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1. Introduction

We proved in [8] that the compressed word problem is solvable in polynomial time in 
groups that are hyperbolic relative to a collection of free abelian subgroups. Here, we 
extend this result to the compressed conjugacy problem for the same class of groups, 
that is, we prove the following result:

Theorem A. The compressed conjugacy problem for a group that is hyperbolic relative to 
a collection of free abelian subgroups is solvable in polynomial time.
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In fact, in the case when the two input elements g and h are conjugate, the algorithm 
that we describe constructs, in polynomial time, an slp for a corresponding conjugator; 
that is, an element that conjugates g to h.

The conjugacy problem CP(G) for a group G takes as input two words u, v over a 
generating set Σ. The problem is solvable if there is an algorithm that can determine for 
any such input whether u, v are conjugate in G, that is, whether there exists an element 
g for which the product gug−1 represents the same element of G as v. The answer yes
or no is returned.

The compressed conjugacy problem CCP(G) takes as input straight line programs 
(slps), G1 and G2, which define compressed versions of words u and v (called the values
of G1 and G2), and asks whether the group elements represented by those values are 
conjugate in G. In the case when the answer is positive, a solution to the problem would 
normally be expected to compute a conjugator g (as ours does), which would be returned 
as an slp for a word representing g. Complexity is measured in terms of the sizes of the 
input slps, which can be significantly less than the sizes of their values.

It is an easy observation that the computational complexities of the compressed word 
and conjugacy problems for G are independent of the choice of generating set.

We give background and notation on compressed decision problems and relative hy-
perbolicity of groups in Section 2, and also refer to [8] for more detail. The notation of 
[8] and many of its arguments are used throughout this article. Within this introduction 
we attempt to explain in general terms our approach to the proof of Theorem A.

From now on, we denote by G the group of the theorem, by Σ a (carefully chosen) 
generating set for G, by G1 and G2 slps defining the compressed words that are input to 
CCP(G), and by u and v their values, which are (standard) words over Σ.

We assume throughout this article that the group G is hyperbolic relative to a collec-
tion of free abelian subgroups Hi, as in Section 2.3.1.

The basic idea of the proof of Theorem A is that, if the lengths of the derived words 
û and v̂ of u, v (as defined in Section 2.3.1 below) are both less than some constant, then 
we use the methods developed in [1, Section 9] to solve the problem, and otherwise we 
adapt for relatively hyperbolic groups the methods that are employed in [5, Section 3]
to solve the (uncompressed) conjugacy problem in linear time in hyperbolic groups.

It is shown in [7, Section 6.4] that it is straightforward to adapt the proof in [5, Section 
3] to solve the compressed conjugacy problem in hyperbolic groups in polynomial time. 
Earlier algorithms for solving the conjugacy problem, such as those described in the 
proof in [3, Γ.2] for hyperbolic groups and in the proof in [1, Section 9] for relatively 
hyperbolic groups, involve looking at all cyclic conjugates of one or both of the input 
words, which cannot be done in polynomial time in the compressed setting. The proof in 
[5, Section 3] avoids doing this, and reduces the problem to deciding whether one word 
is a cyclic conjugate of another, which can be done in the compressed setting (see [9, 
Theorem 1]).

The authors are grateful to the anonymous referee for pointing out a number of errors 
and for making several helpful suggestions for improving the paper.
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2. Background

Our notation and definitions follow [8], which itself largely follows [7].

2.1. Words

We define a (standard) word over an alphabet X to be a string x0 · · ·xn−1 of symbols 
from X. In this article X will always be a generating set for a group G, called either Σ
or Σ̂, and will be assumed inverse closed. By a subword of a word, we shall always mean 
a contiguous or non-scattered subword, sometimes called a factor of the word. The word 
w = x0 · · ·xn−1 is defined to have length n, written |w|. Its subword xixi+1 · · ·xj−1 will 
be denoted by w[i, j), following the notation of [8]. We define the concatenation uv of 
words u = u0 · · ·ur−1 and v = v0 · · · vs−1 to be the word u0 · · ·ur−1v0 · · · vs−1.

For words v, w over the same alphabet, we write v = w if v and w are equal as strings 
and we write v =G w if v and w represent the same element of the group G.

The cyclic conjugates of a word w = x0 · · ·xn−1 are defined to be the words 
xixi+1 · · ·xn−1x0 · · ·xi−1 for i = 0, . . . , n − 1. They represent (some of the) elements 
of the group G that are conjugate to w.

2.2. Straight-line programs

Let X be a finite alphabet and V a finite set with V ∩X = ∅. Let ρ : V → (V ∪X)∗ be 
a map and extend the definition of ρ to (V ∪X)∗ by defining ρ(a) = a for all a ∈ X ∪{ε}
and ρ(uv) = ρ(u)ρ(v) for all u, v ∈ (V ∪X)∗. We define the associated binary relation �
on V by A � B whenever the symbol B occurs within the string ρk(A), for some k ≥ 0.

We define a straight-line program (slp for short) over the alphabet X to be a triple 
G = (V, S, ρ), with S ∈ V and ρ : V → (V ∪X)∗ a map such that the associated binary 
relation � on V is acyclic, that is the corresponding directed graph contains no directed 
cycles. The set V is called the set of variables of G, and S is called the start variable. 
Where necessary, we write VG , SG , ρG , rather than simply V, S, ρ. For a variable A ∈ V , 
the word ρ(A) is called the right-hand side of A. We define the size of G to be the total 
length of all right-hand sides: |G| :=

∑
A∈V |ρ(A)|.

An slp G is naturally associated with a context-free grammar (V, X, S, P ), where P is 
the set of all productions A → ρ(A) with A ∈ V , and we will often use the name G also 
for this grammar. It follows from the definition of an slp that this associated grammar 
derives exactly one terminal word, which we call the value of G and denote by val(G). 
For any variable A of G, we define the value of A, val(A) (or valG(A)) to be the terminal 
word derived from that variable. Note that val(S) = val(G).

slps are used to provide succinct representations of words that contain many repeated 
substrings. For instance, the word (ab)2n is the value of the slp G = ({A0, . . . , An}, ρ, A0)
with ρ(An) = ab and ρ(Ai−1) = AiAi for 0 < i ≤ n. This slp has size 2(n + 1).
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For any variable A of an slp G, we can define the restriction of G to A, GA. That
slp has start variable A, set of variables VA consisting of all B ∈ V that appear within 
ρk(A) for some k ≥ 0, and map ρA defined to be the restriction of ρ to VA. We note that 
for any B ∈ VA, valG(B) = valGA

(B), and in particular val(GA) = valG(A).
We provide a few technical results that we need on slps in Section 2.4.

2.3. Relatively hyperbolic groups

2.3.1. Definition of a relatively hyperbolic group
Our definition (below) of hyperbolicity of a group G relative to a finite collection 

{Hi : i ∈ Ω} of subgroups is due to Osin; it is proved in [10, Theorem 1.5] that (for 
finitely generated groups, as in our case) this is equivalent to the definition of [2], also 
to Farb’s definition of [6] combined with the Bounded Coset Penetration Property (see 
below), called strong relative hyperbolicity in [6].

We shall use a number of properties of these groups that are proved in [1], which build 
on results of [10].

We suppose that Σ is a finite generating set for the group G, and that {Hi : i ∈ Ω}
is a finite collection of subgroups, which we call the collection of parabolic subgroups of 
G. Define H :=

⋃
i∈Ω(Hi \ {1}), and Σ̂ := Σ ∪H. We let Γ := Γ(G, Σ) and Γ̂ := Γ̂(G, Σ̂)

be the Cayley graphs for G over Σ and Σ̂, respectively. (So Γ̂ has the same vertices as 
Γ but more edges than Γ.) We call a word over Σ (or Σ̂) geodesic if it labels a geodesic 
path in Γ (or Γ̂).

Following [1, Definition 2.5] and [10, Section 1.2], we define F to be the free product 
of groups

F := (∗i∈ΩHi) ∗ F (Σ)

and suppose that a finite subset R of F exists whose normal closure in F is the kernel 
of the natural map from F to G; in that case we say that G has the finite presentation〈

Σ ∪
⋃
i∈Ω

Hi

∣∣∣∣∣R
〉

relative to the collection of subgroups {Hi : i ∈ Ω}. Now if u is a word over Σ̂ that 
represents the identity in G, then u is equal within F to a product of the form

n∏
j=1

fjr
ηj

j f−1
j ,

with rj ∈ R, fj ∈ F and ηj = ±1 for each j. The smallest possible value of n in any such 
expression of this type for u is called the relative area of u, denoted by Arearel(u).
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We say that G is hyperbolic relative to the collection of subgroups {Hi} if it has a 
finite relative presentation as above and a constant C ≥ 0 such that

Arearel(u) ≤ C|u|

for all words u over Σ̂ that represent the identity in G.
We note that if G is relatively hyperbolic then the graph Γ̂ is δ-hyperbolic for some 

δ [10, Theorem 2.53]. Note also that, by [10, Proposition 2.36], the intersection Hi ∩Hj

for i �= j is finite.
An Hi–component of a path p in Γ̂ is defined to be a non-empty subpath of p that is 

maximal subject to being labelled by a word in H∗
i . We call a vertex of a path p internal

if lies in the interior of a component of p, and otherwise non-internal. Two components 
s and r (not necessarily of the same path) are connected if both are Hi-components for 
some Hi, and if the start points of both lie in the same left coset gHi of Hi.

A path p in Γ̂ is said to backtrack if p = p′srs′p′′ where s, s′ are Hi–components, 
and the word labelling r represents an element of Hi; if no such decomposition of p
exists, then p is without backtracking. A path p is said to vertex backtrack if it contains a 
subpath of length greater than 1 labelled by a word that represents an element of some 
Hi; otherwise p is said to be without vertex backtracking. We note that if a path does not 
vertex backtrack then it does not backtrack and all of its components have length 1.

We denote the start and end points of a path p in Γ̂ by p− and p+, respectively, and 
say that paths p, q in Γ̂ are k-similar if max{dΓ(p−, q−), dΓ(p+, q+)} ≤ k. For λ ≥ 1 and 
c ≥ 0, a path p in a geodesic metric space X is said to be a (λ, c)–quasigeodesic if for 
any points x, y on p we have dp(x, y) ≤ λdX(x, y) + c. The following fundamental result 
about k-similar paths in Γ̂, proved as [10, Theorem 3.23], is also stated as [1, Theorem 
2.8].

Proposition 2.1. [10, Theorem 3.23] (Bounded Coset Penetration Property). Let G be 
relatively hyperbolic, as above. Then, for any λ ≥ 1, c ≥ 0, k ≥ 0, there exists a 
constant e = e(λ, c, k) such that, for any two k-similar paths p and q in Γ̂ that are 
(λ, c)–quasigeodesics and do not backtrack, the following conditions hold.

(1) The sets of vertices of p and q are contained in the closed e-neighbourhoods of each 
other in Γ.

(2) Suppose that, for some i, s is an Hi-component of p with dΓ(s−, s+) > e; then there 
exists an Hi-component of q that is connected to s.

(3) Suppose that s and t are connected Hi-components of p and q, respectively. Then s
and t are e-similar.

We define the components of a word w ∈ Σ∗ to be the nonempty subwords of w of 
maximal length that lie in (Σ ∩Hi)∗ for some parabolic subgroup Hi; such a subword 
labels a component of any path traced out by w in the Cayley graph Γ. In general, 
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since Hi ∩ Hj is finite for i �= j, it is possible for the end of one component in a word 
w to overlap the beginning of the next, where the overlapping generators lie in a finite 
intersection. In this paper, we shall be assuming that the parabolic subgroups are free 
abelian, and hence that Hi ∩ Hj is trivial for i �= j, and so distinct components are 
disjoint.

Let w := α0u1α1u2 · · ·unαn, where the subwords uj are its components. Then, fol-
lowing [1, Construction 4.1], we define the derived word ŵ := α0h1α1h2 · · ·hnαn ∈ Σ̂∗, 
where each hj is the element of the parabolic subgroup represented by uj. So the com-
ponents of paths in Γ and Γ̂ labelled by w and ŵ are labelled by the subwords ui and hi

of w and ŵ, respectively.

2.3.2. Some properties of a relatively hyperbolic group G
Suppose that the group G is hyperbolic relative to a collection of free abelian sub-

groups Hi, as in Section 2.3.1. We can select our finite generating set for G, and we select 
such a set Σ with particular properties that are already described in [8, Section 6.1]. We 
do not see the need to give the details of that construction here.

The properties of our chosen generating set Σ ensure that it contains generating 
sets Σi for each parabolic subgroup Hi. Recall that Γ̂ is a δ-hyperbolic space for some 
constant δ. So Γ̂ is also δ′-hyperbolic for any δ′ > δ, and hence we may safely assume 
(and sometimes do) that δ ≥ 1.

We use a particular normal form nf(w) for words w ∈ Σ∗ that is already defined in [8, 
Section 6.1]. This has the properties that, for words w in normal form (i.e. w = nf(w)), 
the derived word ŵ labels a geodesic path in Γ̂, and the components w′ of w (i.e. the 
maximal subwords with w′ ∈ Σ∗

i for some i) are shortlex reduced words. Furthermore, 
if w represents an element of Hi for some i, then w ∈ Σ∗

i (and so |ŵ| = 1). By [8, 
Theorems 8.1, 9.1], for a compressed word with value w ∈ Σ∗, we can find a compressed 
word representing nf(w) in polynomial time, and so we can solve the compressed word 
problem for G in polynomial time. By [8, Proposition 3.7], the set of words in normal 
form is the language of an asynchronous automatic structure for G [4], and hence has 
particular geometrical properties that are of use to us.

As we observed in [8], there is no reason why a subword of a normal form word 
that starts with a nonempty proper suffix or ends with a nonempty proper prefix of 
a component of w should itself be in normal form. But subwords w′ of w such that w′

consists of generators in Σ \H together with complete components of w (or, equivalently, 
such that ŵ′ is a subword of ŵ) are in normal form. We shall call such subwords non-
splitting, because they do not split components of w.

We say that a word over Σ is stable under cyclic derivation if it does not begin and 
end with letters from the same parabolic subgroup Hi. A cyclic conjugate w′ of a word 
w ∈ Σ∗ is called a non-splitting cyclic conjugate if w′ is stable under cyclic derivation, 
or, equivalently if ŵ′ is a subword of ŵ2.
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2.4. Technical results for slps

In [8, Proposition 4.1] we listed various properties of slps G and operations on them 
that can be carried out in polynomial time. These include:

(i) computation of an slp G′ in Chomsky normal form with val(G) = val(G′);
(ii) computation of |val(G)|;
(iii) for any i, j ∈ Z, computation of an slp G[i : j) with value the substring val(G)[i : j)

of G;
(iv) given a second slp H over the same alphabet as G, we can decide whether val(G) =

val(H).

In addition to these properties we shall need the result proved in [9, Theorem 1] that, 
for given slps G and H over the same alphabet, we can decide in polynomial time 
whether val(G) is a substring of val(H) and, if so, determine the smallest i such that 
val(G) = val(H)[i : j) for some j.

This last result implies immediately that we can also determine in polynomial time 
whether val(G) is a cyclic conjugate of val(H), by testing whether |val(G)| = |val(H)| and 
val(G) is a substring of val(H)2.

Proposition 7.1 of [8] proves that an input slp G over our chosen generating set Σ of 
the group G can be modified in polynomial time to produce an slp G′ with the same 
value w for which every component u of w has a root (defined to be a variable Au with 
value u). Now let G′

Au
be the slp that is the restriction of G′ to the root Au of u, which 

has Au as its start variable. Then we can modify G′ by collapsing each G′
Au

within G′ to 
a single vertex, and then introducing a new alphabet letter au and defining ρ(Au) = au. 
The result is an slp for ŵ over a finite alphabet Σ′ with Σ ⊆ Σ′, where each letter in Σ′

represents an element in Σ̂ in a component of G. Note that multiple letters of Σ′ might 
represent the same letter of Σ̂. Since the compressed word problem is certainly solvable 
in polynomial time in abelian groups, we can decide in polynomial time whether this is 
the case for two given letters in Σ′.

Hence we have proved

Proposition 2.2. Let G be an slp over our selected generating set Σ for G, and let w :=
val(G). Then, in time polynomial in |G|, we can construct an slp G′ in Chomsky normal 
form with value ŵ over a finite alphabet Σ′ such that Σ ⊆ Σ′ and each letter in Σ′

represents an element in Σ̂.

We will use this result frequently, implicitly, in our proof. It will enable us, for instance, 
to compute features of derived words in polynomial time, such as their lengths, and to 
compute slps for substrings v of u that are defined via substrings v̂ of ŵ. We can also 
decide in polynomial time whether û is a cyclic conjugate of v̂, for words u, v ∈ Σ̂.
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3. Proof of the theorem

Suppose that slps G1 and G2 are input, with values u and v.
We describe our algorithm in terms of the words u, v, and of words over Σ and Σ̂

that are related to those, culminating with the construction of a conjugator. But the 
constructions within the algorithm are of slps that define those words, and of course it 
is the construction of that sequence of slps, and ultimately of an slp for the conjuga-
tor, that needs to be shown to be polynomially bounded. Since our proof consists of a 
possibly confusing mixture of theory and the description of the algorithm itself, we shall 
conclude each section with a brief summary of the steps of the algorithm presented in 
that section.

Since the conjugacy problem is certainly solvable in G, for any constant C ≥ 0 we can 
construct in a preprocessing step a lookup table that stores the solution to CCP(G) for 
all input for which the lengths of u and v are at most C, together with corresponding 
conjugators (as standard words). We suppose that this has been done, for an appropriate 
constant C. (Note that we do not really require the solvability of the conjugacy problem 
in G in order to assert the existence of this lookup table, but it would be necessary for 
an implementation of the algorithms that we are describing.)

By [8, Theorems 8.1, 9.1], which together show that an slp may be converted in 
polynomial time to one with value its normal form, we may assume that our input words 
u and v are in normal form, so that û and v̂ label geodesic paths in Γ̂.

Following [5, Section 3.1], we define words u1, u2 and uc such that u = u1u2, uc :=
u2u1 is a non-splitting cyclic conjugate of u, and |û1| ≤ |û2| ≤ |û1| + 1. The words v1, 
v2, vc are defined similarly. We then reduce the words uc and vc to normal form, and 
replace our original u and v by these reduced words. The motivation for doing this is 
that, when ûc is long enough, all of its positive powers are quasigeodesic; this will be 
explained in Section 3.2.

The new words nf(uc) and nf(vc) are conjugates in G of the original u and v, and 
we must also store slps for corresponding conjugators, since we will need these in order 
to calculate the final conjugator in the case in the case that u and v turn out to be 
conjugate.

Algorithmic steps:

(i) Precompute a table of conjugacy and conjugators of words of length up to a certain 
constant. (We shall not attempt to specify that constant here, but its value could be 
computed from the various constants that we shall define later in the proof, together 
with constants that are defined in the results proved in [1, Section 9]. Theoretically 
it depends only on the group presentation.)

(ii) Reduce u and v to normal form, and then compute uc and vc as described above. 
Store (as slps) the corresponding conjugators and reduce uc and vc to normal form.
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û

v̂

α̂ α̂

Either |û|, |v̂| ≤ k

or |α̂| ≤ k.

Fig. 1. A minimal k-bounded conjugacy (1, 0) conjugacy diagram for û, v̂.

3.1. Short derived words

Suppose first that the derived words û and v̂ (after the replacement described above) 
both have length bounded above by the constant 17(2L′ + 1)/7 with L′ := 36δ + 2. 
(Recall that δ is the hyperbolicity constant of the Cayley graph Γ̂.)

The words û and v̂ have a bounded number of cyclic conjugates in this case and we 
start by calculating the normal forms of all non-splitting cyclic conjugates of u and v, 
and replacing u and v by cyclic conjugates in normal form such that û and v̂ have the 
least possible lengths. In particular this ensures that, if either û has length greater than 
one or if it has length 1 and is not parabolic, then u is stable under cyclic derivation, 
and similarly for v.

As in [1, Section 8], for words α, u, v ∈ Σ∗ with αuα−1 =G v, we say that the 
corresponding quadrilateral in Γ̂ shown in Fig. 1, with paths labelled by α̂, û, α̂−1, v̂−1, 
is a minimal conjugacy (1, 0)-diagram, if the paths labelled by û, ̂v and by all of their 
cyclic conjugates are geodesic, and if α̂ has minimal length amongst conjugators between 
all pairs of cyclic conjugates of û and v̂. So if u and v are conjugate in G then there 
exists such a minimal conjugacy (1, 0)-diagram in which u and v are replaced by suitable 
non-splitting cyclic conjugates.

We shall now consider the properties of such a minimal conjugacy diagram, assuming 
for now that it exists. Since Γ̂ is hyperbolic, [1, Lemma 8.2] asserts that (G, Σ̂) has 
bounded conjugacy diagrams (BCD); that is, for some constant k, we have

min{max{|û|, |v̂|}, |α̂|} ≤ k.

We recall from Section 2.3.1 that a path is said to vertex backtrack if it contains a 
subpath of length greater than 1 labelled by a word that represents an element of some Hi. 
Following [1, Section 9] after Corollary 9.2, we say that a minimal conjugacy diagram is 
without vertex backtracking if none of the cyclic conjugates of û and v̂ vertex backtracks. 
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The fact that the paths labelled by û, ̂v and those labelled by their cyclic conjugates are 
all geodesics in Γ̂ implies immediately that the diagram under consideration is without 
vertex backtracking.

Suppose first that neither of the words u and v are parabolic (that is, they are not 
words over the generators of Hi for any parabolic subgroup Hi). Now [1, Theorem 9.13]
states that, for some constant k, there are non-splitting cyclic conjugates u′ and v′ of u
and v and α′ conjugating u′ to v′ in G such that

min{max{|u′|, |v′|}, |α′|} ≤ k.

Since |u| = |u′| and |v| = |v′|, it follows that either the lengths of u and v are both 
bounded by a constant, or there are non-splitting cyclic conjugates u′ and v′ of u and 
v such that u′ and v′ are conjugate by an element of G of bounded length. Since the 
number of possibilities for u′ and v′ is bounded by a constant, we can solve the problem 
in either of these cases, by using our precomputed list in the first case, and by exhaustive 
search of all possible conjugators in the second case.

Otherwise, one of the input words, say u, is parabolic, and u ∈ Σ∗
i for some i. It is a 

basic property of relatively hyperbolic groups [1, Lemma 2.6 (iii)] that

(i) for a parabolic subgroup H of G and g ∈ G \H, the intersection g−1Hg∩H is finite 
and

(ii) for any two distinct parabolic subgroups H, H ′ and any g ∈ G the intersection 
g−1Hg ∩H ′ is finite.

Since the parabolic subgroups are free abelian in our situation, these intersections must 
be trivial. Hence, if v is also parabolic, then u and v are conjugate if and only if u = v. 
So we assume that the word v is not parabolic (and hence, as we observed earlier, v is 
stable under cyclic derivation).

In what follows, we denote the path in the diagram labelled by a word w by pw. By a 
component of the diagram, we mean a component of one of its sides. Now [1, Lemma 9.14]
states that the path pu, which is a component of the diagram, can only be connected to 
a component of pv if u, v and α all lie in parabolic subgroups, which is not the case. So 
pu cannot be connected to a component of pv.

Now we can apply [1, Lemma 9.16 (a)] to the parabolic subgroup Hi with u ∈ Hi. 
This lemma assumes that for all h ∈ Hi there is a geodesic word in Σ∗

i that represents h; 
that property holds by our original choice of the generating set Σ. It assumes also that 
all cyclic conjugates of u are geodesic, but this holds because u is a geodesic word in an 
abelian group. Since Hi is abelian, it certainly has the property BCD and, with these 
assumptions, [1, Lemma 9.16 (a)] tells us that u has bounded length.

Next we apply [1, Lemma 9.12] to pv. This tells us that if |α̂| > 1, and pv is not 
parabolic then the length |v| of the word v is also bounded, in which case we can solve 
the problem using our lookup table.
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So, since we know that pv is not parabolic, it remains to deal with the case |α̂| = 1, 
and in that case either |α| = 1 and we can solve the problem by trying all possible words 
α, or α is parabolic. Now [1, Lemma 9.1] applies to an n-gon p1p2 · · · pn in Γ̂ with a 
distinguished subset I of the sides pi such that, for pi ∈ I, pi is an isolated component 
of the diagram (that is, not connected to any other component), and for pi �∈ I, pi is 
a geodesic. The conclusion of the lemma is that the sum of the Γ-lengths of the paths 
pi ∈ I is at most a constant times n. So, if either of the paths pα or pα−1 is an isolated 
component of the conjugacy diagram then, by applying this lemma to our diagram with 
n = 4 and I = {pα} or {pα−1}, we find that the word α has bounded length, in which 
case we can again solve the problem.

So we can assume that pα and pα−1 are not isolated components. Since the compo-
nents are abelian, the component pα cannot be connected to pu or to pα−1 , so it must 
be connected to a component of pv. Now [1, Lemma 9.5] says that, if components of two 
adjacent sides of a minimal conjugacy (1, 0)-diagram are connected, then those compo-
nents must be at the adjacent ends of the two sides. So the path pα must be connected 
to a component of pv that is situated at the beginning of pv. Similarly, pα−1 is connected 
to a component of pv that is situated at the end of pv. But then v is not stable under 
cyclic derivation, contrary to our earlier observation.

The discussion above justifies the following algorithmic steps for solving the conjugacy 
problem in the case of short derived words.

(i) Compute and reduce to normal form all of the (boundedly many) non-splitting cyclic 
conjugates of u. If any of these has shorter derived length than u, then replace u
by that cyclic conjugate (and store the corresponding conjugator). Continue to do 
this until all cyclic conjugates of û have the same shortest possible length. Do the 
same for the word v.

(ii) If u and v both have length at most a certain constant k (its value can be computed 
from δ and ε using the results in [1, Section 9]), then use the precomputed lists to 
test them for conjugacy in G. If they are conjugate, then return yes and a conjugator. 
Otherwise return no.

(iii) If at least one of u, v has length greater than k, then test all non-splitting cyclic 
conjugates of u and of v for conjugacy by elements α of Σ-length at most k. If any 
of these tests are positive then return yes and a conjugator. Otherwise return no.

3.2. Long derived words

We recall from the beginning of this section that the original input words u and v
defined by slps G1 and G2 were put into normal form, replaced by cyclic conjugates uc

and vc, and then put into normal form again. We are denoting the resulting words by 
u and v. As normal form words, their derived words û and v̂ label geodesic paths in 
the Cayley graph Γ̂ over the (infinite) generating set Σ̂, which is the union of the finite 
generating set Σ and all elements of the parabolic subgroups.
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It remains to deal with the case when at least one of |û| and |v̂| is at least
17(2L′ + 1)/7 with L′ := 36δ + 2. Our strategy here is to follow the proof in [5, Section 
3] of the linearity of the conjugacy problem in hyperbolic groups. As remarked above, 
it is shown in [7, Section 6.4] that the arguments of [5] can be readily adapted to prove 
that the corresponding compressed conjugacy problem in hyperbolic groups is solvable 
in polynomial time. We are able to use them for our relatively hyperbolic group because 
of the hyperbolicity of the Cayley graph Γ̂. We apply the arguments in [5, Section 3] to 
the words û, v̂ over Σ̂. The following subsections correspond to those in [5].

3.2.1. Reduction to quasigeodesics
By [5, Lemma 3.1] if |û| ≥ 2L′ + 1 then all positive powers of û define L′-local 

(1, 2δ)-quasigeodesics in Γ̂, that is, all of their subwords of length at most L′ are (1, 2δ)-
quasigeodesics. (This lemma is stated in [5] for a specific constant L that is slightly 
different from our L′, but its proof is valid for any constant L, so we can apply it with 
L = L′.) Now we apply [5, Proposition 2.3] with the word w of that proposition equal 
to a subword of a positive power of û; if that subword has length greater than L′ then 
the last statement of the proposition asserts that its length is at most 17/7 times the 
length of a geodesic between its two ends. It follows in any case that this power of û is 
a (17/7, 2δ)-quasigeodesic.

Now if û and v̂ are conjugate by g ∈ G, then so are all of their positive powers. It 
follows immediately from this (as at the end of [5, Section 3.1]) that the length of a 
geodesic between the two ends of v̂n is at least 7|û|n/17 − 2|g|Γ̂ for all n > 0, and hence 
|v̂| ≥ 7|û|/17.

Since we are assuming that at least one of |û| and |v̂| is at least 17(2L′+1)/7 it follows 
that, if u and v are conjugate, then |û| and |v̂| are both at least 2L′ + 1. The argument 
that we applied above to û now applies to v̂, and we deduce that all positive powers of 
v̂ are also (17/7, 2δ)-quasigeodesics.

To proceed further, we need the positive powers of û not to backtrack, which we can 
achieve as follows. If ûn backtracks for some n > 1, then some subword ξ̂ of it of length 
greater than 1 must reduce to a parabolic element of length 1; choose ξ̂ of maximal length 
with that property. Since ûn is a (17/7, 2δ)-quasigeodesic, the subword ξ̂ has length at 
most 17/7 + 2δ ≤ 36δ + 2 = L′ (recall that we are assuming that δ ≥ 1), and so (as an 
L′-local (1, 2δ)-quasigeodesic) has length at most 1 + 2δ. Then, because û is geodesic, ξ̂
must consist of a non-trivial suffix of û followed by a non-trivial prefix of û. Note that 
two such subwords ξ̂ of ûn must be separated within ûn by a subword of length at least 
L′ − 2δ − 1. (So ξ̂ is actually a subword of û2, and appears n − 1 times within ûn.) 
Define L := L′ − 2δ = 34δ + 2; note that this same constant L appears in [5]. After 
replacing each occurrence of ξ̂ in ûn by an element of H, the resulting word is a L-local 
(1, 2δ)-quasigeodesic that does not backtrack.

Now u has a non-splitting cyclic conjugate that has ξ as a subword. Let u′ be the 
word formed from that cyclic conjugate by replacing the subword ξ by nf(ξ). We redefine 
u to be this word u′ (and store an slp for the associated conjugator, which we will need 
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later). Note that now u is stable under cyclic derivation, and so ûn = ûn for all n > 0. 
Now, for all n > 0, ûn is a (17/7, 2δ)-quasigeodesic that does not backtrack. We carry 
out the same process if necessary for the word v. Note that this step has reduced the 
lengths of û and v̂ by at most 2δ, so they both now have length at least 2L + 1.

By Proposition 2.1 (1) (the Bounded Coset Penetration Property) there is a constant 
ε := e(17/7, 2δ, 0) such that, for any word w ∈ Σ∗ for which ŵ is geodesic over Σ̂ and 
w =G un, all non-internal vertices of the path in Γ starting at the origin and labelled 
by un are at Γ-distance at most ε from a non-internal vertex in the corresponding path 
labelled by ŵ, and vice versa. We fix this constant ε for the remainder of the section.

Algorithmic steps:

(i) If either |û| or |v̂| is less than 2L′ + 1 then return no.
(ii) Find all of the boundedly many non-splitting suffixes β and prefixes α of u with 

|β̂| + |α̂| ≤ 1 + 2δ. For each of these nf-reduce βα and thereby find the longest 
non-splitting subword ξ of u2 such that nf(ξ) is a parabolic word.

(iii) Compute a suitable replacement u′ of u as described above together with the cor-
responding conjugator as slp (stored for later).

3.2.2. Reduction to an nf-straight power
We say that a word w is nf-straight if all positive powers wn of w are nf-reduced. 

(These words correspond to the short-lex straight words in [5, Section 3.2].) Note that 
such words are necessarily stable under cyclic derivation. We know from [8] that the set 
of nf-reduced words is regular, and we can use the associated finite state automaton to 
test compressed words for being nf-straight in polynomial time.

We say that an infinite path in Γ is nf-straight if the labels of all of its finite subpaths 
labelled by non-splitting subwords are nf-reduced.

Our argument now is basically that of [5, Section 3.2], the idea of which is attributed 
in [5] to Delzant. But we need some adjustment and so we give our own account. For any 
path γ in Γ, we define Δ(γ) to be the set of paths γ′ in Γ for which each non-internal 
vertex of γ′ is within Γ-distance ε of some non-internal vertex of γ.

Let pn be the vertex of Γ labelled by un for n ∈ Z (so p0 is the base point of Γ), and 
let γ1 be the two-way-infinite path in Γ containing each pn such that the subpath from 
pn to pn+1 is labelled by u for each n. (The corresponding path is called w in [5].)

We let Π0 be the set of two-way-infinite paths γ2 in Γ with nf-straight labels for which 
γ2 ∈ Δ(γ1) and γ1 ∈ Δ(γ2). Now let Π be the subset of Π0 consisting of paths going 
in the same direction as γ1. We shall prove first that |Π| is bounded above, and second 
that Π is non-empty.

For a path γ2 ∈ Π and each n ∈ Z, choose a specific non-internal vertex rn on γ2 with 
dΓ(pn, rn) ≤ ε. Then, since γ2 is nf-straight, the subpath γ(n)

2 of γ2 from vertex r−n to 
rn is uniquely determined by r−n and rn for each n ≥ 0. But the number of possibilities 
for r−n and rn for all γ2 ∈ Π is bounded above by the square K of the total number of 
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words in Σ∗ of length at most ε. So, since each γ2 is the union of its subpaths γ(n)
2 , it 

follows that the number |Π| of choices for γ2 is bounded above by the same constant K.
To prove that Π is non-empty, we now construct a particular path γ2 in Π via a 

sequence of vertices ti on that path. For each n ≥ 0, we define γ′
1
(n) to be the (unique) 

nf-reduced path joining p−n to pn. We know from Proposition 2.1 (1) that each such path 
γ′
1
(n) lies in Δ(γ1). Now, first we define the vertex t0 to be a vertex with dΓ(t0, p0) ≤ ε

that occurs in γ′
1
(n) for infinitely many n. Then for each m = 1, 2, . . ., we define the 

vertices tm, t−m together with a path γ(m)
2 of Γ-length 2m joining t−m to tm such that 

(i) dΓ(t−m, t−m+1) = dΓ(tm, tm−1) = 1; (ii) γ(m−1)
2 is a subpath of γ(m)

2 ; and (iii) γ(m)
2 is 

a subpath of γ′
1
(n) for infinitely many n. Then we define the path γ2 to be the union of the 

paths γ(m)
2 . Since each path γ(m)

2 is a subpath of γ′
1
(n) for some n, we have γ2 ∈ Δ(γ1). 

To see that γ1 ∈ Δ(γ2), we observe that each non-internal vertex of γ1 is at Δ-distance 
at most ε from a non-internal vertex in γ′

1
(n) for all sufficiently large n and hence also 

from a non-internal vertex in γ(m)
2 for all sufficiently large m. So γ2 is in the set Π.

Now, fix some γ2 ∈ Π, let r0 be a non-internal vertex on γ2 with dΓ(p0, r0) ≤ ε, and 
let K be the upper bound on |Π| found above. It is shown next in [5] that, for some M
with 1 ≤ M ≤ K, the isometry of Γ induced by multiplication on the left by uM fixes 
γ2. For suppose that Iu is the isometry of Γ induced by left multiplication within G by 
u. Since Iu fixes γ1 it must fix Δ(γ1) and so induce a permutation of the finite set Π. 
Hence for any γ2 there is an M with 1 ≤ M ≤ K for which IMu = IuM fixes γ2.

Let α ∈ Σ∗ label the path from p0 to r0, so |α| ≤ ε. The isometry maps r0 to the 
vertex of γ2 labelled by uMα, which we denote by rM . Since multiplication by uM is 
an isometry of the labelled graph Γ, it must map the two vertices of γ2 adjacent to r0
to the two vertices adjacent to rM . Since we know that the former are not labelled by 
generators in the same parabolic subgroup Hi, the same applies to the latter, so rM also 
has the property of being a non-internal vertex of γ2.

Let z be the label of the subpath of γ2 from r0 to rM . Since multiplication by uM

induces an isometry of γ2, the path γ2 has subpaths with labels zn for all n > 0 and 
so, since γ2 is nf-straight, the word z is also nf-straight, and α−1uMα =G z. Since we 
can recognise nf-straight words in polynomial time, we can find suitable α and M in 
polynomial time by exhaustive search.

Algorithmic steps: find α and M as described, and compute an slp for the nf-straight 
word z.

3.2.3. Testing conjugacy of the M -th powers
The next step is to test for conjugacy between z and vM . We follow the argument 

of [5, Section 3.3], and in some cases (when we found it appropriate) we use notation 
from that article.

Our Fig. 2 is based on [5, Fig. 7]. In the diagram, n is some suitably large positive 
integer, and w and y are nf-reduced words in Σ∗ labelling paths from the vertices e and p
to the vertex q′, respectively. Suppose that β−1zβ =G vM (and hence β−1z2nβ =G v2Mn
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Fig. 2. Testing conjugacy of M-th powers.

as shown in the diagram). We define q to be the vertex at the end of the path labelled 
vMn that starts at p; then q is the midpoint of the path labelled v2Mn from p to q′.

As we remarked at the end of Section 3.2.1, the Bounded Coset Penetration Property 
implies the existence of a non-internal vertex r on the path labelled y that is at Γ-
distance at most ε from the vertex q. Also, [8, Proposition 6.3] (which is the result that 
we need to apply the argument of [5, Section 3.3] in the context of relatively hyperbolic 
groups) tells us that, provided that n is sufficiently large compared with |β̂|, there are 
non-internal vertices s and t on the paths labelled by the words w and z2n respectively 
such that dΓ(r, s) + dΓ(s, t) is at most a constant N (which is called L′ in [8]). So the 
Γ-length of the word η ∈ Σ∗, labelling the path from t to vertex q via s and r, is bounded 
by the constant N ′ := ε + N .

The group element labelling the path in the diagram from the vertex e to the vertex t
is of the form zmz1 for some non-splitting prefix z1 of z, and so zmz1η =G βvMn. Hence 
η =G z−1

1 z−mβvMn, and

ηvMη−1 =G z−1
1 z−mβvMβ−1zmz1 =G z−1

1 zz1;

the right-hand-size freely reduces to a non-splitting cyclic conjugate of z.
It follows that to test for conjugacy between z and vM we should check all possible 

conjugators η of Σ-length up to N ′, reducing each conjugate ηvMη−1 to a word y in nf, 
and checking for each such y whether y is a non-splitting cyclic conjugate of z. As we 
explained in Section 2.4, we can decide in polynomial time (given slps for y, z) whether 
y is a non-splitting subword of z2, and hence whether y is a non-splitting cyclic conjugate 
of z.

If z and vM are not conjugate then neither are u and v, and so in that case the 
algorithm returns no. But otherwise we have found a conjugator η′ (a product of η
and a subword of z) such that η′vMη′ −1 =G uM , and we need to continue. In that 
case, u and v will be conjugate in G if and only if u and η′vη′ −1 are conjugate by an 
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element of CG(uM ). So now we replace v by η′vη′ −1, and hence we may assume that 
uM =G vM =G z.
Algorithmic step: Check all possible conjugators of z =G uM to vM as just described. If 
a conjugator is found, then store it (as slp). If not then return no.

3.2.4. Completion of the proof
We have uM =G vM =G z, where as before z is the nf-straight word equal in G to 

uM , and we want to decide whether u and v are conjugate in G. If so, then a conjugator 
will lie in the centraliser C := CG(z) of z.

Let β be a word over Σ representing an arbitrary element of C. Then β−1zβ =G

vM =G z, and the diagram of Fig. 2 applies also to these choices of u, v, z, β and M . Now 
the argument of Section 3.2.3 applies just as before to give a non-splitting prefix z1 of z, 
integers m, n, and a word η of length at most N ′, with zmz1η =G βvMn =G βzn =G znβ

(recall that β ∈ C). It follows that β =G zm−nz1η.
Now we find the shortest non-splitting prefix z0 of z that is a root of z: that is, for 

which there is an integer � ≥ 1 so that z = z�0. We can find z0 as the non-splitting prefix 
of z2 that ends immediately before the second occurrence of z as a subword of the word 
z2. We observed in the second paragraph of Section 2.4 (citing [9, Theorem 1]) that we 
can locate this occurrence of z in polynomial time. Note that z0 must be stable under 
cyclic derivation, because z is.

Then we define z3 to be the minimal non-splitting suffix of z1 for which z1 = z�
′

0 z3 for 
some �′ ∈ Z. So, for β ∈ C as above, we have β =G z�

′′
0 z3η, with �′′ = �(m −n) + �′ ∈ Z. 

We note that z3 is also the unique shortest non-splitting prefix of z satisfying ηzη−1 =G

z−1
3 zz3; hence z3 is completely determined by z and η. We observe that z0 (as the root 

of z) is similarly uniquely determined. Hence once we have found η, we know that any 
element β that conjugates u to v is represented by a word of the form z�

′′
0 z3η for �′′ ∈ Z. 

(Note that z1 is not necessarily uniquely determined, which is the reason why we need 
to find z0.)

To search for an element β that conjugates u to v, we check all words of length 
at most N ′ over Σ as candidates for the associated word η, as follows. For each such 
(candidate) η, we compute nf(ηzη−1) and test whether the result is a non-splitting cyclic 
conjugate of z. If so, then we define z3 to be the shortest non-splitting prefix of z with 
ηzη−1 =G z−1

3 zz3, and compute an slp for nf(z3 · η) (which lies in C); we store all such
slps in a set Cz. Then |Cz| ≤ J , where J is defined to be the number of words over Σ
of length at most N ′. Certainly the set Cz must contain the normal form of the product 
z3η of the previous paragraph. Hence a candidate element β that might conjugate u to 
v is equal in G to the product of a power of z0 and an element z′ of the set Cz.

We claim that we only need to check those elements β =G z�
′′

0 z′ with 0 ≤ �′′ ≤ (J−1)!
and z′ ∈ Cz in order to locate an element β ∈ C that conjugates u to v (if such an element 
exists). Now, since |C : 〈z0〉| ≤ J , the normal core 〈z0〉G of 〈z0〉 in C (i.e. the kernel of 
the action of C on the right cosets of 〈z0〉 in C) has index at most J ! in C and (J − 1)!
in 〈z0〉. Since z ∈ 〈z0〉 and z ∈ Z(C), we have z ∈ 〈z0〉G. Moreover, as an infinite cyclic 
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group, 〈z0〉G has only two automorphisms, and since it contains z, which is central in C, 
no element of C can conjugate a generator of 〈z0〉G to its inverse. We conclude that 〈z0〉G
is contained in the centre of C. But then 〈z0〉G must centralise u ∈ C, which together 
with |〈z0〉 : 〈z0〉G| ≤ (J − 1)! establishes the claim.

If one of these elements conjugates u to v then we return yes and the combined 
conjugators from this and the previous sections, and otherwise we return no.
Algorithmic steps:

(i) Find the root z0 of z as described above.
(ii) Construct the set Cz as described above.
(iii) For each z′ ∈ Cz and each �′′ with 0 ≤ �′′ ≤ (J−1)!, check whether zl′′0 z′ conjugates 

u to v. If so, then return yes and a conjugator.
(iv) If none of the elements tested in Step (iii) conjugates u to v then return no.
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