Research Paper

The compressed conjugacy problem in relatively hyperbolic groups

Derek Holt ${ }^{\text {a,* }}$, Sarah Rees ${ }^{\text {b }}$
${ }^{a}$ Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
${ }^{\text {b }}$ School of Mathematics, Statistics and Physics, University of Newcastle, Newcastle NE1 7RU, UK

A R T I C L E I N F O

Article history:

Received 5 December 2022
Available online 26 March 2024
Communicated by Susan Hermiller

Keywords:

Relatively hyperbolic groups
Conjugacy problem
Compressed decision problems

A B S T R A C T

We prove that the compressed conjugacy problem in a group that is hyperbolic relative to a collection of free abelian subgroups is solvable in polynomial time.
© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).

1. Introduction

We proved in [8] that the compressed word problem is solvable in polynomial time in groups that are hyperbolic relative to a collection of free abelian subgroups. Here, we extend this result to the compressed conjugacy problem for the same class of groups, that is, we prove the following result:

Theorem A. The compressed conjugacy problem for a group that is hyperbolic relative to a collection of free abelian subgroups is solvable in polynomial time.

[^0]In fact, in the case when the two input elements g and h are conjugate, the algorithm that we describe constructs, in polynomial time, an SLP for a corresponding conjugator; that is, an element that conjugates g to h.

The conjugacy problem $\operatorname{CP}(G)$ for a group G takes as input two words u, v over a generating set Σ. The problem is solvable if there is an algorithm that can determine for any such input whether u, v are conjugate in G, that is, whether there exists an element g for which the product $g u g^{-1}$ represents the same element of G as v. The answer yes or no is returned.

The compressed conjugacy problem $\operatorname{CCP}(G)$ takes as input straight line programs (SLPs), \mathcal{G}_{1} and \mathcal{G}_{2}, which define compressed versions of words u and v (called the values of \mathcal{G}_{1} and \mathcal{G}_{2}), and asks whether the group elements represented by those values are conjugate in G. In the case when the answer is positive, a solution to the problem would normally be expected to compute a conjugator g (as ours does), which would be returned as an SLP for a word representing g. Complexity is measured in terms of the sizes of the input SLPs, which can be significantly less than the sizes of their values.

It is an easy observation that the computational complexities of the compressed word and conjugacy problems for G are independent of the choice of generating set.

We give background and notation on compressed decision problems and relative hyperbolicity of groups in Section 2, and also refer to [8] for more detail. The notation of [8] and many of its arguments are used throughout this article. Within this introduction we attempt to explain in general terms our approach to the proof of Theorem A.

From now on, we denote by G the group of the theorem, by Σ a (carefully chosen) generating set for G, by \mathcal{G}_{1} and \mathcal{G}_{2} SLPs defining the compressed words that are input to $\operatorname{CCP}(G)$, and by u and v their values, which are (standard) words over Σ.

We assume throughout this article that the group G is hyperbolic relative to a collection of free abelian subgroups H_{i}, as in Section 2.3.1.

The basic idea of the proof of Theorem A is that, if the lengths of the derived words \hat{u} and \hat{v} of u, v (as defined in Section 2.3.1 below) are both less than some constant, then we use the methods developed in [1, Section 9] to solve the problem, and otherwise we adapt for relatively hyperbolic groups the methods that are employed in [5, Section 3] to solve the (uncompressed) conjugacy problem in linear time in hyperbolic groups.

It is shown in [7, Section 6.4] that it is straightforward to adapt the proof in [5, Section 3] to solve the compressed conjugacy problem in hyperbolic groups in polynomial time. Earlier algorithms for solving the conjugacy problem, such as those described in the proof in [3, Г.2] for hyperbolic groups and in the proof in [1, Section 9] for relatively hyperbolic groups, involve looking at all cyclic conjugates of one or both of the input words, which cannot be done in polynomial time in the compressed setting. The proof in [5, Section 3] avoids doing this, and reduces the problem to deciding whether one word is a cyclic conjugate of another, which can be done in the compressed setting (see [9, Theorem 1]).

The authors are grateful to the anonymous referee for pointing out a number of errors and for making several helpful suggestions for improving the paper.

2. Background

Our notation and definitions follow [8], which itself largely follows [7].

2.1. Words

We define a (standard) word over an alphabet X to be a string $x_{0} \cdots x_{n-1}$ of symbols from X. In this article X will always be a generating set for a group G, called either Σ or $\widehat{\Sigma}$, and will be assumed inverse closed. By a subword of a word, we shall always mean a contiguous or non-scattered subword, sometimes called a factor of the word. The word $w=x_{0} \cdots x_{n-1}$ is defined to have length n, written $|w|$. Its subword $x_{i} x_{i+1} \cdots x_{j-1}$ will be denoted by $w[i, j)$, following the notation of [8]. We define the concatenation $u v$ of words $u=u_{0} \cdots u_{r-1}$ and $v=v_{0} \cdots v_{s-1}$ to be the word $u_{0} \cdots u_{r-1} v_{0} \cdots v_{s-1}$.

For words v, w over the same alphabet, we write $v=w$ if v and w are equal as strings and we write $v={ }_{G} w$ if v and w represent the same element of the group G.

The cyclic conjugates of a word $w=x_{0} \cdots x_{n-1}$ are defined to be the words $x_{i} x_{i+1} \cdots x_{n-1} x_{0} \cdots x_{i-1}$ for $i=0, \ldots, n-1$. They represent (some of the) elements of the group G that are conjugate to w.

2.2. Straight-line programs

Let X be a finite alphabet and V a finite set with $V \cap X=\emptyset$. Let $\rho: V \rightarrow(V \cup X)^{*}$ be a map and extend the definition of ρ to $(V \cup X)^{*}$ by defining $\rho(a)=a$ for all $a \in X \cup\{\epsilon\}$ and $\rho(u v)=\rho(u) \rho(v)$ for all $u, v \in(V \cup X)^{*}$. We define the associated binary relation \succeq on V by $A \succeq B$ whenever the symbol B occurs within the string $\rho^{k}(A)$, for some $k \geq 0$.

We define a straight-line program (SLP for short) over the alphabet X to be a triple $\mathcal{G}=(V, S, \rho)$, with $S \in V$ and $\rho: V \rightarrow(V \cup X)^{*}$ a map such that the associated binary relation \succeq on V is acyclic, that is the corresponding directed graph contains no directed cycles. The set V is called the set of variables of \mathcal{G}, and S is called the start variable. Where necessary, we write $V_{\mathcal{G}}, S_{\mathcal{G}}, \rho_{\mathcal{G}}$, rather than simply V, S, ρ. For a variable $A \in V$, the word $\rho(A)$ is called the right-hand side of A. We define the size of \mathcal{G} to be the total length of all right-hand sides: $|\mathcal{G}|:=\sum_{A \in V}|\rho(A)|$.

An sLP \mathcal{G} is naturally associated with a context-free grammar (V, X, S, P), where P is the set of all productions $A \rightarrow \rho(A)$ with $A \in V$, and we will often use the name \mathcal{G} also for this grammar. It follows from the definition of an SLP that this associated grammar derives exactly one terminal word, which we call the value of \mathcal{G} and denote by $\operatorname{val}(\mathcal{G})$. For any variable A of \mathcal{G}, we define the value of $A, \operatorname{val}(A)\left(\right.$ or $\left.\operatorname{val}_{\mathcal{G}}(A)\right)$ to be the terminal word derived from that variable. Note that $\operatorname{val}(S)=\operatorname{val}(\mathcal{G})$.

SLPs are used to provide succinct representations of words that contain many repeated substrings. For instance, the word $(a b)^{2^{n}}$ is the value of the $\operatorname{sLP} \mathcal{G}=\left(\left\{A_{0}, \ldots, A_{n}\right\}, \rho, A_{0}\right)$ with $\rho\left(A_{n}\right)=a b$ and $\rho\left(A_{i-1}\right)=A_{i} A_{i}$ for $0<i \leq n$. This SLP has size $2(n+1)$.

For any variable A of an SLP \mathcal{G}, we can define the restriction of \mathcal{G} to A, \mathcal{G}_{A}. That SLP has start variable A, set of variables V_{A} consisting of all $B \in V$ that appear within $\rho^{k}(A)$ for some $k \geq 0$, and map ρ_{A} defined to be the restriction of ρ to V_{A}. We note that for any $B \in V_{A}, \operatorname{val}_{\mathcal{G}}(B)=\operatorname{val}_{\mathcal{G}_{A}}(B)$, and in particular $\operatorname{val}\left(\mathcal{G}_{A}\right)=\operatorname{val}_{\mathcal{G}}(A)$.

We provide a few technical results that we need on SLPs in Section 2.4.

2.3. Relatively hyperbolic groups

2.3.1. Definition of a relatively hyperbolic group

Our definition (below) of hyperbolicity of a group G relative to a finite collection $\left\{H_{i}: i \in \Omega\right\}$ of subgroups is due to Osin; it is proved in [10, Theorem 1.5] that (for finitely generated groups, as in our case) this is equivalent to the definition of [2], also to Farb's definition of [6] combined with the Bounded Coset Penetration Property (see below), called strong relative hyperbolicity in [6].

We shall use a number of properties of these groups that are proved in [1], which build on results of [10].

We suppose that Σ is a finite generating set for the group G, and that $\left\{H_{i}: i \in \Omega\right\}$ is a finite collection of subgroups, which we call the collection of parabolic subgroups of G. Define $\mathcal{H}:=\bigcup_{i \in \Omega}\left(H_{i} \backslash\{1\}\right)$, and $\widehat{\Sigma}:=\Sigma \cup \mathcal{H}$. We let $\Gamma:=\Gamma(G, \Sigma)$ and $\widehat{\Gamma}:=\widehat{\Gamma}(G, \widehat{\Sigma})$ be the Cayley graphs for G over Σ and $\widehat{\Sigma}$, respectively. (So $\widehat{\Gamma}$ has the same vertices as Γ but more edges than Γ.) We call a word over Σ (or $\widehat{\Sigma}$) geodesic if it labels a geodesic path in Γ (or $\widehat{\Gamma}$).

Following [1, Definition 2.5] and [10, Section 1.2], we define F to be the free product of groups

$$
F:=\left(*_{i \in \Omega} H_{i}\right) * F(\Sigma)
$$

and suppose that a finite subset R of F exists whose normal closure in F is the kernel of the natural map from F to G; in that case we say that G has the finite presentation

$$
\left\langle\Sigma \cup \bigcup_{i \in \Omega} H_{i} \mid R\right\rangle
$$

relative to the collection of subgroups $\left\{H_{i}: i \in \Omega\right\}$. Now if u is a word over $\widehat{\Sigma}$ that represents the identity in G, then u is equal within F to a product of the form

$$
\prod_{j=1}^{n} f_{j} r_{j}^{\eta_{j}} f_{j}^{-1}
$$

with $r_{j} \in R, f_{j} \in F$ and $\eta_{j}= \pm 1$ for each j. The smallest possible value of n in any such expression of this type for u is called the relative area of u, denoted by $\operatorname{Area}_{\text {rel }}(u)$.

We say that G is hyperbolic relative to the collection of subgroups $\left\{H_{i}\right\}$ if it has a finite relative presentation as above and a constant $C \geq 0$ such that

$$
\operatorname{Area}_{\mathrm{rel}}(u) \leq C|u|
$$

for all words u over $\widehat{\Sigma}$ that represent the identity in G.
We note that if G is relatively hyperbolic then the graph $\widehat{\Gamma}$ is δ-hyperbolic for some δ [10, Theorem 2.53]. Note also that, by [10, Proposition 2.36], the intersection $H_{i} \cap H_{j}$ for $i \neq j$ is finite.

An H_{i}-component of a path p in $\widehat{\Gamma}$ is defined to be a non-empty subpath of p that is maximal subject to being labelled by a word in H_{i}^{*}. We call a vertex of a path p internal if lies in the interior of a component of p, and otherwise non-internal. Two components s and r (not necessarily of the same path) are connected if both are H_{i}-components for some H_{i}, and if the start points of both lie in the same left coset $g H_{i}$ of H_{i}.

A path p in $\widehat{\Gamma}$ is said to backtrack if $p=p^{\prime} s r s^{\prime} p^{\prime \prime}$ where s, s^{\prime} are H_{i}-components, and the word labelling r represents an element of H_{i}; if no such decomposition of p exists, then p is without backtracking. A path p is said to vertex backtrack if it contains a subpath of length greater than 1 labelled by a word that represents an element of some H_{i}; otherwise p is said to be without vertex backtracking. We note that if a path does not vertex backtrack then it does not backtrack and all of its components have length 1.

We denote the start and end points of a path p in $\widehat{\Gamma}$ by p_{-}and p_{+}, respectively, and say that paths p, q in $\widehat{\Gamma}$ are k-similar if $\max \left\{d_{\Gamma}\left(p_{-}, q_{-}\right), d_{\Gamma}\left(p_{+}, q_{+}\right)\right\} \leq k$. For $\lambda \geq 1$ and $c \geq 0$, a path p in a geodesic metric space X is said to be a (λ, c)-quasigeodesic if for any points x, y on p we have $d_{p}(x, y) \leq \lambda d_{X}(x, y)+c$. The following fundamental result about k-similar paths in $\widehat{\Gamma}$, proved as [10, Theorem 3.23], is also stated as [1, Theorem 2.8].

Proposition 2.1. [10, Theorem 3.23] (Bounded Coset Penetration Property). Let G be relatively hyperbolic, as above. Then, for any $\lambda \geq 1, c \geq 0, k \geq 0$, there exists a constant $\mathrm{e}=\mathrm{e}(\lambda, c, k)$ such that, for any two k-similar paths p and q in $\widehat{\Gamma}$ that are (λ, c)-quasigeodesics and do not backtrack, the following conditions hold.
(1) The sets of vertices of p and q are contained in the closed e-neighbourhoods of each other in Γ.
(2) Suppose that, for some i, s is an H_{i}-component of p with $d_{\Gamma}\left(s_{-}, s_{+}\right)>\mathrm{e}$; then there exists an H_{i}-component of q that is connected to s.
(3) Suppose that s and t are connected H_{i}-components of p and q, respectively. Then s and t are e-similar.

We define the components of a word $w \in \Sigma^{*}$ to be the nonempty subwords of w of maximal length that lie in $\left(\Sigma \cap H_{i}\right)^{*}$ for some parabolic subgroup H_{i}; such a subword labels a component of any path traced out by w in the Cayley graph Γ. In general,
since $H_{i} \cap H_{j}$ is finite for $i \neq j$, it is possible for the end of one component in a word w to overlap the beginning of the next, where the overlapping generators lie in a finite intersection. In this paper, we shall be assuming that the parabolic subgroups are free abelian, and hence that $H_{i} \cap H_{j}$ is trivial for $i \neq j$, and so distinct components are disjoint.

Let $w:=\alpha_{0} u_{1} \alpha_{1} u_{2} \cdots u_{n} \alpha_{n}$, where the subwords u_{j} are its components. Then, following [1, Construction 4.1], we define the derived word $\hat{w}:=\alpha_{0} h_{1} \alpha_{1} h_{2} \cdots h_{n} \alpha_{n} \in \widehat{\Sigma}^{*}$, where each h_{j} is the element of the parabolic subgroup represented by u_{j}. So the components of paths in Γ and $\widehat{\Gamma}$ labelled by w and \hat{w} are labelled by the subwords u_{i} and h_{i} of w and \hat{w}, respectively.

2.3.2. Some properties of a relatively hyperbolic group G

Suppose that the group G is hyperbolic relative to a collection of free abelian subgroups H_{i}, as in Section 2.3.1. We can select our finite generating set for G, and we select such a set Σ with particular properties that are already described in [8, Section 6.1]. We do not see the need to give the details of that construction here.

The properties of our chosen generating set Σ ensure that it contains generating sets Σ_{i} for each parabolic subgroup H_{i}. Recall that $\widehat{\Gamma}$ is a δ-hyperbolic space for some constant δ. So $\widehat{\Gamma}$ is also δ^{\prime}-hyperbolic for any $\delta^{\prime}>\delta$, and hence we may safely assume (and sometimes do) that $\delta \geq 1$.

We use a particular normal form $\operatorname{nf}(w)$ for words $w \in \Sigma^{*}$ that is already defined in [8, Section 6.1]. This has the properties that, for words w in normal form (i.e. $w=n f(w)$), the derived word \hat{w} labels a geodesic path in $\widehat{\Gamma}$, and the components w^{\prime} of w (i.e. the maximal subwords with $w^{\prime} \in \Sigma_{i}^{*}$ for some i) are shortlex reduced words. Furthermore, if w represents an element of H_{i} for some i, then $w \in \Sigma_{i}^{*}$ (and so $|\hat{w}|=1$). By [8, Theorems 8.1, 9.1], for a compressed word with value $w \in \Sigma^{*}$, we can find a compressed word representing $\operatorname{nf}(w)$ in polynomial time, and so we can solve the compressed word problem for G in polynomial time. By [8, Proposition 3.7], the set of words in normal form is the language of an asynchronous automatic structure for G [4], and hence has particular geometrical properties that are of use to us.

As we observed in [8], there is no reason why a subword of a normal form word that starts with a nonempty proper suffix or ends with a nonempty proper prefix of a component of w should itself be in normal form. But subwords w^{\prime} of w such that w^{\prime} consists of generators in $\Sigma \backslash \mathcal{H}$ together with complete components of w (or, equivalently, such that $\widehat{w^{\prime}}$ is a subword of \hat{w}) are in normal form. We shall call such subwords nonsplitting, because they do not split components of w.

We say that a word over Σ is stable under cyclic derivation if it does not begin and end with letters from the same parabolic subgroup H_{i}. A cyclic conjugate w^{\prime} of a word $w \in \Sigma^{*}$ is called a non-splitting cyclic conjugate if w^{\prime} is stable under cyclic derivation, or, equivalently if $\widehat{w^{\prime}}$ is a subword of $\widehat{w^{2}}$.

2.4. Technical results for SLP s

In [8, Proposition 4.1] we listed various properties of SLPs \mathcal{G} and operations on them that can be carried out in polynomial time. These include:
(i) computation of an SLP \mathcal{G}^{\prime} in Chomsky normal form with $\operatorname{val}(\mathcal{G})=\operatorname{val}\left(\mathcal{G}^{\prime}\right)$;
(ii) computation of $|\operatorname{val}(\mathcal{G})|$;
(iii) for any $i, j \in \mathbb{Z}$, computation of an sLp $\mathcal{G}[i: j)$ with value the substring $\operatorname{val}(\mathcal{G})[i: j)$ of \mathcal{G};
(iv) given a second slp \mathcal{H} over the same alphabet as \mathcal{G}, we can decide whether val $(\mathcal{G})=$ $\operatorname{val}(\mathcal{H})$.

In addition to these properties we shall need the result proved in [9, Theorem 1] that, for given slps \mathcal{G} and \mathcal{H} over the same alphabet, we can decide in polynomial time whether $\operatorname{val}(\mathcal{G})$ is a substring of $\operatorname{val}(\mathcal{H})$ and, if so, determine the smallest i such that $\operatorname{val}(\mathcal{G})=\operatorname{val}(\mathcal{H})[i: j)$ for some j.

This last result implies immediately that we can also determine in polynomial time whether $\operatorname{val}(\mathcal{G})$ is a cyclic conjugate of $\operatorname{val}(\mathcal{H})$, by testing whether $|\operatorname{val}(\mathcal{G})|=|\operatorname{val}(\mathcal{H})|$ and $\operatorname{val}(\mathcal{G})$ is a substring of $\operatorname{val}(\mathcal{H})^{2}$.

Proposition 7.1 of [8] proves that an input SLP \mathcal{G} over our chosen generating set Σ of the group G can be modified in polynomial time to produce an SLP \mathcal{G}^{\prime} with the same value w for which every component u of w has a root (defined to be a variable A_{u} with value u). Now let $\mathcal{G}_{A_{u}}^{\prime}$ be the SLP that is the restriction of \mathcal{G}^{\prime} to the root A_{u} of u, which has A_{u} as its start variable. Then we can modify \mathcal{G}^{\prime} by collapsing each $\mathcal{G}_{A_{u}}^{\prime}$ within \mathcal{G}^{\prime} to a single vertex, and then introducing a new alphabet letter a_{u} and defining $\rho\left(A_{u}\right)=a_{u}$. The result is an SLP for \hat{w} over a finite alphabet Σ^{\prime} with $\Sigma \subseteq \Sigma^{\prime}$, where each letter in Σ^{\prime} represents an element in $\widehat{\Sigma}$ in a component of G. Note that multiple letters of Σ^{\prime} might represent the same letter of $\hat{\Sigma}$. Since the compressed word problem is certainly solvable in polynomial time in abelian groups, we can decide in polynomial time whether this is the case for two given letters in Σ^{\prime}.

Hence we have proved

Proposition 2.2. Let \mathcal{G} be an SLP over our selected generating set Σ for G, and let $w:=$ $\operatorname{val}(\mathcal{G})$. Then, in time polynomial in $|\mathcal{G}|$, we can construct an slp \mathcal{G}^{\prime} in Chomsky normal form with value \hat{w} over a finite alphabet Σ^{\prime} such that $\Sigma \subseteq \Sigma^{\prime}$ and each letter in Σ^{\prime} represents an element in $\widehat{\Sigma}$.

We will use this result frequently, implicitly, in our proof. It will enable us, for instance, to compute features of derived words in polynomial time, such as their lengths, and to compute slps for substrings v of u that are defined via substrings \hat{v} of \hat{w}. We can also decide in polynomial time whether \hat{u} is a cyclic conjugate of \hat{v}, for words $u, v \in \widehat{\Sigma}$.

3. Proof of the theorem

Suppose that sLPs \mathcal{G}_{1} and \mathcal{G}_{2} are input, with values u and v.
We describe our algorithm in terms of the words u, v, and of words over Σ and $\widehat{\Sigma}$ that are related to those, culminating with the construction of a conjugator. But the constructions within the algorithm are of SLPs that define those words, and of course it is the construction of that sequence of SLPs, and ultimately of an SLP for the conjugator, that needs to be shown to be polynomially bounded. Since our proof consists of a possibly confusing mixture of theory and the description of the algorithm itself, we shall conclude each section with a brief summary of the steps of the algorithm presented in that section.

Since the conjugacy problem is certainly solvable in G, for any constant $C \geq 0$ we can construct in a preprocessing step a lookup table that stores the solution to $\operatorname{CCP}(G)$ for all input for which the lengths of u and v are at most C, together with corresponding conjugators (as standard words). We suppose that this has been done, for an appropriate constant C. (Note that we do not really require the solvability of the conjugacy problem in G in order to assert the existence of this lookup table, but it would be necessary for an implementation of the algorithms that we are describing.)

By [8, Theorems 8.1, 9.1], which together show that an SLP may be converted in polynomial time to one with value its normal form, we may assume that our input words u and v are in normal form, so that \hat{u} and \hat{v} label geodesic paths in $\widehat{\Gamma}$.

Following [5, Section 3.1], we define words u_{1}, u_{2} and u_{c} such that $u=u_{1} u_{2}, u_{c}:=$ $u_{2} u_{1}$ is a non-splitting cyclic conjugate of u, and $\left|\widehat{u_{1}}\right| \leq\left|\widehat{u_{2}}\right| \leq\left|\widehat{u_{1}}\right|+1$. The words v_{1}, v_{2}, v_{c} are defined similarly. We then reduce the words u_{c} and v_{c} to normal form, and replace our original u and v by these reduced words. The motivation for doing this is that, when $\widehat{u_{c}}$ is long enough, all of its positive powers are quasigeodesic; this will be explained in Section 3.2.

The new words $\operatorname{nf}\left(u_{c}\right)$ and $\operatorname{nf}\left(v_{c}\right)$ are conjugates in G of the original u and v, and we must also store SLPs for corresponding conjugators, since we will need these in order to calculate the final conjugator in the case in the case that u and v turn out to be conjugate.

Algorithmic steps:

(i) Precompute a table of conjugacy and conjugators of words of length up to a certain constant. (We shall not attempt to specify that constant here, but its value could be computed from the various constants that we shall define later in the proof, together with constants that are defined in the results proved in [1, Section 9]. Theoretically it depends only on the group presentation.)
(ii) Reduce u and v to normal form, and then compute u_{c} and v_{c} as described above. Store (as SLPs) the corresponding conjugators and reduce u_{c} and v_{c} to normal form.

Fig. 1. A minimal k-bounded conjugacy $(1,0)$ conjugacy diagram for \hat{u}, \hat{v}.

3.1. Short derived words

Suppose first that the derived words \hat{u} and \hat{v} (after the replacement described above) both have length bounded above by the constant $17\left(2 L^{\prime}+1\right) / 7$ with $L^{\prime}:=36 \delta+2$. (Recall that δ is the hyperbolicity constant of the Cayley graph $\widehat{\Gamma}$.)

The words \hat{u} and \hat{v} have a bounded number of cyclic conjugates in this case and we start by calculating the normal forms of all non-splitting cyclic conjugates of u and v, and replacing u and v by cyclic conjugates in normal form such that \hat{u} and \hat{v} have the least possible lengths. In particular this ensures that, if either \hat{u} has length greater than one or if it has length 1 and is not parabolic, then u is stable under cyclic derivation, and similarly for v.

As in [1, Section 8], for words $\alpha, u, v \in \Sigma^{*}$ with $\alpha u \alpha^{-1}={ }_{G} v$, we say that the corresponding quadrilateral in $\widehat{\Gamma}$ shown in Fig. 1, with paths labelled by $\hat{\alpha}, \hat{u}, \hat{\alpha}^{-1}, \hat{v}^{-1}$, is a minimal conjugacy $(1,0)$-diagram, if the paths labelled by \hat{u}, \hat{v} and by all of their cyclic conjugates are geodesic, and if $\hat{\alpha}$ has minimal length amongst conjugators between all pairs of cyclic conjugates of \hat{u} and \hat{v}. So if u and v are conjugate in G then there exists such a minimal conjugacy $(1,0)$-diagram in which u and v are replaced by suitable non-splitting cyclic conjugates.

We shall now consider the properties of such a minimal conjugacy diagram, assuming for now that it exists. Since $\widehat{\Gamma}$ is hyperbolic, [1, Lemma 8.2] asserts that ($G, \widehat{\Sigma}$) has bounded conjugacy diagrams (BCD); that is, for some constant k, we have

$$
\min \{\max \{|\hat{u}|,|\hat{v}|\},|\hat{\alpha}|\} \leq k .
$$

We recall from Section 2.3 .1 that a path is said to vertex backtrack if it contains a subpath of length greater than 1 labelled by a word that represents an element of some H_{i}. Following [1, Section 9] after Corollary 9.2, we say that a minimal conjugacy diagram is without vertex backtracking if none of the cyclic conjugates of \hat{u} and \hat{v} vertex backtracks.

The fact that the paths labelled by \hat{u}, \hat{v} and those labelled by their cyclic conjugates are all geodesics in $\widehat{\Gamma}$ implies immediately that the diagram under consideration is without vertex backtracking.

Suppose first that neither of the words u and v are parabolic (that is, they are not words over the generators of H_{i} for any parabolic subgroup H_{i}). Now [1, Theorem 9.13] states that, for some constant k, there are non-splitting cyclic conjugates u^{\prime} and v^{\prime} of u and v and α^{\prime} conjugating u^{\prime} to v^{\prime} in G such that

$$
\min \left\{\max \left\{\left|u^{\prime}\right|,\left|v^{\prime}\right|\right\},\left|\alpha^{\prime}\right|\right\} \leq k
$$

Since $|u|=\left|u^{\prime}\right|$ and $|v|=\left|v^{\prime}\right|$, it follows that either the lengths of u and v are both bounded by a constant, or there are non-splitting cyclic conjugates u^{\prime} and v^{\prime} of u and v such that u^{\prime} and v^{\prime} are conjugate by an element of G of bounded length. Since the number of possibilities for u^{\prime} and v^{\prime} is bounded by a constant, we can solve the problem in either of these cases, by using our precomputed list in the first case, and by exhaustive search of all possible conjugators in the second case.

Otherwise, one of the input words, say u, is parabolic, and $u \in \Sigma_{i}^{*}$ for some i. It is a basic property of relatively hyperbolic groups [1, Lemma 2.6 (iii)] that
(i) for a parabolic subgroup H of G and $g \in G \backslash H$, the intersection $g^{-1} H g \cap H$ is finite and
(ii) for any two distinct parabolic subgroups H, H^{\prime} and any $g \in G$ the intersection $g^{-1} H g \cap H^{\prime}$ is finite.

Since the parabolic subgroups are free abelian in our situation, these intersections must be trivial. Hence, if v is also parabolic, then u and v are conjugate if and only if $u=v$. So we assume that the word v is not parabolic (and hence, as we observed earlier, v is stable under cyclic derivation).

In what follows, we denote the path in the diagram labelled by a word w by p_{w}. By a component of the diagram, we mean a component of one of its sides. Now [1, Lemma 9.14] states that the path p_{u}, which is a component of the diagram, can only be connected to a component of p_{v} if u, v and α all lie in parabolic subgroups, which is not the case. So p_{u} cannot be connected to a component of p_{v}.

Now we can apply [1, Lemma 9.16 (a)] to the parabolic subgroup H_{i} with $u \in H_{i}$. This lemma assumes that for all $h \in H_{i}$ there is a geodesic word in Σ_{i}^{*} that represents h; that property holds by our original choice of the generating set Σ. It assumes also that all cyclic conjugates of u are geodesic, but this holds because u is a geodesic word in an abelian group. Since H_{i} is abelian, it certainly has the property BCD and, with these assumptions, [1, Lemma 9.16 (a)] tells us that u has bounded length.

Next we apply [1, Lemma 9.12] to p_{v}. This tells us that if $|\hat{\alpha}|>1$, and p_{v} is not parabolic then the length $|v|$ of the word v is also bounded, in which case we can solve the problem using our lookup table.

So, since we know that p_{v} is not parabolic, it remains to deal with the case $|\hat{\alpha}|=1$, and in that case either $|\alpha|=1$ and we can solve the problem by trying all possible words α, or α is parabolic. Now [1, Lemma 9.1] applies to an n-gon $p_{1} p_{2} \cdots p_{n}$ in $\widehat{\Gamma}$ with a distinguished subset I of the sides p_{i} such that, for $p_{i} \in I, p_{i}$ is an isolated component of the diagram (that is, not connected to any other component), and for $p_{i} \notin I, p_{i}$ is a geodesic. The conclusion of the lemma is that the sum of the Γ-lengths of the paths $p_{i} \in I$ is at most a constant times n. So, if either of the paths p_{α} or $p_{\alpha^{-1}}$ is an isolated component of the conjugacy diagram then, by applying this lemma to our diagram with $n=4$ and $I=\left\{p_{\alpha}\right\}$ or $\left\{p_{\alpha^{-1}}\right\}$, we find that the word α has bounded length, in which case we can again solve the problem.

So we can assume that p_{α} and $p_{\alpha^{-1}}$ are not isolated components. Since the components are abelian, the component p_{α} cannot be connected to p_{u} or to $p_{\alpha^{-1}}$, so it must be connected to a component of p_{v}. Now [1, Lemma 9.5] says that, if components of two adjacent sides of a minimal conjugacy $(1,0)$-diagram are connected, then those components must be at the adjacent ends of the two sides. So the path p_{α} must be connected to a component of p_{v} that is situated at the beginning of p_{v}. Similarly, $p_{\alpha^{-1}}$ is connected to a component of p_{v} that is situated at the end of p_{v}. But then v is not stable under cyclic derivation, contrary to our earlier observation.

The discussion above justifies the following algorithmic steps for solving the conjugacy problem in the case of short derived words.
(i) Compute and reduce to normal form all of the (boundedly many) non-splitting cyclic conjugates of u. If any of these has shorter derived length than u, then replace u by that cyclic conjugate (and store the corresponding conjugator). Continue to do this until all cyclic conjugates of \hat{u} have the same shortest possible length. Do the same for the word v.
(ii) If u and v both have length at most a certain constant k (its value can be computed from δ and ϵ using the results in [1, Section 9]), then use the precomputed lists to test them for conjugacy in G. If they are conjugate, then return yes and a conjugator. Otherwise return no.
(iii) If at least one of u, v has length greater than k, then test all non-splitting cyclic conjugates of u and of v for conjugacy by elements α of Σ-length at most k. If any of these tests are positive then return yes and a conjugator. Otherwise return no.

3.2. Long derived words

We recall from the beginning of this section that the original input words u and v defined by sLPs \mathcal{G}_{1} and \mathcal{G}_{2} were put into normal form, replaced by cyclic conjugates u_{c} and v_{c}, and then put into normal form again. We are denoting the resulting words by u and v. As normal form words, their derived words \hat{u} and \hat{v} label geodesic paths in the Cayley graph $\widehat{\Gamma}$ over the (infinite) generating set $\widehat{\Sigma}$, which is the union of the finite generating set Σ and all elements of the parabolic subgroups.

It remains to deal with the case when at least one of $|\hat{u}|$ and $|\hat{v}|$ is at least $17\left(2 L^{\prime}+1\right) / 7$ with $L^{\prime}:=36 \delta+2$. Our strategy here is to follow the proof in [5, Section 3] of the linearity of the conjugacy problem in hyperbolic groups. As remarked above, it is shown in [7, Section 6.4] that the arguments of [5] can be readily adapted to prove that the corresponding compressed conjugacy problem in hyperbolic groups is solvable in polynomial time. We are able to use them for our relatively hyperbolic group because of the hyperbolicity of the Cayley graph $\widehat{\Gamma}$. We apply the arguments in [5, Section 3] to the words \hat{u}, \hat{v} over $\widehat{\Sigma}$. The following subsections correspond to those in [5].

3.2.1. Reduction to quasigeodesics

By [5, Lemma 3.1] if $|\hat{u}| \geq 2 L^{\prime}+1$ then all positive powers of \hat{u} define L^{\prime}-local $(1,2 \delta)$-quasigeodesics in $\widehat{\Gamma}$, that is, all of their subwords of length at most L^{\prime} are $(1,2 \delta)$ quasigeodesics. (This lemma is stated in [5] for a specific constant L that is slightly different from our L^{\prime}, but its proof is valid for any constant L, so we can apply it with $L=L^{\prime}$.) Now we apply [5, Proposition 2.3] with the word w of that proposition equal to a subword of a positive power of \hat{u}; if that subword has length greater than L^{\prime} then the last statement of the proposition asserts that its length is at most $17 / 7$ times the length of a geodesic between its two ends. It follows in any case that this power of \hat{u} is a ($17 / 7,2 \delta$)-quasigeodesic.

Now if \hat{u} and \hat{v} are conjugate by $g \in G$, then so are all of their positive powers. It follows immediately from this (as at the end of [5, Section 3.1]) that the length of a geodesic between the two ends of \hat{v}^{n} is at least $7|\hat{u}| n / 17-2|g|_{\hat{\Gamma}}$ for all $n>0$, and hence $|\hat{v}| \geq 7|\hat{u}| / 17$.

Since we are assuming that at least one of $|\hat{u}|$ and $|\hat{v}|$ is at least $17\left(2 L^{\prime}+1\right) / 7$ it follows that, if u and v are conjugate, then $|\hat{u}|$ and $|\hat{v}|$ are both at least $2 L^{\prime}+1$. The argument that we applied above to \hat{u} now applies to \hat{v}, and we deduce that all positive powers of \hat{v} are also $(17 / 7,2 \delta)$-quasigeodesics.

To proceed further, we need the positive powers of \hat{u} not to backtrack, which we can achieve as follows. If \hat{u}^{n} backtracks for some $n>1$, then some subword $\hat{\xi}$ of it of length greater than 1 must reduce to a parabolic element of length 1 ; choose $\hat{\xi}$ of maximal length with that property. Since \hat{u}^{n} is a $(17 / 7,2 \delta)$-quasigeodesic, the subword $\hat{\xi}$ has length at most $17 / 7+2 \delta \leq 36 \delta+2=L^{\prime}$ (recall that we are assuming that $\delta \geq 1$), and so (as an L^{\prime}-local $(1,2 \delta)$-quasigeodesic) has length at most $1+2 \delta$. Then, because \hat{u} is geodesic, $\hat{\xi}$ must consist of a non-trivial suffix of \hat{u} followed by a non-trivial prefix of \hat{u}. Note that two such subwords $\hat{\xi}$ of \hat{u}^{n} must be separated within \hat{u}^{n} by a subword of length at least $L^{\prime}-2 \delta-1$. (So $\hat{\xi}$ is actually a subword of \hat{u}^{2}, and appears $n-1$ times within \hat{u}^{n}.) Define $L:=L^{\prime}-2 \delta=34 \delta+2$; note that this same constant L appears in [5]. After replacing each occurrence of $\hat{\xi}$ in \hat{u}^{n} by an element of \mathcal{H}, the resulting word is a L-local $(1,2 \delta)$-quasigeodesic that does not backtrack.

Now u has a non-splitting cyclic conjugate that has ξ as a subword. Let u^{\prime} be the word formed from that cyclic conjugate by replacing the subword ξ by $\operatorname{nf}(\xi)$. We redefine u to be this word u^{\prime} (and store an SLP for the associated conjugator, which we will need
later). Note that now u is stable under cyclic derivation, and so $\widehat{u^{n}}=\hat{u}^{n}$ for all $n>0$. Now, for all $n>0, \widehat{u^{n}}$ is a $(17 / 7,2 \delta)$-quasigeodesic that does not backtrack. We carry out the same process if necessary for the word v. Note that this step has reduced the lengths of \hat{u} and \hat{v} by at most 2δ, so they both now have length at least $2 L+1$.

By Proposition 2.1 (1) (the Bounded Coset Penetration Property) there is a constant $\epsilon:=\mathrm{e}(17 / 7,2 \delta, 0)$ such that, for any word $w \in \Sigma^{*}$ for which \hat{w} is geodesic over $\widehat{\Sigma}$ and $w={ }_{G} u^{n}$, all non-internal vertices of the path in Γ starting at the origin and labelled by u^{n} are at Γ-distance at most ϵ from a non-internal vertex in the corresponding path labelled by \hat{w}, and vice versa. We fix this constant ϵ for the remainder of the section.

Algorithmic steps:
(i) If either $|\hat{u}|$ or $|\hat{v}|$ is less than $2 L^{\prime}+1$ then return no.
(ii) Find all of the boundedly many non-splitting suffixes β and prefixes α of u with $|\hat{\beta}|+|\hat{\alpha}| \leq 1+2 \delta$. For each of these nf-reduce $\beta \alpha$ and thereby find the longest non-splitting subword ξ of u^{2} such that $\operatorname{nf}(\xi)$ is a parabolic word.
(iii) Compute a suitable replacement u^{\prime} of u as described above together with the corresponding conjugator as SLP (stored for later).

3.2.2. Reduction to an nf -straight power

We say that a word w is nf-straight if all positive powers w^{n} of w are nf-reduced. (These words correspond to the short-lex straight words in [5, Section 3.2].) Note that such words are necessarily stable under cyclic derivation. We know from [8] that the set of nf-reduced words is regular, and we can use the associated finite state automaton to test compressed words for being nf-straight in polynomial time.

We say that an infinite path in Γ is $n f$-straight if the labels of all of its finite subpaths labelled by non-splitting subwords are nf-reduced.

Our argument now is basically that of [5, Section 3.2], the idea of which is attributed in [5] to Delzant. But we need some adjustment and so we give our own account. For any path γ in Γ, we define $\Delta(\gamma)$ to be the set of paths γ^{\prime} in Γ for which each non-internal vertex of γ^{\prime} is within Γ-distance ϵ of some non-internal vertex of γ.

Let p_{n} be the vertex of Γ labelled by u^{n} for $n \in \mathbb{Z}$ (so p_{0} is the base point of Γ), and let γ_{1} be the two-way-infinite path in Γ containing each p_{n} such that the subpath from p_{n} to p_{n+1} is labelled by u for each n. (The corresponding path is called w in [5].)

We let Π_{0} be the set of two-way-infinite paths γ_{2} in Γ with nf-straight labels for which $\gamma_{2} \in \Delta\left(\gamma_{1}\right)$ and $\gamma_{1} \in \Delta\left(\gamma_{2}\right)$. Now let Π be the subset of Π_{0} consisting of paths going in the same direction as γ_{1}. We shall prove first that $|\Pi|$ is bounded above, and second that Π is non-empty.

For a path $\gamma_{2} \in \Pi$ and each $n \in \mathbb{Z}$, choose a specific non-internal vertex r_{n} on γ_{2} with $d_{\Gamma}\left(p_{n}, r_{n}\right) \leq \epsilon$. Then, since γ_{2} is nf-straight, the subpath $\gamma_{2}^{(n)}$ of γ_{2} from vertex r_{-n} to r_{n} is uniquely determined by r_{-n} and r_{n} for each $n \geq 0$. But the number of possibilities for r_{-n} and r_{n} for all $\gamma_{2} \in \Pi$ is bounded above by the square K of the total number of
words in Σ^{*} of length at most ϵ. So, since each γ_{2} is the union of its subpaths $\gamma_{2}^{(n)}$, it follows that the number $|\Pi|$ of choices for γ_{2} is bounded above by the same constant K.

To prove that Π is non-empty, we now construct a particular path γ_{2} in Π via a sequence of vertices t_{i} on that path. For each $n \geq 0$, we define $\gamma_{1}^{\prime(n)}$ to be the (unique) nf-reduced path joining p_{-n} to p_{n}. We know from Proposition 2.1 (1) that each such path $\gamma_{1}^{\prime(n)}$ lies in $\Delta\left(\gamma_{1}\right)$. Now, first we define the vertex t_{0} to be a vertex with $d_{\Gamma}\left(t_{0}, p_{0}\right) \leq \epsilon$ that occurs in $\gamma_{1}^{\prime(n)}$ for infinitely many n. Then for each $m=1,2, \ldots$, we define the vertices t_{m}, t_{-m} together with a path $\gamma_{2}^{(m)}$ of Γ-length $2 m$ joining t_{-m} to t_{m} such that (i) $d_{\Gamma}\left(t_{-m}, t_{-m+1}\right)=d_{\Gamma}\left(t_{m}, t_{m-1}\right)=1$; (ii) $\gamma_{2}^{(m-1)}$ is a subpath of $\gamma_{2}^{(m)}$; and (iii) $\gamma_{2}^{(m)}$ is a subpath of $\gamma_{1}^{\prime(n)}$ for infinitely many n. Then we define the path γ_{2} to be the union of the paths $\gamma_{2}^{(m)}$. Since each path $\gamma_{2}^{(m)}$ is a subpath of $\gamma_{1}^{\prime(n)}$ for some n, we have $\gamma_{2} \in \Delta\left(\gamma_{1}\right)$. To see that $\gamma_{1} \in \Delta\left(\gamma_{2}\right)$, we observe that each non-internal vertex of γ_{1} is at Δ-distance at most ϵ from a non-internal vertex in $\gamma_{1}^{\prime(n)}$ for all sufficiently large n and hence also from a non-internal vertex in $\gamma_{2}^{(m)}$ for all sufficiently large m. So γ_{2} is in the set Π.

Now, fix some $\gamma_{2} \in \Pi$, let r_{0} be a non-internal vertex on γ_{2} with $d_{\Gamma}\left(p_{0}, r_{0}\right) \leq \epsilon$, and let K be the upper bound on $|\Pi|$ found above. It is shown next in [5] that, for some M with $1 \leq M \leq K$, the isometry of Γ induced by multiplication on the left by u^{M} fixes γ_{2}. For suppose that I_{u} is the isometry of Γ induced by left multiplication within G by u. Since I_{u} fixes γ_{1} it must fix $\Delta\left(\gamma_{1}\right)$ and so induce a permutation of the finite set Π. Hence for any γ_{2} there is an M with $1 \leq M \leq K$ for which $I_{u}^{M}=I_{u^{M}}$ fixes γ_{2}.

Let $\alpha \in \Sigma^{*}$ label the path from p_{0} to r_{0}, so $|\alpha| \leq \epsilon$. The isometry maps r_{0} to the vertex of γ_{2} labelled by $u^{M} \alpha$, which we denote by r_{M}. Since multiplication by u^{M} is an isometry of the labelled graph Γ, it must map the two vertices of γ_{2} adjacent to r_{0} to the two vertices adjacent to r_{M}. Since we know that the former are not labelled by generators in the same parabolic subgroup H_{i}, the same applies to the latter, so r_{M} also has the property of being a non-internal vertex of γ_{2}.

Let z be the label of the subpath of γ_{2} from r_{0} to r_{M}. Since multiplication by u^{M} induces an isometry of γ_{2}, the path γ_{2} has subpaths with labels z^{n} for all $n>0$ and so, since γ_{2} is nf-straight, the word z is also nf-straight, and $\alpha^{-1} u^{M} \alpha={ }_{G} z$. Since we can recognise nf-straight words in polynomial time, we can find suitable α and M in polynomial time by exhaustive search.

Algorithmic steps: find α and M as described, and compute an SLP for the nf-straight word z.

3.2.3. Testing conjugacy of the M-th powers

The next step is to test for conjugacy between z and v^{M}. We follow the argument of [5, Section 3.3], and in some cases (when we found it appropriate) we use notation from that article.

Our Fig. 2 is based on [5, Fig. 7]. In the diagram, n is some suitably large positive integer, and w and y are nf-reduced words in Σ^{*} labelling paths from the vertices e and p to the vertex q^{\prime}, respectively. Suppose that $\beta^{-1} z \beta={ }_{G} v^{M}$ (and hence $\beta^{-1} z^{2 n} \beta={ }_{G} v^{2 M n}$

Fig. 2. Testing conjugacy of M-th powers.
as shown in the diagram). We define q to be the vertex at the end of the path labelled $v^{M n}$ that starts at p; then q is the midpoint of the path labelled $v^{2 M n}$ from p to q^{\prime}.

As we remarked at the end of Section 3.2.1, the Bounded Coset Penetration Property implies the existence of a non-internal vertex r on the path labelled y that is at Γ distance at most ϵ from the vertex q. Also, [8, Proposition 6.3] (which is the result that we need to apply the argument of [5, Section 3.3] in the context of relatively hyperbolic groups) tells us that, provided that n is sufficiently large compared with $|\hat{\beta}|$, there are non-internal vertices s and t on the paths labelled by the words w and $z^{2 n}$ respectively such that $d_{\Gamma}(r, s)+d_{\Gamma}(s, t)$ is at most a constant N (which is called L^{\prime} in [8]). So the Γ-length of the word $\eta \in \Sigma^{*}$, labelling the path from t to vertex q via s and r, is bounded by the constant $N^{\prime}:=\epsilon+N$.

The group element labelling the path in the diagram from the vertex e to the vertex t is of the form $z^{m} z_{1}$ for some non-splitting prefix z_{1} of z, and so $z^{m} z_{1} \eta={ }_{G} \beta v^{M n}$. Hence $\eta={ }_{G} z_{1}^{-1} z^{-m} \beta v^{M n}$, and

$$
\eta v^{M} \eta^{-1}={ }_{G} z_{1}^{-1} z^{-m} \beta v^{M} \beta^{-1} z^{m} z_{1}={ }_{G} z_{1}^{-1} z z_{1}
$$

the right-hand-size freely reduces to a non-splitting cyclic conjugate of z.
It follows that to test for conjugacy between z and v^{M} we should check all possible conjugators η of Σ-length up to N^{\prime}, reducing each conjugate $\eta v^{M} \eta^{-1}$ to a word $y \mathrm{in} \mathrm{nf}$, and checking for each such y whether y is a non-splitting cyclic conjugate of z. As we explained in Section 2.4, we can decide in polynomial time (given SLPs for y, z) whether y is a non-splitting subword of z^{2}, and hence whether y is a non-splitting cyclic conjugate of z.

If z and v^{M} are not conjugate then neither are u and v, and so in that case the algorithm returns no. But otherwise we have found a conjugator η^{\prime} (a product of η and a subword of z) such that $\eta^{\prime} v^{M} \eta^{\prime-1}={ }_{G} u^{M}$, and we need to continue. In that case, u and v will be conjugate in G if and only if u and $\eta^{\prime} v \eta^{\prime-1}$ are conjugate by an
element of $C_{G}\left(u^{M}\right)$. So now we replace v by $\eta^{\prime} v \eta^{\prime-1}$, and hence we may assume that $u^{M}={ }_{G} v^{M}={ }_{G} z$.
Algorithmic step: Check all possible conjugators of $z={ }_{G} u^{M}$ to v^{M} as just described. If a conjugator is found, then store it (as SLP). If not then return no.

3.2.4. Completion of the proof

We have $u^{M}={ }_{G} v^{M}={ }_{G} z$, where as before z is the nf -straight word equal in G to u^{M}, and we want to decide whether u and v are conjugate in G. If so, then a conjugator will lie in the centraliser $C:=C_{G}(z)$ of z.

Let β be a word over Σ representing an arbitrary element of C. Then $\beta^{-1} z \beta={ }_{G}$ $v^{M}={ }_{G} z$, and the diagram of Fig. 2 applies also to these choices of u, v, z, β and M. Now the argument of Section 3.2.3 applies just as before to give a non-splitting prefix z_{1} of z, integers m, n, and a word η of length at most N^{\prime}, with $z^{m} z_{1} \eta={ }_{G} \beta v^{M n}={ }_{G} \beta z^{n}={ }_{G} z^{n} \beta$ (recall that $\beta \in C$). It follows that $\beta={ }_{G} z^{m-n} z_{1} \eta$.

Now we find the shortest non-splitting prefix z_{0} of z that is a root of z : that is, for which there is an integer $\ell \geq 1$ so that $z=z_{0}^{\ell}$. We can find z_{0} as the non-splitting prefix of z^{2} that ends immediately before the second occurrence of z as a subword of the word z^{2}. We observed in the second paragraph of Section 2.4 (citing [9, Theorem 1]) that we can locate this occurrence of z in polynomial time. Note that z_{0} must be stable under cyclic derivation, because z is.

Then we define z_{3} to be the minimal non-splitting suffix of z_{1} for which $z_{1}=z_{0}^{\ell^{\prime}} z_{3}$ for some $\ell^{\prime} \in \mathbb{Z}$. So, for $\beta \in C$ as above, we have $\beta={ }_{G} z_{0}^{\ell^{\prime \prime}} z_{3} \eta$, with $\ell^{\prime \prime}=\ell(m-n)+\ell^{\prime} \in \mathbb{Z}$. We note that z_{3} is also the unique shortest non-splitting prefix of z satisfying $\eta z \eta^{-1}={ }_{G}$ $z_{3}^{-1} z z_{3}$; hence z_{3} is completely determined by z and η. We observe that z_{0} (as the root of z) is similarly uniquely determined. Hence once we have found η, we know that any element β that conjugates u to v is represented by a word of the form $z_{0}^{\ell^{\prime \prime}} z_{3} \eta$ for $\ell^{\prime \prime} \in \mathbb{Z}$. (Note that z_{1} is not necessarily uniquely determined, which is the reason why we need to find z_{0}.)

To search for an element β that conjugates u to v, we check all words of length at most N^{\prime} over Σ as candidates for the associated word η, as follows. For each such (candidate) η, we compute $\operatorname{nf}\left(\eta z \eta^{-1}\right)$ and test whether the result is a non-splitting cyclic conjugate of z. If so, then we define z_{3} to be the shortest non-splitting prefix of z with $\eta z \eta^{-1}={ }_{G} z_{3}^{-1} z z_{3}$, and compute an SLP for $\operatorname{nf}\left(z_{3} \cdot \eta\right.$) (which lies in C); we store all such SLPs in a set C_{z}. Then $\left|C_{z}\right| \leq J$, where J is defined to be the number of words over Σ of length at most N^{\prime}. Certainly the set C_{z} must contain the normal form of the product $z_{3} \eta$ of the previous paragraph. Hence a candidate element β that might conjugate u to v is equal in G to the product of a power of z_{0} and an element z^{\prime} of the set C_{z}.

We claim that we only need to check those elements $\beta={ }_{G} z_{0}^{\ell^{\prime \prime}} z^{\prime}$ with $0 \leq \ell^{\prime \prime} \leq(J-1)$! and $z^{\prime} \in C_{z}$ in order to locate an element $\beta \in C$ that conjugates u to v (if such an element exists). Now, since $\left|C:\left\langle z_{0}\right\rangle\right| \leq J$, the normal core $\left\langle z_{0}\right\rangle_{G}$ of $\left\langle z_{0}\right\rangle$ in C (i.e. the kernel of the action of C on the right cosets of $\left\langle z_{0}\right\rangle$ in C) has index at most J ! in C and $(J-1)$! in $\left\langle z_{0}\right\rangle$. Since $z \in\left\langle z_{0}\right\rangle$ and $z \in Z(C)$, we have $z \in\left\langle z_{0}\right\rangle_{G}$. Moreover, as an infinite cyclic
group, $\left\langle z_{0}\right\rangle_{G}$ has only two automorphisms, and since it contains z, which is central in C, no element of C can conjugate a generator of $\left\langle z_{0}\right\rangle_{G}$ to its inverse. We conclude that $\left\langle z_{0}\right\rangle_{G}$ is contained in the centre of C. But then $\left\langle z_{0}\right\rangle_{G}$ must centralise $u \in C$, which together with $\left|\left\langle z_{0}\right\rangle:\left\langle z_{0}\right\rangle_{G}\right| \leq(J-1)$! establishes the claim.

If one of these elements conjugates u to v then we return yes and the combined conjugators from this and the previous sections, and otherwise we return no.

Algorithmic steps:

(i) Find the root z_{0} of z as described above.
(ii) Construct the set C_{z} as described above.
(iii) For each $z^{\prime} \in C_{z}$ and each $\ell^{\prime \prime}$ with $0 \leq \ell^{\prime \prime} \leq(J-1)$!, check whether $z_{0}^{l^{\prime \prime}} z^{\prime}$ conjugates u to v. If so, then return yes and a conjugator.
(iv) If none of the elements tested in Step (iii) conjugates u to v then return no.

Data availability

No data was used for the research described in the article.

References

[1] Y. Antolín, L. Ciobanu, Finite generating sets of relatively hyperbolic groups and applications to geodesic languages, Trans. Am. Math. Soc. 368 (11) (2016) 7965-8010.
[2] B.H. Bowditch, Relatively hyperbolic groups, Int. J. Algebra Comput. 22 (03) (2012), 66 pp.
[3] Martin R. Bridson, André Haefliger, Metric Spaces of Non-Positive Curvature, Springer Verlag, 1999.
[4] D.B.A. Epstein, J. Cannon, D. Holt, S. Levy, M. Paterson, W. Thurston, Word Processing in Groups, Jones and Bartlett, Boston, 1992.
[5] David Epstein, Derek Holt, The linearity of the conjugacy problem in word-hyperbolic groups, Int. J. Algebra Comput. 16 (2) (2006) 287-305.
[6] B. Farb, Relatively hyperbolic groups, Geom. Funct. Anal. 8 (5) (1998) 810-840.
[7] D. Holt, M. Lohrey, S. Schleimer, Compressed decision problems in hyperbolic groups, arXiv:1808. 06886, 2018.
[8] D. Holt, S. Rees, The compressed word problem in relatively hyperbolic groups, J. Algebra, Part B 607 (2022) 305-343.
[9] Marek Karpinski, Wojciech Rytter, Ayumi Shinohara, Pattern-matching for strings with short descriptions, in: Combinatorial Pattern Matching, Espoo, 1995, in: Lecture Notes in Comput. Sci., vol. 937, Springer, Berlin, 1995, pp. 205-214.
[10] Denis V. Osin, Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems, Mem. Am. Math. Soc. 179 (843) (2006), vi+100.

[^0]: * Corresponding author.

 E-mail addresses: DerekHolt127@gmail.com (D. Holt), Sarah.Rees@newcastle.ac.uk (S. Rees).

