co
m

e

Biomarker Negative Biomarker Positive

(c) Prognostic and predictive biomarker

Figure (1.1) Predictive vs prognostic biomarker e↵ects

Due to the di↵erences between prognostic and predictive biomarkers ex-

plored above, the way in which they are identified or verified for use can vary

greatly. Prognostic biomarkers are somewhat simpler to identify; they can be

studied within either prospective or retrospective patient cohorts, as the e↵ect

of treatment (if included at all) does not need considering (Paesmans 2012).

For predictive biomarkers however, one needs to demonstrate that biomarker-

positive patients have a higher level of treatment benefit when compared to

a control/standard of care than biomarker-negative patients. Therefore, the

predictive capability of a biomarker needs to be validated within a clinical
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trial before it can be used within healthcare to guide treatment decisions. To

truly validate a predictive biomarker, one needs to randomise both biomarker-

positive and -negative patients to either control or treatment and demonstrate

the presence of treatment e↵ect among positive patients and absence of treat-

ment e↵ect in negative patients; similarly an increase in treatment benefit in

positive patients compared to negative can be demonstrated. This can be

achieved using appropriately powered subgroup analyses or through testing

the interaction e↵ect between the treatment and biomarker (Paesmans 2012).

Three examples of trial designs which assess a treatment associated with

a predictive biomarker are briefly described here, to demonstrate the range of

design features and the nuances in what question is being answered within the

trial. In the Randomise-All design (Figure 1.2a), patients biomarker status is

assessed and patients are randomised to either treatment or control regardless

of their status. This design is best suited for cases in which the treatment

is thought to have the most benefit for biomarker-positive patients, but it is

unknown whether the treatment is also beneficial (or less so) for biomarker-

negative patients. Such a design is useful to explore treatment e↵ect in the

overall population, as well as both the biomarker-positive and -negative sub-

groups, assuming appropriate power for subgroup testing is incorporated into

the design.

In the Targeted Trial design (Figure 1.2b), patients’ biomarker statuses are

determined and only biomarker-positive patients are randomised to receive ei-

ther treatment or control (Simon & Maitournam 2004). Targeted designs are

useful in settings where there is evidence to suggest that the treatment under

consideration is e↵ective only in biomarker positive patients, but the biomarker

still needs to be validated. This strategy is particularly useful where it is uneth-

ical to randomize the biomarker-negative population into di↵erent treatment

arms, for example where there is prior evidence that the experimental treat-

ment is not beneficial for biomarker-negative individuals, or is likely to cause

them harm. Targeted designs are often smaller, but large numbers of patients

still need to be screened to identify a suitable biomarker-positive population
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(Hoering et al. 2008).

The Biomarker Strategy design (Figure 1.2c) tests whether or not a biomarker-

based treatment strategy is superior to standard therapy (Hayes et al. 1998).

Patients are randomised to either a treatment strategy based on the biomarker,

or a treatment strategy not based on the biomarker. Patients randomised to

the biomarker strategy then have their biomarker status assessed, biomarker-

positive patients then receive the treatment and biomarker-negative patients

receive control. For patients randomised to the non biomarker strategy design,

no biomarker status is assessed and all patients receive standard therapy.

Although quite similar in their approach and design, these trials all assess

di↵erent hypotheses. In the Randomise-All design, the main hypothesis is

whether or not the treatment is beneficial in the trial population, with the

potential to assess subgroup e�cacy. The hypothesis within the Targeted

design is whether or not the treatment is beneficial within the biomarker-

positive subgroup. The question addressed within the Strategy design is again

slightly di↵erent and assesses whether a biomarker-based treatment strategy

is more beneficial than giving all patients control/standard of care.
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Figure (1.2) Predictive biomarker trial designs

The design and implementation of confirmatory clinical trials which incor-

porate predictive biomarker information are central to this thesis, further trial

designs are explored in Chapter 2.
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1.4.3 Biomarker Uncertainty

Incorporating either prognostic or predictive biomarkers into clinical trial de-

sign can be challenging, particularly if there are aspects of the biomarker that

are uncertain at the planning stage. In a classically designed trial, the sample

size required to identify a certain level of treatment e↵ect, either in the overall

population or a biomarker-positive subgroup, with a desired level of power, is

calculated before trial start. This can be made di�cult to achieve when the

following are unknown (US Department of Health and Human Services Food

and Drug Administration 2019):

- The cuto↵ value which defines biomarker-positive patients

- The proportion of patients in the biomarker-positive subgroup, or marker

prevalence

- The level of treatment e↵ect in biomarker-positive and -negative patients

Within a fixed design, these unknowns can cause uncertainty in whether or

not demonstration of treatment e�cacy will be possible within the trial. With

this in mind, the utility of adaptive clinical trials, discussed in Section 1.2.2, is

shown. A design in which the sample size and other features can be updated

within the trial, based on updated information, may be more e�cient than a

fixed design and improve operating characteristics. Some of examples of how

adaptive trial designs could incorporate the described biomarker uncertainty

include:

- A study designed to identify the optimal cuto↵ value for a biomarker

to define the positive subgroup. Examination of early endpoints at an

interim analysis using a set of candidate cuto↵s would allow for cuto↵s

to be changed or ruled out all together

- A study designed to assess e�cacy in the biomarker positive subgroup,

but which also recruits biomarker-negative patients for safety. An early

assessment of e�cacy at an interim analysis which showed lack of e�cacy

or even harm in the biomarker-negative group could lead to reduced

accrual of negative patients or exclusion for the remainder of the trial
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- Interim analyses which found increased levels of treatment benefit in the

positive subgroup could increase or fully restrict enrolment to the sub-

group. Moreover, there could be potential for early stopping for e�cacy

Work in this thesis focusses on clinical trial design and implementation

under uncertainty in the biomarker cuto↵ used to define positive patients.

Specifically, it is of interest to identify the optimal cuto↵ within a confirmatory

clinical trial framework, whilst ensuring appropriately powered analyses and

control of the family wise error rate. A number of trial designs achieving

optimal cuto↵ identification are discussed in Chapter 2, before novel work in

this area is presented in Chapters 3, 4 and 5.

1.5 Statistical Background

This section introduces some of the statistical terms, notation and concepts

used throughout this thesis. Various statistical distributions used throughout

this work are presented in Section 1.5.1; an introduction to frequentist hy-

pothesis testing is given in Section 1.5.2; the family wise error rate (FWER)

is defined and common methods of FWER control described in Section 1.5.3.

1.5.1 Statistical Distributions

The Uniform Distribution

Let X denote a random variable. If X follows a uniform distribution, then

X ⇠ U(a, b) with the following probability density function (f(x)), expected

value (E(X)) and variance (V ar(X)):

f(x) =

8
<

:

1

b�a
, x 2 [a, b], a, b 2 R

0 otherwise

E(X) =
b� a

2

V ar(X) =
(b� a)2

12
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X ⇠ U(0, 1) is used throughout this thesis, giving the following:

f(x) =

8
<

:
1, x 2 [0, 1]

0 otherwise

E(X) =
1

2

V ar(X) =
1

12

The Beta Distribution

The beta distribution takes two shape parameters, a and b. If X ⇠ Beta(a, b),

then

f(x) =
1

B(a, b)
xa�1(1� x)b�1

for 0 < x < 1 and B(a, b) is defined as

B(a, b) =
�(a)�(b)

�(a+ b)

�(.) is known as the Gamma function and is defined as �(a) =
R1
0

ua�1e�udu.

If a is an integer, then the Gamma function simplifies to a factorial function:

�(a) = (a� 1)!.

E(X) =
a

a+ b

V ar(X) =
ab

(a+ b)2(a+ b+ 1)

The Weibull Distribution

The Weibull distribution takes a scale parameter ↵ and a shape parameter

� (� and k are commonly used notation, but ↵ and � are used within this

thesis). For X ⇠ Weibull(↵, �):

f(x) =

8
><

>:

�

↵

✓
x

↵

◆��1

e�(x/↵)
�

x � 0

0 x < 0

E(X) = ↵�(1 + 1/�)
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V ar(X) = ↵2


�

✓
1 +

2

�

◆
�
✓
�

✓
1 +

1

�

◆◆2�

1.5.2 Hypothesis Testing

Hypothesis testing is a form of statistical inference that allows one to use data

obtained from a sample to draw conclusions about some population parameter

or probability distribution. Although popularised in the 20th century, the

first use of hypothesis testing dates back to the 1700s; both John Arbuthnot

(Arbuthnott 1710) and Pierre-Simon Laplace (Biran & Marie 2007) sought to

investigate whether male and female births were equally likely.

Within the classical, frequentist approach to hypothesis testing, one has two

hypotheses: the null hypothesis and the alternative hypothesis. To illustrate

this, suppose we have a parameter ✓ and we wish to test whether this parameter

belongs to some subset of the parameter space ⇥. The null hypothesis would

state that ✓ belongs to some set ! which is a subset of ⇥. The alternative

hypothesis would then state that ✓ does not belong to the set ! but instead

belongs to the parameter space excluding ! i.e. ⇥� !. Let the elements of !

and ⇥� ! be denoted by ✓0 and ✓A respectively. Then the hypothesis can be

formulated as:

H0 : ✓ = ✓0 vs H1 : ✓ = ✓A

where H0 is the null hypothesis and HA is the alternative hypothesis. The null

hypothesis H0 is assumed to be true until proven otherwise. One can conduct

a statistical test using collected data to determine whether or not H0 can be

rejected.

After calculating an appropriate test statistic, one can compare the ob-

tained value to a known distribution (often a standard normal) which the test

statistic would follow if the null hypothesis were true i.e. the null distribu-

tion. One then obtains the probability that the observed test statistic value,

or one more extreme, arose assuming that the null hypothesis were true. This

is known as the P-value and this probability provides a measure of how likely
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the sample data are, assuming the null hypothesis is true. By comparing this

P-value to a pre-determined significance level (usually 0.05 for one-sided tests

or 0.025 for two sided tests), one can either reject or accept the null hypothesis.

If the obtained P-value is lower than the significance level, we reject the null

as it is highly unlikely that the observed data were obtained under the null

hypothesis. Conversely, if the P-value us not lower than the significance level,

then we fail to reject the null hypothesis and accept H0.

Errors may occur when rejecting or accepting the null hypothesis. A type

I error occurs when the null hypothesis is falsely rejected and a type II er-

ror occurs when the null hypothesis is falsely accepted. The probability of

making a type I error is controlled at a pre-determined value, by choosing the

significance level of the test (as above), this is usually denoted ↵:

P (Reject H0|H0 is true)  ↵

The probability of making a type II error is also controlled at a pre-determined

value, usually denoted �:

P (Accept H0|H1 is true)  �

The power of a test is the probability that the null hypothesis is rejected when

it is false, this is denoted at 1� �. Typical values of ↵ are 0.1, 0.05 and 0.01;

typical values of � are 0.2, 0.1 and 0.05, giving corresponding power of 0.8, 0.9

and 0.95 respectively.

As an example, consider the case of testing the di↵erence in means between

two groups. The null hypothesis is that the underlying population means of

each group are the same, with a two-sided alternative hypothesis. Let µ1 and

µ2 be the population means of groups 1 and 2 respectively. The null and

alternative hypotheses are then as follows:

H0 : µ1 � µ2 = 0 vs H1 : µ1 � µ2 6= 0
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Then, following collection of a random sample for each group, a test statistic

can be calculated. Let x̄1 and x̄2 be the calculated sample means of groups

1 and 2 respectively, s2
1
and s2

2
be the associated calculated sample variances

and n1 and n2 be the respective size of each group sample. In this case, the

t-test can be used to obtain an appropriate test statistic:

t =
x̄1 � x̄2q
s
2
1

n1
+ s

2
2

n2

The calculated value of t can then be compared to the students t distribution

to obtain a P-value to facilitate rejection or acceptance of the null hypothesis.

As discussed, the earliest use of the hypothesis test is attributed to John

Arbuthnot in 1710 (Arbuthnott 1710). He investigated birth records in London

every year between 1629 and 1710 and discovered that there were more male

births than female births every year. Assuming that male and female births

were equally likely with a probability of 0.5 (null hypothesis), he calculated

the probability of the observed outcome as 0.582, approximately 2 ⇥ 10�25.

Arbuthnot concluded that this probability was far too small to have occurred

purely by chance and was instead due to the intervention of some higher power:

”From whence it flows, that is Art, not Chance, that governs” (Arbuthnott

1710). In modern thinking, Arbuthnot obtained a P-value and found it to be

su�ciently small to reject his null hypothesis that the probability of male and

female births were equal.

1.5.3 Family Wise Error Rate (FWER)

The Family Wise Error Rate (FWER) is the probability of making at least one

type I error when carrying out multiple simultaneous hypothesis tests (a ‘fam-

ily’ of hypotheses); Tukey developed this concept in 1953 (Hartwell et al. 2006).

Suppose there are S null hypotheses to be assessed, denoted H10, ..., HS0, with

each null hypothesis being either TRUE or FALSE. Furthermore, using some

statistical test, we can either reject each null hypothesis by way of a signifi-
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cant test, or we can fail to reject each null if this test is not significant. Then,

by observing the results of this test and the actual truth for each Hi0, the

following random variables can be defined by summarising the results:

Hi0 is TRUE Hi0 is FALSE Total
Significant Test A B R

Non-Significant Test C D S �R
Total s0 S � s0 S

Table (1.1) Summary of outcomes when testing S hypotheses. Each hypothesis under
consideration is either TRUE or FALSE in actuality, and assessment of each results in
either a significant or non-significant test.

- A is the total number of ‘false positives’ (Type I error is then calculated

as A/S)

- B is the total number of ‘true positives’

- C is the total number of ‘true negatives’

- D is the total number of ‘false negatives’ (Type II error=D/S)

Thus, we have that the FWER is the probability of making at least one

type I error among the S hypotheses tested:

FWER = P (A � 1) = P (Falsely reject at least 1 Hi)

The FWER is then said to be controlled at a certain level ↵ by ensuring that

P (A � 1)  ↵, with ↵ usually set at a value of 0.05. Furthermore, procedures

can either control the FWER in a weak or a strong sense. A procedure is

said to control the FWER in a weak sense if control at a level ↵ is guaranteed

only when all null hypotheses are true (or when the ‘global null’ is true) i.e.

s0 = S. A procedure achieves strong control of the FWER if control at level

↵ is guaranteed for any combination of true and false null hypotheses. More

formally (Westfall & Young 1993):

Weak control:

P (Reject at least one Hi|All Hi0 are true)  ↵
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Strong control:

P (Reject at least one Hi, i = j1, ..., jt|Hj10, ..., Hjt0 are true, for any

combination of true and false hypotheses)  ↵

In most cases, it is therefore preferable to control the FWER in the strong

sense, as is is not known which hypotheses are true prior to testing. In cases

where one would allow less protection of the type I error rate, weak control

would su�ce.

Current Methods of FWER Control

Many methods exist to address FWER control, and range in both complexity

and e�ciency of data usage. They can be broadly categorised as either single-

or multi-step procedures; single-step procedures can be used for simultaneous

assessment of hypotheses, whereas multi-step procedures assess hypotheses

sequentially.

Bonferroni/Šidák

Perhaps the most widely used procedure is the Bonferroni method (Neyman

& Pearson 1928, Dunn 1961), it is a single-step procedure that is simple to

implement and is broadly applicable. The most common form of this method is

to divide the available alpha equally between all tests. Then, for S hypotheses

Hi with associated P-values Pi, each Hi is rejected if Pi <
↵

S
. Alternatively,

more weight can be given to some hypothesis tests over others and more of the

total alpha can be allocated depending on test importance, likelihood of success

and other factors. In this case, each Hi is tested at a local level ↵i = wi↵,

with wi � 0, i = 1, ..., S, and
P

S

i=1
wi = 1. For example, a common weighting

is to allocate 80% of the total alpha to a main assessment of treatment e↵ect

and 20% to a subgroup assessment, usually resulting with ↵Main = 0.04 and

↵Sub = 0.01. The Bonferroni is usually overly conservative and leads to a loss

in power if the number of hypotheses is large or there is correlation between

the test statistics. Slight gains in power can be made by implementing the

Šidák procedure (Šidák 1967), with each ↵i = 1 � (1 � ↵)
1
S . This procedure
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does provide additional power, but fails to control the FWER when tests are

negatively correlated.

Holm

The Holm procedure (Holm 1979) is a multi-step stepdown procedure, each

hypothesis is addressed sequentially in order of their significance. Firstly,

the P-values Pi are ordered from the smallest to the largest and relabelled

P(1), ..., P(S) with P(1) < P(2) < ... < P(S). The procedure is then carried out

as follows:

1. The smallest P-value is compared to ↵

S
(as in the equal Bonferroni), with

the P-value considered significant if P(1) <
↵

S
. If significant, proceed to

the next test.

2. The second smallest P-value is then compared to ↵

S�1
, with the P-value

considered significant if P(2) <
↵

S�1
. If significant, proceed to the next

test.

3. P(3) is compared to ↵

S�2
, with the P-value considered significant if P(3) <

↵

S�2
. If significant, proceed.

...

4. Finally, the largest P-value will be compared to ↵ (↵ = ↵

S�S+1
)

Note that, if at any step in the process a non-significant result is obtained,

the procedure is stopped and no larger P-values are assessed and no conclusions

can be drawn for the corresponding hypotheses. The Holm is less conserva-

tive than the Bonferroni as a significant test with the smallest P-value allows

other endpoints to be assessed at larger local alpha levels; this leads to an

overall higher level of power. However, it can still be too conservative in cases

where test statistics are correlated as it does not make use of their dependence

structure. Alternative approaches that also make use of a step-wise testing

procedure are the Hochberg (Hochberg 1988), a step-up procedure, and the

fixed sequence method.
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Hochberg

The Hochberg procedure (Hochberg 1988) can be thought of as a reversed

version of the Holm, in that it is a multi-step step-up procedure. The same local

alpha cuto↵s of ↵

S
, ↵

S�1
,...,↵ are used, but the Hochberg begins by comparing

the largest P-value (P(S)) against the largest critical value (↵). The procedure

is carried out as follows:

1. The largest P-value P(S) is compared with ↵. If P(S) < ↵ and the corre-

sponding hypothesis is rejected, all following hypotheses are also rejected

and the procedure stops. Otherwise, proceed to the next test.

2. The second largest P-value P(S�1) is compared with ↵

2
. If P(S�1) < ↵

2

the current and all following hypotheses are rejected and the procedure

stops. Otherwise, proceed to the next test.

3. P(S�2) is compared with ↵

3
. If P(S�2) <

↵

3
the current and all following

hypotheses are rejected and the procedure stops. Otherwise, proceed to

the next test.

...

4. The smallest P-value P(1) is compared with ↵

S
. If P(1) <

↵

S
, then reject

the final hypothesis.

Note that testing is carried out sequentially until a significant result is

obtained, at this point the Hochberg procedure states that all hypotheses with

smaller P-values are also significant. By construction, the Hochberg rejects all

hypotheses that would be rejected by the Holm and potentially more, meaning

that it can be more powerful. However, it has been shown that the Hochberg

will usually control the FWER for positively correlated tests, but can fail to

do so for those with negative correlation structures.

Fixed Sequence Method

The fixed sequence strategy addresses the problem of multiplicity by testing

hypotheses in a pre-defined order, which are often ranked according to clinical

relevance or chance of success. Hypotheses are all tested at the same signif-

icance level, usually ↵ = 0.05, and the next hypothesis will only be tested
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pending a significant result for the current hypothesis. Although there is no

formal alpha adjustment, the FWER is not inflated as the testing order is pre-

specified and no further testing is carried out as soon as a non-significant result

is obtained. The key concept behind this method is that when a significant

result occurs, the alpha level for the associated test can be carried forward

to the next test. However, upon a non-significant result, all possible available

alpha is used and no further conclusions can be drawn.

The main appeal of this method is the lack of alpha adjustment and sim-

plicity of implementation. However, as noted above, the method stops im-

mediately following a non-significant result and so all subsequent hypotheses

cannot be addressed; therefore, the specified ordering of testing is crucial and

needs to be thoroughly explored.

1.6 Thesis Overview

This chapter has served as an introduction to the thesis, providing initial moti-

vation and background material, as well as introducing the research questions

that will be addressed throughout this thesis:

1. Explore the optimisation of the cutpoint of a continuous biomarker within

a confirmatory study, whilst still controlling the overall false positive rate.

Generalise this setting to incorporate multiple biomarkers to identify the

patient population of interest. Explore methods to optimise the patient

population and embed these into confirmatory trial design

2. Explore complex patient selection tools based on multiple variable mea-

surements as well as other novel statistical approaches. How can these

methods be used to address multiplicity arising from the optimisation

of a patient population, as well as the multiplicity associated with test-

ing multiple independent hypotheses within a confirmatory clinical trial

setting

The remained of this thesis is structured as follows. Chapter 2 reviews

the literature of clinical trial designs incorporating biomarker information.
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This chapter provides an overview of how the design and implementation of

biomarker guided designs have evolved over time to make use of increasingly

complex data types and further improve the drug development process. Par-

ticular weight is given to reviewing trial designs which identify an optimal

cuto↵ for a biomarker associated with the treatment under consideration, as

this concept forms the basis of the work described in later chapters. Chapter

3 addresses research question 1. A trial design put forward by Renfro et al.,

which achieves threshold identification and evaluation for a single continuous

biomarker, is discussed in detail and an implementation presented in the form

of a simulation study. Their design is then extended to the dual biomarker case,

three methods achieving dual biomarker threshold identification are embedded

into the trial design and a simulation study carried out to investigate method

performance and trial operating characteristics. Chapter 4 then presents more

novel work carried out to address research question 1, in which dichotomosing

thresholds for two continuous biomarkers are identified within a confirmatory

trial. In this chapter, accuracy of threshold identification is the main object

of interest and a number of threshold identification techniques are embedded

into an adaptive trial design and their performance contrasted. Chapter 5

then addresses research question 2, generalising family wise error rate control

to the the novel setting of dual biomarker threshold identification within a con-

firmatory trial. A resampling based method of family wise error rate control is

presented and explored in this setting, performance evaluation is carried out

via a simulation study and application to an external dataset. Finally, Chapter

6 concludes the thesis with a summary and discussion, alongside proposals of

extensions and future work.
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Chapter 2

Literature Review

2.1 Clinical Trial Designs Incorporating Pre-

dictive Biomarkers

The development of molecularly targeted therapies has been driven by our in-

creased understanding of disease heterogeneity at a molecular level. Targeted

therapies form the foundation of personalised healthcare; they work by target-

ing specific cancer genes and proteins that allow the tumour to grow rapidly,

and are often associated with predictive biomarkers. These treatments can

block or completely turn o↵ signals that cause the cancer to grow and di-

vide, prevent cancerous cells from having a long life-span or can completely

destroy cancerous cells. Targeted therapies usually belong to one of two cate-

gories: monoclonal antibodies or small-molecule drugs. Monoclonal antibodies

are specific proteins developed in a lab and are designed to attach to targets

found within or on cancer cells. They can mark cancer cells, in order for the

immune system to more e�ciently attack the cancer, they can directly stop or

slow cell growth and some can carry toxins directly to cancerous cells. Small

molecule drugs are small enough to invade cancerous cells and work by block-

ing processes that cause uncontrolled multiplication and spread of cancerous

cells. Many targeted therapies are already used successfully to treat patients.

Some breast cancers have a higher concentration of a protein called Human

Epidermal Growth Factor Receptor 2 (HER2), which causes the tumour to

grow. Targeted therapies such as trastuzumab and pertuzumab are FDA ap-
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proved treatments which target this HER2 protein (Swain et al. 2015). The

use of such targeted therapies o↵er great utility within personalised healthcare,

where increased understanding of a patient and their disease at a molecular

level can allow more informed decisions on the best treatment options for pa-

tients.

Developing targeted therapies and the use of predictive biomarkers have

also driven the design of novel trial designs which aim to answer questions

pertaining to the relationship between a patients biomarker values and the

expected treatment e↵ect. The observed treatment e�cacy is often higher in

or restricted to a sensitive subgroup of patients, defined by certain biomarker

values or genetic mutations. Many trials are therefore implemented to identify

and validate such patient subgroups in a prospective manner, in order to incor-

porate information provided by a predictive biomarker directly into the trial

design. In this section, a review of proposed clinical trial designs which aim to

assess targeted therapies and incorporate predictive biomarkers is given.

2.1.1 Non-Adaptive Biomarker Trial Designs

Targeted/Enriched Designs

Early explorations into incorporating biomarker information into clinical trial

designs investigated the benefits of randomising only biomarker positive pa-

tients to receive either the experimental treatment or control, rather than

randomising all patients. Such work was carried out by Simon and Maitour-

nam (Simon & Maitournam 2004, Maitournam & Simon 2005), who compared

a novel targeted clinical trial with a traditional all comers design, both of

which compared a new treatment with a control. The e�ciency of the tar-

geted design, compared with the traditional, was assessed with respect to the

required sample size for each study as well as the number of patients that

needed to be screened for marker positivity. Simon and Maitournam found

that the targeted design often required much fewer patients than the tradi-

tional design, though they found that the amount of reduction was heavily

dependent on the prevalence of marker-sensitive patients as well as the the dif-
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ference in treatment e↵ect between sensitive and non-sensitive patients. The

authors provide functions to describe the relative sample sizes between the

targeted and non-targeted design in terms of marker prevalence and subgroup

treatment e↵ects. Applying these functions to a previously implemented tar-

geted design within oncology (Slamon et al. 2001), the authors show that an

equivalent non-targeted design would have required between 2.7 and 16 times

as many patients to achieve the same level of power, depending on the level of

assumed treatment benefit for non-sensitive patients.

Although Simon and Maitournam showed there is clear benefit to targeting

patient enrolment, in order to exclude patients based on their result from a

biomarker screening, one needs to have a very high level of confidence in the

classifier. As well as confidence in the actual classifier, the assay providing

biomarker measurement needs to be reproducible with a high level of sensi-

tivity and specificity. Wang et al (Wang et al. 2011) explored the e↵ects of

misclassification error of a genomic classifier within an enriched non-inferiority

trial design. They showed that the type I error rate of falsely concluding

non-inferiority increased when assay accuracy was poor. In fact, it was shown

that the type I error rate always exceeded a one-sided 0.025 significance level

when the assay was not 100% accurate. It was also shown that the posi-

tive predictive value of the classifier was directly related to the prevalence of

biomarker-sensitive patients in the population.

Biomarker by Treatment Interaction Design

In some cases, there may be preliminary evidence to inform on a biomarker’s

predictive capabilities and whether a treatment may be more e↵ective in the

biomarker-positive subgroup than the biomarker-negative. If such evidence

exists, but it cannot be ruled out that the treatment is of no benefit in the

biomarker-negative group, a marker-by-treatment interaction design (Anto-

niou et al. 2017) (or marker stratified design) may be appropriate. In this

design, patients are randomised to either treatment or control within certain

biomarker defined subgroups (see Figure 2.1). In such a design, the biomarker
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is used to stratify patients, rather than restrict eligibility, and assessment of

treatment e↵ect is carried out separately in both biomarker subgroups. Due

to the nature of the design, the hypothesis of interest, sample size, statisti-

cal power and randomisation procedure within each subgroup are independent

from those in other subgroups. The overall sample size must be calculated to

ensure adequate power to assess treatment e↵ect in each biomarker subgroup.

This means that the required sample size in such trials can be very large as

one is essentially conducting two separate trials in parallel. This large sample

size requirement and general di�culty of implementation has lead to limited

use of such a design.

Assess biomarker 
status

Biomarker NegativeBiomarker Positive

RandomiseRandomise

ControlTreatment ControlTreatment

Figure (2.1) Biomarker by Treatment Interaction Design

Biomarker Strategy Design

Biomarker strategy designs were described briefly in Chapter 1, they focus on

exploring whether or not a biomarker should be utilised in the treatment de-

cision making process. Patients are randomised to either a treatment strategy

that ignores biomarker information or to a strategy that utilises the biomarker

status of each patient. The hypothesis under consideration is whether or not

patients that were treated according to their biomarker status had better out-

comes than patients treated without taking the biomarker into consideration.

Conclusions may therefore not be drawn about actual treatments used within

the trial as analyses may not be powered to answer such questions and ran-
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domisation within treatment strategies may not have been implemented.

2.1.2 Adaptive Biomarker Trial Designs

The designs described above comprise early literature on biomarker-based tri-

als. In more recent years, there has been an increase in the number of trials that

employ some kind of adaptive element within the trial in order to improve e�-

ciency. This adaptiveness usually takes the form of accumulated patient data

being used to change accrual rules and trial eligibility whilst the trial is still

ongoing; both frequentist and Bayesian methods can be used to achieve this.

Trials discussed in the following section all implement some kind of adaptive

feature to incorporate biomarker information into the design.

Adaptive Enrichment Designs

In an adaptive enrichment design, the trial begins by randomising all patients

to either treatment or control (for example), regardless of their biomarker

status. If at an interim analysis some futility threshold is reached in the as-

sessment of treatment e↵ect in the biomarker negative group, accrual for the

rest of the trial is restricted to biomarker-positive patients. The hypothesis

of interest at the final analysis in this case is then concerned with treatment

e↵ect in the biomarker-positive subgroup only. If the futility threshold is not

reached at the interim, patient accrual continues unchanged and assessments of

treatment e↵ect in the overall population and the biomarker-positive subgroup

are carried out at final analysis, with appropriate type I error considerations.

Wang et al (Wang et al. 2007) introduced one of the first such trials, which

allowed for adaptation of patient accrual mid-trial based on the results of an

interim analysis, their trial is often referred to as an adaptive accrual design

for this reason. If the interim analysis shows that the treatment has no ef-

fect in biomarker negative patients (i.e. futility), then accrual of biomarker

negative patients is stopped and the final analysis is conducted solely using

biomarker-positive patients. If futility is not shown, all patients continue to

be accrued and the treatment e↵ect is assessed in the overall population and

in the biomarker-positive subgroup. A schematic of such a design is given in

Figure 2.2.
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Interim analysis investigating treatment 
effect in biomarker-negative patients

FutilityEfficacy

Stop accruing 
biomarker negative 

patients

Continue accruing all 
patients

Final analysis
Treatment effect in all patients 

and in biomarker positive
subgroup

Final analysis
Treatment effect in 
biomarker positive 

patients only

Classic RCT 
comparing treatment 

to SOC

Figure (2.2) Adaptive Enrichment Design

When compared with designs that employ fixed randomisation alongside

assessment of biomarker subgroup testing, enriched designs show greater power

to detect subgroup e↵ects. However, these trials lose the ability to both identify

and validate a biomarker based subgroup within the same trial as biomarker-

negative patients are no longer accrued after the interim (Renfro et al. 2016).

Moreover, restriction of patient accrual to a smaller populations can lead to in-

creases in study duration, with this increase dependent upon biomarker preva-

lence.

Mid trial adaptations are not limited to a single interim analysis, as shown

by Brannath et al (Brannath et al. 2009) and Mehta and Gao (Mehta & Gao

2011). Brannath et al put forward a trial in which enrichment to a biomarker

defined subgroup could be implemented at a first interim analysis and sample

size adjustment could be carried out at a second interim analysis. Mehta and

Gao describe a method of altering a group sequential design to allow restriction

to a subgroup at an interim analysis; the number, spacing and defined points

of subsequent interim analyses can be also be modified. Work focussing on
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the more complex scenario of using time to event endpoints in an adaptive

enrichment design was also carried out out Mehta et al (Mehta et al. 2014).

A Bayesian alternative to the adaptive enrichment design described by

Wang et al (Wang et al. 2007) was put forward by Karuri and Simon (Karuri

& Simon 2012). Their trial allows for mid trial adaptations, with the added

benefit of the ability to specify the prior confidence in the biomarker’s ability

to correctly predict patient outcomes.

Adaptive Signature Design

The Adaptive Signature Design, described by Freidlin and Simon (Freidlin &

Simon 2005), is a two stage phase III trial that allows for the identification

and validation of a biomarker based classifier within a confirmatory clinical

trial; this trial design is discussed in detail in Chapter 4. Biomarker classifier

identification is carried out within a training set (stage 1) and validation is

carried out in a validation set (stage 2); by keeping these stages separate, this

approach avoids introducing bias. Arising multiplicity from overall and sub-

group testing is addressed by splitting the overall ↵ of the study between the

two tests. An extension of their own trial was put forward by Freidlin, Jiang

and Simon (Freidlin et al. 2010) to increase the e�ciency of both classifier de-

velopment and validation elements of the design. These increases in e�ciency

are achieved alongside overall increases in power by the incorporation of K-fold

cross validation into the trial framework.

Outcome-Based Adaptive Randomisation

An outcome-based adaptive randomisation design aims to simultaneously as-

sess biomarkers and treatments, whilst ensuring patients receive the most ap-

propriate treatment (Antoniou et al. 2017). Such a design is useful when there

is limited evidence to support the use of a biomarker or when multiple tar-

geted treatments are to be considered. An illustration of the design is given
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in Figure 2.3. At trial commencement, the biomarker status for each patient

is assessed and patients are split into positive and negative. Within these two

cohorts, treatment allocation is randomised but ratios are not fixed. Randomi-

sation probabilities can be altered to ensure that the arm/arms showing the

most benefit to the study population receive a larger proportion of patients.

On Figure 2.3, one can see adaptive randomisation (AR) ratios, which can be

chosen following various interim analyses to account for accumulated patient

information and data on treatment e�cacy.

Zhou et al (Zhou et al. 2008) put forward an outcome-based adaptive ran-

domisation design for targeted treatments which makes use of a Bayesian hi-

erarchical framework to randomise treatment allocations based on biomarker

status. At trial commencement, the baseline proportion of patient response

(referred to as disease control rate) in the population is unknown, so the trial

begins with equal randomisation within each biomarker subgroup. The first

adaptive randomisation is then carried out; using a Bayesian probit model, the

posterior rate of disease control is calculated. Adaptive randomisation ratios

are then defined as the posterior mean of disease control rate in each treatment,

within each biomarker subgroup. This process continues until all patients are

enrolled, the trial may stop for futility if all treatments are stopped due to

lack of e�cacy. Although this trial design is considered very ethical from a pa-

tient treatment perspective, as patient care is optimised with respect to their

biomarker status, such a design requires both a very short assessment period

for both biomarker status and endpoint.
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status

Biomarker NegativeBiomarker Positive

Randomise
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Interim Analysis 1

Randomise
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Interim Analysis 2

Randomise
AR: 1:4

AR: 1:2

Randomise
Ratio: 1:1

Interim Analysis 1

Randomise
AR: 3:1

Interim Analysis 2

Randomise
AR: 3:1

AR: 3:2

Figure (2.3) Outcome-Based Adaptive Randomisation Design

Adaptive Biomarker Strategy Design

Wason et al (Wason et al. 2014) describe a trial design closely related to the

biomarker strategy design described in Section 2.1.1. In their design however,

their exists a second, cheaper biomarker which may be highly consistent with

the ‘gold standard’ biomarker under consideration. This is a two stage design,

in the first stage patients are randomised to a treatment regime defined by

the ‘gold standard’ biomarker or to standard of care, much like in the origi-

nal biomarker strategy design. However, throughout the entire first stage, the

secondary biomarker value is also recorded for all patients. If, at an interim

analysis, it can be shown that the two biomarkers are in near total agreement

when predicting biomarker-strategy benefit, then the trial may switch to using

the cheaper biomarker in the second stage. At a final analysis, the primary ob-
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jective is similar to the standard biomarker-strategy design: to assess whether

a treatment strategy that utilises either biomarker is better than a treatment

strategy without a biomarker.
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2.2 Continuous Biomarker Threshold Designs

Preliminary information may be available before a trial starts detailing the

ability of a single continuous biomarker to identify the sensitive patient sub-

group. In such cases, it is known that higher (or lower) values of the biomarker

are associated with a higher level of treatment e↵ect, but a threshold value

that optimally separates the population into sensitive and non-sensitive has

not been established or validated. The identification and validation of such

a threshold for a predictive biomarker can become a lengthy and ine�cient

process, particularly if separate studies are implemented post-hoc. Moreover,

performing identification and validation using multiple separate sources of data

could introduce bias or confounding into results. Ideally then, identification

and validation of the optimal dichotomosing threshold should be carried out

within a single trial; upon trial completion the biomarker threshold can then

be used to guide treatment decisions for patients and enrollment criteria for

future trials.

Threshold identification and validation are generally incorporated into phase

II or III designs, both of which come with their own considerations for im-

plementation. Such designs are often adaptive, allowing updates to patient

recruitment rules defined by new information obtained regarding treatment

e↵ect in the biomarker sensitive and non-sensitive populations. Futility and

e�cacy stopping rules, defined either by the entire trial population or the

marker-sensitive group can also be incorporated. Due to the increased volume

of hypothesis testing to identify the optimal threshold, particularly in phase

III trials in which the primary goal is to confirm a treatment e↵ect, much care

needs to be taken to ensure adequate control of the overall type I error within

the trial and appropriately powered analyses to detect overall and subgroup

e↵ects.

In this section, a number of trial designs which identify and validate the op-

timal dichotomising threshold for a single continuous biomarker are explored.
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2.2.1 Biomarker Adaptive Threshold Design

Jiang et al (Jiang et al. 2007) build on their earlier work of the adaptive

signature design (Freidlin & Simon 2005), in which a test for treatment e↵ect

in the overall trial population is combined with the identification and validation

of a genomic signature, used to define the sensitive patient population. Often,

preliminary information may suggest that the sensitive subgroup can be defined

by a single biomarker measured on a continuous scale, but an appropriate cuto↵

value to dichotomise patients is not available prior to trial start. Their novel

design combines a test for overall treatment e↵ect with the establishment and

validation of a cutpoint for a pre-specified continuous biomarker.

The two procedures presented in their paper are designed around the idea

of a cut-point model. Under the setting that the treatment under consideration

is only e↵ective in a sensitive subgroup of patients, defined by a continuous

biomarker, the logarithm of the ratio of hazard functions for patients on treat-

ment to those on control can be written as:

ln

✓
hT (t)

hC(t)

◆
=

8
<

:
0 B < c0

� B � c0

where hT (t) and hC(t) denote the hazard functions for treatment and control

arms, � denotes that treatment e↵ect, B represents the values of the measured

continuous biomarker and c0 denotes an unknown cuto↵ value defining sensitive

patients. This model assumes that only patients with biomarkers values above

c0 benefit from the treatment. Under the case that the treatment is e↵ective

for all patients in the study, then the above model reduces to

ln

✓
hT (t)

hC(t)

◆
= �

which is an estimate of the treatment e↵ect in the trial.

Procedures A and B are as follows:
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Procedure A

An initial test of overall treatment e↵ect is carried out at a significance level

↵1. If this test is significant, then the procedure is stopped and the null

hypothesis of no treatment e↵ect in the overall patient population is rejected.

If this overall hypothesis is not rejected however, then the following test is

implemented to assess the treatment e↵ect in a biomarker defined sensitive

patient subgroup, at a significance level of ↵2. The test statistic is calculated

as T = max
c2C

{S(c)}, where S(c) is the log likelihood ratio statistic obtained by

implementing a cut-point model with cuto↵ value c and C is a set of candidate

cutpoints defined pre trial. Within this cutpoint model, it is assumed that

patients with biomarker values above the respective cuto↵ value c benefit from

the treatment and those with biomarker values below do not. The cuto↵ used

to define the sensitive subgroup is therefore the one which maximises this test

statistic. Note that C can be defined to cover a range of values of interest, in

their work C was defined to cover deciles of the biomarker distribution from 0%

to 90%; the biomarker was assumed to follow a Uniform(0,1) distribution, thus

C = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9} in their work. There are three

distinct outcomes at trial completion: 1) treatment benefit is established in

the whole trial population; 2) treatment e↵ect is demonstrated in the sensitive

patient subgroup, defined as patients with biomarker values greater than the

identified c0; 3) no treatment e↵ect is established. Procedure A explicitly

separates the test for overall treatment e↵ect from the subgroup identification,

but is conservative in adjusting for multiplicity that results from combining

overall and subset tests. The authors recommend ↵1 = 0.8↵ and ↵2 = 0.2↵ to

preserve the overall type I error at ↵ = ↵1 + ↵2. Therefore in a classic setting

with ↵ = 0.05, this provides ↵1 = 0.04 and ↵2 = 0.01.

Procedure B

Procedure B is a generalisation of A, the approach taken is more e�cient as the

combination of overall and subset tests incorporates the correlation structure

between the test statistics. For each candidate cuto↵ value, the cut-point

model of interest is fitted and the log likelihood ratio statistic (S(c), c 2 C as

in procedure A) calculated to assess the null hypothesis of no treatment e↵ect in
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the subgroup of patients defined by the respective biomarker cuto↵. A natural

next step to calculate a test statistic using the observed log likelihood ratio

statistics would be to take the maximum of these values (Miller & Siegmund

1982). However, to ensure that this procedure has appropriate power when

the new treatment is e↵ective in the entire population, the test statistic for

the overall test, denoted S(0), is up weighted by a value R prior to taking the

maximum. The choice of R value is based on optimising the ability of this

framework to detect subgroup e↵ects without compromising overall power. A

value of R = 2.2 was used by the authors, this represents the di↵erence between

the 80th and 95th percentiles of a chi-squared distributions with 1 degree of

freedom. The test statistic for procedure B is therefore defined as

T = max{S(0) +R, max
0<c1

(S(c))}

To control the multiplicity arising from the construction of the test statistic

T, a permutation based approach was used by the authors. Treatment labels

were permuted K times to construct K permuted datasets, within these the

corresponding test statistic T ⇤ (same as above) was calculated. A permutation

P value was therefore obtained as:

1 +Number of permutations where T < T ⇤

1 +Number of permutations

The authors evaluate this design using a simulation study, alongside an ap-

plication to real data; they compared their novel design to a standard, broad

eligibility phase III trial designed to test for overall treatment e↵ect in the

whole trial population. They found that the design preserved the power to

detect an overall treatment e↵ect when the new treatment is e↵ective in the

majority of patients. When the subgroup of sensitive patients is small, the

proposed design o↵ered substantial improvement in e�ciency when compared

to the standard design. They conclude that a statistically valid test for a

biomarker-defined subgroup can be incorporated into a randomised phase III

design without compromising ones ability of identifying the case where a treat-
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ment is e↵ective in the broad population.

2.2.2 Adaptive Threshold Enrichment Design

In their paper, Simon and Simon (Simon & Simon 2013) propose a class of

adaptive enrichment designs in which the eligibility criteria of the study can

be updated during the trial. This allows entry to the trial to be adaptively

restricted to patients most likely to benefit from the treatment under consid-

eration. They present a specific application to the case of adaptive threshold

enrichment design, in which patient accrual can be adaptively restricted based

on measurements of a single continuous biomarker. There often exist a set of

candidate cutpoints pre trial, which may be defined by the sponsor or clinically

motivated, denoted c1, ..., cK , where K is the number of potential cutpoints.

These cutpoints may be actual biomarker values or simply quantiles of the

biomarker distribution.

In their work, they define the following f(x), which can be used to indicate

which patients will perform better on treatment than on control. A discrete

endpoint is used (response vs non-response), so that identification of respond-

ing patients is achieved by estimating the di↵erence between the probability

of response on treatment vs on control. In the setting of an adaptive threshold

enrichment design, in which there is a single continuous biomarker as the only

covariate, they propose the following definition:

f(x) = pT (x)� pC(x) =

8
<

:
0 x < c0

� x � c0

where x denotes values of a continuous biomarker, pT (x) and pC(x) are the

probabilities of response for a patient with biomarker value x on treatment

and control respectively, c0 is the true cutpoint which defines biomarker-high

patients and � > 0 is some non zero constant representing the increase in

treatment e↵ect for biomarker-high patients. Then, at an interim analysis,
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let l(ck) denote the log-likelihood of the data, which has been maximised with

respect to unknown constants p0 and p1. These constants are such that p0 < p1,

pC(x) = p0 8x, pT (x) = p0 for x  ck and pT (x) = p1 for x > ck. Then the

cutpoint ck which maximises this log-likelihood is taken as an estimate of the

true threshold c0 and is used to restrict accrual to only patients with biomarker

exceeding this value in the second stage.

In stage 1 of the trial, n1 patients are recruited before a single interim

analysis is carried out to identify the ck estimating c0. In stage 2, n2 = N �n1

patients with biomarker values greater than ck are recruited; N is fixed pre

trial. Patients from both stages then contribute to the final analysis, data

is analysed using a test statistic described in their paper, using a one-tailed

5% rejection region. The test statistic used accounts for di↵erences in patient

prognosis throughout the trial due to changing enrollment criteria and is shown

to adequately control the type I error in this setting. Detailed description of

the test statistic goes beyond the scope of this work, full details are in Section

2 of their paper (Simon & Simon 2013).

Simon and Simon assessed the performance of their adaptive threshold en-

richment design using a simulation study under a variety of conditions. Di↵er-

ent conditions were obtained by defining the probability of treatment response

for all patients on control and non-sensitive patients on treatment (p0), the

probability of response for sensitive patients on treatment (p1), the number

of candidate biomarker thresholds (K) and the true biomarker threshold (c0).

Their adaptive enrichment designed showed a significant increase in power over

a standard clinical trial design in the majority of cases. This increase in power

was most notable in cases in which only a small subset of patients benefit from

the treatment under consideration. However, the authors note that when one

restricts the eligibility criteria, the longer it takes to accrue patients for anal-

ysis. In cases where the adaptive enrichment design would show most utility

(when the benefiting patient subgroup is smallest), patient accrual will be most

restricted and take the longest. The benefit of reduced sample size to achieve

the same power when using the adaptive over a classical design may therefore
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be negated in such cases as the accrual rate is much slower. Moreover in cases

in which the treatment was broadly e↵ective (p0 and p1 comparable) or the

true threshold was low, power under both trial designs was comparable.

2.2.3 Continuous Biomarker-Adaptive Threshold Trial

(CBATT)

Spencer et al. (Spencer et al. 2016) describe a novel single-arm phase II

trial design which incorporates adaptive enrichment based on a continuous

biomarker. Their trial, titled the Continuous Biomarker-Adaptive Threshold

Trial (CBATT), allows one to optimally adjust the dichotomising threshold

defining the sensitive subgroup throughout the study. This is achieved through

a combination of generalised linear modelling alongside Bayesian prediction.

This trial design shows great utility in the early phase of the drug development

process as it aims to demonstrate that there exists a patient subpopulation in

which their is a clinically meaningful treatment e↵ect and also identify the

optimal biomarker threshold to define this patient subpopulation. Later trial

phases in the drug development process can therefore focus on the identified

biomarker subpopulation.

In this single arm, two-stage trial design, a binary outcome is assumed (re-

sponse vs non-response). It is of interest to identify a subpopulation of patients

in which the response rate exceeds some pre-determined value, which can be

clinically motivated or can represent a null value. It is also assumed that there

is a strong prior belief that a single continuous biomarker is predictive of treat-

ment e↵ect, with higher biomarker values associated with a larger probability

of response to treatment. Identification of a dichotomising threshold value

for this biomarker would therefore facilitate definition of a sensitive patient

subgroup. In stage 1 of the trial, recruitment is initially restricted to patients

with biomarker values above a preliminary threshold value, which again can

be clinically motivated. At an interim analysis, a number of candidate recruit-

ment thresholds are considered for stage 2. The power that would be achieved

at the final analysis using each threshold is predicted, taking stage 1 data into

account. The candidate threshold leading to a predicted power exceeding a
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target level of power is then taken into stage 2 as the new recruitment thresh-

old. If no candidate thresholds achieve the desired level of power, then the

trial can be stopped for futility at this stage. E�cacy testing at the final anal-

ysis is carried out using all patient data, addressing the null hypothesis that

‘no subgroup exists in which the new treatment has a desirable response rate’.

Results from this e�cacy analysis support proceeding to the next stage of the

drug development process and unbiased estimates of the optimal biomarker

threshold can be obtained.

Study Design

As discussed, the primary aim of this study is to twofold: 1) demonstrate

that there exists a patient subgroup in which the treatment is e↵ective and 2)

identify the optimal biomarker threshold to define this patient subgroup. The

first question is addressed by determining whether a subgroup exists within

the trial population in which the average response rate exceeds some pre de-

termined value ⇢. Denote the response rate at a biomarker quantile B as ⇡(B)

and the average response rate in a subgroup defined by biomarker values � B

as ⇧(B). If we let T ⇤ denote a possible biomarker quantile threshold, then the

null and alternative hypotheses can be written as

H0 : 8T ⇤ : ⇧(T ⇤)  ⇢

HA : 9T ⇤ : ⇧(T ⇤) > ⇢

A binomial exact test is carried out using data from all patients recruited to

the trial; due to assumptions made, can be considered as a test at a single value

T ⇤. If the null hypothesis can be rejected at this value, then the above H0 can

also be rejected. If this null can be rejected, it has then been demonstrated

that there exists a subpopulation in which the response rate exceeds ⇢ and

the secondary goal is then to determine the optimal threshold value of the

biomarker, T .

Spencer et al. then describe a two stage design in which a single interim

analysis is conducted. The stage specific sample sizes, n1 and n2, are chosen
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pre trial giving a total of N = n1 + n2 patients. In the first stage of the trial,

n1 patients with biomarker values exceeding a preliminary threshold of t1 are

recruited. Following the interim analysis, the threshold value is updated and

n2 patients with biomarker values greater than t2 are then recruited in stage

2. The preliminary threshold t1 can be chosen based on prior knowledge and

t2 is chosen to maximise power at the end of the study, based on stage 1 data.

The choice of t2 is explained in more detail below.

An indicator of response, xi = {0, 1}, is recorded for each patient, the

overall and stage specific responses can then be denoted Xob =
P

i
xi and

Xob,j respectively. One can use the inverse of the binomial distribution to

calculateXH , the minimum number of responses needed to acquire a significant

result prior to trial commencement. Using this value, one can also calculate

XH,2 = XH � Xob,1 and RH = XH/S, the remainder required in stage 2 and

the required response rate respectively.

Assuming a monotonically increasing relationship between biomarker and

response rate, we have that ⇧(max(t1, t2)) � ⇧(min(t1, t2)), so one can use

the binomial exact test P (X � Xob|X ⇠ Bin(S, ⇢)) to test the following

hypotheses at study completion:

H⇤
0
: ⇧(max(t1, t2))  ⇢

H⇤
A
: ⇧(max(t1, t2)) > ⇢

These are subtly di↵erent to H0 and HA, but if one rejects H⇤
0
, one can also

reject H0.

Interim Analysis

Following initial trial set up and stage 1 recruitment, an interim analysis

is carried out. At this interim analysis, Bayesian beta-binomial prediction

models are used to calculate the probability of observing the required number

of responses in stage 2 (XH,2), dependent on observed data in stage 1. This
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probability is calculated under a number of di↵erent candidate values of t2

used to restrict recruitment in stage 2. This probability then represents the

predicted power to detect a significant hypothesis test result when using each

candidate value of t2. A set of candidate thresholds, denoted t⇤
2
, consists of k

potential values of t2 which should be chosen pre-trial by the clinical team to

cover a range of meaningful values.

Modelling the Response Rate for Subgroups Based on Stage 1 Data

Assuming a monotonic increasing relationship between biomarker values and

the probability of response, one can model the probability of response, ⇡(B)

with a logistic regression model:

ln

✓
⇡(B)

1� ⇡(B)

◆
= �0 + �1B

Spencer et al show it is possible to then calculate the average response rate in

the subgroup of patients with biomarker values in the range (B, 1) as:

⇧(B) = ln

✓
1 + exp(�0 + �1)

1 + exp(�0 + �1B)

◆
/(�0(1� B))

Note that the derivation of this function is given in their paper but is not

presented here. To then account for uncertainty in maximum-likelihood esti-

mates of the model coe�cients (�̃0 and �̃1), 1000 realisations of hypothetical

coe�cients are produced using the Fisher information matrix from the fitted

model:  
�̃0

�̃1

!
⇠ MVN

✓ 
�̂0

�̂1

!
,

 
�2

0
�01

�01 �2

1

!◆

Each individual realisation of (�̂0, �̂1) therefore gives an estimate of the biomarker

model, ⇧̃(B), in the subgroup (B, 1).

Beta-Binomial Prediction

For the k potential thresholds in the vector t⇤
2
, one can generate 1000 ⇧̃(B =

t⇤
2,k
) values using the estimated (�̃0, �̃1) in order to take uncertainty of stage
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1 data into account. To these values, a beta distribution is fitted (⇧̃(B =

t⇤
2,k
) ⇠ B(at⇤2,k , bt⇤2,k)) and the number of responses in stage 2 is predicted using

Xt
⇤
2,k

⇠ BBi(n2, at⇤2,k , bt⇤2,k). The predicted power at the final analysis under

each t⇤
2,k

is then calculated as 1 � �
0
t
⇤
2,k

= P (Xt
⇤
2,k

� XH,2). The threshold

used to define recruitment in stage 2 (t2) is then the smallest t⇤
2,k

such that

1 � �
0
t
⇤
2,k

� 1 � �, i.e. exceeds a target level of power. If none meet this

requirement, a strict stopping rule could be enforced here.

Analysis After Stage 2

There are two components to the final analysis carried out after stage 2: sig-

nificance testing to demonstrate e�cacy and estimation of the true threshold.

Significance testing: If the trial is not stopped at the interim, a further n2

patients with biomarker values exceeding the chosen t2 will be recruited and

their response to treatment observed. The null hypothesis H⇤
0
(and therefore

H0) can be assessed using a binomial exact test, P (X � Xob|X ⇠ B(S, ⇢)).

Results of this e�cacy test will facilitate the drug moving into the next stage

of the development process and define the subgroup in which the drug should

be implemented.

Threshold Estimation: Using the technique used at the interim (fitting a

logistic regression model, generating 1000 realisations of the coe�cients and

then calculating 1000 ⇧̃(B) estimates at each T ⇤), one can model the entirety

of the dataset. One can then estimate the true threshold, T̂ , by taking the

value of B at which min(|⇧̂(B) � ⇢|) occurs; confidence intervals can also be

created using the distribution of min(|⇧̂(B)� ⇢|).

The authors show through a simulation study and retrospective application

to a real data set (a study of tamoxifen after mastectomy by the German Breast

Study Group) that their trial has increased power over fixed methods in a

variety of situations without increasing the overall type-I error. They also show
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that the obtained estimates of the true threshold are unbiased and more precise

than the same estimates from fixed studies. Although power was increased over

fixed methods, the authors note that often observed power was much lower

than the target power predicted within the framework. They go on to explain

that this was likely due to a higher proportion of studies which overestimated

the power going until completion and trials which underestimated the power

being stopped at the interim. This combination lead to lower actual observed

power when compared with predicted values.

2.2.4 Adaptive Randomised Phase II Design for Biomarker

Threshold Selection and Independent Evaluation

Renfro et al describe an adaptive phase II design (Renfro et al. 2014) that

allows for identification and evaluation of a threshold for a single continuous

biomarker. This novel trial was designed to reflect updated information during

study development from the clinical team regarding a potentially predictive

biomarker which would aid in defining a sensitive patient subpopulation. In

this two stage design, an interim analysis facilitates identification of an optimal

biomarker threshold as well as the potential for early trial stopping for futility.

Recruitment criteria in stage 2 can be altered to reflect findings at the interim

and can be restricted solely to biomarker sensitive patients in the case of

overwhelming support for the biomarker subgroup. Final e�cacy analyses are

conducted in the patient population that is identified as most likely to benefit

within the trial. Trial design, features and implementation are discussed in

detail in Chapter 3.

2.2.5 Biomarker Threshold Adaptive Design (BTAD)

Diao et al. (Diao et al. 2018) describe a two stage trial adaptive enrichment

design with survival endpoints, titled the Biomarker Threshold Adaptive De-

sign (BTAD). Their design aims to identify a subset of patients, defined by

a continuous biomarker, that shows the largest treatment benefit when com-

pared to control. In the first stage, the biomarker defined patient subgroup

is determined by identifying the optimal biomarker threshold. In the second

stage, patient recruitment is restricted to those patients in the identified opti-
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mal subgroup.

They propose two ways to determine the optimal threshold. Let T de-

note the survival time, B the biomarker measurement and A the treatment

indicator. Given first stage data Yi = min(Ti, Ci), �i = I(Ti  Ci), Xi, Ai,

i = 1, ..., n1, where Ci and �i are the censoring time and event indicator re-

spectively, the following two Cox models can be fitted for the two subgroups

defined by B  c and B > c, where c is a given cutpoint:

�(t|X  c, A) = �1c(t)exp(�1cA)

and

�(t|X > c,A) = �1c(t)exp(�2cA)

where � is the hazard function and �1c and �2c are the baseline hazards in

subgroups defined by B  c and B > c respectively. These two models make

up ‘BTAD1’, the first of the two proposed methods. Under these models, the

smaller the values of �1c and �2c, the better the e↵ect of the treatment is

compared to control. One can estimate these coe�cients as �̂1c and �̂2c. The

optimal threshold ĉ is chosen to minimise min(�̂1c, �̂2c) for c 2 B, where B is

the support of B. The optimal threshold is therefore the one that maximises

the treatment e↵ect in either the subgroup defined by B  ĉ or B > ĉ. Given a

pre-defined total sample size pf n and n1 stage 1 patients, a further n2 = n�n1

patients are recruited in the second stage of the trial with biomarker values

B  ĉ if �̂1c < �̂2c or B > ĉ if �̂1c � �̂2c. There is therefore no assumption on

the relationship between biomarker values and the probability of response at

this stage.

Alternatively, one can fit a Cox model including both main e↵ects of the

biomarker, the treatment and their interaction e↵ect in one model. This is

referred to as ‘BTAD2’ and is as follows:

�(t|X,A) = �c(t)exp{�1cI(X > c) + �2cA+ �3cI(X > c)A}
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Again, one can estimate the interaction coe�cient using the first stage data

as �̂3c and choose an optimal threshold c̃ which maximises |�̂3c| for c 2 B. A

further n2 patients are recruitment from the subgroup with B  c̃ if �̂3c > 0

and B > c̃ otherwise. Again, there is no assumption on the direction of the

relationship between biomarker values and treatment benefit.

Some key di↵erences between BTAD1 and BTAD2 are highlighted here.

Firstly, BTAD1 aims to identify the subgroup in which the treatment benefit

is greatest overall, whereas BTAD2 aims to identify the subgroup in which the

di↵erence in treatment benefit between the subgroup and its complement is

greatest. Secondly, BTAD2 comes with an additional assumption of propor-

tional hazards between the two subgroups (i.e. B  c̃ and B > c̃). When this

assumption is met, BTAD2 yields more e�cient parameter estimates and is

more numerically stable under small sample sizes. The authors discuss in their

paper the similarity between BTAD2 and the approach used by Renfro et al

(Renfro et al. 2014), as both identify an optimal threshold by including the

interaction e↵ect between treatment and biomarker within the model. Prelim-

inary results from their simulations suggest comparable performance between

BTAD2 and the Renfro method (with an extension to relax the assumption of

directed treatment e↵ect).

The authors state that a grid search method over certain percentiles of the

biomarker distribution B can be implemented to select the optimal threshold.

They also suggest a range such that at least 30% of the trial population are

within each biomarker subgroup (high or low) to ensure reliable estimates of

parameters. Once data is collected, the null hypothesis of no di↵erence between

the hazard functions in the treatment and control groups for any biomarker

value can be assessed. The final aspect of the final analysis to be decided is

then which dataset to use to test this hypothesis: a) data from the second stage

only, b) data from both stages, c) data from biomarker positive patients from

both stages. The authors note that using datasets a or b preserves the type

I error rate whereas using dataset c will lead to an inflated type I error rate.

Under the null hypothesis of no di↵erence in hazard functions for any biomarker
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values, second stage data is still collected under the null hypothesis, regardless

of the optimal threshold chosen using stage 1 data. Therefore, datasets a and

b can be used whilst preserving the type I error rate. However, including

only biomarker positive patients from stage 1 leads to biased sampling and

type I error rate inflation, as these patients were used to define the biomarker

threshold due to the fact that they had better treatment e↵ect than the rest

of stage 1 patients. This was confirmed in a simulation study carried out by

the authors.

The authors compared the performance of BTAD against that of a standard

non-adaptive design using simulation studies. Tests under their proposed adap-

tive design adequately controlled the type I error rate and were consistently

more powerful than those under the non-adaptive design within implemented

simulations. They also demonstrated similar performance between BTAD1

and BTAD2, both with respect to threshold identification accuracy and em-

pirical power. The authors also applied their novel trial design to a real head

and neck cancer trial (SPECTRUM (Vermorken et al. 2013)) as a case study

in order to demonstrate threshold identification. They identified two potential

biomarkers from literature and exploratory analyses of the dataset and imple-

mented both BTAD1 and BTAD2 to identify optimal dichotomising thresholds

for each biomarker. Both methods identified subgroups in which the treatment

was more beneficial compared to the e↵ect in the overall trial population, but

failed to identify the subgroup in which the treatment e↵ect was largest. Fi-

nally, a simulation study based on the SPECTRUM study was implemented

to assess the performance of BTAD over a non-adaptive design when using a

specific biomarker within the dataset. Random samples were taken from the

dataset to simulate 60 stage 1 patients and thresholds were determined using

BTAD1 and BTAD2 using this patient information. At most 30 biomarker

positive patients were then randomly sampled to simulate stage 2 patients and

final analyses carried out; this was repeated 1000 times. They demonstrated

that sample sizes were smaller on average when using BTAD over the non-

adaptive design and there was a substantial increase in power.
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In this study, it was assumed that the relationship between treatment e↵ect

and biomarker values took the form of a change point function, i.e. treatment

e↵ect only takes two values either side of a threshold. In practice, this is un-

likely and the authors state that violations of this assumption may lead to

inaccurate threshold identification, but describe a general model that could be

used to capture this information. Within their comparisons to non-adaptive

designs, the authors assumed comparable sample sizes. Typically, adaptive ap-

proaches can require additional screening measures and higher patient accrual

to identify appropriate numbers of biomarker positive patients. The authors

state that further research could explore the cost-benefit of utilising adaptive

designs with this in mind. An interesting extension to this work discussed by

the authors is the possible extension of this method to include two or more

biomarkers by carrying out a higher dimensional grid search, though they dis-

cuss how this would dramatically increase the computational burden as the

number of biomarkers increased. An alternative put forward is the creation

of a composite risk score defined by the input biomarkers, this risk score can

then be considered as the biomarker of interest in their described design.

2.2.6 Biomarker Enrichment and Adaptive Threshold

(BEAT) Design

Wang et al. (Wang et al. 2020) describe an adaptive design in which the di-

chotomising threshold for a continuous biomarker is adaptively estimated and

updated. In their design, the Biomarker Enrichment and Adaptive Threshold

(BEAT), an optimal biomarker threshold is updated in stages by maximising

a utility function (Zhang et al. 2017) that incorporates a trade o↵ between the

size of the biomarker-positive subgroup and the magnitude of the treatment

e↵ect in that subgroup. Their trial also incorporates flexible patient enrol-

ment for both biomarker-positive and -negative groups and the potential for

early trial termination for futility. Alongside optimal threshold identification,

the trial design estimates treatment e↵ects for the overall trial population,

biomarker-positive patients and biomarker-negative patients. An overview of

the trial is given below, note that some aspects of the trial design are omitted

here as they exceed the scope of this work.
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Begin by defining some notation and assumptions. Let Bi denote the

biomarker value for patient i, Yi be the response value for patient i (1=response,

0 otherwise) and Zi be their treatment assignment (1=treatment/T, 0=con-

trol/C). Let p1(B) and p0(B) denote the response probabilities of patients on

treatment and control respectively with biomarker value B, and assume these

follow the following logistic regression model:

logit(pZ(B)) = �0 + �1B + �2Z + �3B ⇥ Z

where �1, �2 and �3 are the biomarker e↵ect, treatment e↵ect and interaction

e↵ect respectively. Also assume that response rates and treatment e↵ect are

all positively related to biomarker values i.e. �1 > 0 and �3 > 0. If there exists

a value b⇤ such that pT (b⇤) = pC(b⇤), then:

p1(B) < p0(B) for B < b⇤

p1(B) > p0(B) for B > b⇤

In their paper, the authors demonstrate that this value is the optimal choice of

threshold that maximises the trade o↵ between biomarker-positive prevalence

and treatment e↵ect in the biomarker subgroup; this is not presented here.

Patients are recruited to the trial in sequentially in K blocks, each block k

contains 2nk patients (nk patients assigned to each treatment and control); K

and nk are both fixed pre trial. Accrual into block k is defined by an enrollment

cuto↵ ⌧k and only patients with B > ⌧k are recruited. Early futility stopping

is allowed after a minimum of K⇤ blocks have been observed (again fixed pre

trial). The algorithm used to implement the BEAT design is given here:

BEAT trial algorithm:

1. Pre specifyK, K⇤, {n1, ..., nK} and define initial enrollment cuto↵ ⌧1 = 0

2. For blocks k = 1, ..., K repeat the following
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a. Enrol 2nk patients with biomarker values exceeding the current en-

rollment cuto↵ ⌧k and randomise to either treatment or control

b. Estimate current optimal biomarker threshold ĉk and its standard

error ŜD(ĉk). ĉk is estimated in block k as ��2/�3, achieved by

obtaining coe�cients from the discussed logistic regression model

fitted on currently available data. Details on how this is derived

and estimation of its standard error are not presented here.

If k = K, then proceed to step 3. Otherwise, calculate the enroll-

ment cuto↵ for the next block k+1: ⌧k+1 = max{0, ĉk� t⇥ ŜD(ĉk),

where t � 0 is a parameter pre specified by the user to allow more

flexibility in defining the enrollment cuto↵.

c. If ⌧k+1 > 0, calculate the PP0F{�}, the predictive probability of fail-

ure. This is the probability that at trial completion, the treatment

will be worse than control for biomarker-negative patients defined

by a cuto↵ of the current ⌧k+1. Details of how this probability is cal-

culated are presented in their paper but are not presented here. If

PPoF{�}  ⌘1 (another user specified constant), then set ⌧k+1 = 0

and therefore recruit all patients in the next block, otherwise con-

tinue to the next step

d. If ĉk = 1 for k < K⇤, continue the trial, otherwise stop. If ĉk < 1,

calculate the PPoS{+}, the predictive probability of success. This

is the probability that at trial completion the treatment will be

superior to control within the biomarker-positive subgroup; again,

how this probability is calculated is not presented here. The trial

is stopped for futility if PPoS{+} < ⌘2

3. At final analysis, estimate the treatment e↵ects in the overall population,

biomarker-positive and -negative subgroups, defined by ĉK

The authors compare their proposed design to an adaptive enrichment de-

sign proposed by Simon and Simon (Simon & Simon 2018), which builds on

their trial design discussed in Section 2.2.2 by incorporating Bayesian method-

ology to optimise decision making within the trial. Comparison to an existing,

widely used enrichment design was chosen due to the similarities in trial fea-
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tures (enrichment, subgroup detection) and the relevance to their proposed de-

sign. Comparison of both the BEAT and Simon design to a standard all-comers

trial design with no enrichment was also carried out. Threshold estimation ac-

curacy was similar between BEAT and the all-comers trial, which both more

accurately estimated the threshold that the Simon design, though standard

errors were lower when using BEAT. The empirical power to detect subgroup

e↵ects was similar between BEAT and the Simon design (both higher than

the all-comers), however the number of enrolled biomarker-positive patients

was lower for BEAT than the Simon design. Similar levels of empirical sub-

group power were therefore obtained with fewer patients by BEAT, likely due

to more accurate threshold estimation. Moreover, much fewer true biomarker-

positive patients were lost (not enrolled) by BEAT than the Simon design,

again likely due to more accurate threshold estimation. The empirical power

to detect treatment e↵ect in the overall population was higher on BEAT than

the Simon design, though both were less than the all-comers. Under the null

case of no treatment e↵ect, the majority of implemented BEAT trials stopped

for futility (consistently 80%); assuming that stopped trials are equivalent

to no rejection of the null of no treatment e↵ect, type I error was adequately

controlled at a pre-specified level.

An application to real data was also implemented by applying the BEAT,

Simon and all-comers design to the JAVELIN Lung 200 data from Barlesi et

al. (Barlesi et al. 2018). Threshold estimation accuracy was again consistent

between trial designs, with the standard errors under BEAT slightly lower.

The number of both enrolled and excluded biomarker-positive patients were

lower under BEAT than the Simon design, though less so than in the simulation

study. Empirical power to detect a treatment e↵ect in the biomarker subgroup

was comparable between BEAT and the Simon design, though both were much

higher than the all-comers (90% vs 69%). Overall empirical power was highest

under the Simon design and lowest when using BEAT.

Much of the implemented BEAT framework is dependent upon pre-determined

parameter values: K, nK , t and ⌘1/⌘2 for example. The authors state that
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how to optimally choose these values, particularly K and nK , requires further

investigation. The authors also note assumptions of their method could be

relaxed in order to extend the methodology to other areas. For example, a

binary endpoint was used in this work, but the BEAT trial could easily in-

corporate continuous or TTE outcomes. The relationship between biomarker

values and treatment e↵ect was assumed to be monotonic increasing in this

work, the BEAT design can be amended to incorporate scenarios in which

smaller values are preferred. The authors also describe potential areas of addi-

tional work, particularly to investigate situations in which multiple biomarkers

or high dimensional biomarkers define the biomarker subgroup.

2.2.7 Adaptive Enrichment Designs With a Continuous

Biomarker

Stallard describes a two stage adaptive enrichment design which incorporates

information from a single continuous biomarker (Stallard 2022). In this setting

it is assumed that there exists a single pre-specified continuous biomarker (or

with multiple levels) and that the treatment e↵ect increases with higher values

of the biomarker. Selection of the optimal subgroup is equivalent to choosing

the optimal threshold for the biomarker, with all patients with biomarker val-

ues above the threshold being included in the subgroup. One can also observe

that the subgroups defined by threshold values of the biomarker (or the defined

levels) then create nested subgroups, as shown in Figure 2.4. Stallard describes

six simple methods, detailed within the trial overview below, to achieve this

subgroup selection.
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Biomarker Value
MaxMin

c4c1 c2 c3

S1

S2

S3

S4

Figure (2.4) Nested Biomarker Subgroups. In this example, four thresholds at
c1, c2, c3, c4 have been chosen, leading to subgroups S1, S2, S3, S4 with S4 ⇢ S3 ⇢ S2 ⇢ S1

In stage 1 of the trial, all patients are recruited to the trial and receive

either treatment or control (T1 or T0 respectively) and have their biomarker

measurement taken, denoted xi for patient i; it is assumed that higher values

of xi are associated with a larger treatment e↵ect. Optimal threshold iden-

tification is carried out using stage 1 data, and a threshold � is chosen from

a set ⇤. In stage 2, patient accrual is restricted to those with xi > �. At

the final analysis, it is of interest to assess whether treatment is superior to

control for patients with xi > �, using patient data from both stages. Let ✓�

denote the average treatment e↵ect for patients in the biomarker subgroup (i.e.

xi > �), the null hypothesis under consideration at the final analysis is then

H� : ✓�  0. As the choice of the optimal threshold � is data dependent and

chosen using stage 1 data, one needs to achieve strong control of the FWER

for all hypotheses H�, � 2 ⇤.

Without loss of generality, one can arrange stage 1 patients in decreasing

order of biomarker value i.e. x1 > x2 > x3 > .... If �1, �2 2 ⇤ are such

that xi > �1 > �2 > xi+1, then tests to assess the nulls H�1 and H�2 will

give equivalent results, due to equality of subgroups. If k is the size of ⇤

and �1 > ... > �k, then one can choose �1, ...,�k such that �j > xi > �j+1

for j = 1, ..., k � 1 and some i, and �k < xi for all i. This ensures that all

subgroups will be distinct and non empty.

Let nj denote the number of patients in each subgroup, nj = |{xi : xi > �j}|
for j = 1, ..., k, and denote ✓�j by ✓j. Selection of the optimal threshold � is
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therefore equivalent to selecting the corresponding value for j, let this choice

be denoted by J . Below are 6 simple rules to carry out this choice, with more

complex rules also discussed in the paper.

Selection Rule 1: Maximise the test statistic in the subgroup

Let ✓̂j bet an estimate of ✓j (using data from patients i = 1, ..., nj) with

estimated variance I�1

j
. Let Zj = ✓̂jI

1/2

j
be a Wald statistic for testing the null

hypothesis for using these data. Then choosing the optimal j by maximising

the test statistic is denoted J (1) = arg maxj=1,...,k{Zj} and is equivalent to

selecting whichever Zj leads to the smallest p-value.

Selection Rule 2: Maximise the treatment e↵ect estimate

Using this rule, J (2) = arg maxj=1,...,k{✓̂j}

Selection Rule 3: Maximise the impact

The impact is the product of e↵ect size and subgroup prevalence (Zhao &

LeBlanc 2020). This is approximately equivalent to setting

J (3) = arg maxj=1,...,k{Sj}, where Sj = ✓̂jIj

Selection Rule 4: Maximise the interaction test statistic

This selection rule maximises the test statistic for the interaction term, which

gives the di↵erence between treatment e↵ects in the chosen subgroup and its

complement. For �j, the test statistic is denoted Z(int)

j
and the maximisation

is therefore J (4) = arg maxj=1,...,k{Z(int)

j
}. Let ✓̄�j denote the treatment e↵ect

in the subgroup of patients such that xi  �j, the complement of xi > �j,

and let ˆ̄✓j be an estimate of ✓̄�j . Then Z(int)

j
is approximately Z(int)

j
= (✓̂j �

ˆ̄✓j)(var(✓̂j � ˆ̄✓j))�1/2

Selection Rule 5: Maximise the interaction e↵ect estimate

This selection rule maximises the di↵erence between the treatment e↵ect in
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the chosen subgroup and its complement: J (5) = arg maxj=1,...,k{✓̂j � ˆ̄✓j}

Selection Rule 6: Maximise the interaction e↵ect estimate (weighted)

This selection rule maximises the interaction e↵ect estimate, weighted by the

size of the chosen subgroup: J (6) = arg maxj=1,...,k{Ij(✓̂j � ˆ̄✓j)}

Also described in the paper, but slightly out of scope to fully detail within

this thesis, are details on how to control the FWER when combining data

from stages 1 and 2 and how to construct p-values in stage 1 to facilitate

subgroup selection. Combining data from stages 1 and 2 is achieved using a

combination test, as described by Bauer and Kohne (Bauer & Kohne 1994),

but requires construction of a p-value from stage 1 data to allow subgroup

selection. P-value construction is achieved by taking advantage of the fact

that analysis of data from nested subgroups is comparable to that of analysis

of data from stages of a sequential trial. Using this with an assumption of

asymptotic normality, distributions of tests statistics can be obtained for all

methods of threshold choice and thus p-values can be calculated in each case.

The described approaches were applied to real and resampled data from

the German Breast Cancer Study (GBCS) dataset, in which survival times for

women with and without hormone therapy treatment are contrasted. It was

investigated whether patient subgroups showing increased benefit to hormone

therapy could be identified using the baseline number of progesterone recep-

tors. Applicability of the trial design was demonstrated for small and large

k (the number of candidate thresholds), using all methods of subgroup iden-

tification. To demonstrate FWER control and explore power of the proposed

method, a simulation study was also carried out. Type I error rates were rea-

sonably controlled in most cases, with slight inflation in some scenarios. Power

of the proposed method under a number of scenarios was also contrasted with

the estimated power when using a Simon and Simon design (Simon & Simon

2013); an increase in power when using the novel method was shown.
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2.2.8 Phase II Basket Biomarker Cuto↵ (BBC) Design

Yin et al. (Yin et al. 2021) describe a phase II basket trial which aims to both

identify the optimal dichotomising cuto↵ for a continuous biomarker whilst

evaluating the e�cacy of a new therapy within one trial. The novel phase II

basket biomarker cuto↵ (BBC) trial incorporates the biomarker cuto↵ identi-

fication procedure to identify the sensitive patient subgroup by using Bayesian

hierarchical modelling. For clarity, a basket trial is a trial in which a novel

therapy is explored in a number of diseases simultaneously; patients are eli-

gible to be recruited into the trial dependent upon the presence of a specific

disease factor, usually a genetic mutation or biomarker. Basket trials aim to

improve the e�ciency of trial design by aggregating information from di↵erent

disease areas and aim to answer multiple questions within a single trial. They

form part of a set of novel clinical trial designs referred to as master protocol

designs, alongside umbrella trials and platform designs. Their design combines

biomarker trial designs with a basket trial design, the two of which are rarely

combined. An overview of the trial design is given here.

Biomarker Basket Trial

Assume that a novel therapy is being investigated in K di↵erent disease

areas, which are all associated with a predictive biomarker measured on a

continuous scale. Also assume that the relationship between biomarker values

and treatment e↵ect is monotonically increasing and a threshold value to define

biomarker-positive patients is unknown. The BBC trial consists of two stages

and allows the trial eligibility criteria to be updated mid trial. In stage 1, the

optimal threshold is determined using data from stage 1 patients. In stage 2,

recruitment is restricted to biomarker positive patients within di↵erent disease

areas and further e�cacy testing can be carried out. An example schematic of

the trial design with K = 3, is given in Figure 2.5.
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Figure (2.5) A schematic of the biomarker basket trial by Yin et al. with K=3 (Yin
et al. 2021)
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Let Bik denote the biomarker value for patient i on arm k, Xik denote

the corresponding binary endpoint (1 for response, 0 otherwise) and c⇤ be

the true biomarker threshold across all K arms. Suppose a total of yk =
P

nk
i=1

Xik responses are observed from the nk patients on arm k = 1, ..., K,

with a maximum sample size for each arm in stage 1 of N1. For arm k, let pk

be the overall response rate and pk+ and pk� be the response rates for patients

with B � c⇤ and B < c⇤ respectively. Estimates of these rates are calculated

as:

p̂k =
yk
nk

p̂k+ =

P
nk
i=1

XikI(Bik � c⇤)P
nk
i=1

I(Bik � c⇤)

p̂k� =

P
nk
i=1

XikI(Bik < c⇤)P
nk
i=1

I(Bik < c⇤)

for k = 1, ..., K and I() is the indicator function. Once the optimal biomarker

threshold c⇤ is defined (see below), a hypothesis driven decision making process

can be defined using the observed estimates of pk, pk+ and pk�. For example:

H0 : pk+ < p0

H1 : pk+ > p0 + �

where p0 is a null response rate and � > 0 is some clinically meaningful increase

in response rate.

Biomarker Threshold Identification (Stage 1 + Interim Analysis)

Following stage 1, the interim analysis aims to identify the biomarker threshold

that best distinguishes biomarker-positive patients from the rest of the trial

population. The implemented strategy is described here:

1. Select a set of candidate thresholds of the biomarker B, based on per-

centiles of the observed data. Denote this as C.

2. Split the patients into G subgroups based on candidate values C within
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each arm

3. Construct a Bayesian hierarchical model (note this is not expanded on

here):

ykg|pkg ⇠ Binomial(nkg, pkg)

✓kg = logit(pkg)

✓kg|✓k, �2

W
⇠ N(✓k, �

2

W
) (Within arm)

✓k|✓, �2

B
⇠ N(✓, �2

B
) (Between arms)

✓|µ0, �
2

0
⇠ N(µ0, �

2

0
)

�2

B
|↵, � ⇠ IGamma(↵, �)

�2

W
|↵, � ⇠ IGamma(↵, �)

where ykg, nkg and pkg are the number of responses, patients treated and

response rate for the gth subgroup in arm k respectively.

4. Choose a clinically meaningful response rate p⇤ and calculate the prob-

ability the observed response rate exceeds this for k = 1, ..., K and

g = 1, ..., G:

Pr(pkg � p⇤|c,D1

where D1 represents the data observed in stage 1. Rank these calculated

probabilities from smallest to largest in each arm k.

Following stage 1, the optimal biomarker threshold is chosen as the first cal-

culated probability that exceeds some pre-determined threshold value ⇡.

Bayesian Basket Trial (Stage 2 + Final Analyses)

Enrolment in stage 2 is restricted to patients with B � c⇤ with the primary

goal of selecting biomarker-positive patients with in increased level of treat-

ment response for final analysis. Suppose there are J further analyses to be

implemented after a set number of patients are enrolled. Let ⇡(E)

k
and ⇡(F )

k
de-

note pre-determined e�cacy and futility boundaries for arm k = 1, ..., K. Then

at the jth analysis, further hypothesis driven decisions can be implemented in

each arm:
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- If Pr(pk+ > p0 + �|D+) > ⇡(E)

k
, then stop the trial for e�cacy

- If Pr(pk+ > p0|D+) < ⇡(F )

k
, then stop the trial for futility

- Otherwise, continue the trial

where D+ represents the data from stages 1 and 2 for patients with B � c⇤.

The authors show that the overall type I error can be controlled by a pre-

defined level ↵ by setting
P

K

k=1

P
J

j=1
↵jk  ↵, where ↵jk is the amount of

type I error spent at the jth analysis on arm k (the functional form of ↵jk

is not presented here). The values ⇡(

k
E) and ⇡(

k
F ) are calibrated to ensure

that the overall type I error is controlled at ↵, given that there is in fact no

treatment e↵ect i.e. pk+ = p0.

The authors implemented simulation studies to compare the performance

of the proposed BBC design to the predictive probability design (PP (Lee &

Liu 2008)) and the Bayesian enhancement two stage design (BET (Shi & Yin

2018)). Both of the comparator studies were altered to include biomarker

cuto↵ identification. The BBC design outperformed both PP and BET with

respect to the true positive rate (TPR), true subgroup rate (TSR) and false

positive rate (FPR) in the cases explored by the authors. The observed re-

sponse rates in the identified optimal subgroup across simulation scenarios

were comparable between trial designs. However, in cases with heterogeneous

treatment e↵ect between disease areas in the trial (i.e. di↵erent treatment ef-

fects between explored trial arms), the response rates in the optimal subgroup

were pulled toward the overall trial mean when using the BBC method, leading

to inaccurate estimates of the optimal response rate in each arm. The e↵ects

of changing the number of candidate thresholds and the location of the true

(c⇤) were also presented by the authors. They showed that both TPR and TSR

increased with more candidate thresholds and TPR and TSR increased with

lower values of c⇤, due to the larger patient subgroup; no data was presented

on how these changes a↵ected the FPR.

An application to real data was also implemented to demonstrate the appli-

cability of the trial framework. Data from three trials evaluating the e�cacy of
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pembrolizumab monotherapy in di↵erent disease areas (NSCLC (Herbst et al.

2016), gastric/gastroesophageal cancer (Fuchs et al. 2018) and advanced cervi-

cal caner (Chung et al. 2019)) were combined into one three-arm basket trial,

with the goal of demonstrating e�cacy of the treatment in each disease area

and identifying an optimal threshold of PD-L1 tumour proportion or com-

bined positive score (PD-L1 TPS/CPS). The authors conclude that had the

BBC trial design been applied in this specific setting, the therapy would have

been declared promising in all three disease areas for patients with a PD-L1

TPS/CPS of 1% or higher.

2.2.9 Bayesian Adaptive Patient Enrollment Restriction

(BAPER) Design

Ohwada and Morita (Ohwada & Morita 2016) describe a Bayesian adaptive

design, titled BAPER, in the setting of a two arm phase II clinical trial with

a TTE outcome and a single continuous biomarker assumed to be predictive

of treatment e↵ect. The trial aims to stop enrollment of patients who are

not expected to satisfy some clinically relevant threshold for the hazard ratio

at an interim analysis; futility and e�cacy stopping rules are also built into

the interim. A change point model is applied to the relationship between the

biomarker and HR and a posterior distribution of the cuto↵ parameter for the

biomarker is calculated. This cuto↵ is used to define which patients achieve

the target (or greater) HR, and identifies which patients can be excluded from

enrollment following the interim analysis. At final analysis, a go/no go decision

can be made with respect to the next study and whether or not the whole

patient population or the biomarker-sensitive subgroup should form the trial

sample. The trial is described in sections below: 1) the change point model is

initially described and parameters introduced; 2) interim monitoring rules for

early stopping; 3) adaptations to patient enrollment; 4) decision rules for final

analysis.

Change Point Model

Begin by assuming the following proportional hazards model at time t for
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patient i:

hi(t|Ti, Bi) = h0(t)exp(Tif(Bi))

where h0(t) denotes the baseline hazard at time t, Ti is the treatment indicator

for patient i (1 for treatment, 0 for control), Bi is the measured biomarker

value for patient i and f() is a function describing the relationship between

the biomarker and treatment e↵ect. The authors note that the biomarker is

assumed to be not prognostic and the main biomarker e↵ect is ignored, though

this information can be incorporated into f(). Under this model, the HR of

treatment e↵ect for Treatment (T) vs Control (C) can be expressed as

ln

✓
hT (t)

hC(t)

◆
= f(B)

The authors avoid dichotomising the biomarker at this stage to avoid informa-

tion loss and to allow more flexibility to describe the relationship via f(). The

following change model is described to define f():

f(B) = �1I(B < ⇠1) +

⇢
�2 � �1

⇠2 � ⇠1
(B � ⇠1) + �1

�
I(⇠1  B < ⇠2) + �2I(B � ⇠2)

where �1, �2, ⇠1 and ⇠2 are parameters such that �1 > �2 and ⇠2 > ⇠1. Writing

�2 = �1 � � (� > 0), f(B) can be written as:

f(B) = �1 �
�

⇠2 � ⇠1
(B � ⇠1)I(⇠1  B < ⇠2)� �I(x � ⇠2)

The model is updated within a Bayesian framework using accumulated data

D at interim and final analysis. Posterior distributions for �1, �, ⇠1 and ⇠2 are

computed using partial likelihood of the Cox PH model, Markov chain Monte

Carlo is used under the following non-informative priors:

- �1 ⇠ N(0, 1000)

- � ⇠ Ga(0.001, 0.001)

- (⇠1, ⇠2) follow a pdf of (⇠2�⇠1)
2

2
if ⇠⇤

L
< ⇠1 < ⇠2 < ⇠⇤

U
and 0 otherwise. ⇠⇤

L

and ⇠⇤
U
are pre-determined lower and upper bounds of the biomarker.

Interim Monitoring Rules for Early Stopping

Let ⌘⇤ be the target HR in the biomarker subgroup. The the following decision
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rules for early stopping can be implemented, in terms of parameters of the

change point model:

- Stop for futility if Pr(�2 < ln(⌘⇤ + ✏⇤)) < ⇡⇤
fut

- Stop for early e�cacy in entire population if Pr(�1 < ln(⌘⇤+ ✏⇤)) > ⇡⇤
eff

- Stop for e�cacy in biomarker subgroup if Pr(�1 > ln(⌘⇤ + ✏⇤)) > ⇡⇤
eff

AND Pr(�2 < ln(⌘⇤ + ✏⇤)) > ⇡⇤
eff

where ✏⇤ denotes the margin to set the upper limit for the HR when carrying out

decision making, ⇡⇤
fut

denotes the lower probability cuto↵ for futility stopping

and ⇡⇤
eff

denotes the upper probability cuto↵ for e�cacy stopping. The authors

provide some advice on how best to choose these parameters when designing

the study.

Adaptation to Patient Enrollment

Following interim analysis, enrollment in the second stage of the trial may be

restricted to exclude patients with low biomarker values, who are not expected

to reach the target HR. The following Bayesian patient enrollment restriction

rule can be applied to exclude such patients from recruitment. Using posterior

samples, the following posterior can be calculated:

� = ⇠1 �
(ln(⌘⇤)� �1)(⇠2 � ⇠1)

�

given �1 > ln(⌘⇤), �2 < ln(⌘⇤) and data D. This � then represents the

biomarker level that defines patients who will reach the target HR. To obtain

the mode of this posterior distribution, candidate cuto↵ values that divide

the range (⇠⇤
L
, ⇠⇤

U
) into J equal intervals are defined i.e. candidate cuto↵ �j 2

(⇠⇤
L
, ⇠⇤

U
) is defined such that �j = ⇠⇤

L
+ j(⇠⇤

U
� ⇠⇤

L
)/J for j = 1, ..., J � 1. The

conditional posterior probability at �⇤
j
can then be calculated as:

Pr�⇤
j
= Pr(�⇤

j
� (⇠⇤

U
� ⇠⇤

L
)/2J  � < �⇤

j
+ (⇠⇤

U
� ⇠⇤

L
)/2J)

The biomarker-subgroup is the defined as patients with biomarker values greater

than or equal to �⇤
mod

:= argmax{Pr�⇤
j
}. However, the authors state that in-

76



cluding patients with biomarker values near to �⇤
mod

should be enrolled in the

second stage in order to improve estimation of the next �⇤
mod

. Thus a cuto↵

value for enrollment for the next stage is defined as:

�⇤
ER

= min
j=1,...,J�1

n
�⇤
j
|Pr�⇤

j
� max(Pr�⇤

j
)/2
o

If the trial was not terminated at the interim, then recruitment carries on into

the next stage. Recruitment is restricted to patients with biomarker values

above �⇤
ER

if Pr(�1 < ln(⌘⇤+ ✏⇤)) < Pr(�1 � ln(⌘⇤+ ✏⇤), �2 < ln(⌘⇤+ ✏⇤)) and

is unrestricted if Pr(�1 < ln(⌘⇤+ ✏⇤)) � Pr(�1 � ln(⌘⇤+ ✏⇤), �2 < ln(⌘⇤+ ✏⇤)).

Decision Rules at Final Analysis

At the final analysis, there are three potential outcomes: 1) a no-go decision

i.e. futility; 2) a go decision, with the entire population; 3) a go decision, with

only the biomarker subgroup. The following rules quantitatively define these

decisions:

- No-go if Pr(�2 < ln(⌘⇤ + ✏⇤)) < ⇡⇤
fut

- Go with entire population if Pr(�2 < ln(⌘⇤ + ✏⇤)) � ⇡⇤
fut

AND Pr(�1 <

ln(⌘⇤ + ✏⇤)) � Pr(�1 � ln(⌘⇤ + ✏⇤), �2 < ln(⌘⇤ + ✏⇤))

- Go with biomarker subgroup if Pr(�2 < ln(⌘⇤+✏⇤)) � ⇡⇤
fut

AND Pr(�1 <

ln(⌘⇤ + ✏⇤)) < Pr(�1 � ln(⌘⇤ + ✏⇤), �2 < ln(⌘⇤ + ✏⇤))

The authors assess the performance of their design through extensive simu-

lations. In these simulations they compared their proposed design to the same

design with no potential enrollment restrictions and to a design with a simpler

step function defining f() and with no potential enrollment restrictions; no

comparisons to existing trial designs were made. In the null scenario, compa-

rable levels of no-go decisions were observed between all three designs. The

type I error when using BAPER were 0.09 and 0.13 under di↵erent biomarker

distributions, which the authors state would usually be acceptable in a phase

2 oncology trial. In the case in which the treatment was e↵ective in all pa-

tients i.e. not just biomarker-positive patients, similar levels of ‘go with entire

population’ decisions were observed between all three trials (approx 94%). In
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scenarios where treatment e↵ect was restricted to biomarker-positive patients,

it was found that the change-point model generally performed better than the

step function. When adaptive enrollment was introduced (i.e. original BAPER

design), performance was consistent, with the probability of making a correct

decision in the trial remaining largely consistent but falling in some cases.

The probability of making an incorrect decision in the trial, such as stopping

for futility or a go decision for the entire population instead of the subgroup,

increased as the size of the biomarker subgroup decreased and when the rela-

tionship between biomarker and HR was shallow. Although BAPER did not

increase the probability of making a correct decision in the trial, it did lead

to reduced numbers of enrolled patients that did not meet the target HR. In

certain scenarios, BAPER reduced enrollment of the non-sensitive population

by as much as 36%, but did not a↵ect enrollment of the sensitive subgroup.

The accuracy of biomarker threshold estimation was consistent between the

methods explored.

The authors discuss that the operating characteristics of the trial were

influenced by the biomarker distribution and state that if possible, as much

detail on the distribution should be obtained prior to the study in case there

is need of transformation. They also state that care needs to be taken when

determining design parameters (⇡⇤
fut

, ⇡⇤
eff

etc) so that error rates can be care-

fully evaluated as a multitude of unknown factors, such as enrollment rate,

biomarker-HR relationship and e↵ect sizes, can a↵ect the error rate of such

a stage 2 trial. Some further limitations of the proposed design are the re-

quirement for large sample sizes when the biomarker-subgroup size is small,

observed bias towards the mean of cuto↵ estimation and lack of implementa-

tion within a real trial.
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Chapter 3

Embedding Dual Biomarker

Threshold Identification Within

an Adaptive Phase II Design

3.1 Introduction

The work presented in this chapter details work addressing research question

1, exploring the optimisation of estimating dichcotomising thresholds for a

small number of continuous biomarkers simultaneously. Specifically, identify-

ing thresholds for two predictive continuous biomarkers simultaneously, thus

defining a two dimensional sensitive patient subgroup and allowing for the use

of the identified thresholds in a clinical setting.

It was initially of interest to explore confirmatory clinical trials in which

an optimal threshold for a single continuous biomarker is identified, alongside

appropriately powered overall and subgroup analyses. The adaptive phase II

design put forward by Renfro et al. (Renfro et al. 2014) achieves biomarker

threshold selection and independent evaluation within a single trial. This trial

is discussed in detail and a simulation study implementing the discussed trial

design is presented, results are contrasted with the original simulation study

presented by the authors.
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In order to explore the optimisation of estimating dichcotomising thresh-

olds for two continuous biomarkers simultaneously, methods achieving dual

biomarker threshold identification were incorporated into the trial design de-

scribed by Renfro et al. The trial design was altered to incorporate information

from two continuous biomarkers and three methods of threshold identification

were implemented; these are described in Section 3.4. A simulation study was

implemented, which focused on exploring trial operating characteristics and

threshold identification accuracy when using each of the three methods within

the Renfro et al trial design.

This chapter is organised as follows: Section 3.2 gives an overview of the

trial design put forward by Renfro et al; the simulation study implementing

their trial design is discussed in Section 3.3; extension of the Renfro et al trial

design to incorporate two biomarkers is discussed in Section 3.4; a discussion

is given in Section 3.5.
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3.2 Overview of Renfro et al Trial Design

The trial design put forward by Renfro et al. is a two stage biomarker-based

design with four key components:

1. An interim analysis at which a cuto↵ for a continuous biomarker of in-

terest is identified

2. Futility and e�cacy stopping rules

3. Possible restriction of patient accrual to a sensitive subgroup

4. Appropriately powered final analyses, with the tested population defined

by interim findings. Treatment e↵ect is assessed in the patient population

identified as most likely to benefit within the trial (i.e. biomarker-high

patients or the overall population)

Within their paper, the authors describe the originally proposed trial de-

sign and how updated information from investigators lead to the creation of the

novel design described in this section. The oncology trial was initially planned

as a simple randomised phase II design, which incorporated retrospective eval-

uation of biomarkers. Their initial design aimed to recruit 160 patients (107

assumed progression free survival events), randomised 2:1 to the treatment

arm vs placebo, to achieve 80% power to detect a hazard ratio 0f 0.6 with a

one-sided type I error rate of 0.05. However, during the development of the

study, investigators identified a potentially predictive continuous biomarker

that could define a subgroup of patients who would receive a much larger ben-

efit from the treatment under consideration. Therefore, a modified design was

required that could achieve prospective assessment of this novel biomarker,

as well as establish an associated threshold to classify patients as positive

(marker-high, higher treatment response) or negative (marker-low, treatment

resistant). Expansion of futility and e�cacy analyses were also required in

order to include treatment assessment in the biomarker-high subgroup as well

as in the overall patient population. The potential for restricting the analysis

in stage 2 was also needed in case of overwhelming evidence in support of the

biomarker. To incorporate these components, Renfro et al. designed an adap-

tive phase II trial, which is described in detail below; a diagrammatic overview

81



is also given in Figure 3.1.

Figure (3.1) The biomarker-based adaptive clinical trial design created by Renfro et al
(Renfro et al. 2014)

Begin by assuming the existence of a continuous biomarker for which there

is preliminary evidence to suggest is it predictive of treatment benefit. The trial

sponsor’s previous experience with said marker suggested candidate cuto↵s

which define a marker-high subgroup prevalence in the range of 25% to 75%.

Furthermore, the sponsor wished to limit enrolment to the originally planned

160 patients (with power considerations discussed above) if the marker demon-

strated no relationship with treatment e↵ect at the interim, but was willing to

enrol up to an additional 160 patients, to confirm benefit in the identified opti-

mal population (overall or biomarker-positive). As the original trial was based

in oncology, the endpoint of interest was Progression Free Survival (PFS), but

the authors note that the study characteristics are easily generalised to other

settings. The trial framework is split into 4 distinct sections which are ex-

panded upon below; for clarity, a diagram showing how all distinct scenarios

are defined is given in Figure 3.2.
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Scenario 1
Promising Biomarker Established

Best interaction effect P-value lower than 
interaction threshold:	" < $%&'

Scenario 2
No Promising Biomarker 

Established

" ≥ $%&'

Step 1
Interim Analysis for 

Biomarker Threshold 
Identification

Step 2
Efficacy Testing and 

Futility Stopping 
Rules

Efficacy testing carried out within subgroups. 
Log rank tests carried out and HRs 
calculated in marker-high and –low stage 1 
subgroups.

Futility assessed separately in biomarker-
high and –low subgroups. Trial stops for 
futility if neither P-value from log rank test is 
lower than futility threshold: 

	")*+,-+ 	≥ $./' 	& 	")*123 ≥ $./'

Assessment of overall 
treatment effect. Log 
rank test carried out on 
all stage 1 patients and 
HR obtained.

Stop for futility if P-value 
from log rank test is 
lower than futility 
threshold:

")* ≥ $./'

Step 3
Stage 2 Accrual and 

Resizing

Step 4
Final Efficacy Testing

Scenario 1A
Restricted Accrual

Recruit 160 further 
patients marker-high 
patients

Stage 2 accrual is 
unrestricted (marker-
high and –low 
patients) if

	")*+,-+ < $./' 		&
	")*123< $./'

Scenario 1B
Unrestricted Accrual

Recruit a total of 160 
marker high patients 
across both stages, 
subject to 4567 and 
4567) . Stage 2 accrual 
is unrestricted 
(marker-high and –
low patients) if
	")*+,-+< $./' 		&
	")*123< $./'

40 additional patients are 
recruited

Final efficacy test 
carried out on stage 2 
marker-high patients 
only

Treatment is 
considered promising 
if P-value from the 
log-rank test using the 
appropriate population 
is lower than efficacy 
threshold:

")*899 < $:..

Final efficacy test 
carried out on all
marker-high patients 
from stages 1 and 2

Treatment is 
considered promising 
if P-value from the 
log-rank test using the 
appropriate population 
is lower than efficacy 
threshold:

")*899 < $:..

Final efficacy test carried 
out on all patients in the 
trial

Treatment is considered 
promising if P-value from 
the log-rank test is lower 
than efficacy threshold:

")*899 < $:..

Figure (3.2) A diagram showing the decision making process throughout the Renfro et
al trial design
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Step 1: Interim Analysis for Biomarker Threshold Identification

Following accrual of N1 = 120 patients (80 on the treatment arm, 40 on con-

trol) and these having been followed for at least 8 weeks, the interim analysis is

carried out. A series of Cox Proportional Hazards (PH) models are fit across

a range of possible cutpoints for the biomarker (which result in a marker-

high prevalence between 25% and 75%). Each Cox PH model treats PFS as

the outcome, with treatment assignment, dichotomous biomarker status and

a treatment-biomarker interaction term as covariates:

h(ti) = h0(ti)⇥ exp
�
�1Ti + �2 (Bi > cj) + �3Ti ⇥ (Bi > cj)

�

where h() is the hazard function, ti is the time until progression or censoring

for patient i, Ti is the treatment assignment and (Bi > cj) is the dichotomous

biomarker status, identifying which patients have a biomarker value above the

current candidate cutpoint cj. The cutpoint associated with the strongest

interaction e↵ect, defined as the largest value of �3, is then taken into later

stages of the trial, assuming that this interaction e↵ect has a P-value lower

than some pre defined threshold: p < Pint. Thus, two possible scenarios will

have been established at the conclusion of this step.

Scenario 1-Promising Biomarker. A biomarker is considered ‘promising’

when the interaction P-value for the best cutpoint is lower than Pint and there

is greater treatment benefit in the marker-high group then in the marker-low.

Scenario 2-No Promising Biomarker. No biomarker is considered promis-

ing if no interaction P-value is lower than Pint or the treatment benefit is

greater in the marker-low group than in the marker-high.

Step 2: Futility Stopping Rules Following Interim

Following the interim analysis, the trial may be stopped for futility based on

results obtained from the interim e�cacy analyses. The e�cacy testing carried

out is dependent upon which scenario has been established:
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Scenario 1-Promising Biomarker. In this case, it is of interest to assess

the treatment e↵ect within subgroups. Therefore, log-rank tests for treatment

e↵ect are carried out within each marker defined subgroup, Cox PH models

are also implemented to obtain the hazard ratio within the marker-high and

marker-low subgroups, denoted HRH and HRL respectively.

Scenario 2-No Promising Biomarker. In this case, the overall treatment

e↵ect is of interest as there are no biomarker defined subgroups. A log rank

test for treatment superiority is then carried out using all stage 1 patients,

alongside a Cox PH model to obtain the hazard ratio of treatment vs control

for all stage 1 patients.

The futility stopping rules which follow from this e�cacy testing are also

dependent upon which biomarker scenario has been established:

Scenario 1-Promising Biomarker. In the case where the biomarker is

predictive of di↵erential treatment e↵ect, futility is assessed separately within

marker-high and marker-low subgroups. If neither of the P-values from the

subgroup log-rank tests (marker-high and -low) for treatment e↵ect are lower

than some pre-defined Pfut, the trial terminates. Moreover, if treatment e↵ect

is evident only in marker-high patients – i.e. the marker-high P-value is lower

than Pfut but that of the marker-low test is not – stage 2 accrual is restricted

(step 3).

Scenario 2-No Promising Biomarker. If the biomarker is no longer under

consideration, futility is assessed in the overall stage 1 population. If the P-

value from the overall log-rank test is not lower than Pfut, the trial terminates.

Step 3: Stage 2 Accrual Restrictions and Resizing
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One of the goals of this trial design is to carry out treatment evaluation in the

patient population which has been identified as most likely to benefit within

the trial, whether that is the marker-high subgroup or the overall population.

Ensuring the correct population is represented in the final e�cacy analysis

(step 4) is done by restricting patient accrual in stage 2 based on results of

e�cacy analyses conducted at the interim. Three unique scenarios can be

encountered following the interim, each of which is detailed below.

Assuming the trial has not been stopped for futility, an additional N2

patients are accrued in stage 2, accounting for sponsor defined overall and

marker-low enrolment caps, Ncap and NL

cap
. In this trial, these values were set

at Ncap = 280 and NL

cap
= 90, which were agreed upon between the sponsor

and statistical team. These values were chosen so that the originally planned

levels of power (80%) and type I error (5%) required in the initial design were

met in this adaptive design, regardless of which scenario is encountered at this

stage. Details of how this is achieved in each scenario is discussed below.

Scenario 1A-Promising Biomarker and Restricted Accrual. If the

biomarker is promising (as identified at in step 1), but there was no evident

treatment e↵ect in marker-low patients (step 2), patient accrual in stage 2 is

restricted to marker-high patients only. This scenario is then denoted ‘Scenario

1A’ and N2 = 160 marker-high patients are recruited for stage 2. Final e�cacy

analyses (see Step 4) within scenario 1A are based on stage 2 marker-high

patients only, so setting N2 = 160 provides 80% power to detect a hazard ratio

of 0.6 in the marker-high population, with a one-sided ↵ = 0.05, based on 107

PFS events. The total trial size is then N = N1 + N2 = 120 + 160 = 280,

meeting the required Ncap.

Scenario 1B-Promising Biomarker and Unrestricted Accrual. If the

biomarker is promising (as identified at in step 1) and there was evidence of

treatment e↵ect in both marker-high and -low groups, stage 2 accrual remains

una↵ected i.e. both marker-high and -low patients are recruited. Trial size
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must still adhere to Ncap and NL

cap
however, and if NL

cap
has already been

reached at the time of interim analysis, then only marker-high patients are

recruited in stage 2. This scenario is then denoted ‘Scenario 1B’ and stage

2 sample size is centred around recruiting 160 marker-high patients in total

(stage 1+2). Final e�cacy analyses (see Step 4) within scenario 1B are based

on all marker-high patients (stage 1 or 2), therefore recruiting 160 marker

high-patients across both stages provides 80% power to detect a hazard ratio

of 0.6 in the marker-high population, with a one-sided ↵ = 0.05, based on 107

PFS events. The total sample size then falls between 214 and 250, as N1 = 120

and N2 can lie between 94 and 130, depending on the value of marker-high

prevalence which is assumed to be between 25% and 75%.

Scenario 2-No Promising Biomarker. The biomarker is no longer under

consideration as there was no evidence to support its use defining a responding

marker-high subgroup at the interim. The trial is not resized and accrual is

unchanged, an additional N2 = 40 patients are recruited for a total trial size

of N = 120 + 40 = 160. Final e�cacy analyses (see Step 4) within scenario 2

are based on the overall trail population, ignoring marker status, therefore an

overall sample size of N = 160 provides 80% power to detect a hazard ratio

of 0.6 in the overall population, with a one-sided ↵ = 0.05, based on 107 PFS

events. Following trial conclusion, retrospective exploratory analyses may be

performed to explore the biomarker further.

Step 4: Final E�cacy Testing

Final e�cacy testing is carried out in either marker-high patients or the overall

population, dependent upon which scenario was encountered.

Scenario 1A-Promising Biomarker and Restricted Accrual. Final ef-

ficacy testing in this case is carried out in stage 2 marker-high patients only.

This is done in order to preserve the independence of stage 1 patients whose

data were used to identify the biomarker subgroup e↵ect from stage 2 pa-

tients whose data will be used to confirm e�cacy in this subgroup. These two
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patient groups lack exchangeability due to the definition of the patient popu-

lation changing at the interim analysis. The treatment is considered promising

in marker-high patients if the P-value from a one-sided log-rank test P is lower

than some pre-specified cutpoint Peff : P < Peff .

Scenario 1B-Promising Biomarker and Unrestricted Accrual. Final

e�cacy testing is carried out using all marker-high patients from stages 1 and

2. Reuse of stage 1 marker-high patients is justified as the definition of the

trial population did not change at the interim and so patients from the two

stages are interchangeable. Again, the treatment is considered promising in

marker-high patients if the P-value from a one-sided log-rank test P is lower

than some pre-specified cutpoint Peff : P < Peff .

Scenario 2-No Promising Biomarker. The final e�cacy analysis is car-

ried out in the overall 160 patients recruited, with treatment being considered

promising in the overall population if the P-value associated with a one-sided

log rank test is lower than some pre-specified cutpoint Peff : P < Peff .

The authors investigated the operating characteristics of this novel design

using a simulation study. They summarised the following values for a number

of scenarios, which were defined by the marker-high prevalence and marker

subgroup specific hazard ratios:

- Average trial size

- Proportion of trials which identified a promising biomarker at interim

- Proportion of trials which restricted accrual in stage 2

- Proportion of trials which stopped for futility

- Proportion of trials which showed successful final e�cacy tests

88



3.3 Simulation Study

To explore the trial design put forward by Renfro et al., a simulation study

implementing their design was created. Use of a simulation study allowed the

exploration of the performance of the trial design with respect to trial operating

characteristics under a number of scenarios, defined by biomarker prevalence

and the magnitude of treatment e↵ect. In their paper, they give a detailed

description of the trial design, though details of the implemented simulation

study are more limited. How the information provided by the authors was

used to design the simulation study described here is discussed below. Results

of this simulation study are presented and are contrasted with those given by

the authors in their paper.

3.3.1 Simulation Overview

An overview of the simulation study implemented in this work is discussed in

this section. The detailed description of the trial design given by Renfro et al.,

discussed in Section 3.2 and summarised in Figure 3.2, was used to design the

body of the trial function used in simulations. All trial decision making with

regard to futility, e�cacy and biomarker-defined scenarios was implemented

using comparisons of calculated P-values to pre-defined thresholds. In the

authors paper, the section titled “Design Evaluation Approach” gives details

on how their simulation study was implemented. In this section they provide

the following information:

- All simulation scenarios were carried out with 10,000 replications

- Accrual was assumed to be uniform at a rate of 4 patients per week

- Exponentially distributed PFS with a median of 8 weeks on control arm,

regardless of biomarker status

- An interim analysis was conducted after 8 weeks of follow up for the

120th patient, i.e. after 38 weeks
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- Three values of biomarker prevalence were used: 25%, 50% and 75%.

These were used to reflect two extreme levels of prevalence as well as one

moderate

- Within each of the levels of biomarker prevalence, treatment magnitude

was varied by varying the hazard ratio in both the biomarker-low group

(HRL) and the biomarker-high (HRH). A number of cases in which

HRH � HRL were considered

- P-value thresholds were fixed at Pint = 0.5, Pfut = 0.6 and Peff = 0.1.

These values were chosen by the authors following a simulation study and

were selected in order to maximise power, given the possibilities of low

biomarker prevalence in the trial population and imperfect identification

of the biomarker at the interim. Other values were considered by the

authors in a further simulation study, but results were not presented in

their paper.

- Ncap = 280 was chosen as a financially dictated, sponsor defined cap and

NL

cap
= 90 was chosen too ensure adequate numbers of biomarker-high

patients to achieve required power in stage 2 analyses

For consistency, these values were used in the simulation study implemented

here. Any di↵erences between simulation models or instances where assump-

tions have been made in this work, due to the information not being provided

by the authors, are discussed below.

Step 0: Input Values

To define unique scenarios of interest, a number of input parameters were

specified for each case:

- Pint, the threshold to define significant interaction e↵ects between biomarker

cuto↵s and treatment (fixed at 0.5)

- Pfut, the threshold to define which trials are stopped for futility at the

interim analysis (fixed at 0.6)

- Peff , the threshold to define which trials significant final e�cacy analyses

(fixed at 0.1)
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- Ncap and NL

cap
, sponsor defined caps for trial recruitment in the overall

and biomarker-low populations respectively (fixed at 280 and 90 respec-

tively)

- The biomarker prevalence in the trial population, i.e. the input cuto↵

value for defining marker-positive patients (µ)

- The Hazard Ratios in marker-high and -low patients, HRH and HRL

respectively

Step 1: Stage 1 Patient Data and Biomarker Threshold Identifica-

tion

Patient data were simulated for N1 = 120 patients: each patient received

an ID number, an intake week (assuming constant recruitment of 4 patients

per week), treatment assignment (2:1 treatment=1 to control=0), a biomarker

value drawn from a Uniform(0,1) distribution, a time to progression or censor-

ing (given in weeks) and a censoring flag. The time to progression for patient

i, with treatment assignment Ti and biomarker value Bi was drawn from an

exponential distribution as follows:

S(t) =

8
>>><

>>>:

exp(�t) Ti = 0

HRL ⇥ exp(�t) Ti = 1, Bi < µ

HRH ⇥ exp(�t) Ti = 1, Bi > µ

where � = ln(2)/8 to obtain an exponential distribution with a median of 8

weeks on the control arm, irrespective of treatment status, and µ is the input

cuto↵ to define biomarker-high patients. Three values of µ were used in order

to achieve 25%, 50% and 75% prevalence: 0.25 (for 75% prevalence), 0.5 (for

50% prevalence) and 0.75 (for 25% prevalence). No information of rate of

censoring in the simulation study was given by the authors, with the endpoint

described as possibly right censored PFS, therefore all patients were assumed

to have an event in this work. Patients were censored at the interim analysis

if the time of their event combined with their intake week was after the time

of the planned interim analysis of 38 weeks (8 weeks of follow up for 120th

patient).
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Following simulation of patient data, biomarker threshold identification was

carried out (see Step 1, Section 3.2) to identify the optimal threshold to be

taken forward into stage 2.

Step 2: Interim Analysis

Interim e�cacy analyses and futility stopping rules were implemented, as

detailed in Step 2, Section 3.2.

Step 3: Stage 2 Patient Data and Final E�cacy Analyses

Assuming the trial was not stopped for futility at the interim, stage 2 patient

data were then simulated. The number of patients and the population they

were drawn from was dependent on results from the interim e�cacy analyses,

as detailed in Step 3, Section 3.2.

In the simplest case, in which the biomarker was not considered promising,

patient data were simulated for an additional 40 patients. Patient information

was kept consistent with stage 1, with the exception of biomarker values being

ignored as these no longer served a purpose. Final e�cacy analyses were

then implemented using patients from stages 1 and 2 combined, ignoring any

biomarker information.

Assuming that the biomarker was found to be promising and treatment was

e↵ective only in the marker-high patients, patient data were simulated for an

additional 160 marker-high patients. Patient information was kept consistent

with stage 1, however biomarker values were drawn from a Uniform(C⇤,1)

distribution, where C⇤ denotes the optimal threshold identified at the interim

analysis. Final e�cacy analyses were then implemented using patient data

from stage 2 only.

Finally, in the case where the biomarker was identified as promising at the

interim but treatment was found to be e↵ective in both marker-high and -low
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patients, patient data were simulated for a non-fixed number of patients, in

keeping with the rules set out in Step 3 of the trial design in Section 3.2. Final

e�cacy analyses were then carried out on all marker-high patients.

3.3.2 Results

In order to compare the results of the simulations presented here and those

of Renfro et al., a number of metrics summarised in their paper were also

summarised for each scenario here:

- The average trial size

- The proportion of trials identifying an interim marker

- The proportion of trials which restricted accrual in stage 2

- The proportion of trials which stopped for futility at the interim

- The proportion of trials which showed significant final e�cacy, split by

whether this was tested in the overall or subgroup population

No formal comparisons were carried out when contrasting simulation re-

sults. Furthermore, no investigations into the accuracy of the biomarker

threshold identification procedure were carried out as this was not done in

the original paper. The simulation results from the paper by Renfro et al. are

given in Table 3.1 and the corresponding results from the simulations discussed

here are given in Table 3.2.

93



HRL = 1.2 HRL = 1.2 HRL = 1.0 HRL = 1.0 HRL = 1.0
HRH = 1.2 HRH = 1.0 HRH = 1.0 HRH = 0.8 HRH = 0.6

25% Marker Prevalence

Trial Size⇤ 166 187 176 198 224
Interim Marker 26.3 39.2 25.8 42.4 63.5
Restricted Accrual 21.4 31.5 15.8 24.3 32.2
Interim Futility 55.7 41.2 29.6 18.2 7.7
Final E�cacy 1.7 6.4 12.1 30.9 67.0
-No Marker 1.1 1.7 7.9 9.0 8.7
-Marker Subgroup 0.6 4.7 4.2 21.9 58.3

50% Marker Prevalence

Trial Size⇤ 159 186 175 201 232
Interim Marker 25.2 40.1 26.2 43.5 69.1
Restricted Accrual 17.8 31.5 18.4 27.9 35.4
Interim Futility 59.7 37.9 31.0 13.8 2.5
Final E�cacy 2.1 7.6 12.0 36.1 78.9
-No Marker 1.4 2.8 7.9 13.1 14.4
-Marker Subgroup 0.7 4.8 4.1 23.0 64.5

75% Marker Prevalence

Trial Size⇤ 151 181 171 200 228
Interim Marker 25.5 38.4 25.1 40.7 63.4
Restricted Accrual 13.8 28.0 18.4 29.4 37.7
Interim Futility 65.3 37.5 34.0 10.7 1.0
Final E�cacy 1.8 8.1 11.2 39.1 85.2
-No Marker 1.3 4.0 7.7 18.6 26.5
-Marker Subgroup 0.5 4.1 3.5 20.5 58.7

Table (3.1) Results from the simulation study in the paper by Renfro et al. Note that
values are given as percentages, with the exception of trial size⇤, which is the mean over
the replicated trials.
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HRL = 1.2 HRL = 1.2 HRL = 1.0 HRL = 1.0 HRL = 1.0
HRH = 1.2 HRH = 1.0 HRH = 1.0 HRH = 0.8 HRH = 0.6

25% Marker Prevalence

Trial Size⇤ 176 200 192 217 240
Interim Marker 31.4 47.2 38.1 57.2 77.0
Restricted Accrual 29.7 44.0 31.4 43.7 51.9
Interim Futility 53.2 37.6 25.5 13.6 4.4
Final E�cacy 2.0 8.4 15.9 37.9 71.7
-No Marker 0.7 1.2 6.3 7.5 6.1
-Marker Subgroup 1.2 7.2 9.6 30.4 65.6

50% Marker Prevalence

Trial Size⇤ 177 210 192 223 243
Interim Marker 32.1 53.2 37.4 62.7 84.9
Restricted Accrual 30.6 48.6 31.0 44.7 49.4
Interim Futility 52.2 29.4 25.4 8.3 1.2
Final E�cacy 1.9 12.3 16.4 49.8 89.2
-No Marker 0.7 1.8 7.1 9.2 8.1
-Marker Subgroup 1.2 10.5 9.3 40.6 81.1

75% Marker Prevalence

Trial Size⇤ 177 207 191 217 230
Interim Marker 31.9 50.0 37.2 57.1 75.5
Restricted Accrual 30.5 44.3 30.4 38.2 38.4
Interim Futility 51.8 26.4 25.9 6.0 0.3
Final E�cacy 2.2 14.9 15.9 56.2 93.3
-No Marker 1.0 3.0 6.2 15.1 19.2
-Marker Subgroup 1.2 11.9 9.7 41.1 74.1

Table (3.2) Results from the simulation study presented in this work. Note that val-
ues are given as percentages, with the exception of trial size⇤, which is the mean over the
replicated trials.

By comparing the information given in the above tables, a number of points

stand out. Firstly, the average trial size across simulation scenarios was larger

in this work than that by Renfro et al. This was also the case for the proportion

of trials which identified a promising biomarker at the interim and the propor-

tion of trials which restricted accrual to marker positive patients in stage 2.

These three points likely share the same underlying issue, stemming from the

identification of a promising biomarker and leading to inflated numbers in this

work. The identification of a promising biomarker at the interim appeared to

be overly optimistic in this work, leading to too many trials continuing into

stage 2 which still considered the biomarker. This may have been due to a

potentially lower level of censoring implemented in this work, leading to the

availability of more information at the interim and hence the ability to detect

smaller treatment e↵ects in the biomarker subgroup. This had a ‘knock-on’

95



e↵ect on the proportion of trials with restricted stage 2 accrual and the trial

size: more trials than expected were still considering the biomarker, so there

were more trials which could potentially restrict accrual. Trials which did not

consider the biomarker in stage 2 were limited to 160 total patients, whereas

the total sample size for trials still considering the biomarker ranged from 214

to 280, leading to a larger average trial size. Taking these points into consider-

ation, the actual di↵erences in the above metrics were not overly large in most

cases and the same relationships with changing treatment e↵ect were observed

between the two pieces of work. As the di↵erence in treatment e↵ect between

marker-positive and -negative patients became larger, the above metrics all

increased, which, by design, was expected.

The proportion of trials which stopped for interim futility and the pro-

portion which achieved final e�cacy (both overall and marker specific) were

comparable between this work and that of Renfro et al. Moreover, similar

relationships with changing treatment e↵ect were again observed. As the dif-

ference in treatment e↵ect between marker-positive and -negative patients be-

came larger, the proportion of trials which stopped for futility decreased and

the proportion achieving final e�cacy increased (as expected). Furthermore,

in cases where the treatment was detrimental, the majority of trials stopped

for futility and very few showed significant final e�cacy. Finally, in the case of

no treatment e↵ect for any patients (HRL = HRH = 1), a similar proportion

of trials stopped for futility in this work across all biomarker prevalences when

compared with Renfro et al and the type I error was controlled at similar levels

(15.9 vs 12.1, 16.4 vs 12.0 and 15.9 vs 11.2 for 25%, 50% and 75% prevalence

respectively).

The observed discrepancies between the simulation results are likely due to

unknown di↵erences in trial specification. Although the description of the trial

framework given by Renfro et al. was thorough, details on simulation set up

were more brief. Discrepancies were also consistent throughout di↵erent trial

scenarios, lending support to this notion. For example, Renfro et al. describe

their PFS outcome as ‘possibly’ right censored but give no details on how
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patients were censored.

Although the presented results and those of Renfro et al. did not match

exactly, the discrepancies were not considered to be major and similar relation-

ships between changing treatment e↵ect and all metrics were observed. Thus,

work progressed into potential areas of extension, as discussed in Section 3.4.
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3.4 Extensions to the Renfro et al. Trial De-

sign

Precision medicine has been hugely successful in getting the correct interven-

tions to patients in a timely manner, in order to optimise their treatment. This

has been driven by the use of diagnostic and predictive biomarkers to iden-

tify responding patient subgroups when creating targeted therapies. This has

enforced a ‘one biomarker, one drug’ mindset, which due to the heterogeneity

of tumour biology, may not be the optimal way to treat patients; approvals

for predictive oncology biomarkers are currently restricted to single parame-

ter tests for single targeted therapies (Twomey et al. 2017). A growing belief

in oncology is that several biomarkers may be needed to su�ciently identify

sensitive patients for some drugs or drug combinations. Patient stratification

based on the likelihood of treatment response could be vastly improved by

utilising combinations of biomarkers based on tumour genetic information and

molecular pathology simultaneously (Twomey et al. 2017, Sankar et al. 2022).

An example where biomarker combinations could be of utility is that of

Herceptin-treated HER2 positive patients. Sequence analyses of these patients

showed that low levels of phosphatase and tensin homolog (PTEN), or PTEN

loss during treatment, may be an early predictive biomarker of resistance to

HER2 inhibitor treatments (Zhang et al. 2015). Biomarker combinations could

be of particular utility in immunotherapy (Sankar et al. 2022); programmed

Death Ligand-1 (PD-L1) has been investigated as a predictive biomarker in

immunotherapy and has seen mixed results (Davis & Patel 2019) in prac-

tice. Recent work in patients with metastatic renal cell carcinoma (mRCC)

has shown that cell proliferation in combination with PD-L1 expression o↵ers

predictive value when predicting patient response to nivolumab (Zhang et al.

2020). PD-L1 has also shown increased power to predict overall survival in pa-

tients with non small cell lung cancer when used in combination with tumour

mutational burden (Yu et al. 2019). The product of PD-L1 positive cell and

CD8 positive TILs (tumour infiltrating lymphocytes) densities (CD8+xPD-

L1+) has been used as a signature to study tumour biopsies of patients with
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advanced cancers. For patients receiving the treatment durvalumab, a high

value for this signature was associated with higher overall survival (Altham-

mer et al. 2019). In cases where a targeted therapy is given in conjunction

with an immunotherapy, a biomarker could be used for each treatment indi-

vidually to predict patient response. Combinations of biomarkers could also

be used for patient surveillance, when trying to observe recurrence of disease

(Hartwell et al. 2006). For example, serum thyroglobulin can be used for the

surveillance of previously treated thyroid cancer and can identify otherwise

occult tumours, but cannot inform on the potential risk of tumour progres-

sion or death. However, when used in combination with fluorodeoxyglucose

positron emission tomography (FDG-PET), one is able to identify those can-

cers most likely to cause death and therefore tailor treatment regimes to the

patient. Moreover, with the growing development and utilisation of umbrella

trials, where di↵erent patients with the same cancer are given di↵erent treat-

ment depending on the specific mutation or biomarker found in their cancer,

the potential for using combinations of biomarkers to define treatment regimes

is very appealing.

Although the use of dual biomarkers shows great utility and applicability

within precision medicine/personalised healthcare, certain issues could also

arise. Firstly, there would be an increased cost associated with using two

biomarkers to define the sensitive patient subgroup. All costs incurred when

using a biomarker to define a patient subgroup for a particular treatment

would essentially be doubled in this case. Using two biomarkers to define the

patient subgroup means that the biomarker development process would need

to be carried out twice. Whenever a patient needs to have their biomarker

measurement carried out, whether during the drug development process or

post approval, all testing, storage, processing and analysis would need to be

carried out for each biomarker. This increase in testing could also lead to an

increase in logistical issues by loss of samples or errors in processing.

By defining the sensitive patient subgroup using two biomarkers, the pa-

tient subgroup could potentially be very small. For example, if the sensitivity
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prevalence of each biomarker is 25% of the population individually, then the

overall size of the sensitive subgroup would be approximately 6% of the pop-

ulation. This could then lead to discussions on a subgroup’s utility by consid-

ering a trade o↵ between the subgroup size versus the increase in treatment

e↵ect. The interpretability of a patient subgroup defined by two biomarkers

could also become more di�cult and communication to internal and external

stakeholders more challenging. Care would need to be taken to ensure that

the biomarker subgroup is defined clearly within any communication and all

analyses and results regarding the subgroup treatment e↵ect are explained in

detail.

The issues discussed are outweighed by the potential benefits to patient

care when using dual biomarkers to define responding patient subgroups. The

use of dual biomarkers in this setting therefore warrants further investigation

to assess the impact on trial design and analysis. With this in mind, it is

of interest to extend the work carried out by Renfro et al by exploring the

identification of cuto↵s for multiple continuous biomarkers within their trial

framework. Specifically, the scenario defined by two continuous biomarkers

of interest which are both predictive of treatment e↵ect. In this scenario,

it is assumed that preliminary information is available for both to suggest

that a predictive relationship exists simultaneously between each biomarker

and the probability of a patient’s response. That is, patients with higher

values for both biomarkers (or lower, depending on the scenario) are expected

to have an increased level of treatment response. A further assumption of

this scenario is that although a predictive relationship exists between each

biomarker and patient response, an appropriate threshold value is not known

for either biomarker to define a sensitive subgroup. The sensitive subgroup

would be defined using threshold values for each biomarker, creating a two-

dimensional problem as exemplified in Figure 3.3.

Figure 3.3 shows a scatter plot of example patient biomarker data, with

values for biomarker 1 along the x-axis and values for biomarker 2 along the y-

axis, points are then colour coded with respect to the patients response status
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(blue=response, red=no response). In this case, it has been assumed that there

is a monotonic increasing relationship between each biomarker and response

probability, therefore higher values of each biomarker are associated with an

increased probability of patient response. This is evident from the increased

density of blue points shown within the identified subgroup in the top-right of

the plot. A threshold value for each biomarker has then been overlaid on the

plot as a dashed line (vertical for biomarker 1 and horizontal for biomarker

2), with the defined subgroup shown as a solid blue box. Threshold values in

this example case were chosen manually to demonstrate the problem of dual

biomarker threshold identification; the chosen thresholds define a subgroup in

which the density of blue points (responders) is high. Di↵erent methodologies

to identify the optimal thresholds and how ‘optimal’ is defined in this setting

are explored throughout this thesis.
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Figure (3.3) A scatter plot showing the dual biomarker threshold identification prob-
lem. Values for biomarker 1 are on the x-axis, values for biomarker 2 are on the y-axis
and points are colour coded according to patient response (blue=response, red=no re-
sponse).

It is of interest to explore the incorporation of dual biomarker threshold

identification procedures into the Renfro et al trial design, and how this af-

fects trial operating characteristics. Some initial data is presented regarding

accuracy of threshold estimation, but this is addressed in more detail in later

chapters of this thesis.

101



3.4.1 Incorporation of Dual Biomarker Threshold Iden-

tification Methods

Methods to achieve dual biomarker threshold identification within a confirma-

tory clinical trial framework could be easily incorporated into the Renfro et

al framework. All trial activities following the interim analysis are dependent

upon the identification of a biomarker based subgroup and the outcome of

e�cacy and futility analyses. Therefore, one can carry out dual biomarker

threshold identification at the interim with little impact on stage 2 of the trial.

Thus, the implementation of dual biomarker threshold identification was ini-

tially explored by altering the Renfro et al design and implementing a similar

simulation study as carried out in the original single biomarker case.

Changes to Trial Design

As stated above, there was little to change when extending the trial design to

incorporate two predictive biomarkers. The first change was that information

on two biomarkers of interest needed to be collected when accruing patients, let

these be denoted by B1 and B2. At the interim analysis, instead of identifying

the optimal cuto↵ for a single biomarker and taking this into stage 2 of the

trial, one must identify two optimal cutpoints simultaneously to identify a two-

dimensional subgroup of marker-high patients. The methods implemented in

this work are explored below. Finally, patient accrual in stage 2 of the trial

was defined by the two-dimensional subgroup as opposed to a single cuto↵ i.e.

accrual was restricted to patients with both B1 > c1 and B2 > c2, where c1

and c2 are the identified thresholds for each biomarker.

For ease of implementation and interpretation, the outcome of interest for

the trial was changed from progression free survival to a binary endpoint of

patient response. All e�cacy testing was therefore achieved using logistic

regression models as opposed to Cox PH models and log rank tests. Other

trial features were kept consistent, as the purpose of this extension was to

explore the feasibility of incorporating dual biomarker threshold identification

rather than optimising trial design and threshold estimation accuracy. Thus
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all futility stopping rules, e�cacy thresholds, accrual restrictions/trial resizing

and patient numbers were unchanged.

Three methods of achieving dual biomarker threshold identification were

explored in this new trial design. The first was a simple extension of the

modelling technique used by Renfro et al. A series of logistic regression models

were fitted across a range of possible cutpoints for each biomarker separately,

to identity the optimal cutpoint for each. Again, this range of candidate

cutpoints was designed to span the range between 25% and 75% marker-high

prevalence. The sets of candidate thresholds for each biomarker were set at

{0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75}. Each logistic regression

model treated patient response as the outcome, with treatment assignment,

dichotomous biomarker status and a treatment-biomarker interaction term as

covariates:

ln

✓
pi

1� pi

◆
= �0 + �1Ti + �2 (Bki > ckj) + �3Trti ⇥ (Bki > ckj)

where pi is the probability of patient response for patient i, Ti is the treat-

ment assignment and (Bki > cj) is the dichotomous biomarker status for

biomarker Bk, k = {1, 2}, identifying which patients have a biomarker value

above the current candidate cutpoint cj. As done in the single biomarker case,

the cutpoint associated with the strongest interaction e↵ect (defined as largest

interaction coe�cient �3) for each biomarker was then used as the threshold

taken into stage 2 of the trial to define marker-high patients. As the method

had been extended to incorporate two predictive biomarkers, the marker-high

patient subgroup included patients who had biomarker values exceeding both

of the identified optimal thresholds i.e. B1 > c1 and B2 > c2, where c1 and c2

are the identified thresholds for each biomarker.

The second and third methods used in this extension were based on a

simple grid search over candidate threshold combinations. Consider the case

with candidate threshold sets C1 = {c11, ..., c1n} and C2 = {c21, ..., c2m}. For

every combination of candidate thresholds {c1i, c2j} 8 i = 1, ..., n, j = 1, ...,m,
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one can identify all patients with biomarker values exceeding these values and

define a patient subgroup. For example, the patient subgroup denoted S2,3 is

formed of all patients with B1 > c12 and B2 > c23. Then the following grid of

subgroups is produced:

c11 c12 c13 c14 c15

c21 S1,1 S2,1 S3,1 S4,1 S5,1

c22 S1,2 S2,2 S3,2 S4,2 S5,2

c23 S1,3 S2,3 S3,3 S4,3 S5,3

c24 S1,4 S2,4 S3,4 S4,4 S5,4

c25 S1,5 S2,5 S3,5 S4,5 S5,5

Within each of these subgroups, the average rate of patient response and

the odds ratio for treatment e↵ect were both calculated. The second method

of biomarker threshold identification defined the optimal thresholds as the

pair that defined the subgroup in which the average rate of response to treat-

ment was the largest. The third method defined the optimal thresholds as

the pair that defined the subgroup in which the odds ratio for treatment ef-

fect was the largest. Using each method, the respective thresholds were both

taken into stage 2 of the trial design to define the marker-high subgroup.

Again, the candidate thresholds for this method were fixed at C1 = C2 =

{0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75}

Simulation Study

A simulation study was again used to evaluate this trial design. The same

metrics as in the single biomarker case were summarised to assess the trial

operating characteristics under the new subgroup identification procedures.

Furthermore, threshold estimates attained by each method were retained to

assess the respective accuracy of implemented procedures.

Setup of the simulation study did need altering to allow the incorporation

of two biomarkers and the threshold identification procedures. General set up

was consistent with the single biomarker case, with slight changes in simu-

lated patient information to account for the second biomarker and modelling
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techniques to incorporate the di↵erent endpoint. Below is an overview of the

implemented R program.

Step 0: Input Values

To define unique scenarios of interest, a number of input parameters were

specified for each case:

- Pint, Pfut, Peff , Ncap and NL

cap
were defined as in the single biomarker

case

- Parameters to define the probability of patient response (see step 1)

- Possible response probabilities pC , pT,L and pT,H

- Input biomarker cuto↵ values µ1 and µ2, to define biomarker-high

patients

Step 1: Stage 1 Patient Data and Biomarker Threshold Identification

Patient data were simulated for N1 = 120 patients. Each patient received

an ID number, treatment assignment (2:1 treatment=1 to control=0), two

biomarker values drawn from Uniform(0,1) distributions and a response flag.

The probability of patient response was defined as follows. For a patient i,

with biomarker values B1i and B2i and treatment assignment Ti:

P (Response) =

8
>>><

>>>:

pC Ti = 0

pT,L Ti = 1, B1i < µ1 or B2i < µ2

pT,H Ti = 1, B1i > µ1 & B2i > µ2

Here it was assumed that patients on the control arm received a flat prob-

ability of response to treatment, pC . Patients on the treatment arm however

received di↵ering levels of treatment response probability, depending on their

biomarker values. Biomarker-high patients, that is patients with B1i > µ1 and

B2i > µ2, had a response probability of pT,H ; all other patients receiving the

treatment had a response probability of pT,L. An example of the probability

of patient response for those receiving treatment can be seen in Figure 3.4.

On this figure, the response value for an example set of patients that received
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the experimental treatment is given, with a patient showing response plotted

in green and no response in blue. Along the x and y axes are each patients

biomarker values and along the z axis (vertical) is the probability of response.

Under this definition of patient response, those with either biomarker value

less than 0.5 (in this example) have a probability of treatment response of 0.1,

which is clear from the predominantly blue points with some green on the lower

surface at P(Response)=0.1. Patients with high biomarker values (both more

than 0.5) have a probability of treatment response of 0.9, again represented by

the mostly green points at the higher surface at at P(Response)=0.9.

Figure (3.4) A plot showing the relationship between biomarker values and the
probability of patient response, for patients that received the experimental treatment.
Biomarker values are plotted along the x- and y-axes, probability of patient response is
plotted along the z-axis and patient response is represented by the colour of each point
(green=response, blue=no response). Note in this example, pT,L = 0.1 and pT,H = 0.9.

Note that pC , pT,L, pC 2 [0, 1] and cases considered in this work generally

assumed pC  pT,L < pT,H . With the exception of exploring a single null

case, scenarios with pT,H > pT,L were under consideration as it was of interest

to explore cases in which patients in the biomarker-high subgroup had an
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increased level of treatment benefit.

Following simulation of patient data, dual biomarker threshold identifica-

tion was carried out, using the methods described above, to identify the optimal

thresholds for each biomarker to be taken forward into stage 2, denoted C⇤
1

and C⇤
2
for biomarker 1 and 2 respectively.

Step 2: Interim Analysis

Interim e�cacy analyses and futility stopping rules were implemented, as

detailed in the single biomarker case. Briefly, if the P-value for the biomarker

subgroup interaction coe�cient was lower than the pre-defined threshold Pint,

the biomarker subgroup was considered promising throughout the rest of the

trial; if this was not the case then the biomarker subgroup is disregarded for the

remainder of the trial. Futility was assessed di↵erently depending whether the

biomarker subgroup was still under consideration: if not, futility was assessed

in the overall stage 1 population; is so, futility was assessed separately within

and outside of the subgroup, with di↵erent accrual rules in place depending

on the results.

Step 3: Stage 2 Patient Data and Final E�cacy Analyses

Assuming the trial was not stopped for futility at the interim, stage 2 patient

data were then simulated; the number of patients and the population they

were drawn from was dependent on results from the interim e�cacy analyses,

as in the single biomarker case.

In the simplest case, in which the biomarker subgroup was not considered

promising, patient data were simulated for an additional 40 patients. Patient

information was kept consistent with stage 1, with the exception of biomarker

values being ignored as these no longer served a purpose. Final e�cacy analy-

ses were then implemented using patient data from stages 1 and 2 combined,

ignoring any biomarker information.
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Assuming that the biomarker subgroup was found to be promising and

treatment was e↵ective only in the marker-high patients, patient data were

simulated for an additional 160 marker-high patients. Patient information was

kept consistent with stage 1, however biomarker values were drawn from the

following distributions, to simulate only marker-high patients: B1 ⇠Unif(C⇤
1
,1)

and B2 ⇠Unif(C⇤
2
,1). Where C⇤

1
and C⇤

2
denote the optimal thresholds iden-

tified at the interim for B1 and B2 respectively. Final e�cacy analyses were

then implemented using patient data from stage 2 only.

Finally, in the case where the biomarker subgroup was promising at the

interim but treatment was found to be e↵ective in both marker-high and -low

patients, patient data were simulated for a non-fixed number of patients, in

keeping with the rules set out in Step 3 of the trial design in Section 3.2. Final

e�cacy analyses were then carried out on all marker-high patients.

Consistent with the single biomarker case, all simulation scenarios were

carried out with 10,000 iterations. Unique scenarios were defined by the in-

put parameters described above to explore a range of scenarios with changing

treatment e↵ect and changing marker-high subgroup size. Di↵ering levels of

treatment e↵ect could be explored by manipulating pC , pT,L and pT,H and

the marker-high subgroup size could be determined by changing µ1 and µ2.

The input parameters defining the explored scenarios are given in Table 3.3.

Scenarios 1-4 focus on the e↵ect of decreasing treatment e↵ect, scenarios 5&6

focus on scenarios in which the treatment was broadly e↵ective but more so

in marker-high patients and scenarios 7-10 focus on scenarios in which the

marker-high subgroup size was changed. Throughout all scenarios the follow-

ing values were fixed: Ncap = 280, NL

cap
= 90, Pint = 0.5, Pfut = 0.6 and

Peff = 0.1.
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Scenario PT,H PT,L PC µ1 µ2

1 0.8 0.2 0.2 0.5 0.5
2 0.6 0.2 0.2 0.5 0.5
3 0.4 0.2 0.2 0.5 0.5
4 0.2 0.2 0.2 0.5 0.5
5 0.8 0.4 0.2 0.5 0.5
6 0.6 0.4 0.2 0.5 0.5
7 0.6 0.2 0.2 0.6 0.6
8 0.6 0.2 0.2 0.7 0.7
9 0.6 0.2 0.2 0.4 0.4
10 0.6 0.2 0.2 0.3 0.3

Table (3.3) Scenarios implemented in the simulation study, each defined by the corre-
sponding values of pC , pT,L, pT,H , µ1 and µ2.

As in the single biomarker case, the following information was summarised

for each simulation scenario to explore trial operating characteristics:

- Average trial size

- Proportion of trials which identified a promising biomarker at interim

- Proportion of trials which restricted accrual in stage 2

- Proportion of trials which stopped for futility

- Proportion of trials which showed successful final e�cacy tests, both:

- Any significant final e�cacy test

- Subgroup specific i.e. trials in which final analysis was restricted to

marker-high patients

As well as collecting the above information, the threshold identified as

optimal for both biomarkers by each method was collected. Thus histograms

of threshold estimates could be created for each simulation scenario to explore

accuracy of estimation procedures.
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3.4.2 Simulation Study Results

Trial Operating Characteristics

The summary measures, described in Section 3.4.1, for all implemented simu-

lation scenarios are presented here. Results are split by method of threshold

identification, which for clarity are: 1) Modelling: optimal thresholds are

defined as those associated with the largest interaction coe�cient in their re-

spective models; 2) Grid search - mean response: optimal thresholds are

defined as those achieving the largest mean response in the defined subgroup;

3) Grid search - odds ratio: optimal thresholds are defined as those achiev-

ing the largest odds ratio in the defined subgroup.

Modelling

Simulation results for scenarios 1-6, are given in Table 3.4. In scenarios 1-4, the

treatment e↵ect was restricted to marker-high patients only, with magnitude of

treatment e↵ect decreasing with higher scenario number (eventually to the null

case in scenario 4). The input thresholds for defining marker-high patients were

fixed at µ1 = µ2 = 0.5. As treatment e↵ect decreased, both e�cacy measures

fell; the proportion of trials in which significant overall or subgroup e�cacy

was demonstrated fell from 0.88 and 0.62 respectively in scenario 1 to 0.11

and 0.03 in scenario 4. The proportion of trials which identified a promising

biomarker at the interim and the proportion which restricted accrual in stage 2

also decreased with decreasing treatment e↵ect. Under scenario 1, 62% of trials

identified a promising biomarker at the interim, compared to 27% in scenario

4 and 24% restricted accrual in stage 2 in scenario 1 vs 10% in scenario 4.

The proportion of trials which stopped for futility at the interim increased

with decreasing treatment e↵ect (0.03 in scenario 1 vs 0.26 in scenario 4).

The average trial size also fell with decreasing treatment e↵ect, which was an

e↵ect of decreasing levels of identified promising biomarkers, decreasing levels

of restricted stage 2 accrual and increasing levels of futility stopping.

The treatment was considered broadly e↵ective in scenarios 5 and 6. All pa-

tients on treatment had a higher probability of response than those on control
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and marker-high patients more so. The proportions of trials which identified a

promising biomarker were similar to that in scenarios 1-3 (these trial scenar-

ios having somewhat comparable levels of treatment e↵ect). However, when

the treatment was broadly e↵ective, there were low levels of restricted accrual

(0.09 in both scenarios 5 and 6), no futility stopping and very high levels of

significant e�cacy analyses. The proportion showing significant overall anal-

yses was very high at 0.99 and 0.98, whereas subgroup specific e�cacy was

similar to scenarios 1-3 at 0.56 and 0.47.

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6
Avg. Trial Size 220 214 199 175 211 203

Promising Biomarker 0.62 0.58 0.47 0.27 0.56 0.47
Rest Acc* 0.24 0.22 0.18 0.10 0.09 0.09
Futility 0.03 0.06 0.15 0.26 0.00 0.00

Final E�cacy 0.88 0.76 0.43 0.11 0.99 0.98
Final Subgroup E�cacy 0.62 0.57 0.32 0.03 0.56 0.47

Table (3.4) Results of the simulation study under scenarios 1-6 when using the mod-
elling method of threshold identification. Sc.=Scenario, Rest acc*=proportion of trials in
which accrual was restricted to marker-high patients in stage 2

One can also loosely compare these results to those obtained in the original

Renfro et al simulation study; the method of biomarker threshold identification

was the same, only extended to incorporate two biomarkers. The results in

Table 3.4 were contrasted with those in Table 3.1, specifically with the results

for simulations with 25% marker prevalence (row 1). With the inputs µ1

and µ2 fixed at 0.5 in this work, the sensitive subgroup size was 25% of the

trial population (0.5 ⇥ 0.5 = 0.25), making this a logical comparison. There

were no exact matches in terms of scenarios due to the di↵erences in trial

design but scenario 1 in this work was similar to the final column in Table

3.1 (a large treatment e↵ect in the marker-sensitive group), scenario 3 was

similar to the second to last column (moderate treatment e↵ect) and scenario

4 was similar to the third from final column (null treatment e↵ect). Summary

measures from both simulation studies have been collected in Table 3.5 for ease

of comparison. Results were comparable between the two studies, average

trial sizes and the proportion of trials identifying a promising biomarker at

111



the interim were particularly close. There were more noticeable di↵erences

in the other measures. The proportion of trials which restricted accrual or

stopped for futility was consistently lower in this work, although both of these

measures changed at a similar rate to those of Renfro et al as treatment e↵ect

fell (restricted accrual: (0.24, 0.18, 0.10) in this work and (0.32, 0.24, 0.16) for

Renfro et al; futility: (0.03, 0.15, 0.26) in this work and (0.08, 0.18, 0.30) for

Renfro et al). E�cacy measures were both mostly higher in this work, but

again decreased at a similar rate as treatment e↵ect fell, with near equality in

the null case.

Treatment E↵ect Large Medium Null
Sc. 1 Renfro Sc. 3 Renfro Sc. 4 Renfro

Avg. Trial Size 220 224 199 198 175 176
Promising Biomarker 0.62 0.64 0.47 0.42 0.27 0.26

Rest Acc* 0.24 0.32 0.18 0.24 0.10 0.16
Futility 0.03 0.08 0.15 0.18 0.26 0.30

Final E�cacy 0.88 0.67 0.43 0.31 0.11 0.12
Final Subgroup E�cacy 0.62 0.58 0.32 0.22 0.03 0.04

Table (3.5) Comparison of summary statistics from the implemented extended sim-
ulation study and the original simulation study carried out by Renfro et al. Summary
statistics are displayed for each under comparable scenarios in order to contrast perfor-
mance qualitatively, cases of large, moderate and null treatment e↵ects are presented.
Sc.=Scenario, Rest acc*=proportion of trials in which accrual was restricted to marker-
high patients in stage 2

Simulation results for scenarios 7-10 are given in Table 3.6. The level

of treatment e↵ect was fixed (pC = pT,L = 0.2 and pT,H = 0.6) and input

thresholds were varied to change the marker-high subgroup size (Scenario 7:

µ1 = µ2 = 0.6; 8: µ1 = µ2 = 0.7; 9: µ1 = µ2 = 0.4; 10: µ1 = µ2 = 0.3). As

the marker-high subgroup size reduced (scenarios 7 and 8), all measures fell

slightly, except for the proportion that stopped for futility which increased.

Under the input parameters used in these scenarios, this change was logical as

the overall proportion of patients that saw benefit from the treatment fell with

reduced marker-high subgroup size. The inverse of this was also true, larger

marker-high subgroup sizes (scenarios 9 and 10) lead to larger trial sizes, more

trials identifying a promising biomarker, restricting accrual and achieving final

e�cacy and less trials stopping for futility. One can compare outcomes in the

two extreme cases by looking at scenarios 8 and 10, in which the marker-
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high subgroup sizes were approximately 10% and and 50% respectively. Twice

as many trials restricted accrual into stage 2 under scenario 10 vs scenario 8

(0.28 vs 0.14) and almost twice as many identified a promising biomarker at the

interim (0.74 vs 0.40). Almost no trials stopped for futility under scenario 10,

whereas 19% did under scenario 8. E�cacy outcomes were also very di↵erent.

96% of trials achieved overall e�cacy and 74% achieved subgroup specific

e�cacy under scenario 10 vs 38% and 29% under scenario 8.

Sc. 7 Sc. 8 Sc. 9 Sc. 10
Avg. Trial Size 203 192 221 226

Promising Biomarker 0.49 0.40 0.67 0.74
Rest Acc* 0.19 0.14 0.25 0.28
Futility 0.12 0.19 0.03 0.01

Final E�cacy 0.58 0.38 0.88 0.96
Final Subgroup E�cacy 0.44 0.29 0.66 0.74

Table (3.6) Results of the simulation study under scenarios 7-10 when using the mod-
elling method of threshold identification. Sc.=Scenario, Rest acc*=proportion of trials in
which accrual was restricted to marker-high patients in stage 2

Again, these results can be compared to those obtained by Renfro et al.

Their results were split by di↵erent levels of marker prevalence (see Table 3.1),

where 25%, 50% and 75% were implemented; approximate matches were used

in this work. A 25% marker prevalence was used in scenario 2 (µ1 = µ2 = 0.5,

giving 0.25 overall) and approximately 50% was used in scenario 10 (µ1 =

µ2 = 0.3, giving 0.7 ⇥ 0.7 = 0.49 overall). The final column of Table 3.1 was

the closest match in terms of treatment e↵ect so these results were compared.

Summary measures for both simulation studies are given in Table 3.7. Results

were comparable between the two studies, with similar summary measures in

both cases. However, the change in the proportion of trials that identified a

promising biomarker and both e�cacy measures was more extreme in this work

when the marker-high subgroup size increased. For example, the proportion of

trials that identified a promising biomarker at the interim increased from 58%

to 74% in this work but only from 64% to 69% in Renfro et al’s simulation

study.
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Biomarker Prevalence 25% 50%
Sc. 2 Renfro Sc. 10 Renfro

Avg. Trial Size 214 224 226 232
Promising Biomarker 0.58 0.64 0.74 0.69

Rest Acc* 0.22 0.32 0.28 0.35
Futility 0.06 0.08 0.01 0.03

Final E�cacy 0.76 0.67 0.96 0.79
Final Subgroup E�cacy 0.57 0.58 0.74 0.65

Table (3.7) Comparison of summary statistics from the implemented extended sim-
ulation study and the original simulation study carried out by Renfro et al. Summary
statistics are displayed for each under comparable scenarios in order to contrast perfor-
mance qualitatively, cases of 25% and 50% marker prevalence are presented. Sc.=Scenario,
Rest acc*=proportion of trials in which accrual was restricted to marker-high patients in
stage 2

Grid Search - Mean Response

Simulation results when using the grid search (mean response) are presented

in Tables 3.8 and 3.9. The relationships observed between summary measures

and input scenarios when using the modelling technique to identify biomarker

thresholds were also observed here. Specifically, with decreasing treatment

e↵ect (scenarios 1-4) all summary measures decreased, with the exception of

the proportion of trials which stopped futility, which increased. As the sensitive

subgroup size decreased (scenarios 7 & 8), all measures again (except futility)

decreased; the reverse of this, with respect to increasing subgroup size, was

again true.

Although similar patterns persisted when utilising the grid search (mean

response), the actual summary measures observed were quite di↵erent when

compared with using the modelling technique to identify biomarker thresholds.

The average trial size was higher when using the grid search across almost all

scenarios, though this di↵erence became smaller in cases where the e↵ect of the

biomarker-subgroup was less extreme. In scenario 1, in which the treatment

magnitude was the largest and restricted to marker-high patients, the di↵er-

ence was 245 vs 220, whereas in scenario 3, in which the treatment e↵ect was

much lower, the di↵erence was minimal at 200 vs 199. Moreover, in scenarios

5 & 6, where the treatment was broadly e↵ective with an increase in patient

response in biomarker-high patients, the di↵erence was less pronounced: 222
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vs 211 in scenario 5 and 203 vs 203 in scenario 6. Similarly, in cases where

the subgroup size was large (scenarios 9 & 10), the di↵erence was again less

pronounced: 231 vs 221 in scenario 9 and 224 vs 226 in scenario 10. The

proportion of trials that identified a promising biomarker at the interim was

also consistently higher when using this method. This was most noticeable in

cases with large treatment e↵ect: 84% vs 62% and 69% vs 58% in scenarios

1 and 2 respectively. As with the average trial size, this di↵erence was less

extreme with lower treatment e↵ect, when the treatment was broadly e↵ective

and when the subgroup size was large. However, in the null case (scenario

4), there was a large di↵erence in this proportion between the two methods,

36% when using the grid search (mean response) and 27% using the modelling.

In this null case, there were no marker-high patients as the probability of re-

sponse was the same for all patients, therefore one would expect similar levels

of trials identifying a promising biomarker purely by chance. The increase in

this proportion when using the grid search, along with higher levels observed

in other scenarios also, shows that this method may be overly optimistic when

identifying a promising biomarker at the interim.

The above relationships were also observed in the proportion of trials re-

stricting accrual and the proportion achieving final e�cacy (overall and sub-

group specific). These measures were higher using the grid search (mean re-

sponse) in cases where the treatment e↵ect was large and restricted to marker-

high patients, but the di↵erence was smaller when the treatment e↵ect reduced,

the treatment was broadly e↵ective in the population and when the subgroup

size was large. The proportion of trials that stopped for futility at the interim

was similar in all implemented scenarios between the two threshold identifica-

tion methods.

In this study design, much of what is carried out in stage 2 of the trial is

dependent on whether or not a promising biomarker was identified at the in-

terim, with di↵ering e�cacy tests and accrual strategies possible. Under cases

of a promising biomarker, larger trial sizes and e�cacy analyses restricted to

marker-high patients are expected. Therefore, the higher proportions of trials
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that identified a marker at the interim may have lead to the other increased

measures observed. The di↵erent method of identifying biomarker thresholds

at the interim therefore had a tangible e↵ect on trial operating characteristics.

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6
Avg. Trial Size 245 228 200 186 222 203

Promising Biomarker 0.84 0.69 0.46 0.36 0.69 0.48
Rest Acc* 0.35 0.30 0.22 0.15 0.06 0.06
Futility 0.01 0.05 0.16 0.23 0.00 0.01

Final E�cacy 0.96 0.82 0.42 0.11 1.00 0.97
Final Subgroup E�cacy 0.84 0.68 0.32 0.04 0.69 0.48

Table (3.8) Results of the simulation study under scenarios 1-6 when using the
grid search (mean response) method of threshold identification. Sc.=Scenario, Rest
acc*=proportion of trials in which accrual was restricted to marker-high patients in stage
2

Sc. 7 Sc. 8 Sc. 9 Sc. 10
Avg. Trial Size 212 196 231 224

Promising Biomarker 0.55 0.44 0.72 0.68
Rest Acc* 0.24 0.19 0.31 0.23
Futility 0.11 0.19 0.02 0.01

Final E�cacy 0.62 0.34 0.91 0.95
Final Subgroup E�cacy 0.50 0.25 0.72 0.68

Table (3.9) Results of the simulation study under scenarios 7-10 when using the
grid search (mean response) method of threshold identification. Sc.=Scenario, Rest
acc*=proportion of trials in which accrual was restricted to marker-high patients in stage
2

Grid Search - Odds Ratio

Simulation results when using the grid search (odds ratio) are presented in

Tables 3.10 and 3.11. Again, the relationships observed between summary

measures and input scenarios when using the modelling technique to identify

biomarker thresholds were also observed here.

Much of what was observed when implementing the grid search (mean re-

sponse) was also observed here, to a more extreme degree. The proportion

of trials identifying a promising biomarker was very high in all cases (97% in
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scenario 1 compared with 84% when using the mean response version and 62%

when using the modelling technique). The same relationships with respect to

treatment magnitude and subgroup size were observed, but this proportion

remained high. In the null case, the proportion was 54% (vs 36% with the

mean response and 27% using the modelling), so the issues discussed when

implementing the mean response version of the grid search were exacerbated

here. All other measures, except the proportion that stopped for futility, were

again much higher due to the higher proportion of trials with a promising

biomarker. The proportion of trials that stopped for futility was much lower,

with no trials stopping when the treatment e↵ect was largest, the treatment

was broadly e↵ective or the subgroup size was large. In the null case, only

14% of trials stopped for futility, whereas 23% stopped when using the mean

response version of the grid search and 26% stopped when using the modelling

technique. Moreover, very high levels of trials achieved final e�cacy, both

overall and subgroup specific. In cases where the treatment e↵ect was the

largest, the treatment was broadly e↵ective or the marker-high subgroup was

large, essentially all trials achieved overall final e�cacy; this fell to only 61% in

scenario 3 compared with 42% when using the mean response version and 43%

when using the modelling technique. The proportion of trials that achieved

subgroup specific e�cacy was also largest in cases where the treatment e↵ect

was the largest, the treatment was broadly e↵ective or the marker-high sub-

group was large. Again, this only fell to 56% in scenario 3 (vs 32% for both

mean response and modelling) and to 79% and 45% in scenarios 7 &8, in which

the subgroup size was small.

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5 Sc. 6
Avg. Trial Size 257 252 236 204 243 232

Promising Biomarker 0.97 0.94 0.81 0.54 0.94 0.83
Rest Acc* 0.39 0.38 0.32 0.20 0.12 0.14
Futility 0.00 0.01 0.04 0.14 0.00 0.00

Final E�cacy 1.00 0.95 0.61 0.12 1.00 0.99
Final Subgroup E�cacy 0.97 0.92 0.56 0.07 0.94 0.83

Table (3.10) Results of the simulation study under scenarios 1-6 when using
the grid search (odds ratio) method of threshold identification. Sc.=Scenario, Rest
acc*=proportion of trials in which accrual was restricted to marker-high patients in stage
2
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Sc. 7 Sc. 8 Sc. 9 Sc. 10
Avg. Trial Size 245 231 253 250

Promising Biomarker 0.88 0.77 0.96 0.96
Rest Acc* 0.35 0.29 0.39 0.37
Futility 0.03 0.07 0.00 0.00

Final E�cacy 0.82 0.50 0.99 0.99
Final Subgroup E�cacy 0.79 0.45 0.96 0.96

Table (3.11) Results of the simulation study under scenarios 7-10 when using
the grid search (odds ratio) method of threshold identification. Sc.=Scenario, Rest
acc*=proportion of trials in which accrual was restricted to marker-high patients in stage
2

Clearly the grid search methods of dual threshold identification had a

large impact on trial operating characteristics, particularly the odds ratio ver-

sion. Their use lead to inflated proportions of trials identifying a promising

biomarker, which then a↵ected stage 2 activities of the trial quite severely.

Unrealistically high proportions of trials that achieved final e�cacy were ob-

served and very few trials were stopped for futility at the interim analysis,

particularly when the treatment was broadly e↵ective and the subgroup size

was large. This may be due the di↵erence in how each type of method iden-

tifies the optimal threshold for each biomarker. When using the modelling

approach, each optimal threshold is identified separately rather by assessing

the coe�cient of the interaction term in the respective model. When using

the grid search, a measure of e�cacy (mean response rate or odds ratio) is

calculated within each possible subgroup defined by threshold combinations.

Therefore, when C1 and C2 contain 11 elements, as was used in this simula-

tion study, 11 subgroup assessments are carried out for each biomarker when

using the modelling method. However, when using the grid search under the

same conditions, there are 11 ⇥ 11 = 121 potential subgroups created by dis-

tinct biomarker threshold combinations. Therefore, when using the grid search

methods there is a much greater number of potential subgroups in which to

identify an apparent treatment e↵ect by chance, leading to increased type I

error rate and power. This may have therefore contributed to the inflated

values of trials identifying a promising biomarker when using the grid search.

The di↵erences observed between the mean response and odds ratio versions

of the grid search show that the e↵ect measure used also has an impact.
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There was variability in trial operating characteristics between methods

under the null scenario. In this scenario, one would have expected similar

results between methods as the biomarker threshold identification was ran-

dom, as there was no sensitive subgroup to identify. These di↵erences were

likely due to how a promising biomarker was identified at the interim and how

this impacted stage 2 of the trial. As discussed previously, all measures were

heavily dependent on whether or not a promising biomarker was identified at

the interim. Average trial size, the proportion of trials that restricted accrual

and both e�cacy measures increased with the proportion of trials that identi-

fied a promising biomarker; the proportion that stopped for futility decreased.

The proportion of trials that identified a promising biomarker varied between

methods under the null: 27% when using the modelling method, 36% when

using the grid search with mean response and 54% when using the grid search

with odds ratio. To determine whether a biomarker was ‘promising’ or not,

the following procedure was carried out at the interim: 1) the best biomarker

threshold combination was identified, with ‘best’ defined appropriately within

each method; 2) a logistic regression model fitted on the whole trial popu-

lation, with treatment, dichotomous biomarker status and their interaction

as covariates; 3) if the P-value for the interaction coe�cient from this model

was lower than the pre-defined threshold Pint, and marker-positive patients

had a higher treatment e↵ect than marker-negative, then the biomarker was

considered promising. Therefore, as the biomarker threshold combination was

identified prior to determining whether the biomarker was promising or not,

this assessment was no longer random under the null and was dependent on

the method used to identify the biomarker thresholds. Further simulations

confirmed this: the distribution of p-values used to determine whether the

biomarker was promising were not uniform under the null for each method

and in fact varied between methods. Therefore, whether or not a promising

biomarker was identified at the interim was dependent on the method used un-

der the null scenario, leading to varied trial operating characteristics observed

between methods.
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Threshold Identification Accuracy

Histograms of biomarker threshold estimates for all implemented scenarios are

presented here, with results split by threshold identification method. Accuracy

of each method could therefore be assessed by inspecting the distribution of

estimates over simulations in each scenario. Again the e↵ect that changing

treatment e↵ect and subgroup size had on threshold identification accuracy

on each method could be observed. To further quantify the accuracy of this

method, the proportion of trials that exactly estimated the true threshold and

the proportion that estimated within 0.05 either side of the true threshold were

summarised. It should be noted that only candidate thresholds in the range of

0.25 to 0.75 were considered, therefore all presented histograms contain empty

spaces beyond these values as the x-axis covers the range from 0 to 1.

Modelling

Histograms of biomarker threshold estimates for scenarios 1-6 are shown in

Figure 3.5, corresponding measures of exact and approximate estimation ac-

curacy are given in Table 3.12.

With the input thresholds set at µ1 = µ2 = 0.5, one would associate a

method with high accuracy with a distribution symmetric about 0.5, with at

large peak of the distribution at 0.5 and light tails toward higher and lower

values. When treatment e↵ect was at its largest (Figures 3.5a and 3.5b),

there were noticeable peaks at 0.5 but the distributions were spread quite

evenly across all values with more weight at extreme values of 0.25 and 0.75.

This distribution shape persisted as treatment e↵ect lessened, see Figures 3.5c,

3.5d, 3.5e and 3.5f, with the peak at 0.5 becoming less prominent and more

weight at the extreme values. This decrease in accuracy was also observed

in the proportions of trials correctly estimating the threshold. For example,

the proportion with an exactly matching estimate for B1 fell from 20% in

scenario 1, to 14% in scenario 2 and 9% in scenario 3; the proportion with an

approximate match fell similarly from 38% to 31% to 24% in scenarios 1, 2

and 3 respectively. In the null case (Figures 3.5g and 3.5h), distributions were
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‘U’ shaped, with peaks at 0.25 and 0.75 and the distribution decreasing to

the midpoint and then increasing again when viewing the histogram from left

to right. Similar distributions were observed when the treatment was broadly

e↵ective; the distributions shown in Figures 3.5i and 3.5j are similar to 3.5c

and 3.7d respectively, and Figures 3.5k and 3.5l and similar to 3.5e and 3.5f.

The proportions of trials with an exact or approximate estimate match were

also similar, which is made clear by comparing the proportions for scenario 5

against those of scenario 2 and the proportions for scenario 6 against those of

scenario 3.

The peaks at extreme values of the distribution may be due to how the

optimal threshold was defined using the modelling method, though this needs

investigating in more detail. The thresholds maximising the respective inter-

action coe�cient, detailed in section 3.4, were taken to be the optimal. The

peaks present at the lowest considered value, 0.25, may be an e↵ort of the

method to maximise the size of the subgroup in order increase the power to

detect the interaction e↵ect. The peaks present at the highest considered value,

0.75, may be an e↵ort of the method to maximise the treatment e↵ect within

the subgroup by restricting the subgroup to those with the highest biomarker

values.
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Figure (3.5) Histograms of optimal biomarker threshold estimates under scenarios 1-6,
when using the modelling method of threshold identification. The input threshold values
in each case have been overlaid as a vertical red dashed line

Histograms of biomarker threshold estimates for scenarios 7-10 are shown

in Figure 3.6, corresponding measures of exact and approximate estimation

accuracy are given in Table 3.12. In these scenarios, the treatment e↵ect was

fixed and the input thresholds (µ1, µ2) were varied; the vertical red dashed

line in each histogram represents the input threshold for that scenario. One

would therefore expect a distribution with a peak at the red dashed line, with

light tails toward higher and lower values. There were slight peaks at the in-

put threshold in these scenarios, as can be seen in Figures 3.6a, 3.6b, 3.6e and

3.6f, although, as discussed above, a large amount of the distributions were

in the tails and there were peaks of the distribution at extreme values. The
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proportion of trials with an exact or approximate estimation were comparable

to scenario 2, in which used the same level of treatment e↵ect. For example,

exact estimations of B1 were achieved in 13% and 17% of trials under scenar-

ios 7 and 9 respectively, compared with 14% under scenario 2; approximate

estimates were also comparable at 31% and 36% under scenarios 7 and 9 and

31% under scenario 2.

In scenarios 8 and 10, it appears as though there were significant peaks in

the distributions at the input threshold values, though this was likely because

the input thresholds were comparable to the extreme values considered in the

modelling method. 0.75 and 0.25 were the most extreme values considered

within the modelling method and the input thresholds for scenarios 8 and 10

were µ1 = µ2 = 0.7 and µ1 = µ2 = 0.3 respectively. Distributions in these

cases still contained a lot of weight at higher/lower values and displayed peaks

in distributions at the opposite extreme value, though noticeably less so in

Figures 3.6g and 3.6h. This was also represented by observing the proportions

of trials with an exact or approximate estimation. In scenarios 8 and 10, the

proportion with an exact match were similar to those seen before (compared

with 14% in scenario 2, which had the same level of treatment e↵ect), but

the proportion with an approximate match (estimate within 0.05 either side

of the true threshold) were much higher. For example, the proportion with an

approximate match for B1 in scenarios 8 and 10 were 48% and 63% respectively,

compared with 31% in scenario 2. Thus the apparent peaks at the input

thresholds were likely primarily due to their proximity to the natural peaks at

extreme values.
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Figure (3.6) Histograms of optimal biomarker threshold estimates under scenarios
7-10, when using the modelling method of threshold identification. The input threshold
values in each case have been overlaid as a vertical red dashed line

Scenario P(B1 Exact) P(B1 Approx) P(B2 Exact) P(B2 Approx)
1 0.20 0.38 0.19 0.38
2 0.14 0.31 0.14 0.30
3 0.09 0.24 0.09 0.24
4 0.05 0.18 0.06 0.18
5 0.14 0.31 0.13 0.30
6 0.09 0.23 0.09 0.24
7 0.13 0.31 0.13 0.31
8 0.17 0.48 0.16 0.47
9 0.17 0.36 0.17 0.36
10 0.25 0.63 0.26 0.62

Table (3.12) The proportion of trials in which there was an exact or approximate
(±0.05) match for each biomarker, under all implemented scenarios (1-10), when using
the modelling method of threshold identification.

Grid Search - Mean Response

Histograms of biomarker threshold estimates for scenarios 1-6 are shown in

Figure 3.7, corresponding measures of exact and approximate estimation ac-
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curacy are given in Table 3.13.

Under scenarios with strong treatment e↵ect, the estimated threshold dis-

tributions had strong, symmetric peaks with very light tails around the input

thresholds of µ1 = µ2 = 0.5. In Figures 3.7a, 3.7b, 3.7c and 3.7d, this high

accuracy is clear. This was also represented by the exact and approximate

estimation accuracy observed: exact estimation was achieved for B1 in 38%

and 29% of trials under scenarios 1 and 2 respectively and approximate es-

timation was achieved in 70% and 58% respectively. Accuracy did decrease

as treatment e↵ect lessened, the distributions became more spread out under

scenario 3 (Figures 3.7e and 3.7f), although there was still a noticeable peak

at the input threshold value. Exact and approximate estimation accuracy in

this case were 19% and 45% for B1. Under the null scenario, the distribu-

tions were close to that of a uniform distribution, with the exception of large

peaks of estimates at the lowest value of 0.25. Similar threshold distributions

and accuracy measures were again observed when the treatment was broadly

e↵ective. One can see this by comparing the histograms and exact and ap-

proximate accuracy measures for scenario 5 against scenario 2 and scenario 6

against scenario 3.
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Figure (3.7) Histograms of optimal biomarker threshold estimates under scenarios 1-6,
when using the grid search (mean response) method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line

Histograms of biomarker threshold estimates for scenarios 7-10 are shown

in Figure 3.8, corresponding measures of exact and approximate estimation

accuracy are given in Table 3.13.

Threshold identification accuracy when using the grid search (mean re-

sponse) method was highly dependent upon input threshold location. As the

subgroup size decreased (higher input thresholds), accuracy decreased dramat-

ically. There were slight peaks at the input thresholds in Figures 3.8a and 3.8b,

although with most of the distribution weighted towards lower values. In sce-

nario 8 however, with the smallest subgroup size, accuracy was extremely poor,
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with only 3% of trials estimating the threshold exactly and 12% approximately.

The distributions resembled those of the null case, with an approximately even

distribution over the range with a large peak at the lowest value of 0.25. Ac-

curacy was better under scenarios with larger subgroup sizes. Under scenario

9 (Figures 3.8e and 3.8f), there were strong peaks at the input threshold with

slightly heavier tails towards higher values. Exact and approximate accuracy

for B1 were 27% and 54%. However, as the subgroup size became larger and

input thresholds were lower, accuracy appeared to decrease slightly. Distribu-

tions still showed peaks at the threshold values, however even more weight of

the distribution was present in the tail towards higher values. This was also

apparent in the accuracy measures, exact and approximate accuracy for B1

under scenario 10 decreased to 20% and 43%.

From these results regarding threshold identification accuracy when using

grid search (mean response), this method appears to perform best when the

subgroup sizes are even, or the biomarker prevalence is approximately 50%.

Accuracy was high when the input thresholds were central (µ1 = µ2 = 0.5),

but fell when input locations were decreased or increased; though accuracy was

much poorer when subgroup sizes were small from high input cuto↵s (µ1 =

µ2 = 0.7).
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Figure (3.8) Histograms of optimal biomarker threshold estimates under scenarios 7-
10, when using the grid search (mean response) method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line

Scenario P(B1 Exact) P(B1 Approx) P(B2 Exact) P(B2 Approx)
1 0.38 0.70 0.40 0.72
2 0.29 0.58 0.30 0.60
3 0.19 0.45 0.20 0.46
4 0.09 0.27 0.10 0.29
5 0.28 0.58 0.29 0.58
6 0.17 0.42 0.18 0.44
7 0.15 0.35 0.18 0.40
8 0.03 0.12 0.04 0.14
9 0.27 0.54 0.27 0.53
10 0.20 0.43 0.20 0.41

Table (3.13) The proportion of trials in which there was an exact or approximate
(±0.05) match for each biomarker, under all implemented scenarios (1-10), when using
the grid search (mean response) method of threshold identification.

Grid Search - Odds Ratio

Histograms of biomarker threshold estimates for scenarios 1-6 are shown in

Figure 3.9, corresponding measures of exact and approximate estimation ac-
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curacy are given in Table 3.14.

Similarly as to when using the mean response version of the grid search,

accuracy under the odds ratio version was high when treatment e↵ect was

substantial but fell as treatment e↵ect decreased. The strong peak at the in-

put threshold noticeable in scenario 1 (Figures 3.9a and 3.9b) becomes less

prominent when moving into scenarios 2 and 3 (Figures 3.9c and 3.9d and

Figures 3.9e and 3.9f respectively). This was also apparent from the accuracy

measures: exact estimation accuracy for B1 fell from 32% under scenario 1

to 21% under scenario 2 to 15% under scenario 3; approximate accuracy also

fell from 59% to 46% to 35%. Much like in the mean response version, a

lot of the weight of the distributions were found at the lowest value of 0.25

as treatment e↵ect lessened, but this was more extreme in the odds ratio ver-

sion. This is clear by comparing scenario histograms between the two methods:

3.9e&3.9f vs 3.7e&3.7f and 3.9g&3.9h vs 3.7g&3.7h. Similar threshold distri-

butions and accuracy measures were again observed when the treatment was

broadly e↵ective. One can see this by comparing the histograms and exact and

approximate accuracy measures for scenario 5 against scenario 2 and scenario

6 against scenario 3.
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(l) Scenario 6 - B2

Figure (3.9) Histograms of optimal biomarker threshold estimates under scenarios 1-
6, when using the grid search (odds ratio) method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line

Histograms of biomarker threshold estimates for scenarios 7-10 are shown

in Figure 3.10, corresponding measures of exact and approximate estimation

accuracy are given in Table 3.14.

Threshold identification accuracy when using the grid search (odds ratio)

method was again highly dependent upon input threshold location. As ob-

served in the mean response version, accuracy was very poor when the sub-

group size decreased. The distribution of estimates under scenario 8 again

resembled that of the null case and both accuracy measures were very low at

2% for the exact and 9% for the approximate. Under scenarios with larger
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subgroup sizes, accuracy was again better. In both scenarios 9 and 10, the

distributions had strong peaks at the input threshold values, although there

were heavy tails towards higher values.
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Figure (3.10) Histograms of optimal biomarker threshold estimates under scenarios 7-
10, when using the grid search (odds ratio) method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line

Scenario P(B1 Exact) P(B1 Approx) P(B2 Exact) P(B2 Approx)
1 0.32 0.59 0.32 0.61
2 0.21 0.46 0.22 0.47
3 0.15 0.35 0.15 0.36
4 0.09 0.26 0.09 0.25
5 0.24 0.50 0.24 0.51
6 0.14 0.35 0.14 0.35
7 0.12 0.29 0.13 0.30
8 0.02 0.09 0.03 0.09
9 0.23 0.48 0.23 0.47
10 0.21 0.49 0.22 0.50

Table (3.14) The proportion of trials in which there was an exact or approximate
(±0.05) match for each biomarker, under all implemented scenarios (1-10), when using
the grid search (odds ratio) method of threshold identification.
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Of the methods used in this work, the grid search using the mean response

appears to be the most accurate. Histograms of threshold estimates when

using this method had stronger peaks at input threshold values than both

other methods, particularly when the treatment e↵ect was moderate to strong

and input thresholds were central. When input threshold values were not

central however, accuracy of this method decreased sharply, though was still

better than the other two. When input threshold values decreased or increased,

the spread of threshold estimates increased, with slight peaks still present

when using the grid search with the mean response. Accuracy of all methods

decreased as the magnitude of treatment e↵ect decreased.
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3.5 Discussion

The work presented in this chapter shows evidence that dual biomarker thresh-

old identification can be incorporated into the confirmatory clinical trial set-

ting, with limited impact on trial operating characteristics. Comparisons be-

tween single and dual biomarker cases were achieved by contrasting results of

the simulation study presented in this work and those presented by Renfro et

al. By comparing results when using the modelling method, one can observe

the e↵ect of incorporating a second biomarker into the trial framework. Trial

operating characteristics captured in both simulation studies were comparable

between single and dual biomarker cases. There were observed discrepancies

for some measures, but these were minimal and similar trends with respect to

changing treatment e↵ect and biomarker prevalence were observed.

The method of dual biomarker threshold identification used has a large ef-

fect on trial operating characteristics and care needs to be taken when choosing

which method to implement. Among the limited number of methods shown

here, there were large di↵erences observed between the proportion of trials

that identified a promising biomarker at the interim and between final e�cacy

measures. Some methods investigate a larger number of subgroups than oth-

ers when identifying optimal biomarker thresholds, leading to more promising

biomarkers being identified at the interim by chance in this work. This had a

large e↵ect on stage 2 activities in the simulation study, with much higher lev-

els of e�cacy at the final analysis due to a promising biomarker subgroup being

identified more often and hence e�cacy testing being restricted to biomarker-

high patients. Due to the investigated trial design, identifying a promising

biomarker subgroup more often at the interim also led to larger trial sizes as

more trials required 160 biomarker-high patients at the final analysis and so

accrued more patients in stage 2.

Trial operating characteristics were also dependent on design choices within

each method. When using the grid search method, there was a large di↵erence

in results when maximising the odds ratio in the subgroup versus when max-
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imising the mean response rate. Within the modelling method, the biomarker

threshold combination that achieved the strongest interaction e↵ect were taken

into stage 2 of the trial. The strongest interaction e↵ect was defined as the

largest interaction coe�cient from the logistic regression model. This definition

was used as this was used previously in the single biomarker case and therefore

allowed simpler comparisons when extending to the dual case. Alternative def-

initions could be explored and their impact on trial operating characteristics as

well as the subgroup size and treatment e↵ect within the subgroup investigated.

Alternatives to maximising the interaction coe�cient include: maximising the

interaction e↵ect estimate (i.e. the treatment di↵erence between the subgroup

and its complement); maximising the standardised interaction e↵ect estimate;

maximising the interaction e↵ect estimate, weighted by the size of the sub-

group.

With respect to threshold identification accuracy, the grid search over high-

est mean response appeared to be the more accurate method in this work.

Histograms of optimal threshold estimates across a range of scenarios showed

the most accurate distribution compared to the modelling and grid search over

odds ratio methods. The work presented in this chapter discussed initial work

addressing research question 1, exploring the optimisation of dichotomosing

thresholds for two biomarkers simultaneously. Further work exploring these

questions in more detail is presented in Chapter 4, with focus given to com-

paring threshold identification accuracy of complex methods. Although the

trial design described by Renfro et al does achieve threshold identification and

validation, work in Chapter 4 explores methodology within a di↵erent trial

framework. With the various possible scenarios within the Renfro et al trial

framework and their respective patient accrual rules and e�cacy analyses,

performance of actual threshold identification methods is di�cult to interpret

and leads to confusion when contrasting between methods. Moreover, in an

e↵ort to limit the introduction of bias into the design, in scenario 1A within

the Renfro et al trial framework the final analysis is carried out using stage

2 patients only. This is an ine�cient use of patient data as stage 1 patients

cannot contribute to the final analysis in cases where treatment e↵ect is lim-
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ited to biomarker-high patients. It is of interest to explore scenarios where

treatment e↵ect is larger within, or even restricted to, the biomarker-high

subgroup, so overcoming this ine�ciency is key. With these points in mind,

complex methods of dual biomarker threshold identification are explored and

contrasted within a simpler trial design, discussed in Chapter 4.
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Chapter 4

A Comparison of Dual

Biomarker Threshold

Identification Procedures

Within a Confirmatory Clinical

Trial

4.1 Introduction

The work presented in this chapter details further work addressing research

question 1, exploring the optimisation of estimating dichcotomising thresholds

for two continuous biomarkers simultaneously. Specifically, identifying thresh-

olds for two predictive continuous biomarkers simultaneously, thus defining a

two dimensional sensitive patient subgroup and allowing for the use of the

identified thresholds in a clinical setting. As discussed in Chapter 3, dual

biomarker threshold identification can be incorporated into a confirmatory

clinical trial setting with minimal impact on trial operating characteristics.

The novel work in this chapter develops on these findings by conducting a

simulation-based comparison of complex dual biomarker threshold identifica-

tion techniques within a confirmatory clinical trial setting.
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In this work, a number of techniques allowing for dual biomarker thresh-

old identification (DBTI) were embedded within a phase III trial design and

their performance contrasted, in order to identify which method or family of

methods may be the ideal choice for such cases. DBTI techniques were embed-

ded within the Adaptive Signature Design (ASD) put forward by Freidlin and

Simon (Freidlin & Simon 2005) and were contrasted by levels of overall and

subgroup empirical power and threshold identification accuracy. Freidlin and

Simon’s ASD is a phase III two-stage trial in which a biomarker based classifier

is identified and validated, alongside an appropriately powered test for overall

treatment e↵ect. Importantly, identification and validation of the biomarker

classifier is carried out independently, which reduces the introduction of any

bias. The trial framework was an optimal choice to explore the problem of

dual biomarker threshold identification; methods could be implemented using

information from stage 1 patients to identify optimal thresholds, and the treat-

ment e�cacy within the subgroup could be assessed and validated using stage

2 patients, whilst also assessing the treatment e�cacy in the overall popula-

tion. An overview of the trial design is given in section 4.2.1. An overview

of each technique implemented within this trial design is also given in section

4.2.2.

This chapter is organised as follows: Section 2 gives an overview of the trial

design and implemented methods; Section 3 details the implemented simula-

tion study; results of the simulation study are presented in Section 4; results

of adapted simulation studies relating to sample size and input biomarker dis-

tributions are given in Sections 5 and 6; a discussion is given in Section 7.
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4.2 Methods

This section provides an overview of the Adaptive Signature Design put for-

ward by Freidlin and Simon (Freidlin & Simon 2005) (Section 4.2.1) as well

as a description of the DBTI techniques implemented (Section 4.2.2). The

Adaptive Signature Design was used as a confirmatory clinical trial framework

in which to embed DBTI techniques and contrast their performance in this

setting. Details of how this new work was carried out is described in Section

4.3.

4.2.1 Adaptive Signature Design

Freidlin and Simon describe their design in the setting of utilising DNA mi-

cro array expression profiling, which is used to characterise patient tumours;

though they also state that the design could be naturally adapted to incor-

porate genetic or proteomic profiling instead. Thus, using their design as the

framework to explore various subgroup identification techniques in the novel

setting of dual biomarker threshold identification was a natural choice. Broadly

speaking, their trial design is a two-stage phase III study in which a classifier

(gene or biomarker based) can be developed and validated, whilst implement-

ing an appropriately powered test of overall treatment e↵ect. The design is as

follows.

The trial recruits a total of N patients across two stages. In stage 1, N1

patients are accrued and in stage 2, N2 patients are evaluated. As discussed, an

important feature of the design is the creation and assessment of a classifier to

identify patient subgroups. This classifier is developed using patient data from

stage 1 only and is not used to restrict recruitment into stage 2 of the trial,

although it is applied prospectively to stage 2 patients to identify a sensitive

subgroup. The final analysis consists of two distinct tests: 1) a test of overall

treatment e↵ect using data from all N patients, carried out at significance level

↵1; 2) a test of treatment e↵ect in the identified sensitive patient subgroup

identified from the N2 patients in stage 2, carried out at significance level ↵2.

Note that the test of treatment e↵ect in the subgroup will be carried out on
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some sample size N 0 with N 0 < N2, where N 0 is the number of patients that

were identified as sensitive in stage 2 of the trial. The result of the trial is

considered ‘positive’ if either of these tests returns a significant result. The

simple Bonferroni allocation of overall ↵ ensures that the FWER is controlled

at a pre-specified level. The authors recommend the following weighting: 80%

of overall ↵ allocated to the overall test (↵1) and the remaining 20% to the

subgroup test (↵2). This results in ↵1 = 0.04 and ↵2 = 0.01 at the usual

level of ↵ = 0.05 for two-sided tests. The authors state that although the test

in the patient subgroup must meet a stringent significance level, considerable

power is still achieved as the treatment e↵ect in this subgroup is expected to be

much larger than that observed in the overall trial population. Note that the

development of the classifier built using stage 1 data is left open. The authors

describe one approach based on machine learning voting methods (Breiman

1996a), but note that a large variety of algorithms could be implemented. A

graphic showing the process of the ASD trial design is given in Figure 4.1.

Stage 1

Recruit N1=200
patients 

Develop a 
biomarker based 

classifier on 
Stage 1 patients

Stage 2

Recruit N2=200
patients 

Prospectively 
apply classifier to 
Stage 2 patients, 

to identify a 
sensitive 
subgroup

Final Analysis

Test of overall treatment 
effect on all N=N1+N2

patients, carried out at level 
!" = 0.04!

Test of treatment effect of 
sensitive subgroup, in stage 2 

patients only, carried out at 
level !' = 0.01!

Figure (4.1) A flowchart of the Adaptive Signature Design trial framework
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4.2.2 Implemented Methods

A variety of methods that achieve dual biomarker threshold identification were

utilised within this work, ranging in complexity and manner of threshold esti-

mation. An introduction to each is given here.

Dual Modelling - Maximising Interaction Test Statistics

The first method used in this work was also implemented in Chapter 3. This

was originally implemented in the Renfro et al. (Renfro et al. 2014) study in

the single biomarker case and was extended to the dual case in Chapter 3,

Section 4 of this thesis. A short reminder of this method is given here.

A series of logistic regression models were fitted to stage 1 patient data,

covering a range of candidate thresholds for each biomarker. Each logistic

regression model treated patient response as the outcome, with treatment as-

signment, dichotomous biomarker status and a treatment-biomarker interac-

tion term as covariates:

log

✓
pi

1� pi

◆
= �0 + �1Ti + �2 (Bki > ckj) + �3Trti ⇥ (Bki > ckj)

where pi is the probability of patient response for patient i, Ti is the

treatment assignment and (Bki > ckj) is the dichotomous biomarker sta-

tus for biomarker Bk, k = {1, 2}, identifying which patients have a biomarker

value above the current candidate cutpoint ckj; candidate biomarker sets C1 =

{c11, ..., c1n} and C2 = {c21, ..., c2n} are pre-specified. The threshold associated

with the strongest interaction e↵ect for each biomarker, defined as that achiev-

ing the largest interaction coe�cient, was then used as the threshold taken into

stage 2 of the trial to define the marker-high subgroup. The candidate thresh-

old sets used in this work were fixed at C1 = C2 = {0.25, 0.3, 0.35, 0.4, 0.45, 0.5,
0.55, 0.6, 0.65, 0.7, 0.75}.

Grid Search Over Average Response Rate

Again, this method was used in Chapter 3 when extending the Renfro et al

design to incorporate dual biomarker information. A grid of patient subgroups
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was formed using combinations of candidate thresholds from the sets C1 =

{c11, ..., c1n} and C2 = {c21, ..., c2m}:

c11 c12 c13 c14 c15

c21 S1,1 S2,1 S3,1 S4,1 S5,1

c22 S1,2 S2,2 S3,2 S4,2 S5,2

c23 S1,3 S2,3 S3,3 S4,3 S5,3

c24 S1,4 S2,4 S3,4 S4,4 S5,4

c25 S1,5 S2,5 S3,5 S4,5 S5,5

With patient i belonging to subgroup Sj,k ifB1i > c1j andB2i > c2k. Within

each subgroup, the average rate of patient response was calculated, and the

thresholds which defined the subgroup with maximum patient response were

taken into stage 2 of the trial. The candidate threshold sets used in this work

were again fixed at C1 = C2 = {0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.75}

Recursive Partitioning

Recursive partitioning is a common technique for building both classification

and regression trees (Breiman et al. 1984) and presents a natural choice for

the case of dual biomarker threshold identification. Decision trees are built by

repeatedly identifying which variable ‘best’ splits the data into two daughter

groups. At each possible split, the ‘best’ value in this case was defined as

the value achieving the largest reduction in the Gini impurity (Breiman et al.

1984). Consider a dataset X that contains samples from k classes and let pi

denote the probability that a sample belongs to class i at a given point. Then

the Gini impurity of X is defined as:

Gini(X) = 1�
kX

i=1

p2
i

For each class k, the associated pi is calculated as the number of samples

belonging to that class, divided by the total number of samples in X. Consider

the following example: in a dataset with 20 samples, there are 14 samples

belonging to Class 1 and 6 in Class 2. The following calculations are then

carried out:

p1 = 14/20 = 0.7
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p2 = 6/20 = 0.3

Gini(X) = 1� (0.3⇥ 0.3 + 0.7⇥ 0.7) = 1� (0.09 + 0.49) = 0.42

The Gini impurity can take values on the range [0, 0.5], with minimum

impurity obtained when all records have the same class and maximum impurity

when classes are distributed evenly. Several examples of the Gini impurity

associated with di↵erent datasets are given in Table 4.1.

Count Probability Gini Impurity
n1 n2 p1 p2 1� (p2

1
+ p2

2
)

Data A 0 10 0 1 1� (02 + 12) = 0
Data B 3 7 0.3 0.7 1� (0.32 + 0.72) = 0.42
Data C 5 5 0 1 1� (0.52 + 0.52) = 0.5

Table (4.1) Examples of calculated Gini Impurity from three di↵erent data samples

At each split, the attribute that leads to the largest reduction in Gini

impurity, or largest Gini gain, is chosen for splitting. If the data X, of size n,

are split on an attribute � into two subsets X1 and X2, with sizes n1 and n2

respectively, then the Gini impurity can be defined as:

Gini�(D) =
n1

n
Gini(X1) +

n2

n
Gini(X2)

Then the best split is on the attribute that maximises the Gini gain:

�Gini(�) = Gini(D)�Gini�(D)

Gini impurity is a popular choice when building classification trees with a

categorical outcome, as it accurately captures the measure of impurity without

using logarithms, like classical impurity measures, which are computationally

intensive. Due to the use of binary outcome in this work, this was an appro-

priate choice. In this work, k = 2 with responders and non-responders as the

two classes, the probability that a patient belonged to each class (pi) was cal-

culated as the proportion of all patients in the responding and non-responding

subgroups. Potential attributes for splitting (� in the above example) were

specific biomarker values along their respective ranges. In this setting, let the

total dataset before splitting be denoted Xtot. If this original dataset contains

Ntot patients, with Nresp responding patients, then the original Gini impurity
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can be calculated as:

Gini(Xtot) = 1�
✓✓

Nresp

Ntot

◆2

+

✓
Ntot �Nresp

Ntot

◆2◆

Combined Gini impurity of the data sets following a split of Xtot at specific

biomarker values can then be calculated to obtain the Gini gain, allowing iden-

tification of the optimal biomarker value for splitting. Recursive partitioning

lends itself to this problem as one can identify the best split for each biomarker

in turn, dichotomising the population into biomarker positive and negative at

each step, as shown in Figure 4.2.

B1<0.63 B1≥0.63
N=110

P(Response)=0.22

B2<0.58 B2≥0.58

N=90
P(Response)=0.64

N=42
P(Response)=0.53

N=48
P(Response)=0.92

N=200
P(Response)=0.52

Figure (4.2) An example of the implementation of recursive partitioning to the setting
of dual biomarker threshold identification. A responding subgroup is identified by finding
the biomarker threshold that best splits the data at each step. Note that this example is
purely instructive and values used are

Due to the potential dependency on the order of splitting, both biomarker

splitting orders were implemented: B1 ! B2 and B2 ! B1, labelled Tree1

and Tree2 respectively. Using this method, a threshold was identified for each

biomarker, defining a sensitive patient subgroup using stage 1 patient data.

Thresholds were then carried through into stage 2 to prospectively identify

sensitive patients for e�cacy analyses. Classification trees were implemented

using the rpart package in R (Therneau et al. 2015). The minimum terminal

node size was fixed at 20, meaning that the smallest sensitive subgroup size

(bottom right node in Figure 4.2), would contain at least 20 patients in all

cases. This was done for three reasons: 1) the smallest biomarker subgroup

size considered in simulations had an expected prevalence of 10% of stage

1 patients, giving 20 of the original 200 (see Section 4.3); 2) to ensure that
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e�cacy testing could be carried out within the subgroup, i.e. patients would

be present on both treatment arms within simulations; 3) so the identified

subgroups would show utility in identifying sensitive patients post trial, sub-

groups smaller than 10% may lose some of this utility.

Prognostic Peeling

Prognostic peeling is a subgroup identification method in which a pre-specified

portion of the available data are removed (or ‘peeled’) along one of the pre-

dictor variable axes at each step, in order to maximise the expected mean

response in the remaining subgroup (LeBlanc et al. 2002, Friedman & Fisher

1999). Peeling is carried out until a pre-specified proportion of the original pop-

ulation remains or until a su�ciently large mean response is achieved within

the subgroup. This methodology does support the incorporation of di↵erent

objective functions to be maximised by the peeling algorithm i.e. odds ratio

for treatment e↵ect within the subgroup. The mean response was used as

the objective function in this work as this was used in the original work by

LeBlanc et al (LeBlanc et al. 2002) and this allowed direct comparison to other

methods used in this work which also identified the maximum subgroup mean

response (the grid search described above). A schematic of a generic peeling

process is shown in Figure 4.3, with a more formal definition of the algorithm

given below. In Figure 4.3, one begins with the whole dataset (Figure 4.3a),

then removes a portion of the data along the B2 axis (Figure 4.3b). A further

portion is removed along the B1 axis (Figure 4.3c), then again along the B2

axis (Figure 4.3d) and a final portion is removed along the B1 axis to arrive

at the optimal subgroup in Figure 4.3e.
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(a) Step 0: Whole Dataset
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(d) Step 3
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(e) Step 4: Final Subgroup

Figure (4.3) An example of the implementation of the peeling algorithm to the dual
biomarker threshold identification setting. The final responding subgroup (4.3e) is identi-
fied by repeatedly peeling a portion of the dataset to maximise some objective function.

Generally, the identified subgroup may lie anywhere in the variable space,

as seen in Figure 4.4a, with peeled portions of the data taken from either

direction. As discussed in Chapter 3, in this work it was assumed that higher

biomarker values were associated with better outcome, thus the direction of

peeling was constrained. Methodology for directed peeling remains the same,

only that peeling is considered in one direction for each variable. So by peeling
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towards higher values, the appropriate subgroups could be identified, as seen in

Figure 4.4b. Moreover, the methodology also allows for the option of ‘bottom

up’ pasting, to reintroduce previously peeled portions of data to improve upon

the objective function within the identified subgroup.
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(a) Unconstrained Peeling
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(b) Directed Peeling

Figure (4.4) An example showing the di↵erence in subgroup location when using di-
rected versus unconstrained peeling. Note that directed peeling is more suited to dual
biomarker threshold identification, due to the subgroup location at extreme biomarker val-
ues.

Given a dataset B, with variables x1, ..., xp considered for direct peeling,

the peeling algorithm is as follows:

1. Let ⇣ = {⇣1, ..., ⇣p} be a vector of indicators giving the direction of peeling

for each variable x1, ..., xp. If ⇣i = 1, then small values are peeled (low

to high); if ⇣i = �1, then large values are peeled (high to low)
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2. Begin with the entire dataset, denoted B0

3. For each variable x1, ..., xp, peel a fraction ↵ of the current dataset, given

the direction of peeling from ⇣. This results in p potential subgroups

denoted Bm

j
, j = 1, ..., p

4. Let xk be the variable corresponding to the largest improvement in the

mean response

5. Then let the new box, which has been peeled along variable xk be defined

as Bm+1, with Bm+1 = Bm\{xk � c} if ⇣k = 1 or Bm+1 = Bm\{xk  c}
if ⇣k = �1. Here, c defines the point at which the peeling was carried up

to.

6. Repeat steps 3-5 until either a su�ciently large value of mean response is

obtained or the pre-specified proportion of the original dataset remains.

In the case of dual biomarkers, the final value of c used in the above al-

gorithm for each biomarker then represents the respective optimal threshold

defining the responding patient subgroup. The peeling proportion for this

analysis was set to 10%, meaning that at most 10% of the current dataset

could be removed at each step. The minimum proportion of patients in the

final identified subgroup was set to 10%, giving a final subgroup size of at least

20 after stage 1, for the same reasons given in the case of recursive partition-

ing. The option for ‘bottom up’ pasting was included and this proportion was

set to 5%, meaning that the size of the current subgroup could increase by at

most 5% at each step. Again, due to the potential dependency on the order

of biomarker peeling (i.e. starting with biomarker 1 or biomarker 2), both

orders were implemented; these were labelled Peel1 and Peel2 respectively.

Prognostic peeling was implemented in R using the primr package (Masselot

2021).
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4.3 Simulation Study

A simulation study was implemented to compare the threshold identification

accuracy of the methods described in Section 4.2.2, as well as the empiri-

cal power to detect both overall and subgroup specific e↵ects when using the

Adaptive Signature Design in conjunction with such methods. R code used to

implemented the simulation study is available in Appendix B.

4.3.1 Simulation Study Set Up

Step 0: Input Parameters

To define unique scenarios of interest, a number of input parameters were

specified for each case:

- The probability of response on the control arm, pC

- The maximum and minimum response probabilities for patients on the

treatment arm, pT,H and pT,L respectively

- Parameters defining the response probability surface for patients on treat-

ment (see specification of �(B1i, B2i) below):

- ↵1 and ↵2

- �1 and �2

Similarly as in Chapter 3, it was assumed that patients on the control arm

had a flat response probability, pC , but patients on the treatment arm re-

ceived varying probability dependent upon their biomarker values. However,

the shape of the probability surface was updated to incorporate a more biolog-

ically plausible relationship. In Chapter 3, the probability of patient response

increased immediately when biomarker values reached an input cuto↵ value,

resulting in a a relationship resembling a step function. A more realistic re-

lationship between biomarker values and response probability would be one

of a gradual increase, assuming an increasing relationship, with the probabil-

ity of response increasing smoothly as biomarker values increased. With this

in mind, the response probability was altered to incorporate such a function,

148



�(B1i, B2i). �(B1i, B2i) is a function defining a bivariate relationship between

biomarker values for patient i, B1i and B2i, and the probability of patient re-

sponse to treatment. �(B1i, B2i) maps from [0, 1] ⇥ [0, 1] to [pT,L, pT,H ], with

pT,L < pT,H and pT,L, pT,H 2 [0, 1]. In this work, � was defined to be the cu-

mulative density function of the bivariate specification of the Weibull model

(Almetwally et al. 2020), mapped onto the correct range using simple correc-

tion:

�(B1i, B2i,↵1,↵2, �1, �2, ✓) = (4.1)

pT,L+�p

✓
1�e

�
B1i
↵1

���1
◆✓

1�e

�
B2i
↵2

���2
◆

1+✓

✓
1�e

�
B1i
↵1

���1
◆✓

1�e

�
B2i
↵2

���2
◆�

Where �p = (pT,H � pT,L). The bivariate Weibull CDF was a suitable

choice to define the relationship between biomarker values and the probability

of patient response in this setting. Firstly, the domain and range of the function

are as discussed above ([0, 1]⇥[0, 1] to [pT,L, pT,H ]). The shape of the probability

surface defined by the bivariate Weibull CDF was well suited to the setting,

with the probability of response increasing as both biomarker values increased.

The bivariate Weibull CDF was also chosen due to its flexibility in specification.

By manipulating the input parameters, ↵1, ↵2, �1 and �2 (discussed below),

the shape of the surface could be specified exactly, allowing for a variety of

scenarios to be implemented. An example of the possible probability surfaces

achievable is given in Figure 4.5, and an explanation of the role of each input

parameter is given below.
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Figure (4.5) A plot showing the relationship between biomarker values and the
probability of patient response, for patients that received the experimental treatment.
Biomarker values are plotted along the x- and y-axes, probability of patient response is
plotted along the z-axis and patient response is represented by the colour of each point
(green=response, blue=no response). Note in this example, pT,L = 0.1 and pT,H = 0.9.

↵1 and ↵2 represent the midpoints of the increase of the surface, one mid-

point parameter for each biomarker. They are the equivalent of µ1 and µ2

used in Chapter 3, and allow one to define the location of the sensitive sub-

group. �1 and �2 represent the corresponding ‘steepness’ of the respective

increases, with higher values leading to a steeper increase and lower values

giving a flatter, more gradual increase. The surface in Figure 4.5 was obtained

using ↵1 = ↵2 = 0.5 and �1 = �2 = 8.

Step 1: Stage 1

In stage 1 of the trial, N1 = 200 patients were simulated. Each patient received

an ID variable, treatment assignment (2:1 ratio of treatment=1 to control=0),

two biomarker values drawn from Uniform(0,1) distributions and a response
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flag. The probability of patient response was defined as follows. For a patient

i, with biomarker values B1i and B2i and treatment assignment Ti:

P (Response) =

8
<

:
pC Ti = 0

�(B1i, B2i) Ti = 1

Step 2: Dual Biomarker Threshold Identification

Threshold identification procedures were implemented on stage 1 patients.

Identified thresholds for each method were then taken into stage 2 of the

design to prospectively define the sensitive subgroup for e�cacy testing. Note

that no e�cacy testing was carried out at this stage.

Step 3: Stage 2

A further N2 = 200 patients were simulated. The same information used in

stage 1 was simulated, with the addition of a subgroup flag for each method, to

identify which patients were in the sensitive subgroup defined by each method.

Step 4: E�cacy Analyses

An overall test of treatment e↵ect was implemented on all N patients from

stages 1 and 2 at a significance level of ↵1 = 0.04. A logistic regression model

was used, with treatment status as the sole explanatory variable:

log

✓
pi

1� pi

◆
= �0 + �1Ti

Where pi is the probability of response for patient i and Ti is their treatment

assignment, for i = 1, ..., 400. E�cacy in the identified subgroups was also

assessed, using stage 2 patient data only. The above logistic regression model

was applied to stage 2 patients in each subgroup identified by the respective

method, at a more stringent significance level of ↵2 = 0.01.

Simulations were repeated 10,000 times for each scenario of interest, achieved

by manipulation of the discussed parameters. The unique scenarios given in
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Table 4.2 were implemented and covered a range of areas of interest, much like

those in Chapter 3. Scenarios 1-6 explore the e↵ect of changing treatment ef-

fect; 7-12 explore the e↵ect of input threshold location and therefore expected

subgroup size; 13 and 14 explore the e↵ect of the steepness of the biomarker-

response surface. The estimated biomarker thresholds were captured for each

method in each simulation in order to compare estimation accuracy and ob-

serve how this changed by scenario. The proportion of trials that had sig-

nificant final analyses, both overall and subgroup specific, were also captured

to compare empirical power and observe how this changed by scenario and

method used.

Scenario PT,H PT,L PC ↵1 ↵2 �1 �2

1 0.8 0.2 0.2 0.5 0.5 8 8
2 0.6 0.2 0.2 0.5 0.5 8 8
3 0.4 0.2 0.2 0.5 0.5 8 8
4 0.2 0.2 0.2 - - - -
5 0.8 0.4 0.2 0.5 0.5 8 8
6 0.6 0.4 0.2 0.5 0.5 8 8
7 0.6 0.2 0.2 0.6 0.6 8 8
8 0.6 0.2 0.2 0.7 0.7 8 8
9 0.6 0.2 0.2 0.4 0.4 8 8
10 0.6 0.2 0.2 0.3 0.3 8 8
11 0.6 0.2 0.2 0.5 0.7 8 8
12 0.6 0.2 0.2 0.5 0.3 8 8
13 0.6 0.2 0.2 0.6 0.6 4 4
14 0.6 0.2 0.2 0.6 0.6 2 2

Table (4.2) Scenarios implemented in the simulation study, each defined by the corre-
sponding values of pC , pT,L, pT,H , ↵1, ↵2, �1 and �2.

4.3.2 Simulation Study Adaptations

Further adaptations were made to the simulation study set up to explore other

scenarios of interest. Firstly, simulations were repeated with di↵ering sample

size to explore the e↵ect this had on empirical power of the implemented

framework, as well as on threshold estimation accuracy. Scenarios defined by

input parameters in Table 4.2 were again simulated, using N1 = N2 = 150 and

N1 = N2 = 250, these values were also implemented by Freidlin and Simon

when exploring the relationship between empirical power and total sample size
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(Freidlin & Simon 2005).

In the described simulations, biomarker values were assumed to follow a

uniform distribution. It was of interest to explore how the methods performed

within the ASD framework under skewed biomarker distributions. With this

in mind, simulations were repeated using biomarkers drawn from a Beta distri-

bution. A Beta distribution was chosen as one can define both left- and right-

skewed distributions across the interval [0,1], by manipulating the two shape

parameters. The distributions used for simulations were B1, B2 ⇠ Beta(2, 5)

and B1, B2 ⇠ Beta(5, 2) for the left- and right-skewed distributions respec-

tively. These distributions are shown in Figure 4.6.
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Figure (4.6) The alternative skewed biomarker distributions implemented in simula-
tions, defined using the Beta distribution. The red line represents the right skewed distri-
bution (Beta(5, 2)) and the blue represents the left skewed (Beta(2, 5)).

To incorporate the skewed biomarkers, some changes to the simulation

study design were necessary. Firstly, in Steps 1 & 3, biomarkers were drawn

using the corresponding Beta distribution, as opposed to the Uniform. Sec-

ondly, the modelling and grid search methods of threshold identification took
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candidate threshold sets as input to search for the optimal threshold pair,

namely C1 = C2 = {0.25, 0.3, 0.35, 0.4, 0.45, 0.5,
0.55, 0.6, 0.65, 0.7, 0.75}. This was done intentionally to search for the opti-

mal quantiles of the Uniform distribution over a given range. When utilising

a skewed biomarker distribution, these candidate sets were altered to reflect

corresponding quantiles of the appropriate Beta distribution. When using the

Beta(2, 5) (left skewed), these candidate sets were

C1 = C2 = {0.161, 0.182, 0.202, 0.223, 0.243, 0.264, 0.286, 0.309, 0.334, 0.360, 0.389}

Similarly, when using Beta(5, 2) (right skewed), these candidate sets were

C1 = C2 = {0.611, 0.640, 0.666, 0.691, 0.714, 0.736, 0.757, 0.777, 0.798, 0.818, 0.839}

These quantiles have been overlaid on the corresponding distribution in Figure

4.7.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

P(Repsonse)

D
en
si
ty

Beta(2,5)

Quantiles

(a) Beta(2,5)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

P(Repsonse)

D
en
si
ty

Beta(5,2)

Quantiles

(b) Beta(5,2)

Figure (4.7) Candidate thresholds of each Beta distribution were defined as the quan-
tiles

Finally, input cuto↵ values ↵1 and ↵2 were also altered to allow for the

skewed distributions. These covered the range [0.3, 0.7] in scenarios using the

Uniform distribution, to explore scenarios with appropriately extreme levels

of biomarker prevalence. Values obtaining the same levels of prevalence when

using the Beta distributions were therefore implemented. Table 4.3 shows the
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values of ↵1 and ↵2 used as input parameters for all implemented scenarios;

note that PT,H , PT,L, PC , �1 and �2 were kept consistent with corresponding

scenario numbers as in Table 4.2.

Beta(2, 5) Beta(5, 2)
Scenario ↵1 ↵2 ↵1 ↵2

1 0.264 0.264 0.736 0.736
2 0.264 0.264 0.736 0.736
3 0.264 0.264 0.736 0.736
4 0.264 0.264 0.736 0.736
5 0.264 0.264 0.736 0.736
6 0.264 0.264 0.736 0.736
7 0.309 0.309 0.777 0.777
8 0.360 0.360 0.818 0.818
9 0.223 0.223 0.691 0.691
10 0.182 0.182 0.640 0.640

Table (4.3) Input values of ↵1 and ↵2 for all implemented scenarios when using each
skewed biomarker distribution
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4.4 Simulation Study Results

4.4.1 Empirical Power

The empirical power in the simulation study was estimated by capturing the

proportion of simulated trials in which there was a significant test, for each of

the overall assessment of treatment e↵ect and the subgroup specific test. As

stated in the trial design, a trial was considered a ‘success’ if either of these

tests returned a significant result, so the proportion of trials in which either of

these was significant was also captured. These measures are all presented in

the following tables, with the overall empirical power given separately to each

method. Subgroup specific empirical power is given for each method, with the

empirical power for any significant result using that method given in brackets

beside.

The empirical power measures for scenarios 1-6 are presented in Table 4.4.

In scenarios 1-4, the treatment e↵ect was restricted to marker-high patients

only, with magnitude of treatment e↵ect decreasing with higher scenario num-

ber (eventually to the null case in scenario 4) and input thresholds fixed at

↵1 = ↵2 = 0.5. As one would expect, the overall power decreased as treatment

e↵ect fell, from 93.5% under scenario 1 to 21.4% under scenario 3. In the null

case, the proportion of significant overall tests was controlled appropriately at

3.8% (the significance level of this test by design was 0.04). Under scenarios 5

and 6, in which all patients received some treatment e↵ect, all trials identified

a significant assessment of overall treatment e↵ect.

The empirical power to detect subgroup specific e↵ects was consistently

highest when using the recursive partitioning method (tree1 and tree2). The

proportion of trials with a significant subgroup e↵ect under scenario 1 was

72.2% when using recursive partitioning, compared with 63.1% when using

the modelling, 40.7% for grid search and 32.5/32.6% for the peeling (peel1

and peel2 methods di↵er only by which biomarker is addressed first in the

peeling algorithm). This ordering was consistent across scenarios, from high-
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est empirical power to lowest: recursive partitioning, modelling, grid search,

peeling. This is clear from observing Figure 4.8, in which the proportion of

trials that identified a significant subgroup test has been plotted for all meth-

ods under scenarios 1-4. From this Figure and Table 4.4, it can be observed

that this proportion fell at a similar rate for all methods as the treatment

e↵ect decreased. The proportions began to converge at scenario 3 and were

comparable at scenario 4. The largest di↵erences in empirical power occurred

when the treatment e↵ect was at its largest, clear from the diverging nature of

the lines in Figure 4.8 when moving toward scenario 1. This was also evident

by contrasting method specific empirical power directly: 72.2% for tree1/2

vs 32.5/32.6% for peel1/2 under scenario 1 and 24.7/25.1% for tree 1/2 vs

7.5/7.4% for peel1/2 under scenario 2. Under the null scenario, recursive par-

titioning showed the highest proportion of trials with a significant subgroup

test at 0.3%. All methods controlled this proportion appropriately, the sig-

nificance level of the subgroup test was set at 0.01. In fact, it appeared as

though the proportion of trials that identified a significant subgroup test was

lower than it should have been in the null case across all methods. One would

have expected 1% of trials to falsely identify a significant subgroup test using

each method, as this was the pre-specified level of ↵2. This decrease is likely

due to the conservatism encountered when using the Bonferroni adjustment to

control the FWER. The overall alpha is split across the assessment of overall

treatment e↵ect and the subgroup test: 80% is allocated to the overall test

and 20% to the subgroup test, 0.04 and 0.01 respectively. The Bonferroni ad-

justment has been shown to be overly conservative, particularly when the tests

under consideration are positively correlated (Westfall & Young 1993). The

subgroup and overall tests in this setting are highly positively correlated as

the subgroup is a subset of the overall trial population. Therefore, one would

expect the Bonferroni adjustment to be conservative in this setting, leading to

the decrease in the proportion of trials that identified a significant subgroup

test across all methods under the null.

Under scenarios 5 and 6, in which the treatment was broadly e↵ective, sim-

ilar proportions of trials identified a significant subgroup test when compared
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with scenarios in which treatment e↵ect was restricted solely to biomarker

positive patients. The maximum value of response probability for patients

receiving treatment was the same under scenarios 1 and 5 (PT,H = 0.8) and

under scenarios 2 and 6 (PT,H = 0.6), but the minimum response probability

(PT,L) was set to 0.4 in scenarios 5 and 6, rather than 0.2 in scenarios 1 and

2. Therefore under scenarios 5 and 6, all patients that received treatment had

a higher probability of treatment response than those on control. Comparing

scenarios in which the maximum response probabilities were the same (1 vs 5

and 2 vs 6), it is clear that the proportion of trials that identified a significant

subgroup test were slightly higher when the treatment was broadly e↵ective

for the modelling, grid search and tree based methods and was slightly lower

for the peeling methods.

The proportion of ‘successful’ trials, i.e. those in which either the overall

or subgroup test was significant, was largely consistent across methods. Note

that this proportion is di↵erent to the overall empirical power presented above,

which captured whether or not the main assessment of treatment e↵ect in the

whole trial population was successful. This proportion was highest when using

recursive partitioning and lowest when using peeling, although this di↵erence

was minimal. For example 96.9% for tree1 and 95.2% for peel1 under sce-

nario 1, 69.6% vs 66.1% under scenario 2 and 22.4% vs 21.6% under scenario

3. The probability of a successful trial was therefore not very dependent on

the threshold identification method used and was primarily influenced by the

input treatment e↵ect and the e↵ect this had on overall empirical power. For

example, under scenario 1 there was a large di↵erence in subgroup specific

empirical power between tree1 and the grid search (72.2% vs 40.7%), but the

di↵erence between the proportion of successful trials under these two methods

was small at 96.9% vs 95.3%. In cases where the subgroup test was significant

the overall test was also significant in the majority of cases, meaning that when

investigating the proportion of ‘successful’ trials the choice of threshold iden-

tification method did not make a large impact. The proportion of successful

trials varied similarly to the proportion of trials that identified a significant

overall test, with the proportion decreasing with decreasing treatment e↵ect.
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In the null case, the proportion of trials with any significant test was con-

trolled appropriately for all methods, the highest proportion was 4.1% when

using recursive partitioning or the grid search and other methods had similar

values. Again, this is a conservative value as the overall level of ↵ for each trial

was set at 0.05. These conservative proportions were primarily driven by the

discussed conservative levels of subgroup empirical power as the overall level

of empirical power was 3.8% (for an ↵ level of 0.04).

Scenario 1 2 3 4 5 6
Overall 93.5 64.6 21.4 3.8 100 100

Mod (any) 63.1(96.1) 21.6(68.7) 1.7(22.2) 0.2(4.0) 68.0(100) 30.1(100)
Grid (any) 40.7(95.3) 10.2(67.0) 0.5(21.7) 0.3(4.1) 43.4(100) 13.8(100)
Tree1 (any) 72.2(96.9) 24.7(69.6) 1.8(22.4) 0.3(4.1) 72.8(100) 30.4(100)
Tree2 (any) 72.2(96.8) 25.1(69.5) 1.6(22.3) 0.3(4.1) 72.4(100) 30.0(100)
Peel1 (any) 32.5(95.2) 7.5(66.1) 0.3(21.6) 0.1(3.9) 30.0(100) 7.1(100)
Peel2 (any) 32.6(95.1) 7.4(66.2) 0.3(21.6) 0.1(3.9) 30.6(100) 6.9(100)

Table (4.4) Empirical power under scenarios 1-6. Overall - the proportion of trials
that identified a significant test of overall treatment e↵ect. Method (any) - the proportion
of trials that identified a significant subgroup test using each method (value in brackets is
the proportion of trials in which either test was significant). Values are given as %s.
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Figure (4.8) Subgroup specific empirical power under scenarios 1-4, for each method.
Note as the plot is viewed from left to right, the magnitude of treatment e↵ect decreases.

The empirical power measures for scenarios 7-12 are presented in Table 4.5.

In scenarios 7-10, the treatment e↵ect was fixed (PT,H = 0.6, PT,L = PC = 0.2)

and the input cuto↵s varied to alter the expected size of the sensitive subgroup.

The proportion of trials that identified a significant overall test of treatment

e↵ect varied substantially with expected subgroup size. For clarity, scenarios

7 and 8 consider smaller subgroup sizes, with 8 being the smallest considered,

and scenarios 9 and 10 consider larger subgroup sizes, with 10 being the largest.

As the subgroup size increased (lower input cuto↵s), the proportion of trials

that identified a significant overall test increased: 89.4% under scenario 9 and

98.7% under scenario 10. The reverse was also true, with the proportion of

trials that identified a significant overall test falling to 35.3% under scenario 7

and 16.3% under scenario 8.

The empirical power to detect subgroup specific e↵ects was again highest
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when using the recursive partitioning method. Ordering was again consistent

with what was observed in scenarios 1-6, from highest to lowest empirical

power: recursive partitioning, modelling, grid search, peeling. The di↵erence

in observed proportions of trials that identified a significant subgroup test

was most notable when the subgroup size was larger. Under scenario 10,

67.0/66.7% of trials identified a significant subgroup test when using recur-

sive partitioning (tree1/2), compared to only 8.7/8.9% when using prognostic

peeling. As the subgroup size became smaller, proportions for all methods

converged to low values, with proportions comparable under scenario 8. This

is clear from Figure 4.9, where the proportion of trials that identified a signifi-

cant subgroup test was plotted against scenario, with subgroup size decreasing

as the plot is read from left to right. The observed proportion for tree1/2

was consistently above all other methods, with the modelling method quite

close in all scenarios. Decreasing empirical power to detect subgroup e↵ects

for tree1/2 and modelling as subgroup size decreased is clear from Figure 4.9,

lines for these methods start at a peak under scenario 10 and decrease and

converge to their lowest point under scenario 8. The observed proportions of

trials that identified a significant subgroup test for the grid search and peel1/2

were consistently lower, evidenced on Figure 4.9 and specific values in Table

4.5. There was also minimal change in these proportions as the subgroup size

changed, lines for these methods were flat on Figure 4.9; maximum values

for peel1/2 and grid were 8.7/8.9% and 22.0% respectively, compared to their

respective minimums of 0.6/0.7% and 1.9%. The expected size of the sensi-

tive subgroup therefore appeared to have a large e↵ect on empirical power to

detected subgroup e↵ects when using recursive partitioning or modelling to

identifying biomarker thresholds, but had a much less pronounced e↵ect when

using prognostic peeling or the grid search. Observed relationships between

empirical power and sensitive subgroup size were observed under scenarios 11

and 12, in which input thresholds were separate with ↵1 = 0.5 and ↵2 = 0.7

under scenario 11 and ↵1 = 0.5 and ↵2 = 0.3 under scenario 12. Overall and

subgroup specific empirical power were higher under scenario 12 as the sub-

group size was larger at approximately 35% of the trial population, whereas

the sensitive subgroup accounted for only 15% of the population under sce-

nario 11.
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Again, the proportion of ‘successful’ trials was consistent across methods

within scenarios. This proportion again varied in a similar manner to the pro-

portion of trials that identified a significant overall test; it was higher when

the subgroup size was large (lower input thresholds) and decreased as the sub-

group size decreased (higher input thresholds).

Scenario 7 8 9 10 11 12
Overall 35.3 16.3 89.4 98.7 31.7 87.5

Mod (any) 6.8(38.0) 1.4(17.2) 43.1(91.5) 64.4(98.9) 5.4(34.2) 40.4(89.9)
Grid (any) 4.5(37.4) 1.0(17.0) 16.4(90.4) 22.0(98.8) 3.9(33.9) 16.5(88.5)
Tree1 (any) 8.0(38.7) 1.4(17.2) 46.8(91.9) 67.0(99.0) 6.1(34.4) 43.4(90.0)
Tree2 (any) 8.0(38.9) 1.7(17.4) 47.3(92.0) 66.7(99.0) 5.8(34.5) 41.7(90.0)
Peel1 (any) 3.6(36.9) 0.6(16.8) 8.7(90.0) 8.7(98.7) 2.5(33.1) 9.0(88.1)
Peel2 (any) 3.5(37.0) 0.7(16.8) 9.2(89.9) 8.9(98.8) 3.1(33.4) 8.3(88.0)

Table (4.5) Empirical power under scenarios 7-12. Overall - the proportion of trials
that identified a significant test of overall treatment e↵ect. Method (any) - the proportion
of trials that identified a significant subgroup test using each method (value in brackets is
the proportion of trials in which either test was significant). Values are given as %s
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Figure (4.9) Subgroup specific empirical power under scenarios 2, 7, 8, 9 and 10, for
each method. Note as the plot is viewed from left to right, the subgroup size decreases.

The empirical power measures for scenarios 7, 13 and 14 are presented in

Table 4.6. In these scenarios, the treatment e↵ect and the input cuto↵s were

fixed and the slope parameters �1 and �2 were varied in order to explore the

e↵ect of a flatter biomarker-response surface on empirical power. Examples of

the di↵erent biomarker-response surface are shown in Figure 4.10. The surface

shown in Figure 4.10a was used in scenario 7, Figure 4.10b was used in scenario

13 and Figure 4.10c was used in scenario 14.
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(a) �1 = �2 = 8 (b) �1 = �2 = 4

(c) �1 = �2 = 2

Figure (4.10) Examples of the biomarker-response surface for di↵erent values of �1

and �2.

The proportion of trials that identified a significant overall test increased

slightly as the surface became flatter, from 35.2% under scenario 7, to 38.7%

under scenario 13 and 44.2% under scenario 14. This is likely because as the

the probability surface became flatter, more patients that received treatment

had an increase in response probability, as the increase in probability began

earlier. If one compares Figure 4.10c with 4.10a, it is clear that the maximum

and minimum probabilities remain the same, but the increase between them is

more gradual, with a higher proportion of patients with an increase in response

probability over PT,L = PC . This was reflected in the mean response rate and

odds ratios in the population when using di↵erent response surfaces. Under

scenario 7 (Figure 4.10a), the mean response rate on the treatment arm was

0.368 and the odds ratio for treatment e↵ect was 2.31. Under scenario 13 these

increased to 0.382 and 2.43 respectively, and again to 0.392 and 2.57 under

scenario 14. Thus, as the response probability surface for those on treatment

became flatter, the mean response rate for patients on treatment increased,

causing the odds ratio to rise slightly in accordance and therefore lead to

higher overall empirical power. However, the proportion of trials that identified
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a significant subgroup specific test remained consistent across scenarios for all

implemented methods. The proportion of ‘successful’ trials increased as the

surface became flatter, though as discussed above, having a ‘successful’ trial

depended more on the overall e↵ect that on the subgroup selection. Therefore

this increase is unsurprising as the overall empirical power increased as the

surface became flatter and subgroup specific empirical power did not.

Scenario 7 13 14
Overall 35.3 38.7 44.2

Mod (any) 6.8(38.0) 6.5(41.0) 7.0(46.1)
Grid (any) 4.5(37.4) 4.5(40.8) 4.5(45.8)
Tree1 (any) 8.0(38.7) 7.5(41.6) 8.5(47.0)
Tree2 (any) 8.0(38.9) 7.4(41.6) 8.4(46.9)
Peel1 (any) 3.6(36.9) 3.1(40.2) 2.6(45.1)
Peel2 (any) 3.5(37.0) 3.1(40.2) 2.8(45.0)

Table (4.6) Empirical power under scenarios 7, 13 and 14. Overall - the proportion
of trials that identified a significant test of overall treatment e↵ect. Method (any) - the
proportion of trials that identified a significant subgroup test using each method (value in
brackets is the proportion of trials in which either test was significant). Values are given
as %s

165



4.4.2 Threshold Identification Accuracy

Threshold identification accuracy of each method within the simulation study

was estimated by capturing the optimal pair of thresholds defined by each

method within each trial. To assess the accuracy of each method, optimal

threshold estimates of each biomarker were plotted on histograms to observe

their distributions; the mean and standard deviation of each distribution were

also calculated. Unique scenarios were defined by the input parameters dis-

cussed in Section 4.3, allowing for comparison between methods as well as

exploring how accuracy for all methods changed with regard to input treat-

ment e↵ect and subgroup size.

Comparison of Threshold Identification Methods

This section focusses on directly comparing the threshold identification accu-

racy between implemented methods. Three scenarios are presented here, to

contrast method specific accuracy across a range of scenarios. Specifically,

scenarios 2, 8 and 10 are presented, in which the treatment e↵ect was fixed at

PT,H = 0.6 and PT,L = PC = 0.2 and the input biomarker thresholds varied:

↵1 = ↵2 = 0.5 under scenario 2; ↵1 = ↵2 = 0.7 under scenario 8; ↵1 = ↵2 = 0.3

under scenario 10. Figure 4.11 shows identified threshold distributions for B1

and B2 for all methods under scenario 2, Figure 4.12 shows this for scenario 8

and Figure 4.13 for scenario 10. The mean and standard deviation of estimates

for these scenarios are also given in Table 4.7.

On Figure 4.11, the input threshold of ↵1 = ↵2 = 0.5 has been overlaid

as a red dashed line. Note that due to the updated definition of patient re-

sponse, which reflects a smooth relationship with biomarker values instead of

a step function, the red dashed line represents the mid point of the increase

in probability, rather than the exact point at which the probability increases.

Therefore, exact and approximate measures of estimation which were presented

in Chapter 3 were not calculated here and instead accuracy was investigated

solely using the presented histograms and means/standard deviations. One
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would associate a method with high accuracy with a distribution that peaked

at the input threshold location (red dashed line), with light tails toward higher

and lower values, a mean close to the input threshold and low standard devi-

ation.

From Figure 4.11, it can be seen that the accuracy for recursive partitioning

(tree1/2) was the best. Distributions of identified thresholds were symmetric

around 0.5, with a strong peak at 0.5 (Figures 4.11c, 4.11d, 4.11i and 4.11j).

This was also represented by the observed means and standard deviations;

means for B1 and B2 using both tree1/2 were all 0.5 with standard deviation

0.13. Moreover, there was no dependency on ordering as distributions of B1

and B2 were comparable between tree1 and tree2. The distributions of thresh-

old estimates when using the modelling method were symmetric and had a

slight peak at 0.5, but there were also peaks at the extreme values considered.

Observe the peak in estimates at 0.25 and 0.75 in Figures 4.11b and 4.11h.

This was again likely due to how the optimal threshold was defined using this

method, through maximising the interaction coe�cient. This was discussed

in Chapter 3 when exploring accuracy within the Renfro et al design. Means

for these distributions were central (0.48 for B1 and 0.49 for B2) due to the

symmetric nature of the distribution, but standard deviation was larger for

each at 0.16.

Accuracy when using the grid search method was poor, the distributions of

estimates were heavily skewed towards larger values (Figures 4.11a and 4.11g),

with a mean of 0.6 for B1 and 0.61 for B2. This was likely due to a combi-

nation of how the optimal threshold was defined within the grid search and

the updated definition of the biomarker-response relationship. The grid search

maximised the mean response rate within the optimal patient subgroup; be-

cause the probability of patient response increased smoothly, with a mid point

at 0.5 in this case, this mean could be maximised by taking the largest candi-

date threshold possible until the probability plateaued and stopped increasing.

Until the probability of patient response stopped increasing, the mean response

could always be improved upon by considering a higher candidate threshold
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as optimal. Distribution of estimates are therefore largely di↵erent from those

observed in Chapter 3, where a ‘step-function’ definition of patient response

probability was used, and the mean subgroup response could not be continu-

ously improved by taking a larger candidate threshold.

Accuracy when using prognostic peeling was also quite poor. Distributions

were skewed towards higher values (Figures 4.11e, 4.11f, 4.11k and 4.12l) with

peaks at values higher than the input threshold. Due to the updated defi-

nition of patient response, one may consider these distribution shapes to be

advantageous, as the optimal threshold is estimated ‘higher up’ on the patient

response surface, identifying a much more e�cacious patient subgroup. How-

ever, as will be seen in later sections, this distribution shape was consistent

regardless of input threshold location, thus the prognostic peeling method con-

sistently overestimated the location of the optimal threshold. Moreover, there

was clearly some dependency on ordering of biomarkers. Distribution shapes

for B1 and B2 were quite di↵erent depending on which was addressed first;

whichever biomarker was addressed first tended to have an even more heavily

right-skewed distribution of estimates (Figures 4.11e and 4.11l). This was also

clear from the means of the observed thresholds: means for the first biomarker

using peel1/2 (B1 for peel1 and B2 for peel2) were both 0.68, whereas means

for the second were both 0.56.
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Figure (4.11) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenario 2, for all methods of threshold identification. The input threshold values in
each case have been overlaid as a vertical red dashed line.

Figure 4.12 shows all estimated biomarker distributions for all methods

under scenario 8, in which input thresholds were set to ↵1 = ↵2 = 0.7. The

accuracy of recursive partitioning fell in this case. There were still peaks

at the input values for tree1/2 for B1 and B2, but there were heavy tails

towards lower values, clear on Figures 4.12c, 4.12d, 4.12i and 4.12j. Observed

means increased slightly to 0.55 and 0.53 for B1 and B2 respectively under

tree1, with the reverse under tree2; although a slight increase these were not
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close to the input threshold of 0.7. The heavy tails were also reflected in the

standard deviations, which all increased to 0.16, except that of tree2 for B1

which increased to 0.15. Again, there was no clear dependency on order of

biomarker splitting.

Accuracy when using the modelling method remained somewhat consistent

(Figures 4.12b and 4.12h. There were peaks at higher values, although this was

likely due to the fact that the input threshold was aligned with the natural peak

in estimates at the higher extreme value considered by the method; the peaks

at the lower extreme values were again present. There was a slight increase

in mean estimate at 0.54 for B1 and 0.55 for B2, although the uniform spread

of estimates and the peak at lower values lead to a high standard deviation of

0.18 for both.

The distributions for the grid search and prognostic peeling methods showed

quite high accuracy in this case. This was likely due to the tendency of these

methods to overestimate the optimal threshold and select smaller subgroups,

so natural threshold distributions were in alignment with input thresholds,

giving the impression of high accuracy. All distributions contained peaks at

the input value, with tails toward lower values (Figures 4.12a, 4.12e, 4.12f,

4.12g, 4.12k and 4.12l). The means for the grid search were reflective of this

higher accuracy at 0.63, with lower standard deviations of 0.11, for both B1

and B2. Accuracy of threshold estimation when using the peeling method was

highly dependent on the order of biomarker in this scenario. The distribution

for whichever biomarker was addressed second contained a much heavier tail

towards lower values and the entire distribution was shifted slightly towards

lower values. This is clear by directly comparing Figures 4.12e and 4.12f and

Figures 4.12k and 4.12l. This was also reflected in the means and standard

deviations of threshold estimates: the mean(SD) of the first biomarker in each

case was 0.71(0.14) for both peel1 and peel2, whereas the mean(SD) of the

second biomarker was 0.55(0.19) for peel1 and 0.54(0.20) for peel2.
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Figure (4.12) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenario 8, for all methods of threshold identification. The input threshold values in
each case have been overlaid as a vertical red dashed line.

Figure 4.13 shows all estimated biomarker distributions for all methods

under scenario 10, in which input thresholds were set to ↵1 = ↵2 = 0.3. The

first item to highlight under this scenario is the complete lack of accuracy for

the grid search and peeling methods. The previously discussed issues of over-

estimation when using these methods persisted, with heavily right skewed dis-

tributions and no noticeable peak at the input value. For the grid search, this

was likely again due to the combination of the definition of response probabil-
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ity and the methodology. As the method attempted to maximise the subgroup

mean response, higher values were preferred, evidenced by the prominent peak

at the largest value considered. Perhaps this method could be improved upon

by incorporating some penalty function that penalised higher values. Distribu-

tions for the peeling methods showed no discernible accuracy to identify such a

low input threshold, with heavily right skewed distributions for the biomarkers

addressed first (Figures 4.13e and 4.13l) and distributions that were approxi-

mately symmetric around a midpoint of 0.5 (Figures 4.13f and 4.13k) for the

second biomarkers. Means(SD) for B1 and B2 were 0.69(0.14) and 0.55(0.16)

respectively for peel1 and 0.54(0.16) and 0.69(0.14) respectively for peel2.

Modelling and recursive partitioning showed good accuracy when the input

threshold was lower. Part of the increased accuracy for the modelling method

was again the proximity of the input threshold to the lower extreme value

considered, as there was likely a natural peak at these values anyway. However,

the expected peak at the higher extreme value was not present in this case

(Figures 4.13b and 4.13h), thus most of the distribution was captured at this

lower peak. This was reflected by the mean and standard deviations: 0.37(0.15)

for B1 and 0.37(0.16) for B2. Distributions for recursive partitioning showed

strong peaks at the input value of 0.3 with light tails towards higher values

(Figures 4.13c, 4.13d, 4.13i and 4.13j). This was again reflected in the mean

and standard deviations: 0.38(0.13) and 0.37(0.15) for B1 and B2 respectively

when using tree1 and 0.37(0.15) and 0.38(0.13) respectively when using tree 2.
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Figure (4.13) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenario 10, for all methods of threshold identification. The input threshold values
in each case have been overlaid as a vertical red dashed line.

Accuracy varied significantly between methods in the presented scenarios.

Although they did not consistently have the highest accuracy across all sce-

narios, recursive partitioning methods showed the best overall performance.

They showed the best accuracy when the input threshold was low or central,

and still displayed some level of accuracy when the input was high. The grid

search and prognostic peeling methods appeared to have the highest accuracy

when the input was high, however as shown this was an artefact of their consis-
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tent overestimation of the optimal threshold. There was little change to their

distribution shapes when the input threshold was central or even low. The

modelling method showed good utility, with strong accuracy when the input

threshold was high or low, but this may be solely due to the tendency of the

method to favour thresholds at the ends of the considered region, due to how

optimal was defined for this method.

This section has focussed solely on comparing threshold identification ac-

curacy across methods in a number of set scenarios. The coming sections will

focus on exploring how identification accuracy changed with changing input

treatment e↵ect and subgroup size. Results are presented for one method, as

comparison between methods has been achieved already in this Section and

showing the same results for all methods would be overly repetitive. The

presented results and discussion were consistent across methods and any dif-

ferences have been highlighted.

Scenario
2 8 10

B1 B2 B1 B2 B1 B2
Grid 0.60(0.11) 0.61(0.11) 0.63(0.11) 0.63(0.11) 0.56(0.16) 0.56(0.16)
Mod 0.48(0.16) 0.49(0.16) 0.54(0.18) 0.55(0.18) 0.37(0.15) 0.37(0.16)
Tree1 0.50(0.13) 0.50(0.13) 0.55(0.16) 0.53(0.16) 0.38(0.13) 0.37(0.15)
Tree2 0.50(0.13) 0.50(0.13) 0.53(0.15) 0.55(0.16) 0.37(0.15) 0.38(0.13)
Peel1 0.68(0.13) 0.56(0.15) 0.71(0.14) 0.55(0.19) 0.69(0.14) 0.55(0.16)
Peel2 0.56(0.15) 0.68(0.12) 0.54(0.20) 0.71(0.14) 0.54(0.16) 0.69(0.14)

Table (4.7) Mean of biomarker threshold estimates for all methods under scenarios 2,
8 and 10. Values are presented as Mean(SD).
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Threshold Identification Accuracy With Changing Treatment e↵ect

In this section, the e↵ect that changing the input magnitude of treatment e↵ect

had on threshold identification accuracy is explored. Histograms of the dis-

tributions of threshold estimates are presented alongside the respective mean

and standard deviation for the recursive partitioning method, under scenarios

1-6. Results from only tree1 are presented here as a direct comparison between

methods was presented in Section 4.4.2 and it was of interest to explore the

changes in method specific accuracy, rather than draw further comparisons.

Note that all work presented here was also carried out for other implemented

methods to ensure that results were consistent across methods. This was the

case and so to save repetition, only one method is presented; any di↵erences

in results between methods are highlighted, histograms for other methods are

available in Appendix A. Recursive partitioning was chosen as it displayed the

best overall accuracy across scenarios in Section 4.4.2, allowing for simpler in-

terpretation as treatment e↵ect changed. Due to the lack of order dependency

demonstrated previously, tree1 was an arbitrary choice between the two.

Figure 4.14 shows histograms of estimated biomarker thresholds for scenar-

ios 1-4. Under these scenarios, the subgroup size was fixed (↵1 = ↵2 = 0.5) and

the magnitude of treatment e↵ect in the sensitive subgroup was varied. The

largest treatment e↵ect was present in scenario 1 at PT,H = 0.8, with this value

decreasing to PT,H = 0.6 under scenario 2, PT,H = 0.4 under scenario 3 and

finally to the null case of PT,H = 0.2 under scenario 4. As the treatment e↵ect

decreased, the threshold identification accuracy also decreased. Under scenario

1 (Figures 4.14a and 4.14b), there was a strong peak at the input threshold

of 0.5, with light tails towards higher and lower values. Under scenarios 2

(Figures 4.14c and 4.14d) and 3 (Figures 4.14e and 4.14f) the peak was still

somewhat present, although it gradually became less defined as more estimates

were present in the tails of the distribution. This was clear from observing the

means and standard deviations, see Table 4.8. The means stayed quite con-

sistent, as the distribution clearly stayed symmetric (0.49/0.49, 0.50/0.50 and

0.51/0.50 for B1/B2 under scenarios 1, 2 and 3 respectively. The standard de-

viations however steadily increased as treatment e↵ect decreased: 0.11/0.10,
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0.13/0.13 and 0.15/0.16 for B1/B2 under scenario 1, 2 and 3 respectively. The

distribution of estimates under scenario 4 (Figures 4.14g and 4.14h), the null

case, resembled close to a uniform distribution, which one might have expected

as there was no di↵erence in response probability between sensitive and non

sensitive patients. Therefore, no point along the distribution would be con-

sidered optimal. Distributions of optimal biomarker thresholds were di↵erent

between methods under the null scenario. As seen in when using recursive

partitioning methods, thresholds approach a uniform distribution under no

treatment e↵ect. When using other methods, natural distribution shapes un-

covered in Section 4.4.2 persisted. The peeling and grid methods still had a

tendency to identify larger threshold values at higher values, with highly right

skewed distributions. The distributions of estimates when using the modelling

method still displayed prominent peaks at the extreme values considered, with

a U shaped distribution between. Under the scenario with no treatment e↵ect,

these methods attempted to identify the optimal subgroup according to their

respective methodologies. Under peeling and the grid search, these attempted

to maximise the mean response rate in the subgroup by progressively assess-

ing smaller subgroups defined by higher threshold values, leading to higher

estimates of optimal thresholds. Under the modelling method, the threshold

leading to the largest coe�cient for the interaction term in the model was cho-

sen as optimal, so peaks at extreme values were present for the same reasons

discussed in Chapter 3 when implementing this method within the Renfro et

al design.
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Figure (4.14) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 1-4, when using the tree1 method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line. Note that as
the figure is read from top to bottom, the magnitude of treatment e↵ect decreases.
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Figure 4.15 shows histograms of estimated biomarker thresholds for scenar-

ios 5 and 6. Under these scenarios, the subgroup size was fixed (↵1 = ↵2 = 0.5)

and the treatment was defined to be broadly e↵ective, with varying levels of

increased treatment e↵ect in the sensitive subgroup (PT,H = 0.8, PT,L = 0.4

and PC = 0.2 under scenario 5; PT,H = 0.6, PT,L = 0.4 and PC = 0.2 under

scenario 6). When the treatment was broadly e↵ective, threshold identification

accuracy decreased. Distributions of estimates were still symmetric about the

input threshold of 0.5, but the peak was less defined with more weight in the

tails. The response probability under scenario 5 (Figures 4.15a and 4.15b) was

equal to that under scenario 1 (Figures 4.14a and 4.14b), but it is clear that

the distributions became more spread out. The same is true when comparing

scenario 6 (Figures 4.15c and 4.15d) to scenario 2 (Figures 4.14c and 4.14d).

This spread of threshold estimates was also clear from observing the increase

in standard deviations: 0.13/0.14 vs 0.11/0.10 for B1/B2 under scenarios 5

and 1 respectively and 0.15/0.16 vs 0.13/0.13 for B1/B2 under scenarios 6 and

2 respectively.
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Figure (4.15) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 5 and 6, when using the tree1 method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line.
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Threshold Identification Accuracy With Changing Sensitive Sub-

group Size

In this section, the e↵ect that changing the sensitive subgroup size (input

threshold locations) had on threshold identification accuracy is explored. His-

tograms of the distributions of threshold estimates are presented alongside the

respective mean and standard deviation for the recursive partitioning method,

under scenarios 7-12.

Figure 4.16 shows histograms of estimated biomarker thresholds for sce-

narios 7-10. Under these scenarios, the magnitude of treatment e↵ect was

fixed (PT,H = 0.6 and PT,L = PC = 0.2) and the input threshold locations

were varied, in order to change the expected size of the sensitive subgroup.

In decreasing order of subgroup size: scenario 10 (Figures 4.16a and 4.16b),

↵1 = ↵2 = 0.3; scenario 9 (Figures 4.16c and 4.16d), ↵1 = ↵2 = 0.4; scenario 2

(Figures 4.16e and 4.16f), ↵1 = ↵2 = 0.5; scenario 7 (Figures 4.16g and 4.16h),

↵1 = ↵2 = 0.6; scenario 8 (Figures 4.16i and 4.16j), ↵1 = ↵2 = 0.7. Note that

scenario 2 was also included in this Figure to ensure the full range of subgroup

sizes were captured, input treatment magnitude was consistent. As the input

subgroup size decreased (as Figure 4.16 is read from top to bottom), threshold

identification accuracy decreased. Under the largest subgroup size in scenario

10, the peaks of the distributions were strong and clear, with light tails towards

higher values. As the input threshold moved towards higher values and the

subgroup size became smaller, these peaks became less pronounced with more

of the weight of the distributions present in the tail. Under scenario 8, there

were slight peaks at the input thresholds of 0.7, however a large amount of the

distribution was present in the tail toward lower values, showing the reduced

level of accuracy. This was also evident from observing the means and standard

deviations in Table 4.8. There was a clear shift in mean threshold location as

the input changed: 0.38/0.37 for B1/B2 under scenario 10; 0.44/0.44 under

scenario 9; 0.50/0.50 under scenario 2; 0.54/0.53 under scenario 7; 0.55/0.53

under scenario 8. The standard deviation slightly increased as the subgroup

size became smaller, from 0.13/0.15 under scenario 10 to 0.16/0.16 under sce-

nario 8.
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The e↵ect of changing input threshold location was not consistent for all

methods. A similar relationship was observed for the modelling method, but

this was not seen when using the grid search or peeling methods. As observed in

Section 4.4.2, these methods consistently overestimated the optimal biomarker

thresholds, and so the distributions observed in Figures 4.11, 4.12 and 4.13 were

also observed when exploring changing subgroup size. Input threshold location

had little impact on distribution shape, with heavily right-skewed distributions

persisting.
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Figure (4.16) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 2, 7, 8, 9 and 10, when using the tree1 method of threshold identification.
The input threshold values in each case have been overlaid as a vertical red dashed line.
Note that as the figure is read from top to bottom, the subgroup size decreases.
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Figure 4.17 shows histograms of estimated biomarker thresholds for scenar-

ios 11 and 12. Under these scenarios, the magnitude of treatment e↵ect was

fixed (PT,H = 0.6 and PT,L = PC = 0.2) and the input threshold locations were

varied. In these two scenarios it was of interest to explore method accuracy

when input thresholds were located in di↵erent regions of the candidate range.

Under scenario 11 input thresholds were ↵1 = 0.5 and ↵2 = 0.7 and under

scenario 12 these were ↵1 = 0.5 and ↵2 = 0.3. When input threshold locations

were di↵erent, recursive partitioning was able to identify where each threshold

was located. Peaks at the input thresholds were evident in all cases on Figure

4.17. However, level of accuracy did vary between the two scenarios, likely

caused by the di↵erence in sensitive subgroup size. Under scenario 11, accu-

racy was clearly lower, which is clear by comparing Figure 4.17a against 4.17c.

Input threshold location and magnitude of treatment e↵ect were the same

between the plots, but the distribution was more spread out under scenario

11. This was because the input threshold for B2 was higher under scenario 11,

defining a much smaller sensitive subgroup size and therefore lower accuracy; it

was shown above that accuracy fell with decreasing subgroup size. Expected

sensitive prevalence under scenario 11 was (1 � 0.5) ⇥ (1 � 0.7) = 0.15 vs

(1� 0.5)⇥ (1� 0.3) = 0.35 under scenario 12. This was also evident from the

means and standard deviations in Table 4.8: means were equal for B1 under

scenarios 11 and 12, but the standard deviation was much higher under sce-

nario 11 (0.15 vs 0.11). Threshold identification accuracy for B2 under each

scenario was comparable to the corresponding case in Figure 4.16, distribu-

tions were comparable between Figure 4.17b and 4.16j and between 4.17d and

4.16b.
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Figure (4.17) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 11 and 12, when using the tree1 method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line.
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Threshold Identification Accuracy With Changing Biomarker-Response

Surface

Figure 4.18 shows histograms of estimated biomarker thresholds for scenarios

7, 13 and 14. Under these scenarios, the magnitude of treatment e↵ect and

input biomarker thresholds were fixed (PT,H = 0.6, PT,L = PC = 0.2 and

↵1 = ↵2 = 0.6) and the input slope parameters �1 and �2 were varied, in

order to explore the e↵ect of a flatter biomarker-response surface on threshold

identification accuracy. �1 = �2 = 8 under scenario 7, �1 = �2 = 4 under

scenario 13 and �1 = �2 = 2 under scenario 14; the shape of these specific

response surfaces are shown in Figure 4.19. Clearly, the level of accuracy fell

as the slope became flatter. Under scenario 7 there were peaks at the input

threshold (Figures 4.18a and 4.18b), this peak became less pronounced under

scenario 13 (Figures 4.18c and 4.18d) and was not present under scenario 14

(Figures 4.18e and 4.18f). As the slope flattened, more estimates were present

in the left hand side of the distribution, until the distributions for B1 and B2

were close to uniform distributions under scenario 14. This was also reflected

in the observed means and standard deviations (Table 4.8). The means grad-

ually reduced as the slope flattened, with 0.54/0.53 for B1/B2 under scenario

7, 0.52/0.52 under scenario 13 and 0.50/0.50 under scenario 14. Standard de-

viations gradually increased as the slope flattened and estimates became more

spread out, with 0.14/0.14 for B1/B2 under scenario 7, 0.15/0.15 under sce-

nario 13 and 0.16/0.16 under scenario 14. The relationship between method

specific accuracy and response surface was consistent between implemented

methods. This decrease in accuracy when using a flatter response surface was

likely due to the fact that the increase in response probability was much more

gradual, and so there was no clear point to define the start of the patient sub-

group. One can compare the flattest probability surface with the steepest in

Figure 4.19. Clearly in Figure 4.19a, there would be a clear region where the

optimal subgroup could be defined to begin, reflected in the higher accuracy

on Figure 4.18a. On Figure 4.19b however, if one were to define where the

optimal subgroup began on the slope, there is a much larger range of poten-

tial values due to the higher number of patients showing increased response to

treatment, caused by the flatter response probability surface.
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(f) Scenario 14 - B2

Figure (4.18) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 7, 13 and 14, when using the tree1 method of threshold identification.
The input threshold values in each case have been overlaid as a vertical red dashed line.
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(a) Steep: �1 = �2 = 8 (b) Flat: �1 = �2 = 2

Figure (4.19) Examples of the biomarker-response surface for di↵erent values of �1

and �2

Scenario
Tree1

B1 B2
1 0.49(0.11) 0.49(0.10)
2 0.50(0.13) 0.50(0.13)
3 0.51(0.15) 0.50(0.16)
4 0.50(0.16) 0.50(0.16)
5 0.49(0.13) 0.49(0.14)
6 0.50(0.15) 0.50(0.16)
7 0.54(0.14) 0.53(0.14)
8 0.55(0.16) 0.53(0.16)
9 0.44(0.13) 0.44(0.13)
10 0.38(0.13) 0.37(0.15)
11 0.50(0.15) 0.56(0.15)
12 0.50(0.11) 0.51(0.15)
13 0.52(0.15) 0.52(0.15)
14 0.50(0.16) 0.50(0.16)

Table (4.8) Mean of biomarker threshold estimates under all scenarios when using the
tree1 method of threshold identification. Values are presented as Mean(SD).
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4.5 Simulation Study Results - Adapted Sam-

ple Size

The simulation study was re-implemented using di↵erent values of input sam-

ple size in the two stages to observe the e↵ect this had on empirical power,

both subgroup specific and overall, as well as threshold identification accuracy

of each method. All scenarios implemented in the original simulation study

were simulated again using N1 = N2 = 150 and N1 = N2 = 250.

4.5.1 Empirical Power

Note that empirical power was again estimated by the proportion of trials that

identified a significant overall or subgroup test, as well as any significant test.

These proportions are presented for all scenarios and all implemented sample

sizes in Table 4.9.

Overall Power

Figure 4.20 shows how the empirical power to detect an overall treatment

e↵ect in the simulated studies changed with decreasing treatment e↵ect, for

each input sample size used. Clearly, higher sample size lead to higher overall

power in the explored scenarios. The black line (N1, N2 = 250) was above that

of the red (N1, N2 = 200), which in turn was above the blue (N1, N2 = 150)

in all implemented scenarios. This is also clear from Table 4.9, the proportion

of observed trials that identified an overall treatment e↵ect was consistently

higher under N1, N2 = 250 than in both N1, N2 = 200 and N1, N2 = 150. For

example, under scenario 1 these proportions were 97.4%, 93.5% and 84.1%

respectively. The relationship between overall empirical power and the input

treatment e↵ect was consistent for all implemented sample sizes. Empirical

power fell with decreasing treatment e↵ect, until converging to near equality

under the null case (3.7%, 3.8% and 3.7% for N1, N2 = 250, N1, N2 = 200 and

N1, N2 = 150 respectively).
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Figure (4.20) Overall empirical power under scenarios 1-4, for each implemented sam-
ple size (N1 = N2 = 150, 200, 250). Note as the plot is viewed from left to right, the
magnitude of treatment e↵ect decreases.

Figure 4.21 shows how the empirical power to detect an overall treatment

e↵ect changed with changing sensitive subgroup size (changing input thresh-

old values). Again, higher sample size lead to higher overall power in imple-

mented scenarios. The black line (N1, N2 = 250) was consistently above the

red (N1, N2 = 200), which in turn was above the blue (N1, N2 = 150) across all

subgroup sizes. When viewed from left to right, the sensitive subgroup size is

decreasing across scenarios. The relationship between overall empirical power

and subgroup size was consistent across sample sizes; empirical power fell as the

subgroup size reduced for all. Observed proportions of trials that identified a

significant overall test were similar under scenario 10 (the largest implemented

subgroup size): 99.8%, 98.7% and 95.2% for N1, N2 = 250, N1, N2 = 200 and

N1, N2 = 150 respectively. As the subgroup size decreased, these proportions

diverged (scenarios 9, 2 and 7), until converging again under scenario 8, the

smallest implemented subgroup size. Observed proportions under scenario 2
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were 74.4%, 64.6% and 52.3% respectively; proportions under scenario 8 were

19.1%, 16.3% and 12.1% respectively.
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Figure (4.21) Overall empirical power under scenarios 2, 7, 8, 9 and 10, for each im-
plemented sample size (N1 = N2 = 150, 200, 250). Note as the plot is viewed from left to
right, the subgroup size decreases.

Subgroup Specific Power

Figure 4.22 shows how the empirical power to detect a subgroup treatment

e↵ect in the simulated studies changed with decreasing treatment e↵ect, for

each input sample size used. The figure displays the proportion of trials that

identified a significant subgroup e↵ect, specific to each method of threshold

identification, under scenarios 1-4 for each sample size implemented. Higher

sample size lead to higher subgroup specific power in the explored scenarios,

across all implemented methods. The black line (N1, N2 = 250) was above that

of the red (N1, N2 = 200), which in turn was above the blue (N1, N2 = 150),

in all scenarios; this pattern was consistent for all methods used. For clarity,

one can observe the actual proportions of trials that identified a significant
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subgroup test for each method in Table 4.9. Take the proportions observed for

Tree1 under scenario 1 across sample sizes for example: when using N1, N2 =

250, this proportion was 85.9%, 72.2% when using N1, N2 = 200 and 48.4%

when using N1, N2 = 150.

A similar relationship with treatment e↵ect was observed for each method

under each sample size. Using all methods, the empirical power to detect a a

subgroup e↵ect fell as the treatment magnitude fell (as the plots in Figure 4.22

are read from left to right). The di↵erence in observed proportions of trials

that identified a significant subgroup test between each sample size, for each

method, was largest under scenario 1 (largest treatment e↵ect). This di↵erence

in proportions became less extreme as the treatment e↵ect lessened, with all

the proportions for all methods converging by scenario 3 and to near equality

under the null case of scenario 4. If one again takes the observed proportions

for the Tree1 method as an example: under scenario 2 proportions were 37.9%,

24.7% and 10.6% for N1, N2 = {250, 200, 150} respectively; under scenario 3

these proportions were 3.6%, 1.8% and 0.7%; and were 0.4%, 0.3% and 0.2%

under scenario 4.
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(c) Tree1

Figure (4.22) Subgroup specific empirical power under scenarios 1-4, for each implemented
sample size (N1 = N2 = 150, 200, 250), using each method of threshold identification. Each
subfigure displays the subgroup specific empirical power under the given scenarios, for each
input sample size, when using the corresponding method of threshold identification. Note as
each plot is viewed from left to right, the magnitude of treatment e↵ect decreases.
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(d) Tree2
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(e) Peel1
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(f) Peel2

Figure (4.22) (Continued) Subgroup specific empirical power under scenarios 1-4, for each
implemented sample size (N1 = N2 = 150, 200, 250), using each method of threshold identifica-
tion. Each subfigure displays the subgroup specific empirical power under the given scenarios,
for each input sample size, when using the corresponding method of threshold identification.
Note as each plot is viewed from left to right, the magnitude of treatment e↵ect decreases.
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Figure 4.23 shows how the empirical power to detect a subgroup treat-
ment e↵ect in the simulated studies changed with changing sensitive subgroup
size, for each input sample size used. The figure displays the proportion of
trials that identified a significant subgroup e↵ect, specific to each method of
threshold identification, under scenarios 7-10 for each sample size implemented.
Higher sample size again lead to higher subgroup specific power in the explored
scenarios, across all implemented methods. Take the proportions observed for
Tree1 (Table 4.9) under scenario 9 across sample sizes as an example: when us-
ing N1, N2 = 250, this proportion was 64.4%, 46.8% when using N1, N2 = 200
and 27.3% when using N1, N2 = 150.

A similar relationship with sensitive subgroup size was observed for each
method under each sample size. Using all methods, the empirical power to
detect a a subgroup e↵ect fell as the subgroup size became smaller, or as
the input biomarker thresholds became larger (as the plots in Figure 4.23
are read from left to right). The di↵erence in observed proportions of trials
that identified a significant subgroup test between each sample size, for each
method, was largest under scenario 10 (largest subgroup size). This di↵erence
in proportions became less extreme as the subgroup size decreased, with all
the proportions for all methods converging gradually until near equality under
scenario 8 (the smallest subgroup size). If one again takes the observed pro-
portions for the Tree1 method as an example: under scenario 10 proportions
were 82.2%, 67.0% and 45.6% for N1, N2 = {250, 200, 150} respectively; under
scenario 2 these proportions were 37.9%, 24.7% and 10.6%; under scenario 8
these proportions were 3.5%, 1.4% and 0.6%.
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(c) Tree1

Figure (4.23) Subgroup specific empirical power under scenarios 2, 7, 8, 9 and 10, for each
implemented sample size (N1 = N2 = 150, 200, 250), using each method of threshold identifica-
tion. Each subfigure displays the subgroup specific empirical power under the given scenarios,
for each input sample size, when using the corresponding method of threshold identification.
Note as each plot is viewed from left to right, the subgroup size decreases.
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(d) Tree2
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(e) Peel1
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(f) Peel2

Figure (4.23) (Continued) Subgroup specific empirical power under scenarios 2, 7, 8, 9 and
10, for each implemented sample size (N1 = N2 = 150, 200, 250), using each method of thresh-
old identification. Each subfigure displays the subgroup specific empirical power under the
given scenarios, for each input sample size, when using the corresponding method of threshold
identification. Note as each plot is viewed from left to right, the subgroup size decreases.
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Figure 4.24 displays the proportion of trials that identified a significant sub-
group test for each method, for all implemented sample sizes, for scenarios 1-4.
It has been previously discussed in this Section how subgroup specific empirical
power changed for each method using di↵ering sample sizes. Here, all relevant
proportions for all methods were plotted simultaneously, for each sample size,
in order to explore whether the relationship between methods was consistent
between sample sizes i.e. whether changing the input sample size a↵ected
performance of methods relative to other methods. Figure 4.24b is the same
Figure as in Section 4.4.1 (Figure 4.8), where the relationship between method
specific performance was originally discussed. Figures 4.24a and 4.24c repre-
sent the same plots, instead using N1, N2 = 250 and N1, N2 = 150 respectively.
It is clear from these Figures that relative method specific performance and
the relationship between method specific performance and decreasing treat-
ment e↵ect was consistent across sample sizes. The empirical power to detect
subgroup specific e↵ects was consistently highest across sample sizes when us-
ing the recursive partitioning method (tree1 and tree2). Ordering of method
performance was also consistent across sample sizes, from highest empirical
power to lowest: recursive partitioning, modelling, grid search, peeling. Ob-
served proportions also fell at a consistent rate for each method across sample
sizes, with the largest di↵erence in method specific observed proportions under
scenario 1 (largest treatment e↵ect), which then converged as the treatment
e↵ect decreased, until near equality under the null case (scenario 4).

Figures 4.24a, 4.24b and 4.24c are visually comparable, with respect to the
shapes and relative locations of plotted lines representing observed proportions
for each method, the most significant di↵erence between them is the altered
scale on the y-axis. As discussed previously, subgroup specific empirical power
decreased with smaller sample size, and this is reflected by the smaller range of
values on the y-axis. Under the null case, the proportion of trials that identified
a significant subgroup test was controlled across sample sizes, there was some
variability as the sample size changed but this was minimal. If one takes the
observed proportions for the Tree1 method under scenario 4 as an example:
observed proportions were 0.4%, 0.3% and 0.2% for N1, N2 = {250, 200, 150}
respectively. There appears to be a slight increase in conservatism, observed
across all methods, as the sample size decreased (see scenario 4 in Table 4.9).
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(a) N1 = N2 = 250
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(b) N1 = N2 = 200
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(c) N1 = N2 = 150

Figure (4.24) Subgroup specific empirical power under scenarios 1-4, for each implemented
sample size (N1 = N2 = 150, 200, 250), using each method of threshold identification. Each
subfigure displays the subgroup specific empirical power under the given scenarios, for each
input method of threshold identification, for the corresponding input sample size. Note as each
plot is viewed from left to right, the magnitude of treatment e↵ect decreases.
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Figure 4.25 displays the proportion of trials that identified a significant
subgroup test for each method, for all implemented sample sizes, for scenarios
7-10. Again, it was discussed in this Section how subgroup specific empirical
power changed for each method using di↵ering sample size, Figure 4.25 aims
to explore whether the relationship between methods was consistent between
sample sizes, under scenarios 7-10. Figure 4.25c is the same Figure as in Section
4.4.1 (Figure 4.9), where the relationship between method specific performance
was originally discussed. Figures 4.25a and 4.25c represent the same plots,
instead usingN1, N2 = 250 andN1, N2 = 150 respectively. It is clear from these
Figures that relative method specific performance and the relationship between
method specific performance and changing subgroup size was consistent across
sample sizes. Again, ordering of method performance was consistent across
sample sizes, from highest empirical power to lowest: recursive partitioning,
modelling, grid search, peeling. Observed proportions also fell at a consistent
rate for each method across sample sizes, with the largest di↵erence in method
specific observed proportions under scenario 10 (largest subgroup size, lowest
input cuto↵s), which then converged as the subgroup size decreased, until near
equality under scenario 8. Figures 4.25a, 4.25b and 4.25c were again visually
comparable, the most notable di↵erence between them was the altered scale
on the y-axis.
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(a) N1 = N2 = 250
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(b) N1 = N2 = 200
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(c) N1 = N2 = 150

Figure (4.25) Subgroup specific empirical power under scenarios 2, 7, 8, 9 and 10, for each
implemented sample size (N1 = N2 = 150, 200, 250), using each method of threshold identifi-
cation. Each subfigure displays the subgroup specific empirical power under the given scenar-
ios, for each input method of threshold identification, for the corresponding input sample size.
Note as each plot is viewed from left to right, the subgroup size decreases.
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4.5.2 Threshold Identification Accuracy

Threshold identification accuracy across sample sizes can be contrasted by ob-
serving Figures 4.26, 4.27 and 4.28. In these figures, distributions of threshold
estimates have been plotted on histograms for all methods, across all imple-
mented sample sizes, for specific scenarios. Figure 4.26 displays these his-
tograms for scenario 2, Figure 4.27 for scenario 8 and Figure 4.28 for scenario
10. In each of these figures, plots in the same row all implemented the same
sample size (with 150 on the top row, 200 in the middle and 250 on the bottom)
and plots in the same column used the same method of threshold identification.
Note that threshold distributions have only been presented for B1, rather than
both, as the di↵erence between distributions for B1 vs B2 has already been
explored and the aim of this section is to contrast accuracy across sample sizes.
Moreover, presented scenarios were also restricted as the e↵ect of treatment
magnitude and subgroup size on accuracy has also already been explored.

It is clear from Figures 4.26, 4.27 and 4.28 that threshold identification
accuracy for each method was not significantly a↵ected by the input sample
size. Distributions of threshold estimates for all methods were consistent across
sample sizes, with location and shape of distributions consistent for all plots.
This was true of all presented scenarios.
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4.6 Simulation Study Results - Adapted Biomarker

Distribution

The simulation study was re-implemented using di↵erent biomarker distribu-
tions within simulations. As discussed in Section 4.3.2, it was of interest to
explore the use of skewed biomarker distributions and the e↵ect this had on on
empirical power, both subgroup specific and overall, as well as threshold iden-
tification accuracy of each method. All scenarios implemented in the original
simulation study were simulated again using biomarkers drawn from Beta(2, 5)
and Beta(5, 2) distributions.

4.6.1 Empirical Power

Note that empirical power was again estimated by the proportion of trials
that identified a significant overall or subgroup test, as well as any significant
test. These proportions are presented for all scenarios and all implemented
biomarker distributions in Table 4.10. For clarity, in the following sections
the distributions will be referred to as: Uniform(0,1) as uniform; Beta(2,5) as
left-skewed; Beta(5,2) as right-skewed.

Overall Power

Figure 4.29 shows how the empirical power to detect an overall treatment
e↵ect in the simulated studies changed with decreasing treatment e↵ect, for
each biomarker distribution used. Overall power was comparable across dif-
fering levels of treatment e↵ect between the uniform and left-skewed distribu-
tions, clear from the overlapping black and blue lines on Figure 4.29. However,
there was a clear increase in power when using the right-skewed distribution of
Beta(5,2), evidenced by the separation of the red line on the Figure. There was
slight separation under scenario 1, in which the treatment e↵ect was largest,
the di↵erence in power then increased under scenario 2 before again converg-
ing under scenario 3, to equality in the null case of scenario 4. Observed
proportions of trials that identified a significant overall test were 93.5%, 94.7%
and 98.1% for uniform, left- and right-skewed respectively; these fell to 64.6%,
66.1% and 77.9% under scenario 2. In the null case, the the proportion of sig-
nificant overall tests was controlled appropriately for uniform and right-skewed
distributions at at 3.8% for both, but this proportion was inflated to 4.3% when
using the left-skewed biomarker distribution; note that the significance level of
this test was set to 0.04. This was most likely due to simulation error, as by
design the biomarker distribution had no e↵ect on the probability of response
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in the null case, which was flat for all patients. Although there appeared to
be error rate inflation in the overall assessment of treatment e↵ect, the FWER
for the trial was controlled when using this distribution, as the proportion of
trials that were ‘successful’ was controlled to a maximum of 4.5%.
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Figure (4.29) Overall empirical power under scenarios 1-4, for each implemented
biomarker distribution (U(0,1), Beta(2,5), Beta(5,2)). Note as the plot is viewed from
left to right, the magnitude of treatment e↵ect decreases.

Figure 4.30 shows how the empirical power to detect an overall treatment
e↵ect in the simulated studies changed with changing sensitive subgroup size
(changing input threshold values), for each biomarker distribution used. Again,
overall power was comparable across di↵ering sensitive subgroup sizes between
the uniform and left-skewed distributions, clear from the overlapping black and
blue lines on Figure 4.30. Again, there was a clear increase in power when us-
ing the right-skewed distribution of Beta(5,2), evidenced by the separation of
the red line on the Figure. The observed proportions of trials that identified a
significant overall test were comparable between distributions under scenario
10, in which the subgroup size was largest: 98.7%, 98.9% and 99.3% for uni-
form, left- and right-skewed respectively. As the subgroup size decreased (as
Figure 4.30 is read from left to right), this observed proportion when using
the right-skewed distribution diverged from the uniform and left-skewed, with
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the di↵erence in power becoming larger as the subgroup size decreased. Un-
der scenario 9 observed proportions were 89.4%, 90.2% and 93.5% for uniform,
left- and right-skewed respectively, these decreased to 64.6%, 66.1% and 77.9%
under scenario 2 and to 16.3%, 16.2% and 30.4% under scenario 8; the increase
in the di↵erence in power is clear.
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Figure (4.30) Overall empirical power under scenarios 2, 7, 8, 9 and 10, for each
implemented biomarker distribution (U(0,1), Beta(2,5), Beta(5,2)). Note as the plot is
viewed from left to right, the subgroup size decreases.
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Subgroup Specific Power

Figure 4.31 shows how the empirical power to detect a subgroup treatment
e↵ect in the simulated studies changed with changing sensitive subgroup size
(changing input threshold values), for each biomarker distribution used. The
figure displays the proportion of trials that identified a significant subgroup
e↵ect, specific to each method of threshold identification, under scenarios 1-4
for each biomarker distribution implemented. Contrary to what was observed
in the case of overall power, the use of a right-skewed biomarker distribution
lead to lower subgroup specific empirical power across all scenarios. The ob-
served proportions for uniform and left-skewed were again largely comparable,
the black and blue lines on all plots were similar; though there was some slight
separation when using recursive partitioning (Figures 4.31c and 4.31d). The
observed proportions when using the right-skewed distribution were consis-
tently lower in all scenarios, for all threshold identification methods, with the
red line representing Beta(5,2) lowest in all plots. For clarity, one can observe
the actual proportions of trials that identified a significant subgroup test for
each method in Table 4.9. Take the proportions observed for Tree1 under sce-
nario 1 across biomarker distributions for example: when using the uniform,
this proportion was 72.2%, 68.0% when using left-skewed and 60.1% when us-
ing right-skewed.

A similar relationship with treatment e↵ect was observed for each method
under each distribution. Using all methods, the empirical power to detect a a
subgroup e↵ect fell as the treatment magnitude fell (as the plots in Figure 4.31
are read from left to right). The di↵erence in observed proportions of trials
that identified a significant subgroup test between each distribution definition,
for each method, was largest under scenario 1 (largest treatment e↵ect). This
di↵erence in proportions became less extreme as the treatment e↵ect lessened,
with all the proportions for all methods converging by scenario 3 and to near
equality under the null case of scenario 4. If one again takes the observed
proportions for the Tree1 method as an example: under scenario 2 proportions
were 24.7%, 21.6% and 20.1% for uniform, left- and right-skewed respectively;
under scenario 3 these proportions were 1.8%, 1.2% and 2.3%; and were 0.3%,
0.2% and 0.3% under scenario 4.
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(a) Grid Search
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(b) Modelling
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(c) Tree1

Figure (4.31) Subgroup specific empirical power under scenarios 1-4, for each implemented
biomarker distribution (U(0,1), Beta(2,5), Beta(5,2)), using each method of threshold identifi-
cation. Each subfigure displays the subgroup specific empirical power under the given scenar-
ios, for each input biomarker distribution, when using the corresponding method of threshold
identification. Note as each plot is viewed from left to right, the magnitude of treatment e↵ect
decreases.
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(d) Tree2
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(e) Peel1
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(f) Peel2

Figure (4.31) (Continued) Subgroup specific empirical power under scenarios 1-4, for
each implemented biomarker distribution (U(0,1), Beta(2,5), Beta(5,2)), using each method
of threshold identification. Each subfigure displays the subgroup specific empirical power un-
der the given scenarios, for each input biomarker distribution, when using the corresponding
method of threshold identification. Note as each plot is viewed from left to right, the magni-
tude of treatment e↵ect decreases.
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Figure 4.32 shows how the empirical power to detect a subgroup treatment
e↵ect in the simulated studies changed with changing sensitive subgroup size,
for each biomarker distribution used. The figure displays the proportion of
trials that identified a significant subgroup e↵ect, specific to each method of
threshold identification, under scenarios 7-10 for each biomarker distribution
implemented. Again, the use of a right-skewed biomarker distribution lead
to lower subgroup specific empirical power across all scenarios, though this
was noticeable only for the recursive partitioning and modelling methods; the
di↵erence in empirical subgroup power between distributions when using prog-
nostic peeling or the grid search was less extreme. The observed proportions
for uniform and left-skewed were largely comparable, the black and blue lines
on all plots were similar; though there was some slight separation when using
recursive partitioning (Figures 4.32c and 4.32d). The observed proportions
when using the right-skewed distribution were lower in most scenarios, with
equality in some scenarios, particularly those in which the subgroup size was
smaller (7 and 8). This was consistent across threshold identification methods.

A similar relationship with sensitive subgroup size was observed for each
method under each biomarker distribution. Using all methods, the empirical
power to detect a a subgroup e↵ect fell as the subgroup size became smaller,
or as the input biomarker thresholds became larger (as the plots in Figure 4.32
are read from left to right). When using recursive partitioning or modelling,
the di↵erence in observed proportions of trials that identified a significant
subgroup test between each distribution was largest under scenario 10 (largest
subgroup size). This di↵erence in proportions became less extreme as the
subgroup size decreased, with the proportions for these methods converging
gradually until near equality under scenario 8 (the smallest subgroup size);
this is clear from Figures 4.32b, 4.32c and 4.32d. The di↵erence in proportions
between distributions when using prognostic peeling or the grid search was
consistently small and did not change as subgroup size changed, clear from
Figures 4.32a, 4.32e and 4.32f.
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(a) Grid Search
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(b) Modelling
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(c) Tree1

Figure (4.32) Subgroup specific empirical power under scenarios 2, 7, 8, 9 and 10, for
each implemented biomarker distribution (U(0,1), Beta(2,5), Beta(5,2)), using each method
of threshold identification. Each subfigure displays the subgroup specific empirical power un-
der the given scenarios, for each input biomarker distribution, when using the corresponding
method of threshold identification. Note as each plot is viewed from left to right, the subgroup
size decreases.
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(d) Tree2
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(e) Peel1
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(f) Peel2

Figure (4.32) (Continued) Subgroup specific empirical power under scenarios 2, 7, 8, 9
and 10, for each implemented biomarker distribution (U(0,1), Beta(2,5), Beta(5,2)), using each
method of threshold identification. Each subfigure displays the subgroup specific empirical
power under the given scenarios, for each input biomarker distribution, when using the corre-
sponding method of threshold identification. Note as each plot is viewed from left to right, the
subgroup size decreases.

214



Figure 4.33 displays the proportion of trials that identified a significant sub-
group test for each method, for all implemented biomarker distributions, for
scenarios 1-4. It has been discussed in Section 4.6.1 how subgroup specific em-
pirical power changed for each method using di↵ering biomarker distributions.
Here, all relevant proportions for all methods were plotted simultaneously, for
each biomarker distribution, in order to explore whether the relationship be-
tween methods was consistent between biomarker distributions i.e. whether
changing the input biomarker distribution a↵ected performance of methods
relative to other methods. It is clear from these Figures that relative method
specific performance and the relationship between method specific performance
and decreasing treatment e↵ect was consistent across biomarker distributions.
The empirical power to detect subgroup specific e↵ects was consistently highest
across biomarker distributions when using the recursive partitioning method
(tree1 and tree2). Ordering of method performance was also consistent across
biomarker distributions, from highest empirical power to lowest: recursive
partitioning, modelling, grid search, peeling. Observed proportions also fell
at a consistent rate for each method across biomarker distributions, with the
largest di↵erence in method specific observed proportions under scenario 1
(largest treatment e↵ect), which then converged as the treatment e↵ect de-
creased, until near equality under the null case (scenario 4).

Figures 4.33a, 4.33b and 4.33c are visually comparable, with respect to the
shapes and relative locations of plotted lines representing observed proportions
for each method. Figures 4.33a and 4.33b are almost indistinguishable, which
was expected due to the comparability of method specific power observed for
each method when using a uniform or left-skewed distribution (Figures 4.31
and 4.32. Figure 4.33c shared the line shapes, but all were shifted down due
to a reduction in power across all methods. Again, this was expected due
to the reduction in power across all methods when using the right-skewed
distribution.

215



0
20

40
60

80

Scenario

Em
pi

ric
al

 p
ow

er

Mod

Grid

Tree1

Tree2

Peel1

Peel2

1 2 3 4

(a) Beta(2,5)
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Figure (4.33) Subgroup specific empirical power under scenarios 1-4, for each implemented
biomarker distribution (U(0,1), Beta(2,5), Beta(5,2)), using each method of threshold identifi-
cation. Each subfigure displays the subgroup specific empirical power under the given scenar-
ios, for each input method of threshold identification, for the corresponding input biomarker
distribution. Note as each plot is viewed from left to right, the magnitude of treatment e↵ect
decreases.
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Figure 4.34 displays the proportion of trials that identified a significant sub-
group test for each method, for all implemented biomarker distributions, for
scenarios 7-10. Again, it was discussed in Section 4.6.1 how subgroup specific
empirical power changed for each method using di↵ering biomarker distribu-
tion, Figure 4.34 aims to explore whether the relationship between methods
was consistent between distributions, under scenarios 7-10. It is clear from
these Figures that relative method specific performance and the relationship
between method specific performance and changing subgroup size was consis-
tent across biomarker distributions. Again, ordering of method performance
was consistent across distributions, from highest empirical power to lowest:
recursive partitioning, modelling, grid search, peeling. Observed proportions
also fell at a consistent rate for each method across distributions, with the
largest di↵erence in method specific observed proportions under scenario 10
(largest subgroup size, lowest input cuto↵s), which then converged as the sub-
group size decreased, until near equality under scenario 8. Figures 4.34a and
4.34b were again very similar with respect to the shapes and relative locations
of plotted lines representing observed proportions for each method. Figure
4.34c was again visually similar, but was shifted down due to the reduction in
power observed in all methods when using a right-skewed distribution.

217



0
20

40
60

80

Scenario

Em
pi

ric
al

 p
ow

er

Mod

Grid

Tree1

Tree2

Peel1

Peel2

10 9 2 7 8

(a) Beta(2,5)
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Figure (4.34) Subgroup specific empirical power under scenarios 2, 7, 8, 9 and 10, for
each implemented biomarker distribution (U(0,1), Beta(2,5), Beta(5,2)), using each method
of threshold identification. Each subfigure displays the subgroup specific empirical power under
the given scenarios, for each input method of threshold identification, for the corresponding
input biomarker distribution. Note as each plot is viewed from left to right, the magnitude of
treatment e↵ect decreases.
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4.6.2 Threshold Identification Accuracy

Threshold identification accuracy across biomarker distributions can be con-
trasted by observing Figures 4.35, 4.36 and 4.37. In these figures, distributions
of threshold estimates have been plotted on histograms for all methods, across
all implemented biomarker distributions, for specific scenarios. Figure 4.35
displays these histograms for scenario 2, Figure 4.27 for scenario 8 and Fig-
ure 4.28 for scenario 10. In each of these figures, plots in the same row all
implemented the same biomarker distribution (with left-skewed on the top,
uniform in the middle and right-skewed on the bottom) and plots in the same
column used the same method of threshold identification. As in Section 4.5.2,
histograms of threshold distributions are presented for only B1 and scenarios
were restricted, as these have both been explored in previous sections.

The first item to note on Figures 4.35, 4.36 and 4.37 is that the x axis
scales of the histograms for the left- and right-skewed plots were altered to
allow for proper visualisation of biomarker threshold distributions. The x axes
were restricted to [0, 0.5] for the left-skewed plots and [0.5, 1] for the right-
skewed plots. This allowed for direct comparison of threshold distribution
shapes between di↵erent input biomarker distributions, as the expected dif-
ference in location was accounted for. It should also be noted that gaps are
present on some histograms for the grid search and modelling methods on Fig-
ures 4.35, 4.36 and 4.37 (Figure 4.35a for example), this is because threshold
estimates from these methods must take one of a fixed set of pre-specified
candidate thresholds, which are not in alignment with the histogram bins in
some cases. Threshold identification accuracy for most methods was not sig-
nificantly a↵ected by input biomarker distribution. Distributions for the grid
search, modelling and prognostic peeling methods were comparable between
biomarker distributions. There were some di↵erences in threshold distribution
shapes for these methods, particularly under the right-skewed distribution,
though these were minor and did not a↵ect distribution shapes greatly. For
example, one can compare Figures 4.35b, 4.35h and 4.35n and observe the lack
of peak at the input threshold under the right-skewed biomarker distribution.
However, when using recursive partitioning to identify biomarker thresholds,
there was a noticeable drop in accuracy when using a right-skewed biomarker
distribution. This was most prevalent on Figures 4.35 (4.35o&4.35p) and 4.37
(4.37o&4.37p); threshold distributions were much more spread out when using
the right-skewed distribution, the peaks at input thresholds became much less
pronounced with increased weight in the tails.

220



G
ri
d
S
ea
rc
h

0

50
0

10
00

15
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(a
)
B
et
a(
2,
5)

M
od

el
li
n
g

0

50
0

10
00

15
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(b
)
B
et
a(
2,
5)

T
re
e1

0

50
0

10
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(c
)
B
et
a(
2,
5)

T
re
e2

0

50
0

10
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(d
)
B
et
a(
2,
5)

P
ee
l1

0

30
0

60
0

90
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(e
)
B
et
a(
2,
5)

P
ee
l2

0

50
0

10
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(f
)
B
et
a(
2,
5)

0

50
0

10
00

15
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(g
)
U
n
if
(0
,1
)

0

50
0

10
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(h
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(i
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(j
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(k
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(l
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

20
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(m
)
B
et
a(
5,
2)

0

50
0

10
00

15
00

20
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(n
)
B
et
a(
5,
2)

0

25
0

50
0

75
0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(o
)
B
et
a(
5,
2)

0

25
0

50
0

75
0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(p
)
B
et
a(
5,
2)

0

50
0

10
00

15
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(q
)
B
et
a(
5,
2)

0

40
0

80
0

12
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(r
)
B
et
a(
5,
2)

F
ig
u
re

(4
.3
5)

H
is
to
gr
am

s
of

op
ti
m
al

b
io
m
ar
ke
r
th
re
sh
ol
d
es
ti
m
at
es

fo
r
B
1
u
n
d
er

sc
en
ar
io

2,
fo
r
al
l
m
et
h
od

s
of

th
re
sh
ol
d
id
en
ti
fi
ca
ti
on

,
fo
r
ea
ch

im
p
le
m
en
te
d

b
io
m
ar
ke
r
d
is
tr
ib
u
ti
on

(U
(0
,1
),
B
et
a(
2,
5)
,
B
et
a(
5,
2)
).

E
ac
h
su
b
fi
gu

re
d
is
p
la
ys

th
e
d
is
tr
ib
u
ti
on

of
th
re
sh
ol
d
es
ti
m
at
es

w
h
en

u
si
n
g
th
e
co
rr
es
p
on

d
in
g
m
et
h
od

of
th
re
sh
ol
d
id
en
ti
fi
ca
ti
on

(s
h
ow

n
as

co
lu
m
n
ti
tl
es
)
an

d
in
p
u
t
b
io
m
ar
ke
r
d
is
tr
ib
u
ti
on

.
T
h
e
in
p
u
t
th
re
sh
ol
d
va
lu
es

in
ea
ch

ca
se

h
av
e
b
ee
n
ov
er
la
id

as
a
ve
rt
ic
al

re
d

d
as
h
ed

li
n
e.

N
ot
e
th
at

ga
p
s
in

h
is
to
gr
am

s
ar
e
d
u
e
to

n
on

ex
ac
t
al
ig
n
m
en
t
of

ca
n
d
id
at
e
th
re
sh
ol
d
va
lu
e
an

d
b
in

si
ze
s
u
se
d
.

221



G
ri
d
S
ea
rc
h

0

50
0

10
00

15
00

20
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(a
)
B
et
a(
2,
5)

M
od

el
li
n
g

0

50
0

10
00

15
00

20
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(b
)
B
et
a(
2,
5)

T
re
e1

0

30
0

60
0

90
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(c
)
B
et
a(
2,
5)

T
re
e2

0

25
0

50
0

75
0

10
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(d
)
B
et
a(
2,
5)

P
ee
l1

0

30
0

60
0

90
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(e
)
B
et
a(
2,
5)

P
ee
l2

0

25
0

50
0

75
0

10
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(f
)
B
et
a(
2,
5)

0

50
0

10
00

15
00

20
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(g
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

20
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(h
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(i
)
U
n
if
(0
,1
)

0

25
0

50
0

75
0

10
00

12
50

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(j
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(k
)
U
n
if
(0
,1
)

0

50
0

10
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(l
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

20
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(m
)
B
et
a(
5,
2)

0

50
0

10
00

15
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(n
)
B
et
a(
5,
2)

0

30
0

60
0

90
0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(o
)
B
et
a(
5,
2)

0

25
0

50
0

75
0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(p
)
B
et
a(
5,
2)

0

50
0

10
00

15
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(q
)
B
et
a(
5,
2)

0

30
0

60
0

90
0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(r
)
B
et
a(
5,
2)

F
ig
u
re

(4
.3
6)

H
is
to
gr
am

s
of

op
ti
m
al

b
io
m
ar
ke
r
th
re
sh
ol
d
es
ti
m
at
es

fo
r
B
1
u
n
d
er

sc
en
ar
io

8,
fo
r
al
l
m
et
h
od

s
of

th
re
sh
ol
d
id
en
ti
fi
ca
ti
on

,
fo
r
ea
ch

im
p
le
m
en
te
d

b
io
m
ar
ke
r
d
is
tr
ib
u
ti
on

(U
(0
,1
),
B
et
a(
2,
5)
,
B
et
a(
5,
2)
).

E
ac
h
su
b
fi
gu

re
d
is
p
la
ys

th
e
d
is
tr
ib
u
ti
on

of
th
re
sh
ol
d
es
ti
m
at
es

w
h
en

u
si
n
g
th
e
co
rr
es
p
on

d
in
g
m
et
h
od

of
th
re
sh
ol
d
id
en
ti
fi
ca
ti
on

(s
h
ow

n
as

co
lu
m
n
ti
tl
es
)
an

d
in
p
u
t
b
io
m
ar
ke
r
d
is
tr
ib
u
ti
on

.
T
h
e
in
p
u
t
th
re
sh
ol
d
va
lu
es

in
ea
ch

ca
se

h
av
e
b
ee
n
ov
er
la
id

as
a
ve
rt
ic
al

re
d

d
as
h
ed

li
n
e.

N
ot
e
th
at

ga
p
s
in

h
is
to
gr
am

s
ar
e
d
u
e
to

n
on

ex
ac
t
al
ig
n
m
en
t
of

ca
n
d
id
at
e
th
re
sh
ol
d
va
lu
e
an

d
b
in

si
ze
s
u
se
d
.

222



G
ri
d
S
ea
rc
h

0

50
0

10
00

15
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(a
)
B
et
a(
2,
5)

M
od

el
li
n
g

0

10
00

20
00

30
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(b
)
B
et
a(
2,
5)

T
re
e1

0

10
00

20
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(c
)
B
et
a(
2,
5)

T
re
e2

0

50
0

10
00

15
00

20
00

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(d
)
B
et
a(
2,
5)

P
ee
l1

0

30
0

60
0

90
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(e
)
B
et
a(
2,
5)

P
ee
l2

0

25
0

50
0

75
0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(f
)
B
et
a(
2,
5)

0

50
0

10
00

15
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(g
)
U
n
if
(0
,1
)

0

10
00

20
00

30
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(h
)
U
n
if
(0
,1
)

0

10
00

20
00

30
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(i
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

20
00

25
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(j
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(k
)
U
n
if
(0
,1
)

0

30
0

60
0

90
0

0.
00

0.
25

0.
50

0.
75

1.
00

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(l
)
U
n
if
(0
,1
)

0

50
0

10
00

15
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(m
)
B
et
a(
5,
2)

0

10
00

20
00

30
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(n
)
B
et
a(
5,
2)

0

50
0

10
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(o
)
B
et
a(
5,
2)

0

25
0

50
0

75
0

10
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(p
)
B
et
a(
5,
2)

0

50
0

10
00

15
00

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(q
)
B
et
a(
5,
2)

0

30
0

60
0

90
0

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Th
re

sh
ol

d 
Es

tim
at

e

Frequency

(r
)
B
et
a(
5,
2)

F
ig
u
re

(4
.3
7)

H
is
to
gr
am

s
of

op
ti
m
al

b
io
m
ar
ke
r
th
re
sh
ol
d
es
ti
m
at
es

fo
r
B
1
u
n
d
er

sc
en
ar
io

10
,
fo
r
al
l
m
et
h
od

s
of

th
re
sh
ol
d
id
en
ti
fi
ca
ti
on

,
fo
r
ea
ch

im
p
le
m
en
te
d

b
io
m
ar
ke
r
d
is
tr
ib
u
ti
on

(U
(0
,1
),
B
et
a(
2,
5)
,
B
et
a(
5,
2)
).

E
ac
h
su
b
fi
gu

re
d
is
p
la
ys

th
e
d
is
tr
ib
u
ti
on

of
th
re
sh
ol
d
es
ti
m
at
es

w
h
en

u
si
n
g
th
e
co
rr
es
p
on

d
in
g
m
et
h
od

of
th
re
sh
ol
d
id
en
ti
fi
ca
ti
on

(s
h
ow

n
as

co
lu
m
n
ti
tl
es
)
an

d
in
p
u
t
b
io
m
ar
ke
r
d
is
tr
ib
u
ti
on

.
T
h
e
in
p
u
t
th
re
sh
ol
d
va
lu
es

in
ea
ch

ca
se

h
av
e
b
ee
n
ov
er
la
id

as
a
ve
rt
ic
al

re
d

d
as
h
ed

li
n
e.

N
ot
e
th
at

ga
p
s
in

h
is
to
gr
am

s
ar
e
d
u
e
to

n
on

ex
ac
t
al
ig
n
m
en
t
of

ca
n
d
id
at
e
th
re
sh
ol
d
va
lu
e
an

d
b
in

si
ze
s
u
se
d
.

223



4.7 Discussion

This work has presented an evaluation and comparison of a number of dual
biomarker threshold identification techniques via a comprehensive simulation
study. It was of interest to explore the applicability and respective performance
of these methods to the novel case of dual predictive biomarkers. Methods
were implemented within the Adaptive Signature Design framework and were
contrasted by overall and subgroup empirical power as well as threshold iden-
tification accuracy.

Recursive partitioning methods had the best overall accuracy in this simu-
lation study. Histograms of optimal threshold estimates across a range of sce-
narios showed the most accurate distribution compared to other implemented
methods. As the input biomarker subgroup size was changed, by altering in-
put threshold locations, recursive partitioning methods were the only method
with threshold distributions containing peaks at the input in all cases. When
input thresholds were central, grid search and peeling methods consistently
overestimated where the optimal threshold value was and distributions were
right-skewed. The modelling method had overall poor accuracy, with peaks at
extreme values and none at the input in most cases. When the input thresh-
olds were low, recursive partitioning methods were again extremely accurate,
whereas the grid search and peeling methods again hugely overestimated input
threshold location. When input thresholds were high, recursive partitioning
methods still displayed fair accuracy but were overshadowed by the grid search
and peeling methods in this case. This was due to the naturally right skewed
threshold distributions of these methods. This natural tendency of these meth-
ods to overestimate the optimal threshold has been discussed previously, but
is likely due to a combination of how optimal is defined within these methods
and the input relationship between biomarker values and response probability.
Both methods aim to maximise the mean response as an objective function
and due to the smooth relationship between biomarker values and response
probability, this objective function could consistently be maximised by taking
larger values for the optimal biomarker threshold. Future work could explore
incorporation of a penalty function to negate this e↵ect or use of di↵erent ob-
jective functions.

Accuracy of all methods was influenced by the magnitude of treatment ef-
fect and the size of the sensitive subgroup. As the treatment e↵ect reduced, the
accuracy of all methods decreased, evident by the increased spread of thresh-
old estimates and vanishing of peaks at input threshold locations. As input
threshold values increased, and hence the sensitive subgroup size decreased,
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accuracy of all recursive partitioning and modelling methods fell. However, as
discussed, in this scenario, accuracy of grid search and peeling methods was
at its highest.

The empirical power to detect an overall treatment e↵ect was dependent
upon magnitude of treatment e↵ect and sensitive subgroup size. The propor-
tion of trials in which a significant overall test was identified fell with decreasing
treatment e↵ect and with decreasing sensitive subgroup size. Subgroup specific
empirical power varied widely between the methods used, though the relation-
ship with treatment e↵ect and subgroup size for all methods was largely similar
to the overall case. Highest subgroup empirical power was seen when using
the recursive partitioning method of threshold identification. The grid search
and peeling methods showed the lowest levels of subgroup empirical power,
with low values observed even in cases in which the magnitude of treatment
e↵ect and sensitive subgroup size were large. The lower levels of subgroup
specific empirical power when using these two methods is likely due to their
tendency to overestimate the optimal threshold. Both of these methods gen-
erally selected higher optimal biomarker thresholds compared with recursive
partitioning and modelling methods, as discussed above and in the results sec-
tion, leading to smaller sensitive subgroups being defined. Therefore, because
the power of the stage 2 subgroup test is dependent on both the magnitude
of treatment e↵ect and the sample size within the subgroup, a lower subgroup
specific empirical power was observed when using both of these methods.

In this work, cases in which the treatment was broadly e↵ective among
treated patients were also explored. Such cases were achieved when treatment
response was present in biomarker-negative patients as well as biomarker-
positive patients, and when the biomarker-response surface was flatter. In
these cases, both overall and subgroup specific empirical power were high,
though threshold identification accuracy of all methods was poor. Distribu-
tions of threshold estimates in these cases were close to uniform, suggesting
that the optimal identified threshold was random, much like in the null case,
as there was no identifiable threshold at which to define sensitive patients.

The e↵ect of changing sample size on threshold identification accuracy and
empirical power was also explored. Overall and subgroup specific empirical
power were dependent on sample size, higher levels of both were observed with
increased sample size and were lower when sample size decreased. Thresh-
old identification accuracy of all methods remained una↵ected with changing
sample size. The use of skewed biomarker distributions as opposed to a uni-
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form distribution in simulation set up were also explored. Overall and sub-
group specific empirical power were comparable when using a uniform and
left-skewed distribution for biomarker values; threshold identification accu-
racy for all methods was also una↵ected. However, when using a right-skewed
biomarker distribution in simulations, the overall empirical power increased
and the subgroup specific power decreased; accuracy was unchanged for most
methods, but there was a noticeable decrease in accuracy for the recursive
partitioning method when using the right-skewed distribution. Under this
distribution, the majority of patients had higher biomarker values, meaning
that the majority of patients also had a high probability of response to treat-
ment. This was due to the assumed increasing relationship between biomarker
values and probability of treatment response. This increase in average treat-
ment e↵ect across the trial population lead to the increase in overall empirical
power. The reason for the decrease in subgroup specific empirical power is less
clear and warrants further investigation, though may be due to the shape of
the biomarker-distribution leading to smaller sample sizes within the sensitive
subgroup. When using the right-skewed distribution, the number of patients
with the highest biomarker values (i.e. close to 1) dropped o↵ sharply, see
Figure 4.38. As the inclusion criteria for the sensitive subgroups were defined
as those with biomarker values exceeding certain values, this sharp drop in
patient numbers at the top end of the distribution may have lead to lower
sample sizes when compared with other biomarker distributions, causing lower
empirical power to detect subgroup e↵ects.
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Figure (4.38) The implemented right-skewed distribution (Beta(5,2))

This work implemented a smooth function for the relationship between pa-
tient biomarker values and response probability, as opposed to the step func-
tion used in Chapter 3. Although more biologically plausible and applicable
in a real-world setting, this caused di�culty with respect to interpretation of
identification accuracy as well the actual problem definition. In the case of a
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step function, there was a defined point that was of interest to identify i.e. the
value at which the probability of patient response increased from one value to
another. With the smoothed function, instead of a single point of increase, the
mid point of the slope and steepness of the slope were specified. Therefore,
there was no longer a single optimal value of interest at which to define the
beginning of the sensitive subgroup; any point along or in proximity to the
sharp slope on the surface would serve and the ‘best’ position became quite
subjective. Interpretation of method accuracy was therefore achieved quali-
tatively by observing the location and spread of the distribution of threshold
estimates in a number of di↵erent scenarios.

When using this smooth definition, methods that sought to maximise the
mean response rate in the subgroup (grid search and peeling) performed very
poorly, often overestimating the location of the optimal threshold. As dis-
cussed above, this was likely due to the fact that the mean response could
be continually maximised by taking larger and larger values for the biomarker
threshold. This was not the case for methods which employed other techniques
to achieve threshold identification, such as maximisation of the interaction ef-
fect in the dual modelling or maximising the reduction in Gini impurity in
recursive partitioning. When trying to estimate a threshold on a smooth sur-
face, like in this work, identifying the subgroup with the largest treatment
e↵ect may therefore not be an appropriate technique. Further work could ex-
plore the use of di↵erent objective functions in the methods used and how
this impacts accuracy and empirical power. For example, maximisation of
an interaction statistic instead of treatment e↵ect within the grid search and
peeling methods. This would allow further investigation of the impact of the
biomarker-response surface as well as exploration of how di↵erent techniques
perform when using the same objective functions. Moreover, comparison of
the recursive partitioning method under di↵erent splitting rules could also be
carried out.

The results presented in this chapter are based on the implemented simu-
lation study, which has been described in detail. Although extensive, there are
a number of possible adjustments and extensions of the simulation study that
could be carried out in order to make results more generalisable and read-
ily applicable to other settings. Firstly, the relationship between biomarker
values and probability of response to treatment was kept simple for ease of
implementation and interpretation. It was assumed that patients were classi-
fied as sensitive if they had biomarker values above the sensitive threshold for
both biomarkers. However, it is likely that there would be an increase in treat-
ment e↵ect for each biomarker individually. Patients would therefore have an
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increased probability of response to treatment if they had a biomarker value
above the threshold for either biomarker. This could require a new technique
to model the relationship between biomarker values and the probability of re-
sponse, as well as further thought into how the sensitive subgroup would be
defined in such a setting.

In all scenarios explored in the simulation study, the probability of response
was kept low at 20%. In order to make presented results more generalisable,
further scenarios could be implemented to explore cases in which patients on
the control arm had a higher probability of response to treatment. This would
allow exploration of trial operating characteristics and method performance in
settings where a high response rate is expected on the control arm, or act as
a sensitivity analysis to investigate how results would be impacted should the
control arm perform better than expected when running the trial.

To further generalise the work presented in this chapter and show applica-
bility of results to other settings, an application to a real dataset taken from
a trial could be implemented. This would allow the exploration of how results
are a↵ected by the use of ‘noisy’ non-simulated data, as well as how additional
(potentially confounding) covariates could be incorporated into the trial design
and threshold identification methodology.

Moreover, presented results are somewhat limited in scope. A comparison
of four dual biomarker threshold identification techniques has been presented.
It has been shown that in this setting, recursive partitioning methods had the
best overall performance. In order to make any robust conclusions about the
superiority of recursive partitioning over other methods, further comparisons
would need to be drawn. There are a number of extensions to tree based
methods (discussed in Section 6.3), as well as many machine learning methods
(eg support vector machines (Cortes & Vapnik 1995)) which show great utility
in subgroup identification problems and could therefore improve performance
in the setting of dual biomarker threshold identification.

Chapters 3 and 4 have presented novel work addressing research question
1, exploring the optimisation of estimating dichcotomising thresholds for two
continuous biomarkers simultaneously. Chapter 4 focussed on implementing
dual biomarker threshold identification techniques within a confirmatory trial
and contrasting their performance with respect to trial operating characteris-
tics and threshold identification accuracy. Work presented in Chapter 5 moves
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on to research question 2, investigating how to optimally address the multiplic-
ity associated with embedding dual biomarker threshold identification within
a confirmatory clinical trial.
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Chapter 5

Resampling Based Methods to

Control the Family Wise Error

Rate for Dual Biomarker

Threshold Identification

5.1 Introduction

This chapter details work addressing the second research question of this thesis:
how can complex patient selection tools and novel statistical methods based
on multiple variable measurements be used to address multiplicity arising from
the optimisation of a patient population, as well as the multiplicity associated
with testing multiple independent hypotheses. In previous chapters, research
question 1 was addressed and novel work exploring threshold identification
methods in the case of dual biomarkers was presented. The work presented in
this chapter still resides in the setting of dual biomarker threshold identification
within a confirmatory clinical trial setting, but is instead focussed on exploring
methodology to optimally control the multiplicity arising from this process.

Broadly speaking, in order to assess which biomarker defined subgroup from
a candidate set is optimal, potentially many hypothesis tests need to be carried
out simultaneously. To achieve this within a confirmatory clinical trial setting,
all subgroup tests must be carried out alongside an appropriately powered test
of overall treatment e↵ect. When testing many hypotheses, the probability of
making at least one Type I error (false positive) increases; generally, the higher
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the number of tests, the larger this probability becomes. The probability of
making at least one false positive conclusion among a family of tests (i.e. all the
testing done within a trial) is known as the Family Wise Error Rate (FWER). It
is essential that this probability is controlled at a pre-specified value, ↵ (usually
0.05 for two-sided tests), and many techniques exist to achieve this; FWER
and methods of FWER control have been discussed previously in Chapter 1,
Section 5.

In this work, use of an existing resampling based multiple testing procedure
was used to explore FWER control in the novel setting of dual biomarker
threshold identification in a confirmatory clinical trial. This work explored
whether use of resampling based techniques could o↵er increased power to
detect treatment e↵ects, particularly those in a sensitive subgroup, in a setting
in which there are potentially many highly correlated subgroups. To investigate
the feasibility of utilising such techniques within the confirmatory clinical trial
setting, a single stage trial was initially implemented for simplicity. Within
a single stage phase III trial, an assessment of overall treatment e↵ect was
carried out alongside a grid search over candidate threshold combinations with
assessment of treatment e↵ect carried out in each identified patient subgroup.
The Romano and Wolf multiple testing procedure was then implemented to
appropriately control the multiplicity arising from the assessment of multiple
hypotheses. Full details on resampling based multiple testing procedures are
given in Section 5.2.1 and the Romano and Wolf procedure is explained in
detail in Section 5.2.2.

This Chapter is organised as follows: background information on resam-
pling based methods for FWER control and the Romano and Wolf procedure
is given in Section 5.2; descriptions of the trial design used to investigate the
Romano and Wolf method and the implemented simulation study are given in
Section 5.3; results of the primary simulation study are presented in Section
5.4; results of a simulation study comparing the Romano and Wolf procedure
to the Holm are presented in Section 5.5; an application of the described frame-
work to an external dataset is introduced and results given in Section 5.6; a
discussion is given in Section 5.7.

231



5.2 Background

5.2.1 Resampling-Based Multiple Testing Procedures

Control of the FWER and existing methods to achieve this have been discussed
previously in Chapter 1. The methods discussed all fail to adequately account
for the correlation structure between tests, thus missing out on potential in-
creases in power. These methods control the FWER under any dependence
structure between test statistics, achieved by assuming a ‘worst-case’ depen-
dence structure (Clarke et al. 2020). Thus, if the FWER is controlled in the
most extreme case, then it is controlled in cases where there is evidence of
dependence among the test statistics. However, this approach can be overly
conservative; if there is dependence, then it is possible to control the FWER
whilst increasing the overall power as higher critical values could have been
used.

When there is evidence of dependence between test statistics, resampling
methods can provide more power over other methods whilst maintaining con-
trol of the FWER (Westfall & Young 1993, US Department of Health and Hu-
man Services Food and Drug Administration 2017); furthermore, the higher
the correlation, the larger the increase in power. Westfall and Young (Westfall
& Young 1993) constructed a step-down procedure using resampling methods
which implicitly estimates the dependence structure between test statistics.
This estimation is achieved by taking bootstrap samples of the observed data
and using these resampled datasets to construct null distributions to define
critical values, as opposed to using theoretical distributions. In their work,
they note that while Holm’s procedure is a significant improvement over the
single step Bonferroni adjustment, it is still overly conservative as adjusted
p-values are still too large. They sought to make the adjustments even less
conservative by incorporating precise dependence structures by sequentially
calculating the free step-down adjusted p-values. The algorithm used to calcu-
late these p-values (Algorithm 2.8 Westfall & Young 1994 p.66-67 (Westfall &
Young 1993)) formed the basis for the step-down multiple testing procedure
explored in this work and is discussed in Section 5.2.2.
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5.2.2 Romano and Wolf Multiple Hypothesis Correc-

tion

The Romano-Wolf multiple hypothesis correction (Romano & Wolf 2005b,a,
2016) is a procedure which makes use of resampling methods to control the
FWER. Their work builds on that of Westfall and Young, who showed that
the Holm procedure could be improved upon by incorporating the dependence
structure of the test statistics into the testing procedure. The work by Westfall
and Young successfully demonstrated that resampling methods (eg the boot-
strap) can be used to estimate the joint distributions of multiple test statistics
and implicitly account for their dependence structure, within a stepdown mul-
tiple testing procedure.

The Westfall and Young procedure relies on the assumption of ‘subset piv-
otality’, namely that the joint distribution of test statistics used to test a set of
hypotheses is not a↵ected by the whether or not the remaining hypotheses are
true or false. More formally: when testing the null hypotheses Hi, i = 1, ..., S,
with corresponding test statistic Ti, subset pivotality states that the distri-
butions maxi2ITi|HI and maxi2ITi|H{1,...,S} are identical 8 I ⇢ {1, ..., S}. In
cases where the assumption of subset pivotality does not hold, the Westfall and
Young procedure achieves weak control of the FWER as opposed to strong con-
trol.

Romano and Wolf sought to construct a general stepdown method that
did not require this assumption. They achieved this by making use of a key
component of stepdown procedures: the monotonicity of critical values used
to compare P-values against. They show that by imposing an assumption
of monotonicity on the estimated critical values, a computationally feasible
stepdown procedure can be constructed that does not require the assumption
of subset pivotality and still achieves strong control of the FWER. Moreover,
and crucially, the assumption of monotonicity is an assumption on the demon-
strated method, rather than on the data. Their method is therefore applicable
to subgroup identification problems and shows great utility in the setting de-
scribed in this thesis.

The Romano-Wolf procedure is as follows; a step-by-step schematic is also
provided in Figure 5.1. Suppose that S null hypotheses are being tested,
denoted Hs, s = 1, ...S, and each is associated with a parameter of interest ✓s,
with estimator ✓̂s and standard error �̂s. It is assumed that H0s : ✓s = 0 for
s = 1, ..., S and alternative hypotheses are all either one-sided withH1s : ✓s > 0
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or all two-sided with H1s : ✓s 6= 0. A ‘studentised’ test statistic for each Hs is
then given by

ts :=
✓̂s
�̂s

Then, take M resampled datasets of the original dataset X, each denoted
X⇤

m
, for m = 1, ...,M . Within each of these resampled datasets, there is an

estimator of the parameter of interest, ✓̂⇤,m
s

and corresponding standard error,
�̂⇤,m
s

, associated with each hypothesis Hs, for m = 1, ...,M . Then for each
resampled dataset m and hypothesis Hs, a ‘studentised’ null statistic can be
calculated as

t⇤,m
s

:=
✓̂⇤,m
s

� ✓̂s
�̂⇤,m
s

Importantly, the test statistics t⇤,m
s

are centered around zero, as the origi-
nal parameter estimate is subtracted from a resampled estimate, rather than
subtracting a null value. The distributions of t⇤,m

s
then form the null distri-

butions giving rise to critical values used in the stepdown procedure. When
working with two sided hypotheses (H1s : ✓s 6= 0), the absolute value of the
test statistics should be used:

ts :=

����
✓̂s
�̂s

����, t⇤,m
s

:=

����
✓̂⇤,m
s

� ✓̂s
�̂⇤,m
s

����

As carried out in other stepdown procedures, hypotheses under considera-
tion are relabelled in order of significance. In this case, order of hypotheses is
defined by their associated original test statistic values ts, which were acquired
prior to the resampling being carried out. Therefore H(1) refers to the hypoth-
esis with the largest test statistic, also relabelled as t(1) and H(S) refers to the
hypothesis with the smallest test statistic, accordingly relabelled as t(S). For
ease of notation, also allow max⇤,m

t,j
to denote the largest value of the vector

(t⇤,m
(j)

, ..., t⇤,m
(S)

):

max⇤,m
t,j

:= max{t⇤,m
(j)

, ..., t⇤,m
(S)

}

for j = 1, ..., S and m = 1, ...,M . To illustrate this, suppose that there are
S = 4 hypotheses under consideration (H1, H2, H3 and H4), each associated
with a respective test statistic value of t1 = 4.3, t2 = 2.3, t3 = 3.9 and t4 = 3.7.
Original hypotheses are addressed in decreasing order of significance and are
relabelled as H(1), H(2), H(3) and H(4), with respective test statistic values
t(1) = 4.3, t(2) = 3.9, t(3) = 3.7 and t(4) = 2.3. Suppose that in one resampled
data set, m, the following studentised test statistics are obtained: t⇤,m

1
= 1.6,

t⇤,m
2

= 2.1, t⇤,m
3

= 2.3 and t⇤,m
4

= 1.8. Then, ordering these values according
to significance of the original test statistics, one obtains t⇤,m

(1)
= 1.6, t⇤,m

(2)
= 2.3,

t⇤,m
(3)

= 1.8 and t⇤,m
(4)

= 2.1. Finally, using the above definition of max⇤,m
t,j

, one
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obtains the following:

max⇤,m
t,1

= max{t⇤,m
(1)

, t⇤,m
(2)

, t⇤,m
(3)

, t⇤,m
(4)

)} = max{1.6, 2.3, 1.8, 2.1} = 2.3

max⇤,m
t,2

= max{t⇤,m
(2)

, t⇤,m
(3)

, t⇤,m
(4)

)} = max{2.3, 1.8, 2.1} = 2.3

max⇤,m
t,3

= max{t⇤,m
(3)

, t⇤,m
(4)

)} = max{1.8, 2.1} = 2.1

max⇤,m
t,4

= max{t⇤,m
(4)

)} = max{2.1} = 2.1

Then, for a given value of j, denote ĉ(1 � ↵, j) as the empirical 1 � ↵
quantile of the statistics {max⇤,m

t,j
}M
m=1

. An important consequence of this
design is that the calculated ĉ(1�↵, j) are weakly decreasing with respect to j:
ĉ(1�↵, j) � ĉ(1�↵, j+1) for j = 1, ..., S�1. Thus, a stepdown multiple testing
procedure at a significance level of ↵ can be implemented using the ĉ(1�↵, j) as
cuto↵ values to compare ordered test statistics to. The criteria for rejection is
most stringent at the start of the procedure for the ‘most significant’ hypothesis
and becomes less demanding for ‘less significant’ hypotheses later on in the
procedure, much like in the Holm procedure. Because the null distributions
giving the cuto↵s are estimated using the resampled datasets, the underlying
dependence structure of the test statistics is implicitly accounted for within
this procedure. The algorithm put forward by Romano andWolf is summarised
here:

1. For s = 1, ..., S, reject H(s) if and only if t(s) > ĉ(1� ↵, 1)

2. Let R1 denote the number of hypotheses rejected in step 1. If R1 = 0,
stop, otherwise, let j=2

3. For s = Rj�1 + 1, ..., S, reject H(s) if and only if t(s) > ĉ(1� ↵, Rj�1 + 1)

4. a. If no further hypotheses are rejected, stop

b. Otherwise, let Rj denote the number of hypotheses rejected so far
and let j = j + 1 and return to step 3

This algorithm provides an accept/reject decision for each null hypothesis
Hs at an overall significance level of ↵. Romano and Wolf have also put
forward a method which computes a multiple-testing adjusted p-value for each
Hs (Romano & Wolf 2016), but this is not explored in this work.
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Test S hypotheses !" , using data X. 
Each !" is associated with a parameter 

#" , with !"
$: #" > 0

For each hypothesis !" , calculate test 
statistics (", * = 1,… , .:

(" =
#/"
01"

1
Consider M resamples of X 
denoted 23

∗, … ,25
∗ . For each 

resample 26
∗ and hypothesis !" , 

calculate the following:

("
∗,6 =

#/"
∗,6 − #/"
01"
∗,6

2

Sort original test 
statistics in decreasing 

order and relabel 
((3), … , ( : , so 

((3) > ((;) > ⋯ > ((:)

3

Obtain critical values =̂ 1 −?, @ , @ = 1, … ,.
from distributions formed from ("∗,6, where 
=̂ 1 − ?, @ is the empirical 1 −? quantile of 

max	{( F
∗,6,… , ((:)

∗,6} 
6H3

5

By design:
=̂ 1 − ?, @ ≥ =̂ 1 − ?, @ + 1

4

Carry out step down procedure on ((3),… , ( :
using =̂ 1 −?, @ . Where =̂ 1 − ?, @ is the 

critical value of the test for !(F)

Obtain a Reject/Accept decision for each !"

5

Figure (5.1) A step-by-step overview of the Romano and Wolf procedure. Full detail
of the methodology is given in Section 5.2.2
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5.3 Methods

5.3.1 Trial Design

In this single stage trial design, N patients are randomised in a 2:1 ratio
to receive either treatment or control (T = 1/0) and data are collected for
two biomarker variables, B1 and B2. Both biomarkers are assumed to be si-
multaneously predictive of treatment e↵ect, with a monotonically increasing
relationship i.e. higher biomarker values are associated with larger treatment
e↵ect. Prior to trial start, two sets of candidate thresholds are defined for each
biomarker, denoted C1 = {c11, ..., c1n} and C2 = {c21, ..., c2m} respectively.
These candidate points can be clinically motivated or can be constructed to
cover a range of values of interest. Patient subgroups are then constructed
for each biomarker threshold combination, by including patients who have
biomarker values larger than the current thresholds. For example, the sub-
group defined by c13 and c24 (denoted Sub34), consists of patients with B1 > c13
and B2 > c24. The following grid of threshold combination subgroups is then
defined:

c21 c22 ... c2m
c11 Sub11 Sub12 Sub1m
c12 Sub21 Sub22 Sub2m
...
c1n Subn1 Subn2 Subnm

Table (5.1) An example of a grid of subgroups, defined by two sets of biomarker
thresholds C1 = {c11, ..., c1n} and C2 = {c21, ..., c2m}

The aim of this trial design is two-fold: 1) to determine whether the treat-
ment under consideration is broadly e↵ective in the trial population and 2)
to identify which threshold combination gives rise to the optimal patient sub-
group. Thus the following two-sided null and alternative hypotheses are under
consideration:

- H0,Main : ORMain = 1 vs H1,Main : ORMain 6= 1

- H0,Subjk
: ORSubjk

= 1 vs H1,Subjk
: ORSubjk

6= 1, j = 1, ..., n and k =
1, ...,m

To test the null hypothesis of no overall treatment e↵ect (H0,Main), a logistic
regression model is fitted using all N recruited patients, with treatment as the
sole explanatory variable:

log

✓
pi

1� pi

◆
= �0 + �1 ⇤ Trti, i = 1, ..., N
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In order to identify the optimal biomarker threshold combination, the
null hypothesis of no treatment e↵ect is first assessed within each subgroup
(H0,Subjk

). This is achieved by fitting a similar logistic regression model, but
only on patients within each subgroup:

log

✓
pi0

1� pi0

◆
= �0 + �1 ⇤ Trti0 , i0 2 Subjk, i0 = 1, ..., NSubjk

where NSubjk
is the number of patients within the subgroup Subjk.

In this setting, hypothesis testing is being carried out in multiple overlap-
ping subgroups. One would therefore expect a high level of positive correlation
between test statistics due to the re-use of information. As an example, if one
assumes n = m = 2 in the above trial design, then the following candidate sets
and subgroups are defined:

C1 = {c11, c12}, c11 < c12

C2 = {c21, c22}, c21 < c22

c21 c22
c11 Sub11 Sub12
c12 Sub21 Sub22

The following relationships between subgroups are then formed:

- Sub22 ✓ Sub11

- Sub21 ✓ Sub11 and Sub12 ✓ Sub11

- Sub22 ✓ Sub12 and Sub22 ✓ Sub21

- Sub12 \ Sub2,1 = Sub22

Clearly there will be reuse and sharing of information between subgroups,
as there is overlap between some subgroups (the non empty intersection be-
tween Sub12 and Sub21) and some subgroups are completely contained within
others (eg Sub22 ✓ Sub11). Due to this sharing of information, there will be
a positive dependence structure between all subgroup test statistics as well as
with the overall test statistic. Thus, resampling based multiple testing proce-
dures lend themselves naturally to the problem of dual biomarker threshold
identification; they allow a testing regime with increased power due to the in
built positive dependence structure between hypotheses.
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To observe this correlation between subgroups more clearly, consider Figure
5.2. There is clear overlap between the three subgroups; this is a typical
example of subgroup location for this problem as it is assumed that the optimal
subgroup will be at the higher end of both biomarkers, by design. In this
example, Sub12 is equivalent to subgroup 3 on the Figure, Sub21 is equivalent
to 2 and Sub22 is equivalent to 3. Clearly, subgroup 3 is completely contained
within both 1 and 2 and the intersection between subgroups 1 and 2 is non
empty and is equal to subgroup 3.

Figure (5.2) A scatter plot to demonstrate overlapping subgroups arising from the use
of dual biomarker thresholds. In this example, Subgroup 1: {x > 0.3, y > 0.7}, Subgroup
2: {x > 0.7, y > 0.3} and Subgroup 3: {x > 0.7, y > 0.7}

Due to the large amount of simultaneous hypothesis testing carried out
within overlapping subgroups in the described trial design, the Romano and
Wolf multiple testing procedure is implemented to ensure control of the FWER.
At trial completion, one then obtains an assessment of overall treatment ef-
fect in the whole trial population, as well as a reject/accept decision for each
biomarker-based subgroup. As the testing procedure is carried out in a step-
down manner, with the most significant hypothesis addressed first, a decision
can be made as to which subgroup should be defined as optimal. The subgroup
hypothesis addressed first, i.e. that with the largest original test statistic for
the assessment of treatment e↵ect within the subgroup, is defined as optimal
within this framework. Moreover, the thresholds used to define the optimal
subgroup are taken to be the optimal thresholds for each respective biomarker.
It should also be noted that within the step-down framework, the test of treat-
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ment e↵ect within the optimal subgroup can be addressed before or after the
assessment of overall treatment e↵ect, depending on which had the largest
original test statistic. See Section 5.2.2 for full detail of the Romano and Wolf
step-down procedure.

Single Stage

Recruit N pts:
-!", !$~&'()(0,1)

-Treatment (2:1 randomization)
-Response flag (.(/012) defined by 

treatment and !", !$)

Define candidate threshold sets for each 
biomarker:

3" = 5"", … , 5"7
3$ = 5$",… , 5$8

Threshold Identification + Efficacy Testing

Overall null hypothesis:
9: : 	=/>?@7 = 1
9": 	=/>?@7 ≠ 1

Subgroup hypotheses ('×C):
9:,DEFGH : 	=/DEFGH = 1
9",DEFGH : 	=/DEFGH ≠ 1

I = 1,… , ' and k = 1,… , C

Use Romano + Wolf procedure to control FWER

Final Analysis

-Test of overall treatment effect
-Reject/Accept decision for each subgroup

-Decision on which subgroup is optimal, providing a 
threshold for each biomarker

Figure (5.3) A single stage trial design to achieve assessment of overall treatment ef-
fect alongside identification of optimal biomarker subgroup, providing thresholds for two
continuous biomarkers. The Romano and Wolf multiple testing procedure is implemented
to control FWER when testing hypotheses in multiple overlapping subgroups.
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5.3.2 Simulation Study Set Up

A simulation study was implemented to explore the empirical power to de-
tect both overall and subgroup specific treatment e↵ects and threshold iden-
tification accuracy whilst using the Romano and Wolf procedure within the
described trial framework. Unique scenarios were implemented to explore how
these measures changed with magnitude of treatment e↵ect and sensitive sub-
group size. It was also of interest to ensure FWER was being controlled at a
pre-specified level under a variety of null scenarios. Furthermore, alterations to
the simulation study in order to explore the e↵ect of sample size and contrast
to a second method of FWER control are described in Sections 5.3.3 and 5.3.4.
R code used to implemented the simulation study is available in Appendix C.

Input parameters defining unique scenarios of interest are described in Step
0; simulation of patient data and calculation of original test statistics is de-
scribed in step 1; step 2 provides details on how bootstrap replicates of the
original data in each case were obtained in order to estimate the null distribu-
tions used to implement the Romano and Wolf procedure. Simulations were
repeated 1,000 times for each scenario of interest.

Step 0: Input Parameters
To define unique scenarios of interest, a number of input parameters were

specified for each case:

- The probability of response on the control arm, pC

- The maximum and minimum response probabilities for patients on the
treatment arm, pT,H and pT,L respectively

- Parameters defining the response probability surface for patients on treat-
ment (see response definitions 1 and 2 below):

- µ1 and µ2 for response definition 1

OR

- ↵1, ↵2, �1 and �2 for response definition 2

- The input candidate threshold sets C1 and C2, and therefore the size of
the grid used for the grid search (|C1|⇥ |C2|)

Response Definition 1 (Step Function)
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P1(Response) =

8
>>><

>>>:

PC Ti = 0

PT,L Ti = 1, B1i < µ1 or B2i < µ2

PT,H Ti = 1, B1i > µ1 & B2i > µ2

Response Definition 2 (Smooth)

P2(Response) =

8
<

:
pC Ti = 0

�(B1i, B2i) Ti = 1

where B1i and B2i are the biomarker measurements for patient i, Ti is
their treatment assignment and µ1 and µ2 are input parameters representing
‘true’ threshold values for B1 and B2 respectively. �(B1i, B2i) : [0, 1]⇥ [0, 1] !
[PT,L, PT,H ] is a function defining a bivariate relationship between biomarker
values and response probability. In this work, the CDF of the bivariate Weibull
distribution (equation (4.1)) was used, with input parameters: ↵1 and ↵2, to
define midpoints of the increase in response probability; �1 and �2, to define
the steepness of the increase in response probability. Example probability
surfaces for response definitions 1 and 2 are shown in Figure 5.4.
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(a) Response Definition 1, PT,L = 0.1,
PT,H = 0.9, µ1 = µ2 = 0.5

(b) Response Definition 2, PT,L = 0.1,
PT,H = 0.9, ↵1 = ↵2 = 0.5, �1 = �2 = 8

Figure (5.4) Plots showing the relationship between biomarker values and the proba-
bility of patient response, for patients that received the experimental treatment, for each
response definition. Biomarker values are plotted along the x- and y-axes, probability of
patient response is plotted along the z-axis and patient response is represented by the
colour of each point (green=response, blue=no response)

Step 1: Patient Data Simulation and Original Test Statistics
In this single stage trial, data for N = 1000 patients were simulated. Each

patient received an ID variable, treatment assignment (random allocation in
2:1 ratio of treatment=1 to control=0), two biomarker values drawn from
Uniform(0,1) distributions and a response flag. Note that in the primary sim-
ulation study, sample size was kept large to ensure appropriate power to detect
subgroup e↵ects. Adaptations to simulations were implemented to explore this
framework under smaller sample sizes (see Section 5.3.3). Two definitions of
patient response were implemented in these simulations, to explore the e↵ect
this had on empirical power to detect overall and subgroup e↵ects as well as
threshold identification accuracy.
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Following simulation of patient data, logistic regression models were applied
to obtain original test statistics, which were later used in the Romano and Wolf
step-down procedure to achieve all of the required e�cacy testing. The first
was for the assessment of overall treatment e↵ect, for which a logistic regression
model was fitted on the whole cohort of patients. Prior to fitting subgroup
models, subgroup flags were created to identify which patients belonged to
specific subgroups. Subgroups flags were formed by identifying patients with
biomarker values exceeding the respective candidate threshold i.e. B1i > c11
and B2i > c21, for example. A series of logistic regression models were then
fitted for each subgroup in turn, to get subgroup specific test statistics; patients
contributing to each model were identified by the described flags.

Step 2: Bootstrap Test Statistics and Step-Down Procedure
As discussed in Section 5.2.2, multiple bootstrap samples of the original

dataset are used in order to estimate the null distributions which define the
critical values used in the step-down procedure. The original simulated patient
dataset was therefore resampled M = 499 times; thus in each scenario of inter-
est, 1,000 original datasets were simulated and within each of these datasets,
499 bootstrap samples were taken. Each resampled dataset drew data for
Nm = 1000 patients, with replacement, from the original dataset. Within each
of the resampled datasets, the studentised test statistics described in Section
5.2.2 for the overall hypothesis and each subgroup hypothesis were calculated
(see Figure 5.5). Parameters and standard errors (log odds ratio for treatment
e↵ect and its standard error) of interest within each bootstrap replicate were
obtained using logistic regression models again, studentised test statistics were
then calculated directly.
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ID TRT B1 B2 RESP
1 1 0.07 0.17 1
2 0 0.16 0.53 0
… … … … …

1000 1 0.47 0.32 1

Original data X

!̂# =
%&#
'(#

ID TRT B1 B2 RESP
1* 0 0.83 0.46 0
2* 1 0.80 0.93 1
… … … … …

1000* 1 0.91 0.15 0

ID TRT B1 B2 RESP
1* 1 0.90 0.93 1
2* 1 0.40 0.58 0
… … … … …

1000* 0 0.63 0.56 1

ID TRT B1 B2 RESP
1* 0 0.50 0.01 0
2* 0 0.10 0.39 0
… … … … …

1000* 1 0.89 0.91 1

Bootstrap data )*∗

!̂#∗,* =
%&#∗,* − %&#
'(#∗,*

Bootstrap data ).∗

!̂#∗,. =
%&#∗,. − %&#
'(#∗,.

Bootstrap data )/00∗

!̂#∗,/00 =
%&#∗,/00 −%&#
'(#∗,/00

… …

Figure (5.5) An example of the bootstrap procedure used within simulations

Critical values to be used in the step-down procedure were then obtained
using the calculated bootstrap test statistics. For a given step j of the step-
down procedure, the critical value ĉ(0.95, j) was calculated by taking the 95%
quantile of the distribution {max⇤,m

t,j
}M
m=1

, see Section 5.2.2 for full details. The
described step-down procedure was then implemented using the ordered origi-
nal test statistics, using the calculated critical values, providing a reject/accept
decision for each hypothesis addressed.

Unique scenarios of interest were achieved by manipulating the input pa-
rameters detailed in step 0. The input parameters used to define unique scenar-
ios implemented in this simulation study are given in Tables 5.2 and 5.3, note
that Table 5.2 describes scenarios under response definition 1 and Table 5.3
those under definition 2. Scenarios 1-6 explore the e↵ect of changing treatment
e↵ect; 7-12 explore the e↵ect of input threshold location and therefore expected
subgroup size; 13 and 14 explore the e↵ect of the steepness of the biomarker-
response surface. The final hypothesis decision for the overall hypothesis and
for the defined optimal subgroup were captured. This allowed exploration of
the proportion of trials that had significant final analyses (overall, subgroup
specific or either) and how this changed with magnitude of treatment e↵ect
and sensitive subgroup size. Moreover, the number of significant results in
each simulation was also captured, to measure the false positive rate for each
trial, to ensure the FWER was controlled in null cases. Estimated optimal
biomarker thresholds were also captured in order to assess estimation accu-
racy and observe how this changed by scenario.
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Scenario PT,H PT,L PC µ1 µ2

1 0.8 0.2 0.2 0.5 0.5
2 0.6 0.2 0.2 0.5 0.5
3 0.4 0.2 0.2 0.5 0.5
4 0.2 0.2 0.2 - -
5 0.8 0.4 0.2 0.5 0.5
6 0.6 0.4 0.2 0.5 0.5
7 0.6 0.2 0.2 0.6 0.6
8 0.6 0.2 0.2 0.7 0.7
9 0.6 0.2 0.2 0.4 0.4
10 0.6 0.2 0.2 0.3 0.3
11 0.6 0.2 0.2 0.5 0.7
12 0.6 0.2 0.2 0.5 0.3

Table (5.2) Scenarios implemented in the simulation study when using response defini-
tion 1, each defined by the corresponding values of pC , pT,L, pT,H , µ1 and µ2

Scenario PT,H PT,L PC ↵1 ↵2 �1 �2

1 0.8 0.2 0.2 0.5 0.5 8 8
2 0.6 0.2 0.2 0.5 0.5 8 8
3 0.4 0.2 0.2 0.5 0.5 8 8
4 0.2 0.2 0.2 - - - -
5 0.8 0.4 0.2 0.5 0.5 8 8
6 0.6 0.4 0.2 0.5 0.5 8 8
7 0.6 0.2 0.2 0.6 0.6 8 8
8 0.6 0.2 0.2 0.7 0.7 8 8
9 0.6 0.2 0.2 0.4 0.4 8 8
10 0.6 0.2 0.2 0.3 0.3 8 8
11 0.6 0.2 0.2 0.5 0.7 8 8
12 0.6 0.2 0.2 0.5 0.3 8 8
13 0.6 0.2 0.2 0.6 0.6 4 4
14 0.6 0.2 0.2 0.6 0.6 2 2

Table (5.3) Scenarios implemented in the simulation study when using response defini-
tion 2, each defined by the corresponding values of pC , pT,L, pT,H , ↵1, ↵2, �1 and �2.

The above scenarios were all implemented across a variety of grid sizes,
with a larger grid size corresponding to a finer grid of candidate threshold
combinations. The following grid sizes were considered:

- 3⇥ 3 grid: C1 = C2 = {0.25, 0.5, 0.75}
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- 5⇥ 5 grid: C1 = C2 = {0.25, 0.375, 0.5, 0.625, 0.75}

- 9⇥ 9 grid: C1 = C2 = {0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625,
0.6875, 0.75}

A variety of grid sizes were considered to explore the e↵ect grid size had
on accuracy of optimal threshold estimation and empirical power to detect
overall and subgroup e↵ects, as well as the e↵ect grid size had on computa-
tional burden. Moreover, the grid sizes explored could be implemented for
di↵erent reasons in a real data setting and so exploration of the framework
under di↵ering grid sizes was required. For example, a smaller grid of candi-
date thresholds may be used to explore a small number of clinically motivated
thresholds, whereas a large grid size may be used to carry out an exhaustive
search over a range of values.

5.3.3 Simulation Study Adaptations - Exploring the Ef-

fect of Changing Sample Size

To explore the e↵ect that input sample size had on the overall and subgroup
specific empirical power, as well as threshold identification accuracy, simula-
tions were repeated using various input sample sizes. The following scenarios
were re-implemented using N = 500, N = 250 and N = 150:

Scenario PT,H PT,L PC ↵1 ↵2 �1 �2

1 0.8 0.2 0.2 0.5 0.5 8 8
2 0.6 0.2 0.2 0.5 0.5 8 8
3 0.4 0.2 0.2 0.5 0.5 8 8
4 0.2 0.2 0.2 - - - -
5 0.8 0.4 0.2 0.5 0.5 8 8
6 0.6 0.4 0.2 0.5 0.5 8 8
7 0.6 0.2 0.2 0.6 0.6 8 8
8 0.6 0.2 0.2 0.7 0.7 8 8
9 0.6 0.2 0.2 0.4 0.4 8 8
10 0.6 0.2 0.2 0.3 0.3 8 8

Table (5.4) Scenarios implemented in the simulation study when exploring the e↵ect of
sample size. Each scenario was defined by the corresponding values of pC , pT,L, pT,H , ↵1,
↵2, �1 and �2, all scenarios were repeated for N = 500, 250, 150

Note that scenarios 11-14 were not repeated as these were special cases to
explore di↵ering input thresholds and biomarker-response surface steepness,
and these had been explored in detail in the original simulations. Repeated
simulations under di↵ering sample sizes aimed to explore how empirical power
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changed with input sample size and whether input same size a↵ected the rela-
tionship between empirical power and magnitude of treatment e↵ect/subgroup
size. Furthermore, simulations were repeated using only the 5x5 grid size and
response definition 2; the e↵ect of changing grid size and response definition
was already explored in the original simulations.

5.3.4 Comparison to the Holm Procedure

The Romano and Wolf multiple testing procedure was explored in this set-
ting as it o↵ers potentially higher levels of power over other methods, whilst
maintaining control the FWER (Westfall & Young 1993, US Department of
Health and Human Services Food and Drug Administration 2017). Therefore,
a second method of FWER control was implemented within the described
trial framework in order to contrast results with an existing and widely used
method. It was of particular interest to compare levels of overall and subgroup
specific empirical power and to compare levels of FWER control in null cases.
It was decided to contrast the Romano and Wolf procedure with the Holm
step-down multiple testing procedure. The Holm procedure was chosen due
to its similarity in implementation, both methods are step-down procedures,
and as it is mentioned specifically within Westfall and Young’s work (Westfall
& Young 1993) (the basis of the Romano and Wolf method). They state that
although the Holm is a significant improvement over the Bonferroni, it is still
conservative as it is based on Bonferroni probability inequalities. Thus they
sought to improve upon the Holm procedure by making adjusted p-values less
conservative by incorporating the dependence structure.

Simulations were designed that implemented the Holm procedure, rather
than the Romano and Wolf, to control the FWER when conducting a grid
search over candidate threshold combinations within the proposed trial design.

Step 0: Input Parameters
Unique scenarios of interest were defined by input parameters in the same man-

ner as above. Candidate threshold sets were fixed at C1 = C2 = {0.25, 0.375, 0.5,
0.625, 0.75}, defining a 5x5 grid.

Step 1: Patient Data Simulation and P-value Generation
Data for N patients were simulated as above, with response definition 2 used

to define the probability of patient response to treatment. Logistic regression
models were applied to obtain P-values for the assessment of each hypothesis,
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which were later used in the Holm step-down procedure to achieve all of the
required e�cacy testing. The first was for the assessment of overall treatment
e↵ect, for which a logistic regression model was fitted on the whole cohort
of patients. Prior to fitting subgroup models, subgroup flags were created to
identify which patients belonged to specific subgroups. Subgroups flags were
formed by identifying patients with biomarker values exceeding the respective
candidate threshold i.e. B1i > c11i and B2i > c21i, for example. A series of
logistic regression models were then fitted for each subgroup in turn, to get
subgroup specific P-values; patients contributing to each model were identified
by the described flags.

Step 2: Holm step-down Procedure
The Holm procedure is described in detail in Chapter 1. Prior to carrying out

the step-down testing procedure, hypotheses were sorted into decreasing order
of significance, according to their P-values. The most significant (lowest P-
value) was addressed first, then the hypothesis with next biggest P-value and so
on until the least significant hypothesis (largest P-value) was last: H(1), ..., H(S)

such that P(1) < ... < P(S). Critical values for the step-down procedure were
also calculated: ↵1 = ↵

S
, ↵2 = ↵

S�1
, ↵3 = ↵

S�2
,.., ↵S = ↵; more generally

↵s =
↵

S�s+1
. In this case, S = 26 (25 subgroup tests and 1 overall test), and

so critical values were calculated directly as:

↵1 = 0.0019 ↵7 = 0.0025 ↵13 = 0.0036 ↵19 = 0.0063 ↵25 = 0.0250
↵2 = 0.0020 ↵8 = 0.0026 ↵14 = 0.0038 ↵20 = 0.0071 ↵26 = 0.0500
↵3 = 0.0021 ↵9 = 0.0028 ↵15 = 0.0042 ↵21 = 0.0083
↵4 = 0.0022 ↵10 = 0.0029 ↵16 = 0.0045 ↵22 = 0.0100
↵5 = 0.0023 ↵11 = 0.0031 ↵17 = 0.0050 ↵23 = 0.0125
↵6 = 0.0024 ↵12 = 0.0033 ↵18 = 0.0056 ↵24 = 0.0167

Table (5.5) Critical values in the Holm step-down procedure when S=26

P-values were then compared with appropriate local ↵ values, adhering to
the rules of the Holm procedure (declare all future null hypotheses true if a
non significant result is obtained), until a reject/accept decision was obtained
for each hypothesis. The decision for the overall hypothesis, the decision of
the optimal subgroup hypothesis and the total number of significant tests in
each simulation run were retained in order to explore empirical power. Note
that threshold identification accuracy was not explored within this simulation
study as the comparison with the Romano and Wolf procedure was primarily
done to contrast empirical power and FWER control.

The scenarios given in Table 5.6 were then simulated 10,000 times each,
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under sample sizes of N = 1000, N = 500, N = 250 and N = 150. Note that
only scenarios 1-10 were run as it was of interest to compare empirical power
when using the Holm procedure vs the Romano and Wolf procedure under a
variety of treatment e↵ects and subgroup sizes.

Scenario PT,H PT,L PC ↵1 ↵2 �1 �2

1 0.8 0.2 0.2 0.5 0.5 8 8
2 0.6 0.2 0.2 0.5 0.5 8 8
3 0.4 0.2 0.2 0.5 0.5 8 8
4 0.2 0.2 0.2 - - - -
5 0.8 0.4 0.2 0.5 0.5 8 8
6 0.6 0.4 0.2 0.5 0.5 8 8
7 0.6 0.2 0.2 0.6 0.6 8 8
8 0.6 0.2 0.2 0.7 0.7 8 8
9 0.6 0.2 0.2 0.4 0.4 8 8
10 0.6 0.2 0.2 0.3 0.3 8 8

Table (5.6) Scenarios implemented in the simulation study when exploring the e↵ect of
the Holm procedure. Each scenario was defined by the corresponding values of pC , pT,L,
pT,H , ↵1, ↵2, �1 and �2
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5.4 Simulation Study Results

Results of the primary simulation study are outlined in this section. The em-
pirical power, both overall and subgroup specific, and the threshold estimation
accuracy are summarised, whilst exploring the e↵ect of changing treatment ef-
fect, changing subgroup size, severity of the biomarker-response relationship,
response definition, grid size and sample size. This Section is organised as fol-
lows: Section 5.4.1 summarises the level of FWER control in the null cases of
the simulation study; Section 5.4.2 summarises the empirical power in the pri-
mary simulation study; Section 5.4.3 summarises the threshold identification
accuracy in the primary simulation study; Section 5.4.4 explores the e↵ect
of changing sample size on simulation results, summarising both empirical
power and threshold identification accuracy; Section 5.4.5 explores the e↵ect
of changing input candidate threshold grid size on simulation results; Section
5.4.6 explores the e↵ect of changing the definition of patient response on sim-
ulation results.

5.4.1 FWER Control

As discussed in Section 5.3, it was of interest to ensure that the FWER was
controlled when using the Romano and Wolf procedure in this setting. To
estimate the FWER, the proportion of trials in which there was at least one
significant result under null scenarios was captured. In the null case of scenario
4, the probability of response for all patients was set to 20% i.e. PT,H =
PT,L = PC = 0.2, thus defining a case in which there was no treatment e↵ect
in biomarker sensitive or non-sensitive patients.

A bar chart displaying the proportions of trials that identified any signifi-
cant result within the primary simulation study, under the null scenario, was
produced and can be observed in Figure 5.6; observed proportions for all grid
sizes and both response definitions are presented. In all simulations, the overall
level of ↵ that the Romano and Wolf procedure was controlling the FWER to
was 0.05, this has been overlaid as a red dashed line on the Figure to visually
compare the observed proportions to. From Figure 5.6, it is clear that the
FWER was controlled at a level of ↵ = 0.05 within the primary simulation
study. The observed proportions of trials that identified at least one significant
result were: 5.06% and 5.12% when using the 3x3 grid and response definition
1 and 2 respectively; 5.02% and 4.98% when using the 5x5 grid; 4.80% and
5.10% when using the 9x9 grid. There was slight variability around the level
of 0.05 across grid sizes and response definitions, but this was likely simulation
error. There were no significant changes in FWER as the grid size changed or
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under di↵erent response definitions, observed proportions were consistent and
there were no clear relationships between change in FWER and change in grid
size or response definition.
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0.04
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Grid Size

FW
ER
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1

2

Figure (5.6) The observed proportions of trials that identified at least one significant
result under the null scenario, presented for all grid sizes and both response definitions.
The target level of FWER control (0.05) has been overlaid as a horizontal red dashed line.

A bar chart displaying the proportions of trials that identified any signif-
icant result under the null scenario, using di↵erent input sample sizes, was
also produced to explore whether the level of FWER control was a↵ected by
input sample size. It should be noted that the e↵ect of input sample size
on empirical power to detect overall and subgroup e↵ects as well as thresh-
old identification accuracy is explored in detail in Section 5.4.4. Simulations
under di↵erent sample sizes were implemented using a 5x5 grid and response
definition 2. Figure 5.7 shows the observed proportions of trials that identified
any significant result when PT,H = PT,L = PC = 0.2, for N = 1000, N = 500,
N = 250 and N = 150. Again, the target level of FWER control of ↵ = 0.05
was overlaid as a red dashed line. From Figure 5.7, it is clear that the FWER
was controlled at a level of ↵ = 0.05 for all implemented sample sizes. The
observed proportions of trials that identified any significant result were 4.98%
under N = 1000, 5.08% under N = 500, 5.04% under N = 250 and 5.04%
under N = 150. There was also no change in FWER as the input sample
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size changed, observed proportions were consistent and there were no clear
relationships between change in FWER and change in sample size.
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Figure (5.7) The observed proportions of trials that identified at least one significant
result under the null scenario, presented for all sample sizes, using a 5x5 grid and response
definition 2. The target level of FWER control (0.05) has been overlaid as a horizontal red
dashed line.

5.4.2 Empirical Power

Empirical power was estimated by the proportion of simulated trials that iden-
tified a significant result. Overall empirical power was estimated by taking
the proportion of trials that identified a significant result when testing for
treatment e↵ect in the whole trial population. Subgroup empirical power was
estimated by taking the proportion of trials that identified a significant re-
sult when testing for treatment e↵ect in the subgroup with the largest test
statistic prior to implementing the multiple testing procedure, i.e. the optimal
subgroup as defined in Section 5.3.1. The proportion of trials that identified
any significant result was also summarised, as well as the mean number of
significant results over simulations in each scenario. In this Section, results are
presented for simulations using the 5x5 input grid size (input candidate sets
C1 = C2 = {0.25, 0.375, 0.5, 0.625, 0.75}) and response definition 2. It was of
interest to initially explore the e↵ect that magnitude of treatment e↵ect and
input threshold location, and therefore sensitive subgroup size, had on overall
and subgroup empirical power. All summary measures for the applied scenar-
ios are given in Table 5.7.
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Scenarios 1-6 explore cases in which the magnitude of treatment e↵ect was
varied and input thresholds were fixed at ↵1 = ↵2 = 0.5. In scenarios 1-4, the
treatment e↵ect was restricted to marker-high patients only, with magnitude
of treatment e↵ect decreasing with higher scenario number, eventually to the
null case in scenario 4. The overall empirical power decreased as the treatment
e↵ect decreased. The proportion of trials that identified a significant overall
test fell from 100% under scenario 1, to 97% under scenario 2 and finally to
34% under scenario 3. Under the null case of scenario 4, only 1.2% of trials
falsely identified a significant overall test of treatment e↵ect. The subgroup
empirical power also fell with decreasing treatment e↵ect but less so. All
trials under scenarios 1 and 2 identified a significant subgroup test, this fell to
82% under scenario 3 and finally 4.5% of trials falsely identified a significant
subgroup result under the null case of scenario 4. The proportion of trials that
identified any significant result fell at a similar rate to the subgroup empirical
power. Under scenarios 1, 2 and 3, the proportion of trials that identified any
significant test were equivalent to those that identified a significant subgroup
test. Under the null case of scenario 4, 5.1% of trials identified any significant
result. The relationships between overall and subgroup empirical power and
treatment e↵ect can be observed graphically in Figure 5.8. In this Figure,
the proportion of trials that identified a significant overall or subgroup test
have been plotted for scenarios 1-4; as the Figure is read from left to right,
the magnitude of treatment e↵ect decreases. It is clear that both overall and
subgroup empirical power fell with decreasing treatment e↵ect, but subgroup
empirical power fell less severely.
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Figure (5.8) Overall and subgroup specific empirical power under scenarios 1-4. Note
as the plot is viewed from left to right, the magnitude of treatment e↵ect decreases.

Under scenarios 5 and 6, the treatment was considered broadly e↵ective; all
patients that received treatment had an increase in the probability of response
over control, but biomarker-high patients had a larger increase. Under these
scenarios, 100% of trials identified a significant overall or subgroup test.

Scenarios 7-12 explore cases in which the input thresholds were varied and
the treatment e↵ect fixed at PT,H = 0.6 and PT,L = PC = 0.2. Scenarios 7-10
explore cases in which ↵1 = ↵2 and the subgroup size was varied by changing
the shared value. As subgroup size decreased, the overall empirical power fell.
Under scenarios 10 and 9, in which the subgroup sizes were approximately
49% and 36% of the population respectively, 100% of trials identified a signif-
icant overall test. Under scenarios 7 and 8, in which the subgroup sizes were
approximately 16% and 9% of the population respectively, overall empirical
power fell to 77% under scenario 7 and 33% under scenario 8. Again, the
subgroup empirical power fell less severely. 100% of trials again identified a
significant subgroup test under scenarios 9 and 10, 99% of trials identified a
significant subgroup test under scenario 7 and 89% did so under scenario 8.
The proportion of trials that identified any significant result was again com-
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parable to the proportion that identified a significant subgroup result. The
relationships between overall and subgroup empirical power and subgroup size
can be observed graphically in Figure 5.9. In this Figure, the proportion of
trials that identified a significant overall or subgroup test have been plotted for
scenarios 2, 7, 8, 9 and 10; scenarios have been ordered so that as the Figure
is read from left to right, the subgroup size decreases. It is clear that both
overall and subgroup empirical power fell with decreasing subgroup size, but
subgroup empirical power fell less severely.
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Figure (5.9) Overall and subgroup specific empirical power under scenarios 2, 7, 8, 9
and 10. Note as the plot is viewed from left to right, the subgroup size decreases.

Under scenarios 11 and 12, it was of interest to explore cases in which
↵1 6= ↵2. This was primarily done to assess threshold identification accuracy
when input locations were separate. Observed relationships persisted, under
scenario 11 the subgroup size was smaller as ↵2 = 0.7, and so overall empirical
power was lower at 67%, compared with 100% under scenario 12 with ↵2 = 0.3.

Scenarios 13 and 14 explore cases in which the steepness of the biomarker-
response surface was altered by changing the parameters �1 and �2. By decreas-
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ing the input values, the surface could be flattened, creating a more gradual
increase in the probability of treatment response. Under scenarios 7, 13 and 14,
↵1 and ↵2 were fixed at 0.6 and response probabilities were fixed at PT,H = 0.6
and PT,L = PC = 0.2, and �1 = �2 = {8, 4, 2} respectively. Changing the
steepness of this probability surface did not have a large e↵ect on empirical
power, both overall and subgroup specific. Overall empirical power increased
slightly: 77% under scenario 7, 81% under scenario 13 and 86% under scenario
14. The relationships between overall and subgroup power and input � values
can be observed on Figure 5.10. In this Figure, the proportion of trials that
identified a significant overall or subgroup test have been plotted for scenarios
7, 13 and 14; as the Figure is read from left to right, the steepness of the
biomarker-response surface becomes flatter.
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Figure (5.10) Overall and subgroup specific empirical power under scenarios 7, 13 and
14. Note as the plot is viewed from left to right, the steepness of the biomarker-response
probability surface decreases.

It should be noted that measures summarising the empirical power in this
section were all very high, with 100% of trials identifying a significant result
in many scenarios. This was due to the high sample size initially used in the
primary simulation study. As discussed, using a large sample size allowed for
detection of smaller subgroup e↵ects and exploration of threshold identification
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accuracy, addressed in Section 5.4.3. The e↵ects of using smaller input sample
sizes on empirical power and threshold identification accuracy are explored in
Section 5.4.4.

Scenario Prop Main Prop Sub Prop Any Avg. Total⇤

1 1.00 1.00 1.00 26.00
2 0.97 1.00 1.00 25.54
3 0.34 0.82 0.82 12.10
4 0.01 0.05 0.05 0.21
5 1.00 1.00 1.00 25.99
6 1.00 1.00 1.00 25.68
7 0.77 0.99 0.99 23.74
8 0.33 0.89 0.89 15.67
9 1.00 1.00 1.00 25.73
10 1.00 1.00 1.00 25.76
11 0.67 1.00 1.00 22.17
12 1.00 1.00 1.00 25.67
13 0.81 1.00 1.00 23.70
14 0.86 0.98 0.98 21.67

Table (5.7) The observed proportions of trials that identified a significant overall test,
significant subgroup test, any significant test and the mean number of observed significant
tests, under all scenarios. All values are given as a proportion, with the exception of Avg.
Total⇤, which is the average across simulated trials. All simulations were carried out using
a 5x5 grid and response definition 2.
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5.4.3 Threshold Identification Accuracy

In order to assess accuracy of biomarker threshold estimation, histograms of
optimal estimates across simulations were created. Optimal thresholds were
defined as those which defined the subgroup with the largest test statistic prior
to implementing the multiple testing procedure (as described in Section 5.3.1).
Histograms were created for each scenario in order to explore how threshold
estimation accuracy changed with changing treatment e↵ect, input threshold
location (sensitive subgroup size) and biomarker-response surface. In this Sec-
tion, results are presented for simulations using the 5x5 input grid size (input
candidate sets C1 = C2 = {0.25, 0.375, 0.5, 0.625, 0.75}) and response defini-
tion 2. Results are restricted to one grid size and response definition initially
in order to focus on how accuracy was a↵ected by input treatment e↵ect, sub-
group size and steepness of biomarker-response surface. Later sections explore
the impact of sample size(5.4.4), grid size (5.4.5) and response definition (5.4.6)
on threshold identification accuracy.

Figure 5.11 shows histograms of threshold estimates for B1 and B2 under
scenarios 1-4, allowing one to explore how accuracy changed with decreasing
treatment e↵ect. In all Figures, the input threshold has been overlaid as a
red dashed line. Under scenarios 1-4, the input thresholds were fixed and the
magnitude of treatment e↵ect, which was restricted solely to marker-sensitive
patients, was decreased. Under scenario 1 PT,H = 0.8, PT,H = 0.6 under sce-
nario 2, PT,H = 0.4 under scenario 3 and PT,H = 0.2 under scenario 4 (null
case). As the treatment e↵ect decreased, the accuracy of threshold identifi-
cation for B1 and B2 also decreased. Under scenario 1 (Figures 5.11a and
5.11b), in which treatment e↵ect was the largest, there were prominent peaks
at the input threshold, with tails towards lower values. As the treatment e↵ect
decreased, the peaks of these distributions became less pronounced and more
weight was located in the tails. Under scenario 2 (Figures 5.11c and 5.11d),
more estimates were located at lower values, causing the distribution to have
a left skewed appearance. Under scenario 3 (Figures 5.11e and 5.11f), even
more weight was in the tails of the distributions, with estimates also at the
higher end of the range. This is also clear from observing the change in mean
and standard deviation of estimates, available in Table 5.8. The means of es-
timates were quite consistent as the treatment e↵ect decreased at 0.45/0.45,
0.43/0.43, 0.44/0.44 for B1/B2 under scenarios 1, 2 and 3 respectively. The
standard deviations increased as the treatment e↵ect decreased, which sup-
ports the increased spread of estimates apparent in the Figures: 0.07/0.07,
0.09/0.09, 0.13/0.13 for B1/B2 under scenarios 1, 2 and 3 respectively. In the
null case, there was little discernible pattern to the distributions. There were
slight peaks in the distribution at the extreme values considered at 0.25 and
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0.75, though these were not overly prominent and the distribution of values
was quite consistent across the range of values considered (see Figures 5.11g
and 5.11h).
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(h) Scenario 4 - B2

Figure (5.11) Histograms of optimal biomarker threshold estimates for B1 and B2 un-
der scenarios 1-4. The input threshold values in each case have been overlaid as a vertical red
dashed line. Note that as the figure is read from top to bottom, the magnitude of treatment
e↵ect decreases.
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Figure 5.12 shows histograms of threshold estimates for B1 and B2 un-
der scenarios 5 and 6. In these scenarios, the treatment was e↵ective for all
patients, but was more so for biomarker-sensitive patients. Input thresholds
were again fixed and the following input response probabilities were used:
PT,H = 0.8, PT,L = 0.4 and PC = 0.2 under scenario 5 and PT,H = 0.6,
PT,L = 0.4 and PC = 0.2 under scenario 6. In scenarios in which the treatment
was broadly e↵ective, accuracy of threshold estimation was poor. From Figures
5.12a, 5.12b,5.12c and 5.12d it is clear that lower estimates were preferred un-
der scenarios 5 and 6. All of the distributions were heavily left skewed with all
estimates located at lower threshold values. This is also clear from the means
and standard deviations of estimates in these scenarios: 0.32(0.09)/0.33(0.09)
and 0.29(0.07)/0.29(0.07) for B1/B2 under scenarios 5 and 6 respectively.
Mean estimates were low and standard deviations were small, showing a small
spread in the distribution.
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(d) Scenario 6 - B2

Figure (5.12) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 5 and 6. The input threshold values in each case have been overlaid as a
vertical red dashed line.

Figure 5.13 shows histograms of threshold estimates for B1 and B2 under
scenarios 7-10. In these scenarios, the treatment e↵ect was fixed and input
thresholds ↵1 and ↵2 were varied in order to change the sensitive subgroup
size; on all figures the input threshold value has been overlaid as a red dashed
line. As the sensitive subgroup size decreased (input thresholds were higher),
estimation accuracy decreased, and vice versa. Under scenarios 7 (5.13a and
5.13b) and 8 (5.13c and 5.13d), in which input thresholds were ↵1,↵2 = 0.6
and ↵1,↵2 = 0.7 respectively (giving a sensitive prevalence of 16% and 9%),
accuracy was lower. Peaks at the input values were present in distributions,
but these were diluted by heavy tails towards lower and higher values. Un-
der scenarios 9 (5.13e and 5.13f) and 10 (5.13g and 5.13h) input thresholds
were lower at ↵1,↵2 = 0.4 and ↵1,↵2 = 0.3 respectively, resulting in a sensi-
tive prevalence of 36% and 49% in each case. Accuracy was much higher in
these cases, there were strong peaks in all distributions, with little to no tails
towards higher values. The relationship between accuracy and sensitive sub-
group size was also clear from the observed means and standard deviations.
Although input thresholds under 7 and 8 were 0.6 and 0.7 respectively, the
mean estimates of the distributions for B1/B2 were 0.51/0.50 and 0.55/0.56
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respectively, showing that the heavy lower tails pulled down the mean value.
The heavy lower tails were also clear from the high standard deviations of
0.12/0.12 under scenario 7 and 0.14/0.15 under scenario 8. Inputs under sce-
narios 9 and 10 were 0.4 and 0.3 respectively, mean estimates were extremely
close at 0.35/0.35 under scenario 9 and 0.27/0.27 under scenario 10 for B1/B2.
The lack of spread of the distributions under scenarios 9 and 10 was also clear
from the low standard deviations: 0.07/0.07 under scenario 9 and 0.04/0.04
under scenario 10 for B1/B2. This high accuracy when input threshold values
were low, and hence subgroup size large, was likely in part due to the ten-
dency of this method to underestimate the location of the optimal threshold,
evidenced by the left skew of plots in Figures 5.11 and 5.13.
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Figure (5.13) Histograms of optimal biomarker threshold estimates for B1 and B2 under
scenarios 7-10. The input threshold values in each case have been overlaid as a vertical red
dashed line. Note that as the figure is read from top to bottom, the subgroup size decreases.
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Figure 5.14 shows histograms of threshold estimates for B1 and B2 under
scenarios 11 and 12. In these scenarios, treatment e↵ect and ↵1 were fixed
and ↵2 was varied. This was done to explore threshold identification accuracy
when input thresholds were separate. The appropriate location of the input
was identified in each case, with the peak of each distribution located at the
input value in each case. Threshold identification accuracy was lower under
scenario 11 compared to scenario 12, evident by the increased spread of values
of Figures 5.14a and 5.14b vs 5.14c and 5.14d, this was because the sensitive
subgroup size was smaller under scenario 11 with ↵2 = 0.7 vs ↵2 = 0.3 under
scenario 12.
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(d) Scenario 12 - B2

Figure (5.14) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 11 and 12. The input threshold values in each case have been overlaid as
a vertical red dashed line.

Figure 5.15 shows histograms of threshold estimates for B1 and B2 under
scenarios 7, 13 and 14. In these scenarios, treatment e↵ect and input thresholds
were fixed and slope parameters �1 and �2 were varied, to explore the e↵ect that
steepness of biomarker response surface had on accuracy. As the biomarker-
response surface became flatter, threshold identification accuracy fell sharply.
Under scenario 13, in which �1 = �2 = 4 (vs 8 in scenario 7), distributions
of estimates begin to skew to the left, with the majority of estimates at lower
values. Under scenario 14, in which �1 = �2 = 2, distributions were heavily
left skewed and there was nothing resembling a peak at the input threshold
on either plot. Distributions under flat response surfaces resembled those of
scenarios 5 and 6, in which the treatment was broadly e↵ective.
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Figure (5.15) Histograms of optimal biomarker threshold estimates for B1 and B2 un-
der scenarios 7, 13 and 14. The input threshold values in each case have been overlaid as
a vertical red dashed line. Note that as the figure is read from top to bottom, the steep-
ness of the biomarker-response probability surface decreases.
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Scenario
Mean(SD)

B1 B2
1 0.45(0.07) 0.45(0.07)
2 0.43(0.09) 0.43(0.09)
3 0.44(0.13) 0.44(0.13)
4 0.52(0.18) 0.51(0.19)
5 0.32(0.09) 0.33(0.09)
6 0.29(0.07) 0.29(0.07)
7 0.51(0.12) 0.50(0.12)
8 0.55(0.14) 0.56(0.15)
9 0.35(0.07) 0.35(0.07)
10 0.27(0.04) 0.27(0.04)
11 0.42(0.11) 0.58(0.13)
12 0.44(0.09) 0.27(0.05)
13 0.45(0.13) 0.46(0.14)
14 0.38(0.13) 0.38(0.13)

Table (5.8) The mean and standard deviation of optimal biomarker threshold esti-
mates for B1 and B2 under all scenarios
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5.4.4 E↵ect of Sample Size

The simulation study was re-implemented using di↵erent values of input sam-
ple size in trial to observe the e↵ect this had on empirical power, both subgroup
specific and overall, as well as threshold identification accuracy. Scenarios 1-
10 were re-implemented using N = 500, N = 250 and N = 150. Simulations
under di↵erent sample sizes were repeated using only the 5x5 input grid size
and response definition 2, the e↵ect changing grid size and response definition
had on empirical power and threshold identification accuracy are discussed in
later sections.

Empirical Power

The following summary measures were collected for each scenario in order to
contrast empirical power across sample sizes: the proportion of trials that iden-
tified a significant overall test, significant subgroup test or any significant test
were captured, as well as the mean number of significant tests over simulated
trials. Summary measures for all scenarios under each sample size are given in
Table 5.9.

Figure 5.16 shows how the proportion of trials that identified a signifi-
cant overall test changed between samples sizes under scenarios 1-4, therefore
showing the respective relationships between overall empirical power and de-
creasing treatment e↵ect. Higher sample size lead to higher overall empirical
power in these scenarios; overall empirical power was consistently highest un-
der N = 1000 and consistently lowest under N = 150. The proportion of trials
that identified a significant overall test fell as the magnitude of treatment ef-
fect decreased under all sample sizes. When the treatment e↵ect was largest
(scenario 1), overall empirical power was 100% under N = 1000, 98% under
N = 500, 80% under N = 250 and 56% under N = 150. All proportions fell
as the magnitude of treatment e↵ect decreased, for N = {1000, 500, 250, 150}:
97%, 72%, 35% and 20% under scenario 2 and 34%, 17%, 9% and 4% under
scenario 3. Under the null scenario, there was little di↵erence in observed pro-
portions of trials that identified a significant overall test: 0.76% for N = 1000,
1.22% for N = 500, 1.52% for N = 250 and 1.52% for N = 150.
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Figure (5.16) Overall empirical power under scenarios 1-4, for each implemented sam-
ple size (N = 1000, 500, 250, 150). Note as the plot is viewed from left to right, the magni-
tude of treatment e↵ect decreases.

Figure 5.17 shows how the proportion of trials that identified a signifi-
cant overall test changed between samples sizes under scenarios 7-10, there-
fore showing the respective relationships between overall empirical power and
decreasing sensitive subgroup size. Again, higher sample size lead to higher
overall empirical power in these scenarios; overall empirical power was consis-
tently highest under N = 1000 and consistently lowest under N = 150. The
proportion of trials that identified a significant overall test fell as the sensitive
subgroup size decreased under all sample sizes. Under the largest subgroup
size, scenario 10, the proportion of trials that identified a significant overall
test was 100% for N = 1000, 99% for N = 500, 83% for N = 250 and 60% for
N = 150. Proportions steadily decreased as the subgroup size decreased, until
there was a large di↵erence in these proportions between sample sizes under
the smallest subgroup sizes. Under scenario 8, in which the sensitive subgroup
size was approximately 9% of the population, overall empirical power was 33%
for N = 1000, 14% for N = 500, 4% for N = 250 and 5% for N = 150.
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Figure (5.17) Overall empirical power under scenarios 2, 7, 8, 9 and 10, for each im-
plemented sample size (N = 1000, 500, 250, 150). Note as the plot is viewed from left to
right, the subgroup size decreases.

Figure 5.18 shows how the proportion of trials that identified a significant
subgroup test changed between samples sizes under scenarios 1-4, therefore
showing the respective relationships between subgroup empirical power and
decreasing treatment e↵ect. Higher sample size lead to higher subgroup em-
pirical power in these scenarios; subgroup empirical power was consistently
highest under N = 1000 and consistently lowest under N = 150. The pro-
portions of trials that identified a significant subgroup test were comparable
under scenario 1 in which treatment e↵ect was largest: 100% for N = 1000
and N = 500, 99% for N = 250 and 89% for N = 150. As treatment e↵ect
decreased, the proportions for N = 250 and N = 150 fell sharply to 77%
and 52% respectively under scenario 2, whereas proportions for N = 1000 and
N = 500 remained relatively unchanged at 100% and 98% respectively. Un-
der scenario 3, proportions fell sharply again for all except N = 1000: 82%
for N = 1000, 50% for N = 500, 19% for N = 250 and 10% for N = 150.
Under the null scenario, proportions for all sample sizes converged and were
comparable at 4.66%, 4.56%, 4.22% and 4.22% for N = {1000, 500, 250, 150}
respectively. Moreover, the FWER under each sample size was estimated as
the proportion of trials that identified any significant result in the null case,
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scenario 4. This proportion was consistent across sample sizes at 4.98% for
N = 1000, 5.08% for N = 500, 5.04% for N = 250 and 5.04% for N = 150.
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Figure (5.18) Subgroup specific empirical power under scenarios 1-4, for each imple-
mented sample size (N = 1000, 500, 250, 150). Note as the plot is viewed from left to right,
the magnitude of treatment e↵ect decreases.

Figure 5.19 shows how the proportion of trials that identified a significant
subgroup test changed between samples sizes under scenarios 7-10, therefore
showing the respective relationships between subgroup empirical power and
decreasing subgroup size. Again, higher sample size lead to higher subgroup
empirical power in these scenarios; subgroup empirical power was consistently
highest under N = 1000 and consistently lowest under N = 150. The pro-
portion of trials that identified a significant subgroup test fell as the sensitive
subgroup size decreased under all sample sizes. The proportions of trials that
identified a significant subgroup test were comparable under scenario 10 in
which the subgroup size was largest: 100% for N = 1000 and N = 500, 97%
for N = 250 and 83% for N = 150. These proportions quickly diverged as the
subgroup size decreased, proportions for N = 250 and N = 150 fell sharply,
whereas proportions for N = 1000 and N = 500 remained high. Under sce-
nario 2 proportions were 77% and 52% for N = 250 and N = 150 respectively,
whereas proportions for N = 1000 and N = 500 were 100% and 98% respec-
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tively. Under scenario 8, the smallest sensitive subgroup size, this di↵erence
in proportions was at its most extreme: 89% for N = 1000, 55% for N = 500,
19% for N = 250 and 10% for N = 150.
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Figure (5.19) Subgroup specific empirical power under scenarios 2, 7, 8, 9 and 10, for
each implemented sample size (N = 1000, 500, 250, 150). Note as the plot is viewed from
left to right, the subgroup size decreases.
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Sample Size Scenario Prop Main Prop Sub Prop Any Avg. Total⇤

N=1000

1 1.00 1.00 1.00 26.00
2 0.97 1.00 1.00 25.54
3 0.34 0.82 0.82 12.10
4 0.01 0.05 0.05 0.21
5 1.00 1.00 1.00 25.99
6 1.00 1.00 1.00 25.68
7 0.77 0.99 0.99 23.74
8 0.33 0.89 0.89 15.67
9 1.00 1.00 1.00 25.73
10 1.00 1.00 1.00 25.76

N=500

1 0.98 1.00 1.00 25.81
2 0.72 0.98 0.98 20.74
3 0.17 0.50 0.50 5.06
4 0.01 0.05 0.05 0.26
5 1.00 1.00 1.00 25.81
6 1.00 1.00 1.00 23.18
7 0.37 0.86 0.86 14.26
8 0.14 0.55 0.56 6.04
9 0.93 1.00 1.00 23.06
10 0.99 1.00 1.00 23.64

N=250

1 0.80 0.99 0.99 22.73
2 0.35 0.77 0.77 10.92
3 0.09 0.19 0.21 1.54
4 0.02 0.05 0.05 0.19
5 1.00 1.00 1.00 24.02
6 0.95 0.93 0.97 15.40
7 0.17 0.53 0.54 5.88
8 0.04 0.19 0.20 1.60
9 0.60 0.92 0.92 14.85
10 0.83 0.97 0.97 17.12

N=150

1 0.56 0.89 0.89 15.79
2 0.20 0.52 0.52 5.67
3 0.04 0.10 0.12 0.87
4 0.02 0.04 0.05 0.29
5 0.94 0.96 0.97 18.91
6 0.75 0.72 0.82 8.94
7 0.09 0.26 0.27 2.37
8 0.05 0.10 0.12 0.87
9 0.28 0.71 0.71 8.75
10 0.60 0.83 0.84 11.70

Table (5.9) The observed proportions of trials that identified a significant overall test, sig-
nificant subgroup test, any significant test and the mean number of observed significant tests,
under all scenarios, for all implemented sample sizes. All values are given as a proportion, with
the exception of Avg. Total⇤, which is the average across simulated trials. All simulations were
carried out using a 5x5 grid and response definition 2.
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Threshold Identification Accuracy

The focus of this section is to explore the e↵ect that input sample size had on
optimal threshold identification accuracy. Histograms of optimal biomarker
threshold estimates were produced under each input sample size of N = 1000,
N = 500, N = 250 and N = 150, in order to compare distributions. His-
tograms for each sample size under scenarios 2, 8 and 10 are presented here,
using the 5x5 grid size and response definition 2 as input; results are restricted
to these scenarios as the e↵ects of treatment e↵ect and sensitive subgroup size
on threshold identification accuracy have already been explored. These sce-
narios presented a good choice from all possible scenarios in which to compare
accuracy across sample sizes, as the treatment e↵ect was fixed (PT,H = 0.6
and PT,L = PC = 0.2) and a range of sensitive subgroup sizes were covered
(↵1,↵2 = 0.3 in scenario 10, ↵1,↵2 = 0.5 in scenario 2 and ↵1,↵2 = 0.7 in
scenario 8), allowing comparison of sample size specific accuracy at a normal
level and both extremes considered. Figure 5.20 shows histograms of optimal
threshold estimates for all input sample sizes under scenario 2, Figure 5.21
shows these under scenario 8 and Figure 5.22 shows these under scenario 10.

In all scenarios presented, threshold identification accuracy decreased as the
input sample size decreased. Under scenario 2 (Figure 5.20), in which the input
thresholds were central, the distributions under N = 1000 had strong peaks
at the input values, with slight tails towards lower threshold values. As the
sample size decreased, the peaks of the distributions became less pronounced
and tails of the distributions became heavier as more threshold estimates were
located at both higher and lower values. This is clear from reading Figure 5.20
from top to bottom, more and more weight of the distributions was located
at both higher and lower threshold values as the sample size decreased. At
the two smallest sample sizes, N = 250 and N = 150, distributions were very
dispersed and the peaks present at higher sample size were no longer clear.
This reduction in accuracy was also evident from the means and standard
deviations of threshold distributions as the sample size decreased. Means of
the distributions stayed consistent at 0.43/0.43 for B1/B2 under N = 1000,
0.42/0.43 under N = 500, 0.42/0.43 under N = 250 and 0.43/0.43 under
N = 150. The standard deviation of threshold estimates however increased as
sample size decreased: 0.09/0.09 for B1/B2 under N = 1000, 0.11/0.11 under
N = 500, 0.13/0.13 under N = 250 and 0.15/0.15 under N = 150.
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Figure (5.20) Histograms of optimal biomarker threshold estimates for B1 and B2 under
scenario 2, for each implemented sample size (N = 1000, 500, 250, 150). The input threshold
values in each case have been overlaid as a vertical red dashed line.
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Under scenario 8 (Figure 5.21), in which the input thresholds were high, ac-
curacy was already poor under the largest sample size, as discussed in Section
5.4.3. There were slight peaks in the distributions under N = 1000, but with
heavy tails towards lower values. As sample size decreased, accuracy again
decreased, with more estimates located at higher and lower values of the dis-
tributions. Under N = 500 and N = 250, the peaks that were initially present
became less pronounced, with increased weight in the tails towards lower val-
ues. Under the smallest sample size, N = 150, the distribution of estimates
resembled that of a uniform distribution, with no noticeable peak at the input
threshold. This increased shift towards lower values and overall drop in ac-
curacy with lower sample size was also evident from the means and standard
deviations of the distributions. The means of the estimates decreased steadily
with sample size, demonstrating the left shit of the distributions: 0.55/0.56 for
B1/B2 under N = 1000, 0.53/0.54 under N = 500, 0.51/0.51 under N = 250
and 0.49/0.49 under N = 150. The standard deviations increased as sam-
ple size decreased, demonstrating the increased spread of estimates: 0.14/0.15
under N = 1000, 0.17/0.16 under N = 500, 0.18/0.18 under N = 250 and
0.18/0.18 under N = 150.
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Figure (5.21) Histograms of optimal biomarker threshold estimates for B1 and B2 under
scenario 8, for each implemented sample size (N = 1000, 500, 250, 150). The input threshold
values in each case have been overlaid as a vertical red dashed line.
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Under scenario 10 (Figure 5.22), in which the input thresholds were low,
accuracy was already very high under the largest sample size, as discussed
in Section 5.4.3. Both of the distributions were located wholly at the input
threshold, with almost no tails towards higher values. Accuracy did decrease as
the sample size decreased, but due to the high initial accuracy underN = 1000,
a high level of accuracy remained. As the sample size decreased, the tails of
the distributions towards higher values became heavier, although the major-
ity of the distributions were still located at the input threshold. This was
also evident from the means and standard deviations of threshold estimates.
The means increased slightly as sample size decreased, demonstrating the in-
creased number of estimates located in the tail to higher values: 0.27/0.27 for
B1/B2 under N = 1000, 0.28/0.28 under N = 500, 0.30/0.30 under N = 250
and 0.32/0.31 under N = 150. The standard deviations increased as sam-
ple size decreased, demonstrating the increased spread of threshold estimates:
0.04/0.04 for B1/B2 under N = 1000, 0.06/0.07 under N = 500, 0.08/0.08
under N = 250 and 0.11/0.10 under N = 150.
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Figure (5.22) Histograms of optimal biomarker threshold estimates for B1 and B2 under
scenario 10, for each implemented sample size (N = 1000, 500, 250, 150). The input threshold
values in each case have been overlaid as a vertical red dashed line.
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Sample Size Scenario
Mean(SD)

B1 B2

N=1000

1 0.45(0.07) 0.45(0.07)
2 0.43(0.09) 0.43(0.09)
3 0.44(0.13) 0.44(0.13)
4 0.52(0.18) 0.51(0.19)
5 0.32(0.09) 0.33(0.09)
6 0.29(0.07) 0.29(0.07)
7 0.51(0.12) 0.50(0.12)
8 0.55(0.14) 0.56(0.15)
9 0.35(0.07) 0.35(0.07)
10 0.27(0.04) 0.27(0.04)

N=500

1 0.44(0.09) 0.44(0.09)
2 0.42(0.11) 0.43(0.11)
3 0.44(0.15) 0.45(0.15)
4 0.49(0.19) 0.51(0.19)
5 0.34(0.10) 0.33(0.09)
6 0.30(0.09) 0.31(0.09)
7 0.49(0.14) 0.49(0.14)
8 0.53(0.17) 0.54(0.16)
9 0.35(0.08) 0.35(0.08)
10 0.28(0.06) 0.28(0.07)

N=250

1 0.42(0.11) 0.42(0.10)
2 0.42(0.13) 0.43(0.14)
3 0.45(0.16) 0.45(0.17)
4 0.49(0.19) 0.48(0.19)
5 0.34(0.11) 0.35(0.11)
6 0.33(0.12) 0.33(0.12)
7 0.48(0.16) 0.47(0.16)
8 0.51(0.18) 0.51(0.18)
9 0.36(0.11) 0.36(0.11)
10 0.30(0.08) 0.30(0.08)

N=150
1 0.42(0.12) 0.42(0.12)
2 0.43(0.15) 0.43(0.15)
3 0.45(0.17) 0.45(0.17)
4 0.47(0.19) 0.48(0.18)
5 0.35(0.11) 0.35(0.11)
6 0.34(0.13) 0.35(0.13)
7 0.48(0.17) 0.47(0.16)
8 0.49(0.18) 0.49(0.18)
9 0.37(0.13) 0.37(0.13)
10 0.32(0.11) 0.31(0.10)

Table (5.10) The mean and standard deviation of optimal biomarker threshold estimates
for B1 and B2 under all scenarios, for all implemented sample sizes.

282



5.4.5 E↵ect of Grid Size

As discussed in Section 5.3, simulations were implemented under di↵ering sets
of candidate thresholds, providing a variety of grid sizes. The following were
considered:

- 3⇥ 3 grid: C1 = C2 = {0.25, 0.5, 0.75}

- 5⇥ 5 grid: C1 = C2 = {0.25, 0.375, 0.5, 0.625, 0.75}

- 9⇥ 9 grid: C1 = C2 = {0.25, 0.3125, 0.375, 0.4375, 0.5, 0.5625, 0.625,
0.6875, 0.75}

It was of interest to explore the e↵ect grid size had on accuracy of opti-
mal threshold estimation and empirical power to detect overall and subgroup
e↵ects. Scenarios 1-14 were implemented using the above grid sizes, using
response definition 2 and N = 1000 as inputs.

Empirical Power

Figures 5.23 and 5.24 show the proportion of trials that identified significant
overall or subgroup results respectively in scenarios 1-4 and 7-10; summary
measures for all scenarios under all grid sizes are also given in Table 5.11.
From Figures 5.23 and 5.24, it is clear that the grid size used had little impact
on overall or subgroup empirical power. Figure 5.23a shows the proportion
of trials that identified a significant overall result under scenarios 1-4 (i.e.
decreasing treatment e↵ect), for each grid size; Figure 5.23b shows the pro-
portion of trials that identified a significant overall result under scenarios 7-10
(i.e. decreasing sensitive subgroup size), for each grid size; Figure 5.24a shows
the proportion of trials that identified a significant subgroup result under sce-
narios 1-4, for each grid size; Figure 5.24b shows the proportion of trials that
identified a significant subgroup result under scenarios 7-10, for each grid size.
On all of these figures, there is overlap and near equality of all lines, with black
representing 3x3, red 5x5 and green 9x9. The similarity of observed propor-
tions across grid sizes in the scenarios presented in the Figures, and also under
scenarios 5, 6, 11, 12, 13 and 14, is also clear from Table 5.11. Observed pro-
portions of trials that identified an overall, subgroup or any significant result
were consistent across grid sizes under all implemented scenarios.
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(b) Overall empirical power, scenarios 2, 7, 8, 9 and 10

Figure (5.23) Exploring the e↵ect of changing grid size on overall empirical power.
Grid sizes implemented: 3x3, 5x5 and 9x9.
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(b) Subgroup specific empirical power, scenarios 2, 7, 8, 9 and 10

Figure (5.24) Exploring the e↵ect of changing grid size on subgroup specific empirical
power. Grid sizes implemented: 3x3, 5x5 and 9x9.
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Grid Size Scenario Prop Main Prop Sub Prop Any Av Total

3x3

1 1.00 1.00 1.00 10.00
2 0.96 1.00 1.00 9.71
3 0.40 0.81 0.81 4.70
4 0.01 0.05 0.05 0.10
5 1.00 1.00 1.00 10.00
6 1.00 1.00 1.00 9.85
7 0.74 0.99 0.99 8.78
8 0.36 0.87 0.87 5.93
9 1.00 1.00 1.00 9.86
10 1.00 1.00 1.00 9.88
11 0.69 0.99 0.99 8.36
12 1.00 1.00 1.00 9.81
13 0.85 0.99 0.99 9.00
14 0.88 0.98 0.98 8.50

5x5

1 1.00 1.00 1.00 26.00
2 0.97 1.00 1.00 25.54
3 0.34 0.82 0.82 12.10
4 0.01 0.05 0.05 0.21
5 1.00 1.00 1.00 26.00
6 1.00 1.00 1.00 25.68
7 0.77 0.99 0.99 23.74
8 0.33 0.89 0.89 15.67
9 1.00 1.00 1.00 25.73
10 1.00 1.00 1.00 25.76
11 0.67 1.00 1.00 22.17
12 1.00 1.00 1.00 25.67
13 0.81 1.00 1.00 23.70
14 0.86 0.98 0.98 21.67

9x9

1 1.00 1.00 1.00 81.99
2 0.96 0.99 0.99 80.23
3 0.31 0.83 0.83 36.09
4 0.01 0.05 0.05 0.34
5 1.00 1.00 1.00 81.99
6 1.00 1.00 1.00 81.08
7 0.72 0.99 0.99 74.89
8 0.31 0.90 0.90 46.63
9 1.00 1.00 1.00 81.21
10 1.00 1.00 1.00 81.29
11 0.65 0.99 0.99 70.52
12 0.99 1.00 1.00 80.97
13 0.82 0.99 0.99 74.52
14 0.82 0.99 0.99 67.83

Table (5.11) The observed proportions of trials that identified a significant overall test,
significant subgroup test, any significant test and the mean number of observed significant
tests, under all scenarios, for all implemented grid sizes. All values are given as a proportion,
with the exception of Avg. Total⇤, which is the average across simulated trials. All simulations
were carried out using N = 1000 and response definition 2.
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Threshold Identification Accuracy

The focus of this section is to explore the e↵ect that input grid size had on
optimal threshold identification accuracy. Histograms of optimal biomarker
threshold estimates were produced under each input grid size of 3x3, 5x5 and
9x9, in order to compare distributions. Histograms for each grid size under
scenarios 2, 8 and 10 are presented here, using N = 1000 and response defini-
tion 2 as input. Figure 5.25 shows histograms of optimal threshold estimates
for all input grid sizes under scenario 2, Figure 5.26 shows the same under
scenario 8 and Figure 5.27 shows this under scenario 10.

From Figures 5.25, 5.26 and 5.27, it is clear that input grid size did not have
a large e↵ect on threshold identification accuracy. There were some superficial
di↵erences between histograms within Figures, mainly due to the di↵erence in
the number and size of bins. Because there were di↵erent numbers of candidate
thresholds between grid sizes, by definition, the size of and number of bins
varied between histograms. Take Figures 5.25b, 5.25d and 5.25f as an example.
The distributions for 5x5 and 9x9 were similar, but the histogram for 9x9 had
a higher number of bins, allowing for a more ‘detailed’ distribution. Thus
when comparing the histograms for the 3x3 grid to the 5x5 or 9x9, there are
some cosmetic di↵erences, though distributions were largely similar. This was
consistent across the presented scenarios and is supported by comparing the
means and standard deviations (Table 5.12) within scenarios across grid sizes.
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Figure (5.25) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenario 2, for each implemented grid size (3x3, 5x5 and 9x9). The input threshold
values in each case have been overlaid as a vertical red dashed line.
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Figure (5.26) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenario 8, for each implemented grid size (3x3, 5x5 and 9x9). The input threshold
values in each case have been overlaid as a vertical red dashed line.
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Figure (5.27) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenario 10, for each implemented grid size (3x3, 5x5 and 9x9). The input threshold
values in each case have been overlaid as a vertical red dashed line.
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Grid Size Scenario
Mean(SD)

B1 B2

3x3

1 0.48(0.07) 0.48(0.07)
2 0.44(0.11) 0.44(0.11)
3 0.43(0.15) 0.44(0.15)
4 0.52(0.21) 0.50(0.21)
5 0.30(0.10) 0.30(0.10)
6 0.27(0.07) 0.27(0.07)
7 0.47(0.12) 0.48(0.12)
8 0.54(0.18) 0.54(0.17)
9 0.32(0.11) 0.33(0.12)
10 0.25(0.02) 0.25(0.03)

5x5

1 0.45(0.07) 0.45(0.07)
2 0.43(0.09) 0.43(0.09)
3 0.44(0.13) 0.44(0.13)
4 0.52(0.18) 0.51(0.19)
5 0.32(0.09) 0.33(0.09)
6 0.29(0.07) 0.29(0.07)
7 0.51(0.12) 0.50(0.12)
8 0.55(0.14) 0.56(0.15)
9 0.35(0.07) 0.35(0.07)
10 0.27(0.04) 0.27(0.04)

9x9

1 0.45(0.06) 0.45(0.06)
2 0.43(0.09) 0.44(0.08)
3 0.44(0.13) 0.45(0.13)
4 0.52(0.18) 0.51(0.18)
5 0.34(0.09) 0.34(0.08)
6 0.30(0.07) 0.30(0.07)
7 0.51(0.11) 0.51(0.11)
8 0.56(0.14) 0.56(0.14)
9 0.36(0.07) 0.36(0.06)
10 0.28(0.04) 0.28(0.04)

Table (5.12) The mean and standard deviation of optimal biomarker threshold esti-
mates for B1 and B2 under all scenarios, for all implemented grid sizes.
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5.4.6 E↵ect of Response Definition

As discussed in Section 5.3, simulations were implemented under two di↵erent
definitions of patient response probability, a step function (definition 1) and a
smooth function (definition 2). It was of interest to explore whether choice of
response definition had an e↵ect on accuracy of optimal threshold estimation
and empirical power to detect overall and subgroup e↵ects. Scenarios 1-12 were
implemented using both response definitions, the 5x5 grid size and N = 1000
as inputs; scenarios 13 and 14 were excluded as these were directly related to
the slope using response definition 2.

Empirical Power

Figures 5.28 and 5.29 show the proportion of trials that identified significant
overall or subgroup results respectively in scenarios 1-4 and 7-10; summary
measures for all scenarios under both response definitions are also given in
Table 5.13. Specifically, Figure 5.28a shows the proportion of trials that iden-
tified a significant overall result under scenarios 1-4 (i.e. decreasing treatment
e↵ect), for each response definition; Figure 5.28b shows the proportion of trials
that identified a significant overall result under scenarios 7-10 (i.e. decreas-
ing sensitive subgroup size), for each response definition; Figure 5.29a shows
the proportion of trials that identified a significant subgroup result under sce-
narios 1-4, for each response definition; Figure 5.29b shows the proportion of
trials that identified a significant subgroup result under scenarios 7-10, for each
response definition. Under scenarios 1-4, in which the treatment e↵ect was al-
tered and the subgroup size fixed at ↵1 = ↵2 = 0.5, observed proportions
of trials that identified a significant overall (Figure 5.28a) and a significant
subgroup result result (Figure 5.29a) were comparable between response defi-
nitions. Under scenarios 5 and 6, in which the treatment was broadly e↵ective,
overall and subgroup empirical power were identical under response definitions
at 100% for all.

There were discrepancies observed between response definitions as the sen-
sitive subgroup size changed. Under scenarios 7-10, the treatment e↵ect was
fixed at PT,H = 0.6, PT,L = PC = 0.2 and input thresholds varied to change the
sensitive subgroup size. When the subgroup size was large, observed propor-
tions of trials that identified a significant overall (Figure 5.28b) and a signifi-
cant subgroup result result (Figure 5.29b) were comparable between response
definitions. As the subgroup size decreased however, the empirical power under
the smooth definition of treatment response (definition 2) was higher. This is
clear from the separation of lines showing proportion of trials that identified a
significant overall test after scenario 2 on Figure 5.28b and of the lines showing
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proportion of trials that identified a significant subgroup test after scenario 7
on Figure 5.29a. Under the smallest subgroup size, scenario 8, the overall em-
pirical power when using the smooth definition of treatment response was 33%,
versus 17% under definition 1, the step function. Subgroup empirical power
was similarly higher under definition 2 vs definition 1, though the absolute
di↵erence was less extreme, at 89% and 81% respectively. Similar patterns
persisted under scenarios 11 and 12. Under scenario 12 in which the subgroup
size was larger (↵1 = 0.5, ↵2 = 0.3), overall and subgroup empirical power were
comparable between response definitions. Under scenario 11 however, in which
the subgroup size was smaller (↵1 = 0.5, ↵2 = 0.7), overall empirical power
was higher under response definition 2 (67% vs 51%), though the increase in
subgroup empirical power was only slight (100% vs 98%).
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(a) Overall empirical power, scenarios 1-4
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(b) Overall empirical power, scenarios 2, 7, 8, 9 and 10

Figure (5.28) Exploring the e↵ect of changing definition of biomarker-response rela-
tionship on overall empirical power.
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(a) Subgroup specific empirical power, scenarios 1-4
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(b) Subgroup specific empirical power, scenarios 2, 7, 8, 9 and 10

Figure (5.29) Exploring the e↵ect of changing definition of biomarker-response rela-
tionship on subgroup specific empirical power.
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Grid Size Scenario Prop Main Prop Sub Prop Any Av Total

Def 1 -
Step

1 1.00 1.00 1.00 25.99
2 0.96 1.00 1.00 25.64
3 0.28 0.80 0.80 11.44
4 0.01 0.05 0.05 0.21
5 1.00 1.00 1.00 26.00
6 1.00 1.00 1.00 25.87
7 0.63 0.99 0.99 22.19
8 0.17 0.81 0.81 10.38
9 1.00 1.00 1.00 25.65
10 1.00 1.00 1.00 25.74
11 0.51 0.98 0.98 20.27
12 0.99 1.00 1.00 25.61

Def 2 -
Smooth

1 1.00 1.00 1.00 26.00
2 0.97 1.00 1.00 25.54
3 0.34 0.82 0.82 12.10
4 0.01 0.05 0.05 0.21
5 1.00 1.00 1.00 26.00
6 1.00 1.00 1.00 25.68
7 0.77 0.99 0.99 23.74
8 0.33 0.89 0.89 15.67
9 1.00 1.00 1.00 25.73
10 1.00 1.00 1.00 25.76
11 0.67 1.00 1.00 22.17
12 1.00 1.00 1.00 25.67

Table (5.13) The observed proportions of trials that identified a significant overall
test, significant subgroup test, any significant test and the mean number of observed sig-
nificant tests, under all scenarios, for both response definitions. All values are given as a
proportion, with the exception of Avg. Total⇤, which is the average across simulated tri-
als. All simulations were carried out using N = 1000 and grid size 5x5.
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Threshold Identification Accuracy

The focus of this section is to explore the e↵ect that input response definition
had on optimal threshold identification accuracy. Histograms of threshold
estimates for each response definition under scenarios 2, 8 and 10 are presented
here, using N = 1000 and the 5x5 grid size as input. Figure 5.31 shows
histograms of optimal threshold estimates for both response definitions under
scenario 2, Figure 5.32 shows the same under scenario 8 and Figure 5.33 shows
this under scenario 10. As discussed in Section 5.3, a step function and a
smooth function were used to define the probability of a patient’s response to
treatment in this simulation study. It was of interest to explore the impact
that the use of a smoothed, more clinically realistic definition of treatment
response had on threshold identification accuracy.

Threshold identification accuracy was slightly dependent on input response
definition. When using the smooth function (definition 2) vs the step func-
tion (definition 1), distributions of threshold estimates were shifted slightly
towards lower values. To illustrate this, compare Figures 5.31a and 5.31c; un-
der definition 1, there was a strong peak at the input value with slight tails
towards upper and lower values. Whereas under definition 2, there were much
more estimates at lower values, evident from the increased weight of the tail to
lower values on Figure 5.31c. This was consistent across scenarios, there was
a shift towards lower threshold estimates when using the smooth definition of
response probability vs the step function. This was also clear from the ob-
served means and standard deviations of threshold estimates (Table 5.14). For
example, under scenario 8, means were slightly lower under response definition
2 but standard deviations remained similar: 0.61(0.15)/0.61(0.14) for B1/B2
under definition 1 and 0.55(0.14)/0.56(0.15) under definition 2.
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(a) Response Definition 1 (Step), PT,L = 0.1, PT,H = 0.9, µ1 = µ2 = 0.5

(b) Response Definition 2 (Smooth), PT,L = 0.1, PT,H = 0.9,
↵1 = ↵2 = 0.5, �1 = �2 = 8

Figure (5.30) Plots showing the relationship between biomarker values and the prob-
ability of patient response, for patients that received the experimental treatment, for each
response definition. Biomarker values are plotted along the x- and y-axes, probability of
patient response is plotted along the z-axis and patient response is represented by the
colour of each point (green=response, blue=no response)
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Figure (5.31) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenario 2, for each response definition. The input threshold values in each case
have been overlaid as a vertical red dashed line.
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Figure (5.32) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenario 8, for each response definition. The input threshold values in each case
have been overlaid as a vertical red dashed line.
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Figure (5.33) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenario 10, for each response definition. The input threshold values in each case
have been overlaid as a vertical red dashed line.
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Grid Size Scenario
Mean(SD)

B1 B2

Def 1

1 0.49(0.03) 0.50(0.03)
2 0.48(0.07) 0.48(0.07)
3 0.47(0.12) 0.47(0.13)
4 0.50(0.19) 0.51(0.19)
5 0.37(0.11) 0.38(0.11)
6 0.30(0.09) 0.30(0.09)
7 0.56(0.12) 0.56(0.12)
8 0.61(0.15) 0.61(0.14)
9 0.38(0.05) 0.38(0.05)
10 0.28(0.06) 0.28(0.06)

Def 2

1 0.45(0.07) 0.45(0.07)
2 0.43(0.09) 0.43(0.09)
3 0.44(0.13) 0.44(0.13)
4 0.52(0.18) 0.51(0.19)
5 0.32(0.09) 0.33(0.09)
6 0.29(0.07) 0.29(0.07)
7 0.51(0.12) 0.50(0.12)
8 0.55(0.14) 0.56(0.15)
9 0.35(0.07) 0.35(0.07)
10 0.27(0.04) 0.27(0.04)

Table (5.14) The mean and standard deviation of optimal biomarker threshold esti-
mates for B1 and B2 under all scenarios, for each response definition.
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5.5 Simulation Study Results - Comparison of

the Romano and Wolf Procedure with the

Holm Procedure

The use of the Romano andWolf method was compared with the Holm multiple
testing procedure within the described trial framework. It was of interest to
ensure that Romano and Wolf procedure appropriately controlled the FWER
whilst providing increased power over the Holm method to detect overall and
subgroup e↵ects. In this section, results of simulations are presented when
using both methods under scenarios 1-10, using the 5x5 grid size, response
definition 2 and N = {1000, 500, 250, 150}.

5.5.1 Empirical Power

The empirical power for both methods was estimated as the proportion of
trials that identified a significant test, both overall and subgroup specific. Fig-
ures 5.34, 5.35, 5.36 and 5.37 compare these proportions graphically under a
variety of scenarios for all sample sizes implemented. Specifically, Figure 5.34
shows the proportion of trials that identified a significant overall result for
each procedure, under scenarios 1-4 (i.e. decreasing treatment e↵ect) and all
sample sizes; Figure 5.35 shows the proportion of trials that identified a sig-
nificant overall result for each procedure, under scenarios 7-10 (i.e. decreasing
subgroup size) and all sample sizes; Figure 5.36 shows the proportion of trials
that identified a significant subgroup result for each procedure under scenar-
ios 1-4; Figure 5.37 shows the proportion of trials that identified a significant
subgroup result for each procedure under scenarios 7-10. Summary measures
under all scenarios and sample size when using the Holm procedure are given
in Table 5.15, the same information when using the Romano and Wolf has
been shown previously in Table 5.9.

From Figure 5.34, it is clear that the Romano and Wolf (R-W) procedure
provided higher overall empirical power over the Holm in scenarios 1-4, under
all implemented sample sizes. Observed proportions of trials that identified a
significant overall test were consistently higher when using the R-W procedure
over the Holm; the black line (R-W) is higher than the red (Holm) in all
presented Figures. The di↵erence in power was less pronounced when sample
size was large, and power for both methods was close to 100%. In Figure
5.34a, observed proportions were slightly higher under R-W. As sample size
decreased, the di↵erence in observed proportions became larger, which is clear
from observing the disparity between lines on Figures 5.34c and 5.34d. As an
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example, one can observe the di↵erence in proportions of trials that identified
a significant overall test under scenario 2, across sample sizes: 97% vs 93% for
N = 1000, R-W and Holm respectively; 72% vs 49% for N = 500; 35% vs 10%
for N = 250; 20% vs 2% for N = 150. Moreover, under small sample sizes such
as N = 150 or N = 250, the overall empirical power of the Holm procedure was
very poor, particularly under scenarios with moderate to low treatment e↵ect.
In these cases, the R-W procedure o↵ers a potential alternative with increased
overall power. Finally, the relationships between overall empirical power and
decreasing treatment e↵ect were similar when using both procedures, this was
consistent across all sample sizes.

Similar results were also observed under scenarios 5 and 6, in which the
treatment was e↵ective for all patients that received treatment, but more so
for biomarker-sensitive patients. Results were comparable under N = 1000
and N = 500, 100% of trials identified a significant overall test under scenarios
5 and 6, using both procedures. There were increases in power for the R-W
procedure over the Holm when N = 250: 100% vs 98% under scenario 5 and
95% vs 83% under scenario 6. This increase grew when N = 150: 94% vs 74%
under scenario 5 and 75% vs 44%.
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(b) N=500

Figure (5.34) Comparing overall empirical power when using the Romano and Wolf
(R-W) procedure vs the Holm procedure. Overall empirical power is presented for both
methods under scenarios 1-4, for all sample sizes implemented (N = 1000, 500, 250, 150).
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(c) N=250
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(d) N=150

Figure (5.34) (Continued) Comparing overall empirical power when using the Ro-
mano and Wolf (R-W) procedure vs the Holm procedure. Overall empirical power
is presented for both methods under scenarios 1-4, for all sample sizes implemented
(N = 1000, 500, 250, 150).

Again, Figure 5.35 shows that the R-W procedure provided higher overall
empirical power over the Holm in scenarios 7-10, under all sample sizes. Ob-
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served proportions of trials that identified a significant overall test were con-
sistently higher when using the R-W procedure over the Holm; the black line
(R-W) is higher than the red (Holm) in all presented Figures. When the both
the sample size and the sensitive subgroup size were large, such as N = 1000
scenarios 10, 9 and 2, observed proportions were comparable between the two
procedures. Under N = 1000 and N = 500, the di↵erence between overall
empirical power grew as the subgroup size decreased; clear from the diverging
nature of the lines after scenario 2 in Figure 5.35a and from scenario 9 in 5.35b.
Under the two smaller sample sizes, the di↵erence in observed proportions be-
tween R-W and Holm was largest under scenarios with large sensitive subgroup
sizes and decreased as the subgroup size decreased. This is clear from Figures
5.35c and 5.35d. As an example, one can observe how the di↵erence between
observed proportions changed when using N = 150: 60% vs 24% under sce-
nario 10 for R-W and Holm respectively; 28% vs 9% under scenario 9; 20% vs
2% under scenario 2; 26% vs 1% under scenario 7; 10% vs 0% under scenario
8. The relationships between overall empirical power and decreasing sensitive
subgroup size were similar when using both procedures, this was consistent
across all sample sizes.

307



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scenario

Em
pi

ric
al

 p
ow

er

R−W

Holm

10 9 2 7 8

(a) N=1000
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(b) N=500

Figure (5.35) Comparing overall empirical power when using the Romano and
Wolf (R-W) procedure vs the Holm procedure. Overall empirical power is presented
for both methods under scenarios 2, 7, 8, 9 and 10, for all sample sizes implemented
(N = 1000, 500, 250, 150).
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(c) N=250
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(d) N=150

Figure (5.35) (Continued) Comparing overall empirical power when using the Romano
and Wolf (R-W) procedure vs the Holm procedure. Overall empirical power is presented
for both methods under scenarios 2, 7, 8, 9 and 10, for all sample sizes implemented (N =
1000, 500, 250, 150).

Figure 5.36 shows that the R-W procedure provided higher subgroup em-
pirical power over the Holm in scenarios 1-4, under all sample sizes. Observed
proportions of trials that identified a significant subgroup test were consistently
higher when using the R-W procedure over the Holm; the black line (R-W)
is higher than the red (Holm) in all presented Figures. The di↵erence in sub-
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group empirical power between the R-W and Holm procedures was similar to
that of the di↵erence in overall empirical power. Under large sample sizes, the
di↵erence in subgroup empirical power was less pronounced, with near equal-
ity in scenarios with large treatment e↵ect (scenarios 1 and 2). As the sample
size decreased, the the di↵erence in observed proportions became larger, clear
from the increased separation between black and red lines on Figures 5.36c and
5.36d. Subgroup empirical power remained high when using both procedures
when the treatment e↵ect was largest, except under the smallest sample size
of N = 150; under this sample size the disparity between the R-W and Holm
procedures was at its largest. Observed proportions of trials that identified a
significant subgroup test when using the R-W and Holm procedures respec-
tively under scenario 1 were: 100% vs 100% for N = 1000; 100% vs 100% for
N = 500; 99% vs 94% for N = 250; 89% vs 57% for N = 150. The relation-
ships between subgroup empirical power and decreasing treatment e↵ect were
similar when using both procedures, this was consistent across all sample sizes.

Similar results were also observed under scenarios 5 and 6, in which the
treatment was e↵ective for all patients that received treatment, but more so
for biomarker-sensitive patients. Results were comparable under N = 1000
and N = 500. There were increases in power for the R-W procedure over the
Holm when N = 250: 100% vs 98% under scenario 5 and 93% vs 73% under
scenario 6. This increase grew when N = 150: 96% vs 78% under scenario 5
and 72% vs 29%.
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(a) N=1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Scenario

Em
pi

ric
al

 p
ow

er

R−W

Holm

1 2 3 4

(b) N=500

Figure (5.36) Comparing subgroup specific empirical power when using the Romano
and Wolf (R-W) procedure vs the Holm procedure. Subgroup specific empirical power is
presented for both methods under scenarios 1-4, for all sample sizes implemented (N =
1000, 500, 250, 150).
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(c) N=250
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(d) N=150

Figure (5.36) (Continued) Comparing subgroup specific empirical power when using
the Romano and Wolf (R-W) procedure vs the Holm procedure. Subgroup specific empir-
ical power is presented for both methods under scenarios 1-4, for all sample sizes imple-
mented (N = 1000, 500, 250, 150).

Figure 5.37 shows that the R-W procedure provided higher subgroup empir-
ical power over the Holm in scenarios 7-10, under all sample sizes. Observed
proportions of trials that identified a significant subgroup test were consis-
tently higher when using the R-W procedure over the Holm; the black line
(R-W) is higher than the red (Holm) in all presented Figures. When the sam-
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ple size was large, observed proportions were comparable between R-W and
Holm procedures. In fact, under N = 1000, subgroup empirical power was
only noticeably higher when using R-W in the smallest subgroup size, scenario
8. Under N = 500, subgroup empirical power was comparable between R-W
and Holm under large subgroup sizes, but the increase in power of R-W over
Holm increased as the subgroup size decreased, with a large di↵erence under
scenario 8. This is clear from the observed proportions of trials that identified
a significant subgroup e↵ect when using R-W vs Holm in this case: 100% vs
100% under scenario 10; 100% vs 99% under scenario 9; 98% vs 92% under
scenario 2; 86% vs 67% under scenario 7; 55% vs 27% under scenario 8. The
di↵erence in subgroup empirical power grew as the sample size decreased, clear
from Figures 5.37c and 5.37d. Moreover, the di↵erence between the observed
proportions when using R-W vs Holm was very large under scenarios with the
largest subgroup size and decreased as the subgroup size decreased. As an
example, one can observe how the di↵erence between observed proportions of
trials that identified a significant subgroup e↵ect changed when using N = 150:
83% vs 50% under scenario 10 for R-W and Holm respectively; 71% vs 29%
under scenario 9; 52% vs 10% under scenario 2; 26% vs 2% under scenario 7;
10% vs 0% under scenario 8. The relationships between subgroup empirical
power and decreasing sensitive subgroup size were similar when using both
procedures, this was consistent across all sample sizes.
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(b) N=500

Figure (5.37) Comparing subgroup specific empirical power when using the Romano
and Wolf (R-W) procedure vs the Holm procedure. Subgroup specific empirical power is
presented for both methods under scenarios 2, 7, 8, 9 and 10, for all sample sizes imple-
mented (N = 1000, 500, 250, 150).
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(c) N=250
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(d) N=150

Figure (5.37) (Continued) Comparing subgroup specific empirical power when using
the Romano and Wolf (R-W) procedure vs the Holm procedure. Subgroup specific empir-
ical power is presented for both methods under scenarios 2, 7, 8, 9 and 10, for all sample
sizes implemented (N = 1000, 500, 250, 150).
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Sample Size Scenario Prop Main Prop Sub Prop Any Av Total

N=1000

1 1.00 1.00 1.00 25.98
2 0.93 1.00 1.00 25.00
3 0.19 0.64 0.65 7.38
4 0.00 0.01 0.01 0.03
5 1.00 1.00 1.00 25.98
6 1.00 1.00 1.00 25.45
7 0.62 0.98 0.98 21.42
8 0.20 0.75 0.75 10.24
9 1.00 1.00 1.00 25.45
10 1.00 1.00 1.00 25.57

N=500

1 0.95 1.00 1.00 25.09
2 0.49 0.92 0.92 15.76
3 0.04 0.23 0.23 1.39
4 0.00 0.01 0.01 0.03
5 1.00 1.00 1.00 25.41
6 1.00 0.99 1.00 19.93
7 0.18 0.66 0.67 8.16
8 0.03 0.26 0.27 1.95
9 0.82 0.99 0.99 19.85
10 0.97 1.00 1.00 21.21

N=250

1 0.47 0.94 0.94 15.18
2 0.10 0.45 0.45 3.37
3 0.01 0.03 0.04 0.12
4 0.00 0.00 0.00 0.01
5 0.98 0.98 0.99 18.54
6 0.83 0.73 0.88 7.36
7 0.03 0.15 0.16 0.80
8 0.01 0.03 0.03 0.10
9 0.30 0.73 0.74 6.99
10 0.61 0.90 0.90 9.66

N=150

1 0.13 0.57 0.58 4.29
2 0.02 0.10 0.11 0.43
3 0.00 0.00 0.01 0.01
4 0.00 0.00 0.00 0.00
5 0.74 0.78 0.86 7.70
6 0.44 0.29 0.50 1.71
7 0.01 0.02 0.03 0.08
8 0.00 0.00 0.00 0.01
9 0.09 0.29 0.31 1.45
10 0.24 0.50 0.53 2.76

Table (5.15) The observed proportions of trials that identified a significant overall test,
significant subgroup test, any significant test and the mean number of observed significant
tests, under scenarios 1-10, for all sample sizes, when using the Holm procedure for FWER
control. All values are given as a proportion, with the exception of Avg. Total⇤, which is the
average across simulated trials.
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5.5.2 FWER Control

To contrast the level of FWER control between the Holm and Romano and
Wolf procedures within this framework, the proportion of trials that identified
at least one significant result in the null scenario were compared between the
two methods. Observed proportions were contrasted from simulations using
a 5x5 grid size, response definition 2, PT,H = PT,L = PC = 0.2 (null treat-
ment e↵ect) and di↵ering sample sizes of N = {1000, 500, 250, 150}. These
proportions are represented graphically as a bar chart in Figure 5.38 and are
also presented in Table 5.16. On Figure 5.38, observed proportions of trials
that identified at least one significant result are presented when using both the
Holm and Romano and Wolf procedures, for N = 1000, N = 500, N = 250
and N = 150. From Figure 5.38 and Table 5.16, it is clear that the observed
proportions of trials that identified at least one significant result were con-
sistently higher under the R-W method than the Holm. The ↵ level for both
procedures was set to 0.05, therefore both controlled the FWER to 0.05. It has
been shown in Section 5.4.1 that the R-W procedure successfully controlled the
FWER at 0.05 under a variety of scenarios defined by sample size, grid size and
response definition, with FWER values close to 0.05 in all cases. Under the
Holm however, the FWER was much lower under all sample sizes; observed
proportions were 1.12% for N = 1000, 0.8% under N = 500, 0.33% under
N = 250 and 0.23% under N = 150. Such low values of FWER show that
the Holm was overly conservative in this setting, in which there were many
strongly correlated hypothesis tests to be carried out and the R-W procedure
provides more power over this method; note that the increase in power for
the R-W procedure was demonstrated in non null scenarios in Section 5.5.1.
Moreover, the level of FWER control when using the Holm procedure was de-
pendent on the sample size, clear from the decreasing level of FWER as the
sample size decreased. When using the R-W procedure however, there was no
dependency on sample size, with consistent FWER control acheived across all
implemented sample sizes.
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Figure (5.38) The observed proportions of trials that identified at least one significant
result under the null scenario, when using the Romano and Wolf (R-W) procedure vs the
Holm procedure. Proportions for each method are given for all sample sizes implemented.
The target level of FWER control (0.05) has been overlaid as a horizontal red dashed line.

Holm R-W
N = 1000 1.12 4.98
N = 500 0.80 5.08
N = 250 0.33 5.04
N = 150 0.23 5.04

Table (5.16) The observed proportions of trials that identified at least one significant
result under the null scenario, when using the Romano and Wolf (R-W) procedure vs the
Holm procedure, for all sample sizes. Actual values are presented here and are given as
%s.
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5.6 Application to Data

To demonstrate the applicability of the Romano and Wolf procedure within
the single stage trial design described above, the framework was applied to an
external dataset. The dataset is briefly described in Section 5.6.1 and results
of the analysis given in Section 5.6.2.

5.6.1 Background

The presented framework was applied to the sepsis dataset (Riviere 2021),
a simulated clinical trial which has previously been used to demonstrate the
applicability of the SIDES (Lipkovich et al. 2011) and Virtual Twins (Foster
et al. 2011) methods. The sepsis dataset contains simulated data for 470 pa-
tients with a binary survival outcome, treatment allocation and 11 covariates.
Although simulated, this dataset was used to demonstrate the framework as
there was a ‘true’ optimal subgroup defined by two continuous biomarkers
built into the dataset, allowing for identification of the thresholds for these
biomarkers and comparison to ‘true’ values.

Again, thresholds for two continuous biomarkers were identified alongside
an assessment of overall treatment e↵ect. A grid search over candidate thresh-
olds for the two biomarkers was carried out, with the Romano and Wolf pro-
cedure utilised to control the FWER. Results of the application of this trial
framework are given in Section 5.6.2.

5.6.2 Results

There were 11 potential covariates to be used as candidate biomarkers within
the discussed trial framework: time from first sepsis organ fail to drug start,
patient age, baseline platelet count, baseline Sequential Organ Failure Assess-
ment (SOFA) score, baseline creatinine, number of baseline organ failures, pre
infusion apache-ii score, baseline Glasgow Come Scale (GCS) score, baseline
serum IL-6 concentration, baseline activity score and baseline bilirubin. Sim-
ple univariate analyses were conducted to identify associations between these
covariates and the probability of patient response. Logistic regression models
were fitted between survival outcome at 28 days and each covariate. The fol-
lowing covariates had a significant associaton with outcome: apache-ii score
(OR=0.923, P<0.0001), age (0.959, P<0.0001), GCS score (1.061, P=0.0184)
and daily living score (0.935, P=0.0036). Baseline apache ii-score and age had
the most significant associations with survival outcome and so these were used
as ‘biomarkers’ within the framework to identify thresholds for the optimal
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patient subgroup. From the literature on the sepsis dataset, the true subgroup
defined in this data set was apache ii-score<26 and age49.8, so initial results
were in alignment with this. Note that the optimal subgroup was located at
lower values for each of the input biomarkers as opposed to higher values, this
was also supported by observed univariate analyses as odds ratios for both were
less than 1, so lower values were associated with a higher odds of response.
The trial framework was altered to reflect this, with patients belonging to a
subgroup defined by c12 and c23 if B1i < c12 and B2i < c23, for example. Plots
of density for age and apache-ii score, split by responder status, were also pro-
duced to visually assess that lower values for each were associated with higher
response probability, as seen in Figure 5.39
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Figure (5.39) Density plots for age and apache-ii score, split and colour coded by re-
sponse status, with blue showing responders

The following logistic regression models were also fitted to assess the inter-
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action between the biomarkers of interest and the treatment:

log

✓
pi

1� pi

◆
= �0 + �1 ⇤ Trti + �2 ⇤ Apachei + �3 ⇤ Trti ⇤ Apachei

log

✓
pi

1� pi

◆
= �0 + �1 ⇤ Trti + �2 ⇤ Agei + �3 ⇤ Trti ⇤ Agei

Where Trti is the treatment assignment for patient i, Apachei is the base-
line apache-ii score for patient i and Agei is the age of patient i. Within each of
these models, the interaction coe�cient between each biomarker and treatment
was highly significant (P=0.0059 for age and P<0.0001 for apache-ii score).

Threshold Identification

Two searches over a range of quantile values for each biomarker were
carried out. The first was a 5x5 grid made from candidate threshold sets
Cage = {46.5, 53.7, 59.9, 65.9, 73.1} and Capache = {19, 21, 23, 26, 28}, covering
the range between 25% and 75% prevalence, as carried out in the simulation
studies. The second was a 9x9 grid made from Cage = {46.5, 49.8, 53.7, 56.1, 59.9,
63.5, 65.9, 68.8, 73.1} and Capache = {19, 20, 21, 22, 23, 25, 26, 27, 28}, this cov-
ered the range between 25% and 75% prevalence.

5x5 Grid
Following implementation of the trial framework, a reject/accept decision was

obtained for each subgroup and the assessment of overall treatment e↵ect.
When using the 5x5 grid, there were 4 significant test results of the 26 carried
out. In decreasing order of initial test statistic size, these were:

• sub45: Age  65.9 and Apache  28

• sub44: Age  65.9 and Apache  26

• sub35: Age  59.9 and Apache  28

• sub25: Age  53.7 and Apache  28

The odds ratios in these subgroups were: ORSub45 = 2.463, ORSub44 =
2.435, ORSub35 = 2.779 and ORSub25 = 3.922. Note that the overall assessment
of treatment e↵ect was not significant and had an OR of 0.75.

9x9 Grid
Following implementation of the trial framework, a reject/accept decision was
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obtained for each subgroup and the assessment of overall treatment e↵ect.
When using the 9x9 grid, there were 4 significant test results of the 82 carried
out. In decreasing order of initial test statistic size, these were:

• sub79: Age  65.9 and Apache  28

• sub78: Age  65.9 and Apache  27

• sub49: Age  56.1 and Apache  28

• sub69: Age  63.5 and Apache  28

The odds ratios in these subgroups were: ORSub45 = 2.463, ORSub44 =
2.524, ORSub35 = 3.423 and ORSub25 = 2.640. Note that the overall assessment
of treatment e↵ect was again not significant.

In both of these grid sizes, a significant result was obtained in the opti-
mal subgroup, defined as patients with an Apache-ii score  28 and younger
than 65.9 years of age for both. Because this dataset was simulated, a ‘true’
subgroup of patients showing increased treatment response was built into the
dataset design; this subgroup was defined as patients with an Apache-ii score
 26 and younger than 49.8 years of age. The optimal threshold estimates
identified using the discussed framework were slightly larger than the true val-
ues of the sensitive subgroup (28 vs 26 for apache-ii score and 65.9 vs 49.8 for
age). One can compare the number of patients in the subgroup, mean response
rate and odds ratio of treatment e↵ect (with associated P-value) within each
of these subgroups; these results are given in Table 5.17.

Subgroup N Mean Response Treatment OR P-value⇤

R-W 258 0.76 1.79 0.0495
True 100 0.90 3.50 0.0675

All data 470 0.61 0.75 0.1620

Table (5.17) A comparison of performance metrics for the subgroup identified by each
method in the sepsis dataset. Metrics given are the subgroup size (N), the mean response,
the odds ratio for treatment e↵ect within the subgroup and the P-value⇤ associated with
the odds ratio.

From Table 5.17, it is clear that a sensitive subgroup of patients showing
increased treatment benefit was identified by the described framework in com-
bination with the R-W method. In the overall trial population the treatment
was actually shown to decrease odds of survival (OR=0.75), in the identified
subgroup the odds ratio for treatment e↵ect was 1.79; patients on treatment
within the subgroup had a 79% increase in the odds of survival compared to
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those on control. However, when compared to the ‘true’ subgroup, the in-
creased in odds ratio was not as large, the odds ratio for treatment e↵ect in
this subgroup was 3.50. However, the P-value for the test of treatment e↵ect
(i.e. H0 : OR = 1) in the subgroup identified by the R-W method was lower
than that observed in the ‘true’ subgroup: 0.0495 vs 0.0675. As described
in the framework, the optimal subgroup was defined as that with the largest
test statistic (smallest P-value) prior to implementing the Romano and Wolf
procedure. Therefore, although the odds ratio for treatment e↵ect was lower
in the R-W subgroup, this was still identified as the optimal subgroup due to
the lower observed P-value. This was most likely because the test statistic was
influenced not only by the magnitude of the coe�cient for treatment e↵ect in
the subgroup (log(OR) in this case) but also by the number of patients in the
subgroup. The sample size of the optimal R-W subgroup was much larger that
the ‘true’ subgroup, NR�W = 258 vs NTrue = 100, which contributed to the
higher value of the test statistic, and lower P-value, observed.
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5.7 Discussion

This work has presented an implementation of the Romano andWolf step-down
multiple testing procedure in the novel setting of dual biomarker threshold
identification within a confirmatory phase III clinical trial. It was of inter-
est to investigate whether the Romano and Wolf method could o↵er increased
power to detect overall and subgroup treatment e↵ects, whilst maintaining
control of the FWER, in a setting in which there are potentially many highly
correlated subgroups. Assessments of treatment e↵ect were carried out on the
whole trial population as well as within patient subgroups defined by combi-
nations of candidate biomarker thresholds; the optimal subgroup, and hence
biomarker thresholds, was defined as that which achieved the largest test statis-
tic when testing for treatment e↵ect. The Romano and Wolf procedure was
then implemented to account for the multiplicity arising from the assessment
of multiple hypotheses. An extensive simulation study was implemented, as
well as application to an external dataset, to explore the described framework
under a number of di↵erent scenarios as well as to contrast performance with
an existing method of FWER control.

In the simulation study, it was shown that the Romano and Wolf procedure
achieves control of the FWER under a number of di↵erent null scenarios. In
cases in which there was no treatment e↵ect, i.e. the probability of response
was the same for all patients regardless of treatment assignment and biomarker
status, the proportion of trials that identified any significant result was kept to
0.05 in all cases. This was shown to be true for all grid sizes implemented, both
response definitions and all sample sizes. Although encouraging, implemented
null scenarios only demonstrated the ability of the Romano and Wolf procedure
to control the FWER in the weak sense. Possible extensions to this work
could therefore investigate FWER control in the strong sense by setting up
appropriate scenarios. Such a scenario could be defined by having treatment
e↵ect in some subgroups but not others, possibly by the introduction of a
negative treatment e↵ect. The probability of falsely rejecting some true null
hypothesis when another (or others) is false when using the Romano and Wolf
method could then be investigated.

Overall and subgroup specific empirical power when using the Romano
and Wolf procedure were also explored under a number of di↵erent scenarios
in the simulation study. Both measures were heavily influenced by the size
of the sensitive subgroup, the magnitude of treatment e↵ect and the sample
size. As the magnitude of treatment e↵ect fell, both the overall empirical
power and subgroup specific empirical power fell; a similar relationship was
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observed with decreasing sensitive subgroup size and decreasing sample size.
In all cases, the overall empirical power decreased at a faster rate than the
subgroup specific empirical power. In cases in which the sample size was large
and treatment e↵ect moderate, the empirical power to detect subgroup e↵ects
remained high. For example, for N = 1000, pT,H = 0.6, pT,L = pC = 0.2
and prevalence of sensitive patients was approximately 9%, the proportion of
trials that identified a significant subgroup result was 0.89. Under scenarios in
which the prevalence of sensitive patients was high, subgroup specific empirical
power remained high even at small sample sizes. With subgroup prevalence
set at approximately 49% and pT,H = 0.6 and pT,L = pC = 0.2, the proportion
of trials that identified a significant subgroup result was 1.00 for N = 1000,
1.00 for N = 500, 0.97 for N = 250 and 0.83 for N = 150.

Comparison of performance between the Romano and Wolf step-down pro-
cedure and the Holm step-down procedure was also carried out within the
simulation study. It was of interest to investigate whether the Romano and
Wolf method o↵ered increased power to detect treatment e↵ects over the Holm
method, whilst maintaining control of the FWER, in the setting described in
this chapter. The proportion of trials that identified a significant overall or
subgroup specific treatment e↵ect were compared between the two methods
across a variety of scenarios and sample sizes. Both the overall and subgroup
specific empirical power were consistently higher when using the Romano and
Wolf method over the Holm. This increase in empirical power was shown under
all scenarios, with superiority of the Romano and Wolf persisting as sensitive
subgroup size and magnitude of treatment e↵ect changed. Moreover, the re-
lationship became exaggerated as the sample size decreased, the di↵erence in
power displayed between the two methods became larger as the number of
patients in the trial decreased. The level of FWER control was also compared
between procedures by observing the proportion of trials that identified any
significant test under null scenarios; this was carried out across a variety of
sample sizes. As discussed previously, the FWER was controlled appropri-
ately at 0.05 when using the Romano and Wolf procedure, proportions were
consistently close to 0.05. The FWER was controlled when using the Holm
procedure, though was overly conservative in all cases and observed propor-
tions were much lower than when using the Romano and Wolf. Moreover, as
observed when comparing empirical power between the two methods, the di↵er-
ence between observed proportions increased as the sample size decreased. The
Romano and Wolf procedure maintained FWER control at 0.05 as the sample
size decreased, but the Holm procedure became more conservative. This sim-
ulation study has shown that when carrying out subgroup identification in a
setting in which there are potentially many highly correlated subgroups (dual
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biomarker threshold identification in particular), the Holm procedure is overly
conservative and increased power to detect treatment e↵ects can be obtained
by using the Romano and Wolf procedure.

Although the focus of work in this chapter was on power and FWER con-
trol, accuracy of optimal threshold estimates was also explored. The optimal
subgroup, and therefore biomarker threshold combination, in this work was
defined as that achieving the largest test statistic when testing for treatment
e↵ect, prior to implementing the Romano and Wolf procedure. Accuracy was
generally high when the magnitude of treatment e↵ect was high and the sen-
sitive subgroup size was large, though there was a consistent left skew on
histograms of threshold estimates, which became more pronounced with de-
creasing treatment e↵ect. Accuracy of threshold estimates decreased as the
magnitude of treatment e↵ect and the sensitive subgroup size decreased, accu-
racy was also poor when the treatment was broadly e↵ective in the whole trial
population and treatment benefit not restricted solely to biomarker sensitive
patients. In the described framework, subgroup identification was driven by
hypothesis testing within subgroups and observing test statistics for treatment
e↵ect in those subgroups. The Romano and Wolf procedure was implemented
in order to control the FWER from the increased testing frequency, rather
than as a method of subgroup identification. Therefore, as the testing pro-
cedure and subgroup identification processes are separate, further work could
explore incorporating other methodology into the described framework. As
discussed in Chapter 4, recursive partitioning methods showed good accuracy
across scenarios when carrying out dual biomarker threshold identification.
Further work could investigate the e↵ects on accuracy, power and FWER con-
trol when using such a threshold identification technique in combination with
the Romano and Wolf procedure.

A variety of candidate threshold set sizes were implemented in this work,
leading to either 3x3, 5x5 or 9x9 grid searches used when carrying out optimal
threshold identification. It was demonstrated that the grid size used had little
impact on empirical power and threshold identification accuracy and FWER
was controlled in all cases. When choosing candidate threshold sets, and there-
fore grid size, one can be confident of similar performance and choice should be
dictated by computational considerations and trial needs. For example, if one
has a handful of clinically dictated thresholds to test, then a 3x3 grid search
would be used; a 9x9 grid search (or potentially larger) can be used in cases
where an exhaustive search over a specified range is required and computation
time/resources are not limited.
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There is scope for further work to more thoroughly investigate the use
of the Romano and Wolf procedure in this setting. In this work, use of the
Romano and Wolf procedure to facilitate subgroup identification was explored
within a single stage trial. The described trial design could be extended to
include a second stage, to allow validation of the identified subgroup. Further
work could explore the merits and challenges of such an extension. This two
stage design could take many forms, not limited to:

• A ‘learning’ stage and a ‘validation’ stage. The biomarker subgroup is
identified using stage 1 patients and is validated using stage 2 patient
data, much like in the Adaptive Signature Design used in Chapter 4. An
overall assessment of treatment e↵ect can be carried out using patient
data from stages 1 and 2.

• A two stage enrichment design. Recruitment is unrestricted in stage 1
up to an interim analysis at which an overall assessment of treatment
e↵ect is carried out and the optimal biomarker subgroup identified. In
stage 2 recruitment is restricted solely to identified sensitive patients and
a final analysis tests for treatment e↵ect in this population. This would
also allow for futility stopping rules to be incorporated at the interim
analysis.

• A two stage enrichment design which makes use of combination methods
(eg Fishers combination) to combine the tests carried out in each stage
into an overall test (Ding et al. 2020).

Results presented in this chapter have shown that the Romano and Wolf
procedure achieves control of the FWER whilst providing increased power over
the Holm in settings with multiple highly correlated subgroup tests. Results
are generalisable to similar settings where there are multiple, overlapping sub-
groups in which to assess treatment e↵ect. To firmly conclude that the Romano
and Wolf is a superior method of FWER control in such settings, further com-
parisons to other methods should be carried out. The Holm was initially used
as a comparator as it is also a step-down procedure and is spoken about by
Westfall and Young when developing the methodology that Romano and Wolf
built upon. Examples of additional methods that could be contrasted include
step-down procedures, gatekeeping and fixed-sequence methods. Moreover,
the described setting is one example of how a positive correlation structure
between test statistics could be achieved i.e. overlapping subgroups. To be
able to generalise the presented results further, other positively correlated tests
could be investigated, such as correlated endpoints. Potential examples include
complete response and partial response, overall survival and progression-free
survival, and response at timepoint A and response at timepoint B.
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To further support the use of the Romano and Wolf method over other
methods to control the FWER in confirmatory clinical trials, it should be
investigated whether the Romano and Wolf procedure o↵ers more power in
settings where the tests do not have a positive correlation structure. For
example, does this method still provide more power and achieve control of
FWER when the tests are negatively correlated or share no correlation?

Finally, many of the extensions discussed in Section 4.7 would also aid
in increasing the generalisability of results presented here: extension of the
biomarker-response relationship; simulation scenarios with increased response
on the control arm; application to real, ‘noisy’ data.
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Chapter 6

Conclusions and Further Work

This thesis explored optimisation of biomarker defined patient subgroups within
a confirmatory clinical trial setting. Personalised healthcare has been driven by
the increased availability and quality of molecular profiling data, which allows
for the discovery and development of predictive biomarkers. The motivation
of this thesis was to utilise such biomarker information to optimally identify
responding patient subgroups, helping to make clinical trial design and imple-
mentation safer and more e�cient.

The main research questions of this thesis were:

1. Explore the optimisation of the cutpoint of a continuous biomarker within
a confirmatory study, whilst still controlling the overall false positive rate.
Generalise this setting to incorporate multiple biomarkers to identify the
patient population of interest. Explore methods to optimise the patient
population and embed these into confirmatory trial design

2. Explore complex patient selection tools based on multiple variable mea-
surements as well as other novel statistical approaches. How can these
methods be used to address multiplicity arising from the optimisation
of a patient population, as well as the multiplicity associated with test-
ing multiple independent hypotheses within a confirmatory clinical trial
setting

This chapter is organised as follows: Section 6.1 presents a discussion of the
presented work addressing the above research questions; Section 6.2 presents
discussions of limitations of this thesis; Section 6.3 presents scope for future
work; Section 6.4 presents concluding remarks.
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6.1 Summary

Chapter 1 provided the foundation for this research, by introducing the drug
development and clinical trial process, personalised healthcare, adaptive de-
signs and biomarkers. Established statistical concepts used throughout this
work were also presented. Chapter 2 then presented a summary of the current
literature regarding clinical trial designs incorporating biomarker information.
Focus was given to investigating trial designs which identify an optimal thresh-
old for a single continuous biomarker to define a sensitive patient subgroup.

Chapter 3 presented work addressing research question 1. The adaptive
design for biomarker threshold and validation, put forward by Renfro et al
(Renfro et al. 2014), was explored in detail. In their trial, an optimal threshold
for a single continuous biomarker is identified alongside appropriately powered
e�cacy analyses, with further options to stop the trial for futility or adaptively
restrict patient accrual. The trial framework was discussed and a simulation
study implemented to investigate trial operating characteristics under a num-
ber of scenarios.

The potential to generalise this setting to incorporate multiple biomarkers
was discussed in Chapter 3, Section 4; motivating examples supporting the use
of two predictive continuous biomarkers to define the sensitive patient popu-
lation were presented. The remainder of Chapter 3 then presented novel work
exploring an extension of the discussed trial framework to incorporate a second
continuous biomarker. A simulation study was implemented to investigate the
e↵ect this extension had on trial operating characteristics and to preliminarily
explore di↵erent methods of threshold identification for two biomarkers.

Results of the simulation study showed that dual biomarker threshold iden-
tification methods can be incorporated into the confirmatory clinical trial set-
ting with limited impact on trial operating characteristics. By contrasting
results with the original single biomarker case when using a similar method
of threshold identification, it was observed that trial operating characteris-
tics were comparable within implemented scenarios. Moreover, similar rela-
tionships were observed between the single and dual biomarker cases when
changing input treatment e↵ect and sensitive subgroup size. Trial operating
characteristics were shown to be heavily dependent on threshold identification
method used. Large discrepancies in measured e�cacy outcomes, trial sam-
ple size and subgroup size were observed among the implemented methods.
The grid search methods consistently identified a much higher proportion of
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trials with a promising biomarker at the interim analysis when compared to
the modelling method, as discussed in Chapter 3, Section 4.2. This lead to
much fewer trials being stopped for futility at the interim, many more trials
achieving a significant final e�cacy result and much larger trial sizes (due to
di↵erences in stage 2 patient recruitment). Therefore, in this work, the mod-
elling method was shown to be the optimal choice of threshold identification
among those implemented.

The focus of the work in this chapter was to investigate whether carrying
out dual biomarker threshold identification within a confirmatory trial was
feasible. With this feasibility demonstrated, work in Chapter 4 focussed on
threshold identification accuracy in the setting of dual predictive biomarkers
and Chapter 5 focussed on research question 2. These chapters presented
novel work investigating the optimisation of dual biomarker thresholds with
respect to identification accuracy and controlling the multiplicity associated
with this optimisation. As discussed in Chapter 3, these were were explored
within simpler trial designs due to complex design features and ine�cient use
of patient data within the Renfro et al trial framework.

Results presented in Chapter 4 detailed novel work addressing research
question 1, with the focus on optimising biomarker threshold identification
accuracy. Four methods of dual biomarker threshold identification were imple-
mented within the Adaptive Signature Design (Freidlin & Simon 2005) frame-
work and a simulation study carried out. The two stage framework of the
ASD design was suitable in this setting as biomarker thresholds were identi-
fied using stage 1 patients and validated in stage 2 of the trial. A modelling
based method, grid search, recursive partitioning and peeling method were
contrasted by respective levels of overall empirical power, subgroup specific
empirical power and threshold identification accuracy. It was demonstrated
that recursive partitioning methods had the best overall accuracy in the sim-
ulation study among the methods used. Accuracy of all methods was heavily
dependent on the magnitude of treatment e↵ect and the sensitive subgroup
size. Higher levels of both overall and subgroup specific empirical power were
also observed when using the recursive partitioning method over other imple-
mented methods. Subgroup specific power was closely linked with method
accuracy, as the power of the stage 2 subgroup test was dependent on both
magnitude of treatment e↵ect within the subgroup and subgroup sample size.
The grid search and peeling methods consistently overestimated the optimal
threshold, defining smaller sensitive patient subgroups, leading to lower sub-
group empirical power in the stage 2 e�cacy test when compared with other
methods.
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The presented results support the use of dual biomarker threshold iden-
tification techniques in appropriate settings. In cases in which there are two
continuous biomarkers known to be predictive of increased treatment e↵ect for
a therapy or combination of therapies, and one wishes to identify a threshold
for each to define a sensitive subgroup of patients, the methods explored in
Chapter 4 show great promise. Identified thresholds could then be used moving
forward in the drug development process to restrict patient enrollment criteria
in future trials and on the drug label following approval to define what pa-
tients should be treated with the therapy. Depending on the setting, identified
thresholds could be used individually for each biomarker or used in combina-
tion to define the sensitive subpopulation.

Chapter 5 presented work addressing research question 2. In the setting
of dual biomarker threshold identification, there exist potentially many highly
correlated subgroups in which hypothesis testing is carried out. Conventional
methods of FWER control can be overly conservative in this situation by failing
to account for the dependence structure between tests (Clarke et al. 2020). It
was investigated whether use of resampling based multiple testing procedures,
which implicitly account for the dependence structure, could o↵er increased
levels of power whilst maintaining control of the FWER.

The Romano and Wolf (Romano & Wolf 2005b,a, 2016) step down multiple
testing procedure was implemented within a single stage trial in which treat-
ment e↵ect was assessed in the overall population and the optimal subgroup
identified. Subgroup identification was carried out using a grid search over
candidate threshold combinations, as implemented in Chapters 3 and 4. In
this work, the optimal subgroup was defined as the subgroup in which the test
statistic for treatment e↵ect was the largest. Levels of overall and subgroup
empirical power when using the Romano and Wolf procedure in this setting
were contrasted with the use of the Holm procedure (Holm 1979) via a sim-
ulation study. It was shown that the empirical power to detect overall and
subgroup e↵ects was higher when using the Romano and Wolf method, across
all explored scenarios. FWER was also controlled consistently at 0.05 when
using the Romano and Wolf method, whereas the Holm was demonstrated to
be overly conservative in all scenarios. Therefore, in settings in which there
is high correlation between hypothesis tests, traditional methods of FWER
control are overly conservative and resampling based methods (specifically the
Romano and Wolf procedure) o↵er increased power.
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The Romano and Wolf procedure should be implemented in scenarios in
which there are multiple correlated hypotheses to be assessed simultaneously.
As discussed, the Romano and Wolf procedure o↵ers increased power over tra-
ditional methods of FWER control, specifically the Holm, in such settings.
Results have been presented in the case of assessing treatment e↵ect in multi-
ple overlapping subgroups. The presented procedure also shows great promise
in settings where multiple correlated endpoints are to be assessed as part of an
analysis, whether these are co-primary endpoints or a primary endpoint along-
side secondary endpoints. Examples include: the assessment of overall survival
alongside progression-free survival or disease-free survival within oncology tri-
als; complete response alongside partial response or complete response at other
timepoints, these could be identified by an investigator or defined using certain
criteria. Care needs to be taken when designing statistical analysis plans for
trials when using a procedure such as the Romano and Wolf as, by design,
critical values are dependent on bootstrap samples of the observed data and
therefore cannot be specified pre-trial. Health authorities may be reluctant to
accept such a proposed design and may need to be convinced of the benefits
to this approach.

6.2 Limitations

Biomarker-Response Relationship

Throughout this work, various assumptions have been made on the relation-
ship between biomarker values and the probability of patient response to treat-
ment. It was assumed that biomarkers had a monotonic increasing relationship
with the probability of response, so that sensitive subgroups were located at
extreme values and the optimal identified thresholds were a lower bound to
define the subgroup. Note that the framework also allowed for a monotonic
decreasing relationship, so that the subgroup was located at lower values and
the threshold was an upper bound. Future work could investigate cases in
which a specific region of the biomarker distribution is associated with in-
creased response probability, so the aim is to identify thresholds defining a
lower and an upper bound of the sensitive subgroup. Examples in which a
specific range of values are associated with better health outcomes include
blood pressure and blood sugar levels. High blood pressure (hypertension) is
associated with heart disease, heart attack and stroke (Hardy et al. 2021); low
blood pressure (hypotension) is associated with light headedness, feeling sick
and fainting. High blood sugar levels (hyperglycaemia) are associated with
an increased risk of diabetes; low values (hypoglycaemia) are associated with
a variety of symptoms such as weakness, blurred vision, confusion and even
seizures or fits. The healthy range for blood sugar levels is between 3.9 to 5.5
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mmol (70 to 99 mg/dL) (Cleveland Clinic n.d.). Incorporating methods that
achieve this and the impact this has on trial operating characteristics could be
investigated. The peeling method used in Chapter 4 is an example of an appli-
cable method in this scenario; directed peeling was used in this work whereas
undirected peeling allows for a central subgroup to be found (LeBlanc et al.
2002).

Some of the methods used throughout this work relied on candidate thresh-
olds to be defined prior to threshold identification being carried out. In the
implemented simulation studies, the lowest candidate threshold was set to be
the 25th percentile of the distribution, so that sensitive biomarker prevalence
was at most 75% for one biomarker. This was done because only cases in which
an input threshold for both biomarkers where the probability of response in-
creased were considered; it was of interest to search along biomarker values
for this point of increase. This therefore did not account for cases in which
any value for one, or both, biomarkers would be considered as sensitive, eg:
B1 > c13 and any value of B2 defines the sensitive subgroup (where c13 was a
candidate threshold for biomarker 1). Incorporating the potential for the sub-
group to be defined by all values for one biomarker and an identified threshold
for the other would allow increased flexibility for subgroup identification. It
would show utility in the following example scenario: preliminary information
prior to trial start provided some information on the predictive capabilities of
one of the biomarkers of interest, but upon further investigation higher values
of this biomarker were not associated with increased treatment response prob-
ability. The current framework could be easily adapted to incorporate this, by
setting the lowest candidate threshold for each biomarker as c11 = c21 = �1.

Although this work focussed on identifying thresholds for two biomark-
ers simultaneously, throughout they were assumed to be independent of one
another. Within simulation studies, each biomarker was drawn from an inde-
pendent uniform distribution prior to the obtained value for each being used
to define the probability of a patient’s response to treatment (either step or
smooth function). Therefore, throughout simulations presented in this thesis,
it was assumed that the value of one biomarker had no e↵ect on the value of
the other. Future work could explore the use of biomarkers that share some
correlation and the impact this has on threshold identification and trial operat-
ing characteristics. The use of correlated biomarker distributions would show
utility in the setting of combination treatments. If the mechanisms of action
of the treatments are similar or treatments share similar targets, then there
would likely exist some correlation between measured biomarkers. The pre-
sented work could easily be altered to reflect this kind of relationship between
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biomarkers. The actual framework makes no assumptions on this relationship,
the data generation step within each simulation study would be altered so that
biomarkers were drawn from an appropriate distribution; research would need
to be carried out on how best to define such a relationship.

Objective Functions Used Within Threshold Identification Proce-

dures

Chapter 4 presented results of a simulation study contrasting the perfor-
mance of threshold identification procedures. It was of interest to compare
performance of the implemented procedures and how the di↵erences in their
methodology a↵ected results. Within each method, choices with regard to
exact methodology were made:

• The Gini index was used to define the splitting criteria in the recursive
partitioning methods

• Within the grid search and peeling methods, the average treatment re-
sponse was chosen as the objective function to be maximised

Future work could explore the impact of these choices. Within the recur-
sive partitioning method, alternative choices for the splitting criterion could be
implemented, such as the information index or the Twoing criterion (Therneau
et al. 2015). It has been demonstrated that using the Twoing criterion and in-
formation index for splitting tends to yield trees that are more evenly balanced
than when using the Gini (Breiman 1996b, Martens et al. 2005). Investigating
the e↵ect of using these di↵erent splitting criteria on threshold identification
accuracy and trial operating characteristics would be worthwhile.

Using the grid search with di↵erent objective functions was briefly explored
in Chapter 3, the mean response and odds ratio were used. Although pre-
liminary, results at this stage showed that threshold identification accuracy
and trial operating characteristics were extremely varied when using the same
method with a di↵erent objective function. Future work could explore per-
formance of the grid search and peeling methods when using di↵erent ob-
jective functions. The following could be maximised: interaction coe�cient
between biomarker subgroup and treatment, the interaction test statistic, the
test statistic for treatment e↵ect within the subgroup or the impact (the prod-
uct of e↵ect size and subgroup prevalence (Zhao & LeBlanc 2020)).
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Moreover, it was discussed in Chapter 5 that the optimal subgroup was
identified using a grid search to maximise the test statistic for treatment e↵ect
in the subgroup, prior to implementing the Romano and Wolf procedure. It
would also be of interest to explore the maximisation of other objective func-
tions in this setting, as well as the incorporation of other threshold identifica-
tion methods (as discussed in Chapter 5, Section 7). More thought would need
to be given as to how to combine maximisation of other objective functions
or methods with use of the Romano and Wolf procedure for FWER control.
Currently, the test statistics obtained prior to implementation of the FWER
control procedure are used for both identification of the optimal subgroup (i.e.
the largest) and within the actual step-down procedure itself. The discussed
trial framework would therefore have to be redesigned to firstly identify the
optimal subgroup, whether this is using a new objective function or novel sta-
tistical method, prior to obtaining all relevant test statistics for the step-down
procedure. The bootstrap procedure used within the Romano and Wolf proce-
dure could also be utilised, further research and investigation of incorporating
threshold identification techniques into each actual bootstrap replicate could
be carried out.

Definition of Optimal Subgroup

Throughout this work, the aim has been to identify optimal biomarker thresh-
olds defining a sensitive patient subgroup. Optimal in this case has been
interpreted as thresholds defining the subgroup with the largest increase in
treatment e↵ect compared to the rest of the trial population. In the simula-
tion studies, accurate threshold estimation was then defined as proximity of
the estimated threshold to the true input threshold defining the sensitive sub-
group; this was a single value in the step function case and an approximate
area of increase in the smooth function. Di↵erent criteria could be used to
determine what is the correct threshold following identification, such as: the
largest subgroup that meets some minimum e�cacy threshold, which could be
clinically dictated; the largest subgroup that meets some minimum increase in
average e�cacy in the subgroup over the overall trial population; the largest
subgroup in which all patients have some positive increase in e�cacy over the
overall trial population; the subgroup with the largest di↵erence in treatment
e↵ect between patients within the subgroup and patients in the subgroup’s
complement.

When using the step function to define the relationship between biomarker
values and the probability of patient response, one would expect the above
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measures to arrive at comparable answers with respect to the correct thresh-
old. However, when using a smooth function (Chapters 4 and 5) and the
relationship is a bit more complicated, all measures will likely arrive at dif-
ferent answers. Exploring how the optimal/correct threshold is defined and
how this a↵ects performance of threshold identification procedures and trial
operating characteristics warrants further research.

Challenges of Potentially Small Sensitive Subgroup Size

As previously discussed in Section 3.4, using two biomarkers to define the
sensitive patient subgroup could lead to potentially very small subgroup sizes.
The limits of the utility and interpretability of such a small subgroup size
have also been discussed. There are a variety of further challenges associated
with implementing dual biomarker threshold identification with small sensitive
subgroup sizes. Firstly, in Chapters 4 and 5, the overall and subgroup specific
empirical power of a trial implementing dual biomarker threshold identification
have been shown to be heavily dependent on the sensitive subgroup size. As
the sensitive subgroup size decreased, both the empirical power to detect an
overall treatment e↵ect in the trial population and the power to detect an e↵ect
in the identified sensitive subgroup fell. To counteract this decrease in power
when dealing with a small subgroup, one would need a very large sample size
in the trial. This would bring about additional concerns regarding cost and
length of the study. The merits and drawbacks of implementing such a large
trial in order to identify a small sensitive subgroup would need to be discussed
among the study team.

The aim of dual biomarker threshold identification is to identify a threshold
for each biomarker, in order to define the sensitive subgroup. The identified
thresholds would then be used in the future to restrict enrollment criteria in
other trials, or in clinical practice to determine which patients should receive
the treatment. A high level of confidence in the identified thresholds for each
biomarker is therefore required. In the simulation studies presented in Chap-
ters 4 and 5, the accuracy of threshold identification was shown to be greatly
a↵ected by the sensitive subgroup size. Generally, as the sensitive subgroup
size decreased, the accuracy of threshold estimation fell, with distributions of
estimates having a wide spread over biomarker values. Therefore, in cases
where the sensitive subgroup size is small, confidence in the accuracy of the
identified biomarker thresholds is low. Future use of the thresholds would then
carry a significant amount of risk, which would need to be addressed and dis-
cussed with stakeholders and experts. This risk could be mitigated by further
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validation of the thresholds in a separate trial, though this brings further cost
and time to the drug development process.

6.3 Future Work

Extension to Other Tree Methods

As discussed in Chapter 4, recursive partitioning methods showed the best
performance in the simulation study. The most basic form of tree method
was used in this work, with splitting criteria defined by largest reduction in
Gini impurity. Future work employing the use of a di↵erent splitting criteria
has been discussed already. Due to the demonstrated success of recursive
partitioning in this setting, further work could explore the use of more complex
tree methods to carry out dual biomarker threshold identification. Extensions
to the tree method include:

Random Forests(Breiman 2001): Random forests are a form or ensemble
learning, in which a large number of decision trees are fitted to the data and the
outcome is defined using their collective findings. In the case of dual biomarker
threshold identification, the optimal thresholds for each biomarker would be
defined as the respective average identified threshold across all implemented
trees within the forest. It has been shown that random forests correct for the
overfitting to training data (i.e. stage 1 data in Chapter 4) that is common
when using individual trees (Hastie, Trevor, Tibshirani, Robert, Friedman
2009). Random forests may show increased accuracy over individual trees in
the setting of dual biomarker threshold identification as the observed variability
in accuracy across simulations would be accounted for within the ensemble of
trees.

SIDES (Subgroup Identification based on Di↵erential E↵ect Search)
(Lipkovich et al. 2011): In the SIDES algorithm, a cuto↵ value is chosen for
splitting which maximises the di↵erence in treatment e↵ect between child sub-
groups following the split; the most commonly used splitting criterion is the
di↵erential e↵ect P-value (Lipkovich & Dmitrienko 2014). Subgroups can also
be excluded based on minimum improvement in treatment e↵ect compared to
the subgroup pre splitting and a minimum clinically relevant level of treat-
ment e↵ect required within the subgroup (Lipkovich & Dmitrienko 2014). Use
of this splitting criterion alongside exclusion rules based on treatment e↵ect
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magnitude make the SIDES algorithm highly applicable to the setting of dual
biomarker threshold identification. However, one of the key features of the
SIDES algorithm is that multiple potential subgroups can be identified, using
various subset combinations of the candidate biomarkers (the authors note
the procedure performs very well when the number of candidate biomarkers is
within 15-20). In this setting, the number of candidate biomarkers is only 2,
so the strengths of the SIDES method may not be utilised.

Virtual Twins (Foster et al. 2011): The virtual twins approach takes concepts
from counterfactual models, the algorithm uses random forests to estimate the
treatment e↵ect for each patient. Recursive partitioning can then be imple-
mented to identify patient subgroups in which the estimated (counterfactual)
treatment e↵ect is maximised. Investigating the change in performance of re-
cursive partitioning when incorporating the counterfactual framework would
be interesting and warrants further research.

GUIDE (Generalised Unbiased Interaction Detection and Estima-
tion) (Loh 2002, 2009): The GUIDE framework is a group of tree-based pro-
cedures which overcomes the selection bias displayed in some recursive parti-
tioning subgroup identification methods. Tree based methods often select the
optimal split by cycling through all potential splits for a biomarker, whether
these come from a candidate set or any point on a given range. Selection bias
can then be introduced, as a biomarker with a larger set of candidate cuto↵s
is more likely to be chosen for splitting over a biomarker with less candidate
cuto↵s, even if there is no association with the outcome (Loh & Shin 1997).
The GUIDE framework implements a two stage selection procedure over an
exhaustive search: the best biomarker for splitting is first identified using a
univariate test statistic, adjusted for the number of candidate splits for each
biomarker; the optimal split for the identified biomarker is then determined.
Although interesting, this method may not be applicable to the setting of dual
biomarker threshold identification. The GUIDE framework is applicable to set-
tings in which there are a large number of potential biomarkers, all with di↵er-
ent numbers of candidate cuto↵s, which may define the subgroup. Overcoming
selection bias in this case is key as biomarkers with a larger number of cuto↵s
are more likely to be chosen to define the subgroup when using traditional
recursive partitioning methods. In the setting of dual biomarker threshold
identification, one wants to identify thresholds for two continuous biomarkers,
rather than identify which biomarkers, with accompanying thresholds, should
be used to define a sensitive subgroup. Therefore, in this setting, the strengths
of GUIDE would not be utilised and so performance would likely not be ex-
pected to improve compared to traditional recursive partitioning methods.
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MOB (MOdel-Based recursive partitioning (Seibold et al. 2016): When
using MOB, one fits a parametric model to the data at each split, with coef-
ficients of the model obtained using maximum likelihood, for example. The
variable selected to split the data at each step is identified using tests of in-
dependence between each possible splitting variable and the results of score
equations for the coe�cients in the fitted model. The aim is to find random
fluctuations of these scores around their mean, or identify systematic devia-
tions from the mean with respect to changing values of the potential splitting
variables. This method would be highly applicable in this setting, as one could
fit a logistic regression model to the data with treatment as the sole explana-
tory variable. The two biomarkers would be used as potential variables for
splitting, with the goal to identify at which threshold value the coe�cient for
the treatment e↵ect increased i.e. at which point the scores obtained from the
maximum-likelihood process showed deviation from their mean.

Much work has been done to compare tree methods for subgroup identifi-
cation in clinical drug development (Loh et al. 2019, Zhang et al. 2018, Huber
et al. 2019). Performance of these methods, among others, has been contrasted
in a number of settings exploring the e↵ects of sample size, biomarker prog-
nostic/predictive e↵ect and level of treatment e↵ect. It has been shown that
performance of some tree methods is better than others, dependent on sce-
nario and measure of performance. It would therefore be of interest to explore
performance of other tree based methods within the dual biomarker threshold
identification setting.

Application to Non Oncology Areas

The potential for the use of dual biomarker threshold identification was pri-
marily motivated by the increased use of targeted therapies within the field
of oncology. Motivating examples given in Chapter 3, Section 4 described re-
cent use of combination biomarkers used to predict treatment resistance in
patients with HER2 positive cancers (Zhang et al. 2015) and successful use
of PD-L1 expression with various other biomarkers within immunotherapy to
predict survival outcomes (Zhang et al. 2020, Yu et al. 2019, Althammer et al.
2019). Moreover, implemented trial designs in the simulation studies in Chap-
ters 3, 4 and 5 were built with the oncology setting in mind as all used binary
treatment response as the outcome, a common endpoint within oncology trials.
Extending the work presented in this thesis to incorporate other data types
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and endpoints, and the e↵ect this had on method performance and trial oper-
ating characteristics, would merit further investigation.

In the work presented in this thesis, unique scenarios used within simula-
tions were defined by the increase in treatment e↵ect within the sensitive sub-
group, among other measures. Due to the binary outcome, this was achieved
by defining how the probability of a patient’s response to treatment increased
as their observed biomarker values changed. This was done using both a step
and a smooth function: when using the step function, a single point for each
biomarker defined the sensitive subgroup and hence the change in response
probability; when using the smooth function, an increase in biomarker values
was associated with a smooth increase in probability of treatment response.
Incorporating other outcomes, such as continuous or time-to-event would be
achievable by defining how the treatment e↵ect changed between sensitive and
non sensitive patients. This would be simple to do in the case of the step
function approach to subgroup definition, as one could define:

• The relative or absolute di↵erence in a continuous outcome between sen-
sitive and non-sensitive patients

• The hazard ratio between sensitive and non-sensitive patients for a time-
to-event outcome

This would be more challenging when using a smooth definition, as one would
need to define a function for which the output would be smoothly increasing
as input biomarker values increased. This was achieved when using a binary
endpoint in Chapters 4 and 5 (equation (4.1)), but more work would need to be
done to explore how this would be achieved for a continuous or time-to-event
outcome.

Other Extensions

Throughout Chapters 3-5, a 2:1 randomisation allocation was used within the
simulation studies. In Chapter 3 the trial design described by Renfro et al
formed the basis of the work carried out, and their original design used a 2:1
randomisation ratio. Therefore, when extending this design to incorporate
dual biomarkers, the randomisation ratio was kept consistent to allow for in-
ternal comparisons relating to trial operating characteristics to be made. The
randomisation ratio was therefore kept consistent throughout Chapters 4 and
5 also for internal consistency throughout this thesis. Unequal randomisation
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does impact statistical power; trials using a 2:1 randomisation allocation re-
quire 12% more patients than a trial using a 1:1 randomisation in order to
detect the same size e↵ect at the same level of power (Hey & Kimmelman
2014) (this requirement increases to 33% for a 3:1 randomisation). Therefore,
there would likely be an increase in empirical overall and subgroup power in
the results presented in Chapters 3-5, were a 1:1 randomisation ratio used at
the same sample sizes presented. Use of a 1:1 randomisation ratio would also
therefore allow for a reduction in trial size to achieve the same level of empir-
ical power presented in the results in Chapters 3-5. Threshold identification
accuracy was shown to have little dependence on sample size in Chapters 4 and
5. Therefore, using an equal randomisation ratio and reducing the sample size
to keep power consistent would not a↵ect threshold identification accuracy.
Further research repeating analyses carried out in this thesis using an equal
randomisation ratio should be carried out to confirm this.

Umbrella trials were briefly discussed in Chapter 3 and helped to motivate
the problem of dual biomarker threshold identification. In an umbrella trial,
patients with a specific type or class of disease are enrolled and are then as-
signed to receive one of a number of targeted treatments (Renfro & Sargent
2017, US Food and Drug Administration 2022). Eligible patients who have the
disease of interest, usually a specified cancer type, are screened for potentially
many biomarkers or genetic mutations and are then assigned to a stratum (a
sub trial) based on the results. Across all the strata within an umbrella trial,
many targeted treatments are being evaluated; randomisation within stratum
and comparison to external controls can also be implemented depending on the
disease area. Examples of umbrella trials utilising biomarker information are:
the I-SPY-2 study (Barker et al. 2009), in which 14 subpopulations are defined
by biomarkers and a risk score; the BATTLE study (Zhou et al. 2008), in which
a patient’s biomarker profile helps to define 5 subpopulations within lung can-
cer; the lung-MAP study (Herbst et al. 2015), in which patients with advanced
non-small cell lung cancer are randomised to one of 18 targeted therapies vs
standard of care (this study design built on the I-SPY-2 study principles).

In a traditional Umbrella trial, patients are assigned to one of multiple
treatments based on prior biomarker information. In this setting, the use
of dual biomarker threshold identification methods may not be appropriate
as optimal biomarker populations have already been defined. Moreover, it
has been shown that multiplicity adjustments in umbrella trials are viewed
as unnecessary (Stallard et al. 2019). However, the methods discussed within
this thesis could show great utility in an umbrella-like/master protocol design
where the optimal treatment for a particular patient subgroup is identified
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based on data from the trial. This could take the form of a Multi-Arm Multi-
Stage (MAMS) design, in which multiple targeted treatments are assessed in
parallel, with the goal of identifying which treatment among all considered
is optimal for certain biomarker-defined subgroups. The work presented in
Chapter 5, exploring the use of resampling based methods of FWER control
in the setting of dual biomarker threshold identification, shows utility for the
described problem. One could account for any correlation between statistics
used to test di↵erent hypotheses to achieve greater power over traditional
methods (eg Holm) whilst maintaining control of the FWER.

This work focussed on the case of identifying thresholds for two predictive
biomarkers of interest, motivated by findings on combination therapies within
oncology and immunotherapy highlighting the need. With the increased use of
high dimensional data in these areas, from sources such as genomic screening,
there is potential to extend this work to settings in which there are a large
number of predictive biomarkers of interest. Work in this area could make use
of the wealth of literature on machine learning methods for subgroup identifi-
cation.

6.4 Concluding Remarks

This thesis explored optimisation of patient subgroups defined by two con-
tinuous biomarkers. Novel research focused on the setting of identifying di-
chotomising thresholds for two continuous biomarkers within a confirmatory
clinical trial. It has been demonstrated that optimal threshold estimation
can be generalised to the dual biomarker setting with limited impact on trial
operating characteristics. Of the methods explored in this work, recursive
partitioning methods showed the best performance with respect to thresh-
old identification accuracy and empirical power. Their use in this setting is
therefore recommended and further research should be carried out to explore
the discussed extensions. Finally, resampling based methods, specifically the
Romano and Wolf procedure, have been shown to increase overall and sub-
group empirical power over the Holm procedure whilst maintaining control of
the FWER. Presented results support the use of resampling based methods of
FWER control in settings where a high level of correlation is prevalent between
tests.
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Appendix A

Additional Results From

Chapter 4 Simulation Study

Appendix A provides further results from the primary simulation study imple-
mented in Chapter 4. In Section 4.4.2 of this thesis, accuracy of dual biomarker
threshold identification methods was explored under changing treatment e↵ect,
sensitive subgroup size and biomarker-response surface. Results were presented
from the tree1 method only as a comparison between methods had previously
been carried out and it was of interest to explore how method specific accu-
racy changed. The histograms of threshold estimate distributions for all other
methods (grid, modelling, tree2, peel1 and peel2) under all scenarios are given
here.

Grid Search: Figures A.1, A.2, A.3, A.4 and A.5

Modelling: Figures A.6, A.7, A.8, A.9 and A.10

Tree2: Figures A.11, A.12, A.13, A.14 and A.15

Peel1: Figures A.16, A.17, A.18, A.19 and A.20

Peel2: Figures A.21, A.22, A.23, A.24 and A.25
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Figure (A.1) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 1-4, when using the grid method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line. Note that as
the figure is read from top to bottom, the magnitude of treatment e↵ect decreases.
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Figure (A.2) Histograms of optimal biomarker threshold estimates for B1 and B2 un-
der scenarios 5 and 6, when using the grid method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.3) Histograms of optimal biomarker threshold estimates for B1 and B2 un-
der scenarios 2, 7, 8, 9 and 10, when using the grid method of threshold identification.
The input threshold values in each case have been overlaid as a vertical red dashed line.
Note that as the figure is read from top to bottom, the subgroup size decreases.
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Figure (A.4) Histograms of optimal biomarker threshold estimates for B1 and B2 un-
der scenarios 11 and 12, when using the grid method of threshold identification. The in-
put threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.5) Histograms of optimal biomarker threshold estimates for B1 and B2 un-
der scenarios 7, 13 and 14, when using the grid method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line.

349



0

500

1000

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(a) Scenario 1 - B1

0

500

1000

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(b) Scenario 1 - B2

0

500

1000

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(c) Scenario 2 - B1

0

500

1000

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(d) Scenario 2 - B2

0

500

1000

1500

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(e) Scenario 3 - B1

0

500

1000

1500

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(f) Scenario 3 - B2

0

500

1000

1500

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(g) Scenario 4 - B1

0

500

1000

1500

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(h) Scenario 4 - B2

Figure (A.6) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 1-4, when using the mod method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line. Note that as
the figure is read from top to bottom, the magnitude of treatment e↵ect decreases.

350



0

500

1000

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(a) Scenario 5 - B1

0

500

1000

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(b) Scenario 5 - B2

0

500

1000

1500

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(c) Scenario 6 - B1

0

500

1000

1500

0.00 0.25 0.50 0.75 1.00
Threshold Estimate

Fr
eq

ue
nc

y

(d) Scenario 6 - B2

Figure (A.7) Histograms of optimal biomarker threshold estimates for B1 and B2 un-
der scenarios 5 and 6, when using the mod method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.8) Histograms of optimal biomarker threshold estimates for B1 and B2 un-
der scenarios 2, 7, 8, 9 and 10, when using the mod method of threshold identification.
The input threshold values in each case have been overlaid as a vertical red dashed line.
Note that as the figure is read from top to bottom, the subgroup size decreases.
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Figure (A.9) Histograms of optimal biomarker threshold estimates for B1 and B2 un-
der scenarios 11 and 12, when using the mod method of threshold identification. The in-
put threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.10) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 7, 13 and 14, when using the mod method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.11) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 1-4, when using the tree2 method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line. Note that as
the figure is read from top to bottom, the magnitude of treatment e↵ect decreases.
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Figure (A.12) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 5 and 6, when using the tree2 method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.13) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 2, 7, 8, 9 and 10, when using the tree2 method of threshold identification.
The input threshold values in each case have been overlaid as a vertical red dashed line.
Note that as the figure is read from top to bottom, the subgroup size decreases.
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Figure (A.14) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 11 and 12, when using the tree2 method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.15) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 7, 13 and 14, when using the tree2 method of threshold identification.
The input threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.16) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 1-4, when using the peel1 method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line. Note that as
the figure is read from top to bottom, the magnitude of treatment e↵ect decreases.
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Figure (A.17) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 5 and 6, when using the peel1 method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.18) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 2, 7, 8, 9 and 10, when using the peel1 method of threshold identification.
The input threshold values in each case have been overlaid as a vertical red dashed line.
Note that as the figure is read from top to bottom, the subgroup size decreases.
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Figure (A.19) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 11 and 12, when using the peel1 method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.20) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 7, 13 and 14, when using the peel1 method of threshold identification.
The input threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.21) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 1-4, when using the peel2 method of threshold identification. The input
threshold values in each case have been overlaid as a vertical red dashed line. Note that as
the figure is read from top to bottom, the magnitude of treatment e↵ect decreases.
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Figure (A.22) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 5 and 6, when using the peel2 method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.23) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 2, 7, 8, 9 and 10, when using the peel2 method of threshold identification.
The input threshold values in each case have been overlaid as a vertical red dashed line.
Note that as the figure is read from top to bottom, the subgroup size decreases.
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Figure (A.24) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 11 and 12, when using the peel2 method of threshold identification. The
input threshold values in each case have been overlaid as a vertical red dashed line.
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Figure (A.25) Histograms of optimal biomarker threshold estimates for B1 and B2
under scenarios 7, 13 and 14, when using the peel2 method of threshold identification.
The input threshold values in each case have been overlaid as a vertical red dashed line.
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Appendix B

Chapter 4 Simulation R Code

This appendix contains R code to implemented the simulation study in Chap-
ter 4. Unique scenarios are obtained by manipulating values of N1, N2,
biom1 true cut, biom2 true cut, p resp biom H, p resp biom L, p resp ctrl, slope1
and slope2. Code for a single trial and code implementing a simulation study
are shown.

Single Trial Run

### ---------------------------
###
### Script name: Dual_biom_ASD_fn
###
### Purpose of script: Implement adapative signature design (Simon),

two biomarker threshold identification
###
### Author: Ben Lanza
###
### Date Created: 2020-09-09
###
### Email: ben.lanza@warwick.ac.uk
###
### ---------------------------
###
### Notes:
### -Alter dual_biom_ASD into a function for calling
###
### ---------------------------
###
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### Load in required packages
library(rpart)
library(devtools)
install_github("PierreMasselot/primr", build_vignettes = F)
library(primr)
# biv_weibull <- function(x1,x2,alpha1,alpha2,beta1,beta2,theta,min,max){
# pr3 <- min+(max-min)*(1-exp(-((x1/alpha1)^beta1)))*
(1-exp(-((x2/alpha2)^beta2)))*(1+theta*(1-(1-exp(-((x1/alpha1)^beta1))))*
(1-(1-exp(-((x2/alpha2)^beta2)))))
# return(pr3)
# }
### ---------------------------

dual_biom_ASD <- function(N1=200, N2=200, biom1_true_cut=0.5,
biom2_true_cut=0.5,
p_resp_biom_H=0.8,
p_resp_biom_L=0.2,
p_resp_ctrl=0.2,
alpha1=0.04,
alpha2=0.01,
slope1=8,
slope2=8){

#######################################################
#######################################################
### Simulate Interim data (Stage 1)
pt_ID <- 1:N1
trt <- rbinom(N1,1,2/3)
biom1 <- runif(N1)
biom2 <- runif(N1)

p_resp <- biv_weibull(biom1,biom2,alpha1=biom1_true_cut,
alpha2=biom2_true_cut,
min=p_resp_biom_L,max=p_resp_biom_H,
beta1=slope1,beta2=slope2,theta=0.75)

response <- rep(NA,N1)
for (i in 1:N1){

if (trt[i]==0){
response[i] <- rbinom(1,1,p_resp_ctrl)

}
else {
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response[i] <- rbinom(1,1,p_resp[i])
}

}

potential_cuts <- seq(0.25,0.75,by=0.05)
for (i in potential_cuts){

nam1 <- paste("biom1_fl_", i, sep = "")
nam2 <- paste("biom2_fl_", i, sep = "")

flag1 <- 1*(biom1>i)
flag2 <- 1*(biom2>i)

assign(nam1, flag1)
assign(nam2, flag2)

}

interim_data <- data.frame(pt_ID, trt, biom1, biom2, response,
biom1_fl_0.25, biom1_fl_0.3,
biom1_fl_0.35, biom1_fl_0.4,
biom1_fl_0.45, biom1_fl_0.5,
biom1_fl_0.55, biom1_fl_0.6,
biom1_fl_0.65, biom1_fl_0.7,
biom1_fl_0.75,
biom2_fl_0.25, biom2_fl_0.3,
biom2_fl_0.35, biom2_fl_0.4,
biom2_fl_0.45, biom2_fl_0.5,
biom2_fl_0.55, biom2_fl_0.6,
biom2_fl_0.65, biom2_fl_0.7,
biom2_fl_0.75)

cuts_b1 <- seq(0.25,0.75,0.05)
cuts_b2 <- seq(0.25,0.75,0.05)

### Grid search
X_overall <- matrix(0,length(cuts_b1), length(cuts_b2))
max_overall <- 0
curr_best_overall <- 0
best_cuts_overall <- c(NA,NA)

for (i in 1:length(cuts_b1)){
for (j in 1:length(cuts_b2)){
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curr_data <- interim_data[interim_data$biom1>cuts_b1[i]
& interim_data$biom2>cuts_b2[j],]

curr_prop <- nrow(curr_data)/nrow(interim_data)
curr_n_trt <- nrow(curr_data[curr_data$trt==1,])
curr_n_ctrl <- nrow(curr_data)-curr_n_trt
if (curr_prop>0.1 & curr_n_trt>0 & curr_n_ctrl>0){

curr_mean <- mean(curr_data$response)
X_overall[i,j] <- curr_mean
if(curr_mean>curr_best_overall & is.finite(curr_mean)){

max_overall <- curr_mean
curr_best_overall <- curr_mean
best_cuts_overall <- c(cuts_b1[i],cuts_b2[j])

}
}

}
}

best_cut_b1_grid <- best_cuts_overall[1]
best_cut_b2_grid <- best_cuts_overall[2]

biom1_flags <- names(interim_data)[6:16]
biom2_flags <- names(interim_data)[17:27]

### Modelling
for (i in 1:length(potential_cuts)){

nam_b1_1 <- paste0("logit_b1_", potential_cuts[i])
nam_b1_2 <- paste0("p_b1_",potential_cuts[i])
nam_b1_3 <- paste0("coeff_b1_", potential_cuts[i])
biom_var_b1 <- biom1_flags[i]

current_model_b1 <- glm(response ~ trt + get(biom_var_b1) +
trt*get(biom_var_b1), data=interim_data)

current_p_val_b1 <- summary(current_model_b1)$coefficients[16]
current_coeff_b1 <- current_model_b1$coefficients[4][[1]]

assign(nam_b1_1, current_model_b1)
assign(nam_b1_2, current_p_val_b1)
assign(nam_b1_3, current_coeff_b1)
##################################################################
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nam_b2_1 <- paste0("logit_b2_", potential_cuts[i])
nam_b2_2 <- paste0("p_b2_",potential_cuts[i])
nam_b2_3 <- paste0("coeff_b2_", potential_cuts[i])
biom_var_b2 <- biom2_flags[i]

current_model_b2 <- glm(response ~ trt + get(biom_var_b2) +
trt*get(biom_var_b2), data=interim_data)

current_p_val_b2 <- summary(current_model_b2)$coefficients[16]
current_coeff_b2 <- current_model_b2$coefficients[4][[1]]

assign(nam_b2_1, current_model_b2)
assign(nam_b2_2, current_p_val_b2)
assign(nam_b2_3, current_coeff_b2)

}

all_coeffs_b1 <- c(coeff_b1_0.25,coeff_b1_0.3,coeff_b1_0.35,
coeff_b1_0.4,coeff_b1_0.45,coeff_b1_0.5,
coeff_b1_0.55,coeff_b1_0.6,coeff_b1_0.65,
coeff_b1_0.7,coeff_b1_0.75)

names(all_coeffs_b1) <- potential_cuts
all_coeffs_b2 <- c(coeff_b2_0.25,coeff_b2_0.3,coeff_b2_0.35,

coeff_b2_0.4,coeff_b2_0.45,coeff_b2_0.5,
coeff_b2_0.55,coeff_b2_0.6,coeff_b2_0.65,
coeff_b2_0.7,coeff_b2_0.75)

names(all_coeffs_b2) <- potential_cuts

best_cut_b1_mod <- as.numeric(names(sort(-all_coeffs_b1)[1]))
best_cut_b2_mod <- as.numeric(names(sort(-all_coeffs_b2)[1]))

### Peeling
peel <- peeling(y=interim_data$response, x=interim_data[,c(3,4)],

alpha=0.1, beta.stop=0.1,
peeling.side=-1)

paste_res <- pasting(peel, alpha=0.05, obj.fun=peel$obj.fun,
peeling.side=peel$peeling.side)

chosen <- jump.prim(paste_res)
best_cut_b1_peel <- chosen$final.box$limits$biom1[1]
best_cut_b2_peel <- chosen$final.box$limits$biom2[1]

peel <- peeling(y=interim_data$response, x=interim_data[,c(4,3)],
alpha=0.1, beta.stop=0.1,
peeling.side=-1)
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paste_res <- pasting(peel, alpha=0.05, obj.fun=peel$obj.fun,
peeling.side=peel$peeling.side)

chosen <- jump.prim(paste_res)
best_cut_b1_peel_back <- chosen$final.box$limits$biom1[1]
best_cut_b2_peel_back <- chosen$final.box$limits$biom2[1]

### Rpart
tree_split1 <- rpart(response ~ biom1, data=interim_data,

method="class",
control=rpart.control(maxdepth=1,
minbucket=round(N1/4)))

best_cut_b1_tree <- tree_split1$splits[4]
tree_split2 <- rpart(response ~ biom2, data=interim_data

[interim_data$biom1 > best_cut_b1_tree,],
method="class", control=rpart.control(maxdepth=1,
minbucket=round(N1/8)))

best_cut_b2_tree <- tree_split2$splits[4]

tree_split1_rev <- rpart(response ~ biom2, data=interim_data,
method="class",
control=rpart.control(maxdepth=1,
minbucket=round(N1/4)))

best_cut_b2_tree_back <- tree_split1_rev$splits[4]
tree_split2_rev <- rpart(response ~ biom1, data=interim_data

[interim_data$biom2 > best_cut_b2_tree_back,],
method="class", control=rpart.control(maxdepth=1,
minbucket=round(N1/8)))

best_cut_b1_tree_back <- tree_split2_rev$splits[4]

### Stage 2 data and testing
pt_ID <- (N1+1):(N1+N2)
trt <- rbinom(N2,1,2/3)
biom1 <- runif(N2)
biom2 <- runif(N2)

p_resp <- biv_weibull(biom1,biom2,
alpha1=biom1_true_cut,alpha2=biom2_true_cut,
min=p_resp_biom_L,max=p_resp_biom_H,
beta1=6,beta2=6,theta=0.75)

response <- rep(NA,N2)
for (i in 1:N2){
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if (trt[i]==0){
response[i] <- rbinom(1,1,p_resp_ctrl)

}
else {

response[i] <- rbinom(1,1,p_resp[i])
}

}

stage2_data <- data.frame(pt_ID, trt, biom1, biom2, response)
interim_data <- interim_data[,c(1,2,3,4,5)]
full_data <- rbind(interim_data, stage2_data)

overall_glm <- glm(response ~ trt, data=full_data, family="binomial")
overall_P_val<- summary(overall_glm)$coefficients[8]
overall_OR <- exp(overall_glm$coefficients[2][[1]])

overall_test <- overall_P_val < alpha1

stage2_data$subgroup_mod <- 0
stage2_data$subgroup_grid <- 0
stage2_data$subgroup_peel <- 0
stage2_data$subgroup_peel_back <- 0
stage2_data$subgroup_tree <- 0
stage2_data$subgroup_tree_back <- 0

stage2_data$subgroup_mod[stage2_data$biom1>best_cut_b1_mod &
stage2_data$biom2>best_cut_b2_mod] <- 1

stage2_data$subgroup_mod <- as.factor(stage2_data$subgroup_mod)

stage2_data$subgroup_grid[stage2_data$biom1>best_cut_b1_grid &
stage2_data$biom2>best_cut_b2_grid] <- 1

stage2_data$subgroup_grid <- as.factor(stage2_data$subgroup_grid)

stage2_data$subgroup_peel[stage2_data$biom1>best_cut_b1_peel &
stage2_data$biom2>best_cut_b2_peel] <- 1

stage2_data$subgroup_peel <- as.factor(stage2_data$subgroup_peel)

stage2_data$subgroup_peel_back[stage2_data$biom1>best_cut_b1_peel_back
& stage2_data$biom2>best_cut_b2_peel_back] <- 1

stage2_data$subgroup_peel_back <-
as.factor(stage2_data$subgroup_peel_back)

376



stage2_data$subgroup_tree[stage2_data$biom1>best_cut_b1_tree &
stage2_data$biom2>best_cut_b2_tree] <- 1

stage2_data$subgroup_tree <- as.factor(stage2_data$subgroup_tree)

stage2_data$subgroup_tree_back[stage2_data$biom1>best_cut_b1_tree_back
& stage2_data$biom2>best_cut_b2_tree_back] <- 1

stage2_data$subgroup_tree_back <-
as.factor(stage2_data$subgroup_tree_back)

mod_glm <- glm(response ~ trt, data=stage2_data
[stage2_data$subgroup_mod==1, ], family="binomial")

mod_P_val<- summary(mod_glm)$coefficients[8]
mod_OR <- exp(mod_glm$coefficients[2][[1]])
mod_test <- mod_P_val < alpha2

grid_glm <- glm(response ~ trt, data=stage2_data
[stage2_data$subgroup_grid==1, ], family="binomial")

grid_P_val<- summary(grid_glm)$coefficients[8]
grid_OR <- exp(grid_glm$coefficients[2][[1]])
grid_test <- grid_P_val < alpha2

peel_glm <- glm(response ~ trt, data=stage2_data
[stage2_data$subgroup_peel==1, ], family="binomial")

peel_P_val<- summary(peel_glm)$coefficients[8]
peel_OR <- exp(peel_glm$coefficients[2][[1]])
peel_test <- peel_P_val < alpha2

peel_back_glm <- glm(response ~ trt, data=stage2_data
[stage2_data$subgroup_peel_back==1, ], family="binomial")

peel_back_P_val<- summary(peel_back_glm)$coefficients[8]
peel_back_OR <- exp(peel_back_glm$coefficients[2][[1]])
peel_back_test <- peel_back_P_val < alpha2

tree_glm <- glm(response ~ trt, data=stage2_data
[stage2_data$subgroup_tree==1, ], family="binomial")

tree_P_val<- summary(tree_glm)$coefficients[8]
tree_OR <- exp(tree_glm$coefficients[2][[1]])
tree_test <- tree_P_val < alpha2

tree_back_glm <- glm(response ~ trt, data=stage2_data
[stage2_data$subgroup_tree_back==1, ], family="binomial")
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tree_back_P_val<- summary(tree_back_glm)$coefficients[8]
tree_back_OR <- exp(tree_back_glm$coefficients[2][[1]])
tree_back_test <- tree_back_P_val < alpha2

out <- list(overall_P_val=overall_P_val, overall_OR=overall_OR,
overall_test=overall_test,
mod_P_val=mod_P_val, mod_OR=mod_OR, mod_test=mod_test,

grid_P_val=grid_P_val, grid_OR=grid_OR, grid_test=grid_test,

peel_P_val=peel_P_val, peel_OR=peel_OR, peel_test=peel_test,

peel_back_P_val=peel_back_P_val, peel_back_OR=peel_back_OR,
peel_back_test=peel_back_test,

tree_P_val=tree_P_val, tree_OR=tree_OR, tree_test=tree_test,

tree_back_P_val=tree_back_P_val, tree_back_OR=tree_back_OR,
tree_back_test=tree_back_test,

best_cut_b1_mod=best_cut_b1_mod,
best_cut_b2_mod=best_cut_b2_mod,

best_cut_b1_grid=best_cut_b1_grid,
best_cut_b2_grid=best_cut_b2_grid,

best_cut_b1_peel=best_cut_b1_peel,
best_cut_b2_peel=best_cut_b2_peel,
best_cut_b1_peel_back=best_cut_b1_peel_back,
best_cut_b2_peel_back=best_cut_b2_peel_back,

best_cut_b1_tree=best_cut_b1_tree,
best_cut_b2_tree=best_cut_b2_tree,
best_cut_b1_tree_back=best_cut_b1_tree_back,
best_cut_b2_tree_back=best_cut_b2_tree_back)

return(out)

}
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Simulation Run

### ---------------------------
###
### Script name: Dual_biom_ASD_sim_run
###
### Purpose of script: Run simulations of dual_biom_ASD
###
### Author: Ben Lanza
###
### Date Created: 2020-09-09
###
### Email: ben.lanza@warwick.ac.uk
###
### ---------------------------
###
### Notes:
###
###
### ---------------------------
###
### Load in required packages
### Don’t forget to run function first
### ---------------------------

n_sim <- 10000

overall_sig <- rep(NA,n_sim)
mod_sig <- rep(NA,n_sim)
grid_sig <- rep(NA,n_sim)
peel1_sig <- rep(NA,n_sim)
peel2_sig <- rep(NA,n_sim)
tree1_sig <- rep(NA,n_sim)
tree2_sig <- rep(NA,n_sim)

b_mod <- matrix(0,2,n_sim)
b_grid <- matrix(0,2,n_sim)
b_peel1 <- matrix(0,2,n_sim)
b_peel2 <- matrix(0,2,n_sim)
b_tree1 <- matrix(0,2,n_sim)
b_tree2 <- matrix(0,2,n_sim)

pb <- txtProgressBar(min=0, max=n_sim, style=3)
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start_t <- Sys.time()
for (i in 1:n_sim){

#set.seed(i)

trial_res <- dual_biom_ASD(N1=250,N2=250,
p_resp_biom_H=0.6,
p_resp_biom_L=0.2,
p_resp_ctrl=0.2,
biom1_true_cut = 0.6,
biom2_true_cut = 0.6,
slope1=2,slope2=2)

overall_sig[i] <- trial_res$overall_test
mod_sig[i] <- trial_res$mod_test
grid_sig[i] <- trial_res$grid_test
peel1_sig[i] <- trial_res$peel_test
peel2_sig[i] <- trial_res$peel_back_test
tree1_sig[i] <- trial_res$tree_test
tree2_sig[i] <- trial_res$tree_back_test

b_mod[1,i] <- trial_res$ best_cut_b1_mod
b_mod[2,i] <- trial_res$best_cut_b2_mod

b_grid[1,i] <- trial_res$ best_cut_b1_grid
b_grid[2,i] <- trial_res$ best_cut_b2_grid

b_peel1[1,i] <- trial_res$best_cut_b1_peel
b_peel1[2,i] <- trial_res$best_cut_b2_peel

b_peel2[1,i] <- trial_res$best_cut_b1_peel_back
b_peel2[2,i] <- trial_res$best_cut_b2_peel_back

b_tree1[1,i] <- trial_res$best_cut_b1_tree
b_tree1[2,i] <- trial_res$best_cut_b2_tree

b_tree2[1,i] <- trial_res$best_cut_b1_tree_back
b_tree2[2,i] <- trial_res$best_cut_b2_tree_back

setTxtProgressBar(pb,i)
}
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end_t <- Sys.time()
end_t - start_t

deets <- rep(NA,n_sim)
deets[1:9] <- c("P_high=0.6", "P_low=0.2", "P_ctrl=0.2",

"biom1_cut=0.6", "biom2_cut=0.6",
"slope1=2", "slope2=2",
"N1=250","N2=250")

### CAREFUL NOT TO OVERWRITE
current_data <- data.frame(deets,

overall_sig, mod_sig,
grid_sig, tree1_sig,
tree2_sig, peel1_sig, peel2_sig,
b_mod[1,], b_mod[2,],
b_grid[1,], b_grid[2,],
b_tree1[1,], b_tree1[2,],
b_tree2[1,], b_tree2[2,],
b_peel1[1,], b_peel1[2,],
b_peel2[1,], b_peel2[2,])
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Appendix C

Chapter 5 Simulation R Code

This appendix contains R code to implemented the simulation study in Chap-
ter 5. The 9x9 grid size with response definition 2 has been used as an example.
Unique scenarios are obtained by manipulating values of N1, biom1 true cut,
biom2 true cut, p resp biom H, p resp biom L, p resp ctrl, slope1 and slope2.
Code for a single trial and code implementing a simulation study are shown.

Single Trial Run

### ---------------------------
###
### Script name: rwolf_smooth_9x9
###
### Purpose of script: Implement Romano and Wolf step down algorithm
###
### Author: Ben Lanza
###
### Date Created: 2021-11-03
###
### Email: ben.lanza@warwick.ac.uk
###
### ---------------------------
###
### Notes:
###
###
### ---------------------------
###
### Load in required packages
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# biv_weibull <- function(x1,x2,alpha1,alpha2,beta1,beta2,theta,min,max){
# pr3 <- min+(max-min)*(1-exp(-((x1/alpha1)^beta1)))*
(1-exp(-((x2/alpha2)^beta2)))*(1+theta*(1-(1-exp(-((x1/alpha1)^beta1))))*
(1-(1-exp(-((x2/alpha2)^beta2)))))
# return(pr3)
# }
### ---------------------------
rwolf_smooth_9x9 <- function(N1=1000, biom1_true_cut=0.5,

biom2_true_cut=0.5, p_resp_biom_H=0.8,
p_resp_biom_L=0.2, p_resp_ctrl=0.2,
slope1=8, slope2=8,
n_boot=499){

##########################################################
##########################################################
### First generate data
pt_ID <- 1:N1
trt <- rbinom(N1,1,2/3)
biom1 <- runif(N1)
biom2 <- runif(N1)

p_resp <- biv_weibull(biom1,biom2,alpha1=biom1_true_cut,
alpha2=biom2_true_cut,
min=p_resp_biom_L,max=p_resp_biom_H,
beta1=slope1,beta2=slope2,theta=0.75)

response <- rep(NA,N1)
for (i in 1:N1){

if (trt[i]==0){
response[i] <- rbinom(1,1,p_resp_ctrl)

}
else {

response[i] <- rbinom(1,1,p_resp[i])
}

}

test_data <- data.frame(pt_ID, trt, biom1, biom2, response)

### Implement subgroup cutoffs
potential_cuts <- seq(0.25,0.75,0.0625)
potential_subs <- numeric(length(potential_cuts))
for(i in 1:length(potential_cuts)){
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for(j in 1:length(potential_cuts)){

current_index <- (i-1)*length(potential_cuts)+j

nam1 <- paste0("subgroup_flag_sub", i, j)
nam2 <- paste0("sub",i,j)

current_subgroup_flag <- 1*(biom1>quantile(biom1,potential_cuts[i])
& biom2>quantile(biom2,potential_cuts[j]))

test_data[,5+current_index] <- current_subgroup_flag

colnames(test_data)[5+current_index] <- nam1

potential_subs[current_index] <- nam2
}

}

### Subgroup structure:
### 11 12 13 14 15 16 17 18 19
### 21 22 23 24 25 26 27 28 29
### 31 32 33 34 35 36 37 38 39
### 41 42 43 44 45 46 47 48 49
### 51 52 53 54 55 56 57 58 59
### 61 62 63 64 65 66 67 68 69
### 71 72 73 74 75 76 77 78 79
### 81 82 83 84 85 86 87 88 89
### 91 92 93 94 95 96 97 98 99

b1_toy <- c()
b2_toy <- c()
for(i in seq(0.25,0.75,0.0625)){

for(j in seq(0.25,0.75,0.0625)){
b1_toy <- c(b1_toy,i)
b2_toy <- c(b2_toy,j)

}
}
biomarker_combinations <- data.frame(sub_name=potential_subs,

b1_val=b1_toy,b2_val=b2_toy)

##########################################################
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##########################################################
### Get original test statistics

### Main test
main_glm <- glm(response ~ trt, data=test_data, family="binomial")
main_estimate <- summary(main_glm)$coefficients[2]
main_est_se <- summary(main_glm)$coefficients[4]
main_test_stat <- summary(main_glm)$coefficients[6]

sub_estimates_vec <- rep(NA,length(potential_subs))
names(sub_estimates_vec) <- potential_subs
sub_est_se_vec <- rep(NA,length(potential_subs))
names(sub_est_se_vec) <- potential_subs
sub_test_stat_vec <- rep(NA,length(potential_subs))
names(sub_test_stat_vec) <- potential_subs

for(i in 1:length(potential_subs)){
nam_1 <- paste0("sub_glm_", potential_subs[i])
nam_2 <- paste0("sub_estimate_",potential_subs[i])
nam_3 <- paste0("sub_est_se_", potential_subs[i])

current_model <- glm(response ~ trt,
data=test_data[test_data[,5+i]==1,], family="binomial")

current_estimate <- summary(current_model)$coefficients[2]
current_est_se <- summary(current_model)$coefficients[4]

assign(nam_1, current_model)
assign(nam_2, current_estimate)
assign(nam_3, current_est_se)

sub_estimates_vec[i] <- current_estimate
sub_est_se_vec[i] <- current_est_se

}

### Subgroup test - subOR==0
sub_test_stat_vec <- abs(sub_estimates_vec/sub_est_se_vec)

##########################################################
##########################################################
### Do bootstrapping
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vec_main_boot_ests <- rep(NA,n_boot)
mat_sub_boot_ests <- matrix(NA,length(potential_subs),n_boot)
rownames(mat_sub_boot_ests) <- potential_subs

vec_main_boot_se <- rep(NA,n_boot)
mat_sub_boot_se <- matrix(NA,length(potential_subs),n_boot)
rownames(mat_sub_boot_se) <- potential_subs

for(i in 1:n_boot){

#generate bootstrap data sample
boot_indices <- sample(1:N1,N1,replace = T)
boot_data <- test_data[boot_indices,]

### Get boot test statistics

### Main test
boot_glm <- glm(response ~ trt, data=boot_data, family="binomial")
main_boot_estimate <- summary(boot_glm)$coefficients[2]
main_boot_est_se <- summary(boot_glm)$coefficients[4]
main_boot_test_stat <- summary(boot_glm)$coefficients[6]

### Sub tests
boot_sub_estimates_vec <- rep(NA,length(potential_subs))
names(boot_sub_estimates_vec) <- potential_subs
boot_sub_est_se_vec <- rep(NA,length(potential_subs))
names(boot_sub_est_se_vec) <- potential_subs

for(j in 1:length(potential_subs)){
nam_1 <- paste0("sub_boot_glm_", potential_subs[j])
nam_2 <- paste0("sub_boot_estimate_",potential_subs[j])
nam_3 <- paste0("sub_boot_est_se_", potential_subs[j])

current_model <- glm(response ~ trt,
data=boot_data[boot_data[,5+j]==1,], family="binomial")

current_estimate <- summary(current_model)$coefficients[2]
current_est_se <- summary(current_model)$coefficients[4]

assign(nam_1, current_model)
assign(nam_2, current_estimate)
assign(nam_3, current_est_se)
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boot_sub_estimates_vec[j] <- current_estimate
boot_sub_est_se_vec[j] <- current_est_se

}

### Subgroup test - subOR==0
sub_boot_test_stat_vec <- abs(boot_sub_estimates_vec/

boot_sub_est_se_vec)

vec_main_boot_ests[i] <- main_boot_estimate
mat_sub_boot_ests[,i] <- boot_sub_estimates_vec

vec_main_boot_se[i] <- main_boot_est_se
mat_sub_boot_se[,i] <- boot_sub_est_se_vec

}

### Got all estimates and SEs, so just calculate all boot test stats

vec_main_rwolf_test_stats <- (vec_main_boot_ests-main_estimate)/
vec_main_boot_se

mat_sub_rwolf_test_stats <- matrix(NA,length(potential_subs),n_boot)
for(i in 1:length(potential_subs)){

curr_sub_boot_ests <- mat_sub_boot_ests[i,]
curr_sub_boot_se <- mat_sub_boot_se[i,]
#curr_sub_og_est <- sub_wald_estimates_vec[i]
curr_sub_og_est <- sub_estimates_vec[i]

mat_sub_rwolf_test_stats[i,] <- (curr_sub_boot_ests-curr_sub_og_est)/
curr_sub_boot_se

}

##########################################################
##########################################################
### Order original hypotheses in decreasing significance

original_stats <- c(main_test_stat,sub_test_stat_vec)
names(original_stats) <- c("Main",potential_subs)
sorted_test_stats <- sort(original_stats, decreasing = T)
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sorted_order <- names(sorted_test_stats)

### Set row order to the sorted hypothesis order
bootstrap_stats <- rbind(vec_main_rwolf_test_stats,

mat_sub_rwolf_test_stats)
rownames(bootstrap_stats) <- c("Main",potential_subs)
sorted_bootstrap_stats <- bootstrap_stats[sorted_order,]

##########################################################
##########################################################
### Get max values to form null distributions
critical_values <- numeric(length(potential_subs)+1)
for(i in 1:(length(potential_subs))){

nam_1 <- paste0("max_vals_hyp", i)
nam_2 <- paste0("crit_val_hyp",i)

current_values <- apply(bootstrap_stats[i:length(original_stats),],
2,max)

current_crit_val <- quantile(current_values, 1-0.05)

assign(nam_1, current_values)
assign(nam_2, current_crit_val)

critical_values[i] <- current_crit_val
}
max_vals_hyp82 <- bootstrap_stats[82:length(original_stats),]

#This is just the final row
crit_val_hyp82 <- quantile(max_vals_hyp82,1-0.05)

critical_values[82] <- crit_val_hyp82

### These critical values are then used in the step down algorithm

##########################################################
##########################################################
##########################################################
##########################################################
### Step down algorithm
### This only depends original (sorted) t values and the

caluclated critical values

n_stats <- length(original_stats)
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rejected <- rep(NA,n_stats)

### 1st step of algorithm
rejected <- sorted_test_stats > critical_values[1]
n_rejected <- sum(rejected)

### 2nd step. STOP if none rejected, else set j=2 and go into loop
r_count <- n_rejected

### Define to keep track of rejected/accept for each hypothesis
outcomes <- rejected[1:r_count]
if(r_count!=0){

j <- 2

repeat{
if( r_count[j-1]==n_stats){break}
rejected_in_loop <- sorted_test_stats[(r_count[j-1]+1):n_stats] >

critical_values[r_count[j-1]+1]
n_rejected_in_loop <- sum(rejected_in_loop)

if(n_rejected_in_loop==0){
#if n rejected in current loop is 0, stop
outcomes <- c(outcomes,rejected_in_loop)
break

}
r_count <- c(r_count,r_count[j-1] + n_rejected_in_loop)
j <- j+1

outcomes <- c(outcomes,rejected_in_loop[1:n_rejected_in_loop])
}

} else {
outcomes <- rejected

}

original_ests <- c(main_estimate,sub_estimates_vec)
names(original_ests) <- c("Main",potential_subs)
original_ests <- original_ests[sorted_order]

original_SEs <- c(main_est_se,sub_est_se_vec)
names(original_SEs) <- c("Main",potential_subs)
original_SEs <- original_SEs[sorted_order]
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n_in_test <- N1
for(i in 1:length(potential_subs)){

current_N <- sum(test_data[,5+i])
n_in_test <- c(n_in_test, current_N)

}
names(n_in_test) <- c("Main",potential_subs)
n_in_test <- n_in_test[sorted_order]

test_name <- names(outcomes)
test_order <- 1:length(outcomes)
rejected <- outcomes
lnOR <- original_ests
OR <- round(exp(original_ests),3)
test_stat <- round(sorted_test_stats,3)
names(critical_values) <- names(outcomes)

out <- list(main_test=outcomes["Main"], main_OR=OR["Main"],
main_test_stat=test_stat["Main"],
main_crit_val=critical_values[test_order[names(outcomes)=="Main"]],
best_sub_test=outcomes[names(outcomes)!="Main"][1],
best_sub_OR=OR[names(OR)!="Main"][1],
best_sub_test_stat=test_stat[names(test_stat)!="Main"][1],
best_sub_crit_val=critical_values[names(critical_values)!="Main"][1],
best_sub_b1=biomarker_combinations$b1_val

[biomarker_combinations$sub_name==
names(outcomes[names(outcomes)!="Main"])[1]],

best_sub_b2=biomarker_combinations$b2_val
[biomarker_combinations$sub_name==
names(outcomes[names(outcomes)!="Main"])[1]],

n_test=length(outcomes),
n_pos_tests=length(outcomes[outcomes==T]))
return(out)

}
rwolf_smooth_9x9()

Simulation Run

### ---------------------------
###
### Script name: rwolf_smooth_9x9_sim_run
###
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### Purpose of script: run sims of rwolf work
###
### Author: Ben Lanza
###
### Date Created: 2021-11-12
###
### Email: ben.lanza@warwick.ac.uk
###
### ---------------------------
###
### Notes:
###
###
### ---------------------------
###
### Load in required packages

### ---------------------------

n_sim <- 1000

main_sig_vec <- rep(NA,n_sim)
main_OR_vec <- rep(NA,n_sim)
main_test_stat_vec <- rep(NA,n_sim)
main_crit_vec <- rep(NA,n_sim)

sub_sig_vec <- rep(NA,n_sim)
sub_OR_vec <- rep(NA,n_sim)
sub_test_stat_vec <- rep(NA,n_sim)
sub_crit_vec <- rep(NA,n_sim)

best_b1_ests <- rep(NA,n_sim)
best_b2_ests <- rep(NA,n_sim)

n_tested <- rep(NA,n_sim)
n_pos_tests <- rep(NA,n_sim)

pb <- txtProgressBar(min=0, max=n_sim, style=3)

start_t <- Sys.time()
for (i in 1:n_sim){
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#set.seed(i)

trial_res <-
rwolf_smooth_9x9_quick(N1=1000,

biom1_true_cut=0.5,
biom2_true_cut=0.5,
p_resp_biom_H=0.2,
p_resp_biom_L=0.2,
p_resp_ctrl=0.2,
slope1=8,
slope2=8,
n_boot=299)

main_sig_vec[i] <- trial_res$main_test
main_OR_vec[i] <- trial_res$main_OR
main_test_stat_vec[i] <- trial_res$main_test_stat
main_crit_vec[i] <- trial_res$main_crit_val

sub_sig_vec[i] <- trial_res$best_sub_test
sub_OR_vec[i] <- trial_res$best_sub_OR
sub_test_stat_vec[i] <- trial_res$best_sub_test_stat
sub_crit_vec[i] <- trial_res$best_sub_crit_val

best_b1_ests[i] <- trial_res$best_sub_b1
best_b2_ests[i] <- trial_res$best_sub_b2

n_tested[i] <- trial_res$n_test
n_pos_tests[i]<- trial_res$n_pos_tests

setTxtProgressBar(pb,i)
}
end_t <- Sys.time()
end_t - start_t

deets <- rep(NA,n_sim)
deets[1:9] <- c("N1=1000,","P_high=0.2", "P_low=0.2", "P_ctrl=0.2",

"biom1_cut=0.5", "biom2_cut=0.5",
"slope1=8","slope2=8","n_boot=299")

### CAREFUL NOT TO OVERWRITE
current_data <- data.frame(deets,

main_sig_vec, main_OR_vec,
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main_test_stat_vec, main_crit_vec,
sub_sig_vec, sub_OR_vec,
sub_test_stat_vec, sub_crit_vec,
best_b1_ests, best_b2_ests,
n_tested, n_pos_tests)

393



Bibliography

Abrahams, E. & Silver, M. (2011), The History of Personalized Medicine,
in ‘Integrative Neuroscience and Personalized Medicine’, Oxford University
Press.

Almetwally, E. M., Muhammed, H. Z. & El-Sherpieny, E.-S. A. (2020), ‘Bivari-
ate Weibull Distribution: Properties and Di↵erent Methods of Estimation’,
Annals of Data Science 7(1), 163–193.

Althammer, S., Tan, T. H., Spitzmüller, A., Rognoni, L., Wiestler, T., Herz,
T., Widmaier, M., Rebelatto, M. C., Kaplon, H., Damotte, D., Alifano, M.,
Hammond, S. A., Dieu-Nosjean, M. C., Ranade, K., Schmidt, G., Higgs,
B. W. & Steele, K. E. (2019), ‘Automated image analysis of NSCLC biopsies
to predict response to anti-PD-L1 therapy’, Journal for ImmunoTherapy of
Cancer 7(1), 121.

Antoniou, M., Kolamunnage-Dona, R. & Jorgensen, A. L. (2017), ‘Biomarker-
guided non-adaptive trial designs in phase II and phase III: A methodological
review’, Journal of Personalized Medicine 7(1), 1.

Arbuthnott, J. (1710), ‘An argument for divine providence, taken from the con-
stant regularity observed in the births of both sexes’, Philosophical Trans-
action of the Royal Society of London 27(328), 186–190.

Barker, A. D., Sigman, C. C., Kello↵, G. J., Hylton, N. M., Berry, D. A. &
Esserman, L. J. (2009), ‘I-SPY 2: An adaptive breast cancer trial design
in the setting of neoadjuvant chemotherapy’, Clinical Pharmacology and
Therapeutics 86(1), 97–100.

Barlesi, F., Vansteenkiste, J., Spigel, D., Ishii, H., Garassino, M., de Mari-
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Mehta, C., Schäfer, H., Daniel, H. & Irle, S. (2014), ‘Biomarker driven popula-
tion enrichment for adaptive oncology trials with time to event endpoints’,
Statistics in Medicine 33(26), 4515–4531.

Miller, R. & Siegmund, D. (1982), ‘Maximally Selected Chi Square Statistics’,
Biometrics 38(4), 1011.

Mullard, A. (2016), ‘Parsing clinical success rates’, Nature reviews. Drug dis-
covery 15(7), 447.

Neyman, J. & Pearson, E. S. (1928), ‘On the Use and Interpretation of Cer-
tain Test Criteria for Purposes of Statistical Inference: Part II’, Biometrika
20A(3/4), 263–294.

Ohwada, S. & Morita, S. (2016), ‘Bayesian adaptive patient enrollment restric-
tion to identify a sensitive subpopulation using a continuous biomarker in a
randomized phase 2 trial’, Pharmaceutical Statistics 15(5), 420–429.

Oldenhuis, C. N., Oosting, S. F., Gietema, J. A. & de Vries, E. G. (2008),
‘Prognostic versus predictive value of biomarkers in oncology’, European
Journal of Cancer 44(7), 946–953.

O’Quigley, J., Pepe, M. & Fisher, L. (1990), ‘Continual Reassessment Method:
A Practical Design for Phase 1 Clinical Trials in Cancer’, Biometrics
46(1), 33–48.

400



Paesmans, M. (2012), ‘Prognostic and predictive factors for lung cancer’,
Breathe 9(2), 112–121.

Pallmann, P., Bedding, A. W., Choodari-Oskooei, B., Dimairo, M., Flight,
L., Hampson, L. V., Holmes, J., Mander, A. P., Odondi, L., Sydes, M. R.,
Villar, S. S., Wason, J. M., Weir, C. J., Wheeler, G. M., Yap, C. & Jaki, T.
(2018), ‘Adaptive designs in clinical trials: Why use them, and how to run
and report them’, BMC Medicine 16(1), 29.

Patterson, S. D., Jones, B. & Zari↵a, N. (2014), Dose Ranging Crossover
Designs, in ‘Methods and Applications of Statistics in Clinical Trials’, Wiley.

Personalized Medicine Coalition (2021), ‘Personalized Medicine at FDA: The
Scope and Significance of Progress in 2021’.
URL: https://personalizedmedicinecoalition.org/Userfiles/PMC-
Corporate/file/Personalized Medicine at FDA The Scope Significance
of Progress in 2021.pdf

Renfro, L. A., Coughlin, C. M., Grothey, A. M. & Sargent, D. J. (2014),
‘Adaptive randomized phase II design for biomarker threshold selection and
independent evaluation’, Chinese Clinical Oncology 3(1), 3.

Renfro, L. A., Mallick, H., An, M. W., Sargent, D. J. & Mandrekar, S. J.
(2016), ‘Clinical trial designs incorporating predictive biomarkers’, Cancer
Treatment Reviews 43(1), 74–82.

Renfro, L. A. & Sargent, D. J. (2017), ‘Statistical controversies in clinical
research: Basket trials, umbrella trials, and other master protocols: A review
and examples’, Annals of Oncology 28(1), 34–43.

Ricciardi, W. & Stefania, B. (2017), ‘New challenges of public health: Bringing
the future of personalised healthcare into focus’, European Journal of Public
Health 27(Suppl 4), 36–39.

Rieder, M. J., Reiner, A. P., Gage, B. F., Nickerson, D. A., Eby, C. S., McLeod,
H. L., Blough, D. K., Thummel, K. E., Veenstra, D. L. & Rettie, A. E.
(2005), ‘E↵ect of VKORC1 Haplotypes on Transcriptional Regulation and
Warfarin Dose’, New England Journal of Medicine 352(22), 2285–2293.

Riviere, M.-K. (2021), ‘SIDES: Subgroup Identification Based on Di↵erential
E↵ect Search’.
URL: https://cran.r-project.org/web/packages/SIDES/SIDES.pdf

Romano, J. P. & Wolf, M. (2005a), ‘Exact and approximate stepdown methods
for multiple hypothesis testing’, Journal of the American Statistical Associ-
ation 100(469), 94–108.

401



Romano, J. P. & Wolf, M. (2005b), ‘Stepwise multiple testing as formalized
data snooping’, Econometrica 73(4), 1237–1282.

Romano, J. P. & Wolf, M. (2016), ‘E�cient computation of adjusted p-values
for resampling-based stepdown multiple testing’, Statistics and Probability
Letters 113(1), 38–40.

Sankar, K., Ye, J. C., Li, Z., Zheng, L., Song, W. & Hu-Lieskovan, S. (2022),
‘The role of biomarkers in personalized immunotherapy’, Biomarker Re-
search 10(1), 32.

Schulz, K. F. & Grimes, D. A. (2002), ‘Allocation concealment in randomised
trials: Defending against deciphering’, Lancet 359(9306), 614–618.

Seibold, H., Zeileis, A. & Hothorn, T. (2016), ‘Model-Based Recursive Par-
titioning for Subgroup Analyses’, International Journal of Biostatistics
12(1), 45–63.

Shi, H. & Yin, G. (2018), ‘Bayesian enhancement two-stage design for single-
arm phase II clinical trials with binary and time-to-event endpoints’, Bio-
metrics 74(3), 1055–1064.
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