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Symmetry breaking at a topological phase transition
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Spontaneous symmetry breaking is a foundational concept in physics. In condensed matter, it characterizes
conventional continuous phase transitions but is absent at topological phase transitions such as the Berezinskii–
Kosterlitz–Thouless (BKT) transition—as in the BKT case the expected norm (i.e., the magnitude) of the U (1)
order parameter vanishes in the thermodynamic limit at all nonzero temperatures. Phenomena consistent with
low-temperature broken symmetry have been observed, however, in many different BKT experiments. Examples
include recent experiments on superconducting films and the seminal work on two-dimensional arrays of
Josephson junctions. While the inaccessibility of the above thermodynamic limit partially explains this paradox
in finite systems, the full dynamical framework of symmetry breaking at the BKT transition remains unresolved.
Here we provide this by introducing the broader concept of general symmetry breaking. This encompasses both
spontaneous symmetry breaking and the BKT case by allowing the expected norm of the order parameter to
go to zero in the thermodynamic limit, provided its directional phase fluctuations are asymptotically smaller.
We demonstrate this asymptotically slow directional mixing in the low-temperature BKT phase. This explicitly
shows that the order parameter arbitrarily chooses some well-defined direction in the thermodynamic limit,
predicting negligible phase fluctuations compared to the expected norm in arbitrarily large experimental BKT
systems. Our results provide a model for directional mixing timescales across the diverse array of experimental
BKT systems. We suggest various experiments.
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I. INTRODUCTION

Topology and symmetry are two of the most fundamental
concepts in physics. The former classifies objects via prop-
erties that are preserved under continuous deformation. It
provides a framework for a multitude of physical phenomena,
from topological insulators [1] and the quantum Hall effect
[2] to fault-tolerant quantum computation [3] and knots in
light fields [4] and liquid crystals [5]. It was also fundamen-
tal to the defect-mediated description of topological phase
transitions in condensed matter [6–8], where the concept of
symmetry—the preservation of system properties under sym-
metry transformations—has been possibly most powerful in
the characterization of conventional continuous phase transi-
tions. For example, at low temperature, the two-dimensional
(2D) Ising model restricted to single spin-flip dynamics breaks
its global Z2 symmetry by arbitrarily choosing either a positive
or negative magnetization—the global Z2 order parameter—
and keeping this sign on a timescale that diverges with
system size [9]. However, it is the simplest case of contin-
uous symmetry—the U (1) group of planar rotations—that
showcases some of the most interesting and subtle symmetry
properties, but at a topological phase transition.
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In an ergodic U (1) system, the directional phase φm ∈
(−π, π ] of the global U (1) order parameter m = (‖m‖, φm)
ergodically explores (−π, π ] on some finite directional mix-
ing timescale: the mean phase converges to its expected
value Eφm = 0 on this timescale, where it is independent
of global rotations due to its fluctuations also converging to
their expected value

√
Eφ2

m > 0 [the expected value E f :=∫
f (x)π (x)dx of some observable f (x) is that predicted by

the Boltzmann distribution π (x) ∝ e−βU (x), with β the in-
verse temperature and U the potential]. If symmetry is broken
under the chosen dynamics, however, the directional mix-
ing timescale diverges with system size. This asymptotically
slow directional mixing reflects the order parameter arbitrar-
ily choosing some well-defined direction (with zero phase
fluctuations) in the thermodynamic limit. In most cases, this
can be expressed mathematically by calculating the expected
order parameter Em under the influence of a fixed-direction
symmetry-breaking field before taking the thermodynamic
and then zero-field limits. The resultant nonzero vector then
aligns with the direction of the field, while the thermody-
namic limit is singular [10] because exchanging the order
of the two limits returns zero. The singular limit reflects
measurable zero-field discrepancies between experimental ob-
servations and predictions of the Boltzmann model (i.e., small
experimental phase fluctuations compared to their expected
value). This elegantly characterizes the dynamical zero-field
phenomenon of spontaneous symmetry breaking [11] in terms
of thermodynamic expectations, generalizing to any sym-
metry group and occurring at all conventional continuous
phase transitions. Topological phase transitions are, however,
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an exception, described instead in terms of a topologi-
cal ordering that typically breaks ergodicity more generally
[12]. For example, spontaneous symmetry breaking is ab-
sent at the Berezinskii–Kosterlitz–Thouless (BKT) transition
[6,7,13] because (in zero field) the expected norm E‖m‖ of
the U (1) order parameter goes to zero in the thermodynamic
limit at all nonzero temperatures [14,15], but a suppression
(under Brownian spin dynamics) of global topological defects
breaks ergodicity at this paradigmatic topological phase tran-
sition [16].

Phenomena consistent with low-temperature broken sym-
metry have been measured, however, on experimental
timescales in a diverse array of BKT systems [17–29], includ-
ing on very long timescales [18] and in systems that approach
idealized U (1) symmetry [19,20]. This suggests that the rather
elegant mathematical formalism of spontaneous symmetry
breaking may be too restrictive to account for all physical
observations. For example, recent measurements of the elec-
trical resistances of films of lanthanum strontium copper oxide
(LSCO) exhibited strongly nonergodic probability density
functions (PDFs) between the BKT and mean-field super-
conducting transition temperatures, in contrast with Gaussian
Aslamazov–Larkin-type [30–32] fluctuations involving both
the amplitude and phase of the condensate wave function
above the mean-field transition [18] (the BKT transition was
significantly lower than the mean-field transition, resulting in
a broad temperature range dominated by BKT phase fluctua-
tions, i.e., where amplitude fluctuations are negligible [17]).
As large condensate-phase differences (over long distances)
induce resistance and the experimental timescale was on the
order of ten hours, this is likely to be due to increasingly
large regions of symmetry-broken (and therefore persistent
on some significant timescale) condensate-phase coherence
during the approach to the transition—before an onset of
distinct behavior in which a single symmetry-broken region
spans the entire zero-resistance system at low temperature.
(Here, condensate-phase coherence describes positional co-
herence of the local phase of the condensate wave function.)
Similarly, zero-resistance measurements on 2D arrays of
Josephson junctions also provided direct experimental ev-
idence of system-spanning condensate-phase coherence at
low temperature [21,22]. Moreover, results consistent with
the phenomenon have been measured in superfluid [19,20],
magnetic [23–26] and cold-atom [27–29] films, including
very recent experiments on cold atoms [29] and a mono-
layer magnet [26]. Elsewhere, experiments on cylindrical
arrays of superconducting qubits measured a nonzero order-
parameter norm [33], consistent with broken symmetry on
some timescale. Indeed, we are not aware of a BKT experi-
ment that contradicts broken symmetry at low temperature.

A partial explanation for the paradox in finite systems
was provided by the expected low-temperature norm going
to zero very slowly and at the same rate as its fluctuations
[34,35]. This led to much success in describing magnetic-film
experiments [23–26,36,37], but the thermodynamic limit was
not addressed and a rigorous dynamical framework for the
U (1) order parameter arbitrarily choosing some well-defined
direction in the thermodynamic limit (i.e., for broken sym-
metry) remains unresolved. The latter is particularly pertinent
to the superconducting film and Josephson-junction array, as

the electrical resistance is a directly measurable quantity (on
very long timescales [18]) that is conjugate to the directional
condensate phases. Moreover, measurements of the magne-
tization vector in BKT magnetic films should provide direct
experimental evidence of system-spanning symmetry-broken
spin-phase coherence. In contrast, condensate-phase coher-
ence cannot be directly measured in the superfluid helium
film as there is no conjugate field. This is despite the theory
establishing its BKT transition [19,38] implying a signifi-
cant expected low-temperature norm in macroscopic systems
[20], consistent with the accompanying system-spanning
condensate-phase coherence required for macroscopic super-
flow.

Here we show that topological nonergodicity in the low-
temperature BKT phase [16] induces asymptotically slow
directional mixing of the U (1) order parameter, reflecting
its phase fluctuations going to zero in the thermodynamic
limit (for a model system with Brownian spin dynamics).
Moreover, the phase fluctuations are asymptotically smaller
than the expected norm. This explicitly demonstrates that the
U (1) order parameter arbitrarily chooses some well-defined
direction in the thermodynamic limit, providing a theoretical
framework for negligible U (1) phase fluctuations compared
to the strictly decreasing expected norm in arbitrarily large
experimental BKT systems, and thus for broken symmetry
to the thermodynamic limit throughout the low-temperature
BKT phase. This is an example of general symmetry breaking,
which broadens the definition to encompass all phenomena
that result in directional (phase) fluctuations going to zero in
the thermodynamic limit while being asymptotically smaller
than the expected norm (these are the only requirements for
broken symmetry and are fulfilled by cases of spontaneous
symmetry breaking as the expected norm is nonzero in the
thermodynamic limit). This framework is also described by
a singular thermodynamic limit because taking the long-time
limit of the phase fluctuations before the thermodynamic limit
returns their expected value, while inverting the order of the
limits returns zero. These results demonstrate an interplay
between topology and symmetry, parting with orthodox the-
ory in the form of a topological phase transition that does
in fact break symmetry, but outside the elegant yet restrictive
definition of spontaneous symmetry breaking (we stress that
symmetry breaking is typically absent at topological phase
transitions, but that these results provide the community with
a single counterexample). This provides a model for direc-
tional mixing timescales across the wide and diverse array
of experimental BKT systems. We also introduce the con-
cept of long-time directional stability and infer from earlier
work [34,35,39] that the expected norm does not reach its
thermodynamic value of zero at arbitrarily large system size.
A very recent renormalization-group analysis of U (1) phase
fluctuations in BKT magnetic films [37] further enhances the
timeliness of this paper.

The paper is organized as follows. In Sec. II, we introduce
the U (1) symmetry-breaking order parameter and its phase
fluctuations. We then demonstrate that the choice of system
dynamics can result in asymmetric low-temperature simula-
tions on significant timescales, consistent with the existence
of a singular thermodynamic limit of the phase fluctuations.
In Sec. III, we define global-twist dynamics, allowing us to
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demonstrate that topological ergodicity ensures U (1) symme-
try. In Sec. IV, we demonstrate that Brownian spin dynamics
break U (1) symmetry in the low-temperature BKT phase,
but that an alternative choice of local spin dynamics en-
sures U (1)-symmetric simulations on nondivergent timescales
at all nonzero temperatures—in analogy with Swendsen-
Wang/Wolff simulations [40,41] of the 2D Ising model. We
discuss our results and suggest various experiments in Sec. V.

II. SINGULAR LIMIT

The BKT transition governs physics as varied as 2D melt-
ing [7,42–45], 2D arrays of superconducting qubits [33],
Josephson junctions [21,22] and Bose-Einstein condensates
[46], and planar superfluids [19,20], superconductors [17,18],
magnets [23–26] and cold-atom systems [27–29]. Its proto-
typical model is the 2DXY model of magnetism—a set of
unit-length U (1) spins fixed at the N sites of a topologically
toroidal, square lattice with interaction potential

U := −J
∑
〈i, j〉

cos(ϕi − ϕ j ) − h ·
∑

i

(
cos ϕi

sin ϕi

)
. (1)

Here, J > 0 is the exchange constant, h ∈ R2 is the
symmetry-breaking field, ϕi ∈ (−π, π ] is the spin phase at
site i ∈ {(1, 1), (2, 1), . . . , (

√
N,

√
N )} and the sum

∑
〈i, j〉 is

over all nearest-neighbor spin pairs. In zero field, the low-
temperature phase is characterized by algebraic spin–spin
correlations [6,7] while the transition to the high-temperature
disordered phase is induced by the thermal dissociation of
bound pairs of local topological defects in the spin-difference
field [7], which map to charge-neutral pairs of particles
in the 2D electrolyte (see Appendix A) [7,16,47–49]. The
magnetization m := ∑

i(cos ϕi, sin ϕi )/N is then the U (1)
symmetry-breaking order parameter because its expectation
is proportional to the gradient of the free energy with respect
to the symmetry-breaking field h. Writing m = (‖m‖, φm)
in polar coordinates, we therefore define the phase fluctu-
ations 〈s2

φm
(β, τ, N )〉1/2 of some simulation method (e.g.,

Metropolis) to be the root mean of the (unbiased) variances
s2
φm

(β, τ, N ) (of the global U (1) phase φm ∈ (−π, π ]) of
a large number of N-spin simulations of timescale τ , with
their expected value

√
Var[φm] given by the standard devi-

ation (π/
√

3) of the uniform distribution U (−π, π ). Here,
〈·〉 denotes the mean over an infinite number of independent
simulations at fixed β, τ, N [50], the simulation timescale
τ > 0 is the elapsed Monte Carlo time over the course of some
entire simulation, and Var[ f ] := E( f − E f )2.

The Mermin-Wagner-Hohenberg theorem [14,15] predicts
that the spontaneous order parameter lim‖h‖→0 limN→∞ Em
is zero at nonzero temperature, where it similarly predicts
that the expected norm in zero field E‖m(h = 0)‖ goes to
zero in the thermodynamic limit (we now set h = 0 unless
otherwise stated). Spontaneous symmetry breaking is there-
fore absent at the BKT transition. The entire low-temperature
phase is, however, critical, as the spin-spin (fluctuational)
correlation length diverges for all finite β > βBKT, with βBKT

the phase transition. The expected low-temperature norm does
not therefore reach its thermodynamic value of zero at arbi-
trarily large system size, as the correlations are cut off on

long length scales. More precisely, with g(x) the PDF of m
and σ‖m‖ the standard deviation of ‖m‖, the PDF σ‖m‖g(x)
of the fluctuation-normalized order parameter m̃ := m/σ‖m‖
maintains a well-defined low-temperature sombrero form in
the thermodynamic limit because E‖m̃‖ is system-size inde-
pendent [34,35]. In general, for any given scalar observable,
only if the ratio of its fluctuations with its expectation can be
made arbitrarily small with increasing system size does there
exist some finite system size at which the expectation can be
considered to have reached the thermodynamic limit, which is
not the case for E‖m‖ given this system-size independence.
All analysis of the global U (1) phase φm therefore holds to the
thermodynamic limit. This is also implied by the equivalence
of the directional phases of m and m/σ‖m‖. We also note that
the expected low-temperature norm itself goes to zero very
slowly: E‖m‖ ∼ N−1/(8πβJ ) as β →∞ [23] and E‖m‖ ∼
N−1/16 at the finite-size transition [51]. The former was even
shown to hold in an N ∼ 1010 superfluid film [20], while the
latter implies that E‖m‖ would be ∼10−2 at the finite-size
transition in a magnetic film “the size of Texas” [51].

Figure 1 shows evolutions of the order parameter m over
the course of single simulations at various systems sizes and
temperatures. The data reflect a PDF with sombrero form at
low temperature and the central well of the symmetric phase
at high temperature (1/βBKT � 0.887J [52]). In Figs. 1(a)–
1(c), we investigate the 2DXY model with Brownian (spin)
dynamics by simulating the model with the local Metropolis
algorithm, where each Metropolis iteration proposes a (local)
single-spin perturbation and we draw observations after every
N such iterations, defining the Metropolis Monte Carlo time
step as τ/n with n the number of observations (Metropo-
lis dynamics converge on Brownian dynamics [53] with an
N-independent physical time step that is proportional to the
Monte Carlo time step, as outlined in Appendix B). Fig-
ures 1(d)–1(f) benchmark the diffusive Metropolis dynamics
against the event-chain Monte Carlo algorithm [54] as the
latter induces rotations of the order parameter [and therefore
U (1) symmetry] on short timescales. As outlined in detail in
Appendix B, this is achieved by continuously advancing some
active spin at fixed (anticlockwise) velocity until a Metropolis
rejection would have occurred. This defines a particle event
and induces a new active spin. We draw observations at every
N th particle event and define the event-chain Monte Carlo
time step as τ/n. The number of observations n is fixed at
105 and 103 in the Metropolis and event-chain simulations.

In Figs. 1(a)–1(c), the low-temperature Metropolis sim-
ulations are asymmetric for N � 64×64, while the high-
temperature Metropolis simulations appear to be symmetric
for a broad range of system sizes (with symmetric simulations
defined by a simulation variance s2

φm
that has converged to its

expected value Var[φm] within some small ε > 0). Moreover,
the low-temperature directional mixing timescale appears to
increase with system size, suggesting a singular limit. Upon
defining the long-time directional stability

γ (β ) := 1 − lim
τ→∞ lim

N→∞

√〈
s2
φm

(β, τ, N )
〉

Var[φm]
, (2)
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FIG. 1. Evolutions of the U (1) order parameter m := ∑
i(cos ϕi, sin ϕi )/N over the course of single Metropolis [(a)–(c)] and event-chain

[(d)–(f)] simulations suggest that local Metropolis/event-chain dynamics do/do not result in the singular thermodynamic limit described
below Eq. (3). The local Metropolis simulations comprise 105 observations with acceptance rate aMetrop � 0.6. The event-chain simulations
comprise 103 observations. Straight lines connect adjacent observations. The Metropolis data suggest a low-/high-temperature directional
mixing timescale that does/does not diverge with system size, whereas the event-chain data suggest a nondivergent directional mixing
timescale for all finite β. In particular, the low-temperature Metropolis simulations become less symmetric with increasing system size, i.e.,
the (unbiased) simulation variance s2

φm
of the global U (1) phase φm deviates further from its expected value Var[φm] = π 2/3 [the variance of

the uniform distribution U (−π, π )]. This is consistent with the U (1) order parameter arbitrarily choosing some well-defined direction in the
thermodynamic limit.

the Metropolis results are consistent with

γMetrop(β ) =
{

1, β > βBKT

0, β < βBKT.
(3)

This is due to vanishing low-temperature phase fluctuations
in the thermodynamic limit, as presented in detail below.
This thermodynamic limit is singular because exchanging the
order of the limits in Eq. (2) returns zero at all finite β (we
note that singular semiclassical limits analogously involving
long times are commonplace in quantum chaos [55]). All
event-chain results in Figs. 1(d)–1(f) suggest, by contrast,
nondivergent directional mixing timescales, consistent with
zero long-time directional stability for all finite β. We assume
local Metropolis/Brownian spin dynamics below unless oth-
erwise stated.

We additionally note that the low-temperature Metropo-
lis outputs in Figs. 1(a) and 1(b) contain small fluctuations
towards m = 0 at random values of the directional phase
φm, while the event-chain outputs in Figs. 1(d)–1(f) appear
to exhibit well-converged simulation variances in ‖m‖. This
may be a result of the asymmetry of the low-temperature

‖m‖ distributions in Fig. 2 of Ref. [34], with the Metropolis
dynamics mixing poorly in the heavy-tailed regions towards
m = 0.

III. GLOBAL-TWIST DYNAMICS

We show below that Eq. (3) holds for local Metropo-
lis simulations, but we first demonstrate that zero long-time
directional stability is guaranteed at all finite β by supple-
menting these local dynamics with externally applied global
spin twists

ϕk �→ ϕk + 2π√
N

qx/ykx/y (4)

for all spins k ∈ {(1, 1), (2, 1), . . . , (
√

N,
√

N )} along the x/y
dimension (q ∈ Z2). Global-twist dynamics are then defined
by one such Metropolis proposal with qμ = ±1 along each
Cartesian dimension μ at each Monte Carlo time step. Global-
twist events occur in pairs that form the compound tunneling
events seen in Fig. 2(a), each due to a global-twist event
taking the system to small ‖m‖ before another global-twist
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FIG. 2. Local 2DXY dynamics may be supplemented with global-twist dynamics [defined below Eq. (4)] that ensure U (1)-symmetric
simulations on nondivergent timescales at all nonzero temperatures. Global-twist events occur in pairs that form compound tunneling events
[through the sombrero potential, as in (a)] and are system-size independent sufficiently far from the transition [see (b)]. This results in zero
long-time directional stability [defined in Eq. (2)] at all nonzero temperatures, reflected in supplemental global-twist dynamics increasing
the squared phase fluctuations 〈s2

φm
〉 [defined below Eq. (1)] by an amount that increases with system size [see (c)]. Simulations use local

Metropolis dynamics with acceptance rate aMetrop � 0.6. (a) Evolution of the U (1) order parameter m over the course of a single Metropolis
simulation (of an N = 256×256 system) comprising 5×105 observations with supplemental global-twist dynamics. (b) Probability of global-
twist events vs reduced temperature β̃BKT/β and system size N based on 560n attempts, with n = 106 at β̃BKT/β > 1.2 and n = 3×107/n =
107 at β̃BKT/β < 1.2 for N ≷ 40×40 [β̃BKT := 1/(0.887J )]. (c) Low-temperature (βJ = 10) squared phase fluctuations vs 1/ ln N with and
without supplemental global-twist dynamics, averaged over 5600 simulations, each of n = 106 observations.

event returns the system to the well of the sombrero po-
tential. Figure 2(b) shows estimates of the probability of
2DXY global-twist events as a function of temperature and
system size. The data demonstrate that, as for the case of
the topological-sector events that ensure topologically er-
godic simulations (defined alongside topological ergodicity
in Appendix A) of the 2D electrolyte [16], this probability
is system-size independent sufficiently far from the transition.
Moreover, the probability is nonnegligible at all system sizes
and nonzero temperatures (despite being small at low tem-
perature) reflecting it scaling like exp(−2π2βJ ) as N → ∞
in the absence of other excitations. Assuming Eq. (3), it
then follows that, for low-temperature Metropolis simulations
supplemented with global-twist dynamics, any sequence of
histograms of the global U (1) phase φm at any fixed simu-
lation timescale tends to some normalized sum over randomly
distributed (around the well of m̃ sombrero potential) Dirac
distributions in the thermodynamic limit, where a large num-
ber of Dirac distributions becomes more likely with increased
(fixed) simulation timescale and we have assumed suitably
chosen histogram bin sizes. Simulations supplemented with
global-twist dynamics are therefore symmetric on nondiver-
gent timescales, with zero long-time directional stability at all
finite β. This is reflected in Fig. 2(c), which shows estimates
of the squared phase fluctuations as a function of system
size (at βJ = 10) for fixed-timescale Metropolis simulations
both with and without supplemental global-twist dynamics.
The data are consistent with the phase fluctuations going to
zero in the thermodynamic limit for purely local Metropolis
simulations, while supplemental global-twist dynamics in-
crease the phase fluctuations by an amount that increases
with system size. As outlined in Appendix A, supplementing
local Metropolis simulations with the global-twist dynamics

also ensures (and is required for) topologically ergodic low-
temperature simulations on nondivergent timescales of the
same order (in analogy with topological-sector dynamics in
the 2D electrolyte) [16,49]. Topological ergodicity therefore
ensures U (1) symmetry.

IV. SYMMETRY BREAKING

The low-temperature Metropolis data in Figs. 1(a)–1(c)
are consistent with vanishing phase fluctuations (at any fixed
simulation timescale and under local dynamics) in the ther-
modynamic limit, as described by the hypothesized long-time
directional stability in Eq. (3). Conversely, at any fixed system
size and under local dynamics, the squared phase fluctua-
tions 〈s2

φm
〉 will eventually converge to their expected value of

Var[φm] = π2/3 [see Fig. 2(c) at small N] on the directional
mixing timescale τmix > 0. Assuming this is described by
〈s2

φm
〉 ∝ τ/τmix for large enough τ < τmix under the diffusive

Metropolis dynamics, the directional mixing timescale then
quantifies the scaling of the fixed-timescale phase fluctuations
with system size.

To characterize the directional mixing timescale, we plot
the empirical cumulative distribution functions (ECDFs)

Fφm,n(x) := 1

n

n∑
i=1

I[φm(ti ) < x] (5)

of multiple realizations of both Metropolis and event-chain
dynamics (without global-twist dynamics) in Figs. 3(a) and
3(b), where ti is the Monte Carlo time at observation i and
the indicator function I(A) is one/zero if event A does/does
not occur. Each ECDF then measures the number of simula-
tion observations with global U (1) phase value less than x ∈
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FIG. 3. ECDFs [defined in Eq. (5)] of the global U (1) phase φm under local Metropolis dynamics [(a), (b)] reflect the strikingly different
symmetry properties of the low- and high-temperature phases [red and black schematics in (c), respectively]. Different line styles represent
different realizations. (a), (b) Eight Metropolis simulations at low and high temperature, each of n = 106 observations with acceptance rates
a � 0.6. Results suggest that any sequence of low-temperature ECDFs at any fixed simulation timescale tends to some Heaviside step
function as system size N → ∞. The high-temperature simulations suggest, by contrast, symmetric convergence on the target CDF F (x)
of the uniform distribution U (−π, π ) on some nondivergent directional mixing timescale. Inset of (a): Four event-chain simulations at low and
high temperature, each of n = 104 observations. Results are consistent with symmetric convergence on the target CDF F (x) on nondivergent
directional mixing timescales at all nonzero temperatures.

(−π, π ], with symmetric simulations displaying small devia-
tions from the target CDF F (x) := P (φm < x) of the uniform
distribution U (−π, π ). The low-temperature Metropolis sim-
ulations in Figs. 3(a) and 3(b) demonstrate larger deviations
from the target CDF F (x) than their high-temperature coun-
terparts, with the mean low-temperature deviations increasing
with system size, and each low-temperature simulation gen-
erating a nonreproducible ECDF. This is consistent with a
loss of U (1) symmetry in the low-temperature phase. Indeed,
the schematic in Fig. 3(c) presents the two possible forms
of the ECDFs in the thermodynamic limit: Heaviside step
functions in the low-temperature symmetry-broken phase and
the target CDF F (x) at high temperature. The low-temperature
Metropolis simulations in Figs. 3(a) and 3(b) suggest that
any sequence of ECDFs at any fixed simulation timescale
tends to some Heaviside step function as N → ∞. Their
high-temperature counterparts suggest, by contrast, sym-
metric convergence on the target CDF F (x) on some
non-divergent directional mixing timescale. This also holds
for the low- and high-temperature event-chain simulations in
the inset of Fig. 3(a).

The Cramér-von Mises mean square distance [56,57]

ω2
φm,n :=

∫
[Fφm,n(x) − F (x)]2dF (x) (6)

between Fφm,n(x) and the target CDF F (x) measures the
deviations from the target CDF F (x), providing access to
the (directional mixing) timescale on which symmetry is
achieved via local dynamics. Figure 4(a) shows estimates
of the Cramér-von Mises statistic 〈nω2

φm,n〉 as a function of
temperature and system size. We use supplemental global-
twist dynamics to improve the statistics at high temperature
[58]. The timescale on which symmetry is achieved via global
dynamics (at arbitrarily large system size) is very long (and
at most weakly N-dependent) compared to that achieved
via local dynamics for the simulations presented here. For
large enough n and within the simulation error, the data con-

verge on the displayed values and indicate that 〈τω2
φm,n〉 ∼ N

for low-temperature Metropolis dynamics and that 〈τω2
φm,n〉

is system-size independent for both event-chain dynamics
(sufficiently far from the transition) and high-temperature
Metropolis dynamics. Since 〈ω2

φm,n〉 → 0 as τ → ∞ and
〈τω2

φm,n〉 converges on the directional mixing timescale τmix,
it follows that 〈ω2

φm,n〉 ∝ τmix/τ for all τ > τmix. The data
therefore imply that τmix ∼ Nz/2, where at low temperature
z = 2 for the physical Metropolis dynamics and z = 0 for
the symmetric event-chain dynamics (reminiscent of previ-
ous investigations [59]). The data also imply that z = 0 at
high temperature in both cases. All data sets meet at a high-
temperature plateau, reflecting the flattening of the Boltzmann
distribution with increasing temperature. The event-chain
results decrease with temperature, reflecting improved direc-
tional mixing (see Appendix B).

Figure 4(a) (inset) indicates that the Metropolis data sets
of successive system sizes intersect near the transition. This
is due to the finite-size transition temperature consisting of
its thermodynamic value and an additive term ∝1/(ln N )2

[23,36]. Defining the intercept temperature 1/[βint (N )J] to be
the lowest temperature at which 〈ω2

φm,n(N )〉 = 〈ω2
φm,n(N/4)〉,

we therefore perform local fittings of 〈nω2
φm,n〉, with the resul-

tant intercepts marked by grey lines in Fig. 4(a) (inset). The
intercept temperatures are then plotted against 1/(ln N )2 in
Fig. 4(b). Fitting a straight line to the data, the reduced inter-
cept temperature β̃BKT/βint (N ) extrapolates to 0.998 ± 0.007
in the thermodynamic limit, i.e., βint (N ) → βBKT as N → ∞,
with β̃BKT := 1/(0.887J ) � βBKT. Moreover, the estimated
intercept values scale approximately with N [see Fig. 4(b)
(inset)]. In conjunction with the low-temperature Metropolis
results in Fig. 4(a), this demonstrates that τmix ∼ N for all
β > βBKT. Recalling the assumption that 〈s2

φm
〉 ∝ τ/τmix for

large enough τ < τmix, it follows that 〈s2
φm

〉 ∼ N−1 for all β >

βBKT. This confirms Eq. (3) and the singular thermodynamic
limit of the phase fluctuations (〈s2

φm
〉1/2) at all β > βBKT,
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FIG. 4. Brownian spin dynamics break symmetry throughout the low-temperature phase, in contrast with event-chain dynamics.
(a) Cramér-von Mises statistic [defined below Eq. (6)] vs reduced temperature β̃BKT/β and system size N for Metropolis (circles) and
event-chain (stars) simulations with supplemental global-twist dynamics, with β̃BKT := 1/(0.887J ). Results indicate a directional mixing
timescale τmix ∼ Nz/2 with z = 2 and z = 0 for local Metropolis and event-chain dynamics at low temperature (and z = 0 at high temperature
in both cases). Metropolis data sets intersect near the transition, marked by vertical grey lines in the inset. Data is averaged over 560
realizations with n = 106 at β̃BKT/β > 1.2 and n = 3×107/n = 107 at β̃BKT/β < 1.2 for N ≷ 40×40. Local Metropolis acceptance rates
a � 0.6. (b) Estimated reduced intercept temperatures vs 1/(ln N )2 with a straight-line fit (black dashed line) that extrapolates to one (i.e., the
phase transition) as N → ∞, within the estimated error. Inset: Estimated intercept values vs N with a power-law fit indicating approximate
∼N scaling.

due to nonzero long-time directional stability. In addition,
the phase fluctuations are asymptotically smaller than the
expected norm throughout the low-temperature phase, where
1/E‖m‖ is O(N1/16) [23].

Topological nonergodicity therefore induces broken U (1)
symmetry in the low-temperature BKT phase. Symmetry is
broken because the algebraic correlations combine with the
diffusive Brownian spin dynamics to provoke a divergence
(with system size) of the (directional mixing) timescale on
which the directional phase of the U (1) order parameter er-
godically explores (−π, π ], but symmetry can be restored
by nonphysical global-twist dynamics that tunnel through the
U (1) sombrero potential and also restore topological ergod-
icity [16,49]. The scaling of the directional mixing timescale
implies that the low-temperature U (1) phase fluctuations go
to zero in the thermodynamic limit while being asymptoti-
cally smaller than the expected norm of the order parameter.
This case is distinct from spontaneous symmetry breaking as
it cannot be identified via a singular limit of the expected
U (1) order parameter, leading us to define general symmetry
breaking as directional (phase) fluctuations going to zero in
the thermodynamic limit while being asymptotically smaller
than the expected norm. This includes spontaneous symmetry
breaking and corresponds to the order parameter arbitrarily
choosing some well-defined direction in the thermodynamic
limit, reflecting all cases of strictly decreasing directional
(phase) fluctuations being negligible compared to the ex-
pected norm in arbitrarily large systems.

In contrast with the above Metropolis conclusions, event-
chain simulations are U (1)-symmetric on nondivergent
timescales at all nonzero temperatures.

V. DISCUSSION

Previous static BKT studies focused on the expected norm
of the U (1) order parameter in both thermodynamic [14,15]
and finite [34,35] systems, where the latter led to much suc-
cess in modeling experimental quantities that are functions of
the expected norm [19,20,23–26,36,37]. Our dynamical study,
by contrast, explicitly demonstrates that the low-temperature
order parameter arbitrarily chooses some well-defined direc-
tion in the thermodynamic limit. This asymptotically slow
directional mixing predicts negligible U (1) phase fluctua-
tions compared to the strictly decreasing expected norm in
arbitrarily large experimental BKT systems, thus providing
a theoretical framework for broken symmetry to the thermo-
dynamic limit throughout the low-temperature BKT phase.
This constitutes a model for the directional mixing (or mem-
ory) timescale τmix ∼ N . We suggest experiments on a single
Josephson junction formed from two nodes of 2D super-
conducting film as an ideal showcase of the phenomenon.
Moreover, measurements of the magnetization vector in XY
magnetic films (with a sixfold crystal field [47]) should
provide further direct experimental evidence, as should the
orientational order parameter in the hexatic phase of col-
loidal films [44,45]. Indeed, this paper provides the full
dynamical framework for system-spanning symmetry-broken
spin/condensate-phase coherence in the wide array of critical
BKT experimental systems [17–29,45], motivating experi-
ments on BKT systems in general.

Our results also imply that the strongly nonergodic
electrical-resistance PDFs measured in the LSCO films [18]
are likely to be due to increasingly large regions of symmetry-
broken condensate-phase coherence as the BKT transition
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is approached from high temperature, described by a criti-
cal slowing down of the symmetry-breaking order parameter
analogous to that of the 2D Ising model. This is because
increasingly large symmetry-broken regions persisting on sig-
nificant nonergodic timescales are a necessary precursor to
the system-spanning symmetry-broken region that we have
demonstrated at low temperature (for any system with Brown-
ian dynamics, nonergodic timescales/slow dynamics accom-
pany the flattening of its configurational free-energy land-
scape upon transitioning between symmetric and symmetry-
broken phases). We leave the remainder of this hypothesis to a
separate publication and suggest that this second effect should
also be detectable near the BKT transition in 2D Josephson-
junction arrays and XY magnetic films, and similarly near the
solid-hexatic transition in colloidal films. Indeed, our hypoth-
esis also applies to 3D superconductors, Josephson-junction
arrays and XY magnets, but the 2D case is particularly signif-
icant to experiment as the BKT transition occurs over a broad
temperature range in finite systems [23,36].

We additionally showed that event-chain 2DXY simula-
tions are U (1)-symmetric on nondivergent timescales at all
nonzero temperatures. This is analogous to the accelerated
mixing (relative to Metropolis) of Swendsen-Wang/Wolff
simulations [40,41] of the 2D Ising model, but due in this
case to the deterministic event-chain dynamics efficiently
exploring the configurational free-energy landscape along
low-gradient directions, with our event-chain simulations
also suggesting significantly improved exploration of the
heavy tail of the asymmetric ‖m‖ distribution [34] relative
to Metropolis. This fundamental characteristic of event-chain
Monte Carlo suggests that it should also circumvent critical
slowing down by advancing deterministically through the flat
regions of the configurational free-energy landscape found at
continuous phase transitions—possibly related to the
superdiffusive dynamics of the location of the 2DXY
active spin [60], and again in analogy with the Swendsen-
Wang/Wolff simulations. This hypothesis is also suggested by
the

√
N speed-up of lifted (relative to standard) Metropolis–

Hastings simulations of the Curie-Weiss model at its phase
transition [61], as its limiting behavior [61] is a similar piece-
wise deterministic Markov process that originated in Bayesian
computation. This motivates additional studies into the power
of piecewise deterministic Markov processes at phase tran-
sitions across statistical physics, Bayesian computation and
applied probability. Indeed, the foundational viewpoint of bro-
ken symmetry presented here—asymptotically slow mixing
between equilibrium states of equal probability density—
could be viewed as the canonical choice in Bayesian computa-
tion and applied probability. This cross pollination of knowl-
edge may motivate further innovations across all three fields.

We also introduced general symmetry breaking. While
both fall within this general concept, the present result is
distinct from spontaneous symmetry breaking because it
cannot be identified by taking the thermodynamic and then
zero-symmetry-breaking-field limits of the expected order
parameter, though this elegant mathematical formalism
[14,15] of singular limits (of statistical expectations) paved
the way to the subtleties of the thermodynamic limit in
a critical system [34,35]. Indeed, the vanguard of these
first and second waves of BKT theory correctly identified

both an absence of spontaneous symmetry breaking and an
experimentally relevant order-parameter norm, both of which
are united by our general concept as it allows the expected
norm to go to zero in the thermodynamic limit, provided the
phase fluctuations are asymptotically smaller. We note that,
as E‖m̃‖ is system-size independent, it is tempting to define
the broader concept with respect to m̃ and without stating
“while being asymptotically smaller than the expected norm.”
However, cases of phase fluctuations being asymptotically
greater than or equal to E‖m‖ must be excluded from
general symmetry breaking, which might not be satisfied
by this adaptation. We add that the present paper suggests a
symmetry-breaking singular limit of Em̃ at low temperature,
but preliminary simulation results suggest that E‖m̃‖ is
nonzero for all finite β in zero field. It would be interesting
to explore whether 1/ limN→∞ E‖m̃(h = h0)‖ (or potentially
limN→∞ σ‖m(h=h0 )‖/ limN→∞ E‖m(h = h0)‖) can be made
arbitrarily small with decreasing ‖h0‖ at low temperature.

Code is freely available at Ref. [62]. All published data
can be reproduced using this application (as outlined in its
README) and are available at the University of Bristol data
repository, data.bris, at Ref. [63].
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APPENDIX A: FIELD DECOMPOSITION
AND TOPOLOGICAL ERGODICITY

Supplemental global-twist dynamics were used in Figs. 2
and 4. We elucidate the global twists via the 2D harmonic
XY (2DHXY) model [51,64]—a piecewise-parabolic ana-
log of the 2DXY model whose quadratic zero-field potential
J

∑
〈i, j〉(�θi j )2/2 maintains the 2π XY periodicity via the

definition �θi j := (ϕi − ϕ j + π ) mod (2π ) − π while map-
ping directly to the 2D lattice-field electrolyte [48,49]. Each
spin configuration decomposes into three excitations: local
topological defects (spin vortices), global topological de-
fects (internal global spin twists) and continuous fluctuations
around these defects (spin waves). An example 2DHXY con-
figuration at βJ = 1.5 and with a fixed topological-defect
configuration is shown in Fig. 5(a) [i.e., for illustrative pur-
poses, we fixed two local defects (and one global defect)
in position and allowed spin waves to fluctuate around this
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FIG. 5. Each spin configuration is composed of local topological defects (spin vortices), global topological defects (internal global
spin twists) and continuous fluctuations around these topological defects (spin waves). Red arrows represent spins. (a) Typical 2DHXY
configuration at βJ = 1.5 with fixed topological defects [i.e., for illustrative purposes, we fixed two local defects (and one global defect)
in position and allowed spin waves to fluctuate around this constrained configuration—this is distinct from the nonconstrained simulations
presented in the main body of the paper]. (b) Zero-temperature minimization of (a), i.e., with spin waves annealed away. (c), (d) Configuration
in (b) split into its (c) vortex and (d) internal global-twist components.

constrained configuration—this is distinct from the noncon-
strained simulations presented in the main body of the paper].
Figure 5(b) is the zero-temperature minimization of this con-
figuration: topological defects are fixed and spin waves are
annealed away. Figure 5(c) depicts Fig. 5(b) with global spin
twists [defined in Eq. (4)] applied along each Cartesian di-
mension until the potential is minimized by some q ∈ Z2,
leaving behind the vortex field. The right-/left-hand local
topological defect is a positive/negative vortex, about which
the spins rotate by ±2π . q is identified with the global twist-
relaxation field t̃, which removed the internal global spin twist
(described by the internal global twist field t = −t̃) depicted
in Fig. 5(d). Internal global spin twists are global topological
defects. Each can be generated by a vortex tracing a closed
path around the torus (in the x direction in this case) before
annihilating another of opposite sign [16,49] (see, in partic-
ular, Fig. 5 of Ref. [49]). In the emergent electrostatic-field
representation in which the positive/negative vortex maps to a
positive/negative emergent charge, the vortex, spin-wave and
internal global-twist components map to [49] (respectively)
the low-energy solution to the Gauss law for the emergent
charges, the purely rotational auxiliary gauge field of the 2D
lattice electrolyte [16,65] and the topological sector w ∈ Z2 of
the 2D electrolyte, with w = (ty,−tx ) [16]. The same decom-
position recipe defines the global twist-relaxation field t̃ in the
2DXY model, but this mapping to the electrolyte-field com-
ponents is then only approximate. One may circumvent this
by using the 2DHXY potential in the decomposition recipe.
This defines the local and global topological defects, but the
global topological defects will not always correspond to the
global twist-relaxation field.

In Figs. 2 and 4, we supplemented local 2DXY dynamics
(described in Appendix B) with externally applied (to the
nondecomposed spin field) global spin twists. Due to the
coupling between each component of even the 2DHXY spin
field, the global twist-relaxation field t̃ cannot be isolated
and uniquely manipulated by these global-twist dynamics,
as such dynamics may alter all three spin excitations. In
contrast, topological-sector dynamics alter only the topolog-
ical sector of the 2D electrolyte because the auxiliary gauge

field is independent of the remaining electric field [16,65].
However, Fig. 2(b) shows that, as for the case of topological-
sector events in the 2D electrolyte [16], the probability of
global-twist events is system-size independent sufficiently far
from the transition and nonnegligible at all system sizes and
nonzero temperatures, despite being small at low temperature.
Defining topological order/nonergodicity under some dynam-
ics by vanishing t̃ fluctuations (〈s2

t̃ 〉1/2) in the thermodynamic
limit, topological ergodicity then corresponds to

lim
τ→∞ lim

N→∞
〈
s2

t̃ (β, τ, N )
〉 = Var[t̃], (A1)

and global-twist dynamics ensure topologically ergodic simu-
lations on nondivergent timescales (with topologically ergodic
simulations defined by a simulation variance s2

t̃ that has con-
verged to its expected value Var[t̃] within some small ε > 0,
reflecting ergodic exploration of the global twist-relaxation
field t̃ ∈ Z2). This is analogous to topological-sector dynam-
ics ensuring topologically ergodic simulations (on nondiver-
gent timescales) with respect to w in the 2D electrolyte [16].
Since, to leading order, topologically ergodic simulations
require ergodic exploration of t̃ only over the five-element
set {(0, 0),±(1, 0),±(0, 1)} ⊂ Z2, it is reasonable to assume
that these timescales are on the order of the nondivergent
timescales on which symmetric Metropolis simulations are
ensured by supplemental global-twist dynamics (r ∈ N of the
tunneling events described in Sec. III result in r of the Dirac
distributions also described there). Global-twist dynamics also
ensure ergodic simulations on nondivergent timescales with
respect to a nonannealed analog of the global twist-relaxation
field. This will be set out in detail in a future review article
[66].

APPENDIX B: SIMULATION AND FITTING ALGORITHMS

1. Local Metropolis Monte Carlo

We used the local Metropolis algorithm with Gaussian
noise to investigate the 2DXY model with Brownian spin
dynamics. Each Metropolis proposal attempts to perturb a
single spin by an amount ε ∼ N (0, σnoise ), with σ 2

noise the
variance of the Gaussian-noise distribution. Such proposals
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are accepted with probability min[1, exp(−β�U )], with �U
the potential of the proposed configuration minus its current
value. For a set of linearly coupled 1D harmonic oscillators,
Metropolis dynamics were proven rigorously [53] to converge
on Brownian dynamics (in the thermodynamic limit) with
emergent physical time step �tphys := aMetropσ

2
noise�tMetrop/2

per unit (Brownian) diffusivity. Here, aMetrop is the Metropolis
acceptance rate and �tMetrop is the Metropolis Monte Carlo
time step, which we define as the elapsed Monte Carlo time
between N attempted single-spin moves. We tune σnoise such
that aMetrop � 0.6 throughout and draw observations after each
Metropolis Monte Carlo time step.

2. Event-chain Monte Carlo

We benchmarked the diffusive local Metropolis dynamics
against the event-chain Monte Carlo algorithm [54]. Event-
chain Monte Carlo inverts Metropolis: rather than proposing
a single discrete spin translation before drawing a random
number to decide whether to accept the move, event-chain
Monte Carlo draws the random number and then continuously
advances some active spin at fixed (anticlockwise) velocity
v > 0 until a Metropolis rejection would have occurred at
some particle-event time tη > 0.

To sample the particle-event times, we consider
a sequence of m proposed Metropolis translations
of length δ > 0 in the positive (i.e., anticlockwise)
direction, starting from some initial time t0 � 0.
Defining �Ut0,i := U [ϕ1(t0), . . . , ϕa(t0) + iδ, . . . , ϕN (t0)] −
U [ϕ1(t0), . . . , ϕa(t0) + (i − 1)δ, . . . , ϕN (t0)] and assuming
ϕa(t0) + mδ < π (as ϕk ∈ (−π, π ] for all spins k), the
probability of accepting all proposals and translating the
active spin a through the total distance η := mδ is

pt0,η =
η/δ∏
i=1

min [1, exp(−β�Ut0,i )]

= exp

⎡⎣−β

η/δ∑
i=1

max (0,�Ut0,i )

⎤⎦.

Defining ϕ := (ϕ1, . . . , ϕN ), it follows that

pt0,η → exp

[
−β

∫ ϕa (t0 )+η

ϕa (t0 )
max[0, ∂aU (ϕ′)]dϕ′

a

]

as δ → 0 with η fixed, i.e., in the continuous-time limit. We
therefore draw some random number ϒ ∼ U (0, 1] at t0 and if

− ln ϒ < β

∫ π

ϕa(t0 )
max[0, ∂aU (ϕ′)]dϕ′

a, (B1)

we solve

− ln ϒ = β

∫ tη

t0

max [0, v ∂aU (ϕ(t ))]dt (B2)

to sample the next particle-event time tη = t0 + η/v. This
defines a particle event and one of the four (nearest) neigh-
boring spins k then becomes active with probability ∝
max[0,−v ∂kU (ϕ(t = tη ))]. If Eq. (B1) does not hold, how-
ever, then ϕa(t = tb) = π at the boundary-event time tb :=
t0 + [π − ϕa(t0)]/v. In such instances, the active spin is in-
stantaneously translated to −π , defining a boundary event
at tb. The active spin remains active following this form of
teleportation portal [67].

Event-chain Monte Carlo therefore amounts to sampling
from a nonhomogeneous Poisson process with intensity
function (or event rate) β max[0, v ∂aU (ϕ(t ))]. In practice,
however, it is typically challenging to solve Eq. (B2). In our
simulations, we instead sample one particle/boundary-event
time per two-particle potential and define the next event as
that corresponding to the soonest of these. If this is a particle
event, the corresponding vetoing spin becomes active.

We draw observations at every N th particle event and de-
fine the event-chain Monte Carlo time step as τ/n, though one
may alternatively choose to draw observations every N units
of event-chain time or via some homogeneous Poisson process
with intensity function proportional to N . In the description of
Fig. 4(a) in Sec. IV, we stated that the event-chain Cramér-von
Mises statistic 〈nω2

φm,n〉 decreasing with temperature reflects
improved directional mixing at lower temperatures. We hy-
pothesize that this is due to increased long-range spin—spin
correlations with decreasing temperature.

3. Other simulation details

Simulations for Figs. 1, 2(a) and 3 started from randomized
initial configurations. Those for Figs. 2(b), 2(c) and 4 started
from ordered initial configurations. 104 and 105 initial equi-
libration observations were discarded (respectively) in each
event-chain and Metropolis simulation. All nonvisible error
bars are smaller than the marker size. We consider simulations
to have directionally mixed (i.e., 〈nω2

φm,n〉 to have converged)
if 〈s2

φm
〉 > 0.98Var[φm].

4. Polynomial-fitting algorithms

For the local fittings in Fig. 4(a) (inset), we applied natural
logarithms to each data set (corresponding to each system
size) and then performed second-order polynomial fittings
(within each data set) to the three data points nearest to each
intercept temperature (defined in Sec. IV). Estimated Monte
Carlo errors were used in the fittings. We then performed
first-order fittings to (a) the resultant intercept temperatures
vs 1/(ln N )2 and (b) the natural logarithm of the resultant
intercept values vs ln N . We used the NumPy [68] package
polyfit for all fittings.
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