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ABSTRACT

Refractory high-entropy alloys are under consideration for applications where materials are subjected to high temperatures and levels of
radiation, such as in the fusion power sector. However, at present, their scope is limited because they are highly brittle at room temperature.
One suggested route to mitigate this issue is by alloying with Ti. In this theoretical study, using a computationally efficient linear-response
theory based on density functional theory calculations of the electronic structure of the disordered alloys, we study the nature of atomic
short-range order in these multi-component materials, as well as assessing their overall phase stability. Our analysis enables direct inference
of phase transitions in addition to the extraction of an atomistic, pairwise model of the internal energy of an alloy suitable for study via, e.g.,
Monte Carlo simulations. Once Ti is added into either the NbMoTaW or VNbMoTaW system, we find that there is competition between
chemical phase ordering and segregation. These results shed light on observed chemical inhomogeneity in experimental samples, as well as
providing fundamental insight into the physics of these complex systems.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0200862

I. INTRODUCTION

A promising class of high-entropy materials are the refractory
high-entropy alloys, first reported by Senkov et al.1 These alloys are
systems where four or more refractory elements are alloyed in
roughly equal ratios to form a single-phase solid solution.2 The
prototypical refractory high-entropy alloys are NbMoTaW and
VNbMoTaW,1–3 but numerous other compositions have been
experimentally synthesized, such as MoNbHfZrTi,4 TaNbHfZrTi,5

and HfMoNbTaTiZr.6 These materials often have enhanced physi-
cal properties compared to their base elements and are of interest
for advanced nuclear applications7 owing both to their exceptional
mechanical properties at high-temperature8 and their outstanding
radiation resistance.9 However, at room temperature, alloys such as
NbMoTaW and VNbMoTaW are typically brittle10,11 limiting their
applicability. One suggested route for improvement is to alloy with

Ti10 but experiments find that chemical inhomogeneities emerge
when these systems are processed.11,12 In this work, we explore this
phenomenon via ab initio computational modeling.

Our approach is based on a perturbative analysis of the inter-
nal energy of the disordered solid solution evaluated via density
functional theory (DFT) calculations. Here, we study the effect of
the addition of Ti on the two prototypical refractory high-entropy
alloys, NbMoTaW and VNbMoTaW. In an earlier work13 where
the addition of Ti was not considered, we found that our modeling
approach correctly predicts that the single-phase solid solution for
both NbMoTaW and VNbMoTaW is stable to comparatively low
temperatures, with eventual B2 (for NbMoTaW) and B32 (for
VNbMoTaW) chemical orderings emerging at 559 and 750 K,
respectively. However, in the present study, we find that the addi-
tion of Ti leads to competition between chemical phase ordering
and phase segregation in both of these systems. Furthermore, the
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temperatures at which chemical ordering/segregation are predicted
to emerge are increased. These results go some way toward explain-
ing the chemical inhomogeneities evident in experimental samples.
Moreover, we propose that our accurate, computationally efficient
modeling approach can accelerate the exploration of the composi-
tion space of high-entropy refractory alloys to find new composi-
tions with desirable physical properties and to reduce the number
of “trial and error” material syntheses and characterizations.

The paper is organized as follows. Section II outlines the details
of our modeling approach. The computational analysis not only
enables us to infer order–disorder transitions directly but also facili-
tates extraction of simple, pairwise atomistic models suitable for
further study via, e.g., Monte Carlo simulations. Section III presents
results for the TixNbMoTaW and TixVNbMoTaW systems in the
region 0 � x � 1 and examines the complex predicted phase behav-
ior of these systems. Because our modeling approach is based on
DFT calculations, we also elucidate the origins of chemical ordering
in terms of the underlying electronic structure of these complex
materials. Finally, in Sec. IV, we summarize our key findings, give an
outlook on their implications, and outline potential further work.

II. METHODOLOGY

Computational modeling approaches have a crucial role to
play in the process of materials design, discovery, and optimization.
They can both facilitate understanding of the phase behavior and
physical properties of existing materials, as well as guide experi-
ment by suggesting novel compositions and/or processing tech-
niques for new ones. This is particularly important in the space of
high-entropy alloys and materials, as the vast space of potential
compositions makes large-scale searches experimentally challeng-
ing. A number of methods have been developed and successfully
used to study the phase behavior of high-entropy alloys. Examples
include semi-empirical approaches such as CALPHAD14 as well as
those based on DFT calculations, including large-scale supercell
studies15 and fitted interatomic interactions,16,17 machine-learned
interatomic potentials,18 and cluster expansions.19 Another class of
DFT-based methodologies are based on effective medium theories
such as the coherent potential approximation (CPA).20,21

Our approach for modeling the phase behavior of multicom-
ponent alloys falls into the last of these categories and has been dis-
cussed extensively in earlier works,13,22–25 so we only outline the
key details of the theory here. The methodology is complementary
to other DFT-based modeling techniques and is based on earlier
work on binary alloys.26,27 The workflow, a schematic of which is
shown in Fig. 1, can be broken down into four key steps.

1. Electronic structure. A self-consistent DFT calculation is per-
formed to model the electronic structure (and associated inter-
nal energy) of the disordered solid solution. This is performed
within the Korringa–Kohn–Rostoker (KKR) formulation of
DFT,28,29 using the CPA to model the electronic structure of the
disordered solid solution.30,31

2. Perturbative analysis. Using the S(2) theory for multicomponent
alloys,32 which represents a linear-response theory for the
KKR-CPA internal energy of the disordered solid solution, we
perform a perturbative analysis to understand the dominant
atom–atom correlations in the disordered phase.

3. Landau theory. Application of a Landau-type linear-response
theory to an approximate form of the free energy of the disor-
dered solid solution, where the variation of the internal energy
comes from the perturbative analysis, we are able to predict
both the temperature of the initial chemical disorder–order
transition as well as its nature in terms of ordered structures
and (partial) atomic site occupancies.

4. Monte Carlo simulation. From the linear-response calculation,
we can extract a simple, pairwise atomistic model of the internal
energy of the system, which enables lattice-based Monte Carlo
simulations to be performed to explore the phase space of the
system in more detail.

The above workflow, therefore, facilitates a thorough analysis of the
phase behavior of a given system. Although our modeling approach
is lattice-based, ongoing work demonstrates that the on-lattice con-
figurations obtained via Monte Carlo simulations can be relaxed

FIG. 1. Visualization of the workflow used in this paper for modeling the phase
behavior of a given multicomponent alloy, as discussed in Sec. II.
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and/or deformed for use in subsequent supercell studies, for
example, by training machine-learned interatomic potentials.33 We
now discuss each of the above methodological steps in more detail.

A. Electronic structure: The internal energy of the solid
solution

Given an underlying Bravais lattice, the configuration of an
alloy can be specified by a set of site occupancies, {ξiα}, where
ξiα ¼ 1 if site i is occupied by an atom of species α and ξiα ¼ 0
otherwise. The constraint that every lattice site is occupied by one
(and only one) atom is expressed asX

α

ξiα ¼ 1: (1)

We note that vacancies can also be treated in this formalism by
considering them as a separate chemical species.

For a given configuration (and a sufficiently small system), the
internal energy associated with a configuration, Eint[{ξiα}], can be
evaluated directly via DFT calculations.34 However, such calcula-
tions are computationally demanding and this renders direct evalu-
ation of the partition function and associated thermodynamic
quantities challenging.

In this work, therefore, we will use an alternative description of
the configuration of the system by working directly with the ensem-
ble average of the site-wise configurations, the so-called site-wise con-
centrations. These are partial atomic site occupancies defined as

ciα : ¼ hξiαi, (2)

where h�i denotes an ensemble average. Note that by Eq. (1), we
have that 0 � ciα � 1. These site-wise concentrations represent order
parameters classifying potential chemically ordered phases.

In the limit of high-temperature, where the alloy is disordered,
these quantities become spatially homogeneous, i.e., an atom can
occupy any lattice site with equal probability. This is equivalent to
the statement that

lim
T!1

ciα ¼ cα , (3)

where cα is the overall (total) concentration of species α. It remains
to evaluate the average internal energy of a system with these homo-
geneous site occupancies, written as hEinti[{ciα}]. Such a scheme
is provided by the CPA30,31 within the KKR formulation of DFT.29

The CPA constructs an effective medium of electronic scatterers
whose average scattering properties approximate those of the disor-
dered alloy, and it has been shown to reproduce successfully many
physical properties of disordered systems. For example, KKR-CPA
calculations have previously been shown to successfully reproduce
the smeared out Fermi surface of the CrCoFeNi high-entropy alloy,35

as well as a variety of magnetic36 and transport37 properties.

B. Perturbative analysis and Landau theory: The S(2)

theory for multicomponent alloys

To assess the energetic cost of perturbations to the disordered
solution, we begin with an expression for its Landau free energy, Ω.

In general, this takes the form

Ω ¼ U � TS� μN , (4)

where U is the internal energy, T the temperature, S the entropy, μ
the chemical potential(s), and N the number(s) of particles in the
system. For the description of the alloy considered in this paper,
the free energy is approximated via

Ω(1) ¼ hEinti[{ciα}]� β�1
X
iα

ciα ln ciα �
X
iα

νiαciα: (5)

In the above expression, the first term represents the average inter-
nal energy as obtained within the CPA, the second term represents
the so-called entropy of mixing, and the third term represents
chemical potentials which, in principle, can vary for each chemical
species and lattice site. The chemical potentials serve as Lagrange
multipliers in the theory and conserve overall concentrations of
each chemical species.

We then make a Landau series expansion of this free energy
about the spatially homogeneous reference state. Writing the inho-
mogeneous site occupancies as a perturbation to the homogeneous
system,

ciα ¼ cα þ Δciα , (6)

this series expansion takes the form

Ω(1)[{ciα}] ¼ Ω(1) {cα}½ � þ
X
iα

@Ω(1)

@ciα

����
{cα}

Δc jα

þ 1
2

X
iα
jα0

@2Ω(1)

@ciα@c jα0

����
{cα}

ΔciαΔc jα0 þ � � � : (7)

Owing to the homogeneity of the high-temperature reference state,
and because we impose the condition that chemical fluctuations
must conserve the overall concentrations of each species, the first-
order term vanishes.32

To second order, the change in free energy due to a chemical
perturbation is, therefore, written as

ΔΩ(1) ¼ 1
2

X
iα
jα0

@2Ω(1)

@ciα@c jα0

����
{cα}

ΔciαΔc jα0 : (8)

The variation of the chemical potentials is not considered relevant to
the underlying physics,32 so their derivatives are set to zero and the
second derivative of the free energy can, therefore, be expressed as

@2Ω(1)

@ciα@c jα0
¼ @2hEinti

@ciα@c jα0
� β�1 δijδαα0

1
c jα0

� �
: (9)

It can be shown that these second derivatives relate directly to an
estimate of the two-point correlation function, i.e., the atomic short-
range order.22,32 For notational convenience, we define a new
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quantity S(2)iα;jα0 via

S(2)iα;jα0 : ¼ @2hEinti0
@ciα@c jα0

: (10)

A scheme by which to evaluate these derivatives by considering
infinitesimal perturbations to the CPA reference medium has been
considered in detail in Ref. 32 and first implemented in Ref. 22. The
same implementation is used here.

Due to the underlying crystal lattice, it is convenient to work
with Fourier-transformed variables in a so-called concentration
wave formalism as pioneered by Khachaturyan38 and Gyorffy and
Stocks.26 The site-wise concentrations are written as

ciα ¼ cα þ
X
k

eik�RiΔcα(k), (11)

where k is a wavevector, {Ri} are the positions of the lattice sites,
and Δciα(k) are the concentration waves. Equations (8) and (9) are
then combined and written in reciprocal space as

ΔΩ(1) ¼ 1
2

X
k

X
αα0

Δcα(k) β�1 δαα0

cα
� S(2)αα0 (k)

� �
Δcα0 (k): (12)

The term in square brackets is referred to as the chemical stability
matrix. Above a disorder–order transition temperature, the eigen-
values of this matrix are positive for all k. However, with decreasing
temperature, we expect that at some temperature Tus, where “us” is
shorthand for unstable, the lowest-lying eigenvalue of this matrix
will pass through zero for some wavevector kus. The associated
chemical ordering is described by the eigenvector Δcα(k). For
example, for a binary alloy, the B2 ordering visualized in Fig. 2 is
described by a wavevector kus ¼ (0, 0, 1) and equivalent, with a
chemical polarization Δcα ¼ 1=

ffiffiffi
2

p
(1, �1). (Convention is that the

chemical polarization be normalized to be a unit vector.) Similarly,

a B32 ordering is described by a concentration wave with the same
chemical polarization, but this time with a wavevector of
kus ¼ (1=2, 1=2, 1=2) and equivalent. Finally, the case of phase seg-
regation is described by a wavevector of kus ¼ (0, 0, 0), representing
a concentration wave of infinite length.

C. Monte Carlo simulations

In addition to the Landau theory used to infer chemical order-
ings directly, it is possible to map the results of the S(2) calculation
back to a simple, pairwise atomistic model, the Bragg–Williams
model,39,40 which works directly with the discrete site occupancies.
The Hamiltonian for the Bragg–Williams model takes the form

H {ξiα}ð Þ ¼ 1
2

X
i,j

X
αα0

Viα;jα0 ξiαξ jα0 : (13)

Given a Hamiltonian of this form, it can be shown that
Viα;jα0 ¼ �S(2)iα;jα0 , making the S(2)s an unambiguous best choice of
parameter to use in this model. This model is suitable for study via
lattice-based Metropolis Monte Carlo simulations using Kawasaki
dynamics41 (i.e., only permitting swaps of atoms) to conserve overall
concentrations of each species. The algorithm picks two lattice sites
at random and computes the change in energy, ΔH, realized by
swapping the site occupancies. If ΔH , 0, the move is accepted
unconditionally, while if ΔH � 0, the move is accepted with proba-
bility e�βΔH . This is repeated until equilibrium is achieved.

Once a simulation has been equilibrated at a given temperature,
we extract two key quantities of interest. To quantify atomic short-
range order in our simulations, we use the Warren–Cowley atomic
short-range order parameters,42,43 denoted α pq

n and defined as

α pq
n ¼ 1� P pq

n

cq
, (14)

where n refers to the nth coordination shell, P pq
n is the conditional

probability of an atom of type q neighboring an atom of type p on
coordination shell n, and cq is the overall concentration of atom type
q. When α pq

n . 0, p–q pairs are disfavored on shell n, while when
α pq
n , 0, they are favored. The value 0 corresponds to the ideal,

random, solid solution.
The second quantity of interest is a measure of the configura-

tional contribution to the specific heat capacity of the system, esti-
mated via the fluctuation–dissipation theorem. At thermodynamic
equilibrium, this theorem allows us to estimate the specific heat
capacity (SHC) as

C ¼ 1
kbT2

hE2i � hEi2� 	
(15)

to obtain our SHC curves. A combined plot of the Warren–Cowley
order parameters and specific heat capacity as a function of tempera-
ture for a given simulation facilitates understanding of the phase
behavior of a given system. In addition, it is possible to use sample
configurations drawn from these lattice-based Monte Carlo simula-
tions as inputs to other modeling approaches to predict materials
properties.

FIG. 2. Visualizations of the B2 and B32 ordered structures imposed on the
bcc lattice. A B2 ordering in an equiatomic binary system is described by a
wavevector kus ¼ (0, 0, 1) and equivalent, with chemical polarization
Δcα ¼ 1=

ffiffiffi
2

p
(1, � 1). The B32 ordering is described by a concentration

wave with the same chemical polarization, but this time with a wavevector of
kus ¼ (1=2, 1=2, 1=2) and equivalent.
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III. RESULTS AND DISCUSSION

A. Electronic structure

We begin by performing a self-consistent DFT calculation to
model the electronic structure of the disordered solid solution.
We use the all-electron HUTSEPOT code44 to construct the self-
consistent potentials of the KKR-CPA formulation of DFT.
We perform spin-polarized, scalar-relativistic calculations within
the atomic sphere approximation (ASA),45 employing an angular
momentum cutoff of lmax ¼ 3 for basis set expansions, a
20 � 20� 20 k-point mesh for integrals over the Brillouin zone,
and a 24 point semi-circular Gauss–Legendre grid in the complex
plane to integrate over valence energies. We use the local density
approximation and the exchange-correlation functional is that of
Perdew–Wang.46 bcc lattice parameters for NbMoTaW and
VNbMoTaW are set at 3.226 and 3.183 Å, respectively, consistent with
their experimental values.1,11 For TiNbMoTaW and TiVNbMoTaW
(i.e., the case x ¼ 1), these values are set at 3.240 and 3.209 Å, respec-
tively, again consistent with experimentally determined values.10 For
intermediate values of x, we interpolate linearly between these using
Vegard’s law.47

Previous CALPHAD modeling has suggested the possibility
of the emergence of an hcp phase at low temperatures with
increasing Ti concentration.11 To investigate this aspect, we
perform a transformation to the hcp structure conserving the

overall volume-per-atom and compute the difference in total
energy per atom between the bcc and hcp structures as a function
of x, the results of which are visualized in the supplementary
material. Within the ASA, using the CPA to average over disorder,
we find that the bcc structure is consistently favored over the hcp
structure in the region 0 � x � 2, i.e., up to and beyond the range
of x considered in this paper. We, therefore, only consider the
alloy on a bcc lattice for the remainder of this paper.

Proceeding, in Fig. 3, we visualize the total and species-resolved
density of states (DoS) for both systems for three indicative values of
x. The total DoS is given by the weighted average of the species-
resolved curves. It can be seen that pairs of chemical species which
are isoelectronic, e.g., Nb/Ta and Mo/W, have species-resolved
curves which lie almost on top of one another, which we expect to
lead to weak correlations between these pairs of elements. Compared
to the 4d and 5d elements, the two 3d elements considered here, V
and Ti, can be seen to have narrower d bands with significantly
different profiles around EF , which we expect to lead to strong
ordering tendencies between these and other elements, as noted
in our earlier study.13

Another important feature to note is the charge-transfer
between elements. In an alloy system where there is an atomic size
discrepancy, where the lattice parameter sits somewhere between
that of the pure elements (approximately in accordance with

FIG. 3. Comparison of the total and species-resolved density of states for different values of x for the disordered solid solution modeled within the coherent potential
approximation for both TixNbMoTaW and TixVNbMoTaW. The Fermi level, EF , is indicated by a vertical, gray, dashed line. The 3d elements V and Ti have species-resolved
curves which differ substantially in character from the 4d/5d elements Nb, Mo, Ta, and W, suggesting the potential for stronger ordering tendencies.
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Vegard’s law), there is often a transfer of charge from the large
atoms to the smaller ones, corresponding to the charge density
associated with the “large” atom spilling over into the Winger–Seitz
cell associated with the “small” atom. In our calculations, we find
that this effect is generally strongest for V and Ta, with V gaining
charge and Ta losing it. For example, in the five-component
VNbMoTaW, V (proton number 23) has an associated average
charge per atom of 23.177 e, while Ta (proton number 73) has an
associated charge per atom of 72.901 e. This is consistent with V
being the “smallest” atom and Ta one of the “largest” for the
systems considered here.

B. Perturbative analysis

Proceeding, we perform a linear-response calculation to assess
the dominant atomic short- and long-range order in these systems,
as outlined in Sec. II. Visualized in Fig. 4 are eigenvalues of the
chemical stability matrix around the irreducible Brillouin zone
(IBZ) of the bcc lattice, evaluated at a temperature of T ¼ 1000 K.
Note that, for an s-species alloy, there are s�1 eigenvalues due to
the constraint that the overall concentration of each species be
conserved.

To interpret these concentration wave modes, there are three
key features to consider. The first is the shape of the modes, as
these tell us about the nature and strength of atom–atom

interactions in the disordered phase. Strongly varying modes are
associated with strong interactions, while weakly varying modes are
associated with chemical species interacting weakly. The second
feature is the location of the minima, as these tell us about the
dominant correlations in the disordered phase and to infer the
likely chemical ordering. Finally, it is necessary to know the chemi-
cal polarization of a mode, i.e., Δcα , to understand the chemical
species to which it relates. Some sample eigenvalues and chemical
polarizations at a few high-symmetry points of the IBZ for
TiNbMoTaW and TiVNbMoTaW are provided in Table I, while
the remaining data can be found in the repository associated with
this publication.

Considering first the TixNbMoTaW system, the top row of
Fig. 4, we see that for the case x ¼ 0 we have three clear modes
emerging. The first is a mode dipping at H and peaking at Γ,
which is associated with B2 ordering tendencies and, in concentra-
tion space, is polarized to suggest that Nb and Ta will sit on one
sublattice, while Mo and W will sit on the other. The two other
modes present are near-flat and are associated with the isoelec-
tronic pairs Nb–Ta and Mo–W, which are very weakly correlated
in our calculations. On adding Ti by increasing x, however, we see
the emergence of a new, strongly varying mode, introducing com-
peting minima at P and Γ, associated with B32 ordering and phase
segregation, respectively. Notably, the chemical polarization of the
concentration wave mode at the Γ point, as shown in Table I,

FIG. 4. Plots of the eigenvalues of the chemical stability matrix, [β�1Ψ�1(k)]αα0 , around the irreducible Brillouin Zone of the body-centered cubic lattice, evaluated at
T ¼ 1000 K. Without the addition of Ti, the minima lie at H and P, indicative of B2 and B32 ordering, respectively. However, with increasing Ti concentration, for both
systems, an additional minimum at Γ, indicative of phase segregation, can be seen to emerge.

Journal of
Applied Physics

ARTICLE pubs.aip.org/aip/jap

J. Appl. Phys. 135, 135106 (2024); doi: 10.1063/5.0200862 135, 135106-6

© Author(s) 2024

 08 April 2024 13:11:54

https://pubs.aip.org/aip/jap


suggests Ti and Mo segregating from Nb, Ta, and W, which is
entirely consistent with the experimentally observed segregation in
Ref. 11. These results, therefore, confirm that the addition of Ti
produces competing interactions in this system, with the potential
for a variety of chemical orderings and/or phase segregation.

Proceeding, we move on to the results for the TixVNbMoTaW
alloy, i.e., the bottom row of Fig. 4. For the case x ¼ 0, there is an
additional mode compared to NbMoTaW, which dips at P and
peaks at H, and is associated with a B32 ordering between V and
the other elements present. This was analyzed in detail in our
earlier work13 and is associated with the large charge-transfer
between V and the other elements present. Again, upon the addi-
tion of Ti, however, a new, strongly varying mode materializes and
introduces a competing minimum at the Γ point, indicative of
phase segregation. As shown in Table I, this minimum has a chem-
ical polarization suggesting Ti, V, and Mo segregating away from
Nb, Ta, and W, again consistent with the experimental data.10,12 As
before, we interpret these data as suggesting that Ti does not mix
well with the other elements present and introduces competing
chemical interactions in the system.

For each of the considered systems, via application of the
Landau theory outlined in Sec. II, we estimate a transition tempera-
ture by computing the temperature for which the lowest-lying
eigenvalue passes through zero. We also provide its chemical polar-
ization and associated wavevector, as these elucidate the nature of
the ordered phase. These results are tabulated in Table II. In
summary for both systems, increasing Ti concentration leads to
higher predicted ordering temperatures and alters the chemical
polarization and/or wavevector describing the chemical ordering.

It is evident that Ti drives strong atom–atom correlations in these
systems.

Both the temperature and nature of our predicted B2 ordering
in NbMoTaW and predicted B32 ordering in VNbMoTaW are in
good agreement with other DFT-based computational studies,16–19

including those using GGA functionals, and we take this as evi-
dence that the LDA adequately captures the relevant physics in
these systems. We also note that our results are not hugely sensitive
to the choice of lattice parameter. For example, for the five-
component VNbMoTaW, for a 2% decrease in lattice parameter,
we predict a slightly increased ordering temperature of 740 K, while
for a 2% increase in lattice parameter, we predict a slightly
decreased ordering temperature of 627 K. (This effect is the origin
of the small numerical difference between ordering temperatures
predicted in this study for VNbMoTaW and NbMoTaW, using
experimental lattice parameters, and the ordering temperatures
obtained in Ref. 13, using LDA-optimized lattice parameters.)
Despite the modest changes in ordering temperature, the predicted
chemical ordering is still into the B32 structure, and the chemical
polarizations remain very numerically close to those predicted at
the experimental lattice parameter. These findings, therefore, verify
the robustness of our results.

C. Monte Carlo simulations

From the linear-response calculations performed in the recip-
rocal space, we are able to backward Fourier transform and recover
a pairwise, real-space interaction, as described in Sec. II. Our fitted
interactions are provided in the database associated with this study

TABLE I. Comparison of eigenvalues and their associated chemical polarizations for TixNbMoTaW and TixVNbMoTaW for x = 1. All are evaluated at T = 1000 K. For both
systems, for the special points H, Γ, and P (indicative of B2 ordered, phase separation, and B32 ordering, respectively), the eigenvalues are close in value, indicative of com-
petition between different concentration wave modes. At the Γ point, the chemical polarization is dominated by Ti, suggesting a tendency for Ti to segregate away from other
elements.

System k-point Eigenvalue (eV) ΔcTi ΔcV ΔcNb ΔcMo ΔcTa ΔcW

TiNbMoTaW H 0.290 −0.107 −0.361 0.636 −0.553 0.386
Γ 0.297 −0.784 0.168 −0.163 0.508 0.271
P 0.227 −0.828 −0.011 0.101 0.246 0.493

TiVNbMoTaW H 0.368 −0.252 0.167 −0.361 0.589 −0.530 0.388
Γ 0.402 −0.611 −0.331 0.138 −0.144 0.589 0.360
P 0.253 −0.605 −0.487 0.099 0.172 0.314 0.508

TABLE II. Predicted ordering temperatures (Tus), wavevectors (kus), and chemical polarizations for the TixNbMoTaW and TixVNbMoTaW systems for x = 0, 0.5, and 1. The
addition of Ti generally increases predicted ordering temperatures on account of strong correlations between Ti and other elements.

System Ti concentration (x) Tus (K) kus (2πa ) ΔcTi ΔcV ΔcNb ΔcMo ΔcTa ΔcW

TixNbMoTaW 0 557 (0, 0, 1) −0.421 0.566 −0.568 0.424
0.5 584 (1/2, 1/2, 1/2) −0.725 −0.168 0.047 0.217 0.629
1 673 (1/2, 1/2, 1/2) −0.828 −0.011 0.101 0.246 0.493

TixVNbMoTaW 0 698 (1/2, 1/2, 1/2) −0.828 −0.005 0.090 0.247 0.495
0.5 726 (1/2, 1/2, 1/2) −0.397 −0.656 0.054 0.159 0.298 0.542
1 709 (1/2, 1/2, 1/2) −0.605 −0.487 0.099 0.172 0.324 0.507
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and are tabulated in the supplementary material. We find that a fit
to the first four coordination shells of the bcc lattice captures the
reciprocal space data with acceptable accuracy, and that interactions
are strongest on the first two coordination shells. Typically, we find
that the strongest interactions are between Ti, V, and the other ele-
ments present, while 4d=5d pairs such as Nb–Ta and Mo–W,
which are isoelectronic, interact weakly. Our fitted interactions
exhibit clear dependence on system composition, which reflects the
importance of a full treatment of the multicomponent system
rather than extrapolating interactions from binary subsystems.
However, typically, the sign and order of magnitude of atom–atom
pair interactions remains consistent across the range of Ti concen-
trations considered. It should be noted that the linear-response
results of Sec. III B include the Onsager correction of Ref. 32,
which serves to restore important on-site sum rules concerning
atomic short-range order and charge and drives down estimated
transition temperatures. However, the simple pairwise form of
Eq. (13) does not permit inclusion of an Onsager correction
directly. Inclusion of the Onsager correction in the atomistic simu-
lations is a subject of ongoing study.

Proceeding, we performed lattice-based Monte Carlo simula-
tions (simulated annealing) of both the TixNbMoTaW and
TixVNbMoTaW systems for x ¼ 0, 0.5, and 1. All simulation cells
consisted of a system of 16� 16� 16 cubic bcc unit cells for a total
of 8192 atoms in the simulation cell. At each temperature,

following an initial burn-in period to achieve equilibrium, statistics
were gathered over a run of 104 Monte Carlo steps per atom. All
data were averaged across an ensemble of ten simulations, which
enables an extraction of an uncertainty on key quantities such as
the specific heat capacity of the simulation.

Visualized in Figs. 5 and 6 are plots of the Warren–Cowley
ASRO parameters at nearest-neighbor distance and specific heat
capacity as a function of temperature for TixNbMoTaW and
TixVNbMoTaW, respectively. (Warren–Cowley ASRO parameters
at second nearest-neighbor distance are provided in the
supplementary material.) The top row of panels for each figure
shows Warren–Cowley parameters excluding Ti, while the bottom
row shows the Warren–Cowley parameters for correlations between
Ti and the other elements present.

Considering first the results for TixNbMoTaW (Fig. 5), we see
that there is a clear trend of increasing transition temperature with
increasing Ti concentration, as the initial peak in SHC is moved to
higher temperatures. In the NbMoTaW system, as discussed in our
earlier work,13 the initial peak in the SHC is associated with a B2
ordering, with Nb and Ta atoms preferentially sitting on one sub-
lattice, and Mo and W atoms preferentially sitting on the other.
This predicted B2 ordering is in good agreement with other com-
putational studies of this system.16–18,21 The peak in SHC associ-
ated with the B2 ordering is maintained as Ti is added to the
system, but a new, additional peak at higher temperatures emerges,

FIG. 5. Plots of the Warren–Cowley ASRO parameters, α pq
n , and specific heat capacity, C, for TixNbMoTaW as a function of temperature, calculated from an ensemble of

lattice-based Monte Carlo simulations. The top row shows atom–atom correlations excluding Ti, while the bottom row shows correlations between Ti and other elements.
The addition of Ti can be seen to introduce an additional Ti-driven ordering compared to the NbMoTaW system.
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associated with correlations between Ti and the other elements
present. In particular, in our simulations, Ti favors pairing with W
and avoids Mo, Ta, and Nb. These results are consistent with the
earlier linear-response analysis suggesting that the introduction of
Ti produces competing interactions and eventual phase segregation
in this system.

Moving on to the results for the senary TixVNbMoTaW
system (Fig. 6), we see a similar picture emerging. Without Ti
present, there is known to be emergent B32-like ordering in this
system,13,19 which is detected in both our linear-response calcula-
tion and Monte Carlo simulations, indicated here by the peak in
SHC between 500 and 750 K. As for the TixNbMoTaW system,
however, the introduction of Ti produces an additional peak in the
SHC curves at higher temperature, which is dominated by correla-
tions between Ti and the other elements present. In particular, our
modeling suggests that, at nearest-neighbor distance, Ti–W pairs
are favored, while Ti–V pairs are disfavored.

IV. CONCLUSIONS

In summary, we have used a perturbative analysis based on
DFT calculations of the internal energy of the disordered solid solu-
tion to examine atomic ordering tendencies in the TixNbMoTaW

and TixVNbMoTaW refractory high-entropy alloys. From the pertur-
bative analysis, we have fitted a pairwise, real-space interaction and
explored the phase space further using Monte Carlo simulations. We
have also discussed the origins of the dominant atom–atom correla-
tions in terms of the materials’ underlying electronic structure.

When Ti is not present (i.e., the case x ¼ 0), it is found that
both NbMoTaW and VNbMoTaW form single-phase solid solutions
down to relatively low temperatures, with predicted disorder–order
transition temperatures of 557 and 698 K, respectively. The pre-
dicted transitions for these systems are chemical orderings, B2 and
B32, respectively, and no significant phase segregation is expected.
These results are consistent with both experimental and theoretical
literature, as well as with our own earlier study.13

However, with increasing Ti concentration (i.e., the case
x . 0), it is found that strong atom–atom correlations emerge in
the system. This leads to competition between phase segregation
and phase ordering, with the perturbative analysis suggesting that
Ti and Mo (and, to a lesser extent, V) tends to segregate from Nb,
Ta, and W. This effect is amplified with increasing Ti concentration.

These results shed light on the complex phase behavior of
these technologically relevant high-entropy alloys, as well as giving
insight into the physical origins of the dominant atom–atom corre-
lations in the solid solution, thus demonstrating the efficacy of this

FIG. 6. Plots of the Warren–Cowley ASRO parameters, α pq
n , and specific heat capacity, C, for TixVNbMoTaW as a function of temperature, calculated from an ensemble

of lattice-based Monte Carlo simulations. The top row shows atom–atom correlations excluding Ti, while the bottom row shows correlations between Ti and other elements.
As for the TixNbMoTaW system of Fig. 5, the addition of Ti can be seen to introduce an additional Ti-driven ordering compared to the VNbMoTaW system.
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methodology. In future, we hope that our computationally efficient
modeling approach can be used for further exploration of the space
of high-entropy alloys and materials and guide experiments toward
new compositions with desirable physical properties.

SUPPLEMENTARY MATERIAL

See the supplementary material for a comparison of the total
energy per atom for bcc and hcp structures for each composition,
tables containing our fitted atom–atom interaction energies, and
plots of the Warren–Cowley ASRO parameters on the second coor-
dination shell as a function of temperature.
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