
 

 
 

 
 

warwick.ac.uk/lib-publications 
 

 
 
 
 
Manuscript version: Author’s Accepted Manuscript 
The version presented in WRAP is the author’s accepted manuscript and may differ from the 
published version or Version of Record. 
 
Persistent WRAP URL: 
http://wrap.warwick.ac.uk/183839                                       
 
How to cite: 
Please refer to published version for the most recent bibliographic citation information.  
If a published version is known of, the repository item page linked to above, will contain 
details on accessing it. 
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work by researchers of the 
University of Warwick available open access under the following conditions.  
 
Copyright © and all moral rights to the version of the paper presented here belong to the 
individual author(s) and/or other copyright owners. To the extent reasonable and 
practicable the material made available in WRAP has been checked for eligibility before 
being made available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-profit 
purposes without prior permission or charge. Provided that the authors, title and full 
bibliographic details are credited, a hyperlink and/or URL is given for the original metadata 
page and the content is not changed in any way. 
 
Publisher’s statement: 
Please refer to the repository item page, publisher’s statement section, for further 
information. 
 
For more information, please contact the WRAP Team at: wrap@warwick.ac.uk. 
 

http://go.warwick.ac.uk/lib-publications
http://go.warwick.ac.uk/lib-publications
http://wrap.warwick.ac.uk/183839
mailto:wrap@warwick.ac.uk


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

LEVA: Using Large Language Models to
Enhance Visual Analytics

Yuheng Zhao, Yixing Zhang, Yu Zhang, Xinyi Zhao, Junjie Wang,
Zekai Shao, Cagatay Turkay, Siming Chen

Abstract—Visual analytics supports data analysis tasks within complex domain problems. However, due to the richness of data types,
visual designs, and interaction designs, users need to recall and process a significant amount of information when they visually analyze
data. These challenges emphasize the need for more intelligent visual analytics methods. Large language models have demonstrated
the ability to interpret various forms of textual data, offering the potential to facilitate intelligent support for visual analytics. We propose
LEVA, a framework that uses large language models to enhance users’ VA workflows at multiple stages: onboarding, exploration, and
summarization. To support onboarding, we use large language models to interpret visualization designs and view relationships based on
system specifications. For exploration, we use large language models to recommend insights based on the analysis of system status and
data to facilitate mixed-initiative exploration. For summarization, we present a selective reporting strategy to retrace analysis history
through a stream visualization and generate insight reports with the help of large language models. We demonstrate how LEVA can be
integrated into existing visual analytics systems. Two usage scenarios and a user study suggest that LEVA effectively aids users in
conducting visual analytics.

Index Terms—Insight recommendation, mixed-initiative, interface agent, large language models, visual analytics

✦

1 INTRODUCTION

Visual analytics (VA) combines data analysis techniques with
visualizations for effective understanding, reasoning and decision-
making on the basis of large and complex datasets [21], [22], [55].
However, the VA processes often require significant effort on the
side of the user, resulting in a less efficient data interpretation and
analysis process [58]. Several challenges underpin this inefficiency:
a steep learning curve with VA systems’ onboarding [50], a
tendency to lose direction in data exploration [29], and the difficulty
of summarizing final insights [8]. Such issues emphasize the need
for a more intelligent approach to VA.

To specify the challenges further: firstly, the challenge of
onboarding stems from unfamiliarity with a VA system, leading to
reduced efficiency in grasping visual mappings and interactions [5],
[41]. Secondly, during data exploration, the numerous avenues to
analyze data and the lack of structured guidance and direction
make it difficult to uncover insights [6]. Thirdly, keeping track of
and aggregating key findings is often difficult and summarizing
insights is a time-consuming task that demands significant effort
and attention to detail [3], [33]. These challenges highlight the
need for an intelligent framework to support VA processes and
foster efficacy across these pivotal stages.

To address these problems, researchers focus on enhancing VA
through visualization onboarding [49], interaction recommendation
and guidance [4], [29], [47], and result summarization [8], [44].

• Yuheng Zhao, Yixing Zhang, Xinyi Zhao, Zekai Shao, Siming Chen are
with School of Data Science, Fudan University. E-mail: {yuhengzhao,
xinyizhao19, zkshao19, simingchen}@fudan.edu.cn, {yixingzhang23,
wangjj23}@m.fudan.edu.cn.

• Yu Zhang is with Department of Computer Science, University of Oxford.
E-mail: yuzhang94@outlook.com.

• Cagatay Turkay is with University of Warwick. E-mail: Ca-
gatay.Turkay@warwick.ac.uk.

• Siming Chen and Yu Zhang are the corresponding authors.

Manuscript received April 19, 2005; revised August 26, 2015.

However, these methods often do not take advantage of advance-
ments in intelligent algorithms and are not easily adaptable to
various VA systems. There is a lack of generalizable intelligent
approaches that can work across different VA systems.

The Large Language Models (LLMs) exhibit broader knowl-
edge and problem-solving abilities, making it possible to address
the above challenges in the three stages of VA. Firstly, as LLMs
can interpret visualizations’ declarative grammar [13], [35], we
can try to propose the grammar for VA systems and use it as
input for LLMs to generate onboarding tutorials. Additionally,
LLMs can process various data types [39], making it possible
to recommend insights by analyzing both the system status and
underlying data, assisting users’ exploration. Finally, LLMs exhibit
powerful summarization capabilities [17], which may help to
summarize the exploration process and generate a report with
rich forms.

In this paper, we propose a framework named LEVA (LLM-
Enhanced Visual Analytics) that uses LLMs to enhance visual
analytics in three stages of the workflow. In the onboarding phase,
we provide a solution that enables LLMs to interpret visualizations
in each of the views and these views’ relationships based on a
specification of the VA system. This enables the flexible creation
of tutorials for various VA systems. In the exploration phase, we
design an insight recommendation strategy that guides LLMs in
recommending insights based on the understanding of the system,
analytical task, user’s interaction, and data to facilitate mixed-
initiative exploration [18]. The methodology incorporates a two-
step process, including the selection of insight types and assessment
of executed insights. Additionally, we integrate insights in the
original VA system as annotations instead of textual descriptions,
making communication between the LLM and end-users more
intuitive. In the summarization phase, LEVA facilitates the user to
retrace the analytical history via an interactive stream visualization,
allowing the selection of an analytical path for report generation.
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Fig. 1. The LEVA framework proposes strategies for leveraging LLMs to enhance visual analytics workflows, starting from onboarding and exploration
to summarization. The architecture (middle) connects analysts (top) and LLMs (bottom) to achieve mixed-initiative exploration through interactive
interfaces and guidance strategies of LLMs.

Our strategy involves a report generation method where the LLMs
synthesize visualization images and explanations to produce a
report using LaTeX code. We have developed two integrated
systems combining our framework with two original VA systems.
The interface includes a chat view, original system view, interaction
stream view, and report view. To the best of our knowledge, LEVA
is the first attempt to embed LLMs in complex visual analytics
workflows to support users in various analysis stages. Our main
contributions are as follows:
• We propose a framework, LEVA, for using LLMs to enhance

mixed-initiative exploration in three stages of users’ VA
workflow.

• We demonstrate how LEVA can be implemented in existing VA
systems to facilitate visual analytics by enabling a connection
between users, interface and LLMs.

• We report observations and learnings from two usage scenarios
and a user study to demonstrate the effectiveness of our
framework.

2 RELATED WORK

This section reviews the literature that aims to enhance VA in
different stages of users’ workflow and the literature using LLMs
for VA to examine its abilities.

2.1 Onboarding in Visual Analytics
Visualization onboarding is the process of supporting users in
reading, interpreting, and extracting information from visual
representations of data [50]. Stoiber et al. [49] found that a VA
system may lack low-level information about the data, such as
understanding principles of the specific data format, data types, or
data structure, which limits data selection and manipulation [22].
Vaishali et al. [12] found that non-expert users often lack visualiza-
tion literacy to interpret the data and understand the interactions
with and between visualizations in a dashboard. They pointed out
that it is necessary to bridge the knowledge gap between the system
and the user’s background before exploring the data. Previous

research conducted various onboarding strategies for VA systems.
The onboarding form mainly includes textual descriptions, video-
based, and step-by-step tours with tooltips and overlays [59]. Kwon
et al. [23] conducted a user study to compare these methods and
found that an interactive tour is better than others with a more
engaging experience. Previous studies have shown that onboarding
tools can help users better understand a VA system. However,
these tools are limited in their ability to be easily integrated into
different systems. To address this, we proposed an intelligent
interactive onboarding method to generate tutorials based on the
unified grammar of VA systems.

2.2 Insights Recommendation in Visual Analytics
Insight recommendations within visualization methodologies have
garnered attention in recent VA research, serving as effective
instruments to aid users in their analytical tasks. These methods
can broadly be stratified into recommendations encompassing
annotations or captions, interactions, and direct visualizations.

A corpus of research has been proposed on generating single
visualization [19], [37], [42] or multiple-view visualizations [11].
Typically, these studies deal with data table queries, outputting
static visualizations. In contrast, our approach adapts to a VA sys-
tem, producing an enhanced VA system complete with interactive
insight annotations. A separate thread of research, exemplified by
Lai et al. [24] and Liu et al. [32], aims at appending annotations to
visualizations. However, their emphasis is limited to single-view
visualizations without an overarching framework for comprehensive
VA systems.

Recognizing the complexity of VA systems, some guidance
theories have been proposed [7], [47]. Ceneda et al. [6] char-
acterized interaction guidance along the knowledge gap of the
user, the input and output of the guidance generation process, and
the degree of guidance that is provided to users. A commonly
used implementation method is modeling interaction sequences
to predict the next interaction object [29]. While this strategy
offers a diverse set of suggestions, it needs to collect large
amounts of interaction data, grapple with issues of explainability,
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and be applied to specific VA systems. Instead of relying on
interaction data, we mine insights directly from data. We let
LLMs understand VA systems and dispatch tasks for computation
functions. This approach not only ensures explainability but also
fosters adaptability to diverse VA systems.

2.3 Insights Summarization in Visual Analytics

In data analysis, the task of translating insights into comprehensive
reports necessitates substantial effort from the user for documen-
tation and summarization. Prior research such as DataShot [57]
introduced methods for automatic report generation, enabling the
derivation of insight-driven reports directly from data along with
visuals attached. Li et al. [27] refined this concept by encapsulating
data insights within automatically generated notebooks. However,
these methods do not support summarization in VA systems. Chen
et al. [8] innovated a storytelling approach, incorporating recording
and editing utilities in VA. VisInReport [44] offered a tool that
fosters manual discourse transcript analysis, and curates reports
contingent on user interactions. However, these methods do not
automate the visual examination of exploration routes; obtaining
insights often requires manual review and refinement. Liu et
al. [33] designed an analytical graph depicting the journey of
exploratory data analysis. Drawing inspiration from this, we fuse
a stream visualization to endorse real-time retrospectives. Our
novel methodology harnesses LLMs to discern pertinent records,
facilitating automatic summation and report creation.

2.4 Large Language Models for Visualization

There has been a rising interest in employing language models for
various downstream applications. Categorizing based on the format
of inputs and outputs, LLMs can process code, declarative syntax,
natural language, and structured data.

Related work in the visualization domain focuses on under-
standing or generating visualizations. A typical application is
using natural language to generate data visualizations through
an interface [45]. Moreover, codes [36] or declarative grammar for
visualizations [13], [35], [38] is often used as input or output as
a simplified form of code. This type of work demonstrates code
comprehension of language models and basic knowledge of visual-
izations. Inspired by this, we propose to use declarative grammar
to represent VA systems, which are essentially combinations of
multiple visualizations.

In addition to visualization tasks, Language models can also
analyze data [61] or act as agents to use tools with APIs [43]. Thus,
we propose that in addition to using LLMs to process data, some
complex computation methods can be used as additional tools,
enabling support for a wider range of VA analysis scenarios. The
language model is proficient in generating text with format [39].
For example, Liu et al. [34] adopt LLMs for generating semantic
input texts based on GUI context. We leverage this prowess to
generate and integrate tutorials, insights, and reports to enhance
user experience in using VA. Finally, the language model supports
dialogue mode, which allows users to ask and answer questions
freely, as well as decompose long tasks to support more complex
analysis tasks.

To conclude, the development of LLMs has opened up op-
portunities to enhance VA. Our work is the first trial towards a
comprehensive integration of LLMs for intelligent VA.

3 MOTIVATION

Interpreting and analyzing data with VA often requires significant
user effort [58]. Various challenges lead to such inefficient analysis,
such as the steep learning curve associated with onboarding VA
systems [50], getting sidetracked during data exploration [29],
and difficulty summarizing the final insights [8]. These challenges
underscore the necessity for a more intelligent approach to VA.
Combining a review of previous studies, we summarized the fol-
lowing design considerations and propose the design requirements
aimed at enhancing the user experience in VA.

3.1 Design Considerations
From our analysis of the VA literature, a recurring concern emerges:
despite the advances, users still have to expend excessive effort in
various stages of analysis. In each of these stages, we identify and
dissect specific challenges that intensify the effort users must exert:
C1 System onboarding: Before users can extract value from

VA, they must first grasp the nuances of the system’s design.
However, two main challenges hinder this. Firstly, although VA
systems are often designed with a target user group in mind,
the data and visual encoding displayed in visualization might
not always align with the users’ background. Ambiguities
in data information, such as the meaning of data, structure,
types, and transformation, may lead to misinterpretations [22].
Secondly, a lack of visualization literacy among users can
complicate the interpretation of visual data, making the initial
stage of data analysis more laborious than it should be [49].
This emphasizes the need for a more efficient onboarding
process that not only caters to users but also provides clear
and intuitive information to smoothen the transition and usage.

C2 Insights exploration: When embarking on the journey of
insight discovery, users are often bogged down by interactively
analyzing complex data and visualization, which is time-
consuming [16]. On top of this, the multi-faceted nature
of insights means forming hypotheses requires finding parts
of many insights that are relevant to the task and then
validating them by interacting to find insights in new states,
making the exploration stage more challenging [2]. Given
these complexities, there emerges a need for VA systems to
automatically extract and evaluate insights with users’ tasks in
mind, ensuring more focused and efficient data analysis.

C3 Results summarization: Summarizing and reporting findings
is a final, yet essential step in VA systems. However, it’s
a process that is often unduly laborious. Users typically
navigate through multiple iterative explorations to validate
hypotheses [8]. Yet, not every exploration results in valuable
knowledge [44]. As a result, analysts frequently spend signifi-
cant time and effort sifting through, distilling, and manually
drafting reports from their interactive exploration outcomes.
This highlights the pressing need for automated capturing
of findings and allows users to trace back. Furthermore,
such automation should provide users with comprehensive
illustrated reports [27], sparing them the chore of crafting
them themselves.

3.2 Design Requirements
Drawing insights from these design considerations, we have
developed a set of targeted design requirements. These requirements
are pivotal for enhancing VA, aiming to address the challenges
identified earlier.
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R1 Visual encoding: To address the barriers of system compre-
hension and misinterpretations (C1), it’s vital that we offer
an onboarding tutorial to help users understand how data and
visualization are mapped. This could include providing data
definitions and encodings.

R2 Interaction and coordination: Considering the challenges
users face in discerning the usage of visualizations in a VA
system (C1), we should provide an interactive step-by-step
tutorial of each view. The content needs to clarify interactions
and the relationship between views.

R3 Insight discovery: In light of the repetitive analytical tasks
users undergo and the depth of domain knowledge required
(C2), our framework should provide automated data analysis
that helps users discover diversified insights. This may include
analysis for different data types.

R4 Hypothesis formulation and validation: Given that explo-
ration often occurs in an iterative process (C2), our framework
should enable the discovery of insights in constantly updated
statuses to facilitate hypothesis formulation and validation.

R5 Summarization of exploration results: Considering the labor-
intensive nature of the summarization process (C3), our
framework should prioritize aiding users in filtering and
summarizing their exploration outcomes. This entails the
management and visualization of historical insights as well as
the capability to generate comprehensive reports.

3.3 LLM-Enhanced User Workflow in Visual Analytics
Our objective is to employ intelligent VA to address the challenges
faced by analysts when using VA systems. However, creating
distinct models for each exploration stage, workflow, chart type,
data type, and domain is labor-intensive and difficult to scale,
requiring general frameworks and models. Large language models
have emerged for various analytical tasks, offering the potential for
continuous assistance throughout the workflow. Thus, we propose
a framework that leverages LLMs to enhance visual analytics in
three stages of the workflow (Fig. 2). Based on the analysis of
considerations and requirements, we summarize the integration into
three stages: onboarding, exploration, insight recommendation in
exploration, and summarization for selective reporting.

Fig. 2. The LLM-enhanced visual analytics workflow shows how LLMs
contribute to the progress of the analysis. The LLMs support visualiza-
tion understanding, mixed-initiative guidance, and automatic summary
while users experience onboarding, exploration, and summarization.
Onboarding refers to data understanding, visualization, and interaction
perception. Exploration refers to insight discovery, hypothesis formulation,
and validation. Summarization refers to selective reporting.

To further detail how we intend to tackle these challenges,
we outline the roles and purposes of the LLM-enhanced system.
The objective of the LLM-enhanced system is to alleviate the

challenges users confront in the three stages. The end-users of this
enhanced system are analysts or individuals who frequently work
with VA systems. On the other hand, the LEVA implementation
itself is intended for design and development professionals who
aim to create or augment VA systems. The primary users of LEVA
are system developers and designers who wish to leverage large
language models to enhance the capabilities of their VA tools.

4 LEVA FRAMEWORK

In this section, we will introduce our framework (Fig. 1). To
enhance the VA workflow, we carefully identify the important
steps of users in using visual analytics and propose LEVA to
boost the analysis efficiency and enrich the insight exploration
(Sec. 3.3). The architecture connects analysts and LLMs to achieve
mixed-initiative exploration. In our framework, the original system
is a visual analysis system, while our LEVA-enhanced system
is added with natural language dialogue, interactive onboarding
tutorials, recommended insights, analysis history visualization, and
generated reports. The pipeline of our framework goes through
three stages: (1) Onboarding: uses LLMs to interpret visualization
and views’ relationships based on a system specification for
users; (2) Exploration: guides LLMs in recommending insights to
facilitate user’s exploration through the analysis of the system’s
underlying data. (3) Summarization: allows users to retrace and
select their analysis history through visualization and use LLMs to
generate insight reports.

4.1 VA System Onboarding
When faced with complex VA systems that contain multiple views,
many users experience a steep learning curve. Therefore, we
propose an onboarding tutorial generation method, which aims
to help users understand two kinds of knowledge in a VA system:
visual style and coordination.

The onboarding can follow two types of approaches: one is
bottom-up, i.e., introducing the details first, and the other is top-
down, which involves providing an overview initially. Following
Tanahashi et al., who demonstrated that top-down is more effective
in introducing visualizations [54], we take a top-down approach.
The tutorial will start from the system-level introduction to the
view level. To that end, we leverage LLMs’ ability to comprehend
the system’s information and generate tutorials. Previous studies
demonstrate that declarative grammar of visualization is readily un-
derstood by language models [35], [36]. To encapsulate automatic
tutorial generation, we need a unified specification for different VA
systems. To this aim, we propose a specification of the VA system
designed in line with the top-down approach, which is used as
input for LLMs.

The specification starts from the system-level information
SystemSpec. We provide the systemInfo attribute to detail the
system’s name and the total number of views it comprises and the
viewsInfo to describe each view’s style and coordination. Examples
are available in Appendix A.

1 class SystemSpec {
2 /** Information about the overall system */
3 systemInfo: {
4 systemName: string
5 viewNumber: number
6 }
7 /** Style and coordination between views */
8 viewsInfo: {
9 viewStyleInfo: ViewStyleInfo[]



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 5

10 viewCoordinationInfo: ViewCoordinationInfo[]
11 }
12 }

For the view-level information, we introduced the
viewStyleInfo to delve into the design of each individual view.
This information captures the essence of the VA views through
the viewName attribute, representing its identity, while the layers
attribute describes its visual components. Each layer details the
mark type (e.g., area), and the encoding attributes that provide
insights into how data fields are visually mapped onto axes, color
scales, and size scales. Additionally, an optional tooltip specifica-
tion can be employed to enrich the user’s interactive experience by
displaying supplementary information upon interaction.

1 class EncodingInfo {
2 field: string;
3 type: string;
4 description: string;
5 }
6 class ViewStyleInfo {
7 viewName: string
8 /** Information about styles of multiple encodings */
9 layers: {
10 markType: string
11 encoding: {
12 x?: EncodingInfo[];
13 y?: EncodingInfo[];
14 color?: EncodingInfo[];
15 size?: EncodingInfo[];
16 /** Detail level data field */
17 lod?: EncodingInfo[];
18 }
19 /** Display prompt information for mouse hover.*/
20 tooltip?: EncodingInfo[];
21 }[]
22 }

Understanding the coordination between different views is
pivotal for a coherent exploration experience. Thus, we introduced
the ViewCoordinationInfo into the specification. This information
bridges the interactions between the source and target views through
the sourceViewName and targetViewName attributes respectively.
Furthermore, the coordinationType attribute delineates the nature of
interactions (e.g., filter, brush), and the interaction array provides a
granular breakdown of user-triggered events and their subsequent
ramifications on the target views.

1 class ViewCoordinationInfo {
2 sourceViewName: string
3 targetViewName: string | string[]
4 /** Coordination type */
5 coordinationType: string
6 interaction: {
7 /** Type of interaction */
8 type: string
9 /** Interaction’s effect on target */
10 effect?: {
11 /** Action type */
12 action: string
13 targetViewName: string
14 /** Data category for action */
15 category: string
16 /** Control the result */
17 changeby: string
18 }
19 }[]
20 }

Our specification utilizes a key-value pair approach to deter-
mine the choice of fields and their format. This approach could
offer flexibility and can be adapted for a variety of visualization
types, not just the common visualizations. For example, users may

define a customized card using a “title” and “context” to represent
the encoding instead of using “x” and “y”. Therefore, for special
examples, the definition of key-value pairs is flexible, as long as it
makes the LLM understand. Moreover, the specification not only
helps LLMs generate intuitive onboarding tutorials but also aids in
understanding the system to assist subsequent stages.

4.2 Insight Recommendation in Exploration

Visual exploration can be a challenging task that requires significant
effort and expertise, particularly when there are no clear focal points
to guide the process. Here, we introduce a strategy that channels
LLMs towards enhancing insight recommendations. The approach
includes three steps: selecting insight types, computing insights,
and scoring insights.

4.2.1 Defining Insight
In our framework, insights are considered the basic units in visual
exploration. Following previous studies [14], [57], we define insight
using four attributes:

insight := ⟨type, parameters,sub ject,score⟩ (1)

Insight type: We first identify the 15 insight types based on
previous work [14], [25], [48] including finding extreme, outlier,
change point, trend, etc. To cover more complex data types, such
as text and graphs, we have added three common types to the list,
i.e., text summary and key nodes or key links. More details of the
definition of these types are available in the Appendix C. Moreover,
some insight types may require the analysis of coordinated views
within a VA system. Therefore, from the perspective of complexity,
we define an insight to be either aligned with a single view or across
multiple views. For example, the trend of “sales” within the “sales
view”, or identifying positive correlations between “sales” and
“profit” in both “sales view” and “profit view”. This distinction will
help LLMs understand how to calculate insights in VA systems.

Insight parameters: For each insight type, we use parameters
to describe the characteristics of an insight, such as the direction
of correlation and the location or time of a summarized event.

Insight subject: The subject in our framework defines the data
scope to derive an insight, which includes four attributes:

sub ject := ⟨subspace,dimension,measure,context⟩ (2)

Each subject corresponds to a subset of data in a view. The
values of the dimension can be mapped to the x-axis, and the
measure can be mapped to the y-axis. The subspace is a filter of a
dataset. For example, if a line chart has two products’ “sales”, the
dimension is the time, measure can be “sales” or “profit”, and a
subspace can be a selected time range or a selected product. For
text data analysis, we can use measure to refer to the text data
column in a dataset. In more complex graph data, the dimension
can refer to the types of entities and relationships within the graph.
The measure can signify quantifiable properties or attributes related
to nodes or edges.

In addition to the data set in the original view, some additional
data may also serve as an important data source. For example,
derived insights can be reserved to hint at subsequent analysis.
Second, intricate tasks such as finding important nodes associated
with particular events surpass the bounds of a conventional
subject due to the demand for event summaries. For these certain
requirements, we define the additional data source as context.
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Insight score: Different insights are not equally attractive to
users. Previous research defines the importance score including
impact and significance scores. However, to achieve insight
recommendations in the VA system, it is also important to assess
what insight types could be used to solve the task. Thus, we
consider relevance, impact, and significance scores together to
calculate the insight score.

The significance calculation method is adapted from QuickIn-
sight [14]. Specifically, this score is calculated based on hypothesis
testing, which takes a value within the range [0,1]. Take finding
the outstanding number one item in a group as an example. The
hypothesis is that the data obeys the null hypothesis, i.e., long-
tail distribution. The p-value is used to indicate whether the data
excludes the maximum that will go against the null hypothesis.
Thus, we get the significance score as 1− p (p is the p-value).
Other examples of calculation methods are introduced in this
specification 1. While our analysis utilizes p-values to assess the
significance of insights, we recognize the concerns around the use
of p-values. First, the p-value is volatile and does not convey the
magnitude of an effect. Second, the p-value is not suitable for
all insight types. To address these issues, our scoring mechanism
for insights is designed to be adaptable. We suggest incorporating
alternative measures such as effect sizes, Cohen’s d, Odds Ratio, or
the coefficient of determination [51] for broader applicability. For
text analysis, metrics like BLEU and ROUGE or LLMs themselves
could serve as more suitable substitutes [10].

To assess the impact score, there are two kinds of aspects that
need to be considered. One is the coverage of the data subspace
over the entire dataset, and another is the semantics of the data
subspace. Previous work defines the impact as the coverage of the
data subspace over the entire dataset [57]. Take the social media
event analysis (used in Sec. 6.1) as an example, “microblog” and
“call center” are two types of messages that represent two distinct
subspaces. If the amount of “microblog” messages surpasses that
of “call center”, the insights derived from the “microblog” data are
considered to have a greater impact due to their more extensive
coverage. However, from the semantic aspect, the message from
the “call center” is more impactful because it is more reliable
and timely. We assess such impact using LLMs based on their
understanding of the dataset and their broad common knowledge
of data analysis in different scenarios.

As users typically engage with a VA system with an analytical
task in mind, we use a relevance score to quantitatively measure
the congruence between the emergent insight and the overarching
analytical task. We let LLMs evaluate the insights by considering
how closely the insights align with the task. For instance, in event
analysis, the task is to detect risk events and regions in the city.
Therefore, analyzing messages to summarize events would score
highly on relevance due to its direct connection with the task.

Considering three scores jointly, we compute the insight
score as score = ∑k∈{signi f icance,impact,relevance} wk · scorek. Here, wk
represents the weights for the significance score, impact score, and
relevance score, respectively. Since our purpose of getting data
insight is to uncover its patterns, the significance score should be
given more weight than the others. Therefore, we empirically set
the weights to be 0.5, 0.2, and 0.3, respectively. The weights are
adjustable to fit different preferences.

1. https://www.microsoft.com/en-us/research/uploads/prod/2016/12/
Insight-Types-Specification.pdf

4.2.2 Recommendation Strategy

The insights recommendation strategy should be intuitive, adaptive,
and relevant to the user’s tasks. We address this with the following
two-step strategy:

Step 1 (Insight type selection): Considering the multitude of
possible insight types, we prioritize selecting those that are most
relevant to the task. When the user makes a selection on a specific
view, we use LLMs to find relevant insight types according to
the user’s selection and task and give a relevance score. The high-
relevance score insight types will be used for further calculation. To
automatically execute these insight types, LLMs need to schedule
the data that compute insight needs (e.g., data tables, column
names). The output includes the selected insight types, relevance
scores, and the data information for insight calculation.

Step 2 (Insight assessment): This step aims to conduct a
comprehensive assessment of insights. First, the last step’s selected
insights types will be executed to generate the insights. We use the
LLMs to translate the calculated results into complete sentences.
Second, we calculate the combined score of insights from three
aspects. As we defined before, the significance score is calculated
by statistical methods, and the impact and relevance scores are
assessed by LLMs. The final output of this step is the insights
ranked by the combined score and the corresponding data points in
the views for annotation.

After the two steps, the insights should be annotated to the
relevant views in the original VA system. Users can constantly
interact with the view to gain new insights from LLMs.

4.3 Summarization of Exploration Results

Following exploration interactions with LLMs, users may wish to
embark on a new exploration round, thereby establishing a human-
in-the-loop analysis process for the continuous acquisition of novel
knowledge. Given that not every interaction stage will yield the
desired insights, we advocate for an interactive strategy to filter
exploration results and create comprehensive reports, capitalizing
on LLM’ text summarization abilities.

Record preservation: Throughout the analytical process, it is
imperative to maintain a detailed record of the user’s exploration
journey, including interactions and insights. We store these elements
together because insights and interactions provide key findings that
contribute valuable context for report creation. To elaborate, user
interactions act as filters that modify the state of the analysis,
which defines the subspace of insights. For instance, consider a
scenario where a user selects a specific time period. This action
prompts the LLM to summarize relevant events in this time period.
When presenting the summary of events, it is crucial to provide
the time period. This approach ensures that a comprehensive and
coherent insight is captured, enhancing the overall understanding
and relevance of the insights generated. Each recorded data set is
defined to span m analysis rounds. Within each round, there are
n distinct steps, representing the user’s adopted insights from the
LLM or their self-motivated interactions. We can represent the
exploration journey as a matrix M of dimensions m×n, where each
element Mi, j denotes the jth step in the ith round. For each step
Mi, j, the following details are preserved:

• focused view: a descriptor of which visualization or data view
was in focus.

• insights: the specific insights generated by LLM. If the user
interacts by themselves, we record the interaction object.

https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Insight-Types-Specification.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2016/12/Insight-Types-Specification.pdf
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• screenshots: a saved screenshot of the focused view crucial for
subsequent report illustration.
Selective reporting: To provide users with a cohesive un-

derstanding of their analytical journey, our system presents an
interactive mechanism. This mechanism graphically illustrates the
matrix M, allowing users to retrace the insights for reporting. Once
a user selects a round of data, the curated sequence from M serves
as input for the LLM. Using this structured input, the LLM crafts a
report aggregating both the analytical insights and the visualization,
capturing the user’s exploration journey.

5 LEVA IMPLEMENTATION

The implementation requirement of our framework includes two
parts: the extensions of the original VA system and the LLM-
powered components (Fig. 3). The original VA system requires
configuration files and data handlers to process user selections and
LLM outputs. The LLM-powered components consist of prompt
handlers and presentation modules for showcasing outputs across
the original system view and three new views.

Fig. 3. The integration overview for augmenting a VA system with
LLM capabilities involves both existing extensions and LLM-powered
components in LEVA’s implementation. The enhancement brings new
capabilities for end-users at three stages.

In the following, we will introduce the efforts to develop the
extensions of the original system and the LLM-powered compo-
nents LEVA provided, including onboarding tutorial generation,
insights recommendation, report generation, and the final integrated
interface. For prompt templates used, we provide examples in
Appendix B.

5.1 Extensions of Original System for Integration
To integrate our framework within a VA system, we need to prepare
the configuration files and data handlers for the original system.

Specification: The specification acts as a blueprint for LLMs,
allowing them to decode and understand the design and usage
of the original VA system. By comprehending the specifications,
LLMs can craft detailed and appropriate tutorials tailored to the
VA system. Furthermore, as the specification contains the data and
coordination information in each view, it can be used to help LLMs
explore data by knowing the system state and determine which
view and data column to calculate insights from.

Analysis task: Before recommending insights, it is necessary
to propose a user task to describe in natural language sentences. If
it is not specified, we can also use LLMs to propose the task that
is used to select the relevant insight types.

Insight functions: We propose a list of functions to calculate
insights in different types, e.g., get the outstanding top one and find
an outlier. These functions correspond to the insight type defined in
Sec. 4.2.1. The common insight types we give may not be sufficient
in some special cases. Thus, developers can add functions according
to their domain-specific analysis requirements. Previous taxonomies
summarize complex tasks that might be helpful for proposing the
computing functions, such as taxonomies for graph analysis [25],
spatial and temporal analysis [1], social media analysis [9].

Insight function APIs: We let LLMs choose the functions from
the APIs list to calculate the insight based on their understanding of
the system. To achieve this goal, we need to give the definition of
a function. It is better to have two attributes to explain the purpose
and outcome of the function: ⟨name,description⟩. For example, to
calculate the outstanding number one item in a group of data, the
name could be “get outstanding top1”, and the description could
be “Calculate the leading value is significantly higher than all the
remaining values”. Providing the APIs of insight functions enables
LLMs to choose the suitable analytical method and execute them
by completing the parameters.

Data handlers: To support the connection between LLMs and
the original system, we need to implement these handlers to capture
the changes in the system and add the new features from LLMs.
• Add tutorial: Receive the tutorials from LLMs and employ a

tour guide tool to display the tutorial.
• Get selection data: Upon a user interacting with a specific view,

the system needs to get the selection data, including the filter
and the updated data on each view.

• Add annotation: The original VA system needs to highlight the
insights generated by LLMs on target views with annotations.
This function should enable the selection of visual elements,
changing their style, and adding annotations around them.

• Apply annotation filter: Allow the selection of the annotation
across the views, such as filtering and deleting.

5.2 LLM-powered Components
In addition to the above extensions, the enhancement also needs
LLM-powered components to support onboarding, exploration, and
summarization within the enhanced VA interface.

5.2.1 Onboarding Tutorial Generation
In the onboarding stage, we use LLMs to generate tutorials by
inputting the specifications of a VA system. To design the output
of LLMs, considering the text form of the tutorial will increase the
user’s reading time, we designed the tutorial as an interactive tour
guide. Therefore, the output of LLMs is a list of steps in the tour.
Each step within the tour includes two attributes, including title and
description. The value of the title is viewName. The description
includes visualization Type, Encoding, and Coordination. We let
LLMs output description as HTML format to paraphrase the long
text to fewer lines and set font styles for clear observation. When
users select to start the onboarding tour, the tutorial will be triggered
and added to the original system to introduce each view. The prompt
for generating an onboarding tutorial is shown below:

Prompt template for onboarding:
Here are the specifications of a visual analytics system.
{ specification data }
The specification includes the system-level, view-level, and
views’ coordination information. You need to introduce each
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view’s style (data meaning, visual mapping) and the relationship
between views. Please give your answer in the following format:
{ format requirements }

5.2.2 Insights Recommendation

We implement the interactive recommendation to undergo two steps
of conversation with LLMs. The first step is to select appropriate
insight types based on the selection data and analytical task, and
the second step is to execute and assess the insight to select the
final results.

In the first round, the inputs consist of four components,
including specification, the current interaction, analysis task and
insight function list. We added specifications including view
styleinfo and viewscoordinationinfo to the input. The views
coordinationinfo allows LLMs to know the target views after the
user’s selection. The viewstyleinfo contains the data information
in the view that will be used as parameters to compose the data for
insight calculation. The current interaction is represented as a triplet:
⟨viewName,dimName,value⟩. If the user selects non-consecutive
elements, such as two locations, California and New York, on
the map (Sec. 6.2), the current selection will be two triples in
an array. Moreover, if the selection from the previous analysis
step is not canceled, it will remain together to provide context for
further analysis. Then, LLMs determine the types of insight that
can be analyzed based on the insightfunctionAPIs and analytical
task and assess with a relevance score. In order to execute these
insight functions, we define the output of LLMs as a quadruple:
⟨functionName,viewName,variableName,dimName⟩. The prompt
template for insight type selection is shown below:

Prompt template for insight type selection:
When the user makes an action, the system changes. You should
analyze data types of connected views based on the coordination
information between views.
{ current selection }
{ view style info }
{ views coordination info }
According to the data info in each view and the analytical task,
you should select all suitable analytical functions related to the
user’s task. You also need to give a relevance score to assess
how closely related the insight is to the task.
{ analytical task }
{ insight function APIs }
Please give your answer in the following format:
{ format requirements }

In the second round, the selected insight functions are executed
to get insights and significance scores, which are the insight
calculationresults to be the input for further assessment. Then,
the calculated results are organized into natural language sentences
to describe insights by LLMs. After generating insights and obtain-
ing the significance score, the next step is to assess impact scores.
We let LLMs assign an impact score based on the nature of each
insight, e.g., potential consequences, urgency and timeliness, and
influence on decision-making. The developer can further modify
the definition of impact score to fit specific analysis scenarios. The
insight will correspond to a triplet: ⟨viewName,dimName,value⟩
to locate the insight with highlight effect or annotations on the
corresponding Original system view. The prompt template for
insight assessment is shown below:

Prompt template for insight assessment:
The selected insights are implemented, and the result is returned,
including the value and significance score. You also need to give
an impact score. You can consider combining your data analysis
experience to evaluate from the following aspects: potential
consequences, urgency and timeliness, and influence on decision-
making.
{ insight calculation results }
Please give your answer in the following format:
{ format requirements }

After obtaining the generated insight with the structured
format, the Add annotation function within the original VA system
will be executed to link the data objects from the insights to
elements within the views. For instance, if the LLM returns insight
{‘viewsName’:‘Sales|ByState’,‘fieldName’:‘State/Province’,

‘value’:[‘California’,‘NewYork’],‘final_score’:0.5}, the VA
system needs to be able to locate the two points on the map,
change the style of the target element (e.g., stroke color), and add
an annotation at that location. As we described in Sec. 4.2.1, each
insight type can correspond to a unique view or multiple views.
Thus, if an insight is cross-view, annotations will be added on
multiple views as well. Considering that it is possible that not all
insight types are what the user would like to see, we prefer to use
single-view insights to analyze step by step.

When using LLMs for data analysis directly, it’s crucial to
consider the strengths and limitations of the language model. We
tested the LLMs’ data analysis performance on tabular datasets.
The results indicated that their accuracy for basic tasks was
relatively low, as detailed in Appendix C. Therefore, for tabular
data analysis, we use rule-based methods to guarantee accurate
results and use LLMs to invoke these functions based on the
understanding of underlying data and the user’s task. However,
LLMs demonstrate exceptional competence when analyzing textual
data, as evidenced by recent studies [17], [31]. Thus, we use LLMs
to analyze these textual data tasks directly. Furthermore, if the
recommended insights are incomplete or inaccurate, we provide
an open-question answering function. Users can type follow-up
questions to understand the insights in detail. Users can type follow-
up questions to understand the insights in detail. The LLMs will
analyze the underlying data in the current state and return insights
and a highlight of source data, improving the explainability of how
the insights are derived.

We adopt two strategies to address the response speed prob-
lem of LLMs. One way is to control the output for efficiency.
Considering that some computational tasks, like text summaries,
can produce lengthy outputs, it’s essential to define the output
length in the prompt template to ensure it remains concise.
Another way is interactive questions and answers. Before executing
insight functions, we adopt an interactive approach where LLMs
recommend questions based on the assessment of the relevant
insight type derived from the insight selection stage. Users can
select a desired question to obtain insights. This alternative strategy
can reduce the waiting time to calculate all insights.

In summary, the limitation of input and output influences both
the calculation method and the interaction paradigm. Depending on
the specific analysis scenario, the above strategy can be fine-tuned
to strike the right balance. We also discuss these challenges and
future directions in Sec. 8.

5.2.3 Report Generation
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Based on the strategy introduced in Sec. 4, we implement the
methods in two steps. First, the insights’s annotations are saved, and
the data is a 5-tuple: (insight, type, value, viewName, imageName).
The combination of analysis round m, n and viewName is the
image name, which will be used in LaTeX code. In general,
each step obtains the corresponding screenshot according to
viewName. Considering the first and last step preferably needs
to give an overview of the entire report, we can set up to capture
all views. Then, for a round of historicalanalysisdata, we let
LLMs generate reports in a textual form. The prompt template for
summarizing reports is shown below:

Prompt template for report summarization:
Here is a historical analysis of the system data. The data contains
insights that need to be reported:
{ historical analysis data }
Your task is to write an insight report to present these findings.
The amount of insight should be equal to the number of steps
for given data. Ensure you include both a cover(report title) and
a conclusion.
{ other requirements }

Second, given the exceptional performance of LLMs in code
generation, the textual report can be transformed into a LaTeX-
formatted presentation report. We can add requirements in the
output format to set the report styles. The final generated reports
are presented to the user through an interactive visualization that
supports intuitive reading and markup. The prompt template for
LaTeX code generation is shown below:

Prompt template for LaTeX code generation:
Transform the summarized report into LaTeX slides. For each
slide, if an insight exhibits a clear hierarchy, segment it using
bullet points. Accompany each insight with a screenshot from
the system. The filenames for these screenshots can be found
in the historical analysis data. Please integrate the following
commands for style configuration.
{ setting requirements }

5.2.4 LEVA Interface
To support the whole framework, we design an interface to bridge
users, LLMs, and the underlying data. The interface comprised
of four main components: Chat view, Original system view,
Interaction stream view, and Report view, as shown in Fig. 4.

Chat view: To receive feedback and control the entire workflow
in our framework, this view serves as an interactive interface
where users receive feedback and control other views (Fig. 4A).
During the onboarding stage, the Chat view initiates a tour guide to
introduce the original system. When users start on exploration, this
view will showcase questions proposed by LLMs. Users can make
selections, and the selected questions and insights are recorded and
visualized in the Interaction stream view (Fig. 4C) and to support
report generation in Report view (Fig. 4D). Moreover, the view
allows for open-question answering, letting users engage in fluid
conversations with LLMs to clarify doubts or derive new insights.
Due to possible wrong formats generated by LLMs, we allow a
feedback mechanism to display error messages in the Chat view
and make users aware of failed issues.

Original system view: The original VA system is combined in
this view. To augment the system, LEVA introduces annotations
as arguments. These annotations, serving as guiding markers, help

users identify interesting data patterns. To efficiently manage these
annotations, a dedicated control panel in Chat view has been
introduced (Fig. 4b2). It offers filtering capabilities and options to
clear all annotations on the view. Users can interact with the views,
prompting LLMs to propose questions based on their selections.
After recommending a cross-view insight, if users select an area
with annotations in the source view, the system will show the other
part of the insights in the target view.

Interaction stream view & Report view: The Interaction
Stream View stands as a historical ledger, cataloging analytical
insights the user obtained from LLMs (Fig. 4C). Users can hover
over the node to retrace details in each step. Each step’s analytical
insights are automatically saved. Considering that the user may
want to stop the current round and start a new one, we provide
an end button to enable users to end their current analysis round,
signaling the system to start a new round of analysis. Moreover,
we set the Interaction stream view as hidden by default. Users can
open the interaction view in the menu at the top of the Chat view
when they need to trace back. Upon selecting an interaction path,
the Report view (Fig. 4D) is triggered, presenting a comprehensive
report for that round.

6 USAGE SCENARIOS

To evaluate our framework, we demonstrate the LEVA-enhanced
VA system in two usage scenarios: one is analyzing multi-facet
event data, and the other is analyzing tabular data. We use the
OpenAI GPT-4 model in our work.

6.1 Analyzing Multi-faceted Event Data

To illustrate how LEVA aids users throughout the VA workflow, we
opted to reproduce a VA system: the recipient of the IEEE VAST
Challenge 2021 Mini-Challenge 3 Award [40]. Our motivation
for this choice stems from several compelling reasons. Firstly,
this system exemplifies the intricate, human-in-the-loop decision-
making tasks inherent to visual analytics. Secondly, it incorporates a
representative blend of data types and corresponding visualizations,
encompassing text, graph, spatial, and temporal data, which is a
typical VA system. Lastly, its recognition as an award winner lends
credibility and affirms its representativeness.

The challenge’s task is to detect and evaluate public risks in
Abila City during the evening of January 23, 2014. The provided
data include microblog records and emergency dispatch records
from a call center. Thus, the system centers around a comprehensive
timeline that serves as the main interaction point to detect event
evolution. A message view presents messages from specific time
periods. A keyword view displays messages within a selected
period, allowing users to hone in on particular topics. A graph
view reflects occurrence relations between various entities, such as
persons and locations. Finally, the system provides a map view of
Abila City to show the message distribution and the risk levels.

In this dataset, we mainly follow the guidelines outlined in
Sec. 5. However, to provide a multi-faceted analysis of the event, we
have made some minor adjustments and additional considerations.
• insight functions: We propose some insight types for event

analysis. The single-view insight type includes summarizing
the events of a certain period in high-risk areas, summarizing
the events of a keyword, finding the nodes, messages, and
keywords associated with the events, and retrieving values.
These functions could be related and combined to address a
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Fig. 4. An implementation of LEVA comprises of four components. Users can communicate with LLMs and control the insight annotations in (a) Chat
view; the recommended insights for next step analysis from LLMs are updated in (b) Original system view; Users can retrace the interaction history in
(d) Interaction stream view; Once a historical analysis path is selected in (d), the generated insight report will display in (e) Report view.

more complex task. For example, summarizing the events could
be recommended as the first and then finding the relevant nodes
in the graph. The events serve as a context in addition to the
graph data, as we defined in Sec. 4.2.1. We also define a cross-
view insight to analyze multiple views at once, which is to
summarize events with temporal and spatial information. The
annotations of this insight type will show on both the timeline
view and map view.

• propose questions: Considering that textual data analysis may
take a long response time, here we let the LLM propose the
questions first, and then the user chooses one question on the
Chat view to execute the insight functions, as the consideration
we described in Sec. 5.2.2.

At the beginning, we click the onboarding button to start a tour
guide (Fig. 5a). The tutorial introduces the visualization type, visual
encoding, and the coordination between views. This guidance leads
us to know the meanings of data analyzed in the timeline view (Fig.
5b). We can also obtain that hexagons on the map denote risk levels
of the region (Fig. 5d). The system also tells us that all the other
views link to the timeline, which renders based on message type
and keywords selected from the keyword view (Fig. 5c). Without
this guidance, one needs to take more time to explore the system
and might build an inaccurate understanding of the system.

In the next exploration stage, we first look at the timeline as it
filters other views. We selected 19:34 to 19:43 since they contain
the highest peak. The assistant proposes a question: “What are the
main events in high-risk regions?” (Fig. 4b), which is related to our
analysis task. Then, the system points out two high-risk regions,

Fig. 5. An onboarding tour example of the VAST challenge system. (a)
Initiation via the onboarding button, (b) Introductions to data meanings
of “mbdata” and “ccdata”, (c) The coordination of keyword view and
timeline view based on selected keywords, and (d) The visual encoding
of hexagon colors representing risk levels in specific regions.

summarizes two events (Fig. 4b1), and figures out the most relevant
nodes (Fig. 4d1) and messages (Fig. 4c1). By briefly scanning
the summaries, we know one high-risk incident is a bicyclist who
gets hit but is helped out by people from Brew’ve Been Served.
The other is a black van and police shootout in the store. The
annotations on the Graph view indicate that the key player in
“Gelatogalore Shooting Incident” is the “van guys”, which happens
in “Gelatogalore”, which is a location colored in green. To further
know if the black van exits in other time periods, we select ”van”
from the keyword view (Fig. 4e1). The assistant catches our action
and proposes to analyze the related events with “van”. We clicked
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Fig. 6. An example of implementing our framework for tabular data analysis in the exploration stage, which demonstrates the analysis results of each
step in a single round (a-d) and the result of multiple rounds (e-g). The annotations represent the insights and potential impact of the LLM output. The
analytical process starts with selecting Consumer on Segment view and four exploration steps with LLMs recommendations (a-d). With the help of
LLMs, we found that manufacturers with high sales in different regions have a significant distribution of preferences (e-g).

it and four events are summarized along the timeline: “Hit and
run”, “Pulled over”, “Hostage situation”, and “Standoff” (Fig. 4e2).
After brushing each event on the timeline view, the annotations
show up on the map view. Reading the details of each event, we
know the whole story of the black van.

In the process of exploration, valuable insights are recorded
and can be traced back in the interaction stream graph to avoid
forgetting important insights. As incidents related to the black van
raise the most public safety concerns, we choose this round to
generate the report (Fig. 4f). The generated report explains each
insight and retains the pictures of the exploration process, and
summarizes the appropriate title and conclusion page (Fig. 4g).

6.2 Analyzing Tabular Data
To demonstrate the generality of the proposed framework, we apply
it to tabular data analysis 6. According to our method design in
Sec. 4, text data analysis is a task that LLMs are good at, but table
data are more suitable for analysis by statistical methods, ensuring
accuracy and efficiency. Nonetheless, LLMs remain instrumental,
especially in distributing tasks and assessing insights. Thus, this
study mainly introduces the exploration stage of tabular data.

For illustrative purposes, we select a dashboard from Tableau
that displays superstore sales data from 2022 2. This dashboard
features nine distinct views: a choropleth map indicating state-
wise sales and five bar charts delineating sales across segments,
categories, sub-categories, top 10 manufacturers, and top 10

2. https://public.tableau.com/app/profile/p.padham/viz/
SuperstoreDashboard 16709573699130/SuperstoreDashboard

customers. Additionally, there are four line charts that trace the
trajectories of sales, profits, orders, and customer metrics.

Before exploration, we prepare specifications, tasks, insight
functions, and data handlers and adjust insights content based
on the analytics scenario, following implementation guidelines
outlined in Sec. 5.1. Some considerations described as below:
• specification: As Tableau dashboards’ source files (with file

extension .twb) are structured in XML format and contain all
the system information that can be extracted and converted
to the values in specifications, which allows us to extract
specifications automatically.

• analysis task: While the dashboards display a variety of
data, including “sales”, “profit”, “orders” and “customers”,
we initially set a task to focus on analyzing the “sales” situation
from multiple perspectives.

• insight functions: We employ fundamental insight functions
as referenced in Sec.4.2.1, such as outstanding number one,
change point, trend, and correlation. Given the breadth of
insights possible with tabular data, it is easy for users to
overlook connections to prior findings. To address this, we also
set to compare current insights with those from the previous
step, using the earlier results as context for computation, as
defined in Sec.4.2.1.

• data handlers: We integrated the Tableau dashboard into a
website using its embedding API [52]. This API permits “get
selection data” (Sec. 5.1). However, due to API limitations,
tutorials and insights are shown in the chat view, and analytical
insights are stored accordingly.

• propose explanations: Considering that in sales analysis, users

https://public.tableau.com/app/profile/p.padham/viz/SuperstoreDashboard_16709573699130/SuperstoreDashboard
https://public.tableau.com/app/profile/p.padham/viz/SuperstoreDashboard_16709573699130/SuperstoreDashboard
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TABLE 1
The questionnaire and the corresponding types, including objective questions and subjective questions.

Type Specific questions

R1: Perceptual visual encoding
O1:What do the visual encoding and corresponding data mean for the timeline view?
S1: Do you know what each data variaiables means?
S2: Do you understand the meaning of the visual elements?

R2: Interaction and Coordination
O2: How the timeline view coordinated with other views?
S3: Are you clear on how to interact in each view?
S4: Are you clear on how the views are related?

R3: Data Pattern Discovery
O3: What high-risk level events occurred in the peak period?
S5: Is it easy to get data findings (such as events, key nodes) in these views?

R4: Hypothesis Formulation and Validation
O4: What are the key player and location of the summarized event?
S6: Are you clear about the next step analysis for validation?
S7: Do you have easy access to rich hypotheses?

R5: Summarization of Exploration Results
O5: Discover related events of the keyplayer and summarize them into a report.
S8: Is it easy to write an analysis report on the interaction results?
S9: Are you satisfied with the quality of the report you wrote?

may need some hint for reason analysis behind the insights.
We let the LLM give additional explanations in the final output
based on its board knowledge [26].
In the beginning, we see that the Consumer on sales by segment

view was highlighted as the highest value. After selection, the other
four bar charts and the map are filtered, and some insights are
recommended. The first recommended insight is “a significant
change point in March 2022” in the sales line chart (Fig. 6a).
The LLMs also suggest potential reasons for the change point
could be a successful market campaign or business activities of
the superstore. Then, a recommended insight is a strong positive
correlation between profit and sales (Fig. 6b). This finding makes
us realize that the strategy launched in February succeeds in turning
sales into profits, which can continue to be used in the future.

Beyond time series insights, the recommendations also high-
light extreme values, specifically, the top two rankings in states
or manufacturers (Fig. 6c, d). We notice that the two states with
outstanding sales are “California” and “New York”. Consequently,
our subsequent analytical focus pivots to these states. Within
these jurisdictions, the top two manufacturers identify as “Other”
and “GBC”, the latter being a renowned office supply brand (Fig.
6e). The below explanation suggests a distinct market inclination
towards smaller manufacturers in these regions.

An intriguing insight emerges when comparing the top manu-
facturers at the state and national levels. While “Other” and “Canon”
dominate sales across most states, “Canon” does not maintain this
lead in “California” and “New York” (Fig. 6f). This variation
accentuates the nuanced manufacturing preferences specific to
regions. Motivated by this finding, we move to analyze the
distribution of “Canon” nationwide. Upon deselecting “California”
and “New York”, the recommended insight reveals Washington and
Delaware as the leading states and reiterates heightened popularity
of “Canon” in these regions (Fig. 6g). These findings may help
potential adjustments to cater to regional sales predilections.

7 USER STUDY

We conducted a user study to evaluate the effectiveness of LEVA for
enhancing VA. Specifically, we wanted to verify if LEVA improves
users’ understanding of the original system, and aids in insights
discovery and summarization more efficiently.

7.1 Study Setup
Here, we introduce the user study by discussing participants and
apparatus, questionnaire, procedure, and results analysis.

Participants and Apparatus: We recruited 20 participants
with backgrounds ranging from computer science, data science,
and mathematics to business analysis, ages from 19 to 25 (µ =
22.37,σ = 1.79), denoted as P1-P20. Among them, 4 participants
are novices in using VA systems. Participants were randomly
assigned to two groups, of which 10 participants used the VA
system from the VAST challenge system without LEVA’s assistance
as the control group and 10 with assistance as the treatment group.
The studies were all conducted using a monitor with a resolution
of 2560 × 1440, along with a mouse and keyboard.

Procedure: The study was composed of three sessions, begin-
ning with a 10-minute introduction to our framework, the usage
of our system, and the original system. Participants can follow
the experimenter to use the system and familiarize themselves
with system functions and workflow. The formal assessment was
conducted using a questionnaire including objective and subjective
questions. Each participant in the two groups was first asked to
answer objective questions, followed by subjective questions. We
also conducted a short interview to collect detailed feedback from
the participants.

Questionnaire and Measurements: Based on the five require-
ments (R1-R5) outlined in Section 3.2, we propose five objective
questions (O1-O5) and nine subjective questions (S1-S9) to evaluate
the effectiveness of our framework in meeting these requirements
(Table. 1). Each requirement was tested with at least one objective
question and one subjective question. For objective questions, the
O1-O4 assessed users’ understanding of data and visual mapping,
as well as their ability to discover insights from the VA system. The
O5 required participants to find insights and write a report. The S5-
S9 is to verify the effectiveness of LEVA in insight recommendation
and summarization. Answer times and correct rates were recorded
for each question to gauge the influence of LEVA in terms of
both efficiency and effectiveness. The correctness assessment for
each question is not a strictly binary 0-1 variable but allows for
a 0.5 score when answering half of it correctly. For example,
for the first question (O1) “What do the visual encoding and
corresponding data mean for the timeline view?”, if the user can
comprehend the visual encoding but is uncertain about the data
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Fig. 7. User Study Results. On the left is the correct rate of five objective questions. In the middle are self-rated scores for subjective questions given
by participants. On the right are the answer time for the four timed questions. The number of asterisks (*) in the upper part of the figure indicates the
significance level of the test (* : p < 0.05; ** : p < 0.01; *** : p < 0.001). The results suggests our method can improve performance from these three
perspectives.

meaning, a score of 0.5 is recorded. Finally, the average score of all
participants is calculated as the correct rate for this question. For
subjective questions, we included a 7-point Likert scale to allow
users to evaluate their level of understanding of the system and
whether they encountered any difficulties in gaining data insights
and writing analysis reports. The control group was asked, “Do
you understand the meaning of the visual elements of each view?
Rate your understanding from 1 to 7.” For the experimental group,
the question was modified with the prefix “With LEVA’s assistance”
to gauge the impact of LEVA on understanding. In table 1, we
present only the core questions, omitting prefixes and suffixes for
brevity. Among them, S1-S4 are used to verify whether LEVA
helps onboarding. Thus, we need to test their understanding of the
UI components of the original VA system. The S5-S9 is to verify
the effectiveness of LEVA in insight discovery and summarization.

7.2 Results and Analysis

To compare the answer time and subjective scores in two groups,
we first conducted the Shapiro-Wilk test in the user study to verify
the assumption of normality, ensuring the validity of subsequent
t-tests. The result of the Shapiro-Wilk test confirmed the normal
distribution of users’ answer times and scores in our samples. After
establishing normality, we applied the independent t-test to assess
differences in answer times and accuracy between the treatment and
control groups, ensuring the reliability of our results. We reported
our results of the correct rate, subjective scores and time cost. The
detailed result analysis of the user study is presented below.

Accuracy: We reported the results of objective and subjective
measures to assess users’ understanding of VA. The correct rates
of five objective questions are shown in Fig. 7 (left). For each
question, the treatment group had a correct rate of over 85%, while
the control group’s correct rate ranged from 50% to 65%. Most
participants can distinguish encoding, but as the legend is not
specific, they were unclear about the meaning of “mbdata” and
“ccdata” represented by the different colors in the Timeline view
(O1). Furthermore, in O2, most participants in the control group
found it challenging to know the influence of the keyword view on
the timeline, while in the treatment group, there were explanations
of the interactions between various views. In O3, all participants
in the treatment group answered correctly, while the control group
was only 60% correct because the two events with higher risk
levels were automatically highlighted in the system exploration
in the treatment group. However, the participants in the control
group had to switch between the map and message view and read

the text repeatedly. The O4 yielded a 50% correctness rate in the
control group. This lower accuracy can be attributed to the fact
that a significant portion of participants could only identify the key
player involved in the event while struggling to pinpoint the event’s
location within the intricate graph view. In contrast, the treatment
group benefited from an automated annotated system that provided
clear event location information. For insight summarization (O5),
only a few participants in the control group were able to assemble a
more coherent understanding of the event (P12, P15, P16), and they
had prior experience in social media VA and cost a considerable
amount of time (over 5 minutes). In contrast, in the treatment group,
only one participant (P4) failed due to their insensitivity to the
location name and not noticing the legend.

Score: As shown in Fig. 7 (middle), the treatment group
obtained higher scores than the control group, and the average
score is improved by approximately 49.21%. This indicates that
participants perceived LEVA as an improvement over the original
VA system in various aspects. For R1 and R2, while most
participants understood brushing the timeline would filter other
views, it was easy to overlook the filtering from the keyword
view to the timeline view. Thus, they mostly got half of the
score in accuracy but gave a lower subjective score due to the
confusion in detailed interactions. This suggests that there was a
lack of clear explanations of interactions and coordination in the
system, underscoring the significance of effective onboarding. The
performance in insight discovery varies among participants; only a
few people can find some data patterns and form new hypotheses
(R3, R4). For report generation (R5), the treatment group scored
significantly higher than the control group in the users’ own scores
on the ease (S8) and the quality (S9) of generating reports (p
<0.001). Participants found it difficult to locate previously explored
data due to the large amount of information (P18, P19). The results
imply that users typically encounter greater difficulty and produce
lower-quality insights when tasked with self-directed exploration
and manual report generation compared to the generation of reports
through an automated process.

Time Cost: We reported the time costs of the five objective
problems in Fig. 7 (right). The results indicate that, with the
exception of the first question (O1), the treatment group exhibited
shorter answer time compared to the control group (p < 0.05). For
the last four tasks, the average time is reduced by approximately
39.26% in the treatment group. For insight recommendations (O3,
O4), the average time is reduced by approximately 41.98% and
31.27%. For the response time of LLMs, summarization events
(O3) need more time to return results, about 25s for the long input
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and output data of O3, but it is still the one with the most time
savings. P2 suggested that “Even though event summarization took
a bit longer than others, it was acceptable given that it saved
us even more time than if we had to read and summarize the
information ourselves”. The LLMs’s response time of finding key
nodes (O4) is faster than O3, only requiring around 5-6s, improving
the average 31.27% of time. For the report generation (O5), using
the LLM to summarize can save an average of 42.27% of time
compared with no assistance. These findings underscore that the
utilization of LEVA can substantially diminish the time investment
required by users when employing the VA system. In addition, we
observed that LLMs have the probability that the text summary
is not comprehensive enough. In the study for P7, the LLM did
not clearly summarize who the key player was. However, through
the free ask in the chat view, P7 got the answer, which took one
minute longer than the average time. This shows that when relying
on LLMs for data analysis, it is necessary to provide free questions
and answers to ensure the acquisition of detailed information.

Feedback: In the final interview, participants were asked about
their opinions on the system. On one side, participants in the
control group offered feedback pertaining to the VA system itself,
highlighting issues such as unclear visual elements and legend
(P11, P13), confusing color schemes (P20), excessive textual data
(P15, P17, P19), and complex interaction between views (P12),
no idea where to click and how to explore (P20). On the other
side, participants in the treatment group contributed constructive
suggestions for improvement:

For onboarding tutorial generation, many participants agreed
that onboarding guidance is required, especially for beginners
(P9). To improve the tutorial, P4 suggested that “The system can
further highlight some important keywords in the tutorial”. P7
and P8 recommended incorporating animations, such as arrows, to
explain the interactions and relationships between views: “Some
animations like arrows could be used to explain the interactions
and associations between views.” This inspires us that the more
intuitive tutorial generation could be a future research direction.

For insight exploration, participants had varied feedback on
insight exploration. Some found that the LLM effectively guided
their analysis (P4), quickly leading them to valuable insights (P3).
Others mentioned that building on the LLM’s analysis, they were
inspired to think further and pose new questions by free ask (P7).
However, there were also comments about the improvement of more
analytical methods. P5 provided a suggestion for improvement:
“In addition to following the original workflow exploration of the
system, like the event analysis, some other tasks, such as starting
from a person or spreading relationships, could be considered.” The
comment points out the need for more types of insight. Therefore,
further study could focus on how to bring more domain knowledge
and analytical methods to LLMs.

For selective report generation, most participants appreciated
the reports. P6 mentioned that “not only the comprehensive content
with images and texts but also the good formatting.” To improve
the report, P10 pointed out that “If some steps in a stream view
could be removed or merged, the generated report would be more
useful.” The comments demonstrate that they considered our report
generation as a convenient and useful function, but further need to
improve the log organization and screening. Additionally, we also
collected the comments for scalability. P3 is interested in using
LEVA’s components as plug-ins for other VA systems. This is a
practical suggestion to provide a powerful tool to enhance more
VA scenarios we plan to study further. We discuss these valuable

suggestions from the user study in the Sec. 8

8 DISCUSSION

In this section, we discuss the generalizability and the performance
of LLMs we observed and highlight the lessons learned from the
research and future directions.

Generalizability: Our framework is generalizable in four
aspects. First, the system specifications we formulate can be
expanded and comprehended by LLMs for tutorial generation.
Second, our strategy for recommending insights is adaptable,
allowing the LLMs to distribute computational tasks and assess
insights in VA systems. Third, our interactive reports generation
strategy can be extended to other systems by preserving analysis
records. During practical implementations, users can fine-tune these
strategies based on the VA tasks and the performance nuances of
LLMs. Finally, LEVA remains independent of LLMs. Currently,
we integrate LLMs’s capabilities to support the exploration of
VA workflows. Although the future appearance of models with
other modal inputs saves efforts on engineering implementations of
basic information processing, LEVA’s strategy for guiding human
intelligence model communication remains unchanged.

The performance of LLMs: Despite their immense strengths,
LLMs still have several limitations, and there is a lively and
ongoing debate on their merits [53]. The first problem is the
accuracy. While one might anticipate that LLMs-enhanced systems
will improve as more users interact with them, there are potential
risks that LLMs could assist analysts in ways that might not be
entirely accurate. Recent research focuses on using fine-tuned
LLMs for tool using [43], transforming natural language into
code [62], and employing advanced prompting strategies such as
self-instruction to compute step-by-step [56]. To enable correct
parsing output, we could add an example of constraining the
output format of LLMs [60]. Moreover, we could also provide an
error reporting strategy to make users aware of the unsuccessful
response. We argue that addressing and communicating potential
errors remains an exciting and open research challenge and calls
for further exploration. The second problem is the response time.
Our current approach is to control the output length of the LLMs or
invoke alternative computation functions that are faster than LLMs.
However, controlling the output length may sacrifice the level
of detail and depth in the generated output. One future direction
could be exploring acceleration strategies from the perspective of
cache mechanisms [15], and predictive analytics might offer speed
improvements without compromising the quality of the insights
generated.

Human-LLM collaboration in open-ended exploration: In
the context of open-ended exploration, the interplay between LLM
assistance and human judgment presents a nuanced dynamic. Our
user study reveals that the timely questions and insights proposed
by LLMs could facilitate efficiency and even prompt users to follow
up with their own new questions. However, it is also essential to
recognize that users could be over-reliant on LLM guidance. They
can thus be steered toward particular directions while missing
others. This interplay between guided exploration and autonomous
discovery is critical to the design of LLM-supported analytical
systems. It warrants careful consideration to balance the benefits
of guidance with the freedom of exploration – a challenge also
recognized in the visual analytics guidance literature [6].

Domain knowledge integration for LLMs in specific tasks:
While ensuring accuracy through the LLM-based insight function
invocation mechanisms, there is a need to enhance problem-solving
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flexibility in specific domain scenarios. The user study indicates
that some users with domain analysis backgrounds will have
more profound analytical ideas in open-question answering. LLMs
need better insight into the calculation and understanding of the
analytical task. This capability needs more domain knowledge.
There might be two methods: one is tailoring insight types and
functions that calculate insights for a particular problem, and
another is to employ a fine-tuned LLM, specifically optimized
to serve the needs of the domain. [20]. Both of which are open
challenges for further research.

Insight recommendation vs. Interaction recommendation:
Our current insight recommendation focuses on extracting essential
insights from the underlying data, capitalizing on the inherent
patterns and relationships present within the dataset. Another
strategy is interaction recommendation, which derives insights
from many user interaction data, learning and predicting the next
interaction object [29]. Such an approach recommended insights
with a more substantial contextual relevance. Looking forward,
there’s potential to integrate the historical interaction data. This
merger can pave the way for more intelligent and contextually
aligned insight recommendations.

Interpretation of user interaction for report generation:
In report generation, both user selections and LLM-generated
insights are pivotal. User selections offer a crucial context for the
insights generated by the LLM, making it essential to preserve
these selections for a complete exploration record. Currently, our
approach can describe the actions taken by the user but falls short in
interpreting the underlying motivations of these actions, impacting
our capacity to provide comprehensive context in the exploration
narrative. Typically, these selections are driven by insights users
from their observations of data and combining personal knowledge.
Future directions could include mining the related data patterns
and combining more domain knowledge to generate more coherent
exploration reports.

Narrative-driven report generation: Current methodologies
in report generation within our framework primarily focus on
compiling logs of exploratory logs into a step-wise report. Looking
ahead, future research could pivot towards employing narrative
structures and strategies for the automatic summarization of these
logs. One direction could be using LLMs for automatic summation.
The enhancements would come in two folds. Firstly, refining the
narrative by identifying and reorganizing story pieces based on data
relationships like temporal and spatial transitions [28], and then
crafting coherent explanations [63]. Secondly, enhancing data pre-
sentation and narrative flow by considering the transitions between
narrative segments [46] with multi-modality expression. These
narrative techniques could provide a more intuitive understanding
of the explored results.

LLM-based enhancement vs. Rule-based enhancement: The
advantage of using LLMs is that it enhances flexibility and
scalability in aiding various VA scenarios, offering capabilities
beyond what a few lines of traditional coding can achieve. LLMs
excel in natural language understanding and generate insights
across a broad knowledge domain. While traditional coding is
precise, it often becomes cumbersome and inflexible when faced
with diverse scenarios and evolving user needs. Specifically, it
would require creating an extensive set of detailed rules to break
down various query requests, matching computational modules
with data, binding views to different types of insights, utilizing
numerous manual templates to introduce the system, describing
computation results, and guiding the exploration process.

Componentization and plug-in: During our user study, we
found out that users expect using our framework to assist them
in exploring more VA systems with different tasks. Therefore,
it is better to offer a toolkit and divide the functionality of
LEVA and the views included in the current implementation
into components. This toolkit will include the LLM-powered
components and programmatic interfaces. For developers of the
original VA system to integrate with this toolkit, the minimum
developing cost is to provide the extensions and APIs to receive
the LLM’s output and modify the prompts to customize the output
format of tutorials or annotations. By doing so, we could allow
LEVA to be integrated as plugins in different VA systems. Further,
we plan to provide more templates to allow users to customize
the information (e.g., specification) entered into the LLM and the
desired tutorials, reports, and insight recommendation from the
LLM according to their needs.

Specification for VA systems: In the extraction of the declar-
ative grammar required in LEVA, we refer to previous work
describing basic charts [30] and adding descriptions of the data
table, user interaction, and coordination based on the goal of
understanding data, view and insight recommendation. An abstract-
level description of data and functionality for VA specifications
can further benefit various downstream tasks. Such abstractions
can greatly facilitate endeavors like the automatic generation of
visualization systems and automated storytelling. As we found the
interaction between views could be introduced with more intuitive
annotations and animations in the tutorial, the future work can
research on how to improve the specification and guide LLMs to
generate such tutorial.

9 CONCLUSION

In this study, we introduced LEVA, a framework that integrates
LLMs into VA workflows to achieve intelligent VA. LEVA
enhances visual analytics through three pivotal stages: onboarding,
exploration, and summarization. During the onboarding stage,
it interprets visualizations and their relationships, fostering the
creation of dynamic tutorials. In the exploration stage, our insight
recommendation strategy harnesses LLMs recommend analytical
insights based on the interpretation of the system’s status and data,
enriching visual analysis via annotations. In the summarization
stage, LEVA allows users to revisit and select analytical history,
streamlining the report generation process. Our integration of LEVA
with a VA system led to the development of an interactive interface
that fosters a dialogue between users and LLMs. We conducted two
usage scenarios and a user study to demonstrate the effectiveness
of our framework.
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