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Abstract

In this thesis, we study scaling limits of idealised models arising in statistical
physics. We present three works that, in different directions, explore critical
behaviour of such systems.

In the first part, we study the 2D Allen–Cahn equation with white noise
initial datum. This differential equation falls into the class of critical singular
stochastic partial differential equations (SPDEs), for which no solution theory
exists due to the roughness of the data. To give meaning to the equation, we
consider the weak coupling scaling and establish non-trivial Gaussian fluctu-
ations of the solution, by treating an infinite perturbative series expansion in
terms of iterated stochastic integrals. To our best knowledge, this is the first
time such an approach has been implemented for a (non-linear) critical SPDE
and possibly a first step towards a general theory of SPDEs in this regime.

Closely connected, the second part of the thesis comprises the large-scale
behaviour of the 2D directed random polymer model, describing the trajec-
tory of a random walk in a random potential. In the weak disorder limit,
we derive an invariance principle for the polymer paths. As a consequence,
the random potential has no effect on large scales, which is due to a self-
averaging effect. Similar results were previously only obtained for all but the
(critical) two dimensional case.

Last, we study a system of particles with attractive interactions. Cluster-
ing of particles occurs when tuning the system’s parameters, with growing
system size. This describes a simplified model of (Bose–Einstein) condensa-
tion. A careful analysis of the infinitesimal dynamics, using the Trotter–Kurtz
approximation theorem, allows us to identify the limiting evolution in terms
of a measure-valued Markov process. Moreover, we establish a link between
the derived dynamics and the infinitely-many-neutral-alleles model in popu-
lation genetics. The presented approach covers all interesting scaling regimes
of the system parameters.

ix
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Symbols

N, Z, R Natural numbers, integers, reals
D(X, R) Skorokhod space on X
C(X, R) Continuous functions on X
M1(X) Probability measures on X
l(d) Lebesgue measure on Rd

d
! Weak convergence of probability measures
(Wt)t�0 Brownian motion
p(m)

t (x) Heat kernel (with potential m) (2.51)
P(m)

t Heat semigroup (with potential m) (2.51)

Chapters 2 and 3

x Space-time white noise, Table 1.3
h Space white noise, Table 1.3
? Space convolution operator
⇤ Space-time convolution operator
T Set of finite rooted unordered trees (2.22)
Tn n-ary trees (2.27)
Tn Sub-n-ary trees (2.26)
L(t) Set of leaves of tree t

I(t) Set of inner nodes of tree t

ot Root of tree t

`(t) Total number of leaves of tree t

i(t) Total number of inner nodes of tree t

s(t) Symmetry factor (2.28)
t! Tree factorial (2.31)

xi



xii Symbols

h(t) Tree/elementary differential with respect to a
function h, (2.35)

[· · · ] Grafting operator (2.24)
T Trimming operator (2.82)
K(t) Set of contractions (2.68)
Y(t, t) Set of pairings, see Definition 3.2.3

Chapter 4

PN Simple random walk reference measure
qn(z) Simple random walk transition probability

PN(Sn = z), n 6 N
p Diffusive rescaling and embedding of nearest

neighbour paths into C([0, 1], R), see (4.2)
w Random disorder
b Disorder strength
Pb,N Polymer measure (1.6)
Zb,N Partition function (1.7)

Chapter 5

N Number of particles
L Number of locations/positions/sites
WL,N Space of particle configurations (1.1)
h, x Particle configurations in WL,N

LL,N Generator of particle system, (1.2) and (5.1)
d Particle diffusivity
pL,N Canonical distribution
r Kingman simplex (5.2)
E Space of size-biased probability measures (5.5)

We will write aN ⇠ bN for sequences if limN!• aN/bN = 1. This is not to be
confused with X ⇠ µ, describing a random variable X with law µ. However,
the meaning should be clear from the context. Moreover, we denote various
constants by C, and sometimes write C(a) to emphasize dependency on a
parameter a.



Chapter 1

Introduction

This thesis comprises topics related to scaling limits, particularly focusing on
some explicit models arising in statistical physics. The objective of statisti-
cal physics (or statistical mechanics) is the explanation of large scale (macro-
scopic) phenomena occurring in nature, by only postulating interaction rules
on a microscopic level. The most classical example of such a scaling limit
is Donsker’s invariance principle, see for example [MP01, Theorem 5.22]. It
states that a simple random walk (Sn)16n6N converges in distribution to a
Brownian motion (Wt)t2[0,1] when diffusively rescaled, i.e.

⇣
1

p
N

St N

⌘

t2[0,1]

d
! (Wt)t2[0,1] , in C([0, 1], R) ,

with S denoting the linear interpolation of S in C([0, N], R). Therefore,
macroscopic observables of a particle can be expressed in terms of Brown-
ian motion, assuming its small scale dynamics are those of a simple random
walk.

More generally, one aims to explain how non-trivial large-scale behaviour
(which sometimes is known from experimental data) emerges from a small-
scale interaction rule. For a better understanding of such a large-scale obser-
vation and its origin, we want to

• find microscopic dynamics, as simple as possible, that give rise to the de-
sired large-scale behaviour, and

• study the effect of microscopic modifications/perturbations on large-scale
observables.

A plethora of models in modern probability theory arose with this goal. In

1
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this thesis, we will address specific models in the following three fields: In-
teracting particle systems (IPS), disordered systems and stochastic partial
differential equations (SPDEs). Below, we give a brief introduction into each
of the three topics and present our main findings. Throughout the introduc-
tion, we will trade in mathematical rigor for a lighter presentation, thus, only
presenting slimmed versions of the main theorems. We will point the reader
to the full statements of the results whenever this is the case.

1.1 Interacting particle systems

A discrete interacting particle system is a finite system consisting of N parti-
cles on L sites indexed by the set L, where |L| = L. For simplicity we take
L = {1, . . . , L}. The space of particle configurations h = (h1, . . . , hL), with
hx 2 N0, is then given by

WL,N :=

(
h 2 NL

0 :
L

Â
x=1

hx = N

)
, (1.1)

with hx denoting the number of particles located at site x. We equip WL,N

with the discrete topology, i.e. the finest possible topology on WL,N , with
respect to which every function is continuous.

The microscopic dynamics of particles are then described by a
continuous-time Markov jump process (h(L,N)(t))t>0 with state space WL,N ,
which is characterised by an infinitesimal generator of the form

LL,N f (h) =
L

Â
x,y=1

p(x, y)u(hx, hy) [ f (hxy)� f (h)] , (1.2)

where f is a bounded function on WL,N . The configuration hx,y denotes the
new configuration h after one particle moved from x to y, i.e. hx,y = h + ey

�

ex, with (ex)z := 1x=z, provided hx > 0. The jump rates u(n, m) � 0 are given
by a non-negative function of the occupation numbers n on the departing site
and the occupation number m on the target site. To avoid degeneracies, we
furthermore assume that u(n, m) = 0 if and only if n = 0. On the other
hand, p(x, y) denotes irreducible transition rates on {1, . . . , L} and models
the geometry of the underlying lattice L. Notice that the Markov process
conserves the total number of particles ÂL

x=1 hx = N.
We are interested in the macroscopic behaviour of these interacting sys-
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tems when taking both the total number of particles N and the size of the
system L to infinity, while keeping the density of the system approximately
constant, i.e. N, L ! • such that

lim
N,L!•

N
L

=: r > 0 .

This is known as the thermodynamic limit and will be abbreviated subse-
quently by simply writing N

L ! r.

A large class of models of the form (1.2) have been introduced in the past
century, see for example [Spi70, CT85], to describe particle movements in
physics or population dynamics in genetics. Typical examples consist of the

exclusion process u(n, m) = n(1 � m) ,

inclusion process with u(n, m) = n(d+ m), d 2 [0, •) ,

zero-range process u(n, m) = n .

Table 1.1: Examples of interacting particle systems

In the case of exclusion process, one also restricts the state space to par-
ticle configurations h satisfying the exclusion rule, i.e. hx 2 {0, 1} for all
x = 1, . . . , L.

The macroscopic observables of interest depend on the particle system
at hand, and its modeling purpose. For example, the exclusion process is a
simplified model of mass transport and one is interested in the mass distri-
bution when “zooming out”. In the thermodynamic limit one then observes
a smooth interface which is described by the evolution of a PDE, see for ex-
ample [KL99, Chapter 4]. On the other hand, both in the inclusion process
and zero-range process, the absence of the exclusion rule allows particles to
cluster. Hence, when taking the thermodynamic limit, a diverging number of
particles may occupy a single site; the reader may think of “sharp peaks” in
the macroscopic interface. This phenomenon is known as condensation and
will be our main interest in the context of IPS.
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Figure 1.1: Formation of a Bose-Einstein condensate when cooling down a
cloud of atoms closer and closer to absolute zero temperature, from left to
right. NASA/JPL-Caltech, 2018. (Online). Available from: https://www.

jpl.nasa.gov/images/pia22561-bose-einstein-condensate-graph (Ac-
cessed 8 August 2023)

We want to introduce the notion of condensation rigorously in the setting
of IPS. Because the underlying state space WL,N is finite and we assumed the
underlying dynamics to be irreducible, there exists a unique invariant dis-
tribution pL,N 2 M1(WL,N) with respect to LL,N . We call pL,N a canonical
distribution. For convenience, let us also assume that pL,N is spatially ho-
mogeneous in the sense that

pL,N(hx 2 · ) = pL,N(hy 2 · ) , for all x, y = 1, . . . , L .

For example, spatial homogeneity holds if the jump rates u satisfy a detailed
balance equation and the transition rates p are symmetric [CG14]. Let us
furthermore assume that the weak limit of the single-site marginals of pL,N

exists for all r � 0, namely

pL,N(hx 2 · )
d
! nr( · ) , as

N
L

! r , (1.3)

for some probability measure nr on N0. This convergence is usually imple-
mented in the context of equivalence of ensembles, see for example [CGG22,
Proposition A.1].

Now, comparing the average particle occupation under pL,N and nr, we

https://www.jpl.nasa.gov/images/pia22561-bose-einstein-condensate-graph
https://www.jpl.nasa.gov/images/pia22561-bose-einstein-condensate-graph
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can determine if a system exhibits condensation. First, due to spatial homo-
geneity and conservation of mass, we have

pL,N(hx) =
1
L

L

Â
y=1

pL,N(hy) =
N
L

! r .

Here we wrote pL,N( f ) for the expectation of f under the measure pL,N . On
the other hand, since the identity f (n) = n is an unbounded function, we
cannot guarantee that the particle density of the system is conserved in the
limit, and nr(hx) may be strictly smaller than r. Thus, a positive fraction of
particles must be clustered in chunks of diverging size, which we shall call
the condensate [CG14, JCG19, CGG22].

Definition 1.1.1 (Condensation). A system characterised by spatially homoge-
neous canonical distributions (pL,N)L,N exhibits condensation in the thermody-
namic limit N

L ! r, if nr in (1.3) exists and

nr(hx) < r = lim
N/L!r

pL,N(hx) .

Furthermore, we say that the system has a condensation transition with critical
density rc � 0 if

nr(hx)

8
<

:
= r if r < rc ,

< r if r > rc .

We established that the “missing” mass r � nr(hx) must concentrate on
sites with diverging occupation numbers, we call this the condensed phase.
The total number of such sites has a vanishing volume fraction and does not
contribute to the weak limit nr, describing the distribution of the background
or bulk phase.

After establishing condensation of a given model, one is interested in the
finer structure of the condensate. For example, the condensed phase could
consist of a single site which accommodates all particles, which is known as
complete condensation. Alternatively, the condensate may be distributed
between various sites, finite of infinite in number. The occurrence of con-
densation and the statistics of the condensate have been studied for various
particle systems, see e.g. [EH05, GL12, CG14]. References for the inclusion
process and related models include [WE12, CCG14, CCG15, CGG22] and
[BDG17, KS21] in the context of metastable dynamics of the condensate.
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Up to now, the condensation phenomenon is only expressed in terms of
stationary measures. Studying the limiting dynamics of the condensed phase
is a natural next step. However, the condensed phase is only observed macro-
scopically and cannot be captured using the microscopic state space. Instead,
the dynamics imposed by (1.2) have to be translated onto a macroscopic level.

In Chapter 5, we will study the particular case of the inclusion process on
a complete graph, i.e. p(·, ·) = 1, for which (1.2) takes the form

LL,N f (h) =
L

Â
x,y=1
x 6=y

hx(d+ hy)[ f (hx,y)� f (h)] .

The dynamics of the inclusion process consists of two parts. Each particle
performs a continuous-time random walk with rate d, and in addition parti-
cles attract each other at unit rate.

yxz

d+ hyd

Figure 1.2: An example configuration h for the inclusion process. The purple
particle located at x will jump at rate d+ 5 onto site y and at rate d onto site
z.

The inclusion process was introduced in [GKR07] as the dual of a model
of energy transfer and is the natural counterpart of the exclusion process,
since interactions are attractive rather than repulsive. Moreover, it can be
interpreted in the context of population genetics, describing a population of
Moran type [Mor58], where d corresponds to the mutation rate and resam-
pling occurs at rate 1. In the thermodynamic limit, condensation of the inclu-
sion process was studied heuristically in [CCG14], with vanishing diffusivity
d = d(L) ! 0. Its finer structure was then analysed rigorously in [JCG19]: At
the critical scaling

dL ! q , for some q 2 (0, •) ,
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the condensate is supported on a diverging number of sites that are each
occupied by O(N) many particles. In particular, the authors of [JCG19] were
able to identify the limiting distribution of the condensate (under a suitable
embedding of particle configurations) as the Poisson-Dirichlet distribution
with parameter q. The case q = 0 corresponds to complete condensation.
On the other hand, if q = •, then sites in the condensed phase only have
occupation numbers of order O(d�1), i.e. the condensate is located on
mesoscopic scales. We refer to Chapter 5 for a more detailed review of the
results in [JCG19].

Determining the limiting dynamics of the inclusion process, requires a
careful analysis of the generator LL,N on macroscopic scales. In the remainder
of the section, we give a brief outline of the result without going into the
technical details, which are provided in Chapter 5.

First, we have to choose an appropriate common state space that describes
the macroscopic dynamics of the system. There are various choices, but it will
turn out useful to embed particle configurations h into the space of probabil-
ity measures in a size-biased fashion, using the map

h 7! µ#h :=
L

Â
x=1

hx

N
dhx

N
2 E , (1.4)

where E is the subspace of M1([0, 1]) characterised as the closure of particle
configurations under µ#. With regards to IPS, our first main result determines
the dynamics of the inclusion process on macroscopic scales, which in partic-
ular describes the condensed phase.

Theorem A ([CGG23]). Let r 2 (0, •) and d = d(L) such that dL ! q 2 [0, •).
If h(0) = h(L,N)(0) 2 WL,N such that µ#h(0) d

! µ0 2 E as N
L ! r, then

�
µ#h(t)

�
t�0

d
! (µt)t�0 , in D([0, •), E) , as

N
L

! r .

Here (µt)t�0 denotes a measure-valued process on E with initial value µ0, which can
be identified by an explicit infinitesimal generator Lq .

A detailed version of the result, including the definition of the generator
Lq , can be found in Theorem 5.1.1. Moreover, we prove that the limiting
process derived in Theorem A is equivalent to the infinitely-many-neutral-
alleles model, also known as the Poisson-Dirichlet diffusion, with mutation
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parameter q [EK81]. We will introduce this process in Chapter 5.
The above result does not cover the case dL ! •. Recall from above

that the condensate then concencrates on mesoscopic scales of order O(d�1)

[JCG19]. This suggests to consider the embedding of particle configurations
h via

h 7! µ̂#h :=
L

Â
x=1

hx

N
ddL hx

N
2 M1(R+) , (1.5)

into the space of probability measures. Because we also want to observe di-
verging rescaled masses, we consider the statespace M1(R+), with R+ =

[0, •]. Again, we can derive non-trivial limiting dynamics of the condensate,
when slowing down time appropriately.

Theorem B ([CGG23]). Let r 2 (0, •) and d = d(L) ! 0 such that dL ! •. If
h(0) 2 WL,N such that µ̂#h(0) d

! µ̂0 2 M1(R+), then

⇣
µ̂#h

� t
dL
�⌘

t�0

d
! (µ̂t)t�0 , in D([0, •),M1(R+)) , as

N
L

! r .

Here (µ̂t)t�0 denotes a measure-valued process on M(R+) with initial value µ̂0,
whose infinitesimal generator L̂ can be identified explicitly.

A detailed version of the result, including the definition of the genera-
tor L̂, can be found in Theorem 5.1.2. Notably, the alternative viewpoint on
macroscopic dynamics via (1.4), presented in [CGG23] and this thesis, allows
the derivation of a meaningful limit in the case q = •, which can be viewed
as a natural boundary case of the infinitely-many-neutral-alleles model with
infinite mutation rate q = •.

1.2 Disordered systems

In the previous section, we discussed an IPS for which microscopic particle
interactions lead to non-trivial behaviour on macroscopic scales. However,
models of this type do not take into account the environment the particles
are inhabiting. In nature, the environment usually consists of impurities or a
small scale potential, which can be modelled in terms of additional random-
ness, locally affecting the microscopic dynamics.

One of the prime examples for such a disordered system is the directed
random polymer model (DRPM). It describes a random walk whose law is
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exponentially tilted by a random environment. The strength of the environ-
ment is described by a non-negative parameter b � 0, corresponding to the
inverse temperature, which we will refer to as disorder strength. Individual
models may vary but the most common definition is as follows: Consider the
law PN of a nearest neighbour random walk of length N starting at the ori-
gin. Furthermore, let w = (wn,z)(n,z)2N⇥Zd be a family of mean-zero and unit
variance random variables with law P (independent of PN) with sufficiently
many moments. For a fixed realisation of w, the directed polymer measure
of length N and disorder strength b � 0 is then defined using the following
change of measure

Pw
b,N(dS) :=

1
Zb,N

exp

 
N

Â
n=1

(b wn,Sn � l(b))

!
PN(dS), (1.6)

where l(b) is a positive constant, such that Zb,N has unit mean. The denom-
inator

Zb,N := EN

"
exp

 
N

Â
n=1

(b wn,Sn � l(b))

!#
(1.7)

is a (random) normalising constant, called the partition function, making
Pw

b,N a probability measure. The original model goes back to the physics liter-
ature [HH85] where directed random polymers were introduced to study the
interface in two-dimensional Ising models with random interactions. Subse-
quently, the model was studied by the mathematical community [IS88, Bol89]
and attracted attention because of its application to SPDEs, see for example
[BC95, BG97] and the discussion at the end of this section. But even on its
own, the DRPM remains an interesting mathematical model. We refer to
[CSY04, Com17] and references therein for an overview of the polymer lit-
erature.

The weak disorder limit

When studying disordered systems, one is interested whether the implemen-
tation of disorder has an effect on the large-scale behaviour of the model. If a
small amount of disorder does not change the statistical properties of the sys-
tem, we say the model is disorder irrelevant. On the other hand, the model
is disorder relevant, if an arbitrary weak disorder does indeed change the
model’s statistics.

In the 1970’s Harris proposed a heuristic criterion, formulated in the con-
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text of a ferromagnetic Ising model with random impurities, to determine
if the model is disorder (ir)relevant [Har74]. The proposed heuristic can be
extended to a larger class of models. It compares the effective dimension
deff := d + 2 of space-time to a correlation length exponent n (for the simple
random walk n = 1

2 ) of the underlying pure dynamics. The heuristic yields
the following classification:

n > 2
deff

disorder irrelevant

if n = 2
deff

then marginal (inconclusive)

n < 2
deff

disorder relevant

Table 1.2: Harris criterion for disorder relevance

In the case n = 2
deff

, the Harris criterion is inconclusive and the model is
said to be marginal, meaning that the large-scale behaviour depends on the
finer structure of the model. We then speak of either marginal relevance or
marginal irrelevance of the disorder. See also [CSZ17a] for an alternative
characterisation of disorder relevance, which agrees with Harris heuristic.
According to Harris criterion, the DRPM is disorder relevant if d = 1 and
disorder irrelevant if d > 3, while the case d = 2 remains marginal.

For the DRPM specifically, it is more natural to identify the effect of the
disorder in terms of the partition function. It was shown in [Bol89], that the
partition function’s large N-limit is either positive or equal zero P-almost
surely. On the other hand, it is easy to see that Z0,N = 1 for the pure model
(b = 0). Hence, we expect the partition function to vanish if the disorder is
relevant and remain positive if the disorder is irrelevant. Clearly, once b is
large enough such that the disorder is relevant, this should continue to hold
for any larger b [CY06]: For arbitrary dimension d there exists a bc = bc(d)
such that P-almost surely

lim
N!•

Zb,N

8
<

:
> 0 if b 2 {0} [ (0, bc),

= 0 if b > bc.
(1.8)

The subcritical phase is referred to as weak disorder regime, whereas the
supercritical phase is known as the strong disorder regime. In particular,
it was established that bc = 0 when d  2. Notably, this agrees with the
prediction of Harris criterion.

The strong disorder regime in d 6 2 remains difficult to study due to
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the degeneracy of the partition function. Instead, it is common practice to
interpolate between the pure model (b = 0) and the strong disorder regime
(b > 0) by tuning the disorder strength b = b̂ · o(1), b̂ 2 (0, •), with the size
of the system. This is known as the intermediate disorder regime [AKQ14b,
CSZ17a]. We should then see a non-trivial limit of Zb,N in d  2, if b is
rescaled appropriately as a function of N. For d = 1, the limiting partition
function is strictly positive when b = bN ⇠ bbN�1/4 for arbitrary bb > 0, see
[AKQ14b]. The case of d = 2 is special: After rescaling

b = bN ⇠ bb
r

p

log N
, with bb > 0 , (1.9)

we see a phase transition in bb [CSZ17b]. More precisely, the limit
limN!• ZbN ,N is strictly positive if bb 2 (0, 1) and vanishes if bb � 1. The log-
scaling of bN , but not the corresponding phase transition in bb, was observed
in [BC98]. In the one-dimensional case no such phase transition exists.

The concept of considering polymers when the disorder strength is
scaled as a function of N appeared already earlier in the physics literature
[BD00, CDR10]. We will denote the appropriate rescaling of the disorder
strength with the size of the system as weak disorder limit.

Despite limN!• ZbN ,N being of order one, the limiting random variable
has non-trivial fluctuations and it remains to investigate if these fluctua-
tions influence the large scale behaviour of the polymer. With regards to the
DRPM, this thesis main result is the identification of the limiting polymer
path distribution for d = 2, when taking the weak disorder limit.

Theorem C ([Gab23]). Let bb 2 (0, 1) and bN be as in (1.9), and assume that the
given disorder is either bounded or normal.1 Then

p#Pw
bN ,N

d
! P

� 1
p

2
W 2 ·

�
, as N ! •, in P-probability,

where P denotes the Wiener measure on C([0, 1], R2). Here p#Pw
bN ,N denotes the

pushforward measure of polymer paths on the space of continuous functions, using a
diffusive rescaling of space-time and linear interpolation.

Notably, we see that the non-trivial fluctuations of limN!• ZbN ,N have no
influence on the large-scale statistics of the polymer, underlining the marginal

1We will prove Theorem C for a more general class of environments (Theorem 4.0.1), how-
ever, for the sake of presentation we simplified the statement here.
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irrelevance in the regime considered. For comparision, let us point out that for
d > 3 the limiting law of the polymer paths (in the weak disorder regime) was
identified as the law of Brownian motion with dimension-dependent diffu-
sion matrix [AZ96, SZ96, CY06]. On the other hand, when d = 1 and consid-
ering the weak disorder limit, the polymer measure is singular with respect
to the Wiener measure [AKQ14a]. The two dimensional case remained open
for the past years, Theorem C closes this gap in the literature.

The multiplicative stochastic heat equation

Besides being an interesting model by itself, the DRPM is closely related
to a particular SPDE, namely the multiplicative stochastic heat equation
(mSHE). This random PDE is described in terms of an evolution equation
on Rd:

∂tu =
1
2

Du + b u · x , u(0, ·) = 1 , (1.10)

where x denotes space-time white noise on R ⇥ Rd, which is a zero-mean
Gaussian distribution (generalised function) x with covariance structure

E[x(t, x)x(s, y)] = d(t � s)d(x � y) for all (t, x), (s, y) 2 R ⇥ Rd .
(1.11)

Because white noise is a random distribution, pointwise evaluation for its
covariance does not make sense, but only holds on the level of a formal de-
scription. We will give a rigorous definition of white noise in Section 2.1
below.

The relation of mSHE (1.10) with the DRPM is most traceable when rep-
resenting its solution by a Feynman-Kac formula [KS91, Theorem 4.2]. Disre-
garding the roughness of x for a moment, and instead treating it as a smooth
function, one could write

u(t, x) = Ex


exp

✓
b
Z t

0
x(t � s, Ws)ds

◆�
, (1.12)

with Ex being the expectation with respect to a Brownian motion (Ws)s>0

started in x. This representation indeed reminds of the partition function
of the DRPM (1.7). However, the stochastic integral in the exponent is not
well defined when d 6= 1. For d = 1 the integral can be defined in an Itô–
sense, since the heat kernel is L2-integrable in space-time, see for example
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[BCJL94] or Section 2.1 below. But for d > 2 this argument breaks down.
This corresponds to (1.10) being a singular SPDE when d > 2, a concept we
introduce in the next section.

The connection between (1.12) and the partition function (1.7) can be
made more precise: Instead of working with x directly, we consider a space
smoothened version x# defined as

x#(t, x) := (x ? j#)(t, x) =
Z

Rd
j#(y � x)x(t, y)dy , (1.13)

where j# = #�d j(·/#) for some symmetric j 2 C•
c (Rd). Now, consider the

solution of the mollified mSHE

∂tu# =
1
2

Du# + b u# · x# , u#(0, ·) = 1 , (1.14)

which can be represented in terms of

u#(t, x) = Ex


exp

✓
b
Z t

0
x#(t � s, Ws)ds �

1
2

b2
kjk2

L2
t
#d

◆�
, (1.15)

using a generalised Feynman-Kac formula [BC95]. The additional correction
term in the exponent is due to the roughness of x# in time. Again, the stochas-
tic integral in (1.15) should be read with care: Despite space-mollification, x#

can not be evaluated pointwise in time. However, the stochastic integral is
well-defined in an Itô–sense. Thus, for fixed t > 0, the solution of the molli-
fied mSHE (1.14) is the partition function (up to a time-reversal) of a continu-
ous directed random polymer model started from x

Px
b,#,x(dX) :=

1
u#(t, x)

exp
✓

b
Z t

0
x̄#(s, Xs)ds �

1
2

b2
kjk2

L2
t
#d

◆
Px(dX), (1.16)

with x̄#(s, y) = x#(t � s, y) d
= x#(s, y) and Px the law of Brownian motion

started at x. For a detailed comparison of u#(t, x) and Zb,N , we refer the reader
to [CSZ17b].

Similar to the discrete 2D-DRPM, studying non-trivial scaling limits of
(1.14) for d = 2 requires to choose b = b# appropriately. This is known as
weak coupling, which we will introduce below.
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1.3 Singular stochastic PDEs

In the previous section, we got a first glimpse of a singular SPDE, namely
the mSHE (1.10), which cannot be made sense of when d > 2. Subsequently,
we will discuss such SPDEs in more detail. Generally, we are interested in
stochastic evolution equations of the form

∂tu =
1
2

Du + H(u,ru) + G(u)X , u(0, ·) = u0 , (1.17)

with G, H nice enough functions, say analytic, and X a placeholder for some
Gaussian noise. Throughout, X(t, x) represents either of the following three
choices:

space-time white noise x(t, x) C
�

d
2�1�(R ⇥ Rd)

space white noise h(x) C
�

d
2�(Rd)

space white noise initial datum d0(t) h(x) C
�

d
2�2�(R ⇥ Rd)

Table 1.3: Classical choices of Gaussian forcing/noise for SPDEs.

Recall (1.11) for a formal description of space-time white noise x. Similarly, h

is a random Gaussian distribution with covariance E[h(x)h(y)] = d(x � y).
For a rigorous definition of white noise, we refer the reader to Section 2.1.
Moreover, the table includes each noise’s Besov regularity, which we intro-
duce in (1.21) below.

SPDEs of the form (1.17) are expected to describe a wide range of phys-
ical phenomena such as interface growth, particle diffusion or dynamical
Euclidean quantum field theories, where the random noise X plays the role
of impurities or small scale randomness. However, the roughness of the
noise makes the study of (1.17) difficult, since certain terms in the equation
cannot necessarily be made sense of. Whenever this is the case we call the
SPDE singular. Thus, even giving meaning to expressions like (1.17) can
be difficult. For the most parts, this makes the analysis of (singular) SPDEs
challenging, but also mathematically intriguing. For an overview on singular
SPDEs, see [CW17, Gub18, CS19].

For the moment, let us consider space-time white noise X = x and return
to some explicit examples. For G(u) = b u, H = 0, we recover the mSHE
(1.10). In fact, it will be more natural to study the fluctuations of the solu-
tion of (1.10) around the stable, constant field 1 (the initial datum), given by
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u(t, x) := u(t, x)� 1 which solves the

(recentred) mSHE: ∂tu =
1
2

Du + b u · x + b x , (1.18)

with vanishing initial datum u(0, ·) = 0. Other examples of commonly stud-
ied SPDEs are the

KPZ equation: ∂th =
1
2

Dh +
1
2
|rh|2 + b x , (1.19)

dynamic j4-model: ∂t j =
1
2

Dj �m2 j � j3 + x , (1.20)

with vanishing initial data h(0, ·) = j(0, ·) = 0 and m 2 R. At this point,
it will be useful to keep track of various objects’ regularity or roughness, in
order to classify when a SPDE is singular. Therefore, let us introduce (rather
informally) the notion of Besov spaces C

a, a 2 (�•, 1) \ {0}, which “mea-
sures” the regularity of a distribution. More precisely, Ca(R ⇥ Rd) contains
distributions F 2 S

0(R ⇥ Rd) that satisfy for any compact set K ⇢ R ⇥ Rd

sup
(t,x)2K

sup
l2(0,1]

��F
�

j(l)
t,x
���

la
< • , (1.21)

where j 2 C•
c (R ⇥ Rd) with 1(j) 6= 0, and

j(l)
t,x (s, y) := l�d�2�l�2(s � t), l�1(y � x)

�
,

which approximates a Dirac-d at (t, x) as l ! 0. In other words, the regular-
ity a of a distribution F 2 C

a denotes the exponent of the worst divergence
when trying to evaluate F pointwise. If a 2 (0, 1) the elements are actually
functions and C

a agrees with the usual Hölder spaces. Instead of considering
a time-space domain, one can similarly define Besov spaces C

a(Rd). For a
rigorous introduction of Besov spaces we refer the reader to [CW17, Defini-
tion 2.3] and [CZ21, Definition 12.1].

When considering random distributions, such as white noise, we require
(1.21) to hold in expectation. In Table 1.3, we summarised in which Besov
spaces the various choices of X lie in. There, Ca� should be read as C

a�d for
any d > 0.

Having introduced a way to keep track of each term’s regularity, we can
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be slightly more detailed on why and when a SPDE is singular. As a first step,
we look at a very crude approximation of (1.17) by considering the additive
stochastic heat equation (aSHE)

∂tv =
1
2

Dv + X , v(0, ·) = u0 . (1.22)

Its solution v is a well-defined random distribution satisfying

v =
�
∂t �

1
2 D

��1X 2 C
a+2�(R ⇥ Rd) ,

by a Schauder-like estimate [CW17, Theorem 2.8], i.e. space-time convolu-
tion with the heat kernel increases regularity by 2 (the reader may think of
inverting (�D) and taking two anti-deriviatives). Here a corresponds to the
Besov regularity of the noise X, cf. Table 1.3. In the case of space-time white
noise, i.e. X = x, we conclude v 2 C

�
d
2+1�(R ⇥ Rd), which is a function if

d = 1 and a distribution otherwise.
Now, it is not too far fetched that the solution of (1.17) will (at best) have

the same regularity as v: Assume for simplicity that H(u,ru) = H(u), then
a 0th-order Taylor approximation of both G and H yields the formulation

∂tv =
1
2

Dv + H(0) v + G(1)X , v(0, ·) = u0 , (1.23)

which again can be explicitly solved and has the same regularity as v. The
solution of (1.23) is the first term in a Picard-like iteration of (1.17), exploiting
the analyticity of both G and H. Therefore, for any of the three SPDEs men-
tioned above, we can assume that their solution lies in the same regularity
class as v, i.e. C

�
d
2+1�(R ⇥ Rd). This leads to the following problems when

stating the corresponding dynamics: Considering the

• mSHE (1.10), the product u · x does not make sense. For d > 2, it is ill-
defined as a product of two distributions. Even in d = 1, the product
cannot be made sense of classically, however, it can be interpreted in an
Itô-sense [BCJL94].

• KPZ equation (1.19), the components of rh lie in C
�

d
2�(R ⇥ Rd) and are

distributions. Hence, |rh|2 is not well defined for any d > 1.

• dynamic j4-model (1.20), the cubic non-linearity does not make sense
when d > 2, since j is a distribution.
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Overall, we conclude that (1.17) is generally ill-posed for d large enough,
and even giving sense to the equation as stated is a non-trivial task. In the
past decade, multiple breakthroughs in this direction sparked the interest of a
large mathematical community, such as the concepts of regularity structures
[Hai14], energy solutions [GJ14], paracontrolled distributions [GIP15] and
renormalisation groups [Kup16]. At this day, there have been many works
analysing singular SPDEs, building on the above mentioned techniques and
push them to their boundaries. However, all approaches mentioned have
the disadvantage to only apply in the so called (scaling) subcritical regime,
which allows to treat equations with a noise that is not “too rough”.

Scaling criticality

Despite singular SPDEs being a priori ill-defined, there are heuristic argu-
ments to guess their small and large-scale behaviour. In the following, we
give meaning to the so called scaling (sub)critical regime, while closely fol-
lowing [CW17], see also [Hai14, Assumption 8.3].

Under the assumption that the general SPDE (1.17) has a solution u, let us
define

ul(t, x) := l�au(l2t, lx) , for some l > 0 , (1.24)

describing the small-scale (l ⌧ 1) and large-scale (l � 1) behaviour of u
when choosing a appropriately.2 Since u admits the SPDE (1.17), also ul will
solve a SPDE with slightly altered coefficients

∂tul =
1
2

Dul + l�a+2H(laul, la�1
rul) + l�a+2G(laul)X(l2

·, l·) , (1.25)

and ul(0, ·) = l�au0(l ·). In the case of our main examples, which are driven
by space-time white noise x, we additionally make use of the scaling invari-
ance

x̃(t, x) := l
d
2+1x(l2t, lx) d

= x(t, x) , (1.26)

i.e. x̃ is also a space-time white noise. Because we want to keep the noise
invariant on both small and large scales, (1.26) in combination with (1.25)
suggests to choose a as a = �

d
2 + 1. Moreover, with this choice of a we

expect ul to remain of order one, since the solution u lies in C
�

d
2+1�(R ⇥ Rd).

2Again, we stress that the pointwise evaluation is mathematically not correct, as u will be
a distribution in most cases.



18 CHAPTER 1. INTRODUCTION

Thus, for l ⌧ 1 (1.21) formally yields

|ul(t, x)| =
|u(l2t, lx)|

l�
d
2+1

< • .

Overall, we have derived the following list of scaled equations:

(recentred) mSHE: ∂tul =
1
2

Dul + b l1� d
2 ul

· x̃ + bx̃ ,

KPZ: ∂thl =
1
2

Dhl + l1� d
2 |rhl

|
2 + bx̃ ,

dynamic j4: ∂t jl =
1
2

Djl
� l2m2jl

� l4�d(jl)3 + x̃ ,

(1.27)

with ul(0, ·) = hl(0, ·) = jl(0, ·) = 0. Notably, in all examples above, the
coefficients in front of the ill-defined terms depend only on the spatial dimen-
sion d. Hence, subject to the choice of d, the coefficient will vanish, diverge
or stay of order one, as l ! 0. This leads to the following classification of
SPDEs with respect to their small-scale behaviour:

vanishes subcritical

if the coefficient remains constant then SPDE is critical

diverges supercritical

Table 1.4: Conditions for (scaling) sub-/super-/criticality of SPDEs.

In particular, both (recentred) mSHE (1.18) and the KPZ equation (1.19) are
scaling critical for d = 2, and the dynamic j4-model (1.20) is critical when
d = 4. In all cases, the dimensions below this threshold correspond to the
subcritical regime, whereas larger dimensions correspond to the supercritical
regime. Hence, on a heuristic level, in subcritical dimensions the effect of
the non-linearity can be ignored on small scales. Therefore, the small scale
behaviour of the KPZ equation (1.19), d = 1, and the dynamic j4-model
(1.20), d 6 3, is described by the linearised equation (1.23). Similarly, for
mSHE (1.18) the singular product should have no effect on small scales when
d = 1.

On the other hand, the large scale behaviour is reversed: We expect
the (recentred) mSHE (1.18) to be described by the additive stochastic heat
equation when d > 3, since l1� d

2 ! 0 as l ! •. Note that this is in
accordance with the disorder (ir)relevance of the DRPM and Harris criterion,
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which we discussed in Section 1.2, since the corresponding fluctuations are
not visible on large scales. To see this in more detail, one should repeat the
above steps for u (or u as in (1.10)) with a = 0 in (1.24), in which case both
the multiplicative and additive noise in (1.18) vanish as l diverges.

Preceeding the introduction of scaling criticality, we mentioned recent so-
lution theories for singular SPDEs [Hai14, GJ14, GIP15, Kup16]. All such
theories restrict to subcritical SPDEs. In particular, [Hai14, GIP15] write the
solution of a given SPDE in terms of a perturbative expansion around the
linearised equation, e.g. around aSHE (1.22) in the cases of KPZ (1.19) and
the dynamic j4-model (1.20). At this point, the reader may think about the
perturbative expansion in terms of an abstract Taylor expansion, around the
solution of the linearised equation (1.23). To control the inflicted error, they
require (finitely many) higher order terms of this series expansion. We refer to
Section 2.3.3 for a brief outline of this method. In turn, this argument breaks
down when considering a (scaling) critical SPDEs, since finitely many terms
will not suffice in the analysis. Following a similar perturbative approach in
the critical dimension, requires the control of the whole series.

The weak coupling scaling

The treatment of scaling critical SPDEs, in contrast to subcritical equations,
is more delicate. Even when considering (1.17) with a mollified noise X#, it
is not possible to guarantee convergence in the small #-limit. Instead, it is
common practice to introduce an artificial scaling of the noise (or the non-
linearity) to zero, as the mollification is turned off # ! 0. The idea, simi-
lar to the weak disorder limit for DRPM, is to interpolate between the lin-
earised equation and the actual SPDE (1.17), while still observing non-trivial
behaviour. This is known as the weak coupling scaling, the limit is referred
to as the weak coupling limit.

Contrary to subcritical SPDEs, there is no general solution theory for crit-
ical equations. Instead, critical SPDEs in the weak coupling regime have only
been treated on a case-by-case basis. Let us give a brief overview of the liter-
ature, starting with the easiest critical SPDE, namely the 2D-mSHE

∂tu# =
1
2

Du# + b# u# · x# , u#(0, ·) = 1 , (1.28)

with the choice b# = b̂(log 1
# )

�
1
2 , b̂ > 0. Here x# denotes a mollified white
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noise, cf. (1.13). The linearity of the equation (1.28) allows for an explicit
treatment via an infinite expansion. This was successfully implemented in
[CSZ17b] by approximating the solution of (1.28) with the partition function
of the 2D-DRPM, and making use of a polynomial chaos expansion in combi-
nation with the fourth-moment theorem. A non-linear mSHE has been stud-
ied in [DG22, Tao22]. Solutions of the mSHE (1.28) and the KPZ equation

∂th# =
1
2

Dh# +
1
2
|rh#|

2 + b# x#
� C# , h#(0, ·) = 0 , (1.29)

with C# being suitable constants such that C# ! •, are formally related by
the Cole–Hopf transformation

h# = log u# .

This relation was used in [CD20, Gu19, CSZ20] to express fluctuations of the
2D-KPZ equation in terms of the mSHE. At this point, both the mSHE (1.28)
and the KPZ equation (1.29) can only by analysed for b̂ below a critical point,
thus, limiting the interpolation between the linear model and the strongly
coupled model to merely one side of the spectrum. In turn, [CSZ23] analy-
ses the 2D-mSHE at the critical point, which lead to the introduction of the
critical stochastic heat flow. Lastly, let us mention some examples that were
treated without linearisation of the equation. Instead, stationary fluctuations
of certain SPDEs with an explicit Gaussian invariant measure can be deter-
mined by analysing the corresponding (linear) infinite-dimensional genera-
tor. This has been successfully implemented for the anisotropic KPZ equation
[CES21, CET21], where |rh|2 in (1.19) is replaced by (∂1h)2

� (∂2h)2, and the
stochastic Burgers equation [CGT23].

Remarkably, weakly coupled critical SPDEs usually exhibit Gaussian fluc-
tuations. More precisely, their weak coupling limit can be represented in
terms of the linear Edwards-Wilkinson equation

∂tv =
g

2
Dv +m v + s X , v(0, ·) = 0 , (1.30)

for some m, s, g 2 R. At this point, the reader might suspect that a vanishing
coefficient, such as b# in front of the noise in (1.28) and (1.29), trivialises
the study of weakly coupled SPDEs and fluctuations are simply given by
the equation where the non-linearity was dropped, cf. (1.22) and (1.23).
However, this is not the case: In all examples mentioned, the non-linearity
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is relevant and contributes to the limit in terms of altering the coefficients
m, s, g in (1.30). Thus, when studying the weak coupling limit, we are mainly
interested in determining the exact coefficients mb̂, sb̂, gb̂ 2 R as functions of
the scaling parameter b̂.

The study of critical SPDEs in the weak coupling limit remains a challeng-
ing task and their treatment vastly differs from solution theories regarding
subcritical SPDEs. Nevertheless, expansions in the fashion of [Hai14, GIP15]
remain a natural approach, despite the theories themselves not being appli-
cable in the case of scaling criticality. With regards to critical singular SPDEs,
the main result of this thesis is the treatment of a weakly coupled SPDE fol-
lowing a Picard-like expansion. Notably, this requires the control and analy-
sis of infinitely many stochastic terms. To the author’s best knowledge, this is
the first time the infinite expansion of a (non-linear) SPDE has been treated.

In detail, we consider the weak coupling limit of the 2D Allen–Cahn
equation with random critical forcing at zero-time:

∂tu# =
1
2

Du# +m u# � u3
# +

l̂p
log #�1

d0h# , u#(0, ·) = 0 , (1.31)

for some m 2 R. Here d0h# denotes a mollified space white noise forcing at
t = 0, cf. Table 1.3. As a consequence of the additive forcing being scaled to
zero (rather than the non-linearity), we have u# ! 0. Thus, our focus lies on
the non-trivial fluctuations around the trivial solution.

Theorem D ([GRZ23]). Let m 2 R. Then there exists a l̂fin > 0 such that for
l̂ 2 (0, l̂fin) and T 2 (0, •) satisfying

m T 6 log
l̂fin

l̂
, (1.32)

where m = m_ 0, we have for all (t, x) 2 (0, T]⇥ R2

lim
#!0

E

��
q

log 1
# · u#(t, x)� v(t, x)

��2
�
= 0 .

Here v = v(l̂) denotes the solution of the linear equation

∂tv =
1
2

Dv +m v + sl̂ · d0h , v(0, ·) = 0 , with sl̂ =
l̂q

1 + 3
p l̂2

.
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The novelty of our approach to (1.31) is that we are able to treat the full
(infinite) expansion of a critical singular SPDE. We stress that our result only
covers short times when m > 0, thus, falls short of analysing the large time
behaviour of the Allen–Cahn equation and its front-formation according to
mean-curvature flow. However, the limit in Theorem D is well-defined for an
arbitrary choice of parameters and we expect the restrictions on l̂ and T to be
solely a consequence of our approach’s technical restrictions. In the author’s
eyes, the explicit treatment of (1.31), by an infinite power series expansion in
l̂, is possibly a first step towards a more general framework of the treatment
of critical SPDEs in the weak coupling limit.

1.4 Outline of the thesis

The remainder of this thesis is structures as follows.

• In Chapter 2, we begin with a general introduction into Wiener chaoses
and white noise. Thereafter, we make the reader familiar with rooted trees,
their use in (stochastic) differential equations, and in particular Wild ex-
pansions of additive SPDEs. This can be viewed as the technical setup for
Chapter 3.

Each of the remaining chapters consists of one of three the topics introduced
in the sections above, with the aim of proving the results presented. The
chapters are independent of each other and can be enjoyed in arbitrary order.

• In Chapter 3, we derive the weak coupling limit of the 2D Allen–Cahn
equation with white noise initial data, cf. Theorem D, by treating an in-
finite Wild expansion of the equation. The chapter is based on the work
[GRZ23].

• Chapter 4 consists of the analysis of the path measure of the 2D-DRPM, cf.
Theorem C. We prove an invariance principle for the polymer paths in the
full subcritical weak disorder regime. The chapter is based on the article
[Gab23].

• In Chapter 5, we derive dynamical scaling limits of the condensed inclu-
sion process, presented in Theorems A and B. Moreover, we link the de-
rived limits to a well-studied model in population genetics. The chapter is
based on the paper [CGG23].



Chapter 2

Preliminaries

The aim of this chapter is to give a self-contained exposition on tree
expansions to SPDEs, which is the basis for Chapter 3. We will start
by giving a basic introduction to white noise and the theory of Wiener
chaoses. In the second part, we shed light on how rooted trees appeared
in the study of ordinary differential equations (ODEs) and the Butcher
series. Finally, we set up the Wild (or tree) expansion for SPDEs with
additive noise. Most notably, we explain how the Wild expansion of
such SPDEs links to corresponding Butcher series.

2.1 A primer on Wiener chaoses

In this section, we introduce Gaussian white noise, Wiener chaoses, the
Wiener chaos decomposition and contractions. The exposition is in partic-
ular aimed at readers unfamiliar with these concepts. Throughout, we will
implement generalised definitions of the Itô and the Stratonovich integral,
and relations between the two. As our main reference, we are following the
monographs [Jan97, Nua06].

2.1.1 Gaussian Hilbert spaces and white noise

The space of random distributions associated with white noise is a special
case of a Gaussian Hilbert space, which can be set up in a very general man-
ner.

23
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Definition 2.1.1 (Gaussian Hilbert space). Let (W,F , µ) be a probability space.
A Gaussian Hilbert space H is a real, linear and complete subspace of L2(µ) =

L2(W,F , µ) which only consists of centred Gaussian random variables.

A simple, but non-trivial, example of a Gaussian Hilbert space H is the
span of {Wt}t>0, where W is a standard Brownian motion, cf. [Jan97, Exam-
ple 1.10]. Because linear combinations with respect to {Wt}t>0 approximate
Itô integrals, one has the explicit representation

H =

⇢Z •

0
h(t)dWt : h 2 L2([0, •))

�
. (2.1)

On the other hand, the Gaussian Hilbert space that will be central
throughout the thesis is the one induced by white noise, which we intro-
duced informally in (1.17). Our goal in the remainder of the section is to
make the previous discussion on white noise rigorous. For this, we denote
by S

0(Rd) the space of real tempered distributions, which is the continuous
(or topological) dual of the Schwartz space (rapidly decreasing test functions)
[Str03]

S(Rd) :=

(
f 2 C•(Rd) : 8n, m 2 Nd sup

x2Rd
|xn ∂m f (x)| < •

)
,

where we used multi-index notation. White noise h on Rd can then be made
sense of as a random distribution S

0(Rd).
We want to give a brief outline on the construction of white noise in the

following, which requires the introduction of some technical preliminaries
which we shall state without a proof and without going into further details.
Instead, we refer the interested reader to [Jan97, Example 1.13].

Definition 2.1.2 (Gaussian measure). Let X be a real locally convex topological
vector space and µ a Borel probability measure on X . We call µ a (symmetric) Gaus-
sian measure if

x⇤#µ is a centred Gaussian on R , for all x⇤ 2 X
⇤ .

Here f#µ denotes the pushforward measure of µ under a suitable function f .

Lemma 2.1.3. Let X be a real locally convex topological vector space and µ a sym-
metric Gaussian measure on X , then the completion of X ⇤

⇢ L2(X ,B, µ) is a
Gaussian Hilbert space. Here, B denotes the Borel-s-algebra on X.
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Having the above lemma at hand, we can prove the existence of white
noise. When defining white noise, the goal is to construct a Gaussian measure
P on S

0(Rd) such that for h ⇠ P

h(j) ⇠ N (0, kjk2
L2(Rd)) and E[h(j) h(j0)] =

Z

Rd
j(x)j0(x)dx , (2.2)

for all j, j0
2 S(Rd), where we wrote E for the expectation with respect to P.

Lemma 2.1.4 (White noise). There exists a Gaussian measure P on S
0(Rd) satis-

fying (2.2). We call P the white noise measure and the random distribution h ⇠ P

white noise.

The construction of such a measure P, and its corresponding Gaussian
Hilbert space, is rather technical, however very interesting. The linchpin of
the proof is the (Bochner-)Minlos theorem, which states that any continu-
ous semi-definite symmetric bilinear form on S(Rd) corresponds to a unique
Gaussian measure on S

0(Rd) [GV64, Chapter III/IV]. Given this result, we
don’t want to shy away from the construction of white noise, as it sheds light
on some of its properties which may be interesting to the unfamiliar reader.
We follow the argument presented in [Jan97, Example 1.16], however, omit-
ting the technical details.

Proof. In order to avoid confusion throughout the proof, we will write S
⇤

instead of S 0, which in our case both denotes the continuous (or topological)
dual.

We start by assuming that the Gaussian measure P on S
⇤(Rd) with the

desired properties (2.2) exists. For convenience, let us define the random
variable h ⇠ P (which the reader should think of as white noise). Let
J : S(Rd) ! S

⇤⇤(Rd) be the evaluation map, which for every j 2 S(Rd)

yields a functional

J(j)(F) := F(j) , 8F 2 S
⇤(Rd) .

Note that S(Rd) is reflexive, and J is an isometry to its bidual S⇤⇤(Rd). Be-
cause P is assumed to be a Gaussian measure on S

⇤(Rd), the push-forward
measure J(j)#P is normal, i.e. h(j) is a centred Gaussian, cf. Defini-
tion 2.1.2. Furthermore, by Lemma 2.1.3, the completion of S⇤⇤(Rd) is a Gaus-
sian Hilbert space, and so is the space

H := {J(j) 2 S⇤⇤(Rd) : j 2 S(Rd)} ⇢ L2(S⇤(Rd),B, P) ,



26 CHAPTER 2. PRELIMINARIES

as it is a closed subspace. Let us also define the symmetric semi-definite
bilinear form E on S(Rd)

E(j, j0) := E[h(j)h(j0)] . (2.3)

Then, the completion SE of (S(Rd), E) is a Hilbert space. Lastly, it can be
shown that J is a continuous map from S(Rd) to H, which also implies con-
tinuity of E . Thus, J extends to an isometry I : SE ! H.

Now, the crucial step in the construction is due to Minlos’s theorem,
which allows to interpret the definition in (2.3) in the reverse direction.
Namely, it links any choice of a continuous semi-definite symmetric bilinear
form E on S(Rd) to a Gaussian measure with covariance structure induced
by E . In particular, this yields the existence of a Gaussian measure P for the
classical choice E(j, j0) = hj, j0

iL2(Rd).

In the above proof, we saw that for white noise SE = L2(Rd) with the
usual inner product. Hence, white noise as a random (tempered) distribu-
tion h ⇠ P can be naturally extended to test functions in L2(Rd), using the
extension I = J of the evaluation map.

Corollary 2.1.5. Let P be the white noise measure on S
0(Rd). Then the correspond-

ing Gaussian Hilbert space

H := {h(j) : j 2 S(Rd)} ⇢ L2(P)

is isometric to L2(Rd). In other words, white noise h can be extended from S(Rd) to
L2(Rd) using the isometry I.

Corollary 2.1.5 states that H can be indexed by L2(Rd), cf. [Jan97, Defini-
tion 1.18]. In [Nua06], this property is part of the definition of an “isonormal
Gaussian process”. Notably, Corollary 2.1.5 allows to interpret I( f ) 2 H,
f 2 L2(Rd), as a stochastic integral satisfying Itô’s isometry

E[|I( f )|2] = k f k2
L2(Rd) .

Recall also the case of Brownian motion (2.1), which can be viewed as a spe-
cial case of white noise h = Ẇ for d = 1. The integral representation will be
advantageous throughout later sections, thus, we will often write

Z

Rd
f (z) h(dz) = h( f ) := I( f ) , 8 f 2 L2(Rd) , (2.4)
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while being aware that h is not defined pointwise.

2.1.2 The Wiener chaos decomposition

From now on, we shall only consider the Gaussian Hilbert space H generated
by the white noise measure P. However, most of this section holds for general
Gaussian Hilbert spaces, see [Jan97, Chapter 2].

First, note that elements Z1, . . . , Zm 2 H are Gaussian random variables,
which have moments of arbitrary order. In particular,

�����

m

’
i=1

Zi

�����
L2(P)

6
m

’
i=1

kZikL2m(P) =
q
(2m � 1)!!

m

’
i=1

kZik
2
L2(P) < • ,

by an m-fold application of Hölder’s inequality and Wick’s theorem

kZik
2m
L2m(P) = E[|Zi|

2m] = (2m � 1)!!kZik
2m
L2(P) . (2.5)

Notably, we constructed the product Z1 · · · Zm 2 L2(P) outside of H by sim-
ple algebraic means. In the present section, we will see that at its furthest,
this idea can be pushed to reconstruct (almost all) of the space L2(P).

We start by defining the building blocks of this theory:

Definition 2.1.6 (Wiener chaoses). Let n 2 N. The homogeneous chaos of
order n is the space

Hn := Pn(H) \ Pn�1(H)? , (2.6)

where Pn(H) is the L2(P)-closure of the linear space

Pn(H) :=
�

p(Z1, . . . , Zm) : p a polynomial of degree 6 n ,

Z1, . . . , Zm 2 H , m 2 N
 

.
(2.7)

Components of the increasing sequence of subspaces Pn(H) are commonly referred
to as inhomogeneous chaos of order n. We will also write H6n := Pn(H).

The spaces Hn are mutually orthogonal by definition, which yields

H6n = Pn(H) =
nM

k=0
Hk . (2.8)

Recalling (2.5), higher moments of normal variables can be estimated in terms
of second-moments. Because elements of Wiener chaoses are represented in
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terms of polynomials of such Gaussian random variables, this observation
can be generalised to Wiener chaoses.

Proposition 2.1.7 (Hypercontractivity). Let H ⇢ L2(P) be a Gaussian Hilbert
space and n 2 N. Then for every p, q < • there exists a constant cp,q < • such
that

kXkLq(P) 6 (cp,q)
n
kXkLp(P) , 8X 2 H6n .

For the case p = 2 and q > 2, one has c2,q =
p

q � 1.

For a proof of this proposition, we refer the reader to [Jan97, Theorem 5.10],
and [Jan97, Remark 5.11] for the explicit constant c2,q.

Next, we demystify the abstract definition of Wiener chaoses by express-
ing elements explicitly in terms of stochastic iterated integrals. First, we note
that the notion of the stochastic integral I( f ) from (2.4) can be extended to
stochastic iterated integrals of the form

In( f ) =
Z

(Rd)n
f (z1, . . . , zn)h

⌦n(dz1,...,n) , (2.9)

which again do not make sense as displayed. Instead, one can define linear
operators In : L2((Rd)n) ! L2(P) to satisfy the properties of iterated stochas-
tic integrals. The construction of In is similar to the classical Itô integral with
respect to Brownian motion by defining the operator on simple test functions
and extending it to all of L2((Rd)n) by continuity. We refer to [Nua06, Sec-
tion 1.1.2] for a detailed construction.

Lemma 2.1.8. Let P be the white noise measure and H as in Corollary 2.1.5. Then
for every n 2 N,

In : L2
sym((Rd)n) ! Hn

is an isomorphism1, with L2
sym(·) being the subspace of L2(·)-functions that are sym-

metric in their arguments. Recall that In denotes the (abstract) iterated integral oper-
ator, cf. (2.9). In particular, In can be extended to f 2 L2((Rd)n) by symmetrisation

In( f ) := In( f̃ ) , with f̃ (z1, . . . , zn) :=
1
n! Â

s2Sn

f (zs(1), . . . , zs(n)) , (2.10)

where Sn is the symmetric group of size n. We say In( f ) is a Wiener–Itô stochastic
integral.

1Multiplying In with
p

n!
�1

yields an isometry.
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To avoid further technical details, we refer the curious reader to [Jan97,
Section 7.2], and in particular to [Jan97, Theorem 7.26] for an exposition of the
statement above. It is interesting to note that the construction of In( f ) does
only depend on f up to symmetries, cf. (2.10), which can be formally argued
to be a consequence of rotationally invariance (in law) of white noise. At this
point, let us stress the difference of two notions for stochastic integrals used
throughout: h⌦n(dz1,...,n) will denote Itô integration, whereas ’n

i h(dzi) will
denote Stratonovich integration, introduced in Definition 2.1.14 below.

An important property of the stochastic integrals’ construction is the fol-
lowing orthogonality, which can be found in [Nua06, Section 1.1.2] alongside
other properties of the operators In, see also [Jan97, Section 7.2]. For m, n 2 N
and f 2 L2((Rd)n) , g 2 L2((Rd)m)

E[In( f )] = 0 and E [In( f ) Im(g)] = n!1n=m h f̃ , g̃iL2((Rd)n) , (2.11)

where ·̃ denotes the symmetrisation operator defined in (2.10). In particular,
we have

E
h��In( f )

��2
i
= n! k f̃ k2

L2((Rd)n) 6 n! k f k2
L2((Rd)n) . (2.12)

Also note that (2.11) is in accordance with the orthogonality of homogeneous
Wiener chaoses (2.8).

Example 2.1.9. Consider functions h1, h2 2 L2(Rd) and the product

I1(h1)I1(h2) =
Z

(R2)2
h1(z1)h2(z2)h(dz1)h(dz2) ,

which lies in H62. Naturally, we would like to express the above product in
terms of I2, by writing the product of integrals in terms of

Z

(R2)2
h1(z1)h2(z2)h

⌦2(dz1,2) = I2(h1 ⌦ h2) .

However, as it is the case for the classical Itô integral, we have to take a cor-
rection term into account:

I1(h1)I1(h2) = I2(h1 ⌦ h2) + E [I1(h1)I1(h2)] ,

see [Nua06, Proposition 1.1.2], where we used the notation

(h1 ⌦ · · ·⌦ hn)(z1, . . . , zn) := h1(z1) · · · hn(zn) . (2.13)
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Because I2(h1 ⌦ h2) has zero mean, cf. (2.11), it is orthogonal with respect
to E [I1(h1)I1(h2)]. Moreover, due to orthogonality (2.11), I2(h1 ⌦ h2) is un-
correlated to any element in H1 = {I1(h) : h 2 L2(Rd)}. In other words, we
have discovered an expansion of I1(h1)I1(h2) 2 L2(P) into its homogeneous
chaoses:

E [I1(h1)I1(h2)] 2 R = H0 and I2(h1 ⌦ h2) 2 H2 ,

with all other chaos components being equal to zero.

We can finally state the Wiener chaos decomposition, which allows to rep-
resent L2(P) random variables in terms of series of stochastic iterated inte-
grals, generalising the decomposition derived in Example 2.1.9.

Proposition 2.1.10 (Wiener–Itô chaos decomposition). Let P be the white noise
measure on (S 0(Rd), s(H)), where s(H) denotes the s-algebra generated by H.
Then for every X 2 L2(S 0(Rd), s(H), P), there exist fn 2 L2((Rd)n), n 2 N0,
such that

X =
•

Â
n=0

In( fn) .

Moreover, the functions fn are uniquely determined when restricted to L2
sym((Rd)n).

For a detailed overview of this result, we refer the reader to [Nua06, Sec-
tion 1.1] with the above proposition being stated in [Nua06, Theorem 1.1.2].
See also [Jan97, Theorem 7.26].

Let us conclude this section with a brief discussion on integrals of the
form Z

Rd0
In( fx)dx , (2.14)

where { fx}x2Rd0 be a family of L2((Rd)n) functions, which will appear natu-
rally in Section 2.3. A priori, the integral (2.14) does not have any meaning.
However, if { fx}x2Rd0 are such that

F :=
Z

Rd0
fx(·)dx 2 L2((Rd)n), (2.15)

then we can define Z

Rd0
In( fx)dx := In(F) , (2.16)

which reminds of a Fubini theorem. Once again, this follows from an exten-
sion argument: Starting with a family { fx}x2Rd0 that is constant on finitely
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many subsets of Rd0 , (2.16) holds as an identity by linearity of the operator In.
Now, approximating F of the form (2.15) by such elementary functions, we
can show that the definition in (2.16) is indeed appropriate.

2.1.3 Contractions and Feynman diagrams

In Example 2.1.9, we saw that the product I(h1)I(h2) is given in terms of a
Stratonovich integral, and has an explicit Wiener chaos decomposition. In
this section, we introduce the Stratonovich integral in terms of corrected Itô
integrals, using the notion of contractions.

Let A be a finite set, then a contraction k of A is an element in (A
2), which

denotes the set of unordered pairs of A, such that any i 2 A lies in at most
one element of k. The set of all contractions of A is denoted by K(A). We say
the pair (A, k) is the set A with contraction k or simply call A a contracted
set, and sometimes write Ak .

Example 2.1.11. Let A = {1, . . . , 5}. Then k 2 K(A) is of the form

1

2

3

4 5 . (2.17)

Here we represented elements of A as vertices and elements of k =

{{1, 3}, {2, 5}} as edges connecting them. In the literature such contraction
diagrams are sometimes referred to as Feynman diagrams, see for example
[Jan97, Section 1.5].

Now, consider a finite set A of size n 2 N, a function f 2 L2((Rd)A) and
a contraction k 2 K(A). For convenience let us also define m := n � 2|k| and
write A \ k for the elements in A not contained in k. We can then contract f
with respect to k, which is the function

fk(ẑA\k) :=
Z

(Rd)A
f (zA) ’

i2A\k

dẑi(zi) ’
{j,j0}2k

dzj(zj0)dzA , (2.18)

where we identified variables according to the pairs in k. Here and through-
out the thesis, we will write zA = (zi)i2A 2 (Rd)A, or simply z1,...,n if
A = {1, . . . , n}.

Example 2.1.12. Consider the contraction k from (2.17) and f 2 L2((Rd)5),



32 CHAPTER 2. PRELIMINARIES

then fk : Rd
! R with

fk(·) =
Z

(Rd)2
f (z1, z2, z1, ·, z2)dz1,2 .

The single free variable corresponds to the unmatched vertex in (2.17). The
remaining pairs have been identified and integrated, according to k.

However, there is no reason why fk should lie in L2((Rd)A\k) since the
contraction operator (·)k is unbounded and not necessarily well-defined
[Jan97, Remark 7.32]. For example, consider the function f (z1, z2) :=
z�1

1 1z1=z22(0,1] that lies in L2((R)2) and the contraction k = {{1, 2}}. Then

fk =
Z

R
f (z, z)dz =

Z 1

0

1
z

dz = • .

To avoid this stepping stone, we restrict ourselves to functions f such that
any contracted version remains L2-integrable.

Definition 2.1.13 (Contractable functions). We say a function f 2 L2((Rd)A) is
contractable if

k fkkL2((Rd)A\k) < • , 8k 2 K(A) .

It is worth mentioning that functions of the form f =
N

i2A hi, cf. (2.13), are
contractable whenever hi 2 L2(Rd): First, note that for every k 2 K(A)

fk = ’
i2A\k

hi(·) ’
{j,j0}2k

hhj, hj0 iL2(Rd) ,

hence, by the Cauchy-Schwartz inequality

k fkkL2((Rd)A\k) 6 ’
i2A\k

khikL2(Rd) ’
{j,j0}2k

khjkL2(Rd)khj0 kL2(Rd)

=
n

’
i=1

khikL2(Rd) .

See also [Jan97, Lemma 7.31].

In Example 2.1.9, we derived the decomposition

I1(h1)I1(h2) = I2(h1 ⌦ h2) + E [I1(h1)I1(h2)] , h1, h2 2 L2(Rd) ,

as for the classical Itô integral. This identity can also be viewed as definition
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of the Stratonovich integral I̊2(h1 ⌦ h2). Building up on this idea, we define
Wiener–Stratonovich integrals as follows.

Definition 2.1.14 (Wiener–Stratonovich integral). Let A be a finite set of size
n 2 N, and f 2 L2((Rd)A) be contractable, cf. Definition 2.1.13. Then the
Stratonovich integral with respect to f is defined as

I̊n( f ) =
Z

(Rd)n
f (z1, . . . , zn)

n

’
i=1

h(dzi) := Â
k2K(A)

In�2|k|( fk) ,

with fk as in (2.18).

For example, the function f = h ⌦ h ⌦ h 2 L2((Rd)3), with h 2 L2(Rd), is
contractable and we have

I̊3( f ) = I1(h)3 = I3( f ) + 3 E[|I1(h)|2] I1(h) .

In particular, the following product rule holds:

Lemma 2.1.15 (Product formula for Stratonovich integral). Let m 2 N,
{Ai}

m
i=1 finite sets with ni = |Ai| and fi 2 L2((Rd)Ai), then

m

’
i=1

I̊ni( fi) = I̊|n|( f1 ⌦ · · ·⌦ fm) ,

where we used the multi-index notation |n| = n1 + · · · nm.

The proof of this product formula requires a slightly extended notion of con-
tractions. When considering finite sets {Ai}

m
i=1, we define the set of contrac-

tions between them

K?(A1, . . . , Am) :=
⇢

k 2 K(A1 [ · · · [ Am) : k \

✓
Ai
2

◆
= ∆ 8 1 6 i 6 m

�
,

i.e. k does not contain any pairs connecting elements within the Ai’s.

Example 2.1.16. Let A1 = {1, 2, 3} and A2 = {4, 5}, and consider the contrac-
tions

1

2

3

4 5 ,
1

2

3 4

5 and
1

2

3

4 5 .

The first two contractions lie in K?(A1, A2), however, the third one only lies
in K(A1 [ A2) because there is a pairing within A1.
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We can now state a generalisation of Wick’s theorem, referring the reader
to [Jan97, Lemma 7.33] for a proof.

Lemma 2.1.17. Let m 2 N, {Ai}
m
i=1 finite sets with ni = |Ai| and fi 2

L2((Rd)Ai), then

m

’
i=1

Ini( fi) = Â
k2K?

I|n|�2|k|
�
( f1 ⌦ · · ·⌦ fm)k

�
,

where we wrote K? as a shorthand for K?(A1, . . . , Am).

Now we have all the ingredients to provide a proof of the product formula
for Stratonovich integrals.

Proof of Lemma 2.1.15. Let m 2 N, {Ai}
m
i=1 finite sets with ni = |Ai| and fi 2

L2((Rd)Ai). By Definition 2.1.14 of the Stratonovich integral, we can write

m

’
i=1

I̊ni( fi) =
m

’
i=1

Â
ki2K(Ai)

Ini�2|ki |

�
( fi)ki

�

= Â
ki2K(Ai)

16i6m

m

’
i=1

Ini�2|ki |

�
( fi)ki

�
.

(2.19)

Now, we apply Lemma 2.1.17 for {Ai \ ki}
m
i=1 and {( fi)k}

m
i=1 which yields

m

’
i=1

Ini�2|ki |

�
( fi)ki

�
= Â

k2K?

In
�
(( f1)k1 ⌦ · · ·⌦ ( fm)km)k

�
, (2.20)

with K? = K?(A1 \ k1, . . . , Am \ km) and n = Âm
i=1(ni � 2|ki|)� 2|k|. Note

that any tupel (k, k1, . . . , km) can be mapped to its naturally induced contrac-
tion k = k [ k1 [ · · · [ km and we write

In
�
(( f1)k1 ⌦ · · ·⌦ ( fm)km)k

�
= I|n|�2|k|

�
( f1 ⌦ · · ·⌦ fm)k

�
. (2.21)

In particular, one can check that the above mapping defines a bijection be-
tween K?(A1, . . . , Am)⇥K(A1)⇥ · · ·⇥K(Am) and K(A1 [ · · ·[ Am). Lastly,
combining (2.19), (2.20) and (2.21) we have

m

’
i=1

I̊ni( fi) = Â
k2K(A1[···[Am)

I|n|�2|k|
�
( f1 ⌦ · · ·⌦ fm)k

�
= I̊|n|( f1 ⌦ · · ·⌦ fm) ,

which finishes the proof.
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We conclude the section with a Fubini-like theorem for the Stratonovich
integral, which is an immediate consequence of Definition 2.1.14 and (2.16).

Lemma 2.1.18 (Fubini-like for Stratonovich). Let A be a finite set of size n and
{ fx}x2Rd0 be a family of L2((Rd)A) functions that are contractable, cf. Defini-
tion 2.1.13, such that also

F :=
Z

Rd0
fx(·)dx 2 L2((Rd)A)

is contractable. Then Z

Rd0
I̊n( fx)dx = I̊n(F) .

Remark 2.1.19. Throughout the section, we restricted ourselves to white noise on
Rd. However, all results presented should hold generally with with Rd being re-
placed by a s-finite non-atomic measure space (E, E , n), as for example considered in
[Jan97]. In particular, this allows to also consider the time-space domain R+ ⇥ Rd.

2.2 On rooted trees and the Butcher series

In this section, we will review how trees are used to index series expansions
of solutions to ODEs. In particular, the kind of expansion that we are in-
terested in goes under the name of Butcher series (or B-series for short)
[But63, HW74], which originates from numerical analysis. Since its intro-
duction, approaches of the same flavor were successfully applied to SDEs
[Gub10] and SPDEs [Hai13, Hai14].

2.2.1 Rooted trees

First, we introduce the central objects of this section: finite, rooted trees. We
denote the set of finite, rooted, unordered trees by T , containing trees t

1 , , , , , , , . (2.22)

where 1 denotes the empty tree. In the pictorial description, the bottom-
most node describes the root, whereas leaves are indicated by thick dots .
The remaining inner vertices are represented by . Given a tree t 2 T , we
denote the set of vertices by V(t) and the set of edges by E(t). Moreover, we
partition V(t) into two categories:
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• The set of leaves, which we write as L(t) with cardinality `(t) = |L(t)|.

• The set of inner vertices, denoted by I(t). We also write i(t) = |I(t)|.

We denote the total number of vertices by |t| = `(t) + i(t). The root of t

is denoted by ot, or simply o, and is considered an inner vertex in all cases
but one. The exception is the tree t = , for which the single vertex, and root,
is considered to be an element of L(t). Lastly, for v 2 V(t) \ o the closest
vertex p(v) 2 V(t), in direction of the root, is called the parent of v. Every
vertex u satisfying p(u) = v is called a (direct) descendant of v.

As we will be working with unordered trees, the three trees below, for ex-
ample, will be considered identical:

. (2.23)

Trees in T can be constructed recursively as follows: Suppose t1, ..., tn 2 T ,
we then construct the tree t := [t1 · · · tn] by connecting the trees t1, ..., tn 2

T to a common vertex, which acts as the root of the new tree t. We use the
depiction

[t1 · · · tn] :=
t1 t2 · · ·

tn (2.24)

and call [· · · ] the grafting operator. For example,

[ 1 ] = , [ ] = , [ ] = or [ ] = .

We observe that the empty tree 1 can be ignored in a grafting (unless it is
the only tree): [1 t1 · · · tn] = [t1 · · · tn]. In this notation, the space of finite,
unordered rooted trees can be obtained from the space of finite rooted trees
through the equivalence relation that identifies

[t1 · · · tn] ⌘ [ts(1) · · · ts(n)] (2.25)

for every s 2 Sn (the group of permutations on n indices), and the same for
any subtree of a given tree.

Moreover, it will be useful to consider the following types of subsets of T :
For n 2 N the set of sub-n-ary trees

T6n := {t 2 T : any inner node in t has at most n descendants} (2.26)
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and the set of n-ary trees

Tn := {t 2 T \ {1} : any inner node in t has exactly n descendants}
(2.27)

For example, all trees displayed in (2.22) lie in T63, but only the second, third
and last tree lie in T3. Note that we work with the conventions that the empty
tree belongs to T , T6n, but not Tn and that the “single node” tree t = be-
longs to Tn (because by convention the root counts as a leaf and not as an
inner node).

Let us also introduce some algebraic quantities for general rooted trees,
which will come in handy, when dealing with related combinatorial factors:

• Symmetry factor. For any t 2 T we write s(t) for the symmetry factor,
counting the number symmetries that leave the unordered tree structure
unchanged. It is given by a recursive formula as follows: First, s( ) =

s(1) = 1. If t = [(t1)k1 · · · (tn)kn ] for distinct ti 6= 1, i = 1, ..., n, each one
appearing ki times, then

s(t) =
n

’
i=1

ki! s(ti)
ki . (2.28)

This recursive formula is based on the fundamental fact that

|k|!
s(t)

n

’
i=1

s(ti)
ki =

|k|!
k1! · · · kn!

=
|k|!
k!

(2.29)

=

✓
|k|
k1

◆✓
|k|� k1

k2

◆
· · ·

✓
|k|� (k1 + · · ·+ kn�2)

kn�1

◆

counts the number of possibilities to arrange the trees ti to form t, or more
generally, the number of arrangements of |k| elements of n families, each
of size ki. Here k denotes the the multi–index (k1, . . . , kn).

Furthermore, the symmetry factor s(t) equals the size of the symmetry
group associated with t, hence the name. The symmetry group is given by
the family of automorphisms f : V(t) ! V(t) such that

f(o) = o and {v, u} 2 E(t) , {f(v), f(u)} 2 E(t) , (2.30)

see also [But08, p. 154].

• Tree factorial. For the empty tree 1 we define 1! := 1 and, inductively, for



38 CHAPTER 2. PRELIMINARIES

a tree t = [t1 · · · tn] we define t! as

t! := |t| t1! · · · tn! . (2.31)

where |t| = 1 + |t1|+ · · · |tn| is the total number of vertices of the tree t.
It is easy to see that the tree factorial of a linear tree of n vertices, i.e. there
is no branching and n vertices lie on a line, is equal to n!. Thus, the notion
of tree factorial generalises the usual notion of a factorial.

t h(t)(x) s(t) t! |t| a(t)

1 x 1 1 0 1

h(x) 1 1 1 1

h0(x)h(x) 1 2 2 1

h00(x)h(x)2 2 3 3 1

h0(x)2h(x) 1 6 3 1

h(3)(x)h(x)3 6 4 4 1

h00(x)h0(x)h(x)2 1 8 4 3

h00(x)h0(x)h(x)2 2 12 4 1

h0(x)3h(x) 1 24 4 1

Table 2.1: Examples of rooted trees and their corresponding quantities, up to
|t| 6 4. For the definition of the symmetry factor and the tree factorial, recall
(2.28) and (2.31). On the other hand, the elementary differential h(t)(x) will
be introduced below in (2.35) and the coefficient a at the end of this section.

Let us conclude the section by giving an example of how fruitful the intro-
duction of the tree factorial and symmetry factor are, when expressing combi-
natorics associated to rooted trees. Let t 2 T , we say e : V(t) ! {1, . . . , |t|}
is an ascending labelling of t if

• e is a bijection,
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• and e(v) > e(p(v)) for every v 2 V(t) \ o. In other words, any path from
the root to a leaf is labelled in an ascending order.

In particular, given an ascending labelling e, the root is always labelled by
e(o) = 1. We say that two ascending labellings e, f are equivalent e ⇠ f, if
there exists an automorphism f : V(t) ! V(t) satisfying (2.30) such that

e(v) = f(f(v)) , 8v 2 V(t) .

For example, consider the following labellings:

1
2

3

4 56

7

1
2

7

6 45

3

1
4

3

5 67

2

1
4

3

2 56

7 .

The first three labellings are ascending, with the first two being in fact equiv-
alent. We denote the set of all ascending labellings (up to action of the
symmtry group by the equivalence relation ⇠) of a rooted tree t 2 T by
E(t). It’s cardinality can be expressed conveniently in terms of its tree facto-
rial and symmetry factor.

Lemma 2.2.1. For any t 2 T , we have

a(t) := |E(t)| =
|t|!

t! s(t)
.

The proof of the lemma can be found in [But08, Theorem 305A].

2.2.2 Associating trees to nested derivatives

In this section, we embed rooted trees into the analysis of ordinary differential
equations (ODEs). We are mainly interested in series representations of the
solutions to ODEs of the form

ẋ = h(x) , x0 = a 2 R , (2.32)

for some function h : R ! R. At this point let us assume that both h and the
solution (xt)t>0 admit locally a unique series expansion, given by their Taylor
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series. Hence, the integral representation of (2.32) reads

xt = a +
Z t

0

•

Â
n=0

(xs � a)n

n!
h(n)(a)ds

= a +
Z t

0

•

Â
n=0

1
n!

 
•

Â
k=1

sk

k!
x(k)0

!n

h(n)(a)ds ,
(2.33)

where in the last step we replaced xs by its Taylor series. Here and throughout
the rest of the thesis, we write

x(k)t =
dk

dkr
xr

���
r=t

or h(n)(a) =
dn

dnx
h(x)

���
x=a

,

for the kth (or nth) derivative of a function. From (2.33), we deduce that it
suffices to control derivatives of x at time zero. Now we make the useful
observation, thanks to the information encoded in the differential equation
(2.32) and application of the chain rule, that

ẋr = x(1)r = h(xr) ,

ẍr = x(2)r = h0(xr)ẋr = h0(xr)h(xr) ,

x(3)r = h00(xr)h(xr)
2 + h0(xr)

2h(xr) ,

x(4)r = h(3)(xr)h(xr)
3 + 4h00(xr)h0(xr)h(xr)

2 + h0(xr)
3h(xr) .

Hence, derivatives of arbitrary order of the solution x can be expressed in
terms of higher-order derivatives of h. However, it will be difficult to keep
track of the iterative application of the chain rule for higher order terms. At
this point, we use rooted trees as a guiding aid, that will even turn out more
fruitful than expected, see Lemma 2.2.2 below.

Let us begin by considering the tree containing a single vertex, which
represents the function h(x). Now, differentiating h(x), there is only a single
function we can apply the derivative to (a single vertex), which yields

h(x) 7!
d
dt

h(x) = h0(x)ẋ = h0(x)h(x) = x(2) represented as 7! ,

where we chose the only available vertex (representing an occurrence of h(x))
and attached a new vertex to it (taking the derivative). This increases the
degree (number of derivatives) of the original vertex, whereas the new leaf
represents an occurrence of ẋ = h(x) by the chain rule. Note that at this stage
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the colour of vertices in the tree may be ignored, as both leaves and inner
vertices play the same role.

Let us also formulate the remaining terms, up to order four, in terms of
rooted trees. The first non-trivial case is x(3) for which

h0(x)h(x) 7! h00(x)h(x)2 + h0(x)2h(x) = x(3)

is represented in terms of

7! + .

In words: Using the product rule we have to take the derivative of either term
in the product h0(x)h(x). Thus, we either attach a new vertex to or to in

, corresponding to deriving h0(x) or h(x), respectively. Lastly, for x(4) we
represent

h(3)(x)h(x)3 + 4h00(x)h0(x)h(x)2 + h0(x)3h(x)

in terms of

+ 3 + + .
(2.34)

Here we split the second term on the left-hand side into two seperate trees
on the right-hand side. Both trees represent the same product of derivatives,
because the number of vertices having a specific degree agrees. Similarly, it is
possible to follow a procedure using multi-indices instead of trees, in which
case the two terms are combined into a single one, see Faà di Bruno’s formula
[Fra78].

That the successive application of differential operators can be expressed
in terms of rooted trees, as presented above, was first observed by Cayley
[Cay57] and a century later refined by Merson [Mer57], with a focus on nu-
merical analysis. In fact, the relation between higher-order derivatives and
trees can be made more accurate by also expressing the occurring coefficients,
cf. (2.34), in terms of their corresponding trees [But63]. For this, we have to
introduce a last quantity:

• Tree (or elementary) differential. For a smooth function h, we define, in-
ductively, its tree differential (also called elementary differential) h(t) : R ! R
as follows: For all a 2 R, for the empty tree 1 we define h(1)(a) := a and
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for the tree , h( )(a) := h(a). Now, for t = [t1 · · · tn] we define inductively

h(t)(a) := h(n)(a)
n

’
j=1

h(tj)(a) , for all a 2 R . (2.35)

Unravelling the recursive definition of the elementary differential using an
inductive argument, we can write

h(t)(xt) = ’
v2V(t)

h(deg
"
(v))(xt) , (2.36)

where deg
"
(v) counts the number of edges connected to v, that lead deeper

into the tree, away from the root (which is equivalent to the number of de-
scendants). More precisely,

deg
"
(v) :=

���{v, u} 2 E(t) : p(v) 6= u
 �� ,

with the convention that deg
"
(ot) = deg(ot).

Now, we have all the tools at hand to express higher-order derivatives of
the solution x of the ODE (2.32) in terms of rooted trees.

Lemma 2.2.2. Let h 2 Cn(R), n 2 N, and let (xt)t2[0,t⇤) solve the differential
equation (2.32) on [0, t⇤), for some t⇤ > 0. Then

x(k)t = Â
t2T
|t|=k

a(t)h(t)(xt) = Â
t2T
|t|=k

k! h(t)(xt)
t! s(t)

, 8k 6 n + 1 , t 2 [0, t⇤) ,

where a(t) was defined in Lemma 2.2.1.

The identity was made precise in [But63], see also [But08, Theorem 311C].
We give a proof for completeness.

Proof. Let t⇤ > 0 such that (xt)t2[0,t⇤) solves the differential equation (2.32)
on [0, t⇤). First, consider t = for which the claimed identity holds, since
ẋt = h(xt) and s( ) = ! = 1. Now, assume the identity holds for any k 6 n,
n 2 N. Then, by the induction hypothesis

x(n+1)
t = Â

t2T
|t|=n

n!
t! s(t)

d
dt

h(t)(xt) . (2.37)
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Note that by definition of the elementary differential, h(t)(xt) is a product of
|t| derivatives (including 0th-order), cf. (2.36), and thus

d
dt

h(t)(xt) = h(xt) Â
v2V(t)

h(deg
"
(v)+1)(xt) ’

u2V(t)\{v}
h(deg

"
(u))(xt) .

Hence, together with (2.37) and Lemma 2.2.1, we can write

x(n+1)
t = Â

t2T
|t|=n

Â
e2E(t)

Â
v2V(t)

h(xt)h(deg
"
(v)+1)(xt) ’

u2V(t)\{v}
h(deg

"
(u))(xt) ,

(2.38)

where E(t) denotes the set of ascending labellings, which was introduced
above Lemma 2.2.1. In fact, each summand is an elementary differential for
a tree t0

2 T with n + 1 nodes, where we added a new leaf neighbouring the
node v, cf. (2.36).

It is only left to rewrite the above sum in terms of trees of size n + 1.
However, a tree of size n+ 1 can arise from various trees of size n, by grafting
a new vertex onto the tree, for example

arises from or .

To keep track of such multiplicites, let us define the index set over the sums
on the right-hand side of (2.38) as the set of labelled rooted trees (of size n)
with a marked vertex

LT
(n)
mrk := {(t, v, e) : v 2 V(t) , e 2 E(t) for some t 2 T with |t| = n} ,

furthermore, we write the set of labelled trees of size n in terms of

LT
(n) := {(t, e) : e 2 E(t) for some t 2 T with |t| = n} .

Then the (simplified) grafting operator is the mapping from LT
(n)
mrk into

LT
(n+1) via

(t, v, e) 7! n+1 yv te =: (t0, f) . (2.39)

Here, t0 is the tree arising from t by attaching a new leaf u to v, and f is
the labelling that extends e with the additional component u 7! n + 1. For
example,

e(v)

yv e(v)
n + 1

,



44 CHAPTER 2. PRELIMINARIES

with n = 3.
In order to conclude the proof, we have to show that the grafting opera-

tor y·, (2.39), defines a bijection between marked, labelled trees LT
(n)
mrk and

labelled trees LT (n+1). Consider (t0, f) 2 LT
(n+1) and write the labelled tree

where we removed the node with label n + 1 and the corresponding edge
(note that the node is necessarily a leaf) by

⇣
t, p

�
f�1(n + 1)

�
, f
��
V(t)

⌘
2 LT

(n)
mrk , (2.40)

with p
�
f�1(n + 1)

�
denoting the parent of the node with label n + 1. We can

see that the generated tree (2.40) maps to (t0, f) under the grafting y·. This
also yields injectivity, because the grafting yv only acts locally on a tree at
the marked node v.

Overall, we can perform a change of variable in the summation in (2.38)
from LT

(n)
mrk to LT

(n+1), which yields

x(n+1)
t = Â

t2T
|t|=n+1

Â
f2E(t)

h(t)(xt) = Â
t2T

|t|=n+1

(n + 1)!
t! s(t)

h(t)(xt) .

In the last step, we applied once more Lemma 2.2.1 since the elementary
differential does not depend on the chosen labelling. This concludes the
proof.

2.2.3 The Butcher series

Using Lemma 2.2.2, the Taylor series of xt can be written (formally) in terms
of trees and their quantities introduced in (2.28), (2.31) and (2.35):

Bh(t, a) := Â
t2T

h(t)(a)
t! s(t)

t|t| . (2.41)

This formal power series over rooted trees (2.41) was introduced by Butcher
[But63, Display (11)] and named B-series or Butcher series in subsequent
work by Hairer and Wanner [HW74]. As for the Taylor series, one expects
that the B-series agrees with the solution xt, for t small enough. The content of
the following lemma is that the new order of summation does not change the
value of the series and that the Butcher series indeed represents the solution
of the ODE.
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Lemma 2.2.3. Assume the solution (xt)t>0 of the ODE (2.32) exists and is locally
analytic around zero with radius t⇤. Then, for all t 2 [0, t⇤)

xt = Bh(t, a) 2 R ,

i.e. the solution xt is represented by its B-series (2.41) whenever it admits a power
series in t centred at zero.

Proof. Let t? 2 (0, •] such that (xt)t2[0,t?) has an analytic extension on the
complex plane C, i.e. t? is the radius of convergence. Then, for t 2 [0, t?)

xt =
•

Â
k=0

tk

k!
x(k)0 , (2.42)

with the series converging absolutely [MH99, Theorem 3.2.7]. Now, due to
the absolute convergence of the series and Lemma 2.2.2, we can switch to a
summation over rooted trees which yields

xt =
•

Â
k=0

Â
t2T
|t|=k

h(t)(x0)
t! s(t)

t|t| = Bh(a, t) .

This concludes the proof.

For t sufficently small, analyticity of h implies analyticity of the solution
xt, which is then represented by the B-series (2.41).

Proposition 2.2.4. Let h : R ! R be a function that is analytic on B(a, R), R 2

(0, •], then the unique solution (xt)t>0 to the ODE (2.32) is locally described by the
B-series (2.41). More precisely,

xt = Bh(t, a) , for all t 2
h
0, R

2 M

⌘
, with M := sup

|x�a|6R
|h(x)| .

A proof of the proposition can be found in [HNW93, pp. 46], see also [Gub10,
Theorem 5.1]. We repeat the argument here for completeness.

Proof. Uniqueness of the equation follows for example from [HNW93, Theo-
rem I.7.4]. The second part of the statement is a consequence of the method
of majorants: Assuming that h is analytic on B(a, R), Cauchy’s inequality
[MH99, Theorem 2.4.7] yields for all n 2 N

|h(n)(a)| 6 n! M
Rn = MR

dn

drn (R � r)�1
���
r=0

= g(n)(0) , (2.43)
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where g(r) := MR(R � r)�1 and M := sup
|x�a|6R |h(x)|.

First, the differential equation

ṙ =
M R

R � r
= g(r) , r0 = 0 ,

has the explicit solution

rt = R
✓

1 �
q

1 � 2Mt
R

◆
,

which is analytic on B(0, R
2M ), thus, admits a power series representation

around 0. On the other hand, by Lemma 2.2.2,

1
k!

���x(k)0

��� = Â
t2T
|t|=k

|h(t)(a)|
t! s(t)

6 Â
t2T
|t|=k

g(t)(0)
t! s(t)

=
1
k!

r(k)0 , for all k 2 N ,

because every product term in the elementary differential (2.35) can be esti-
mated using (2.43). This yields absolute convergence of the Taylor series for
xt, since

•

Â
k=1

tk

k!

���x(k)0

��� 6 rt =
•

Â
k=1

tk

k!
r(k)0 < • ,

for every t 2 [0, R
2M ). The statement of the proposition follows from

Lemma 2.2.3.

Remark 2.2.5. Note that Proposition 2.2.4 is far from being optimal and may only
yield a sub-interval on which the solution (xt)t>0 is analytic. Consider for example
the differential equation

ẋ = x3 , x0 = 1 . (2.44)

The function h(x) = x3 is entire, thus, Proposition 2.2.4 yields that the solution is
analytic on the interval [0, t̂) with

t̂ := sup
R>0

R
2(1 + R)3 =

2
27

.

However, (2.44) has the explicit solution

xt =
1

p
1 � 2t

, for all t 2 [0, 1
2 ) , (2.45)

which is analytic on the interval [0, 1
2 ), that is strictly larger than the one derived
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from Proposition 2.2.4. Hence, xt agrees with its B-series Bh(t, 1) for any t 2 [0, 1
2 ),

following Lemma 2.2.3.

2.2.4 A brief note on rough paths

It is worth mentioning that Butcher’s original work [But63, But72] influenced
fields and works far beyond the original scope. Butcher started in the field
of numerical analysis, namely building a general theory of Runge-Kutta
methods. However, the thorough study of the trees appearing unveiled a
finer structure in terms of a Hopf algebra formalism, which reached much
farther. For example, the same rooted trees emerged in non-commutative
geometry and also quantum field theory, where they were used for the
removal of subdivergences in Feynman diagrams. We refer to the survey
articles [Bro04, But18] for a detailed overview. Finally, rooted trees made
their debut in stochastic analysis in the seminal work [Gub10], in the context
of rough path theory.

From the point of view of probability theory, the theory of rough paths,
introduced in [Lyo98], allows for a deterministic analysis of stochastic dif-
ferential equation. Starting point is the replacement of the driving signal in
(2.32) with a (rough) stochastic process W = (Wt)t>0 2 C

a([0, •)), a 2 (0, 1),
e.g. (fractional) Brownian motion. This yields the SDE

dXt = h(Xt)dWt , X0 = a , (2.46)

with h a smooth function. Because the solution X should look like W on small
scales, one expects that

Xt = Â
t2T
|t|6N

h(t)(Xs)
s(t)

W
(t)
s,t + O

�
|t � s|(N+1)a� , (2.47)

following the same steps as in the case of the ODE (2.32). Here, W(t) denotes
iterated stochastic integrals with respect to W, which replace the role of t|t|

t! in
the previous section. For example

W
( )
s,t =

Z t

s
dWr = Wt � Ws and W

( )
s,t =

Z t

s

Z r

s
dWr0 dWr , (2.48)

see [Gub10, Display (10)] for their explicit definition.
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In order to proceed in a pathwise fashion, we have to interpret the
stochastic integrals in (2.48) for a fixed realisation (Wt(w))t>0, which is apri-
ori not possible. For simplicity, assume that W is given by a standard Brow-
nian motion, then the integrals (2.48) can be interpreted both in the Itô or
Stratonovich sense (and many more), giving rise to different solutions of the
SDE (2.46). This really is a manifestation of the fact that the “integral-map”
is continuous, in fact well-defined, only if W 2 C

a([0, •)), a > 1
2 [You36].

Clearly, Brownian motion just about fails this property, allowing for different
interpretations of the stochastic integrals.

The idea of rough path theory is to lift the driving signal W to an element
W in an extended space (the so called rough path space equipped with a
suitable topology), by postulating the values of iterated integrals (2.48). In
other words, the sole probabilistic component is the choice of integration in
(2.48). Together with (2.47), this allows to construct the integral

Z t

0
h(Xs)dWs

as a limit of higher-order Riemann sums [Lyo98]2. Here N has to be chosen
large enough such that (N + 1)a > 1. Hence, in the case of Brownian motion
we have N = 2 and giving meaning to a single (non-trivial) iterated integral
suffices, cf. (2.48). Moreover, by setting up a fixed point problem on the rough
path space, uniqueness follows and the solution map W 7! X can be proven
to be continuous, see for instance [Gub10, Theorem 8.8].

2.3 Wild expansion of SPDEs with additive noise

After having seen how tree expansions are useful to encode solutions of
ODEs and SDEs, we shall now proceed to the infinite dimensional setting.
Throughout this section we will focus on SPDEs with additive noise of the
form

∂tu# =
1
2

Du# +m u# + h(u#) + X# , u#(0, ·) = 0 , (2.49)

where h is a real analytic functions, satisfying h(0) = h0(0) = 0, and m 2 R.
At this point, consider a noise X of either the form

X#(t, x) = l# p#2 ? x(t, ·)(x) or X#(t, x) = l# p#2 ? h(x)d0(t) , (2.50)

2This was also explained beautifully in a course by Hendrik Weber on Singular SPDEs, see
https://drive.google.com/file/d/1s4XX--zGP7JfKgBxn-eoSZupqiM6QIFH/view.

https://drive.google.com/file/d/1s4XX--zGP7JfKgBxn-eoSZupqiM6QIFH/view
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with l# > 0 a real parameter.3 Here, ? denotes convolution in the space-
variable. Thus, either X is given by a mollified space-time white noise or a
mollified white noise forcing at t = 0. We will write X = x or X = d0 h, when
distinguishing between the two cases. Let us also recall that Pt = exp

� t
2 D

�
is

the heat semigroup on Rd:

Pt j(x) = pt ? j(x) ,

pt(x) =
1

(2pt) d
2

exp
✓
�
|x|2

2t

◆
1[0,•)(t) , 8(t, x) 2 R ⇥ Rd .

(2.51)

Similarly, the heat semigroup with non-trivial potential m is given by P(m)
t :=

em tPt with associated kernel p(m)
t (x) := em t pt(x).

Because h is a real analytic function satisfying h(0) = h0(0) = 0, the mild
formulation of (2.49) reads

u#(t, x) = #(t, x) +
Z t

0

Z

Rd
p(m)

t�s(y � x)
•

Â
n=2

u#(s, y)n

n!
h(n)(0)dy ds

= #(t, x) +
•

Â
n=2

h(n)(0)
n!

P(m)
⇤ un

# (t, x) ,
(2.52)

where we introduced the tree notation

#(t, x) :=
Z t

0

Z

Rd
p(m)

t�s(y � x)X#(s, y)dy ds , (2.53)

which is the solution of the linearisation of the SPDE (2.49), with h = 0. Ex-
pression (2.53) should be interpreted as follows: We assign the time-space
variable (t, x) to the root, the time-space variable (s, y) as well as the weight
X#(s, y) to the leaf and the kernel p(m)

t�s(x � y) to the connecting edge. Finally,
we integrate over the variables associated to all nodes except the root. In
other words, the edge represents a time-space convolution between the heat
kernel and the weight of the leaf, evaluated at the time-space variables as-
signed to the root.

The integral # is the first step in an approximation of the solution of
u#. Viewing the right-hand side of (2.52) as a function of u#, we can per-
form an iterative expansion, such as a Picard iteration. However, due to the
non-linear nature of the equation, the stochastic integrals appearing become

3In some cases the scaling parameter l# is only well-defined on an interval (0, d), e.g. l# ⇠�
log 1

#

��1/2. In the following, we will assume # 2 (0, d), with the (arbitrary) choice d = 1
2 .
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overwhelming quickly, both in number and complexity.

Example 2.3.1. Consider the equation

∂tu# =
1
2

Du# +m u# � (u#)
3 + X# , u#(0, ·) = 0 , (2.54)

i.e. h(x) = �x3. Note that this is the non-linearity of the Allen-Cahn equation
(Chapter 3) or the dynamic j4 model (1.20). Its mild formulation reads

u#(t, x) = #(t, x)�
Z t

0

Z

Rd
p(m)

t�s(y � x)(u#(s, y))3 dy ds . (2.55)

Performing the next step in the Picard iteration, we insert (2.53) in place of u#

into the right-hand side of (2.55), which yields

#(t, x)� P(m)
⇤

⇣
#

⌘3
(t, x) . (2.56)

Building on the identity (2.53), we represent the cubic power in terms of a
branched tree as

#(s, y) :=
⇣

#(s, y)
⌘3

, (2.57)

where we have glued together three copies of the tree at a common root. At
this point, we notice that we represent occurrences of X# by and kernels p(m)

by straight edges, which are linked by vertices that correspond to space-time
convolutions (excluding the root). This motivates us to finally write

(2.56) =: #(t, x)� #(t, x) . (2.58)

Both terms lie in a finite inhomogeneous Wiener chaos and we are able to
control them with tools from stochastic analysis. Of course, we can continue
this expansion at will, for example the next iteration yields the expression

#(t, x)� P(m)
⇤

 

# � #

!3

(t, x) ,

and by iterating the procedure we obtain a formal expression which is hoped
to represent the solution of (2.54) arbitrarily well.

Any such iterative procedure leads to a formal power expansion in the
noise variable X#. In the following, we will use a recursive tree expansion,
often referred to as Wild expansion, instead of performing an iterative Picard
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expansion. This type of expansion was popularised in the context of stochas-
tic PDEs by the work [Hai13], and is attributed to the work of Wild [Wil51].

Definition 2.3.2 (Wild expansion). The Wild expansion of (2.52) is the formal
series over rooted trees

Â
t2T \{1}

Xt
# , (2.59)

with Xt
# , t 2 T \ {1}, defined recursively as follows:

• First, define X#(t, x) to be the solution of the linearised equation

∂tX# =
1
2

DX# +m X# + X# , X#(0, ·) = 0 . (2.60)

• For t 2 T \ {1, } of the form t = [(t1)k1 · · · (tn)kn ] for distinct ti 2 T ’s,
i = 1, ..., n, each one appearing ki times, we define Xt

# to be the solution of

∂tXt
# =

1
2

DXt
# +m Xt

# +
h(|k|)(0)

k!

n

’
i=1

(Xti
# )

ki , Xt
# (0, ·) = 0 . (2.61)

where we used the multi-index notation |k| = Ân
i=1 ki and k! = k1! · · · kn!.

In other words, every term Xt
# can be expressed as an iterated stochastic in-

tegral over “lower order” terms:

Xt
# (t, x) =

Z t

0

Z

Rd
p(m)

t�s(y � x)
h(|k|)(0)

k!

n

’
i=1

(Xti
# (s, y))ki dy ds , (2.62)

where the integral is to be interpreted in the sense of (2.16). We will make this
connection more precise in the next section. Note the discrepancy between
h(|k|)(0)
|k|! in (2.62) and the Taylor coefficient in (2.52), which is due to considering

unordered trees: The difference of the two coefficients

|k|!
k!

=
|k|!

k1! · · · kn!

counts the number of possibilities to graft the tree t from the given ti’s, see
(2.29).

As we are interested in approximating the solution u# using this expan-
sion, it will be useful to introduce a truncated version which only considers
finitely many terms.
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Definition 2.3.3 (Truncated Wild expansion). We define the truncated Wild
expansion of order N to be

uN
# (t, x) := Â

t2T N

Xt
# (t, x) , 8(t, x) 2 (0, •)⇥ Rd ,

with T
N := {t 2 T \ {1} : |t| 6 N}.

The truncated Wild expansion agrees in the limit with a formal Picard
iteration. Notably, it has the advantage of still being closely associated to the
original equation, allowing for (some) control on the imposed error. More
precisely, since every term Xt

# solves a PDE (2.61), their sum uN
# solves the

differential equation

∂tuN
# =

1
2

DuN
# +m uN

# + P(N)
h,0 (uN

# ) + RN
# + X# , uN

# (0, ·) = 0 , (2.63)

where P(N)
h,0 is the Nth-order Taylor polynomial of h around zero

P(N)
h,0 (uN

# (t, x)) =
N

Â
m=1

h(m)(0)
m! Â

t1,...,tm2T N

m

’
i=1

Xti
# (t, x) ,

and RN
# an error term. The error term RN

# is explicit and only depends on
trees in the “boundary” of T N

RN
# :=� P(N)

h,0 (uN
# ) + Â

t2T N

t=[(t1)
k1 ···(tn)kn ]

h(|k|)(0)
k!

n

’
i=1

�
Xti

#

�ki

=�

N

Â
m=1

h(m)(0)
m! Â

t1,...,tm2T
N

[t1···tm]/2T N

m

’
i=1

Xti
# .

In the second equality, we used that

Â
t2T N

t=[(t1)
k1 ···(tn)kn ]

h(|k|)(0)
k!

n

’
i=1

�
Xti

#

�ki =
N

Â
m=1

h(m)(0)
m! Â

t2T N

t=[(t1)
k1 ···(tn)kn ]

|k|=m

m!
k!

n

’
i=1

�
Xti

#

�ki

=
N

Â
m=1

h(m)(0)
m! Â

t1,...,tm2T
N

[t1···tm]2T N

m

’
i=1

Xti
# ,

which is a consequence of (2.29). At this stage, we note that the choice of in-
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dex set T N is rather arbitrary and in general one may consider any sequence
of (increasing) subsets of trees that exhaust all of T , as N ! •. Depending
on the structure of the equation, other choices might be more appropriate.
For example, when h is a monomial of degree n 2 N, it suffices to consider
trees in Tn (2.27), see also Chapter 3.

Remark 2.3.4. The concept of Wild expansions can be implemented more generally
to include multiplicative SPDEs or SPDEs with a non-linearity acting on ru, in-
stead of u. In the latter case, the principal example is the KPZ equation (1.19), for
which (2.61) would instead read

∂tXt
# =

1
2

DXt
# + a(t)hrXt1

# ,rXt2
# i , Xt

# (0, ·) = 0 ,

where t = [t1 t2] 2 T2, with a(t) = 1t1=t2 + 21t1 6=t2 2 {1, 2}. See also [Hai13],
where a truncated Wild expansion (in terms of ordered trees) was used to solve the
one-dimensional KPZ equation.

2.3.1 Iterated stochastic integrals, trees and Wiener chaoses

Throughout this section, H will denote the Gaussian Hilbert space generated
by X, see Corollary 2.1.5 and Remark 2.1.19. Whenever we write stochastic
integrals with respect to X, such as (2.9), they are to be interpreted in the sense
of L2-isometries, cf. Lemma 2.1.8.

Our goal is to represent terms in the Wild expansion by iterated Wiener
integrals, indexed by trees, as for example in (2.53) and (2.57). With this in
mind, let us first define for any tree t 2 T \ {1, } the Stratonovich integral

t#(t, x) := I̊`(t)
�
Kt,x

t,#
�

=
Z

(R⇥Rd)L(t)
Kt,x

t,#(sL(t), yL(t)) ’
v2L(t)

X(dsv, dyv) , (2.64)

cf. Definition 2.1.14, with

Kt,x
t,#(sL(t), yL(t)) :=

Z

DI(t)\o
t

bKt,x
t,#(sV(t)\o, yV(t)\o)dsI(t)\o dyI(t)\o , (2.65)

where Dt := [0, t]⇥ Rd and

bKt,x
t,#(sV(t)\o, yV(t)\o) := ’

u2I(t)\o
p(m)

sp(u)�su
(yu � yp(u)) (2.66)
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’
u2L(t)

l# em (sp(u)�su)psp(u)�su+#2(yu � yp(u)) .

We recall that p(u) denotes the unique parent of u. Note that we are not in-
tegrating over the root variable of the tree t, which is assigned to the point
(t, x), but only integrate over all other inner vertices of t. In other words,
every edge in t corresponds to an occurrence of p(m) and every leaf corre-
sponds to a noise X#, recall Example 2.3.1. Note that the condition sp(u) > su

is implicit in the definition of the heat kernel (2.51). At this stage, it is not
clear that the function Kt,x

t,# is contractable, cf. Definition 2.1.13, and thus if
the Stratonovich integral is well defined. We will verify this in Lemma 2.3.8
below.

Remark 2.3.5. In (2.49) we assume zero initial data. However, non-trivial intial
data u0 may be included in the term X by replacing it in (2.64) with

d0(dsv) u0(y) dyv + X(dsv, dyv) ,

assuming u0 is regular enough.

The terms of the Wild expansion (2.62) are related to the Wiener–
Stratonovich integrals (2.64) via a combinatorial factor. For example, the for-
mulation (2.64) allows us to write

X# =
h(3)(0)

3! # , X# =
h(3)(0)2

3! 2! # .

The coefficients in the display above, and in the formulation of the Wild ex-
pansion (2.61), are a consequence of considering unordered trees: In classical
expansions, such as the Picard iteration, integrals are multiplied in different
orders but give rise to the same terms, cf. (2.23) or (2.25). It will be important
to obtain a precise expression for these coefficients, which we shall do now.
To this end, let us define recursively for t = [t1 · · · tn]

ct := h(n)(0)
n

’
i=1

cti , (2.67)

with c := 1. Then the following identity holds:

Lemma 2.3.6. For any t 2 T \ {1}, we have for every # 2 (0, 1
2 ) and (t, x) 2

(0, •)⇥ Rd

Xt
# (t, x) =

ct

s(t)
[t]#(t, x) ,
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with the Wild expansion term (2.62) on the left and the Wiener–Stratonovich integral
(2.64) on the right, represented by the planted tree [t].

Note that ct (2.67) defines an elementary differential (not necessarily as-
sociated to a function as in (2.35)). We note that an identity of similar nature
has been derived in [BCCH20], to determine coefficients of renormalisation
constants in the context of (subcritical) singular SPDEs.

At this point, we adapt the concept of contractions from Section 2.1.2 to
the kernels considered in (2.65). Unlike the stochastic integrals indexed by
the initial tree, the stochastic integral indexed by a contracted tree will lie in
the homogeneous Wiener chaos, whose order is given by the number of un-
contracted leaves. We will see below that one can recover the integral asso-
ciated to the original tree by summing over all integrals indexed by possible
contractions, in analogy to Definition 2.1.14. Let us now be more precise and
start with the definition of a contracted tree.

Definition 2.3.7. For any t 2 T we define a contraction to be a subset of (un-
ordered) pairs of leaves k ⇢ (L(t)2 ) of the tree t, such that every v 2 L(t) lies in at
most one element of k. We define the corresponding set of contractions by

K(t) :=
⇢

k ⇢

✓
L(t)

2

◆
: k is a contraction of t

�
. (2.68)

Moreover, we will denote a tree t = (V , E) that is being contracted according to a
contraction k by tk:

tk := (V , E [ k) ,

and call this a k-contracted tree or simply a contracted tree. We will also denote by
L(tk) the set of leaves of tk, namely, the subset of leaves L(t) which are not included
in the contraction k.

If all leaves of t are contracted via k, we will call k a complete contraction
and tk a completely contracted tree. If this is not the case, we will often (but not
necessarily always) talk of partial contractions and partially contracted trees.

At this point, we see a clear advantage of using rooted trees to represent
stochastic integrals, as we can visualise contractions k 2 K(t) pictorially by
pairing leaves in the tree t. For example, the possible contractions of the tree

(2.69)
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are (up to symmetries)

∆ , , , , , , ,
(2.70)

where we denoted the tree without any contraction with a subscript ∆ to
emphasize the empty contraction, and distinguish it from the Stratonovich
integral. Then, given a contraction k 2 K(t), we write the kernel Kt,x

t,# (2.65)
contracted with respect to k as

Kt,x
tk ,#(sL(tk), yL(tk)) :=

Z

DV(k)
t

Kt,x
t,#(sL(t), yL(t)) (2.71)

’
{u,u0}2k

E
⇥
X(su, yu)X(su0 , yu0)

⇤
dyV(k) dsV(k) ,

where V(k) denotes the vertices included in the contraction k and

E
⇥
X(su, yu)X(su0 , yu0)

⇤
:=

8
<

:
dsu(su0) dyu(yu0) , if X = x ,

d0(su)d0(su0) dyu(yu0) , if X = d0 h .

Now, to a contracted tree tk we associate the Wiener–Itô integral

tk,#(t, x) := I`(tk)

�
Kt,x

tk ,#
�

. (2.72)

To lighten notation, we will sometimes drop the coordinates t, x that indicate
the time-space coordinates of the root, if the explicit indication is not neces-
sary. With this definition, tk,# lies in the homogeneous Wiener chaos of order
`(tk) = |L(tk)|.

By Definition 2.1.14 of the Stratonovich integral, each stochastic integral
associated to a tree t# has the decomposition

t# = Â
k2K(t)

tk,# , (2.73)

with tk,# defined in (2.72). Thus, in the example of the trees in (2.69) and
(2.70), we have

# = #,∆ + # + 3 # + 6 # + 3 # + 6 # + 6 # ,

where the right-hand side corresponds to the homogeneous stochastic inte-
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grals indexed by the contracted trees in (2.70). Here we have taken into ac-
count multiplicities of homogeneous components due to equivalent contrac-
tions, e.g. the contractions

, and ,

are all different, however, correspond to the same stochastic integrals.

Up to this point, we have not given a justification that the stochastic inte-
grals (2.64) or (2.72) are indeed well defined, which we shall do now.

Lemma 2.3.8. Let t 2 T and T > 0. Then uniformly over all (t, x) 2 (0, T]⇥ Rd

and # 2 (0, 1
2 )

kKt,x
tk ,#k

2
L2((R⇥Rd)L(tk )) 6 C

 
l2

#

(4p#2)
d
2

!`(t)

, for all k 2 K(t) ,

where C = C(m, T, i(t), `(t)) is a finite positive constant, independent of #. In par-
ticular, the kernels Kt,x

tk ,# are contractable, cf. Definition 2.1.13, and the Stratonovich
integral (2.64) is well defined as a sum of Itô integrals.

The proof of Lemma 2.3.8 can be found at the end of the section. We
stress that the bound obtained is far from being optimal: The divergence of
the #�2-terms, as # ! 0, is in general not compensated (even by the usual
choices of l# ! 0 in the weak coupling limit, e.g. (1.31)). That the kernels
are indeed uniformly bounded in # is left as a case by case analysis, which
strongly depends on the model at hand and the choice l# being made.

In view of Lemma 2.3.8, we are ready to prove Lemma 2.3.6.

Proof of Lemma 2.3.6. First, the identity holds for t = since

X#(t, x) = l#

Z

Dt

em (t�s)pt�s+#2(y � x)X(ds, dy) = [ ]#(t, x) .

Now, assume the claimed identity holds for any tree t satisfying |t| 6 N,
N 2 N. Let t = [(t1)k1 · · · (tm)km ] with distinct ti 2 T ’s, i = 1, ..., m, each one
appearing ki times, such that |t| = N + 1. Then, by (2.62) and the induction
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hypothesis

Xt
# (t, x) =

Z t

0

Z

Rd
p(m)

t�s(y � x)
h(|k|)(0)

k!

m

’
i=1

✓
cti

s(ti)
[ti]#(s, y)

◆ki

dy ds

=
ct

s(t)

Z t

0

Z

Rd
p(m)

t�s(y � x)
m

’
i=1

�
[ti]#(s, y)

�ki dy ds , (2.74)

where we used (2.67) and (2.28) in the second equality. Because every kernel
Ks,y
[ti ],#

is contractable by Lemma 2.3.8, we introduce

Ks,y
t,# :=

mO

i=1

⇣
Ks,y
[ti ],#

⌘⌦ki
2 L2�(R ⇥ Rd)L(t)

�
, (2.75)

where we recall the ⌦-notation from (2.13). Thus, we can use the product
identity for the Stratonovich integral, Lemma 2.1.15, to write

m

’
i=1

�
[ti]#(s, y)

�ki = I̊`(t)
�
Ks,y

t,#
�
= t#(s, y) ,

where used that `(t) = k1`(t1)+ · · ·+ km`(tm). Together with Lemma 2.1.18,
this finally allows to rewrite (2.74) in terms of

Xt
# (t, x) =

ct

s(t)
I̊`(t)

✓Z t

0

Z

Rd
p(m)

t�s(y � x)Ks,y
t,#(·)dy ds

◆

=
ct

s(t)
[t]#(t, x) ,

where we used that Kt,x
[t],# is contractable, by another application of

Lemma 2.3.8.

Finally, we pay our debt and state a proof of Lemma 2.3.8. While being
heavy notationally, the proof is elementary and best explained in a picture.
Consider for example the kernel Kt,x

tk ,# associated to the (contracted) tree

tk = ,

then we can represent the L2-norm of the kernel diagrammatically in terms
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of

kKt,x
tk ,#k

2
L2((R⇥Rd)L(tk )) =

(t, x)

, (2.76)

where both time-space points associated to the respective roots equal (t, x).
See Section 3.2 for a detailed exposition of this fact. Again, identifications
of time-space points are represented by pairwise contractions (purple edges).
Black edges are interpreted as the convolution kernels consisting of p(m)’s, cf.
(2.71). To give a brief (diagrammatic) summary of the proof: We will extract
the kernels associated to black edges which are connected to purple edges
using a crude “L1–L•-estimate”:

(t, x)

6

������

������
L•

·

����� (t, x)

�����
L1

,

The first term on the right-hand side is bounded since we considered a mol-
lified noise X#. Whereas the second term can be explicitly estimated by “inte-
grating out” all remaining kernels using the time-space points associated to
inner nodes.

Proof of Lemma 2.3.8. Let us first consider the case X = x, and assume m > 0.
Explicitly writing out (2.71), we have

Kt,x
tk ,#(sL(tk), yL(tk))

=
Z

DI(t)\o
t

Z

DV(k)
t

’
u2I(t)\o

p(m)
sp(u)�su

(yu � yp(u))

’
{u,u0}2k

dsu(su0) dyu(yu0) (2.77)

’
u2L(t)

l# em (sp(u)�su)psp(u)�su+#2(yu � yp(u))dyV(k) dsV(k) dsI(t)\o dyI(t)\o

6
Z

DI(t)\o
t

’
u2I(t)\o

p(m)
sp(u)�su

(yu � yp(u))

Z

[0,t]V(k)
’

{u,u0}2k

l2
# e2m (t�su)psp(u)+sp(u0)�2su+2#2(yp(u) � yp(u0))dsu(su0)dsV(k)

’
u2L(tk)

l# em (t�su)psp(u)�su+#2(yu � yp(u))dsI(t)\o dyI(t)\o ,
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where we separated out the space-time points assosciated to leaves contained
in k and applied the semigroup property of the heat-kernel when integrating
out the spatial variables yV(k), and used the fact that sp(u) 6 t.

Now, the second line of the right-hand side of (2.77) can be upper
bounded as follows

Z

[0,t]V(k)
’

{u,u0}2k

l2
# e2m (t�su)psp(u)+sp(u0)�2su+2#2(yp(u) � yp(u0))dsu(su0)dsV(k)

6
 

l2
#

(4p#2)
d
2

Z t

0
e2m (t�s) ds

!|k|

6
 

l2
#

(4p#2)
d
2

1
2m

e2m t

!|k|

, (2.78)

where we used that ps+2#2(x) 6 ps+2#2(0) 6 p2#2(0) in the first inequality.
Hence,

Kt,x
tk ,#(sL(tk), yL(tk))

6
 

l2
#

(4p#2)
d
2

1
2m

e2m t

!|k| Z

DI(t)\o
t

’
u2I(t)\o

p(m)
sp(u)�su

(yu � yp(u)) (2.79)

’
u2L(tk)

l# em(t�su)psp(u)�su+#2(yu � yp(u))dsI(t)\o dyI(t)\o .

This yields an upper bound of the L2-norm of the kernel, since

kKt,x
tk ,#k

2
L2((R⇥Rd)L(tk ))

=
Z

DL(tk )
t

Kt,x
tk ,#(sL(tk), yL(tk))

2 dsL(tk) dyL(tk)

6
 

l2
#

(4p#2)
d
2

1
2m

e2m t

!2|k| Z

DL(tk )
t

✓ Z

DI(t)\o
t

’
u2I(t)\o

p(m)
sp(u)�su

(yu � yp(u))

’
u2L(tk)

l# em(t�su)psp(u)�su+#2(yu � yp(u))dsI(t)\o dyI(t)\o

◆2

dsL(tk) dyL(tk)

6
 

l2
#

(4p#2)
d
2

1
2m

e2m t

!2|k| Z

[0,t]L(tk )
’

u2L(tk)

l2
# e2m(t�su)

(4p#2)
d
2

dsL(tk)

✓ Z

DI(t)\o
t

’
u2I(t)\o

p(m)
sp(u)�su

(yu � yp(u))dsI(t)\o dyI(t)\o

◆2

,

where we applied (2.79) in the first inequality. In the second inequality,
we once more integrated over spatial variables associated to L(tk), while
keeping in mind the semigroup property of the heat kernel, and again used
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ps+2#2(x) 6 p2#2(0). Overall, repeating the same steps as in (2.78), we have

kKt,x
tk ,#k

2
L2((R⇥Rd)L(tk ))

6
 

l2
#

(4p#2)
d
2

1
2m

e2m t

!`(t)

⇥

✓ Z

DI(t)\o
t

’
u2I(t)\o

p(m)
sp(u)�su

(yu � yp(u))dsI(t)\o dyI(t)\o

◆2

,

(2.80)

since 2|k|+ |L(tk)| = `(t). The integral inside the square-bracket can now be
evaluated by integrating over spatial variables from leaves towards the root
(note that every inner node has exactly one edge (heat kernel) connecting it
to its parent):

Z

DI(t)\o
t

’
u2I(t)\o

p(m)
sp(u)�su

(yu � yp(u))dsI(t)\o dyI(t)\o

6
Z

[0,t]I(t)\o
’

u2I(t)\o
em(t�su) dsI(t)\o 6

✓
1
m

em t
◆i(t)�1

.
(2.81)

Lastly, combining (2.80) and (2.81) yields

kKt,x
tk ,#k

2
L2((R⇥Rd)L(tk )) 6

 
l2

#

(4p#2)
d
2

1
2m

e2m t

!`(t) ✓
1
m

em t
◆2(i(t)�1)

.

When considering m 6 0, we use the estimate
R t

0 1sp(u)>su em(sp(u)�su) dsu 6 t,
which yields

kKt,x
tk ,#k

2
L2((R⇥Rd)L(tk )) 6

 
l2

#

(4p#2)
d
2

!`(t)

t2(i(t)�1)+`(t) ,

following the same lines of the proof above.

Lastly, let us comment on the case when X = d0h, in which all time-
variables associated to leaves are evaluated at 0. Then the equivalent estimate
to (2.78) reads
Z

[0,t]V(k)
’

{u,u0}2k

l2
# e2m (t�su)psp(u)+sp(u0)�2su+2#2(yp(u) � yp(u0))d0(su0)d0(su)dsV(k)

6
 

l2
#

(4p#2)
d
2

Z t

0
e2m (t�s)d0(s)ds

!|k|

6
 

l2
#

(4p#2)
d
2

e2m t

!|k|

,



62 CHAPTER 2. PRELIMINARIES

which eventually yields, for m > 0,

kKt,x
tk ,#k

2
L2((R⇥Rd)L(tk )) 6

 
l2

#

(4p#2)
d
2

e2m t

!`(t) �
em t�2(i(t)�1) .

In the case m 6 0, the exponential factor can be neglected. This concludes the
proof.

2.3.2 From the Wild expansion to a Butcher series

This sections main result is to establish a link between the Wild expansion,
cf. Definition 2.3.2, and a corresponding Butcher series (2.41). First we need
to introduce an operator on trees.

Definition 2.3.9. Let n 2 N. We call the map

T : T \ {1} ! T , T (t) = t , (2.82)

the trimming operator, where T (t) is the tree that is spanned by the inner nodes of
t, i.e. T “cuts off” all the leaves and their attached edges.

To lighten later notation, we have also used the chromatic notation by
which t = T (t), for example

= T ( ) = 1 , T ( ) = , and T
⇣ ⌘

= .

The reader should have the following pictorial description of T in mind

7! ' , (2.83)

where we again coloured leaves in the tree on the right-hand side in black,
according to our convention.

Having the definition of trimmed trees at hand, we can recover the coeffi-
cients of the Butcher series, with non-linearity h, by summing over all suitable
coefficients of Wild expansion terms.

Lemma 2.3.10. Let s 2 T , then

h(s)(1)
s(s)

= Â
t2T

t=T (t)=s

ct

s(t)
,
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with ct defined in (2.67). Recall (2.28) and (2.35) for the definition of the symmetry
factor s(t) and the elementary differential h(t), respectively.

To the author’s best knowledge the identity in Lemma 2.3.10 was not ob-
served before. However, it is not entirely surprising: The fundamental build-
ing block in the construction of terms in the Wild expansion is the lollipop .
Hence, the expansion can be viewed as a power series expansion in terms of

, and not the noise X# = . The corresponding combinatorial factor, associ-
ated to a Wild term Xt

# , should thus be related to the trimmed tree T (t) = t.

Proof of Lemma 2.3.10. The statement is true for s = 1 2 T , since T �1(1) =

{ } with h( )(1) = h(1)(1) = 1 = c and s( ) = s(1). Moreover, for s = the
pre-image T �1( ) consists of trees of the form

t =
· · ·

= [ n] , n 2 N .

Hence, because h is analytic and h(0) = 0

Â
t2T

t=T (t)=

ct

s(t)
=

•

Â
n=1

c[ n]

s([ n])
=

•

Â
n=1

h(n)(0)
n!

· cn = h(1) =
h( )(1)

s( )
.

Now we proceed by induction. Assume that the statement is true for all trees
ŝ 2 T \ {1} with |ŝ| 6 n, for some given n 2 N, and let s 2 T be a tree
with |s| = n + 1, of the form s = [(s1)k1 · · · (sn)kn ] for distinct si 2 T \ {1},
i = 1, ..., n, each one appearing ki times. Just as above, trees in the pre-image
T �1(s) must be of the form

t =
t1 ··

t
|k|

··

=
⇥
t1 · · · t|k|

m�|k|⇤ , m = |k|, |k|+ 1, . . . ,

for some tj 2 T \ {1, }, j = 1, . . . , |k|, where we recall that |k| = Ân
i=1 ki.

Because we consider unordered trees, we may assume that the trees t1, . . . , tk1

satisfy T (tj) = s1, the trees tk1+1, . . . , tk1+k2 satisfy T (tj) = s2 and so on. At
this point it will be useful to write the grafting operator in terms of

t = [t1 · · · t|k|
m�|k|] = [t1 · · · tk1 ] · [tk1+1 · · · tk1+k2 ] · · · [

m�|k|]

=: t1 · · · tn ·
· · ·

,
(2.84)

where the right-hand side is to be interpreted as gluing together all grafted
trees at one common root (without introducing new edges). Note that
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T (ti) = [ski
i ]. In particular, we have

s(t) = (m � |k|)! s(t1) · · · s(tn) , (2.85)

because tj 6= t` whenever T (tj) 6= T (t`). As a consequence of (2.84) and
(2.85), we can write

Â
t2T

t=T (t)=s

ct

s(t)
=

•

Â
m=|k|

h(m)(0) cm�|k| Â
t=[t1 ··· t|k|

m�|k|]2T
t=T (t)=s

1
s(t)

|k|

’
i=1

cti

=
•

Â
m=|k|

h(m)(0) cm�|k|

(m � |k|)!

n

’
i=1

Â
ti=[t̂1 ··· t̂ki ]2T

T (ti)=[s
ki
i ]

1
s(ti)

ki

’
j=1

ct̂j ,

(2.86)

where t̂1, . . . , t̂ki play the role of tk1+···+ki+1, . . . , tk1+···+ki+1 . Now, we have

ki! Â
ti=[t̂1 ··· t̂ki ]2T

T (ti)=[s
ki
i ]

1
s(ti)

ki

’
j=1

ct̂j = Â
ti=[t̂1 ··· t̂ki ]2T

T (ti)=[s
ki
i ]

ki!
s(t̂1) · · · s(t̂ki)

s(ti)

ki

’
j=1

ct̂j

s(t̂j)

= Â
t̂1 ,... ,t̂ki2T

T (t̂i)=si

ki

’
j=1

ct̂j

s(t̂j)
=

✓
Â

t̂2T
T (t̂)=si

ct̂

s(t̂)

◆ki

=

 
h(si)(1)

s(si)

!ki

,

(2.87)

where the second equality is a consequence of the size of the pre-image
[· · · ]�1(ti) ⇢ (T )ki being equal to

ki!
s(t̂1) · · · s(t̂ki)

s(ti)
2 N ,

cf. (2.29). The last equality holds by application of the induction hypothesis.

Then, (2.86) together with the chain of identities in (2.87) yields

Â
t2T

t=T (t)=s

ct

s(t)
=

•

Â
m=|k|

h(m)(0) cm�|k|

(m � |k|)!

n

’
i=1

1
ki!

 
h(si)(1)

s(si)

!ki

. (2.88)

Thus, together with

•

Â
m=|k|

h(m)(0)
(m � |k|)!

cm�|k| = h(|k|)(c ) = h(|k|)(1) ,
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(2.88) implies

Â
t2T

t=T (t)=s

ct

s(t)
=

1
s(s)

h(|k|)(1)
n

’
i=1

⇣
h(si)(1)

⌘ki
=

h(s)(1)
s(s)

,

where we used the definition of the symmetry factor (2.28) and the elemen-
tary differential (2.35). This concludes the proof.

Let us state a useful property of the trimming operation, namely it is a
bijection between finite families of n-ary and sub-n-ary trees: For arbitrary
N 2 N, let us define

T
N,

n := {t 2 Tn : i(t) 6 N} ✓ Tn ,

T
N
6n := {t 2 T6n : |t| 6 N} ✓ T6n .

(2.89)

The next lemma summarises this and other properties of T .

Lemma 2.3.11. The following holds for any n 2 N.

(i) The map T is a bijection from T
N,

n to T N
6n, for every N 2 N.

(ii) Let t 2 Tn \ { } and t1, . . . , tn 2 Tn such that t = [t1 · · · tn], then

t = [t1 · · · tn] .

In other words, trimming via T and grafting via [. . .] commute.

Proof. By definition of T N,
n , its image under T is a subset of T N

6n. On the
other hand, for any s 2 T

N
6n we can construct a t 2 T

N,
n such that T (t) =

t = s as follows: To each node that has n � k descendants, for k 2 {1, . . . , n},
we append exactly k lollipops , so that in the new tree that node has exactly
n outgoing edges. The constructed tree t lies in T

N,
n , since i(t) = |s| 6 N

and every inner node of t has exactly n descendants. Moreover, it satisfies
T (t) = s. This concludes the proof of the first part of the statement.

In order to prove (ii), let t 2 Tn \ { } and t1, . . . , tn 2 Tn such that t =

[t1 · · · tn]. Now, because T does not act on the root of t, see Definition 2.3.9,
we necessarily have

t = T (t) = [T (t1) · · · T (tn)] = [t1 · · · tn] .

In order to avoid confusion, let us discuss explicitly the case where ti = and
thus ti = 1, for some i 2 {1, . . . , n}. Without loss of generality, let us assume
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that t2 = . Then, by convention of [. . .], we have

t = [t1 · · · tn] = [t1 t3 · · · tn] .

This identity propagates to t = [t1] if additionally ti = for all i 2 {3, . . . , n}.

Moreover, in the most extreme case t =
· · ·

, this reduces further to t =

= [1] = [1n] = [ n ].

The bijection property of T for n-ary trees allows us to link each term in
the Wild expansion to a corresponding term in the Butcher expansion of the
ODE ẋ = h(x), whenever h is a monomial.

Corollary 2.3.12. Let h be a monomial of degree n 2 N, then the terms of the Wild
expansion for the SPDE (2.49) satisfy the following identity: For any t 2 Tn

Xt
# (t, x) =

h(t)(1)
s(t)

[t]#(t, x) , 8# 2 (0, 1
2 ) , (t, x) 2 (0, •)⇥ Rd ,

with the symmetry factor s(t) and elementary differential h(t) defined in (2.28) and
(2.35), respectively.

Proof. Let s 2 T6n, then there exists a unique t 2 Tn such that T (t) = t = s,
by Lemma 2.3.11. Therefore, the statement of Lemma 2.3.10 simplifies to

h(s)(1)
s(s)

= Â
t0
2T

T (t0)=s

ct0

s(t0)
=

ct

s(t)
,

because ct0 = 0 for every t0 /2 Tn, since h(m)(0) = 0 whenever m 6= n, cf.
(2.67). The statement of the corollary is now a consequence of Lemma 2.3.6.

2.3.3 A brief note on regularity structures

In Section 2.2.4, we saw that finitely many iterated integrals suffice to express
the solution of a SDE in a pathwise sense. This idea was pushed further
to a multi-parameter setting in [Hai13] and lead to Martin Hairer’s theory
of regularity structures [Hai14], which has been expanded and further
developed in [CH16, BCCH20, BHZ19]. In this section, we aim to give a
condensed summary of the theory and its limitation to (scaling) subcritical
SPDEs. For more details and a general overview, we point the reader to
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[FH20, CW17, CZ21, Zam21].

Consider a SPDE of the form (2.49) that is subcritical, recall Table 1.4. The
basic idea of the theory of regularity structures is an expansion as we per-
formed in Definition 2.3.2. Subcriticality of the equation suggests that u# ' #

on small scales. In particular, all other terms in the expansion are of higher
regularity. This is both a curse and blessing for subcritical equations. On the
one hand, the gain in regularity suggests that finitely many terms in the ex-
pansion suffice to give sense to (2.49). On the other hand, we will encounter
objects of regularity a > 1, which require “recentering” to make sense in this
context. In particular, the latter is accountable for a lot of the complexity in
regularity structures [CW17].

The expansion in regularity structures is expressed in terms of abstract
symbols t = (t)t2T , where T denotes an index set such as rooted trees. Usu-
ally T holds a larger class of objects, including abstract monomials Xk for
the “recentering”.4 To every point (t, x) one then associates a local expansion
P(#)

t,x , a so called model, which maps abstract symbols in T to actual func-
tions/distributions. For example,

P(#)
t,x (·) = P(m)

⇤ x#(·)� P(m)
⇤ x#(t, x) and P(#)

t,x Xk (·) = ((·)2 � x)k .

In the context of rough paths, the model P(#)
t,x corresponds to the iterated in-

tegrals W
(·)
t,· . Now, in order to describe the solution of the given SPDE up to

regularity g > 0, it suffices to look at all terms in the expansion below this
regularity threshold (finitely many), i.e.

u#
�

j(l)
t,x
�
= Â

t2T
|t|h<g

Ft(t, x)
⇣

P(#)
t,x t

⌘�
j(l)

t,x
�
+ O(lg) ,

where |t|h measures how the associated distribution vanishes or blows up
when evaluated on small scales, with j(l) a scaled test function as in (1.21).
Here, Ft are the coefficients in the expansion, some of which depend non-
trivially on (t, x), to correct the “recentering”. Note that in the case of the
Wild expansion with vanishing initial data, Definition 2.3.2, no such re-
centering was implemented and the associated coefficients are constant, cf.
Lemma 2.3.6.

4In the literature, these abstract symbols are often coloured in blue. We will do the same in
order to distinguish them from iterated integrals introduced in (2.64).
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Finally, taking the small #-limit in the space of models leads to a (random)
model P̂t,x and the family of (modelled) distributions

F̂t,x = Â
t2T
|t|h<g

Ft(t, x)
⇣

P̂t,xt
⌘

,

which locally describes the solution of the SPDE at hand. Notably, P̂t,x en-
codes, how to interpret ill-defined products in the formulation of (2.49). We
stress that in most cases the small #-limit of P̂t,x only exists after suitable
renormalisation of the model.

The remainder of the procedure resembles rough path theory, in the sense
that it is performed deterministically, for a fixed realisation of the model
P̂t,x(w). Namely, the celebrated reconstruction theorem states that there ex-
ists a unique distribution RF which is locally described by F̂t,x, i.e.

��RF
�

j(l)
t,x
�
� F̂t,x

�
j(l)

t,x
��� . lg ,

uniformly over j, l 2 (0, 1] and locally uniformly in (t, x).

In summary, the theory of regularity structures provides a small-scale
analysis of subcritical SPDEs, locally in time. For this, only finitely many
terms in the expansion are necessary. It is a general theory that makes sense
of ill-defined SPDEs and allows to systematically renormalise such equations.
On the other hand, considering a critical equation, infinitely many expansion-
terms will have the same regularity as #, which does not allow for pathwise
techniques as sketched above.



Chapter 3

The Allen–Cahn equation with
critical initial datum

We consider the 2D Allen–Cahn equation

∂tu =
1
2

Du +m u � u3 , u(0, ·) = h , (3.1)

l̂ > 0 and m 2 R, with initial condition given by space white noise h on
R2. The SPDE is scaling critical and there exists no solution theory, due
to the irregularity of the noise.
In this chapter, based on the work [GRZ23], we approach the SPDE (3.1)
by studying its weak coupling limit and establish non-trivial Gaussian
fluctuations. The result builds on treating an infinite Wild expansion of
the equation, cf. Section 2.3, and on the introduction of certain combi-
natorial “cycle removal” estimates, which allow to control the inflicted
error in the expansion. To the author’s best knowledge, this is the first
time an infinite expansion has been treated successfully for a non-linear
critical SPDE.

The weakly coupled version of (3.1) is given in terms of

∂tu# =
1
2

Du# +m u# � u3
# , u#(0, ·) = h# , (3.2)

with # 2 (0, 1
2 ) and initial condition

h# := l# p#2 ? h , with l# :=
l̂q

log 1
#

,

69
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which approximates space white noise, as # ! 0. Here l̂ > 0 is a coupling
constant that we will later on require to be sufficiently small. Also recall that
p denotes the heat kernel

pt(x) =
1

2pt
exp

✓
�
|x|2

2t

◆
1[0,•)(t) , for all (t, x) 2 R ⇥ R2 .

Note that p#2 ? h corresponds to a mollified white noise on scales #, since
p#2(·) = #�2 p1(·/#).

Because the initial condition vanishes under the considered scaling, one
expects u# to converge to the trivial zero-solution. Hence, we should multiply
the solution by the same factor the initial data vanishes, to study non-trivial
fluctuations around the zero-limit. Therefore, we define

U#(t, x) :=
q

log 1
# · u#(t, x) , (3.3)

which solves the equation

∂tU# =
1
2

DU# +mU# �
�

log 1
#

��1
· U

3
# , U#(0, ·) = l̂ p#2 ? h .

Our main result is the following.

Theorem 3.0.1 ([GRZ23]). There exists a l̂fin > 0 such that for l̂ 2 (0, l̂fin),
m 2 R and T 2 (0, •) satisfying

m T 6 log
l̂fin

l̂
, (3.4)

where m := m_ 0, we have

lim
#!0

E
h��U#(t, x)� sl̂ · v(t, x)

��2
i
= 0 with sl̂ :=

l̂q
1 + 3

p l̂2
,

for all (t, x) 2 (0, T]⇥ R2. Here, v denotes the solution of the linear equation

∂tv =
1
2

Dv +m v , v(0, ·) = h . (3.5)

As a consequence of our main result, we see that the limiting statistics
of the mollified SPDE (3.2) are given in terms of the linearised equation
(3.5), where the non-linearity was dropped. However, the non-linearity is
relevant and affects the size of the limiting fluctuations sl̂, which are strictly
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weaker than the fluctuations of the limit when dropping the non-linearity in
(3.2), see also (3.10) and the discussion below. Furthermore, it is interesting
to note that, despite the restriction l̂ < l̂fin due to technical reasons, the
limit in Theorem 3.0.1 is well-defined for arbitrary l̂ > 0. In particular, for

l̂ =
q

log 1
# , we formally recover the strong coupling regime, which suggests

fluctuations of order O(1).

The 2D Allen–Cahn equation (3.1) falls into the regime of scaling critical-
ity. Recalling (1.25), we have that u(l)(t, x) := l�au(l2t, lx) solves

∂tu(l) =
1
2

Du(l) + l2m u(l)
� l2(1+a)(u(l))3 , u(l)(0, ·) d

= l�a� d
2 h . (3.6)

For a 2 (�1, 0) the factor in front of the non-linearity vanishes as l ! 0,
which corresponds to the (scaling) subcritical regime. For a = �1 we are in
the critical regime. Together with the choice d = 2, a = �1 also keeps the
initial condition scale invariant. In fact, we may reformulate (3.1) as a SPDE
with additive forcing

∂tu =
1
2

Du +m u � u3 + d0h , u(0, ·) = 0 . (3.7)

The noise d0h lies in C
�3�(R+ ⇥ Rd) when d = 2, cf. Table 1.3. Notably,

this agrees with the regularity of space-time white noise in d = 4, for which
the additive equation (the dynamic j4

4-model (1.20)) is known to be scaling
critical, cf. (1.27).

We should mention that that the Allen–Cahn equation is only locally
well-posed for initial data in Ca�(Rd), for a > �

2
3 , and ill-posed otherwise

[COW22]. In particular, it is not possible to make sense of (3.1) pathwise,
and only stochastic cancellations make the regime a 6 �

2
3 applicable. Up

to this point in time, the study of (scaling) critical SPDEs remains difficult
as there is no general toolbox available for their treatment, in contrast to
subcritical equations, cf. Section 2.3.3. Instead, critical SPDEs have only been
treated individually, by exploiting certain characteristics of the equation
at hand, as we presented in Section 1.3. We believe that our approach in
analysing the full expansion for the critical Allen–Cahn equation, may be
a first step towards analysing infinite expansions of critical singular SPDEs
more generally.
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Besides regarding (3.1) as a toy model for a critical singular SPDE, our
interest in the dynamics is motivated by the paper [HLR23], where (3.1) was
considered in d > 2 with a weak rescaling of the initial datum (in the sub-
critical regime), namely

u#(0, ·) = l̂ #
d
2+a p#2 ? h with a 2 (�1, 0) . (3.8)

This yields initial conditions u#(0, ·) 2 C
a�(Rd), uniformly in # 2 (0, 1

2 ), and
as a result, one observes1

#�
d
2�au#(t, x) ! l̂ · v(t, x) , in L2(P) , (3.9)

where the right-hand side is simply described by the solution of linearised
equation of (3.1), without seeing any influence of the non-linearity. However,
we stress that the work [HLR23] focuses instead on a non-trivial limit aris-
ing at large times, the so called Bargmann–Fock field. The fronts formed by
the dynamics of the Allen–Cahn equation are known to evolve according to
mean-curvature flow, see for example [BK91, ESS92]. Thus, [HLR23] yields
a natural construction of initial data for mean curvature flows, constructed
from “absolute chaos” (white noise). In contrast, Theorem 3.0.1 in the present
paper studies (3.1) at the critical value a = �1 (in d = 2) with a weak cou-
pling constant and non-trivial influence of the non-linearity can already be
observed on scales of order one. In particular, when comparing our result
with (3.9), we observe a dampening effect of the non-linearity, because

sl̂ =
l̂q

1 + 3
p l̂2

< l̂ , for all l̂ > 0 . (3.10)

However, in the case m = 1, we are only able to treat the problem at small
times, and the large time behaviour in the flavour of [HLR23] seems not to
be covered by our approach, due to technical restrictions.

Remark 3.0.2. Note that for m 6 0, Theorem 3.0.1 covers arbitrary large time-
horizons T, for all l̂ 2 (0, l̂fin), and our methods should allow for an extension to
slowly growing time horizon T#, as # ! 0.

The explicit value sl̂ appears from the study of a Wild expansion of u#,
see Definition 2.3.2, and arises in terms of a Butcher series (2.41), which in

1In [HLR23] the initial condition is stated for l̂ = 1, we added the additional factor to
allow for comparison to our result. They also consider a wider class of mollifiers.
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turn allows us to link it to the solution of an ordinary differential equation.
More precisely, after performing an expansion of U#(t, x) in terms of iterated
integrals (represented by a certain class of rooted trees), we can identify a
power series in l̂ such that

U#(t, x) ⇠ l̂

0

@
log 1

#

Â
n=0

anl̂2n

1

A v(t, x) ,

where the approximation is to be understood in a L2(P)-sense. The sum in-
side the parenthesis agrees miraculously with the Taylor expansion of the
solution of the ordinary differential equation ẏ = �y3 with y(0) = 1, where
the variable 3l̂2

2p plays the role of time. Thus, for l̂ small enough,

lim
#!0

log 1
#

Â
n=0

anl̂2n =
1q

1 + 3l̂2

p

, (3.11)

with the right-hand side being the solution of the aforementioned ODE. As
we could see in Chapter 2, the concept of Wild expansions can be imple-
mented more generally for SPDEs. However, to the author’s best knowledge,
this is the first time that the (full) Butcher series is used to study and identify
the limit of a (non-linear) singular SPDE.

Let us close with some general remarks on Theorem 3.0.1.

Remark 3.0.3. The fluctuation coefficient sl̂ can also be identified as the solution of
the ODE

d
dl̂

s =
1
l̂

✓
s �

3
p

s3
◆

, s0 = 0 ,

as a function of l̂. However, this ODE does not appear naturally in our analysis.
Generally, it would be interesting to link the original SPDE directly to the ODE that
determines the fluctuation coefficient.

Remark 3.0.4. In Theorem 3.0.1 we impose l̂ to be chosen small enough, since we
require the power series in (3.11) to converge absolutely. However, we expect the
result to hold for arbitrary choices of l̂ since sl̂ is well defined on all of R+ and does
not explode.

Remark 3.0.5. For d > 3, we could have considered critical initial data of the form
(3.8) with a = �1. In this case, the equivalent statement of Theorem 3.0.1 should
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read
lim
#!0

E
h��#�

d
2+1u#(t, x)� sl̂(d) · v(t, x)

��2
i
= 0 ,

with

sl̂(d) :=
l̂r

1 +
⇣

d
2 � 1

⌘�1
6l̂2

(4p)d/2

.

The statement should follow almost verbatim from our arguments.

Structure of the chapter

The remainder of this chapter is structured as follows. In Section 3.1, we
present the main steps of the proof of Theorem 3.0.1, while assuming the
chapter’s key ingredient (Proposition 3.1.2). Section 3.2 introduces the notion
of v-cycles and related estimates, which are required for the the control of
second moment estimates for terms in the Wild expansion. Lastly, we provide
a proof of Proposition 3.1.2 in Section 3.3.

3.1 Proof steps for the main result

In Chapter 2, we introduced the Wild expansion and set the stage for iterative
expansions of additive singular SPDEs. There, we learned that, on a formal
level, the solution of (3.2) can be represented in terms of the Wild expansion
(Definition 2.3.2) as

u# = Â
t2T3

Xt
# , (3.12)

where it suffices to consider ternary trees T3 (2.27) only, due to the cubic non-
linearity, cf. Example 2.3.1. The linchpin of our argument, to conclude The-
orem 3.0.1, is a precise control of the Wild expansion (3.12). Our asymptotic
analysis builds on a precise understanding of the decomposition of the com-
ponents of the Wild expansion into its homogeneous chaos terms, cf. (2.73).
The goal of this detailed study will be to show that that only terms in the first
chaos (and not all of them) contribute to the Gaussian limit in Theorem 3.0.1.
The key result in this direction is presented in the upcoming Section 3.1.1.
The proof of Theorem 3.0.1 is then carried out in Section 3.1.2.

Chapter 2 provides all the elements which allow us to discuss the proof
of Theorem 3.0.1, without entering into technical details. These are deferred
to later sections and require the introduction of additional tools.
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3.1.1 From the Wild expansion to single-tree estimates

Let us write the truncated Wild expansion, cut off at a level N 2 N, as

uN
# := Â

t2T N,
3

Xt
# ,

with T
N,

3 introduced in (2.89). Here we slighlty deviated from the formula-
tion in Definition 2.3.3, however, the idea remains the same and unlike the
full Wild expansion, uN

# is well defined as it is a finite sum. The structure of
the Allen–Cahn equation, and in particular the fact that the non-linearity �u3

is monotone in u, allows to circumvent direct treatment of the infinite part of
the series. More precisely, in analogy to (2.63) and the discussion below, we
have that uN

# solves

∂tuN
# =

1
2

DuN
# +m uN

# � (uN
# )

3 + RN
# , uN

# (0, ·) = h# , (3.13)

where the error term RN
# depends only on trees at the “boundary” of T N,

3 :

RN
# = Â

t1,t2,t32T
N,

3
[t1 t2 t3]/2T N,

3

Xt1
# Xt2

# Xt3
# . (3.14)

Utilising a maximum principle in combination with more structural esti-
mates, which we will describe in detail below, we are able to control the error
of the approximation as follows.

Proposition 3.1.1. Let l̂ > 0 and T > 0 satisfy

l̂em T <
1

10
p

C
, (3.15)

with m = m _ 0 and C 2 (0, •) the constant defined in (3.82). Then uniformly
over all (t, x) 2 (0, T]⇥ R2, # 2 (0, 1

T ^
1
2 ) and N 6 log 1

#

q
log 1

#

��� uN
# (t, x)� u#(t, x)

���
L2(P)


C0

log 1
#

�p
Cl̂em t�N

#
, (3.16)

with C0 = C0(T,m, l̂) 2 (0, •) the constant defined in (3.31).

The proof of this proposition is deferred to Section 3.1.2. In order for this
estimate to help us prove Theorem 3.0.1, we would like the right-hand side of
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(3.16) to vanish as # ! 0. This forces us to choose a cut-off level N = N# that
explodes as # ! 0, and a suitably small coupling constant l̂. In particular,
we fix the cut-off level N# given by

N# = blog 1
# c , (3.17)

and choose l̂ 2 (0, l̂fin) for some l̂fin small enough, which we fix later on.
Given the error estimate above, the next task is to identify the convergence of
the truncated sequence uN#

# = Ât2T N# ,
3

Xt
# . This convergence is very delicate,

in particular because the number of terms in the sum now grows with #. The
next proposition contains the key estimate that allows us to overcome this
issue. For this, let us fix now and throughout this chapter h(y) := �y3.

Proposition 3.1.2. Let T > 0 and l̂ > 0, then uniformly over any # 2 (0, 1
T ^

1
2 )

and t 2 T
N#,

3 , with N# = blog 1
# c, and uniformly over all (t, x) 2 [0, T]⇥ R2, we

have
�����

q
log 1

# · Xt
# (t, x)�

h(t)(1)
t! s(t)

 
3l̂2

2p

!|t|

l̂em tPt+#2 h(x)

�����
L2(P)

6 |h(t)(1)|
t! s(t)

�
C l̂2e2m t�|t| e2|m| t + | log (t + #2)|+

q
log 1

#

2 log 1
#

l̂em t
p

4(t + #2)
,

where t is the trimmed tree T (t) defined in (2.82) and C is the finite constant
defined in (3.82).

The above result both identifies the limit of
q

log 1
# · Xt

# and gives a quan-
titative result on its rate of convergence. The proof of Proposition 3.1.2 is
at the heart of this chapter and can be found at the end of Section 3.3. It
builds on all the results that are derived on the way. We highlight that the
bound we obtain is uniform over all trees t 2 T3 with |t| = O(log 1

# ). This
is rather remarkable: As |t| grows, every tree consists of a growing number
of components living in distinct homogeneous chaoses and it requires pre-
cise estimates to bound all of them at once. In particular, the right-hand side
is summable over t and decays for # ! 0, a fact that is necessary to make
rigorously sense of the following approximations:

q
log 1

# Â
t2T N# ,

3

Xt
# (t, x) ⇠ l̂ Â

t2T N# ,
3

h(t)(1)
t! s(t)

⇣3l̂2

2p

⌘|t|
em tPt+#2 h(x)
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⇠ l̂ Â
t2T3

h(t)(1)
t! s(t)

⇣3l̂2

2p

⌘|t|
P(m)

t h(x), as # ! 0.

The series in the expression equals

l̂ Â
t2T3

h(t)(1)
t! s(t)

⇣3l̂2

2p

⌘|t|
= sl̂ = l̂ y

⇣3l̂2

2p

⌘
, (3.18)

by Lemma 2.2.3, with

y(z) :=
1

p
1 + 2z

(3.19)

being the solution of the differential equation ẏ = �y3, y(0) = 1. The above
limiting behaviour is the content of the following proposition, which is the
final step towards the proof of Theorem 3.0.1.

Proposition 3.1.3. Let l̂ > 0 and T > 0 satisfy

l̂em T <
1

p
2C

, (3.20)

with m = m _ 0 and C be the positive constant defined in (3.82). Then for all
(t, x) 2 (0, T]⇥ R2

lim
#!0

���
q

log 1
# uN#

# (t, x)� sl̂P(m)
t h(x)

���
L2(P)

= 0 ,

where sl̂ as in (3.18).

We will provide the proof of Proposition 3.1.3 at the end of the section.
Before we pass to the proof of Theorem 3.0.1, let us explain the structure that
underlies our main estimate, contained in Proposition 3.1.2. In Chapter 2, we
saw that each Wiener integral Xt

# lies in an inhomogeneous Wiener chaos and
can be decomposed into its homogeneous chaos components. These projec-
tions are realised in terms of all possible pairwise contractions of noises, cf.
Definition 2.1.14 or the discussion below (2.73). An example of a possible
contraction, appearing in the study of (3.2), is shown in the left-most element
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of the following display:

1

2 3

4

#

7!

1

2 3

4

#

7!

1

2 3

4

#

7!

1

2 3

4

#

.

(3.21)

In this display, each inner node can be associated to a unique contraction.
A crucial observation will be that only homogeneous chaos configurations
consisting of precisely such contractions (i.e. internal contractions can be ex-
tracted from all inner nodes, possibly in a nested manner) contribute in the
limit # ! 0. This will be the content of Section 3.2. Once the configurations
with the dominant contribution have been identified, the next step is to deter-
mine their limit. Let us describe the relevant structure based on the example
diagram (3.21). In the left-most tree the contraction among the two leaves
neighbouring 4 (which creates the loop 4 ! 4) will produce the weight, cf.
(2.66),

l2
#

Z

R2

�
ems4 ps4+#2(z � y4)

�2 dz = l2
# e2m s4 p2(s4+#2)(0) ,

by using the Chapman–Kolmogorov equations. Similarly, the loop 3 ! 3
will have a weight l2

# e2m s3 p2(s3+#2)(0). Next, moving to the contraction that
creates the path 2 ! 4 ! 2, we see it also produces the weight

l2
#

Z

(R2)2
em s2 ps2+#2(z � y2)p(m)

s2�s4
(y4 � y2)em s4 ps4+#2(z � y4)dz dy4

= l2
# e2m s2 p2(s2+#2)(0),

which we represent by the loop 2 ! 2. For the same reason, the contraction
1 ! 3 ! 1 produces the weight l2

# e2m s1 p2(s1+#2)(0), represented by the loop
1 ! 1 in the right-most tree. Some crucial observations, that can be made in
light of this example are the following.

• The condition that every inner node is associated to a contraction, leads
to a nested contraction structure with only one leaf (one noise) that is not
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contracted.

• Successively separating the weights from contracted trees and integrating
out the spatial dependency, leads to a diagram indexed by the trimmed tree
T (t) = t (2.82). To each of the trimmed trees’ vertices v we assign a
weight l2

# e2m sv p2(sv+#2)(0) =
l2

#
4p(sv+#2) e2m sv .

• The temporal variables {sv : v 2 V(t)} will inherit the ordering imposed
by the trimmed tree t. In the above example: s1 > s2, s3 and s2 > s4.
The integration of the total weight ’v2V(t) l2

# e2m sv p2(sv+#2)(0) under the
constraints of t leads to the factor (t!)�1 3l̂2

2p in the Butcher series (3.18).
Here the numerical factor 3 is due to the fact that there are (3

2) = 3 ways to
contract the noises of a trident.

Verifying the above observations rigorously for arbitrary trees will be the
bulk of this chapter. To do so, we will formally introduce pairings and the
notion of v-cycles in Section 3.2. In Section 3.3 we will then finally prove
Proposition 3.1.2.

3.1.2 Proof of Theorem 3.0.1

We are now ready to prove our main result, given the estimates in Proposi-
tion 3.1.1 and Proposition 3.1.3, the proofs of which are postponed to further
below in the section.

Proof of Theorem 3.0.1. We define l̂fin := 1
10
p

C
, where C is the positive con-

stant defined in (3.82). Let l̂ 2 (0, l̂fin) and T > 0 such that (3.4) is satisfied,
which equivalently reads

l̂em T <
1

10
p

C
. (3.22)

By the triangle inequality, for # 2 (0, 1
T ^

1
2 ) and (t, x) 2 (0, T]⇥ R2

��U#(t, x)� sl̂ P(m)
t h(x)

��
L2(P)

6
q

log 1
#

���u#(t, x)� uN#
# (t, x)

���
L2(P)

+
���
q

log 1
# uN#

# (t, x)� sl̂ P(m)
t h(x)

���
L2(P)

.

The second term on the right-hand side vanishes as # ! 0 by Proposi-
tion 3.1.3, since (3.22) implies (3.20). On the other hand, by Proposition 3.1.1,
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the first term is upper bounded by

q
log 1

#

���u#(t, x)� uN#
# (t, x)

���
L2(P)

6 C0

log 1
#

�p
Cl̂em T�N#

#
.

The polynomial blow-up on the right-hand side must be compensated, and
here we will crucially use that N# ⇠ log 1

# , so that we have a compensating
effect coming from the term

�p
Cl̂em T�N# . More precisely, by choice of T in

(3.22), we have
� log

�p
Cl̂em T� > log 10 > 1 ,

thus, for all # 2 (0, 1
T ^

1
2 )

�p
Cl̂em T�N# 6 exp

⇣
log

�p
Cl̂em T� �log 1

# � 1
�⌘

6 10 #log 10 .

Hence, we obtain that

q
log 1

#

���u#(t, x)� uN#
# (t, x)

���
L2(P)

6 10 C0

log 1
#

#(log 10)�1 ,

which vanishes in the limit # ! 0. This concludes the proof.

In the remainder of this section we prove that the truncated Wild ex-
pansion uN#

# indeed approximates the solution u# (Proposition 3.1.1) and that
uN#

# (t, x) is close to sl̂Pth(x) in L2(P) (Proposition 3.1.3). The proof of Propo-
sition 3.1.2 will be given at the end of Section 3.3.

Proof of Proposition 3.1.1. Let T > 0, (t, x) 2 (0, T] ⇥ R2 and # 2 (0, 1
T ^

1
2 ).

From (3.2) and (3.13), we obtain that the difference wN
# = uN

# � u# solves the
equation

∂twN
# =

1
2

DwN
# +mwN

# � (uN
# )

3 + u3
# + RN

# , wN
# (0, ·) = 0 , (3.23)

with RN
# defined in (3.14). Defining VN

# (t, x) := (uN
# )3

�u3
#

uN
# �u#

, we can write (3.23)
as

∂twN
# =

1
2

DwN
# +mwN

# � VN
# · wN

# + RN
# , wN

# (0, ·) = 0 .

The Feynman–Kac formula [KS91, Theorem 5.7.6] then allows to represent
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wN
# as

wN
# (t, x) = Ex

" Z t

0
RN

# (t � s, Ws) exp
⇣
m s �

Z s

0
VN

# (s � r, Wr)dr
⌘

ds

#
,

where W is a two dimensional Brownian path and Ex is the expectation with
respect to it when the path starts from x 2 R2. Using the fact that VN

# > 0,
which is due to the monotonicity of the mapping u 7! u3, we obtain that

�� uN
# (t, x)�u#(t, x)

��

6 Ex

" Z t

0

��RN
# (t � s, Ws)

�� exp
⇣
m s �

Z s

0
VN

# (s � r, Wr)dr
⌘

ds

#

6 Ex

" Z t

0
em s��RN

# (t � s, Ws)
��ds

#
.

Writing the latter in terms of the heat kernel we conclude that

�� uN
# (t, x)� u#(t, x)

�� 6
Z t

0

Z

Rd
p(m)

t�s(y � x) |RN
# (s, y)|dy ds .

Taking the L2(P)-norm, we arrive at the bound that we will be working with:

kuN
# (t, x)� u#(t, x)kL2(P) 6 em t

Z t

0
kRN

# (s, 0)kL2(P) ds , (3.24)

where we have used that RN
# is spatially homogeneous. To continue, we use

the definition of RN
# from (3.14), the triangle inequality and Hölder’s inequal-

ity, to obtain

kRN
# (s, 0)kL2(P) 6 Â

t1,...,t32T
N,

3
[t1 t2 t3]/2T N,

3

k(Xt1
# Xt2

# Xt3
# )(s, 0)kL2(P) (3.25)

6 Â
t1,...,t32T

N,
3

[t1 t2 t3]/2T N,
3

kXt1
# (s, 0)kL6(P)kXt2

# (s, 0)kL6(P)kXt3
# (s, 0)kL6(P) .

At this point we use a hypercontractivity estimate, which we recall from
Proposition 2.1.7:

kXti
# (s, y)kL6(P) 6 5

`(ti)
2 kXti

# (s, y)kL2(P) .
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To bound the L2(P)-norm, we will make use of Proposition 3.1.2 to obtain

kXt
# (s, y)kL2(P) 6

c̃(T,m)q
log 1

#

|h(t)(1)|
t! s(t)

�
C l̂2e2m s�|t| l̂em s

2
p

s + #2
, (3.26)

with c̃(T,m) := e2|m| T + 4. The verification of this bound is deferred to the
bottom of this proof. Now, assuming (3.26) is true, from the identity `(ti) =

2|ti|+ 1 (which holds since t 2 T3) we obtain

kXti
# (s, y)kL6(P) 6 5|ti |+

1
2

c̃(T,m)q
log 1

#

|h(ti)(1)|
ti! s(ti)

�
C l̂2e2m s�|ti | l̂em s

2
p

s + #2
. (3.27)

Combining (3.24) with (3.25) and (3.27), we conclude that

q
log 1

# · kuN
# (t, x)� u#(t, x)kL2(P)

6
q

log 1
# · emt

Z •

0
kR#(s, 0)kL2(P) ds

6
�p

5l̂ c̃(T,m)
�3 e4m t

8 log 1
#

(Z •

0

1
(s + #2)

3
2

ds

)
·

⇥ Â
t1,...,t32T

N,
3

[t1 t2 t3]/2T N,
3

3

’
i=1

(
|h(ti)(1)|
ti! s(ti)

�
5Cl̂2e2m t�|ti |

)
.

(3.28)

At this point, we notice that the time integral appearing in the last estimate
blows up polynomially in #, since

Z •

0

1
(s + #2)

3
2

ds =
h
�2(s + #2)�

1
2

is=•

s=0
=

2
#

. (3.29)

On the other hand, for any {ti}
3
i=1 such that [t1 t2 t3] 62 T

N,
3 we have that

N < i([t1 t2 t3]) = i(t1) + i(t2) + i(t3) + 1 = |t1|+ |t2|+ |t3|+ 1 .

Moreover, by assumption l̂ is sufficiently small to satisfy 5
p

C l̂em t < 1
2 .
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Therefore, we can estimate the sum in the last line of (3.28) as follows:

Â
t1,...,t32T

N,
3

[t1 t2 t3]/2T N,
3

3

’
i=1

(
|h(ti)(1)|
ti! s(ti)

�
5Cl̂2e2m t�|ti |

)

6
�p

Cl̂em t�N Â
t1,...,t32T

N,
3

[t1 t2 t3]/2T N,
3

3

’
i=1

(
|h(ti)(1)|
ti! s(ti)

⇣
5
p

Cl̂em t
⌘|ti |

)

6
�p

Cl̂em t�N 1
(1 � 10

p
Cl̂em t)

3
2

.

(3.30)

In the last step of (3.30), we completed the remaining sum to a Butcher series:

Â
t1,...,t32T

N,
3

[t1 t2 t3]/2T N,
3

3

’
i=1

(
|h(ti)(1)|
ti! s(ti)

⇣
5
p

C l̂em t
⌘|ti |

)

6

0

@ Â
t2T N,

3

|h(ti)(1)|
t! s(t)

⇣
5
p

C l̂em t
⌘|t|

1

A
3

6
⇣

y
⇣

5
p

C l̂em t
⌘⌘3

=
1

(1 � 2 · 5
p

C l̂em t)
3
2

,

where y is the solution to the ODE ẏ = y3 with positive initial condition
y(0) = 1. The solution of this ODE is y(z) = (1 � 2z)�1/2 and so the associ-
ated Butcher series converges for z < 1/2, i.e. if (3.15) holds in the present
case. See also Lemma 2.2.3 and Remark 2.2.5.

Hence, by putting together (3.28), (3.29) and (3.30), we obtain

q
log 1

# · kuN
# (t, ·)� u#(t, ·)kL2(P) 6

C0(T,m, l̂)

log 1
#

�p
Cl̂em t�N

#

with

C0(T,m, l̂) :=
e4m T

4

 p
5l̂ c̃(T,m)p

1 � 10
p

C l̂em T

!3

. (3.31)

This concludes the proof of the proposition, up to the proof of (3.26). The lat-
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ter bound follows simply from the triangle inequality and Proposition 3.1.2:

kXt
# (t, x)kL2(P)

6 |h(t)(1)|
t! s(t)

 
3l̂2

2p

!|t| ��� #(t, x)
���

L2(P)

+
|h(t)(1)|
t! s(t)

�
C l̂2e2m t�|t| 2e2|m| T + 4q

log 1
#

l̂em t
p

4(t + #2)
,

(3.32)

where we made use of the fact that |t| 6 log 1
# and the crude estimate

e2|m| t + | log (t + #2)|+
q

log 1
#

2 log 1
#

6 e2|m| t

2 log 2
+ 2 +

1
2
p

log 2
6 e2|m| T + 3 ,

which is a consequence of # 2 (0, 1
T ^

1
2 ) and the uniform estimate

sup
06t6T

| log(t + #2)|

2 log 1
#

= sup
06t61�#2

| log(t + #2)|

2 log 1
#

_ sup
1�#2<t<T

log(t + #2)

2 log 1
#

6 1 +
log ( 1

# + 1)
2 log 1

#

6 2 .
(3.33)

Now the statement follows, since

 
3l̂2

2p

!|t| ��� #(t, x)
���

L2(P)
=

 
3l̂2

2p

!|t| ✓
l̂2

# e2m t
Z

R2
pt+#2(y)2 dy

◆ 1
2

=
1q

log 1
#

 
3l̂2

2p

!|t|
l̂em t

p
4p(t + #2)

6
�
C l̂2e2m t�|t|
q

log 1
#

l̂em t

2
p

t + #2
,

with C being the constant from (3.82). Thus, together with (3.32), we obtain

kXt
# (t, x)kL2(P) 6

c̃(T,m)q
log 1

#

|h(t)(1)|
t! s(t)

�
C l̂2e2m t�|t| l̂em t

2
p

t + #2
.

with c̃(T,m) = e2|m| T + 4. This completes the proof.

Proof of Proposition 3.1.3. For h(y) = �y3, we introduce the truncated Butcher
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series

B#
h(z, 1) = Â

t2T N#
63

h(t)(1)
t! s(t)

z |t| = Â
t2T N# ,

3

h(t)(1)
t! s(t)

z |t| , (3.34)

where the second equality is a consequence of Lemma 2.3.11. Then, Proposi-
tion 3.1.3 will follow if we can show that the following two limits hold true
with zl̂ = 3l̂2

2p :

lim
#!0

���
q

log 1
# uN#

# (t, x)� l̂B#
h(zl̂, 1) em tPt+#2 h(x)

���
L2(P)

= 0 , (3.35)

lim
#!0

���l̂B#
h(zl̂, 1) em tPt+#2 h(x)� sl̂P(m)

t h(x)
���

L2(P)
= 0 . (3.36)

The limit (3.35) follows from Proposition 3.1.2, provided (3.20) holds: We can
bound for # 2 (0, 1

T ^
1
2 )

���
q

log 1
# uN#

# (t, x)� l̂B#
h(zl̂, 1) em tPt+#2 h(x)

���
L2(P)

6 Â
t2T N# ,

3

�����

q
log 1

# Xt
# (t, x)� l̂

h(t)(1)
t! s(t)

z |t|
l̂

em tPt+#2 h(x)

�����
L2(P)

(3.37)

6 Â
t2T N#

63

|h(t)(1)|
s(t) t!

�
Cl̂2e2m t�|t| e2|m| t + | log (t + #2)|+

q
log 1

#

2 log 1
#

l̂em t
p

4(t + #2)
,

where we used (3.34). Now, (3.35) will follow, if we can show that the series
on the right-hand side is summable, that is if

Â
t2T63

|h(t)(1)|
s(t) t!

�
Cl̂2e2m t�|t| < • . (3.38)

This is the Butcher series associated to the ODE ẏ = y3 with initial condition
y(0) = 1, which converges as long as (3.20) holds. See also the discussion
in the proof of Proposition 3.1.1. Hence, (3.37), and thus (3.35), vanishes for
arbitrary fixed t 2 (0, T], because the second-to-last ratio on the right-hand
side in (3.37) vanishes in the limit # ! 0.

To complete the proof of the proposition we must now check (3.36). Here
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we observe that
��� l̂B#

h(zl̂, 1) em tPt+#2 h(x)� sl̂ P(m)
t h(x)

���
L2(P)

6 |l̂B#
h(zl̂, 1)� sl̂| ·

��em tPt+#2 h(x)
��

L2(P)

+ sl̂

��em tPt+#2 h(x)� P(m)
t h(x)

��
L2(P)

.

The second term is converging to 0 by the continuity properties of the heat
semigroup. Instead, for the first term we observe that B#

h(z, 1) is an ap-
proximation to the Butcher series associated to the solution y(z) of the ODE
ẏ = �y3, y(0) = 1, which is given by y(z) = (1 + 2z)�1/2. This solution is
analytic for |z| < 1/2 and the associated Butcher series converges, see the
discussion in Section 2.2.3. Thus, recalling Lemma 2.2.3 and the explicit form
of sl̂ (3.18), we have that lim#!0 |l̂B#

h(zl̂, 1)� sl̂| = 0, as long as 3l̂2
fin

2p < 1
2 ,

which is implied by (3.20). This concludes the proof.

3.2 Paired trees and their structure

In Section 3.1.1, in particular around (3.21) and the discussion thereafter, we
outlined the structure underlying the main estimate contained in Proposi-
tion 3.1.2. Namely, only certain terms in the first chaos contribute to the
Gaussian limit in Theorem 3.0.1. In this section, we introduce the notion of
pairings and present estimates on the integration kernels associated to the
Wild expansion terms Xt

# . This will allow us to analyse Xt
# rigorously and

identify its limiting contribution in Section 3.3.
As a first step towards the analysis of components in the Wild expansion

(3.12), we can identify each term Xt
# with a term in a Butcher series, which is

a direct consequence of Corollary 2.3.12.

Lemma 3.2.1. For every term in the Wild expansion (3.12) indexed by t 2 T3, the
following identity holds:

Xt
# (t, x) =

h(t)(1)
s(t)

[t]#(t, x) , 8# 2 (0, 1
2 ) , (t, x) 2 (0, •)⇥ R2 ,

with h(y) = �y3. Here [t]# denotes the stochastic integral introduced in (2.64)
(with respect to X = d0h) and t = T (t) is the trimmed version of t (2.82).

Recall from (2.73) that an iterated stochastic Stratonovich integral [t]# can
be represented in terms of Itô integrals [t]k,#, by summing over all contrac-
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tions of the associated tree’s leaves (2.68):

[t]# = Â
k2K(t)

[t]k,# . (3.39)

Here, each contracted tree [t]k, k 2 K(t), is associated to a stochastic integral
lying in a homogeneous Wiener chaos. With [t]k,# as in (2.72), for X = d0h, such
that

[t]k,#(t, x)

=
Z

DV(t)
t

bKt,x
[t]k ,#(sV(t), yV(t)) dyV(t)\L(tk) dsV(t) h⌦`(tk)(dyL(tk)) ,

with Dt = [0, t]⇥ R2 and

bKt,x
[t]k ,#(sV(t), yV(t)) (3.40)

:= bKt,x
[t],#(sV(t), yV(t)) ’

v2L(t)
d0(sv) ’

{u,u0}2k

d0(yu � yu0) ,

where bKt,x
[t],# is the kernel defined in (2.66) with respect to [t]. For convenience,

we also included all arising Dirac-d’s in the kernel bKt,x
[t]k ,#. We will write both

[t]k,# and [tk]# for the Itô stochastic integral, when considering the planted
tree [t].

3.2.1 Pairings between trees and L2(P) estimates

We want to extend the notion of contractions from a single tree to a pair of
trees. This will be necessary in order to encode second moments of stochas-
tic iterated integrals. Recalling Lemma 2.1.15 and (2.73), we see that second
moments of [t]# can be expressed as the sum over all possible pairwise con-
tractions over the (uncontracted) leaves of two copies of the tree, connected
to the same root with time-space variables (t, x). In other words, we look at
the stochastic integral [t, t]#(t, x) corresponding to the tree [t, t] with root
variable (t, x).

Example 3.2.2. Let us compute the second moment of the stochastic integral
[t]#(t, x) = #(t, x), represented by

E
⇥
[t]#(t, x)2⇤ = E

⇥
[t, t]#(t, x)

⇤
= E

⇥⇥ ⇤
#
(t, x)

⇤
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= 6

(t,x)

+ 9
(t,x)

, (3.41)

similar to (2.76). In other words, the computation of the second moment of
an integral [t]# gives rise to completely contracted trees [t, t]k in accordance
with the definition of (2.68). We also note that this computation is consistent
if we decomposed [t]#(t, x) into its homogeneous Wiener chaos components
first:

E[[t](t, x)2] = E

���� ∆
(t,x)

����
2

+ E

���� 3
(t,x)

����
2

,

where we also used the orthogonality between different homogeneous com-
ponents.

Let us introduce a notation that will allow us to encode contractions be-
tween glued together trees, in a way that distinguishes them from the con-
tractions of Definition 2.3.7. This will be useful to encode covariances be-
tween [t]#(t, x) and [t0]#(t, x).

Definition 3.2.3. For two rooted trees t, t0
2 T define the set of pairings among

the union of leaves as

Y(t, t0) :=
�

g 2 K([t, t0]) : g is a complete contraction
 

.

We also define the subsets of pairings which complete a given pair of contractions
(k, k0) 2 K(t)⇥K(t0) by

Y(tk, t0

k0) :=
�

g 2 Y(t, t0) : k [ k0 ⇢ g

and all remaining pairs in g connect t to t0
 

.

We will write [t, t0]g to denote the tree [t, t0] where all leaves are contracted accord-
ing to g 2 Y(t, t0).

The pictorial representations in (3.41) shows all possible elements (up to
symmetries) of Y(t, t) for that example. Note that Y(tk, t0

k0) gives rise to
a completely contracted tree and, therefore, Y(tk, t0

k0) = ∆, if the number of
uncontracted leaves in tk and t0

k0 differ. This is in harmony with the fact that
homogeneous chaoses are orthogonal with respect to one another. We can
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now express covariances between contracted trees as follows:

E
h
[t]k,# [t

0]k0,#
i
= Â

g2Y(tk ,t0

k0
)

[ t, t0]g,# . (3.42)

Moreover, it is clear that Y(tk, t0

k0) allows to partition Y(t, t0) as

Y(t, t0) =
G

(k,k0)2K(t)⇥K(t0)

Y(tk, t0

k0) , (3.43)

where
F

denotes a disjoint union. This is clear since, if we want to find all
pairwise contractions of [t, t0], we can first identify the contractions that are
internal to each t, t0 and then identify the contractions that connect the leaves
of one tree to those of the other. This partitioning then allows us to express
covariances in terms of

E
h
[t]# [t

0]#
i
= Â

k2K(t)
Â

k02K(t0)

E
h
[t]k,# [t

0]k0,#
i

= Â
k2K(t)

Â
k02K(t0)

Â
g2Y(tk ,t0

k0
)

[ t, t0]g,#

= Â
g2Y(t,t0)

[ t, t0]g,# ,

where we used (3.42) in the second step, and (3.43) in the last. Finally, the
partitioning (3.43) allows us to recover the internal contractions associated to
a given pairing. This motivates the following definition.

Definition 3.2.4. For any t, t0
2 T3, let s[t,t0] : Y(t, t0) ! K(t)⇥K(t0) be the

map that for any g 2 Y(t, t0) identifies the unique pair s[t,t0](g) := (k1(g), k2(g))

such that
g 2 Y(tk1(g), t0

k2(g)
) .

In other words, the map s identifies the subset of edges in g that only connect within
t and t0, respectively.

3.2.2 1-cycles and their removal

Let us now define the notion of a 1-cycle. To this end, we consider a tree t with
a contraction k and denote the corresponding contracted tree by tk. Suppose
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that tk contains a component of the form

tk =

t1

t2 t3
(s1, y1)

(s0, y0)

(s2, y2)

···

,
(3.44)

where we observe a cycle consisting of an inner vertex (s1, y1) connected to
two leaves that are themselves connected to one another by a purple edge
(part of k). We call such a cycle, that is a cycle in tk which contains only one
inner vertex of t, a 1-cycle. Let us remark that in the above picture, (s2, y2)

denotes the coordinates of the basis of the sub-tree t1 and (s0, y0) denotes the
coordinates of the parent of the inner vertex with coordinates (s1, y1). A more
formal definition is the following.

Definition 3.2.5. Given a tree t and a contraction k 2 K(t), we call a 1-cycle a
connected component of tk which consists of two leaves, which are connected by an
element of k, and the inner vertex, which is the parent of these leaves, as well as the
three edges that connect these three vertices. We call the inner vertex of the cycle the
basis of the 1-cycle.

Given a contracted tree tk with a 1-cycle C, we write (t \ C)ek for the con-
tracted tree that is obtained by “removing” the cycle C from tk. That is, the
graph that remains after removing all edges and nodes that belong to C and
replacing the remaining two edges which used to connect to the basis of the
1-cycle by a new, single edge which connects the only remaining descendant
of the basis we have removed to its parent. The contraction ek is the one in-
duced naturally on t \ C by k after the removal of the element that connects
the leaves of C. The removal is simply described by the following picture:

tk =

t1

t2 t3
(s1, y1)

(s0, y0)

(s2, y2)

···

7�! (t \ C)k̃ =

t1 t2 t3
(s2, y2)

(s0, y0) ···

.
(3.45)

Observe that if t 2 T3, then also t \ C 2 T3. An important lemma is the
following, which records the effect of the 1-cycle on the associated stochastic
integrals.

Lemma 3.2.6. Consider a rooted tree t be of the form t = [t1 · · · tn], ti 2 T3.
Let C be a 1-cycle in a contracted tree tk with the coordinates of its root being
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(t, x) 2 (0, •) ⇥ R2. Denote by (s1, y1) the coordinates of its basis, by (s0, y0)

the coordinates of the parent of (s1, y1) and by (s2, y2) the coordinates of the only
descendant of (s1, y1) that does not belong to C. Denote also by (r, z) the coordinates
of the two identified leaves of the 1-cycle C (where we recall that the time coordinate
r will coincide with 0)2. Then

Z t

0

Z

(R2)2
bKt,x

tk ,#(sV , yV )dy1 dz dr = #(s1)1{s26s16s0}
bKt,x
etek ,#(sV\C , yV\C) ,

(3.46)
where

#(s1) := l2
# e2m s1 p2(s1+#2)(0) , (3.47)

et := t \ C and ek the contraction induced on t̃ by the removal of C from tk.

Proof. We start by performing the integration over the spatial coordinate z
of the part of the kernel bKt,x

tk,#(sV , yV ) that depends on the variables (r, z).
This corresponds to the following integral (recall form (3.40) that the kernel
bKt,x

tk,#(sV , yV ) contains the factor d0(r)):

l2
#

Z

R2

�
em s1 ps1+#2(z � y1)

�2 dz = l2
# e2m s1 p2(s1+#2)(0) = #(s1) . (3.48)

Next, we integrate the remaining part of the kernel over y1. This reduces
to the Chapman–Kolmogorov identity (refer also to the picture in (3.44) for
guidance):

Z

R2
p(m)

s1�s2
(y2 � y1)p(m)

s0�s1
(y1 � y0) dy1 = p(m)

s0�s2
(y2 � y0) .

Combining the results of the two integrations above with the remaining com-
ponents of the kernel bKt,x

tk,#(sV , yV ), yields the expression on the right-hand
side of (3.46).

As it turns out, 1-cycles play an important role in our analysis. In partic-
ular, it will be a crucial ingredient to understand the small-# behaviour of the

2Sometimes it may be more intuitive to think of purple contraction edges as heat kernels
p#2 , while all black edges (even the ones connected to leaves) represent p(m). In this case,
each leaf (even contracted) corresponds an unique time-space point. However, in order to
stay coherent with the kernel representation from Chapter 2, we will write them as actual
identification (Dirac-d’s) of time-space points.
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integral

Z t

0
#(s)ds =

l2
#

4p

Z t

0

e2m s

s + #2 ds , t 2 (0, •) , # 2 (0, 1
2 ) ,

which we shall summarise in the following lemma.

Lemma 3.2.7. Let m 2 R and t 2 (0, •), then
�����

1
2 log 1

#

Z t

0

e2m s

s + #2 ds � 1

����� 6
e2|m| t + | log (t + #2)|

2 log 1
#

,

for every # 2 (0, 1
2 ), with m = m_ 0. In particular, for every t 2 (0, •)

lim
#!0

Z t

0
#(s)ds =

l̂2

2p
. (3.49)

Proof. First expanding the exponential, we write

Z t

0

e2m s
� 1

s + #2 ds =
Z t

0

s
s + #2

•

Â
k=1

(2m)k sk�1

k!
ds .

Thus, we obtain
����
Z t

0

e2m s
� 1

s + #2 ds
���� 6

•

Â
k=1

Z t

0

|2m|
k sk�1

k!
ds 6 e2|m| t .

In addition, we have that
�����

1
2 log 1

#

Z t

0

1
s + #2 ds � 1

����� =
| log (t + #2)|

2 log 1
#

,

so that the statement follows from the triangle inequality.

We will see that the contracted trees in the Wild expansion that contribute
to the limiting fluctuations, are exactly those whose contraction creates only
1-cycles (which may also emerge in an iterative way, see the second exam-
ple below). To get an idea of this phenomenon, let us look at the following
examples.

Example 3.2.8. Consider the contracted tree #. Using Lemma 3.2.6 (or in
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this case even a by-hand computation) we find that

#(t, x) =
Z

[0,t]

Z

R2
p(m)

t�s(y � x) #(s, y) #(s)dy ds ,

where inside the integral (s, y) are the time-space coordinates associated
to the basis of the trident. We can next compute the spatial integral via
Chapman–Kolmogorov as
Z

R2
p(m)

t�s(y � x) #(s, y)dy = l#

Z

(R2)2
p(m)

t�s(y � x) em s ps+#2(z � y) h(dz)dy

= l#em t
Z

R2
pt+#2(z � x) h(dz) = #(t, x) .

Therefore, we obtain

#(t, x) = #(t, x)
Z t

0
#(s)ds = #(t, x) l2

#

Z t

0

e2m s

4p(s + #2)
ds ,

and hence, by Lemma 3.2.7, we find

#(t, x) =
l̂2

2p #(t, x) · (1 + o(1)) , for all t 2 (0, •) ,

where the o(1) is with respect to # ! 0.

Example 3.2.9. This example demonstrates the iterative appearance of 1-
cycles. Consider the contracted tree

1
2 3

#
(t, x) ,

where we have tagged some vertices for reference in the following integrals.
In particular, the coordinates of vertex i will be (si, yi). Extracting first the
1-cycle with base vertex 2, we have that

1
2 3

#
(t, x) =

Z Z

[0,t]3⇥(R2)2

{s2,s3s1t}

#(s2) bKt,x

1
3 ,#
(y1, y3; s1, s3) h(dy3)dy1 ds1 ds2 ds3 ,

using Lemma 3.2.6. Now, applying once more Lemma 3.2.6, or just via the
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previous example, this amounts to

#(t, x)
Z t

0

Z s1

0
#(s2) #(s1)ds2 ds1 =

1
2

⇣ l̂2

2p

⌘2
#(t, x) ·

�
1 + o(1)

�
.

Thus, the contribution of this diagram is of the same order as in the previ-
ous example (albeit with a different constant) and will also contribute to the
limiting Gaussian fluctuations. Following the same steps as above, we can
determine similarly the contribution of the contracted tree

#(t, x) =
1
2

⇣ l̂2

2p

⌘2
#(t, x) ·

�
1 + o(1)

�
.

3.2.3 Existence of v-cycles in paired trees

Contrary to the above two examples, where only 1-cycles appeared, the next
example will demonstrate a different cycle structure, which will lead to lower
order contributions.

Example 3.2.10. Let us look at the order of magnitude of the term ∆,#. Its
second moment has the diagrammatic representation in terms of the com-
pletely contracted tree

E

����� ∆,#(t, x)

�����

2

= 6
(t, x), #

,

where the factor 6 counts the number of different pairings. Denoting by
(s1, y1) and (s2, y2) the time-space coordinates of the bases of the left and
right tridents, respectively, we can explicitly write the integral corresponding
to the above diagram as

6l6
#

Z

D2
t

p(m)
t�s1

(y1 � x)
�
em (s1+s2)ps1+s2+2#2(y1 � y2)

�3 p(m)
t�s2

(y2 � x)dy1,2 ds1,2

and then using the estimate

(em (s1+s2)ps1+s2+2#2(y1 � y2))
2 6 e4m t(2p(s1 + s2 + 2#2))�2
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together with Chapman–Kolmogorov, we can bound this by

6l6
# e4m t

Z

D2
t

p(m)
t�s1

(y1 � x) em (s1+s2)ps1+s2+2#2(y1 � y2) p(m)
t�s2

(y2 � x)
�
2p(s1 + s2 + 2#2)

�2 dy1,2 ds1,2

6 6l6
#

(2p)2 e6m t p2(t+#2)(0)
Z

[0,t]2

1
(s1 + s2 + 2#2)2 ds1 ds2

6 6l6
#

(2p)2 log(1 + 1
2 t#�2) e6m t p2(t+#2)(0) .

Since l6
# = O((log 1

# )
�3), we can conclude that

E
h ���
q

log 1
# ∆,#(t, x)

���
2i

6 C(t)
log 1

#

.

In the last example there was no 1-cycle appearing. Instead, the con-
tracted tree that emerged from the diagrammatic representation of the second
moment, presented cycles containing more than one inner vertex, with every
edge of the cycle incident to at least one leaf. We will call such cycles v-cycles.
The emergence of v-cycle and the quantitative estimate of their contribution
play a crucial role. The key observation is that contracted trees which do
not consist of 1-cycles only, will have their second moment represented by a
paired tree which necessarily contains a v-cycle. Such trees will turn out to
have a lower order contribution.

Let us start with the formal definition of a v-cycle.

Definition 3.2.11. For a given contracted tree tk, a subgraph C = (VC , EC) ✓ tk

is a v-cycle if it is a cycle in tk (viewed as a graph) in which every edge is incident
to at least one leaf of the tree t. We define the length of a v-cycle to be the number of
inner nodes of t contained in C and we also denote by IC and LC the collection of the
inner vertices and leaves of t, respectively, that belong to C. We will call a v-cycle of
length m 2 N a m-cycle for short.

Note that a 1-cycle (Definition 3.2.5) is simply a special case of an m-cycle
with m = 1. A pictorial example of a v-cycle is the one that appears in the
following component of a contracted tree:

t4t3

t1 t2
.
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Consider a v-cycle of length m and denote its inner vertices by v1, ..., vm,
where we will always keep the convention that in such an encoding we start
from the left-most inner vertex of the cycle, in the graph picture of the tree.
Let us also denote the time coordinates of v1, ..., vm by s1, ..., sm, respectively,
and introduce the kernel

#
⌦m

(s1, · · · , sm) :=l2m
#

m

’
k=1

em(sk+sk+1)psk+sk+1+2#2(0)

=
m

’
k=1

l2
# em(sk+sk+1)

2p(sk + sk+1 + 2#2)
,

(3.50)

with the convention that sm+1 = s1. We notice that the above kernel is
invariant under cyclic permutation of s1, s2, ..., sm.

The following lemma establishes the existence of a v-cycle in a completely
contracted tree of the form [t, t0].

Lemma 3.2.12. Let t, t0
2 T3 . Then, for every pairing g 2 Y(t, t0), the paired

tree [t, t0]g contains a v-cycle.

First, we introduce some notation. For t 2 T63, we partition the subset of
inner nodes neighouring leaves in L(t) as follows: Let

• V (t) be the subset of inner nodes v 2 I(t) that is a basis of a trident, i.e.
there exist exactly three u1, u2, u3 2 L(t) such that p(ui) = v.

• V (t) be the subset of inner nodes v 2 I(t) that is a basis of a cherry, i.e.
there exist exactly two u1, u2 2 L(t) such that p(ui) = v.

• V (t) be the subset of inner nodes v 2 I(t) that is a basis of a lollipop, i.e.
there exist exactly one u 2 L(t) such that p(u) = v. In the following, we
will call elements in V (t) dead-ends.

Proof of Lemma 3.2.12. Let us start by noting that if [t, t0] does not contain any
dead-ends, then the paired tree [t, t0]g contains a v-cycle. To see this, notice
first that every leaf of [t, t0] belongs either to a cherry or to a trident. Now,
consider an arbitrary leaf, call it v0, and let v1 be the unique leaf in [t, t0],
which is connected to v0 via g. If v1 is inside the same cherry or trident
component as v0, then we have already identified a v-cycle, which in this case
is of length 1. If not, then let v2 be a different leaf inside the same cherry or
trident component as that of v1, and denote by v3 the leaf which is connected
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to v2 via g. Again, if v2 and v3 fall inside the same component (which in
this case would necessarily be a trident), then a v-cycle comprising of leaves
v2, v3 and the corresponding base point of the trident is identified. If not,
then continue the procedure. Since there is only a finite number of leaves, we
will either encounter somewhere in the process a v-cycle of length 1, or the
path will return to a component previously visited, thus identifying a v-cycle.
Diagrammatically, we have the following representation:

· · · · · · · · ·

s1 s2 s3 ,

where sub-trees s1, s1, s3 may be identical to just a single leaf, i.e. , and even
though we did not include them, there are g–links emanating from the leaves
of these trees.

We will next reduce the case that [t, t0] contains dead-ends to a situation
of no dead-ends. Dead-ends present a problem: When tracing contractions
in g, we may hit a dead-end and thus are not able to continue to complete
a v-cycle. What we will show is that by eliminating paths that start from a
dead-end, the resulting sub-graph is one that consists of only cherries and
tridents linked through g. Thus, by the previous argument, a v-cycle exists
within this sub-graph.

Let us start by picking an arbitrary dead-end of [t, t0]. Call v0 its associ-
ated leaf and suppose it connects to another leaf of [t, t0], which we call v1.
Now remove this connection as follows:

· · · · · ·

s1 s2 s3 s4

v0 v1

7�!
· · · · · ·

s1 s2 s3 s4

v0 v1
,

where we again understand that, despite not shown, there are g–links em-
anating from trees s1, s2, s3, s4. Moreover, we agree that neither s1 nor s2

equals (they might be ∆, though), so that this part of the tree corresponds to
a dead-end, while s3, s4 might be comprising a .

In the resulting (contracted) tree on the right-hand side, we distinguish
three cases:

(i) Neither of s3 and s4 are single leaves. In this case we have eliminated two
dead-ends, while not affecting the number of cherries and tridents.
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(ii) Only one of the s3 and s4 is a . In this case, we have eliminated a dead-end
in the left part of the tree, while we have also created a new dead-end in
the right part, corresponding to either s3 or s4, whichever happens to be
the . In this case, we have also reduced by one the number of cherries (by
eliminating the cherry that was present in the right part of the sub-tree)
but, nevertheless, we have not reduced the number of tridents.

(iii) Both s3 and s4 are . In this case, in the right part of the tree we had, before
the elimination, a trident. Thus, after the elimination we reduced both the
number of dead-ends and tridents by one, while the number of cherries
actually increased by one.

As we will prove in Lemma 3.2.13 below, the total number of tridents in [t, t0]

is strictly larger than the number of dead-ends. In all three cases above, the
elimination procedure preserves this inequality. Indeed, in (i) the number of
dead-ends is reduced by 2 while the number of tridents remains the same,
in (ii) both the number of tridents and dead-ends remain the same (the num-
ber of cherries is reduced by one but this has no effect) and in (iii) both the
number of tridents and dead-ends is reduced by 1 (the number of cherries
increases by 1). Thus, continuing to eliminate dead-ends, we necessarily end
up with a sub-tree of [t, t0]g, which will only contain cherries and tridents.
We can now return to the beginning of the proof and the situation of a (sub-
ternary) tree that consists of only tridents and cherries, which necessarily con-
tains a v-cycle.

Lemma 3.2.13. Let t 2 T3 \ { }, then |V (t)| 6 |V (t)|� 1.

Proof. Clearly the statement is true for t = . Any larger tree in T3 can be
constructed from by successively gluing tridents onto leaves. Now,
there are three possibilities for a trident to be glued onto an existing tree in
t 2 T3, as described in the table below.

Pre-gluing Post-gluing |V | |V |

+0 +0

s1 s1 +1 +1

s1 s2 s1 s2
�1 +1
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Here, s1, s2 2 T3 \ { } are placeholders for corresponding sub-trees. In all
three cases the claimed inequality remains true as we can only create a new
dead-end by creating a trident at the same time.

3.2.4 Removal of v-cycles of arbitrary length

The estimates in this section provide a quantitative control on v-cycles, given
in Lemmas 3.2.15 and 3.2.16 below. An important procedure that we will
follow, is to spatially decouple v-cycles from the rest of the kernel encoded
by the tree. We will be performing such decoupling estimates sequentially
until we exhaust all v-cycles, including the v-cycles that will emerge through
this process. We call this cycle removal, defined in the following in the instance
of a single cycle removal.

Definition 3.2.14 (Cycle removal). For any contracted tree tk, with t 2 T \ {1, }
and any v-cycle C in tk, we define the contracted tree (t \ C)ek obtained from tk

through the following procedure:

(i) Remove from tk all the edges and vertices that belong to C.

(ii) If v is an inner node that belongs to C, we also remove all other edges connected
to v. Moreover, for any descendant u of v, other than the one contained in C,
we replace {u, v} by {u, w}, where w is the closest ancestor of u not contained
in C. If w does not exist, we simply remove the edge.

The result of this procedure is a tree t \ C with the contraction ek consisting of the
remaining edges in k after the above two steps.

For example, consider the following component of a tree

t4t3

t1 t2

.

In this example there are three v-cycles: one whose contraction-edges consists
of only the blue edges, one whose k edges consists of the top blue edge and
the red one and, finally, one whose k edges consists of the red one and the
two blue ones below the red. The process of removing the blue v-cycle is
depicted below. The middle step shows the component after removing the
leaves and edges that are part of the v-cycle. The rightmost tree is the final
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outcome after also replacing the edges incident to the inner vertices of the
v-cycle by a single edge.

t4t3

t1 t2

7!
t4t3

t1 t2
7!

t4t3

t1 t2 .

The following lemma provides the central estimate that quantifies the contri-
butions coming from v-cycles.

Lemma 3.2.15. Let t be of the form t = [t1 · · · tn], ti 2 T3, and k 2 K(t). Let
C be a m-cycle in tk, with inner vertices denoted by v1, ..., vm associated to time-
space coordinates (sv1 , yv1), ..., (svm , yvm). Recall the kernel bKt,x

tk,#(sV , yV ) from (3.40)
associated to a contracted tree. Then
Z

(R2)IC

Z

DL
C

t

bKt,x
tk,#

(sV , yV )dsLC
dyVC

(3.51)

6 #
⌦m

(sv1 , ..., svm)

(

’
v2IC

1sdk (v)6sv6sp(v)

)
bKt,x
etek ,#(sV\C , yV\C) ,

where et = t \ C, ek is the contraction induced by k on et. The node p(v) denotes the
parent of a vertex v, in t, and dk(v) denotes the unique descendant of v which is not
part of C. The kernel #

⌦m was defined in (3.50).

Proof. The proof follows the steps of the computation in Example 3.2.10 by
crucially applying Chapman–Kolmogorov to the integration over the space
variables associated to the leaves of the v-cycle, combined with a uniform
bound over the space variables on the resulting product of heat kernels. In
particular, we have

Z

(R2)LC
’

w2LC

l#em sp(w) psp(w)+#2(yw � yp(w)) ’
{u,u0}2k\EC

d0(yu � yu0) dyLC

= l2m
#

m

’
k=1

em(svk+svk+1 )psvk+svk+1+2#2(yvk+1 � yvk)

6 l2m
#

m

’
k=1

em(svk+svk+1 )psvk+svk+1+2#2(0)

= #
⌦m

((svk)k=1,...,m) ,

where we omitted integration over the time variables associated to leaves
on the left-hand side, as sw = 0 for all w 2 LC due to the Dirac–d at zero.
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Inserting the above into the left-hand side of (3.51) we obtain the desired
estimate. It is useful to have a pictorial representation of the estimate we
have just performed:

t4t3

t1 t2
=

t4t3

t1 t2

6
| {z }

#
⌦3

((svk )k=1,...,3)

⇥

(
t4t3

t1 t2

)
,

with the equality depicting the application of Chapman-Kolmogorov and the
inequality representing the application of the uniform bound

m

’
k=1

em(svk+svk+1 )psvk+svk+1+2#2(yvk+1 � yvk) 6
m

’
k=1

em(svk+svk+1 )psvk+svk+1+2#2(0) .

The blue cycle appearing in the right-hand side represents the kernel

#
⌦m

((svk)k=1,...,m), which is spatially decoupled from the rest of the tree
integrations. The small purple nodes indicate the remaining spatial integrals
associated to inner nodes of the extracted cycle. By another application of
Chapman–Kolmogorov, when integrating over the mentioned spatial vari-
ables associated to the small purple nodes, we obtain

t4t3

t1 t2
=

t4t3

t1 t2 .

This concludes the proof.

The following lemma is crucial as it demonstrates that v-cycles of length
larger than one have a vanishing contribution, as # ! 0, and in fact, the
contribution is smaller the larger the cycle.

Lemma 3.2.16. The following bound holds for any m > 1

Z

[0,t]m
#

⌦m
(s1, . . . , sm)ds1,...,m 6 (l#em t)2m

2m p
log

�
1 + t

#2

�
, (3.52)
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where we recall that m = m_ 0.

Proof. In the case m = 1, the bound follows from (3.48), since

Z t

0
#(s)ds = l2

#

Z t

0

e2m s

4p(s + #2)
ds 6 l2

# e2m t

2p
log (1 + t

#2 ) . (3.53)

Thus, we assume m > 2 for the remainder of the proof. First, note that since
a2 + b2 > 2ab, we have

s1 + sm + 2#2 > 2
q
(s1 + #2)(sm + #2) >

q
(s1 + 2#2)(sm + 2#2) .

Therefore,
Z

[0,t]m
#

⌦m
(s1, ..., sm)ds1,...,m

=
l2m

#

(2p)m

Z

[0,t]m

m

’
k=1

em(sk+sk+1)

sk + sk+1 + 2#2 ds1,...,m

6 (l#em t)2m

(2p)m

Z

[0,t]m

1p
s1 + 2#2

1
p

sm + 2#2

m�1

’
k=1

1
sk + sk+1 + 2#2 ds1,...,m ,

(3.54)

where we additionally used that em sk 6 em t. Furthermore, for 2 6 k 6
m, using the change of variables r = sk

sk�1+2#2 together with the identityR •
0

1
p

r(1+r) dr = p, we have that

Z t

0

1p
sk + 2#2

1
sk�1 + sk + 2#2 dsk 6

1p
sk�1 + 2#2

Z t/(sk�1+2#2)

0

1
p

r
1

1 + r
dr

6 pp
sk�1 + 2#2

. (3.55)

Applying (3.55) (m � 1)-times to (3.54), starting from k = m and going down
to k = 2, yields

Z

[0,t]m
#

⌦m
(s1, ..., sm) ds1,...,m

6 (l#em t)2m pm�1

(2p)m

Z t

0

1p
s1 + 2#2

1p
s1 + 2#2

ds1

=
(l#em t)2m

2m p
log

�
1 + t

2#2

�
,

which concludes the proof.
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Next we want to define an iterative process of extracting cycles from a
paired tree and record this process via a mapping to an element of the per-
mutation group. We will call this the cycle extraction map and define it below.
To define such algorithm, it will be convenient to label vertices of trees. For a
given tree t 2 T3, we fix a representative ordered version of it and label the
inner vertices of [t, t] (excluding the root) with the numbers {1, . . . , 2i(t)}
in arbitrary order. Once we have labeled all inner nodes, we label its leaves
with the integers {2i(t) + 1, . . . , 4i(t) + 2}. It will be convenient to define an
ordering among all sequences of labels.

Definition 3.2.17 (Lexicographic ordering). For two vectors V = (v1, ..., vd) 2

Nd and U = (u1, ..., ud0) 2 Nd0 with d and d0 not necessarily equal, we say that V
precedes U in lexicographic order and write V � U if

• either there exists a k 6 d ^ d0 such that vz = uz for z 6 k � 1 and vk < uk ,

• or d < d0 and vz = uz for z 6 d.

The lexicographic order extends naturally to a total order on the set of
v-cycles of a tree. Let C be a v-cycle, represented by the path-vector

VC := (vi1 , vj1 , vj2 , vi2 , ..., vim , vj2m�1 , vj2m) , with vik 2 IC , vjk 2 LC , (3.56)

with consecutive vertices in the vector being connected by an edge in the v-
cycle. Here i1 is the minimal label in IC , and vj1 the leaf with minimal label
neighbouring vi1 . This imposes a direction the path-vector is represented in.
Now, let C 0 be a second v-cycle represented by the vector VC 0 , then

C � C
0 if VC � VC 0 lexicographically. (3.57)

In this setting we can introduce the cycle extraction map Pt, for any t 2 T3.

Definition 3.2.18 (Cycle extraction map). For any t 2 T3 and g 2 Y(t, t), we
will define inductively a sequence of v-cycles extracted from [t, t]g as follows:

(i) Start by defining s1 := [t, t]g and g1 := g and denote by C1 the minimal
v-cycle in s1 (whose existence is guaranteed by Lemma 3.2.12) with respect
to the lexicographic order. Define s2 := s1 \ C1 and on s2 the contraction g2

induced by g1 after the cycle removal of C1, according to Definition 3.2.14.

(ii) Assume that we have defined the contracted trees (si)gi , for i = 1, ..., k, as
well as the v-cycles C1, ..., Ck�1 belonging respectively to (s1)g1 , ..., (sk�1)gk�1 .
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Then proceed by defining Ck to be the minimal v-cycle belonging to sk,
with respect to the lexicographic order. Further, define the contracted graph
(sk+1)gk+1 := (sk \ Ck)g̃k via the cycle removal as in Definition 3.2.14.

(iii) Stop at K(t, g) := k if sk+1 = .

Definition 3.2.19 (Permutation extraction map). Let t 2 T3 and i(t) denote the
number of inner nodes of t. We define as follows the permutation extraction map

Pt : Y(t, t) ! S2i(t) ,

with Sn denoting the symmetric group of n elements. First, for any g 2 Y(t, t)

consider the sequence of v-cycles (Ck)
K(t,g)
k=1 constructed from [t, t]g via the cycle

extraction map from Definition 3.2.18. For any Ck belonging to this sequence let
v

i(k)1
, ..., v

i(k)mk
be the vertices in ICk , listed in the same order as in (3.56). We then map

every cycle to a permutation cycle

Ck 7! bCk :=
�
i(k)1 i(k)2 · · · i(k)mk

�
2 S2i(t) ,

where we used the cycle notation (i(k)1 i(k)2 · · · i(k)mk ) for the permutation i(k)j 7! i(k)j+1.
The permutation extraction map Pt(g) is then defined as the permutation p 2 S2i(t)

with cycle decomposition

p =
K(t,g)

’
k=1

�
i(k)1 i(k)2 · · · i(k)mk

�
.

To clarify the tools we have introduced so far, let us discuss an example.

Example 3.2.20. Consider the following paired tree

[t, t]g =
3

1 2

4
= (s1)g1 ,

where we marked the minimal v-cycle (w.r.t. lexicographic ordering) in blue, which
will be removed in the first iteration of the cycle extraction. For the sake of clarity
we ommited the labels of leaves in the diagaram above, and merely represent the



3.2. PAIRED TREES AND THEIR STRUCTURE 105

corresponding v-cycles by their inner nodes. This yields

(s2)g2 = 2
and bC1 =

�
1 3 4

�
,

where once more we marked the new minimal v-cycle in blue. The final iteration then
yields

(s3)g3 = and bC2 =
�
2
�

.

Overall, for the above example, the permutation extraction map Pt yields

g 7!
�
1 3 4

��
2
�
2 S4 . (3.58)

Some remarks on the permutation extraction map are due. First, we note
that the mapping is well defined. This is because once a minimal v-cycle
is to be extracted, the integers indexing its inner nodes are removed from
the permutation and the new tree has inner nodes indexed by the remaining
integers. A second observation is that it is not bijective. To see that the map is
not injective, consider the tree from Example 3.2.20, however, now with the
pairing

3

1 2

4
,

where again we marked the minimal v-cycles in blue. Then Pt maps the
above pairing also to the permutation (3.58). Moreover, the map is not sur-
jective: For example consider a paired tree [t, t] containing the component

t1 t2
2

1

3

and a permutation p 2 Sn containing the permutation cycle
�
1 2 3

�
. Then

there exists no pairing g 2 Y(t, t) such that Pt(g) = p, since it is not pos-
sible to construct a v-cycle according to this permutation cycle. Let us try to
construct a corresponding v-cycle and see that this fails. Necessarily, g would
contain an edge contracting a leaf connected to v2 and v3, respectively. More-
over, we can only connect a single leaf neighbouring either v2 or v3 to the
isolated leave neighbouring v1, say we choose a leaf at v2. Then the pairing g
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would contain the following edges (in purple):

t1 t2
2

1

3 .

Now, it is not possible to close a v-cycle with v3, while also crossing v1, v2.
Either we create a 1-cycle at v3 or pair one of the leaves neighbouring v3 with
the remaining leave at v2, which will create the v-cycle of length two that
only contains v2 and v3. This is illustrated as follows, where we marked the
smaller cycles in blue

t1 t2
2

1

3 and
t1 t2

2

1

3 .

Note that this construction does not depend on the specific leaves we chose.
In particular, the roles of v2 and v3 can be reversed.

The main result of this section is an upper bound on the integral repre-
sented by a paired tree obtained via the permutation cycle sequence extracted
by the map Pt. This upper bound will turn out to be sharp when Pt(g) = Id,
meaning that only cycles of length one are extracted. Before we state the re-
sult, let us introduce the following notation for the time-simplex induced by
a tree. For a tree t 2 T we define

Dt(t) := {s 2 [0, t]I(t)\o : if p(u) = v , then sv � su} , (3.59)

with the usual convention that so = t.

Lemma 3.2.21. Let t 2 T3 and i(t) be the number of internal nodes of t. For
p 2 S2i(t) with permutation cycle decomposition { bCi}

K(p)
i=1 and g 2 P�1

t (p), we
have

[t, t]g,#(t, x) 6 l2
#

⇣ Z

D[t,t](t)
Yp,#(sI )dsI

⌘
e2m t p2(t+#2)(0) ,
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where I := I([t, t]) \ o and

Yp,#(s) :=
K(p)

’
i=1

#
⌦| bCi |(sv; v 2 I bCi

) , (3.60)

with #
⌦n defined in (3.50). Here I bC denotes all those inner vertices whose labels

lie in the permutation cycle bC. In the case p = Id, the inequality can be replaced with
an equality.

Proof. Let p 2 S2i(t) and g 2 P�1
t (p). The proof works by extracting cycles

successively from [t, t] and using Lemma 3.2.15 to obtain a bound on [t, t]g,#

in terms of these cycles. We write V = V([t, t]) \ o and I = I([t, t]) \ o.
Starting with the extraction of the minimal v-cycle C1 in [t, t]g, we have

[t, t]g,#(t, x) 6
Z

DV\C1
t

bKt,x
([t,t]\C1)g̃

(sV\C1
, yV\C1

) (3.61)

Z

[0,t]IC1
#

⌦|IC1 |(sv; v 2 IC1)

8
<

: ’
v2IC1

1sdt,g(v)6sv6spt (v)

9
=

;

dsIC1
dsV\C1

dyV\C1
,

where bKt,x
([t,t]\C1)g̃

denotes the kernel corresponding to the fully contracted tree
([t, t] \ C1)g̃ = (s1)g̃, following the notation in Definition 3.2.14. We can then
proceed iteratively by extracting the v-cycles via the cycle extraction map
from Definition 3.2.18, until we reach the tree . In this way we obtain the
upper bound, using Lemma 3.2.15,

[t, t]g,#(t, x) 6 #(t, x) (3.62)

⇥

Z

[0,t]I

K(t,g)

’
i=1

8
<

: #
⌦|ICi |(sv; v 2 ICi)

8
<

: ’
v2ICi

1sdsi ,g(v)6sv6spsi (v)

9
=

;

9
=

; dsI ,

with the sequence of v-cycles (Ck)
K(t,g)
k=1 and the sequence of reduced trees

(si)
K(t,g)
i=1 from the cycle extraction map. Note that K(t, g) equals the num-

ber of permutation cycles K(p). In order to avoid confusion, we added a
subindex psi to the parent map p (and also to the descendent map dg), mak-
ing clear with respect to which tree the map is to be interpreted. Now, by
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application of Lemma 3.2.22 below, the inequality (3.62) reads

[t, t]g,#(t, x) 6 #(t, x)
Z

D[t,t](t)

K(t,g)

’
i=1

#
⌦|ICi |(sv; v 2 ICi)dsI

= l2
# e2m t p2(t+#2)(0)

⇣ Z

D[t,t](t)
Yp,#(sI )dsI

⌘
,

which yields the desired uppper bound. If p = Id, then the inequality in
the first line becomes an equality as we are successively removing 1-cycles
and apply the identity in Lemma 3.2.6, rather than the upper bound in
Lemma 3.2.15. The proof is complete.

Lemma 3.2.22. Let t > 0, t 2 T3 and write I := I([t, t]) \ o. Then for every
pairing g 2 Y(t, t), we have

[0, t]I \
K(t,g)\

i=1

\

v2ICi

{sdsi ,g(v) 6 sv 6 spsi (v)
} = D[t,t](t) , (3.63)

where (Ck)
K(t,g)
k=1 denotes the sequence of v-cycles and (si)

K(t,g)
i=1 the sequence of re-

duced trees, constructed from [t, t]g via the cycle extraction map (Definition 3.2.18).
The set D[t,t](t) was defined in (3.59).

Proof. Let v 2 I be arbitrary. Then there exists an i = 1, . . . , K(t, g) such
that v 2 ICi and we define u1 := dsi ,g(v), w1 := psi(v). Notably, there exists
a unique “ancestral” path (u1, . . . , um, v, wm0 , . . . , w1) in the tree [t, t] with
uj, wj 2 I , j > 2.

If sI 2 D[t,t](t), then

0 6 sdsi ,g(v) = su1 6 · · · 6 sum 6 sv 6 swm0
6 · · · 6 sw1 = spsi (v)

6 t ,

which implies in particular that sdsi ,g(v) 6 sv 6 spsi (v)
.

On the other hand, note that p(v) = p[t,t](v) = wm0 , which lies in ICi0
for

some i0 = 1, . . . , K(t, g). Thus, if sI lies in the left-hand side of (3.63), then

• either the parent of v has not been removed by the cycle extraction map in
an earlier iteration, i.e. i0 > i, in which case

sv 6 spsi (v)
= swm0

= sp(v) ,

• or the parent of v has been removed in an a previous iteration, i.e. i0 < i,
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then
sv = sdsi0 ,g(wm0 ) 6 swm0

= sp(v) .

As the choice of v was arbitrary, this concludes the proof.

3.3 Contributing and non-contributing trees

This section is dedicated to the proof of Proposition 3.1.2, for a single fixed
tree t 2 T3. Obtaining this result requires a precise quantitative control over
the limiting behavior of contracted and paired trees. Such control will build
on a systematic application of the bounds and ideas that we have introduced
in Section 3.2, and in particular in Lemma 3.2.21.

In the previous section we analysed paired trees and found that it was
possible to identify v-cycles and remove them iteratively to obtain an upper
bound (or an exact estimate) on the integral associated to such a tree. In this
section we start instead with an arbitrary contracted ternary tree [t]k. Our
objective is to obtain a bound (or an exact estimate) on the second moment
of the Wiener–Itô stochastic integral associated to such contracted tree. To
obtain these estimates, we must sum over all possible pairings g of [t, t]

which complete the contraction k, and for each such pairing we can follow
the procedure described in the previous section. One of the key points of this
section is therefore to keep track of all the combinatorial factors that appear
when counting pairings and contractions associated to arbitrarily large trees.

The remainder of this section will be split into two main parts. First, we
study those contracted trees that do not vanish in the limit # ! 0 and identify
them using properties of the underlying graph tk. We also determine their
precise contribution and the size of the set of all such contractions. In the
second part, we will instead state and prove a uniform upper bound for the
rate of convergence of contracted trees that vanish as # ! 0.

3.3.1 Contributing contractions

We start by studying those contracted trees that contribute to the fluctuations
in the limit # ! 0, and for which an exact estimate of the contribution is
necessary. For this reason, let us define contributing contractions as follows.

Definition 3.3.1. For any tree t 2 T3 and contraction k 2 K(t), we say that k
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contributes if there exist (t, x) 2 (0, •)⇥ R2 such that

lim sup
#!0

(log 1
# ) · E

h��[t]#,k(t, x)
��2
i
> 0 . (3.64)

We denote the set of all contributing contractions by

C(t) := {k such that tk contributes} ✓ K(t) .

Identifying contributing contractions

Before determining the precise contribution of contracted trees, we show that
the abstract condition in (3.64) can be replaced by a condition on the underly-
ing graph structure of the contracted tree. More precisely, we will see that the
estimates of Section 3.2.4 imply that contracted trees contribute if and only
if the corresponding integrals lie in the first homogeneous Wiener chaos and
we can iteratively remove 1-cycles from them.

Lemma 3.3.2. Let t 2 T3, then C(t), see Definition 3.3.1, satisfies:

(i) C(t) = {k 2 K(t) : 9g 2 Y(tk, tk) with Pt(g) = Id}.

(ii) If k 2 C(t), then tk has a single uncontracted leaf. That is, [t]k lies in the
first Wiener–Itô chaos and is therefore Gaussian.

The property of being contributing, associated to a contracted tree [t]k, is
defined using the second moment condition (3.64). We can express (3.64)
by summing [t, t]g over all pairings in g 2 Y(tk, tk), recall (3.42). The
paired tree obtained, once we fix an element of Y(tk, tk), can be treated via
Lemma 3.2.21. In particular, it turns out that for contributing trees tk and
g 2 Y(tk, tk) the cycle extraction map satisfies Pt(g) = Id. As a conse-
quence, we can determine precisely the limiting behavior of such a paired
trees through the last statement of Lemma 3.2.21, which is the key ingredient
in the proof of Lemma 3.3.2 and the content of the following lemma.

Lemma 3.3.3. Let t 2 T3 and p 2 S2i(t). Then for every g 2 P�1
t (p) and all

(t, x) 2 (0, •)⇥ R2

lim
#!0

(log 1
# ) · [t, t]g,#(t, x) =

8
><

>:

l̂2
⇢

1
t!

⇣
l̂2

2p

⌘|t|�2
p(m)

2t (0) if p = Id ,

0 otherwise .
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If the above limit vanishes, we say g is a non-contributing pairing, and call it a
contributing pairing otherwise.

The proof of Lemma 3.3.3 uses the following identity.

Lemma 3.3.4. Let t 2 T3 and t = T (t) be the trimmed tree as in (2.82), then

Z

D[t](t)
’

v2I(t)

l2
# e2m sv

4p(sv + #2)
dsI(t) =

1
t!

✓
l2

#

4p

Z t

0

e2m s

s + #2 ds
◆|t|

=: [t]#(t) ,

(3.65)
with the tree-time-simplex D[t](t) introduced in (3.59).

This, on the other hand, is a consequence of the fact that the integrand on
the left-hand side in (3.65) is a symmetric function in the variables sI(t) =

sV(t):

Lemma 3.3.5. For a tree t 2 T of the form t = [t1 · · · tn] such that I :=
I(t) \ ot 6= ∆ and any symmetric function Y : RI

! R, we have that

Z

Dt(t)
Y(sI )dsI =

1
t1! · · · tn!

Z

[0,t]I
Y(sI )dsI ,

with the domain Dt(t) defined in (3.59) and t = T (t) denoting the trimmed tree
defined in (2.82).

Proof. We prove the statement by induction over i(t) > 2. Note that the case
i(t) = 1 is excluded as the single inner node must necessarily be the root.
If i(t) = 2, then t must be of the form t =

⇥
· · ·

· · ·
⇤

and I = {v}
(denoting the root of · · · ). Then

Z

Dt(t)
Y(sI )dsI =

Z t

0
Y(sv)dsv ,

which is the desired statement since T ( · · · )! = 1. Now assume that the
statement holds true for any tree t0 = [t0

1 · · · t0

n0 ] such that i(t0) 6 N, for
some N > 2, and write I

0 := I(t0) \ o0 with o0 := ot0 . Let t 2 T be of the
form t = [t0

· · · ], so that t = [t0]. Then

Z

Dt(t)
Y(sI )dsI =

Z t

0

Z

Dt0 (so0 )
Y(so0 , sI 0)dsI 0 dso0

=
1

t0

1! · · · t0

n0 !

Z t

0

Z

[0,so0 ]I
0
Y(so0 , sI 0)dsI 0 dso0 ,
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where we used the induction hypothesis and the fact that Y(so0 , ·) : RI
0

! R
is a symmetric function. Using the symmetry of the function Y, we further
see that the identification of variable so0 as the maximum variable is irrelevant
with regards to the integration, and the assignment of any of the variables sI
as being the maximum would result in the same value. Thus, the above is
equal to Z

Dt(t)
Y(sI )dsI =

1
|I| · t0

1! · · · t0

n0 !

Z

[0,t]I
Y(sI )dsI ,

and the statement follows now for t because t0! = |t0
| · t0

1! · · · t0

n0 ! = |I| ·

t0

1! · · · t0

n0 !. Furthermore, we notice that

Z

Dt(t)
Y(sI )dsI =

Z

D[t0 ](t)
Y(sI(t0))dsI(t0) ,

meaning that the additional occurrences of in the grafting of t do not affect
the integral. Finally, consider the case t 2 T such that i(t) = N + 1, with
t = [t1 · · · tk · · · ], k > 2 and ti 6= . Again the extra occurrences of in the
grafting of t do not affect the value of the integral. Moreover, the integration
domain Dt(t) can be written as a disjoint union of sub-tree-simplices:

Z

Dt(t)
Y(sI )dsI =

Z

D[t1 ]
(t)

· · ·

Z

D[tk ]
(t)

Y(sI )dsI(tk) · · · dsI(t1) .

The statement follows from the induction hypothesis, since the restriction of
Y to a subset of variables remains a symmetric function.

Proof of Lemma 3.3.3. Consider t 2 T3, p 2 S2i(t) and g 2 P�1
t (p). Then for

all (t, x) 2 (0, •)⇥ R2, Lemma 3.2.21 implies

(log 1
# ) · [t, t]g,#(t, x) 6 l̂2

(Z

D[t,t](t)
Yp,#(s)dsI

)
e2m t p2(t+#2)(0) ,

where we remind that I := I([t, t]) \ o. Extending the domain of integration
from D[t,t](t) to [0, t]I , the right-hand side can be factorised

(log 1
# ) · [t, t]g,#(t, x)

6 l̂2

(
K(t,g)

’
i=1

Z

[0,t]
I
Ci

#
⌦|ICi |(sv; v 2 ICi)dsICi

)
e2m t p2(t+#2)(0) ,

where (Ci)
K(t,g)
i=1 denotes the sequence of v-cycles constructed from [t, t]g via
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the cycle extraction map (Definition 3.2.18). For each of the integrals we have

Z

[0,t]
I
Ci

#
⌦|ICi |(sv; v 2 ICi)dsICi

8
>>><

>>>:

= l2
#

4p

R t
0

e2m s

s+#2 ds if |ICi | = 1 ,

6 (l#em t)
2|I

Ci
|

2
|I
Ci

|
p

log
�
1 + t

#2

�
if |ICi | > 2 ,

where for the case |ICi | > 2 we used Lemma 3.2.16. Note that the right-hand
side in the second case vanishes in the limit # ! 0, since l# ⇠ (log 1

# )
�1/2. In

particular, if p 6= Id at least one v-cycle Ci must satisfy |ICi | > 2, which yields
that [t, t]g,#(t, x) vanishes as # ! 0.

On the other hand, if p = Id all the v-cycles Ci are 1-cycles and we can
replace all inequalities with equalities to obtain

(log 1
# ) · [t, t]g,#(t, x)

= l̂2

(Z

D[t,t](t)
’
v2I

#
⌦1
(sv)dsI

)
e2m t p2(t+#2)(0)

= l̂2

(Z

D[t](t)
’

v2I(t)

l2
# e2m sv

4p(sv + #2)
dsI(t)

)2

e2m t p2(t+#2)(0) .

Hence, we deduce from Lemma 3.3.4 and Lemma 3.2.7 that

lim
#!0

(log 1
# ) · [t, t]g,#(t, x) = l̂2

8
<

:
1
t!

 
l̂2

2p

!|t|
9
=

;

2

p(m)
2t (0) ,

which concludes the proof.

Finally, we are ready to show that contributing contractions can be iden-
tified as those that have a single uncontracted leaf and allow for an iterative
removal of 1-cycles.

Proof of Lemma 3.3.2. Let us start by recalling from (3.42) that for any tree t 2

T3 and any contraction k 2 K(t)

(log 1
# ) · E

⇥
[t]2k,#(t, x)

⇤
= Â

g2Y(tk ,tk)

(log 1
# ) · [t, t]g,#(t, x) .

Therefore, to prove the first statement of the lemma, it suffices to prove that

lim
#!0

(log 1
# ) · [t, t]g,#(t, x) > 0 ,
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for all (t, x) 2 (0, •) ⇥ R2 if and only if Pt(g) = Id, which is implied by
Lemma 3.3.3.

For the second statement we instead proceed by induction over the num-
ber of inner nodes i(t). We can check that the statement is true for i(t) = 0,
i.e. t = , since |Y(t, t)| = 1 and

lim sup
#!0

(log 1
# ) · E

⇥��
#

��2(t, x)
⇤
> 0 .

Now, let m 2 N and assume that the statement holds for all t̂ 2 T3 satisfying
i(t̂) 6 m. Choose t 2 T3 with i(t) = m + 1 and let k 2 C(t). By the first
point of the present Lemma 3.3.2, which we have just proven, we know there
exists a g 2 Y(tk, tk) \ P�1

t (Id). In particular, let C1 be the first 1-cycle that
is extracted by the permutation-extraction map applied to the pairing g, and
write s2 = ([t, t] \ C1)g2 = [t̂, t]g2 , with t̂ := t \ C1, assuming without loss
of generality that we have removed the cycle from the left tree.

Then via (3.61), we deduce that

[t, t]g,#(t, x) 6
Z

DV\C1
t

bKt,x
([t,t]\C1)g2

(sV\C1
, yV\C1

)

Z t

0
#

⌦1
(sv; v 2 IC1)

8
<

: ’
v2IC1

1sdg(v)6sv6sp(v)

9
=

;

dsIC1
dsV\C1

dyV\C1
,

(3.66)

where we again used V = V([t, t]) \ o. Note that the product in the expres-
sion above only consists of a single term, because C1 is a 1-cycle. Dropping
the time-constraint encoded by 1sdg(v)6sv6sp(v) , we therefore obtain

[t, t]g,#(t, x) 6 [t̂, t]g2,#(t, x)
⇢Z t

0
#

⌦1
(sv; v 2 IC1)dsIC1

�
. (3.67)

Taking the lim sup over # ! 0 after multiplying both sides with (log 1
# ) yields

0 < lim sup
#!0

(log 1
# ) [t, t]g,#(t, x)

6 l̂2

2p
lim sup

#!0
(log 1

# ) [t̂, t]g2,#(t, x) .
(3.68)

Here, the first inequality holds since k 2 C(t), while the second inequal-
ity is a consequence of (3.67) and Lemma 3.2.7. In particular, the limit on
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the right-hand side must be positive. Next, by Definition 3.2.4 there exists
(k1(g2), k2(g2)) such that g2 2 Y(t̂k1(g2), tk2(g2)), with k2(g2) = k. Via an
application of the Cauchy–Schwartz inequality we then obtain

[t̂, t]g2,# 6 E
h
[t̂]k1(g2),# [t]k,#

i
6
⇣

E
h
[t̂]2k1(g2),#

i⌘ 1
2 �

E
⇥
[t]2k,#

⇤� 1
2 . (3.69)

Together with (3.68), this implies k1(g2) 2 C(t̂). By the induction assump-
tion, t̂k1(g2) (note that i(t̂) = m) has a single uncontracted leaf, which implies
that also tk has a single uncontracted leaf. This concludes the desired re-
sult.

Lemma 3.3.2, together with the identity from Lemma 3.3.3, implies that if
k 2 C(t) then [t]#,k is (and converges to) a mean-zero Gaussian with limiting
fluctuation

lim
#!0

q
log 1

# ·
��[t]#,k(t, x)

��
L2(P)

=
l̂

t!

 
l̂2

2p

!|t|q
p(m)

2t (0) .

In the next subsection, we will see that a stronger statement holds true, as we
will be able to identify [t]k,# with # up to a multiplicative factor.

Determining contributions

In the previous section, we identified contributing pairings (and contractions)
to be the ones mapped by Pt to the identity permutation, i.e. the algorithm
defined in Definition 3.2.18 only extracts cycles of length one. Precisely this
fact will turn out to be useful, when determining the following identity for
contributing contracted trees.

Lemma 3.3.6. For every t 2 T3, k 2 C(t), # 2 (0, 1
2 ) and (t, x) 2 (0, •)⇥ R2 we

have that

[t]k,#(t, x) =
1
t!

✓
l2

#

4p

Z t

0

e2m s

s + #2 ds
◆|t|

#(t, x) = [t]#(t) #(t, x) .

Note that the right-hand side of the identity in the lemma above does not
depend on the particular contraction k 2 C(t).

Proof. Fix t 2 T3 and let k 2 C(t). Choose g 2 P�1
t (Id) \ Y(tk, tk), which

exists by Lemma 3.3.2(i). Since g 2 P�1
t (Id), the cycle-extraction map (Def-

inition 3.2.18) associates to g a sequence of 1-cycles (Ci)
2i(t)
i=1 . In order to dis-
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tinguish between the two trees generating [t, t], let us write [t1, t2] := [t, t].
Now, let (C 0

i )
i(t)
i=1 be the subset of cycles whose bases belong to the tree t1. In

other words, (C 0

i )
i(t)
i=1 contains all cycles in (Ci)

2i(t)
i=1 such that ICi ⇢ I(t1). This

yields an iterative rule of removing 1-cycles from [t1]k, which is identical to
[t]k. In particular, each bCi corresponds to a unique inner node vi of t.

Recall that for v 2 I(t) we write p(v) 2 I([t]) for the parent of v and
also recall the representation of the stochastic integrals with respect to (3.40),
which allows us to write

[t]k,#(t, x) =
Z

DV(t)
t

bKt,x
[t]k ,#(sV(t), yV(t)) dsV(t) dyV(t)\` h(dy`) ,

where we denote by (s`, y`) the space-time point associated to the single un-
contracted leaf in tk, cf. Lemma 3.3.2. We apply Lemma 3.2.6 with respect to
the 1-cycle C

0

1, which yields

[t]k,#(t, x) =
Z

D
V(t)\C01
t

⇢Z t

0
#

⌦1
(sv1)1{sdk (v1)

6sv16sp(v1)
} dsv1

�

bKt,x
[et]ek ,#(sV(t)\C 0

1
, yV(t)\C 0

1
)dsV(t)\C 0

1
dyV(t)\(`[C 0

1)
h(dy`) .

Now, by applying Lemma 3.2.6 successively another i(t)� 1 times with re-
spect to each of the 1-cycles (C 0

i )
i(t)
i=2 , we obtain

[t]k,#(t, x) =

(Z

[0,t]I(t)
’

v2I(t)
#

⌦1
(sv)1{sdk (v)6sv6sp(v)} dsI(t)

)

⇥ l#em t
Z

R2
pt+#2(y` � x) h(dy`) .

The stochastic integral in the second line equals #(t, x), whereas the time
integral in the brackets can be written as

Z

[0,t]I(t)
’

v2I(t)
#

⌦1
(sv)1{sdk (v)6sv6sp(v)} dsI(t)

=
Z

D[t](t)
’

v2I(t)

l2
# e2m sv

4p(sv + #2)
dsI(t) ,

arguing along the same lines as in Lemma 3.2.22. Together with Lemma 3.3.4,
this concludes the proof.
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Counting contributing contractions

In Lemma 3.3.6, we saw that the limit of a contributing contracted tree [t]k is
independent of the chosen contraction in C(t). Hence, in order to conclude
the limit of Xt

# , it is only left to determine the size of C(t).

Lemma 3.3.7. Let t 2 T3, then |C(t)| = 3i(t).

In order to prove Lemma 3.3.7, we first need the following result.

Lemma 3.3.8. Let t 2 T3 and k 2 C(t), then every trident in tk has an internal
contraction. More precisely, for every v 2 V (t) there exists an edge {u, u0

} 2 k

such that v = p(u) = p(u0). The set V (t) was introduced below the statement of
Lemma 3.2.12.

Proof. Let t 2 T3, k 2 C(t) and consider [t, t]g for the unique g 2 Y(tk, tk),
see Lemma 3.3.2(ii). For any v 2 V (t), we write u1(v), u2(v), u3(v) 2 L(t)

for the three leaves it is connected to (indexing them with 1 to 3 from left to
right).

Now, assume there exists a v 2 V (t) without an internal contraction,
i.e. {ui(v), uj(v)} /2 k for 1 6 i, j 6 3:

t1 t2v

u1 u2 u3

, (3.70)

for some t1, t2 2 T3. Note that possibly one of the leaves could be un-
contracted, which is indicated in the example above by the dotted purple
line. It is an immediate consequence that Pt(g) 6= Id, since otherwise
{ui(v), uj(v)} 2 k ⇢ g for some 1 6 i, j 6 3. However, this implies that

lim
#!0

(log 1
# ) · [t, t]g,#(t, x) = 0 , 8(t, x) 2 (0, •)⇥ R2 ,

by Lemma 3.3.3, thus, contradicting the assumption k 2 C(t). This finishes
the proof.

Proof of Lemma 3.3.7. We prove the statement by induction over the number
of inner nodes i(t), starting with i(t) = 0, i.e. t = . In this case, |C(t)| =
|K(t)| = |Y(t, t)| = 1 and the claim holds. Now assume the statement
holds true for any bt 2 T3 satisfying i(bt) 6 m.
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Let t 2 T3 with i(t) = m + 1 and v 2 V (t). We denote its neighbouring
leaves by u1(v), u2(v), u3(v) 2 L(t) (indexing them with 1 to 3 from left to
right):

t1 t2v

u1 u2 u3

, (3.71)

for some t1, t2 2 T3. Again note that possibly one of the leaves could be
uncontracted. Using Lemma 3.3.8, we can partition C(t) into three sets
C1,2(t), C1,3(t), C2,3(t) with

Ci,j(t) :=
�

k 2 C(t) : {ui(v), uj(v)} 2 k
 

.

For any contraction k 2 C(t) we define the tree resulting from tk after re-
moving the 1-cycle C with IC = {v}:

btk̃ := (t \ C)k̃ , (3.72)

using the cycle removal from Definition 3.2.14. Because v and thus bt (up
to labelling of one leaf via ui(v)) do not depend on the choice of k 2 C(t),
(3.72) defines a map Kv : C(t) ! K(bt) with Kv(k) := k̃. Moreover, we have
k̃ = Kv(k) 2 C(t̂) since

0 < lim sup
#!0

�
log 1

#

�
· E

⇥
|[t]k,#(t, x)|2

⇤

6
 

l̂2

2p

!2

lim sup
#!0

�
log 1

#

�
· E

⇥
|[t̂]k̃,#(t, x)|2

⇤
,

following the same lines as in (3.68). In fact, for any choice 1 6 i < j 6 3,
the map Kv|Ci,j(t) maps onto C(bt) and defines a bijection. To see this, con-
sider an arbitrary contraction bk 2 C(bt) (with the labeling of bt induced by
t) and define k := bk [ {ui(v), uj(v)}. For example we have the following
reconstruction of a contraction in C2,3(t) using the inverse (Kv|C2,3(t))

�1:

[bt]bk = t1 t2w 7! t1 t2v

w = u1 u2 u3

= [t]k . (3.73)

On the other hand, for the same bk we can also reconstruct the following two
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contractions in C1,2(t) and C1,3(t) , respectively:

t1 t2v

u1 u2 u3 = w

and t1 t2v

u1 w u3

.

In particular, for each set Ci,j(t) there exists a unique k 2 Ci,j(t) such that
Kv(k) = bk. As a consequence all three sets Ci,j(t) have the same cardinal-
ity, which agrees with |C(bt)|. Lastly, applying the induction hypothesis to
|C(bt)|, yields

|C(t)| = |C1,2(t)|+ |C1,3(t)|+ |C2,3(t)| = 3|C(bt)| = 3m+1 .

This concludes the proof.

3.3.2 Non-contributing trees

Up to now, we have identified contributing pairings (and contractions) to
be the ones that lie in the pre-image P�1

t (Id), when considering a fixed tree
t 2 T3 . Moreover, we determined their exact contribution. Now, it is only
left to control the overall contribution of the remaining contractions, which
we will prove to have no contribution. We summarise this sections main
finding in the following lemma:

Lemma 3.3.9. Let T > 0, then uniformly over any # 2 (0, 1
T ^

1
2 ), t 2 T

N#,
3 , for

N# = blog 1
# c, x 2 R2 and uniformly for all t 2 [0, T], we have

��� Â
k/2C(t)

q
log 1

# [t]k,#(t, x)
���

L2(P)
6 1q

4 log 1
#

1
t!

 
6e2+2pl̂2e2m t

p

!|t|
l̂em t

p
4(t + #2)

,

where t denotes the trimmed tree T (t) as in (2.82). In particular, for a fixed t 2 T3

and t > 0, the right-hand side vanishes in the small-# limit.

For the proof of Lemma 3.3.9 we need the following two lemmas. The
first is an upper bound of a “symmetrised” integral over v-cycles.

Lemma 3.3.10. Let T > 0. Then uniformly over any # 2 (0, 1
T ^

1
2 ), t 2 [0, T] and
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t 2 T
N#,

3 , N# = blog 1
# c, we have

Â
p2S2i(t)\{Id}

⇣ Z

D[t,t](t)
Yp,#(sI )dsI

⌘
6 1

log 1
#

1
(t!)2

(l̂em t)4i(t)

4p2i(t)�1 e2(2+2p) i(t) ,

where I := I([t, t]) \ o, and t = T (t) denotes the trimmed tree (2.82). The
function Yp,# was defined in (3.60).

The next result guarantees that the number of pairings g of a tree [t, t],
which correspond to a permutation p 2 S2i(t), grows at most exponentially
in the number of inner nodes of a tree.

Lemma 3.3.11. Let t 2 T3 and p 2 S2i(t), then
��P�1

t (p)
�� 6 62i(t).

Having both Lemma 3.3.10 and 3.3.11 at hand, we can now prove
Lemma 3.3.9. The proofs of Lemma 3.3.10 and 3.3.11 are instead deferred
to the end of this section.

Proof of Lemma 3.3.9. Consider T > 0, # 2 (0, 1
T ^

1
2 ) and (t, x) 2 [0, T]⇥ R2.

By representing second moments of contracted trees in terms of paired trees,
cf. (3.42), we have

����� Â
k/2C(t)

q
log 1

# · [t]k,#(t, x)

�����

2

L2(P)

= log 1
# Â

k,k0/2C(t)
Â

g2Y(tk ,tk0 )

[t, t]g,#(t, x)

6 log 1
# Â

p2S2i(t)\{Id}
Â

g2P�1
t (p)

[t, t]g,#(t, x) ,

where we used additionally Lemma 3.3.3 to identify non-contributing pair-
ings as precisely the ones that do not map onto Id under Pt, and the fact
that

9g 2 Y(tk, tk0) s.t. lim sup
#!0

�
log 1

#

�
[t, t]g,#(t, x) > 0 , k, k0 2 C(t) ,

which is a consequence of the Cauchy-Schwartz inequality, cf. (3.69), and
Lemma 3.3.2. Thus, Lemmas 3.2.21 and 3.3.11 imply

����� Â
k/2C(t)

q
log 1

# · [t]k,#(t, x)

�����

2

L2(P)

6
�
log 1

#

�
l2

# 62i(t) Â
p2S2i(t)\{Id}

⇣ Z

D[t,t](t)
Yp,#(sI )dsI

⌘
e2m t p2(t+#2)(0) .
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By application of Lemma 3.3.10, this can be further upper bounded by

l2
# 62i(t) 1

(t!)2
(l̂em t)4i(t)

4p2i(t)�1 e2(2+2p) i(t) e2m t p2(t+#2)(0)

=
1

4 log 1
#

1
(t!)2

 
6e2+2pl̂2e2m t

p

!2i(t)
l̂2e2m t

4(t + #2)
.

Recalling the fact that i(t) = |t|, the result follows by taking the square
root.

Now we pass to the proof of Lemma 3.3.10, which is a quantitative version
of Lemma 3.3.3. Instead of extending the integration domain from D[t,t](t) to
the box [0, t]I([t,t])\o, as it was done in the proof of the latter lemma, we will
make use of the fact that summation over all permutations in p 2 Sn \ {Id}
has a symmetrising effect that allows for a more precise control of the integral.

Lemma 3.3.12. Fix # 2 (0, 1
2 ) and n 2 N. Consider for any p 2 Sn the function

Yp,# introduced in (3.60). Then the function Y# : [0, •)n
! R defined by

Y#(s1, . . . sn) := Â
p2Sn\{Id}

Yp,#(s1, . . . , sn) ,

is symmetric in the variables s1, · · · , sn.

Proof. It suffices to consider the function j# given by

(s1, ..., sn) 7! Â
p2Sn

n

’
i=1

1
si + sp(i) + 2#2 ,

since the term corresponding to the identity partition is symmetric itself.
Now, for s 2 Sn, if we indicate ss = (ss(i))

n
i=1, we have

j#(ss) = Â
p2Sn

n

’
i=1

1
ss(i) + ss(p(i)) + 2#2 = Â

p2Sn

n

’
i=1

1
si + ssps�1(i) + 2#2

= Â
p2Sn

n

’
i=1

1
si + sp(i) + 2#2 = j#(s) ,

by performing an index change and using the fact that {sps�1 : p 2 Sn} =

Sn. This concludes the proof.

Having additionally the symmetrising effect of summing over all permu-
tations (apart from the identity), we can prove the desired upper bound.
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Proof of Lemma 3.3.10. Fix T > 0, t 2 [0, T] and define n := 2i(t). Using
Lemma 3.3.5 and the definition of Y# in Lemma 3.3.12, we find that

Z

D[t,t](t)
Y#(sI )dsI =

1
(t!)2 Â

p2Sn\{Id}

Z

[0,t]I
Yp,#(sI )dsI , (3.74)

since Y# is symmetric by Lemma 3.3.12. Recall from (3.60) that Yp,# is a prod-
uct over cycles in the permutation p, which allows us to factorise the integral

Z

[0,t]I
Yp,#(sI )dsI =

K(p)

’
i=1

Z

[0,t] bCi
#

⌦| bCi |(sv; v 2 bCi)ds bCi
,

with K(p) denoting the number of cycles in the permutation p. Applying
Lemma 3.2.16 to each term in the product yields

Z

[0,t]I
Yp,#(sI )dsI 6

K(p)

’
i=1

 
(l#em t)2| bCi |

2| bCi | p
log

�
1 + t

#2

�
!

=
(l#em t)2n

2n

⇣ 1
p

log
�
1 + t

#2

�⌘K(p)

6 (l#em t)2n

2n M#(t)K(p) ,

where we introduced

M#(t) :=
⇠

1
p

log
�
1 + t

#2

�⇡
.

Therefore, we obtain the following upper bound to (3.74):

Z

D[t,t](t)
Y#(sI )dsI 6 n!

(t!)2
(l#em t)2n

2n

✓
ESn

h
M#(t)K(p)

i
�

M#(t)n

n!

◆
. (3.75)

Here we used the identity

ESn

h
M#(t)K(p)

i
=

M#(t)n

n!
+ Â

p2Sn\{Id}

M#(t)K(p)

n!
,

with the expectation taken with respect to the uniform distribution on Sn,
which has probability mass function 1

n! . Hence, we have reduced the problem
to studying the generating function of a discrete random variable, namely
the total number of cycles in a uniformly at random chosen permutation. Its
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distribution is a well studied object and we have the explicit identity

ESn

h
M#(t)K(p)

i
=

✓
n + M#(t)� 1

n

◆

at hand, see e.g. [Uel17, Display (5.14)]. Thus, we can rewrite (3.75) as

Z

D[t,t](t)
Y#(sI )dsI 6 1

(t!)2
(l̂em t)2n

(2 log 1
# )

n

✓
(n + M#(t)� 1)!
(M#(t)� 1)!

� M#(t)n
◆

. (3.76)

Now, we expand the difference on the right-hand side using a telescopic sum
which leads to

(n + M#(t)� 1)!
(M# � 1)!

� M#(t)n =
n�1

Â
j=1

j M#(t)j
n�1

’
k=j+1

(M#(t) + k) . (3.77)

Note that for every k = 0, . . . , n � 1

M#(t) + k
2 log 1

#

6
1
p log

�
1 + t

#2

�
+ k + 1

2 log 1
#

6 1
p

⇣
1 +

| log(t + #2)|+ p(k + 1)
2 log 1

#

⌘

6 1
p

exp

 
| log(t + #2)|+ p(k + 1)

2 log 1
#

!
,

thus, together with (3.76) and (3.77)
Z

D[t,t](t)
Y#(sI )dsI (3.78)

6 1
(t!)2

(l̂em t)2n

2pn�1 log 1
#

n�1

Â
j=1

j exp

 
(n � 1)

| log(t + #2)|

2 log 1
#

+ p
j + Ân�1

k=j+1(k + 1)

2 log 1
#

!

6 1
log 1

#

1
(t!)2

(l̂em t)2n

2 pn�1

n�1

Â
j=1

j exp

 
(n � 1)

| log(t + #2)|

2 log 1
#

+ p
n�1

Â
k=j

k + 1
2 log 1

#

!
.

The terms in the exponent can be estimated uniformly over # and t 2 [0, T].
For the first term, recall (3.33). Moreover, since n  2N# = 2blog 1

# c,

n�1

Â
k=j

k + 1
2 log 1

#

6
n

Â
k=1

k
2 log 1

#

=
n(n + 1)
4 log 1

#

6 n .
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Combining the two estimates with (3.78) yields

Z

D[t,t](t)
Y#(sI )dsI 6 1

log 1
#

1
(t!)2

(l̂em t)2n

2 pn�1
n(n � 1)

2
e(2+p)n

6 1
log 1

#

1
(t!)2

(l̂em t)2n

4 pn�1 e(2+2p)n ,

where we used n(n � 1) 6 e2n 6 epn in the last step. This concludes the
proof.

Proof of Lemma 3.3.11. For convenience let us write n = 2i(t). Our aim is to
obtain an upper bound on the total number of parings g that give rise to a
given permutation p 2 Sn, via the map Pt(g) from Definition 3.2.19. It will
be convenient to represent p as a product of permutation cycles p = ’K(p)

i=1
bCi,

for some K(p) 2 {1, · · · , n}. Here we slightly abuse the notation bCi, which
is already used in Definition 3.2.19. Indeed, while the decomposition of a
permutation into a product of cycles is unique, the order in which these cycles
are chosen is arbitrary. This is not the case in Definition 3.2.19, as for example
the cycle bC1 is necessarily a cycle among bases of tridents or cherries (because
it is the first cycle we extract from a paired tree). In our setting, since we start
from an arbitrary permutation p, we assume nothing further on bCi other than
that they are cycles that decompose p. Then we provide the desired upper
bound via the steps that follow.

(i) By Lemma 3.2.12 we know that any pairing g in P�1
t (p) must contain a

v-cycle that alternates between leaves and inner nodes of [t, t]. This is
because the first v-cycle we extract must be a v-cycle in the paired tree
[t, t]g (later ones belong instead to trees that are derived from [t, t]g
by extracting v-cycles). Therefore, there must exist a cycle bCi1 that only
runs through inner vertices in V [ V =: W(1), with V and V

denoting the sets of cherries and tridents in [t, t], respectively, recall the
definition from below Lemma 3.2.12.

Indeed, if no such cycle exists, then the given permutation cannot arise
from any paired tree [t, t]g using the extraction algorithm Pt and the
pre-image is the empty set, so that our upper bound holds true. See the
discussion below Example 3.2.20 for an example of this kind.

(ii) Since bCi1 ⇢ V [ V , to construct a v-cycle corresponding to bCi1 we
must choose for every vertex v with label in bCi1 an (outgoing) leaf that
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connects to the next vertex of the v-cycle and an (incoming) leaf that
connects to the previous vertex of the v-cycle. Here, which leaf is out-
going and which leaf is incoming matters, leading to at most 2(3

2) = 6
choices for every vertex (for nodes in V we have six choices, for nodes
in V only two). Thus, there are at most 6| bCi1 | ways to construct a v-
cycle through inner nodes labelled by bCi1 .

(iii) Now proceed iteratively. For j > 1, we define the set W(j)
⇢ I([t, t]) \ o

as follows: An inner node v lies in W(j), if and only if

• there exist at least two distinct paths from v to leaves in L([t, t]),
which only run through descendants of v (away from the root), that
have been previously extracted, i.e. they lie in

Sj�1
k=1 I bCik

,

• and v has not been extracted previously, i.e. v 62
Sj�1

k=1 I bCik
.

The set W(j) describes the nodes that became “admissible” after extract-
ing the cycles { bCi}i2{i1,··· ,ij�1}

, meaning that the inner nodes of the next
cycle that we extract must belong to W(j).

(iv) Proceed by choosing a cycle bCij with nodes in W(j) and counting all
possible choices to create a v-cycle with the corresponding nodes as
inner nodes.

(v) We are done once all cycles have been removed, or we cannot find a
cycle that runs through vertices in W(j). In the latter case, we again
found a permutation that cannot be obtained as image of the map Pt

(so the pre-image is empty and the bound trivially true).

In this way, we count all possible pairings that lead to p. Overall, either the
pre-image is empty and the stated bound is trivially true, or it is bounded by

6ÂK(p)
i=1 | bCi | = 6n ,

which is the desired bound and concludes the proof.
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3.3.3 Proof of Proposition 3.1.2

Proof of Proposition 3.1.2. Fix any T > 0, # 2 (0, 1
T ^

1
2 ) and t 2 T

N#,
3 . Then by

Lemma 3.2.1 and identity (3.39), we can write

Xt
# =

h(t)(1)
s(t)

[t]# =
h(t)(1)

s(t) Â
k2K(t)

[t]k,#

=
h(t)(1)

s(t)

(

Â
k2C(t)

[t]k,# + Â
k 62C(t)

[t]k,#

)
.

Thus, by the triangle inequality and the fact that 3|t| = Âk2C(t) 1, see
Lemma 3.3.7, we have for every (t, x) 2 (0, T]⇥ R2

�����

q
log 1

# · Xt
# (t, x)�

h(t)(1)
t! s(t)

 
3l̂2

2p

!|t|

l̂em tPt+#2 h(x)

�����
L2(P)

(3.79)

6 |h(t)(1)|
s(t) Â

k2C(t)

������

q
log 1

# · [t]k,#(t, x)�
1
t!

 
l̂2

2p

!|t|

l̂em tPt+#2 h(x)

������
L2(P)

+
|h(t)(1)|

s(t)

����� Â
k 62C(t)

q
log 1

# · [t]k,#(t, x)

�����
L2(P)

.

The second term on the right-hand side can be directly estimated as
����� Â

k 62C(t)

q
log 1

# · [t]k,#(t, x)

�����
L2(P)

6 1
t!

1q
4 log 1

#

 
6e2+2pl̂2e2m t

p

!|t|
l̂em t

p
4(t + #2)

,

(3.80)

where we used Lemma 3.3.9. For the first term, we obtain

Â
k2C(t)

������

q
log 1

# · [t]k,#(t, x)�
1
t!

 
l̂2

2p

!|t|

l̂em tPt+#2 h(x)

������
L2(P)

=
1
t!

 
3l̂2

2p

!|t|
������

0

@
 

1
2 log 1

#

Z t

0

e2m s

s + #2 ds

!|t|

� 1

1

A l̂em tPt+#2 h(x)

������
L2(P)

6 1
t!

 
9l̂2e2m t+1

2p

!|t|
e2|m| t + | log (t + #2)|

2 log 1
#

l̂em t
p

4p(t + #2)
, (3.81)
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where in the first equality we applied Lemma 3.3.6 and Lemma 3.3.7, together
with the identity #(t, x) = l̂(log 1

# )
�

1
2 em tPt+#2 h(x). In the last step, we more-

over applied Corollary 3.3.14, proven below, which yields
������

 
1

2 log 1
#

Z t

0

e2m s

s + #2 ds

!|t|

� 1

������
6 |t|

�
3e2m t�|t|�1 e2|m| t + | log (t + #2)|

2 log 1
#

6
⇣

3e2m t+1
⌘|t| e2|m| t + | log (t + #2)|

2 log 1
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where used additionally the bound |t| 6 3e|t| in the last inequality. 3

Now, combining (3.79), (3.80) and (3.81) yields
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with C being a new constant given by

C :=
6e2+2p

p
>
✓

9 e
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◆
_

✓
6e2+2p

p

◆
. (3.82)

This concludes the proof.

Remark 3.3.13. The constant C (3.82) restricts the range of l̂ in Theorem 3.0.1,
however, we stress that it is not optimal. We refrained from giving a sharper estimate,
since the choice l̂ is restricted by the nature of our approach (radius of convergence
of the power series). Because we do not expect a phase transition in l̂, we chose a
tidier proof over optimising the constant.

Let us mention that a smaller C can be obtained by sharpening the estimates
below (3.76) and in (3.33). In particular, for the limiting result to hold, we don’t re-

3The estimates in the display above vastly overestimate the quantity on the left-hand side.
However, we will see below that the main restriction will come in fact from the term (3.80).
Thus, the crude upper bounds here do not play a role.
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quire estimates uniformly in # 2 (0, 1
T ^

1
2 ), but can restrict ourselves to an arbitrary

small interval (0, d).

We finish by providing the last ingredient of the proof above, which is a
consequence of Lemma 3.2.7 and Taylor’s approximation theorem.

Corollary 3.3.14. Let m 2 R, T > 0 and k 2 N, then
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for every t 2 [0, T] and # 2 (0, 1
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1
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Proof. Using a first order Taylor expansion of the monomial of order k around
1, we have
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with

b#(t) :=
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2 log 1
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In particular, we find that

sup
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xk�1 6 e2(k�1)m t

 
1 +

| log (t + #2)|

2 log 1
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where we used (3.33) in the last step. The statement follows now by upper
bounding the last term in (3.83) via Lemma 3.2.7.



Chapter 4

Central limit theorems for the
2D random directed polymer

The directed random polymer model is given by an exponentially tilt
of the simple random walk measure PN . We restate the definition from
the introduction: For a fixed realisation of the disorder w, the directed
polymer measure of length N and disorder strength b � 0 is defined
using the following change of measure

Pw
b,N(dS) :=

1
Zb,N(0, 0, N, ?)

exp

 
N

Â
n=1

(b wn,Sn � l(b))

!
PN(dS),

where l(b) is a positive constant, which we will fix below. The (point-
to-plane) partition function is given by

Zb,N(0, 0, N, ?) := EN

"
exp

 
N

Â
n=1

(b wn,Sn � l(b))

!#
,

making Pw
b,N a probability measure. Here, ? denotes the free boundary

condition of the endpoint SN to take arbitrary values in Zd. The notation
for the partition function might seem overloaded at this point, but will
become clear below.
The aim of this chapter, based on the article [Gab23], is to prove an in-
variance principle for the 2D-DRPM, in the full subcritical intermediate
disorder regime. More precisely, the distribution of diffusively rescaled
polymer paths converges in probability to the Wiener measure, when
taking the weak disorder limit. Previosuly, analogous results were only
obtained for d 6= 2.

129
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Throughout this chapter we assume that w = (wn,z)(n,z)2N⇥Zd is a collection
of i.i.d. real random variables with law P (independent of PN), satisfying

E[wn,z] = 0, E[w2
n,z] = 1,

l(b) := log E[ebwn,z ] < • 8b > 0 small enough.

For technical reasons, we also require a concentration inequality for the law
P. More precisely, we assume the existence of g > 1 and C1, C2 2 (0, •) such
that for every n 2 N and convex, 1-Lipschitz f : Rn

7! R we have

P(| f (w1, . . . , wn)� Mf | � t)  C1 exp
✓
�

tg

C2

◆
, (4.1)

where (wi)1in is a subset of the family of random variables introduced
above and Mf is a median of f (w1, . . . , wn). Condition (4.1) guarantees con-
trol on the negative tail of the environment and, for example, is satisfied
whenever w is bounded or Gaussian. See [Led01] for an even wider class
of potential laws and more details. We also refer to Remark 4.2.5 for a discus-
sion and possible approach to weaken this assumption.

Results and comparison to the literature

We will consider the DRPM in two space-dimensions and study the asymp-
totic behaviour of paths under the measure Pw

b,N in the large N limit. The ran-
dom measure is supported on the space {(Sn)n 2 (Z2)N+1

}, more precisely,
its support is given by the subset W0,N of nearest neighbour paths starting
at the origin. Naturally, the space C[0, 1] := C([0, 1], R2) equipped with the
supremum-norm is considered as common reference space for the paths. For
this, we introduce the mapping p = pN : W0,N ! C[0, 1] given by

X(N)
t := p(S)t =

1
p

N

�
SbtNc + (tN � btNc)(SbtNc+1 � SbtNc)

�
, (4.2)

which embeds discrete nearest-neighbour paths W0,N in the space of con-
tinuous functions, by linearly interpolating between integer points and
rescaling space-time diffusively. Furthermore, we equip C[0, 1] with the
Borel s-algebra F , implying measurability of the projection maps p.

The chapter’s main contribution is an invariance principle for rescaled
polymer paths in the weak disorder limit, recall (1.9). This is the large N limit
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when scaling b = bN ⇠ bb
p

p(log N)�1, with bb 2 (0, 1). To be more precise,
we consider

bN :=
bb

p
RN

, where RN :=
N

Â
n=1

Â
z2Z2

PN(Sn = z)2 = log N
p + O(1) (4.3)

denotes the replica overlap of the simple random walk. The chapter’s main
result then states that the quenched polymer paths p#Pw

bN ,N converge to the
law of Brownian motion in P-probability, in the full intermediate subcritical
regime.

Theorem 4.0.1 ([Gab23]). Let bb 2 (0, 1) and bN be as in (4.3). Then

p#Pw
bN ,N

d
! P

� 1
p

2
W 2 ·

�
, as N ! •, in P-probability,

where P denotes the Wiener measure on C[0, 1]. We wrote p# for the push-forward
operation under p, cf. (4.2).

Despite the random polymer converging to a stochastic process (which
is independent of the disorder) on a large scales, the disorder influences the
behaviour of the polymer on small scales. On the microscopic level, the dis-
order prevails and we can deduce a local limit theorem. This allows to com-
pare the microscopic polymer transition probabilities to the ones of Brown-
ian motion, weighted by random multiplicative factors which depend on the
rescaled transition space-time points.

Proposition 4.0.2 ([Gab23]). Let bb 2 (0, 1), bN as in (4.3), (zj)k
j=1 =

(zj(N))k
j=1 2 Z2 and (mj)k

j=1 = (mj(N))k
j=1 2 N such that the following lim-

its exist

lim
N!•

zj
p

N
=: xj and lim

N!•

mj
N =: tj 2 (0, 1) with 0 < t1 < · · · < tk < 1,

and PN(Smj(N) = zj(N)) > 0. Then,

⇣N
2

⌘k
Pw

bN ,N(Sm1 = z1, . . . , Smk = zk) (4.4)

d
!

k

’
j=1

: eY�(tj,xj) : : eY+(tj,xj) :
k

’
j=1

p 1
2 (tj�tj�1)

(xj � xj�1),

where Y±

j ’s are i.i.d. centred Gaussians with variance log(1 � bb2)�1. We used the

shorthand notation : eY := eY� 1
2 E[Y2] for the Wick exponential.
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The local limit theorem above reinforces the picture, that the considered
intermediate disorder regime is indeed the region where effects of disorder
start to emerge in a non-trivial way.

Remark 4.0.3. We excluded the case tk = 1 from Proposition 4.0.2, since it would
only give rise to a single factor : eY�(1,x) :. However, the proof can be repeated almost
verbatim to include this case.

Let us give a short overview on the literature of diffusivity of directed
random polymers. For the two dimensional case with bN scaled as in (4.3), it
was proven in [CSZ17b] that the diffusively rescaled field

n
ZbN ,N(0, b

p

Nxc, btNc, ?) : t > 0, x 2 R2
o

converges to the solution of the stochastic heat equation with additive space-
time white noise. However, to the author’s best knowledge, there are no
results on diffusivity of the polymer paths in this case. Subcritical scalings
b2

N ⌧ R�1
N in d = 2 were considered by Feng [Fen12], who proved diffusivity

of the polymer endpoint. However, under such rescaling the partition func-
tion’s variance vanishes in the large N limit, which essentially brings us to
the situation of setting bb = 0. Theorem 4.0.1, on the other hand, considers a
critical scaling under which the partition function converges to a non-trivial
random variable and a transition (in bb) of the polymer path behaviour is ex-
pected. Our result not only covers the diffusivity of the polymer endpoint,
but fully determines the behaviour of the limiting polymer paths in the inter-
mediate subcritical regime.

In dimension d � 3, diffusivity of the directed random polymer in the
weak disorder regime was first proven to hold with probability one in [IS88],
for sufficiently small disorder strength. The works [Bol89, Kif97] simplified
and extended the original result further. First invariance principles were de-
duced in [AZ96, SZ96] where, for b > 0 small enough, almost sure conver-
gence to the law of Brownian motion with dimension-dependent diffusion
matrix was achieved. Later, it was extended to the full weak disorder regime
by Comets and Yoshida [CY06] in the sense of a functional central limit the-
orem, which holds in probability. Theorem 4.0.1 can be viewed as the analo-
gous result in d = 2.

Recently, Junk [Jun23, Jun21] gave an alternative proof of determining
the limit of the polymer endpoint distribution (for bounded bond disorder)
in d � 3, by introducing a comparison principle for partition functions of
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distinct parameters b. This allows them to transform the polymer endpoint
distribution into the one of the simple random walk with a multiplicative
error, which converges to one.

For d = 1, it was shown that transition probabilities of the discrete poly-
mer measure admit a random limit when space-time is scaled diffusively
[AKQ14b]. Because every b > 0 lies in the strong disorder regime, they also
relied on an intermediate disorder scaling: bN ⇠ bbN�1/4. In [AKQ14a], the
same authors constructed the corresponding continuum polymer measure.
In contrast to d � 3, the limiting distribution of polymer paths is singular
with respect to the Wiener measure, while maintaining the same basic prop-
erties as Brownian motion.

An analogous result was also shown for the continuum disordered
pinning model in [CSZ14]. The advances, both for the pinning model and
the (1 + 1)-dimensional directed polymer, then motivated to provide a
general skeleton for the study of weak disorder scaling limits of discrete
systems, see [CSZ17a].

Naturally, one would like to strengthen the invariance principle in The-
orem 4.0.1 to P-a.s. convergence, similar to the results in d � 3 (with bb
small enough) [AZ96, SZ96]. However, these results exploit the fact that
the sequence of partition functions (Zb,N)N forms a martingale. In the two-
dimensional case, this property is lost due to the rescaling b = bN , which is
why we do not expect our methods to yield an almost sure invariance princi-
ple.

Lastly, let us mention that the statement of the local limit theorem (Propo-
sition 4.0.2) is reminiscent of the construction in [AKQ14a], where the limit-
ing field of partition functions was used to construct the continuum directed
polymer in (1 + 1)-dimension. Because in d = 1 the random (macroscopic)
field induced by the limiting partition functions is continuous in its time and
space points, the constructed polymer measure is the correct limiting object.
However, for d = 2 this is not the case anymore and leads to different be-
haviour of the polymer paths, both on a microscopic and macroscopic level.
This (rough) structure of the partition function requires substantial work, in
order to treat the limiting polymer measure.

Remark 4.0.4. Theorem 4.0.1 should hold for a larger class of symmetric random
walks which satisfy a local limit theorem in the sense of [CSZ17b, Hypothesis 2.4]
and their replica overlap fulfills RN ! •, as a slowly varying function.
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Remark 4.0.5. Instead of studying discrete polymers, we could have similarly
worked with polymers in the continuous space-time domain [0, 1]⇥ R2, cf. (1.16),
with disorder strength b# = bb

p
2p/ log #�1. The corresponding version of Theo-

rem 4.0.1 then reads: For every bb 2 (0, 1)

Px
b#,#

d
! P, as # ! 0 in P-probability. (4.5)

Since all properties of the DRPM’s partition function also hold in the continuum, see
[CSZ17b, CSZ20], the proof of the above fact should follow along the same lines.

4.1 Background and outline of the proof

Let us motivate the choice of the weak disorder scaling bN . A second mo-
ment calculation of the partition function, see for example [IS88], provides
the following heuristic: First, we write

E[Zb,N(0, 0, N, ?)2] = E⌦2
N

h N

’
n=1

e(l(2b)�2l(b))1Sn=S0n

i
= E⌦2

N

h N

’
n=1

(1 + s21Sn=S0
n
)
i

=
N

Â
k=0

s2k Â
1n1<···<nkN

E⌦2
N

h k

’
i=1

1Sni=S0
ni

i
, (4.6)

where S and S0 are two independent random walks of length N and s is given
by

s = s(b) :=
p

el(2b)�2l(b) � 1. (4.7)

Note that l(2b) � 2l(b) ⇠ b2 for small b > 0 and therefore
limb!0 b/s(b) = 1 [CSZ20, Equation (2.15)]. Next, we upper bound the sums
in (4.6) by ignoring the ordering of ni’s, which yields

E[Zb,N(0, 0, N, ?)2] 
N

Â
k=0

s2k
⇣ N

Â
n=1

Â
z2Z2

PN(Sn = z)2
⌘k

=
N

Â
k=0

�
s2RN

�k , (4.8)

recalling the replica overlap RN (4.3). Now, considering the fact that
s(b) ⇠ b for small b > 0, (4.8) suggests that the correct rescaling is given
by b = bN := bb/

p
RN , whenever bb 2 (0, 1), such that (4.8) converges in

the large N limit. Indeed, it was proven in [CSZ17b] that under bN the
partition function ZbN ,N(0, 0, N, ?) converges to a non-trivial (random) limit,
whenever bb 2 (0, 1). See also (4.14) below. Moreover, they noticed the
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existence of a transition on the finer scale bb, with bbc = 1 denoting the critical
point where the L2-norm of the partition function explodes.

Theorem 4.0.1 is not a straightforward consequence of the positivity of
the limiting partition function, but requires precise estimates that quantify
the correlation structure of the limiting field. The first step towards Theo-
rem 4.0.1 is to show convergence of finite-dimensional distributions to the
ones of Brownian motion.

Proposition 4.1.1. Let bb 2 (0, 1) and bN be as in (4.3), then for any 0  t1 <

. . . < tk  1 we have

p#Pw
bN ,N

�
(Xt1 , . . . , Xtk) 2 ·

� d
! P

� 1
p

2
(Wt1 , . . . , Wtk

�
2 ·), in P-probability,

where P denotes the Wiener measure on C[0, 1]. We wrote p# for the push-forward
operation under p, cf. (4.2).

The proof of the Proposition 4.1.1 will be given in Section 4.5. We begin
by observing that for m1, . . . , mk 2 N and z1, . . . , zk 2 Z2

Pw
bN ,N(Sm1 = z1, . . . , Smk = zk)

=
1

ZbN ,N(0, 0, N, ?)

k+1

’
j=1

EN


eÂ

mj
n=mj�1+1(bNwn,Sn�l(bN))

1Smj=zj

���Smj�1 = zj�1

�
,

where m0 = z0 = 0, mk+1 = N and zk+1 = ?. For our purposes, it will be
convenient to rewrite the above expression in terms of partition functions,
conditioned on both the start and end point, i.e.

Pw
bN ,N(Sm1 = z1, . . . , Smk = zk) (4.9)

=
1

ZbN ,N(0, 0, N, ?)

k+1

’
j=1
ZbN ,N(mj�1, zj�1 | mj, zj) qmj�mj�1(zj � zj�1) .

Here, we introduced the point-to-point partition functions

ZbN ,N(mj�1, zj�1 | mj, zj)

:= EN


eÂ

mj
n=mj�1+1(bNwn,Sn�l(bN))

���Smj�1 = zj�1, Smj = zj

�

and the shorthand qn(z), denoting the transition probability PN(Sn = z) of
the simple-random walk.
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Remark 4.1.2. The point-to-point partition function ZbN ,N(0, 0 | N, z) also takes
the disorder at the endpoint into consideration. However, it is more natural to
compare the product of point-to-plane partition functions to point-to-point partition
functions of the form

ZbN ,N(0, 0 | N, z) := EN

h
eÂN�1

n=1 (bNwn,Sn�l(bN))
���S0 = 0, SN = z

i
, (4.10)

not taking the endpoint-disorder into account. The distinction in notation may be
very subtle, but so is the difference between them. In fact, the difference between
(4.10) and ZbN ,N(0, 0 | N, z) vanishes in L2(P):

kZbN ,N(0, 0 | N, z)� ZbN ,N(0, 0 | N, z)k2
L2(P)

= kZbN ,N(0, 0 | N, z)k2
L2(P)E[(ebNwN,z�l(bN) � 1)2]

= kZbN ,N(0, 0 | N, z)k2
L2(P)(e

l(2bN)�2l(bN) � 1),

where we used the independence property of the disorder in the first equality. Be-
cause the first term on the right-hand side is uniformly bounded in N and l(2bN)�

2l(bN) ⇠ b2
N, the L2-difference vanishes. We will refer to both ZbN ,N(0, 0 | N, z)

and ZbN ,N(0, 0 | N, z) as point-to-point partition functions, whenever the meaning
is clear from the context.

With a slight abuse of notation, we will write for 0  s < t  1

ZbN ,N(sN, y | tN, z) ,

instead of ZbN ,N(bsNc, y | btNc, z). Similarly, for the point-to-plane partition
function. Furthermore, for future reference, we introduce the plane-to-point
partition function, which is defined as

ZbN ,N( em, ?, m, z) := EN

h
eÂm�1

n= em(bwn,Sn�l(b))
���Sm = z

i
. (4.11)

One can think of it as the partition function of a polymer starting in (m, z)
and evolving backwards in time. We will refer to both “point-to-plane” and
“plane-to-point” as “point-to-plane”, whenever the context is clear.

Having representation (4.9) at hand, we see the necessity to understand
the limiting behaviour of point-to-point partition functions, in order to anal-
yse the finite-dimensional distributions of the polymer measure. To do so, we
first prove a local limit theorem (Proposition 4.2.1), which allows to approxi-
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mate point-to-point partition functions by the product of two point-to-plane
partition functions:

ZbN ,N(0, 0 | N, z) = ZbN ,N(0, 0, N
2 , ?)ZbN ,N(

N
2 , ?, N, z) + #N , (4.12)

with #N vanishing in L2(P). Factorisations of this nature were considered
previously in d � 3 [Sin95, Var06, CNN22, LZ22]. During completion of
this work, Nakajima and Nakashima [NN23] proved independently a result
similar to Proposition 4.2.1 in the continuum, see also Remark 4.2.3.

We want to put particular emphasis on [Sin95]. Their proof of the local
limit theorem (4.12) in d > 3 uses the fact that polynomial chaos components
(4.21) can be factorised, using a single random walk transition probability
which is of order qN(z) [Sin95, Theorem 2]. Our proof of Lemma 4.2.6 resem-
bles this approach. Additionally, they explain how a central limit theorem
for the end-point distribution can be obtained from the above factorisation
[Sin95, Theorem 4]. It is interesting to note, that [Sin95] only considers b’s
satisfying

s(b)2R• < 1 , (4.13)

where R• := limN!• RN , which is only finite in dimension d � 3. Formally
generalising the condition with respect to the weak disorder limit in d = 2,
(4.13) instead reads s(bN)2RN < 1, which is equivalent to our assumption
bb < 1 due to s(bN) ⇠ bN .

As a consequence of (4.12), the limiting distribution of point-to-point par-
tition functions can be deduced from the corresponding point-to-plane parti-
tion functions approximating them. In [CSZ17b, Theorem 2.12] it was proved
that finite families of partition functions of the 2D-DRPM converge jointly to
a multivariate log-normal distribution. More precisely, consider the collec-
tion of space-time points ((ni, zi))1ik = ((ni(N), zi(N)))1ik such that for
every 1  i, j  k

RN�ni /RN ! 1, as N ! •,

and lim
N!•

R|ni�nj|_|zi�zj|2
/RN = zi,j 2 [0, 1] exists,

then

�
ZbN ,N(ni, zi, N, ?)

�
1ik ! (: eYi :)1ik, (4.14)
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where (Yi)1ik is a multivariate Gaussian with

E[Yi] = 0 and E[YiYj] = log
1 � bb2zi,j

1 � bb2
81  i, j  k. (4.15)

Notably, the result holds for space-time points ((ni, zi))1ik with positive
macroscopic distance, in which case the corresponding tuple (Yi)1ik con-
sists of independent Gaussians because zi,j = 1i 6=j.

Remark 4.1.3. The correlation structure in (4.15) is precisely the reason for the
different behaviour of the limiting polymer law in d = 2, compared to d = 1. In the
one-dimensional case the partition functions have non-trivial dependency in the large
N limit for macroscopically separated space-time points, see [AKQ14b], leading to a
path measure singular to the Wiener measure. In the two-dimensional setting, (4.15)
implies that partition functions started from macroscopically separated points will
have independent limits, leading to an self-averaging effect for the polymer measure.

After having dealt with the approximation of point-to-point partition
functions, we can move on to the convergence of quenched polymer
marginals. The greatest difficulty when dealing with the finite-dimensional
marginals of the form (4.9) is the fact that none of the point-to-point partition
functions is independent of the denominator ZbN ,N(0, 0, N, ?). We now out-
line the approach taken in this chapter. For the sake of simplicity, we only
explain the following for the end-point distribution.

First, we prove that the limiting annealed polymer marginal, i.e.
limN!• E[Pw

bN ,N(
1

p
N

SN 2 ·)], agrees with the ones of Brownian motion, cf.
Lemma 4.4.2. In fact, we show the much stronger result that the quenched
marginal can be approximated in L1(P) by a simplified representation, with-
out the partition function ZbN ,N(0, 0, N, ?) in the denominator:

lim
N!•

���Pw
bN ,N(

1
p

N
SN 2 B)� Â

z2
p

NB

ZbN ,N(
N
2 , ?, N, z)qN(z)

���
L1(P)

= 0 , (4.16)

using the factorisation from (4.12). Here and throughout the chapter,
p

NB
denotes the set {z 2 Z2 : z

p
N
2 B}. The expectation of the latter representa-

tion is immediate, which yields the annealed limit P( 1
p

2
W1 2 B).

In order to conclude convergence of the quenched marginal, the natu-
ral next step is to prove convergence of Âz2

p
NB ZbN ,N(

N
2 , ?, N, z)qN(z) to its
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mean in L1(P). Instead, we show convergence in L2(P):

lim
N!•

��� Â
z2

p
NB

ZbN ,N(
N
2 , ?, N, z)qN(z)� P( 1

p
2
W1 2 B)

���
L2(P)

= 0 ,

since this reduces to a simpler second-moment calculation. Estimating the
second moment of Âz2

p
NB ZbN ,N(

N
2 , ?, N, z)qN(z), requires careful evalua-

tion of the partition functions’ covariance structure, cf. Lemma 4.5.3, leading
to a law-of-large number like behaviour. Together with (4.16), this concludes
L1(P)-convergence of the quenched end-point distribution.

After proving convergence of finite-dimensional distributions (Proposi-
tion 4.1.1), we show that for any fixed function F 2 Cb(C[0, 1])

p#Ew
bN ,N [F(X)] ! E[F( 1

p
2
W)], as N ! •, in P-probability, (4.17)

by blending in ideas from the classical Donsker’s invariance principle: Using
tightness of the annealed polymer measure, it suffices to restrict the poly-
mer paths to a compact set K ⇢ C[0, 1] when testing against a function
F 2 Cb(C[0, 1]). The Stone-Weierstrass theorem then states that F can be ap-
proximated uniformly by cylinder functions on K, i.e. functions that only de-
pend on finitely many marginals of the polymer path. Together with Propo-
sition 4.1.1, this yields the functional central limit theorem (4.17).

Lastly, we prove equivalence of functional central limit theorem and in-
variance principle, using a countable weak convergence determining family
of functions (Proposition 4.5.9). This yields weak convergence of the polymer
measures as stated in Theorem 4.0.1. The same argument allows to rewrite
the functional central limit theorem for d � 3 [CY06], in terms of an invari-
ance principle, cf. Corollary 4.5.11.

Remark 4.1.4. We want to stress that (4.17) is not yet a classical invariance princi-
ple, stating convergence of the polymer measure. Instead it is a central limit theorem,
stating convergence when paths are tested against individual test functions. To em-
phasise this point, we note that a “true” invariance principle (in P-probability) reads
as follows: For every sequence (Nj)j2N in N there exists a subsequence (Njm)m2N

and a set W ⇢ W of full measure such that

p⇤

Njm
Ew

bNjm
,Njm

[F(X)] ! E[F( 1
p

2
W)] 8F 2 Cb(C[0, 1]),
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for every w 2 W. In (4.17) on the other hand, we fix a function F 2 Cb(C[0, 1]) for
which there exists a subsequence and a set W of full mass, on which the convergence
holds. The dependency of (Njm)m2N and W on F does not allow us to exchange the
order of quantifiers without further reasoning.

Structure of the chapter

The remainder of this chapter is structured as follows. In Section 4.2 we prove
that point-to-point partition functions can be approximated by point-to-plane
partition functions. In Section 4.4 we use this fact to prove convergence of
the annealed finite-dimensional distributions of the polymer measure to the
ones of a Brownian motion. Together with a tightness argument, this yields
the annealed invariance principle (Proposition 4.4.1). Section 4.5 is divided
into three parts. First, we prove Proposition 4.1.1, where we use the self-
averaging behaviour described above. We then present the proof of the in-
variance principle (Theorem 4.0.1). Finally, we show the local limit theorem
for the polymer marginals on microscopic scales (Proposition 4.0.2).

4.2 Approximating point-to-point partition functions

This section’s main result is summarised in the following proposition. It
states that a point-to-point partition function can be locally uniformly ap-
proximated by the product of a point-to-plane and plane-to-point partition
function.

Proposition 4.2.1. Let bb 2 (0, 1), x 2 R2 and r > 0. Then for 0 < s+ < t� < 1
we have

��ZbN ,N(0, 0 | N, z)� ZbN ,N(0, 0, s+N, ?)ZbN ,N(t�N, ?, N, z)
��

L2(P)
! 0,

uniformly over all z 2
p

NB(x, r) such that qN(z) > 0. The statement remains true
when replacing ZbN ,N(0, 0 | N, z) with ZbN ,N(0, 0 | N, z), which we introduced
in (4.10).

Remark 4.2.2. (i) Proposition 4.2.1 also holds for s+ = 1 and t� = 0 in terms
of L1+d(P)-convergence for some d > 0 small enough. This can be shown
following the same steps in the proof of Proposition 4.2.1. After completion
of this paper, it was proved that supN2N E[ZbN ,N(0, 0, N, ?)p] < • for arbi-
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trary p > 0 [CZ23, LZ23]. This stronger moment estimate allows to lift the
mode of convergence from L1+d(P) to L2(P).

(ii) Note that Proposition 4.2.1 remains true when replacing the initial time s =

0 and final time t = 1 with arbitrary values 0  s < t  1, i.e. when
considering partition functions ZbN ,N(sN, 0 | tN, z) or ZbN ,N(sN, 0 | tN, z).

Throughout this section, the point x 2 R2 plays the role of the macro-
scopic endpoint of the polymer path. In particular,

p
NB(x, r) includes all

microscopic points which are close to x on a macroscopic scale.

Remark 4.2.3. A similar result to Proposition 4.2.1 was obtained in [NN23, Theo-
rem 2.8]. They proved that the point-to-point partition function of a directed random
polymer in the continuum can be approximated in L2(P) by the product of point-
to-plane partition functions with mesoscopic time-horizon, if the distance between
start and terminal space-point is not too large. Similar to the present paper, they
show that contributions to the point-to-point partition function only come from the
environment close to start and endpoint, before they replace the Brownian Bridge
measure by two Brownian motions running independently forward and backward in
time. For the partition function of a polymer of length N, an equivalent result to
[NN23, Theorem 2.8] for the discrete case would read as follows: Uniformly over all
z 2 Z2 with |z| 

p
N log N and qN(z) > 0

��ZbN ,N(0, 0 | N, z)� ZbN ,N(0, 0, lN , ?)ZbN ,N(N � lN , ?, N, z)
��2

L2(P)
! 0 ,

for lN = N1�(log N)g�1 with g 2 (0, 1). In contrast to Proposition 4.2.1, here the
radius of uniformity is

p
N log N. This is due to keeping track of vanishing rates in

their proof, which allows to strengthen the result. Likewise, exact evaluation of the
quantities in Lemma 4.2.7 using the local limit theorem should allow to increase the
radius of uniformity in Proposition 4.2.1 to the same order. However, in regards of
our main result this is not necessary.

Before continuing, we remind the reader that the partition function
ZbN ,N(0, 0, N, ?) can be written in terms of a polynomial chaos decomposi-
tion, which is the discrete analogue of Proposition 2.1.10. More precisely, the
partition function has an explicit discrete chaos expansion [CSZ17b, CSZ20]:

ZbN ,N(0, 0, N, ?) = EN

h
eÂN

n=1 Âz2Z2 (bNwn,z�l(bN))1Sn=z
i

= EN

h N

’
n=1

’
z2Z2

(1 + sNhn,z1Sn=z)
i

(4.18)
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= 1 +
N

Â
k=1

Z(k)
bN ,N(0, 0, N, ?),

where Z(k)
bN ,N(0, 0, N, ?) is defined below and

hn,z = h(N)
n,z :=

1
sN

(ebNwn,z�l(bN) � 1)

being centred i.i.d. random variables with unit variance. We also wrote sN :=
s(bN), which we shall use throughout the chapter. In the last equality of
(4.18), the expansion of the products gives rise to the k-th homogeneous chaos
denoted by

Z(k)
bN ,N(0, 0, N, ?) := sk

N Â
1n1<···<nkN

z1,...,zk2Z2

 
k

’
i=1

qni�ni�1(zi � zi�1)hni ,zi

!
, (4.19)

with (n0, z0) equal the origin (0, 0) 2 N ⇥ Z2. The terms
in the series expansion above are orthogonal in the sense that
E[Z(k)

bN ,N(0, 0, N, ?)Z(j)
bN ,N(0, 0, N, ?)] = 0, whenever k 6= j, due to the

different number of disorder-terms considered, cf. (2.11) in the continuum.
Throughout the paper, we will use this fact in second moment computations
without further explanation.

An analogous expansion holds for the plane-to-point partition function
ZbN ,N(0, ?, N, z) with

Z(k)
bN ,N(0, ?, N, z) (4.20)

:= sk
N Â

0n1<···<nkN�1
z1,...,zk2Z2

 
k

’
i=1

qni+1�ni(zi+1 � zi)hni ,zi

!
,

where we assumed (nk+1, zk+1) = (N, z) and used the symmetry of the transi-
tion probabilities of the simple random walk. Similarly, for the point-to-point
partition function, we write

ZbN ,N(0, 0 | N, z) = 1 +
N

Â
k=1

Z(k)
bN ,N(0, 0 | N, z)
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and

Z(k)
bN ,N(0, 0 | N, z) (4.21)

:= sk
N Â

1n1<···<nkN�1
z1,...,zk2Z2

 
k

’
i=1

qni�ni�1(zi � zi�1)hni ,zi

!
qN�nk(z � zk)

qN(z)
.

We point out that the point-to-plane partition function can be recovered by
taking the average over all possible endpoints and include the endpoint-
disorder:

ZbN ,N(0, 0, N, ?) = Â
z2Z2

ZbN ,N(0, 0 | N, z)qN(z)

= Â
z2Z2

ZbN ,N(0, 0 | N, z)ebNwN,z�l(bN)qN(z).

The proof of Proposition 4.2.1 relies on the fact that the main contribu-
tion of the point-to-point partition function comes from two mesoscopic sized
subsets of the space-time domain around the start and terminal point. These
space-time areas are the same as the ones giving main contribution to the
partition functions ZbN ,N(0, 0, N, ?), see [CSZ20]. For a microscopic reference
point (n, z) 2 N ⇥ Z2, we define such sets both forward and backward in
time:

A±

N(n, z) := {(m, y) : |y � z|  N1/2�aN/4 and 0  ±(m � n)  N1�aN},

where aN := (log N)g�1 for some g 2 (0, 1).

As already mentioned above, only samples inside of A+
N(0, 0) [ A�

N(N, z)
will contribute to the L2-limit of Z(k)

bN ,N(0, 0 | N, z). On this account, we intro-
duce the following decomposition

Z(k)
bN ,N(0, 0 | N, z) = Z(k),A

bN ,N(0, 0 | N, z) + bZ(k)
bN ,N(0, 0 | N, z),

where Z(k),A
bN ,N(0, 0 | N, z) denotes the sum

sk
N Â

1n1<···<nkN�1
z1,...,zk2Z2

(ni ,zi)2A+
N(0,0)[A�

N(N,z)

 
k

’
i=1

hni ,zi qni�ni�1(zi � zi�1)

!
qN�nk(z � zk)

qN(z)
, (4.22)
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and bZ(k)
bN ,N(0, 0 | N, z) the corresponding remainder. This restriction can be

thought of as “turning off” the disorder outside the two boxes; for visualisa-
tion the reader may refer to Figure 4.2.1 below. Similarly, we separate

ZbN ,N(0, 0 | N, z) = ZA
bN ,N(0, 0 | N, z) + bZbN ,N(0, 0 | N, z) , (4.23)

with ZA
bN ,N(0, 0 | N, z) = ÂN

k=0 Z(k),A
bN ,N(0, 0 | N, z). Sometimes we will also use

this notation for point-to-plane partition functions. Then, Z(j),A
bN ,N(0, 0, N, ?)

and Z(j),A
bN ,N(0, ?, N, z) will stand for the multi-linear polynomials in (4.19) and

(4.20) with disorder restricted to A+
N(0, 0) or A�

N(N, z), respectively. More-
over, we want to mention that Z(j),A

bN ,N(0, 0, N, ?) = 0 for all j > N1�aN , hence,

ZA
bN ,N(0, 0, N, ?) =

bN1�aN c

Â
j=0

Z(j),A
bN ,N(0, 0, N, ?) , (4.24)

and similarly for the plane-to-point partition function. Lastly, note that
the size of A±

N only depends on the level of approximation N and not the
point-to-point partition function’s final time (which sometimes happens to
agree with N).

We will frequently make use of higher-order and negative moment esti-
mates of the partition function. We summarise equations (3.12), (3.14) and
(3.15) from [CSZ20] in the following lemma.

Lemma 4.2.4 ([CSZ20]). Let bb 2 (0, 1).

(i) Then there exists a d = d(bb) > 0 and a constant C0

bb
< • such that for every

p 2 [2, 2 + d]

sup
N2N

E
⇥
ZbN ,N(0, 0, N, ?)p⇤

 C0

bb , sup
N2N

E
h

ZA
bN ,N(0, 0, N, ?)p

i
 C0

bb

and sup
N2N

E
h
bZbN ,N(0, 0, N, ?)p

i
 C0

bb(aN)
p/2.

(ii) For every p > 0, there exists a constant bCbb,p > 0 such that

sup
N2N

E
⇥
ZbN ,N(0, 0, N, ?)�p⇤

 bCbb,p

and sup
N2N

E
h

ZA
bN ,N(0, 0, N, ?)�p

i
 bCbb,p.
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Lemma 4.2.4(i) is a consequence of hypercontractivity of (discrete) poly-
nomial chaoses, recall Proposition 2.1.7 for the continuum version. Because
ZbN ,N(0, 0, N, ?) and ZbN ,N(0, ?, N, z) have the same distribution, all state-
ments in Lemma 4.2.4 also hold for the plane-to-point partition function.

Remark 4.2.5. That Lemma 4.2.4(ii) holds for arbitrary negative moments, is a con-
sequence of the concentration inequality (4.1) and a left-tail estimate, see [CSZ20,
Proposition 3.1]. We will use this control, in the proof of Lemma 4.4.2 and Propo-
sition 4.0.2, to separate products of partition functions using Hölder’s inequality,
cf. (4.52) below. From the estimate (4.52) we will see that control of either large
negative or positive moments of the partition function is sufficient. Hence, with an
improved control on positive moments, it should be possible to push control from
negative moments to positive ones. As mentioned in Remark 4.2.2, it was recently
shown that all positive moments of the partition function are uniformly bounded in
N [CZ23, LZ23] (without the need of assumption (4.1)), and it is expected that all
statements in Lemma 4.2.4(i) continue to hold for arbitrary p > 0. Thus, assump-
tion (4.1) could then be replaced by supN2N E

⇥
ZbN ,N(0, 0, N, ?)�p⇤ < • for some

p > 2.

Although we will follow a similar approach in evaluating the limits
of ZA

bN ,N(0, 0 | N, z) and bZbN ,N(0, 0 | N, z), we present their respective
proofs separately for the sake of a more approachable presentation. We start
with the chaos decomposition restricted to the macroscopically vanishing set
A+

N(0, 0) [ A�

N(N, z).

4.2.1 A single jump factorises the term

For the term Z(k),A
bN ,N(0, 0 | N, z) we only consider sample points (ni, zi)k

i=1 that
lie inside A+

N(0, 0) [ A�

N(N, z), by restricting the sum in (4.22). Notably, this
implies for every polymer path with k intermediate samples the existence of a
single “large” jump across the valley separating (0, 0) and (N, z). This jump
divides the polymer samples into two chains, one close to the starting point
(0, 0), the other one close to the terminal point (N, z). These two chains can
be analysed independently.
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(0, 0)

(N, z)

(nj, zj)

(nj+1, zj+1)

A+
N(0, 0)

A�

N(N, z)

Figure 4.1: Restricting samples to the macroscopic vanishing boxes A±

N im-
plies the existence of a large jump over time.

Following the above explanation, it is reasonable to rewrite (4.22) by sum-
ming over all possible positions of this “large” jump:

Z(k),A
bN ,N(0, 0 | N, z) (4.25)

= sk
N

k

Â
j=0

Â
(ni ,zi)2A+

N(0,0)8ij
(ni ,zi)2A�

N(N,y)8i>j
s.t. 1n1<···<nkN�1

 
k

’
i=1

qni�ni�1(zi � zi�1)hni ,zi

!
qN�nk(z � zk)

qN(z)
,

where j is the largest index before the jump, see also Figure 4.2.1. For the sake
of clarity, we will abbreviate the conditions in the sum by (ni, zi)k

i=1 2 A(j)
and write Â(ni ,zi)k

i=12A(j) coherently. Most notably, when omitting the ratio
qnj+1�nj(zj+1 � zj)/qN(z) in (4.25), the right-hand side simplifies to

k

Â
j=0

Z(j),A
bN ,N(0, 0, N, ?)Z(k�j),A

bN ,N (0, ?, N, z),

and the two partition functions inside the sum are stochastically indepen-
dent. Here, we used the notation defined in (4.19) and (4.20) and enhanced
thereafter. This motivates the following lemma.

Lemma 4.2.6. For all x 2 R2 and r > 0, we have

sup
z2

p
NB(x,r)

s.t. qN(z)>0

���ZA
bN ,N(0, 0 | N, z)� ZA

bN ,N(0, 0, N, ?)ZA
bN ,N(0, ?, N, z)

���
L2(P)

! 0,

as N tends to infinity.

Proof. Let x 2 R2 and r > 0. We begin by noting that

ZA
bN ,N(0, 0, N, ?)ZA

bN ,N(0, ?, N, z) (4.26)
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=
N

Â
k=0

k

Â
j=0

Z(j),A
bN ,N(0, 0, N, ?)Z(k�j),A

bN ,N (0, ?, N, z) .

This follows from the fact that Z(j),A
bN ,N(0, 0, N, ?) = 0 whenever j > N1�aN

(similarly for Z(k�j),A
bN ,N (0, ?, N, z)), thus,

N

Â
k=0

k

Â
j=0

Z(j),A
bN ,N(0, 0, N, ?)Z(k�j),A

bN ,N (0, ?, N, z)

=
N1�aN

Â
j=0

Z(j),A
bN ,N(0, 0, N, ?)

j+N1�aN

Â
k=j

Z(k�j),A
bN ,N (0, ?, N, z) ,

where we changed the order of the sums and added the restrictions j, k � j 
N1�aN . After an index shift in the inner sum, we see that (4.26) holds true due
to (4.24).

Now, expanding the right-hand side of (4.26), we have

ZA
bN ,N(0, 0, N, ?)ZA

bN ,N(0, ?, N, z)

=
N

Â
k=0

k

Â
j=0

s
2j
N Â

(ni ,zi)
j
i=12A+

N(0,0)
s.t. 1n1<···<nj

✓ j

’
i=1

qni�ni�1(zi � zi�1)hni ,zi

◆
(4.27)

⇥ s
2(k�j)
N Â

(eni ,ezi)
k�j
l=12A�

N(N,z)
s.t. en1<···<enk�jN�1

✓ k�j

’
i=1

qeni+1�eni(ezi+1 � ezi)heni ,ezi

◆
.

Hence, using representations (4.25) and (4.27), we can estimate the second
moment in the statement of the lemma, due to orthogonality, in terms of

N

Â
k=0

E
h⇣

Z(k),A
bN ,N(0, 0 | N, z)�

k

Â
j=0

Z(j),A
bN ,N(0, 0, N, ?)Z(k�j),A

bN ,N (0, ?, N, z)
⌘2i



N

Â
k=0

k

Â
j=0

E
h�

Z(j),A
bN ,N(0, 0, N, ?)Z(k�j),A

bN ,N (0, ?, N, z)
�2 (4.28)

⇥ sup
(nj,zj)2A+(0,0)

(nj+1,zj+1)2A�(N,z)

⇣qnj+1�nj(zj+1 � zj)

qN(z)
� 1

⌘2i
.

Therefore, we only need to show that the ratio qnj+1�nj(zj+1 � zj)/qN(z) is
negligible, which is intuitively clear since (nj, zj) and (nj+1, zj+1) are on a
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macroscopic level close to (0, 0) and (N, z). Using the estimate

sup
(nj,zj)2A+(0,0)

(nj+1,zj+1)2A�(N,z)

�����
qnj+1�nj(zj+1 � zj)

qN(z)
� 1

����� (4.29)

 sup
|N�n|<2N1�aN

|z�y|<2N1/2�aN /4

����
qn(y)
qN(z)

� 1
���� ,

we can upper bound (4.28) further (note that the right-hand side of (4.29)
does not depend on k or j), which finally yields

N

Â
k=0

E
h⇣

Z(k),A
bN ,N(0, 0 | N, z)�

k

Â
j=0

Z(j),A
bN ,N(0, 0, N, ?)Z(k�j),A

bN ,N (0, ?, N, z)
⌘2i

 sup
|N�n|<2N1�aN

|z�y|<2N1/2�aN /4

����
qn(y)
qN(z)

� 1
����
2

⇥

N

Â
k=0

k

Â
j=0

E

⇣
Z(j),A

bN ,N(0, 0, N, ?)Z(k�j),A
bN ,N (0, ?, N, z)

⌘2
�

.

Again, the sum of the right hand side is uniformly bounded in N and z, cf.
Lemma 4.2.4. The last step consists of showing that the ratio of random-walk-
transition-kernels is indeed uniformly close to one, i.e.

sup
z2

p
NB(x,r)

s.t. qN(z)>0

sup
|N�n|<2N1�aN

|z�y|<2N1/2�aN /4

����
qn(y)
qN(z)

� 1
���� ! 0, as N ! •. (4.30)

This follows directly from Lemma 4.2.7(i) below, and finishes the proof.

The following lemma allows us to control the ratio of random walk transi-
tion probabilities, which is necessary for the previous proof and will be used
throughout the chapter.

Lemma 4.2.7. Let x 2 R2 and r > 0.

(i) For aN := (log N)g�1, g 2 (0, 1), we have

sup
z2

p
NB(x,r)

s.t. qN(z)>0

sup
|N�n|<2N1�aN

|z�y|<2N1/2�aN /4

����
qn(y)
qN(z)

� 1
���� ! 0 as N ! •. (4.31)
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(ii) There exists a constant C > 0 such that for all k 2 N

sup
z2

p
NB(x,r)

s.t. qN(z)>0

sup
n�N/k

y2Z2

qn(y)
qN(z)

 Ck , (4.32)

for all N large enough.

Proof. (i) We want to apply the local limit theorem for simple random walks
[LL10], which is why we write

sup
|N�n|<2N1�aN

|z�y|<2N1/2�aN /4

����
qn(y)
qN(z)

� 1
���� =

1
N qN(z)

sup
|N�n|<2N1�aN

|z�y|<2N1/2�aN /4

|N qn(y)� N qN(z)| .

Because N qN(z) converges uniformly in z and its limit is lower bounded by
2 infex2B(x,r) p1/2(ex) whenever qN(z) > 0, we can ignore the factor in front of
the supremum. Adding and subtracting 2 p1/2(z/

p
N) yields

sup
|N�n|<2N1�aN

|z�y|<2N1/2�aN /4

|N qn(y)� N qN(z)|

 sup
|N�n|<2N1�aN

|z�y|<2N1/2�aN /4

⇣ ���N qn(y)� 2 p 1
2
(z/

p

N)
���+

���2 p 1
2
(z/

p

N)� N qN(z)
���
⌘

.

The second term on the right-hand side vanishes uniformly in z by the local
limit theorem. Because y and z are arbitrarily close on the macroscopic scale,
the first term vanishes for the same reason.

(ii) We begin by noting that for z 2
p

NB(x, r) with qN(z) > 0, we have

sup
n�N/k

y2Z2

qn(y)
qN(z)

 k
1

N qN(z)
sup

n�N/k
y2Z2

n qn(y),

where we may again ignore the factor N qN(z) for the same reason as in (i).
Hence, it suffices to prove the existence of a constant C > 0 such that

sup
n�N/k

y2Z2

n qn(y)  C 8 k 2 N ,



150 CHAPTER 4. CLTS FOR THE SUBCRITICAL 2D–DRPM

for N large enough. We make the following choice for C: Note that

sup
y2Z2

n qn(y)  sup
y2Z2

⇣
|n qn(y)� 2p 1

2
(y/

p
n)|+ |2p 1

2
(y/

p
n)|

⌘

 sup
y2Z2

|n qn(y)� 2p 1
2
(y/

p
n)|+ |2p 1

2
(0)| =: Cn.

Since the first term on the right-hand side converges in n by the local limit
theorem, Cn is uniformly bounded in n. Thus, we have

sup
n�N/k

sup
y2Z2

n qn(y)  sup
n2N

Cn =: C < •.

This finishes the proof.

4.2.2 Multiple exceptional jumps are negligible

Lemma 4.2.6 states that instead of looking at the point-to-point partition
function restricted to have a single large jump from A+

N(0, 0) to A�

N(N, z),
it suffices to look at the product of two point-to-plane partition functions,
one looking forward the other one looking backward in time. In order to
prove the stronger result in Proposition 4.2.1, it remains to show that sam-
ples with points outside of A+

N(0, 0) [ A�

N(N, z) do not contribute to the L2-
limit of the partition function. We say that samples of this kind have an
exceptional jump, if there exists an index 1  bj  k such that (nbj, zbj) /2
A+

N(0, 0) [ A�

N(N, z). We will use (ni, zi)k
i=1 /2 A as a shorthand.

> N
k

(0, 0)

(N, z)

(nj, zj)

(nj+1, zj+1)

(nbj, zbj)

A+
N(0, 0)

A�

N(N, z)

Figure 4.2: When considering k samples, the existence of a time-jump that is
at least of length N

k , still allows us to split samples into two groups (while
paying a multiplicative constant k). At least one of the two groups will con-
tain samples outside the boxes A±

N .
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Lemma 4.2.8. For every x 2 R2 and r > 0, we have

lim
N!•

sup
z2

p
NB(x,r)

��bZbN ,N(0, 0 | N, z)
��

L2(P)
= 0.

Proof. Similar to the case where all samples are sufficiently close to the start
and end point, we can again partition samples into two groups. First note
that for every collection of k samples, there is at least one index 0  j  k
such that nj+1 � nj �

N
k , cf. Figure 4.2.2 (here we use again the notation

nk+1 = N). Consequently, we may write

E[(bZ(k)
bN ,N(0, 0 | N, z))2]

 s2k
N

k

Â
j=0

Â
(ni ,zi)k

i=1 /2A
1nj+1�nj�

N
k

 
j

’
i=1

q2
ni�ni�1

(zi � zi�1)

!
(4.33)

⇥

q2
nj+1�nj

(zj+1 � zj)

q2
N(z)

 
k+1

’
i=j+2

q2
ni�ni�1

(zi � zi�1)

!
.

Once more we want to separate indices into two groups, which requires
the removal of a ratio of random walk transition kernels. First we apply
Lemma 4.2.7(ii), which yields

q2
nj+1�nj

(zj+1 � zj)

q2
N(z)

 sup
z2

p
NB(x,r)

s.t. qN(z)>0

sup
n�N/k

zj+1�zj2Z2

q2
n(zj+1 � zj)

q2
N(z)

 Ck2, (4.34)

with C being a non-negative constant, independent of N and k.

In the remainder of the proof, we do not explicitly state results to hold
locally uniformly in z. However, the reader should note that the statements
remain true when adding the supremum over {z 2

p
NB(x, r) : qN(z) > 0}

in front of all expressions below.

Combining (4.33) and (4.34), we just proved that

E[(bZ(k)
bN ,N(0, 0 | N, z))2] (4.35)

 Ck2 s2k
N

k

Â
j=0

Â
(ni ,zi)k

i=1 /2A
nj+1�nj�N/k

 
j

’
i=1

q2
ni�ni�1

(zi � zi�1)

! 
k+1

’
i=j+2

q2
ni�ni�1

(zi � zi�1)

!
,
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for some positive constant C. Since (ni, zi)k
i=1 /2 A, we know there exists

a bj 2 {1, . . . , k} such that (nbj, zbj) /2 A+
N(0, 0) [ A�

N(N, z). Note that bj does

not necessarily agree with j, and we consider the two cases bj  j and bj > j
separately. First assume that bj  j, then we can estimate the products in
(4.35), which do not contain bj, as follows

Â
0nj+1<···<nkN�1

zj+1,...,zk2Z2

 
k+1

’
i=j+2

q2
ni�ni�1

(zi � zi�1)

!


⇣
Â

1nN
ez2Z2

q2
n(ez)

⌘k�j
= Rk�j

N ,

where we dropped the constraint of the ni’s being ordered and also used the
symmetry of the simple random walk transition probabilities in the first step.
Thus,

k2 s2k
N

k

Â
j=0

Â
(ni ,zi)k

i=1 /2A
nj+1�nj�N/k

1bjj

 
j

’
i=1

q2
ni�ni�1

(zi � zi�1)

! 
k+1

’
i=j+2

q2
ni�ni�1

(zi � zi�1)

!

 Ck2
k

Â
j=0

(s2
N RN)

k�js
2j
N Â

1n1<···<njN
(zi)

j
i=12(Z

2)j

9 bj s.t. (nbj,zbj)/2A+
N(0,0)

 
j

’
i=1

q2
ni�ni�1

(zi � zi�1)

!
(4.36)

= Ck2
k

Â
j=0

(s2
N RN)

k�jE[(bZ(j)
bN ,N(0, 0, N, ?))2].

We can perform the same estimates in the case of bj > j (in fact, we overesti-
mate with bj � j), with the roles of A+

N(0, 0) and A�

N(N, z) reversed. Together
with (4.35) and (4.36), this yields

E[(bZ(k)
bN ,N(0, 0 | N, z))2]  Ck2

k

Â
j=0

⇣
(s2

N RN)
k�jE[(bZ(j)

bN ,N(0, 0, N, ?))2]

+ (s2
N RN)

jE[(bZ(k�j)
bN ,N (0, ?, N, z))2]

⌘
(4.37)

= 2Ck2
k

Â
j=0

(s2
N RN)

k�jE[(bZ(j)
bN ,N(0, 0, N, ?))2] ,

where we used E[(bZ(j)
bN ,N(0, 0, N, ?))2] = E[(bZ(j)

bN ,N(0, ?, N, z))2] in the last
step. Finally, using (4.37) and orthogonality of the polynomial chaos com-
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ponents, we have the upper bound

E[(bZbN ,N(0, 0 | N, z))2]  2C
N

Â
k=1

k2
k

Â
j=1

(s2
N RN)

k�jE[(bZ(j)
bN ,N(0, 0, N, ?))2].

Switching the order of the two sums and performing an index shift, we have

N

Â
k=1

k2
k

Â
j=1

(s2
N RN)

k�jE[(bZ(j)
bN ,N(0, 0, N, ?))2]

=
N

Â
j=1

E[(bZ(j)
bN ,N(0, 0, N, ?))2]

N�j

Â
k=0

(k + j)2 (s2
N RN)

k ,

which overall yields

E[(bZbN ,N(0, 0 | N, z))2]  C
N

Â
j=1

j2E[(bZ(j)
bN ,N(0, 0, N, ?))2]. (4.38)

Here we used the fact that, as N ! •,

N�j

Â
k=0

(k + j)2 (s2
N RN)

k
 j2

⇣
1 + 4

•

Â
k=1

k2 (s2
N RN)

k
⌘
! j2

⇣
1 + 4

•

Â
k=1

k2 bb2k
⌘

,

for all j � 1. Because the series converges, recall that limN!• s2
N RN = bb2 <

1, the series on the left-hand side is uniformly bounded in N and can be
absorbed in the constant C.

In Lemma 4.3.1 below, we will deduce that

E[(bZ(j)
bN ,N(0, 0, N, ?))2]  C j2 (s2

N RN)
j
2 aN ⇠ C j2 bbj aN , (4.39)

which is a direct implication of the estimates in [CSZ20, Section 3.4]. Hence,
using (4.38) and (4.39), we have

E[(bZbN ,N(0, 0 | N, z))2] 6 C
N

Â
j=1

j2E[(bZ(j)
bN ,N(0, 0, N, ?))2]  C aN

N

Â
j=1

j4bbj ,

which vanishes in the large N limit, since aN ! 0. This completes the proof.

It is worth pointing out, that the estimates used in (4.30) and (4.34) hold
because z 2

p
NB(x, r) is macroscopically bounded, which prevents the
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divergence of the term (N qN(z))�1. For this reason, Proposition 4.2.1 only
holds locally uniformly.

We are now ready to prove the section’s main result, namely that the
point-to-point partition function can be factorised into a product of two
point-to-plane partition functions.

Proof of Proposition 4.2.1. First, we ignore the supz2
p

NB(x,r), qN(z)>0 and only
consider a single, fixed z 2 Z2 such that qN(z) > 0. As already mentioned in
Remark 4.1.2, ZbN ,N(0, 0 | N, z) can be approximated arbitrary well in L2(P)

by ZbN ,N(0, 0 | N, z) in the large N limit, which is why we can restrict our-
selves to the latter in this proof.

We fix 0 < s+ < t� < 1. The triangle inequality yields the estimate

��ZbN ,N(0, 0 | N, z)� ZbN ,N(0, 0, s+N, ?)ZbN ,N(t�N, ?, N, z)
��

L2(P)

=
���
�bZbN ,N(0, 0 | N, z) + ZA

bN ,N(0, 0 | N, z)
�

� ZbN ,N(0, 0, s+N, ?)ZbN ,N(t�N, ?, N, z)
���

L2(P)



���bZbN ,N(0, 0 | N, z)
���

L2(P)

+
���ZA

bN ,N(0, 0 | N, z)� ZA
bN ,N(0, 0, s+N, ?)ZA

bN ,N(t
�N, ?, N, z)

���
L2(P)

+
���ZA

bN ,N(0, 0, s+N, ?)ZA
bN ,N(t

�N, ?, N, z)

� ZbN ,N(0, 0, s+N, ?)ZbN ,N(t�N, ?, N, z)
���

L2(P)
.

The first and second term vanish due to Lemma 4.2.8 and Lemma 4.2.6,
respectively. Intuitively, the third term is negligible due to the results in
[CSZ17b], which state that only samples inside the boxes A±

N contribute to
the L2-limit of the point-to-plane partition functions, see also Lemma 4.2.4.
We begin by estimating
���ZA

bN ,N(0, 0, s+N, ?)ZA
bN ,N(t

�N, ?, N, z)

� ZbN ,N(0, 0, s+N, ?)ZbN ,N(t�N, ?, N, z)
���

L2(P)



���
⇣

ZA
bN ,N(0, 0, s+N, ?)� ZbN ,N(0, 0, s+N, ?)

⌘
ZA

bN ,N(t
�N, ?, N, z)

���
L2(P)

+
���ZbN ,N(0, 0, s+N, ?)

⇣
ZA

bN ,N(t
�N, ?, N, z)� ZbN ,N(t�N, ?, N, z)

⌘���
L2(P)
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=
���bZbN ,N(0, 0, s+N, ?)

���
L2(P)

���ZA
bN ,N(t

�N, ?, N, z)
���

L2(P)

+
��ZbN ,N(0, 0, s+N, ?)

��
L2(P)

���bZbN ,N(t�N, ?, N, z)
���

L2(P)
,

where we used independence of the disorder on the disjoint time intervals
[0, s+] and [t�, 1] in the last step. The second moments of bZbN ,N converge
to zero, see Lemma 4.2.4, whereas the L2-norms of ZA

bN ,N and ZbN ,N are uni-
formly bounded in N. Note that all statements in the proof hold uniformly
on balls

p
NB(x, r), therefore the local uniformity in the statement follows.

This completes the proof.

Before we move on to the next section, we state and prove the analogous
result of Lemma 4.2.4(i) for the point-to-point partition function:

Corollary 4.2.9. Let x 2 R2 and r > 0 be arbitrary. For every bb < 1 there exists a
d = d(bb) > 0 and C > 0 such that

(i) supN2N supz2
p

NB(x,r) E[ZbN ,N(0, 0 | N, z)2+d]  C,

(ii) supN2N supz2
p

NB(x,r) E[ZbN ,N(0, 0 | N, z)2+d]  C.

Proof. Let x 2 R2 and r > 0. First, we prove statement (i) for the
point-to-point partition function ZbN ,N(0, 0 | N, z), ignoring the endpoint-
disorder. From the proof of Proposition 4.2.1 and Lemma 4.2.4, we know that
supz2

p
NB(x,r) E[ZbN ,N(0, 0 | N, z)2] is uniformly bounded in N. Moreover,

the point-to-point partition function still has the form of a multi-linear poly-
nomial. In order to lift the boundedness to the (2 + d)-moment for d > 0
sufficiently small, we apply the hypercontractivity property for polynomial
chaoses, see for example [CSZ20, Appendix B]. It is easy to check that the nec-
essary conditions are still satisfied. Thus, we may estimate the p-th moment,
p � 2, by

E[ZbN ,N(0, 0 | N, z)p] 
⇣ N

Â
k=0

c2k
p E[Z(k)

bN ,N(0, 0 | N, z)2]
⌘ p

2
. (4.40)

Here, cp is a constant which only depends on p and the law of the noise h(N).
In [CSZ20, Theorem B.1] it was additionally shown that limp#2 cp = 1. In
order to prove that the sum is uniformly bounded in N, we split it into the
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two (by now well known) parts:

N

Â
k=0

c2k
p E[Z(k)

bN ,N(0, 0 | N, z)2] (4.41)

=
N

Â
k=0

c2k
p E[ZA,(k)

bN ,N(0, 0 | N, z)2] +
N

Â
k=0

c2k
p E[bZ(k)

bN ,N(0, 0 | N, z)2],

due to orthogonality. The second term on the right-hand side can be upper
bounded using (4.37) and Lemma 4.3.1

N

Â
k=0

c2k
p E[bZ(k)

bN ,N(0, 0 | N, z)2]  C
N

Â
k=0

c2k
p k2

k

Â
j=0

(s2
N RN)

k�jE[(bZ(j)
bN ,N(0, 0, N, ?))2]

 aN C
N

Â
k=0

c2k
p k2

k

Â
j=0

(s2
N RN)

k�j(s2
N RN)

j/2 j2

 aN C
N

Â
k=0

k5(c4
ps2

N RN)
k/2 ,

and vanishes because c2
p
bb < 1 for p � 2 small enough, where we used the

fact that c2
psN

p
RN ⇠ c2

p
bb. On the other hand, the first term on the right-hand

side of (4.41) can be estimated in terms of

N

Â
k=0

c2k
p E[ZA,(k)

bN ,N(0, 0 | N, z)2]



✓
sup

|N�n|<2N1�aN

|z�y|<2N1/2�aN /4

qn(y)
qN(z)

◆

⇥

N

Â
k=0

c2k
p

k

Â
j=0

E[ZA,(j)
bN ,N(0, 0, N, ?)2]E[ZA,(k�j)

bN ,N (0, ?, N, z)2]



✓
sup

|N�n|<2N1�aN

|z�y|<2N1/2�aN /4

qn(y)
qN(z)

◆ N

Â
k=0

(k + 1)c2k
p (s2

N RN)
k,

where we performed a similar estimate as in the proof of Lemma 4.2.6 in
the first inequality, recall (4.25). In the second step, we simply used the fact
that E[ZA,(j)

bN ,N(0, 0, N, ?)2]  (s2
N RN)j (and similarly for the plane-to-point

partition function). Again for p � 2 small enough, cp can be absorbed into
bb, whereas Lemma 4.2.7(i) implies that the supremum in front of the sum
converges to one. Overall, this yields that (4.40) is uniformly bounded in N.
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The estimate for ZbN ,N(0, 0 | N, z) follows now from (i). Recall that

ZbN ,N(0, 0 | N, z) = ebNwN,z�l(bN)ZbN ,N(0, 0 | N, z),

where we included again the disorder at the endpoint separately. We then
have

E[ZbN ,N(0, 0 | N, z)p] = E[(ebNwN,z�l(bN))p]E[ZbN ,N(0, 0 | N, z)p],

using the independence property of the disorder w. Choosing now p < 2+ d,
with d = d(bb) from part (i), the second term is uniformly bounded. It remains
to estimate E[(ebNwN,z�l(bN))p] = el(pbN)�pl(bN). By Taylor expansion, we can
write l(pbN) � pl(bN) ⇠

1
2 p(p � 1)b2

N , which yields boundedness of the
exponential. This concludes the proof of (ii).

4.3 Decay of remainders in polynomial chaoses

We still owe the reader a rigorous justification for the exponential decay of
second moments of bZ(k)

bN ,N , which we use in the proofs of Lemma 4.2.8 and
Corollary 4.2.9.

Lemma 4.3.1. For any k 2 N, we have

E
h
bZ(k)

bN ,N(0, 0, N, ?)2
i
 C k2 �s2

N RN
� k

2 aN ,

where C is a constant (independent of k and N) and aN = (log N)g�1, g 2 (0, 1),
as in the definition of the sets A±

N.

The proof of this statement can be found in [CSZ20, Section 3.4].
The original proof makes use of more precise estimates to show that
E[bZbN ,N(0, 0, N, ?)2] decays like aN . One can follow the same steps using less
sophisticated estimates to get an uniform bound on E[bZ(k)

bN ,N(0, 0, N, ?)2] in
terms of aN instead, which yields the same qualitative bound. We sketch the
argument for the sake of completeness:

Considering bZ(k)
bN ,N(0, 0, N, ?) for some k  N, there is at least one sample
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(nj, zj) outside the box A+
N(0, 0). Thus,

E
h
bZ(k)

bN ,N(0, 0, N, ?)2
i

 s2k
N Â

1l1,...,lkN
z1,...,zk2Z2

k

Â
j=1

⇣
1lj>

1
k N1�aN + 1lj

1
k N1�aN , |zj|�

1
k N1/2�aN /4

⌘ k

’
i=1

q2
li(zi) ,

where we extended the range of time-differences li = ni � ni�1 to all of
{1, . . . , N}. Using once more the identity ÂN

l=1 Âz2Z2 q2
l (z) = RN , we have

E
h
bZ(k)

bN ,N(0, 0, N, ?)2
i

(4.42)

 k s2k
N Rk�1

N Â
1lN

z2Z2

⇣
1l> 1

k N1�aN + 1l 1
k N1�aN ,|z|� 1

k N1/2�aN /4

⌘
q2

l (z) .

Now, the contribution of the two indicator functions can be considered sepa-
rately. We follow the exact same steps as in Section 3.4 of [CSZ20]:

• For the contribution of large time-jumps, we have

1
RN

Â
1
k N1�aNlN

q2l(0)  C
1

RN
Â

1
k N1�aNlN

1
l

 C0
aN log N + log k

log N
 2C0 k aN ,

where we used additionally the crude estimates log k
log N  k aN in the last

inequality.

• On the other hand, the contribution of the second term is upper bounded
by

1
RN

Â
1l 1

k N1�aN

Â
|z|> 1

k N1/2�aN /4

q2
l (z)  Ce�h N

aN
2

k ,

for some uniform h > 0, using Gaussian estimates for the simple random
walk (we omit the details here and instead refer the reader to [CSZ20, Sec-
tion 3.4]). Then, for N large enough, the term in (4.42) corresponding to
the second indicator function, can be upper bounded in terms of

C k (s2
N RN)

ke�h N
aN
2

k 

8
<

:
C k(s2

N RN)ke�hN
aN
4 , if k  (NaN/2)

1
2 ,

C k(s2
N RN)

k
2 (bb + d)N

aN
4 , if k > (NaN/2)

1
2 ,
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where d > 0 small enough such that bb + d < 1. Note that cN
aN
4 = o(aN) for

any c 2 (0, 1), because as N ! •

(log N)1�gcN
aN
4 = (log N)1�gcexp( 1

4 (log N)g)
 (log N)c

1
4 (log N)g

! 0 ,

which includes in particular the case c = max{bb + d, e�h
}.

Adding up all estimates above yields the desired upper bound of
E[bZ(k)

bN ,N(0, 0, N, ?)2] in Lemma 4.3.1.

4.4 The annealed polymer measure

After proving the factorisation of point-to-point partition functions, we can
finally start analysing the limiting polymer measure. As dealing with the an-
nealed polymer measures first will substantially simplify the required steps
in the quenched case, we define the disorder-averaged measure µbN ,N on
(C[0, 1],F ), by

µbN ,N(B) := E[p#Pw
bN ,N(B)] 8B 2 F . (4.43)

This section’s main result is an invariance principle for the paths of the an-
nealed polymer measure.

Proposition 4.4.1 (Annealed invariance principle). For bb 2 (0, 1), we have

µbN ,N
d
! P( 1

p
2
W 2 · ), as N ! •,

where we recall that P denotes the Wiener measure on C[0, 1].

We begin by showing that the limiting finite-dimensional distributions of
µbN ,N agree with the ones of a Brownian motion. In the section’s second part,
we prove the required tightness in C[0, 1]. Together with the identification of
finite-dimensional distributions, this yields Proposition 4.4.1.

Instead of determining the finite-dimensional distributions of the inter-
polated paths, it suffices to work with the corresponding starting point of the
interpolation. To see this, recall that under p#Pw

bN ,N we have

Xt =
1

p
N

SbtNc +
1

p
N
(tN � btNc)(SbtNc+1 � SbtNc). (4.44)
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Because the simple random walk has a finite range transtition kernel, the
second term vanishes for N large and we are left with 1

p
N

SbtNc. Thus, the
weak limits of 1

p
N

SbtNc and Xt (under p#Pw
bN ,N) must coincide if they exist.

We will assume tN 2 N for the sake of notation.

Let 0 < t1 < t2 < . . . < tk  1. It will be convenient to fix a partitioning
of the time intervals (ti�1, ti] and (tk, 1] using t±i ’s such that

t+i�1 < t�i < ti < t+i . (4.45)

Now, recalling the representation in (4.9), the idea when proving convergence
of the marginal distributions is to replace the first point-to-point partition
function using Proposition 4.2.1:

ZbN ,N(0, 0 | t1N, z1)

ZbN ,N(0, 0, N, ?)
'

ZbN ,N(0, 0, t1N, ?)ZbN ,N(0, ?, t1N, z1)

ZbN ,N(0, 0, N, ?)
, (4.46)

where “'” should be understood as approximation in L1(P) for large N. Be-
cause both the denominator and the first term in the numerator only depend
on the disorder in a small neighbourhood around the starting point, they
converge to the same limit and should cancel as N diverges. We are left with
the remaining point-to-point partition functions, which can be analysed sep-
arately due to independence of the disorder on disjoint time intervals.

Having the above approach in mind, we introduce a shorthand notation
for the following constellation of terms. For 0 < t1 < t2 < . . . < tk < 1, we
define

Qw
bN ,N

�
(ti, Bi)

k
i=1

�

:= Â
zi2

p
NBi

1ik

ZbN ,N(t�1 N, ?, t1N, z1) (4.47)

⇥

⇣ k�1

’
j=1

ZbN ,N(tjN, zj, t+j N, ?)ZbN ,N(t�j+1N, ?, tj+1N, zj+1)
⌘

⇥ ZbN ,N(tkN, zk, t+k N, ?)
k

’
j=1

q(tj�tj�1)N(zj � zj�1).

Whenever tk = 1, the partition function ZbN ,N(tkN, zk, t+k N, ?) is dropped,
since it depends on the disorder outside of {0, . . . , N}⇥ Z2.
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Lemma 4.4.2. For bb 2 (0, 1) and 0 < t1 < t2 < . . . < tk  1, we have

lim
N!•

���Pw
bN ,N

� 1
p

N
St1 N 2 B1, . . . , 1

p
N

Stk N 2 Bk
�
� Qw

bN ,N
�
(ti, Bi)

k
i=1

����
L1(P)

= 0,

(4.48)

for every choice of bounded measurable sets (Bi)k
i=1 2 (R2)k satisfying l(∂Bi) = 0,

where l denotes the Lebesgue measure.1

In particular, this implies

lim
N!•

E
⇥
Pw

bN ,N
� 1
p

N
St1 N 2 B1, . . . , 1

p
N

Stk N 2 Bk
�⇤

(4.49)

= P( 1
p

2
Wt1 2 B1, . . . , 1

p
2
Wtk 2 Bk).

Proof. We only elaborate the steps for the case k = 2 and t2 = 1; the general
statement follows along the same lines modulo more involved notation.
Let (Bi)1i2 be bounded sets with boundary of Lebesgue-measure zero.
Throughout the proof, we assume B(xi, ri)’s to be balls large enough such
that they cover the bounded sets Bi. We write t0 = 0 and z0 = 0 for the
starting point of the random polymer.

First, we will replace the point-to-point partition function ZbN ,N(0, 0 |

t1N, z1) in (4.9) by its point-to-plane counterparts, using Proposi-
tion 4.2.1. Afterwards, we exchange the arising term ZbN ,N(0, 0, t+0 N, ?) with
ZbN ,N(0, 0, N, ?) to cancel the point-to-plane partition function in the denom-
inator. In other words, we want to show that

sup
zi2

p
NB(xi ,ri)

s.t. qt1 N(z1)>0

����
ZbN ,N(t1N, z1 | N, z2)

ZbN ,N(0, 0, N, ?)

⇣
ZbN ,N(0, 0 | t1N, z1) (4.50)

� ZbN ,N(0, 0, N, ?)ZbN ,N(t�1 N, ?, t1N, z1)
⌘����

L1(P)

vanishes in the large N limits. Afterwards, the remaining point-to-point
partition function can be replaced using once more Proposition 4.2.1, which
yields (4.48).

Instead of showing the above convergence in (4.50) directly, we divide the
statement into two, more manageable, terms by introducing the intermediate
term ZbN ,N(0, 0, t+0 N, ?)ZbN ,N(t�1 N, ?, t1N, z1).

1We will often call a measurable set B satisfying l(B) = 0, a continuity set.
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• We start with the replacement of the point-to-point partition function fol-
lowing Proposition 4.2.1. First, we apply the Cauchy-Schwartz inequality
which yields

����
ZbN ,N(t1N, z1 | N, z2)

ZbN ,N(0, 0, N, ?)

⇣
ZbN ,N(0, 0 | t1N, z1)

� ZbN ,N(0, 0, t+0 N, ?)ZbN ,N(t�1 N, ?, t1N, z1)
⌘����

L1(P)

(4.51)

 kZbN ,N(0, 0 | t1N, z1)� ZbN ,N(0, 0, t+0 N, ?)ZbN ,N(t�1 N, ?, t1N, z1)kL2(P)

⇥ kZbN ,N(0, 0, N, ?)�1
kL2(P)kZbN ,N(t1N, z1 | N, z2)kL2(P).

Here we used independence of the disorder on the disjoint time inter-
vals (0, t1N] and (t1N, N], in addition to the fact that partition functions
ZbN ,N(sN, 0 | tN, z) only depend on the disorder w in the region (sN, tN]⇥

Z2. The last term in (4.51) vanishes uniformly in z 2
p

NB(x1, r1), due to
Proposition 4.2.1. The first and second term are uniformly bounded by
Lemma 4.2.4 and Corollary 4.2.9, respectively.

• Lastly, we can estimate the remaining norm using again the fact, that we
have arbitrary good control of negative moments of ZbN ,N(0, 0, N, ?). Us-
ing

ZbN ,N(0, 0, t+0 N, ?)� ZbN ,N(0, 0, N, ?)

= bZbN ,N(0, 0, t+0 N, ?)� bZbN ,N(0, 0, N, ?),

the Cauchy-Schwarz inequality yields

����
ZbN ,N(0, 0, t+0 N, ?)� ZbN ,N(0, 0, N, ?)

ZbN ,N(0, 0, N, ?)

⇥ ZbN ,N(t�1 N, ?, t1N, z1)ZbN ,N(t1N, z1 | N, z2)

����
L1(P)



�����
bZbN ,N(0, 0, t+0 N, ?)� bZbN ,N(0, 0, N, ?)

ZbN ,N(0, 0, N, ?)

�����
L2(P)

⇥
��ZbN ,N(t�1 N, ?, t1N, z1)ZbN ,N(t1N, z1 | N, z2)

��
L2(P)

.

The second term on the right-hand side is uniformly bounded by
Lemma 4.2.4(ii). The first term, on the other hand, can be estimated us-
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ing Hölder’s inequality and the trivial estimate ka � bk  kak+ kbk:
�����
bZbN ,N(0, 0, t+0 N, ?)� bZbN ,N(0, 0, N, ?)

ZbN ,N(0, 0, N, ?)

�����
L2(P)

 kZbN ,N(0, 0, N, ?)�1
kL2+d�1 (P)

(4.52)

⇥ (kbZbN ,N(0, 0, t+0 N, ?)kL2+d(P) + kbZbN ,N(0, 0, N, ?)kL2+d(P)),

where d > 0 is choosen sufficently small. Because kbZbN ,N(0, 0, N, ?)kL2+d(P)

and kbZbN ,N(0, 0, t+0 N, ?)kL2+d(P) converge to zero by Lemma 4.2.4(i), while
the first term is uniformly bounded, this concludes convergence to zero of
the expression in (4.50).

Having proven that (4.50) vanishes, it is only left to replace ZbN ,N(t1N, z1 |

N, z2) by ZbN ,N(t1N, z1, t+1 N, ?)ZbN ,N(t�2 N, ?, N, z2), which holds again by
means of Proposition 4.2.1. This concludes the proof of (4.48).

Overall, (4.48) implies

lim
N!•

E[Pw
bN ,N(St1 N 2

p

NB1, SN 2

p

NB2)]

= lim
N!•

E[Qw
bN ,N((ti, Bi)

2
i=1)]

= lim
N!• Â

zi2
p

NBi
1i2

2

’
j=1

q(tj�tj�1)N(zj � zj�1),

where we used the fact that

E[ZbN ,N(t�1 N, ?, t1N, z1)ZbN ,N(t1N, z1, t+1 N, ?)ZbN ,N(t�2 N, ?, N, z2)] = 1 .

It is well known that the simple random walk in d = 2 converges in law to
Brownian motion with diffusion matrix 1

p
2

I2, see for example [LL10, Theo-
rem 7.6.1].

Note that Lemma 4.4.2 is enough to deduce weak convergence of finite-
dimensional distributions. In order to lift the convergence result to the an-
nealed polymer measures, we require tightness.

Lemma 4.4.3. The family of annealed polymer measures (µbN ,N)N is tight in
M1(C[0, 1]).

Proof. We prove the tightness of (µbN ,N)N by following [Kal02, Theorem 16.5]
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which states that it suffices to show that for every # > 0

lim
d!0

lim sup
N!•

µbN ,N(md(X) � #) = lim
d!0

lim sup
N!•

E[p#Pw
bN ,N(md(X) � #)] = 0,

(4.53)

where md(j) denotes the modulus of continuity on the Wiener space, i.e.

md(j) := sup
0s,t1
|t�s|<d

|jt � js| 8 j 2 C[0, 1].

Next, we use the same trick as stated in [CY06, Lemma 4.2] for random poly-
mers in d � 3. See also [AKQ14a, Lemma 4.2] for a similar application in the
case of the continuum random polymer in d = 1. For every PN-integrable Y,
we have

E[ZbN ,N(0, 0, N, ?)Ew
bN ,N [Y]] = EN [Y].

Thus, for arbitrary # > 0, we can write

E[ZbN ,N(0, 0, N, ?) p#Pw
bN ,N(md(X) � #)] = p#PN(md(X) � #). (4.54)

However, the sequence of rescaled, interpolated simple random walks is
known to be tight in the Wiener space. Hence, the right hand side of (4.54)
vanishes, when taking first the limit superior N ! • and then the limit
d ! 0. Notably, this implies that for any l > 0

lE[1ZbN ,N(0,0,N,?)�l p#Pw
bN ,N(md(X) � #)] ! 0,

as N ! •, d ! 0. On the other hand,

E[1ZbN ,N(0,0,N,?)<l p#Pw
bN ,N(md(X) � #)]  lE[ZbN ,N(0, 0, N, ?)�1],

where we first dropped the inner probability before applying Markov’s in-
equality. Once again, we make use of the fact that

sup
N2N

E[ZbN ,N(0, 0, N, ?)�1] 6 bC ,
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for some bC = bCbb > 0, using Lemma 4.2.4(ii). Overall, we can write

µbN ,N(md(X) � #) = E[p#Pw
bN ,N(md(X) � #)]

 E[1ZbN ,N(0,0,N,?)�lp#Pw
bN ,N(md(X) � #)] + l bC .

Taking first the limits N ! •, d ! 0 and lastly the limit l ! 0, finally yields
(4.53). Thus, tightness of (µbN ,N)N follows.

Combining both Lemma 4.4.2 and Lemma 4.4.3, we can show that an-
nealed polymer paths converge in distribution to the ones of Brownian mo-
tion.

Proof of Proposition 4.4.1. We first note that Lemma 4.4.2 implies convergence
of the finite-dimensional marginals of the annealed polymer measure. Let
0 < t1 < . . . < tk  1 be arbitrary. Tightness of the marginals follows from
the fact that, for every # > 0, we can choose bounded continuity sets Bi ⇢ R2

such that
P( 1

p
2
Wt1 2 B1, . . . , 1

p
2
Wtk 2 Bk) > 1 � # .

Thus, using Lemma 4.4.2, the corresponding polymer marginals satisfy

inf
N>N

E
⇥
Pw

bN ,N
� 1
p

N
Sbt1 Nc 2 B1, . . . , 1

p
N

Sbtk Nc 2 Bk
�⇤

> 1 � # ,

for some N = N# 2 N. This can be lifted to all N 2 N by extending the
sets Bi. Therefore, the laws of 1

p
N
(Sbt1 Nc, . . . , Sbtk Nc) are tight and converge

weakly to the law of 1
p

2
(Wt1 , . . . , Wtk), since bounded continuity sets suffice

to identify the limiting measure uniquely. The same holds for (Xt1 , . . . , Xtk),
see (4.44) and the discussion below, thus,

µbN ,N(Xt1 2 ·, . . . , Xtk 2 ·)
d
! P( 1

p
2
Wt1 2 ·, . . . , 1

p
2
Wtk 2 ·).

Recall now from Lemma 4.4.3 that the annealed measures (µbN ,N)N are tight.
Hence, convergence of the annealed polymer measures is immediate, be-
cause weak accumulation points of (µbN ,N)N are determined by their finite-
dimensional distributions, see for example [Bil99, Theorem 7.1].
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4.5 The quenched polymer measure

After proving the invariance principle for the annealed polymer measures in
the previous section, we can now proceed with proving the chapter’s main
results for the quenched polymer measures. In the first part of the section,
we show convergence of finite-dimensional distributions of the rescaled, in-
terpolated polymer paths (Proposition 4.1.1). Afterwards, we prove Proposi-
tion 4.5.7, which is a functional central limit theorem for the polymer paths,
when tested against individual test functions in Cb(C[0, 1]). We then explain
how the functional central limit theorem can be lifted to an invariance prin-
ciple (Proposition 4.5.9), using a countable convergence determining class of
functions. Lastly, we prove the local limit theorem (Proposition 4.0.2) for the
polymer marginals on microscopic scales.

4.5.1 Finite-dimensional distributions

Self-averaging of the random polymer

We begin by showing convergence of the quenched polymer marginals in
L1(P), evaluated on fixed bounded continuity sets B.

Proposition 4.5.1. For bb 2 (0, 1) and 0 < t1 < . . . < tk  1, we have

��Pw
bN ,N

� 1
p

N
St1 N 2 B1, . . . , 1

p
N

Stk N 2 Bk
�

(4.55)

� P( 1
p

2
Wt1 2 B1, . . . , 1

p
2
Wtk 2 Bk)

��
L1(P)

! 0,

for any choice of bounded measurable sets (Bi)k
i=1 2 (R2)k satisfying l(∂Bi) = 0,

where l denotes the Lebesgue measure.

Recall, from Lemma 4.4.2, that marginals of p#Pw
bN ,N can be approximated

in terms of Qw
bN ,N . To lift Lemma 4.4.2 to the convergence of quenched

marginals, it is enough to show convergence of Qw
bN ,N((ti, Bi)k

i=1) to the cor-
responding transition probabilities of Brownian motion. We will do so first,
and state the proof of Proposition 4.5.1 at the end of the section.

In the remainder of this section, we restrict ourselves to the case of k = 2
with t2 = 1. The general statement of Proposition 4.5.1 follows along the
same lines.
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Lemma 4.5.2. Let t1 2 (0, 1) and B1, B2 ⇢ R2 be arbitrary bounded continuity
sets, then

lim
N!•

kQw
bN ,N((ti, Bi)

2
i=1)k

2
L2(P) = P( 1

p
2
Wt1 2 B1, 1

p
2
W1 2 B2)

2.

For the definition of Qw
bN ,N recall (4.47).

We defer the proof of Lemma 4.5.2 until after Lemma 4.5.3. First, we note
that the second moment kQw

bN ,N((ti, Bi)2
i=1)k

2
L2(P) agrees with

Â
yi2

p
NBi

1i2

Â
zi2

p
NBi

1i2

E[ZbN ,N(t�1 N, ?, t1N, y1)ZbN ,N(t�1 N, ?, t1N, z1)]

⇥ E[ZbN ,N(t1N, y1, t+1 N, ?)ZbN ,N(t1N, z1, t+1 N, ?)] (4.56)

⇥ E[ZbN ,N(t�2 N, ?, N, y2)ZbN ,N(t�2 N, ?, N, z2)]

⇥

2

’
j=1

q(tj�tj�1)N(yj � yj�1)q(tj�tj�1)N(zj � zj�1) ,

due to independence of the occurring partition functions. Hence, to get a
sharp bound and conclude Lemma 4.5.2, we need precise estimates of mixed
moments of the form

E[ZbN ,N(sN, y, tN, ?)ZbN ,N(sN, z, tN, ?)] ,

locally uniformly in space, as N tends to infinity.
Recall from (4.14) that partition functions starting at macroscopically

separated points are asymptotically independent. Therefore, one expects
a law-of-large-number-like behaviour when ignoring the contribution of
starting points yi and zi lying “too close” to each other. This idea encourages
us to divide the points (zi)1i2 into two groups, while keeping (yi)1i2

fixed. We either have |zi � yi| > 2N1/2�aN/4 for every 1  i  2 or there
exists an index 1  j  2 such that |zj � yj|  2N1/2�aN/4.

Before stating the full proof of Lemma 4.5.2, we conclude the following
covariance estimate of two point-to-plane partition functions.

Lemma 4.5.3. Let s, t 2 [0, 1] such that s < t, x 2 R2 and r > 0. Then

lim
N!•

sup
y,z2

p
NB(x,r)

|y�z|>2N
1
2 �

aN
4

E[ZbN ,N(sN, y, tN, ?)ZbN ,N(sN, z, tN, ?)] = 1.
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The same statement also holds for plane-to-point partition functions.

Proof. Let y, z 2
p

NB(x, r) such that |y � z| > 2N 1
2�

aN
4 . First, we expand the

expectation in the statement

E[ZbN ,N(sN, y, tN, ?)ZbN ,N(sN, z, tN, ?)]

= E[ZA
bN ,N(sN, y, tN, ?)ZA

bN ,N(sN, z, tN, ?)]

+ E[bZbN ,N(sN, y, tN, ?)ZA
bN ,N(sN, z, tN, ?)]

+ E[ZA
bN ,N(sN, y, tN, ?)bZbN ,N(sN, z, tN, ?)]

+ E[bZbN ,N(sN, y, tN, ?)bZbN ,N(sN, z, tN, ?)].

Now, using the Cauchy-Schwarz inequality and Lemma 4.2.4(i), the last three
terms on the right-hand side vanish uniformly over y, z 2

p
NB(x, r) in the

large N limit. For the remaining term, we use the fact that |y � z| > 2N 1
2�

aN
4

implies A+
N(sN, y) \ A+

N(sN, z) = ∆, whence

E[ZA
bN ,N(sN, y, tN, ?)ZA

bN ,N(sN, z, tN, ?)]

= E[ZA
bN ,N(sN, y, tN, ?)]E[ZA

bN ,N(sN, z, tN, ?)] = 1.

This concludes the proof.

Proof of Lemma 4.5.2. As in the proof of Lemma 4.4.2, we assume that the
sets Bi are covered by open balls B(xi, ri). Recall that the second moment
of Qw

bN ,N((ti, Bi)2
i=1) is given by the expression (4.56).

First, we show that points yi and zi lying “too close” to each other are
negligible. Thereafter, we prove the partition functions’ self-averaging effect
for the remaining points. Overall, this yields a sharp enough estimate for
(4.56). Note that in the case where Bi’s have empty interior, self-averaging
does not take place necessarily. However, in this case we can follow the same
steps as in the first bullet below to deduce that (4.55) still holds, since both
the random walk and polymer marginals evaluated on such sets converge to
zero.

• We begin by analysing points lying “too close”, i.e. at least one of the zi’s
lies in a 2N1/2�aN/4 neighbourhood around yi. Without loss of generality,
we assume that this is the case for z1. Note that all expectation arising
in (4.56) are uniformly bounded in N and yi, zi 2

p
NB(xi, ri), say by a

constant C > 0. This follows by an application of the Cauchy-Schwarz
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inequality and Lemma 4.2.4. Thus, when considering the right-hand side
of (4.56) with the second sum restricted to those z1 2

p
NB1 satisfying

|y1 � z1|  2N1/2�aN/4, we can upper bound the expression by

C3 Â
yi2

p
NBi

1i2

Â
z12

p
NB1

|y1�z1|2N1/2�aN /4

z22
p

NB2

2

’
j=1

q(tj�tj�1)N(yj � yj�1)q(tj�tj�1)N(zj � zj�1)

 C3 Â
y12

p
NB1

qt1 N(y1) Â
z12

p
NB1

|y1�z1|2N1/2�aN /4

qt1 N(z1),

where we summed over the probability kernels which don’t depend on z1

or y1 in the last step. However, N1/2�aN/4 vanishes in the macroscopic limit
and therefore the right hand side converges to zero as N ! •, because

sup
y12

p
NB1

Â
z12

p
NB1

|y1�z1|2N1/2�aN /4

qt1 N(z1)

⇠ sup
y12

p
NB1

1
N Â

z12
p

NB1
|y1�z1|2N1/2�aN /4

2 p t1
2
( z1p

N
) ! 0,

by the local limit theorem for the simple random walk. Consequently,
whenever the space points lie “too close” to each other, in the sense
that there exists an index j such that |zj � yj| < 2N1/2�aN/4, they do not
contribute to the limiting marginal distribution of the polymer path.

• It only remains to estimate the second part of the decomposition of (4.56),
where we restrict the sum over zi’s such that every zi has at least distance
2N1/2�aN/4 from yi, i.e.

Â
yi2

p
NBi

1i2

Â
zi2

p
NBi

|yi�zi |>2N1/2�aN /4

1i2

E[ZbN ,N(t�1 N, ?, t1N, y1)ZbN ,N(t�1 N, ?, t1N, z1)]

⇥ E[ZbN ,N(t1N, y1, t+1 N, ?)ZbN ,N(t1N, z1, t+1 N, ?)] (4.57)

⇥ E[ZbN ,N(t�2 N, ?, N, y2)ZbN ,N(t�2 N, ?, N, z2)]

⇥

2

’
j=1

q(tj�tj�1)N(yj � yj�1)q(tj�tj�1)N(zj � zj�1).
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Using Lemma 4.5.3, each occurring expectation in the expression above
converges (locally) uniformly to 1, when taking the large N limit.

Coming back to the term we wanted to estimate originally, we can now write
(after taking limN!• on both sides)

lim
N!•

kQw
bN ,N((ti, Bi)

2
i=1)k

2
L2(P) = P( 1

p
2
Wt1 2 B1, 1

p
2
W1 2 B2)

2,

where we started with (4.56), neglected the space-points lying “too close”
to each other and proved convergence of the remaining sum (4.57) using
Lemma 4.5.3.

Having just proved convergence of the second moment of
Qw

bN ,N((ti, Bi)2
i=1) to its squared mean, it is an immediate consequence

of Lemma 4.5.2 that Qw
bN ,N((ti, Bi)2

i=1) converges to its mean in L2(P):

Corollary 4.5.4. Let t1 2 (0, 1) and B1, B2 ⇢ R2 be arbitrary bounded continuity
sets, then

lim
N!•

��Qw
bN ,N((ti, Bi)

2
i=1)� P( 1

p
2
Wt1 2 B1, 1

p
2
W1 2 B2)

��
L2(P)

= 0.

Finally, we can summarise the results of above lemmas in the proof of
Proposition 4.5.1:

Proof of Proposition 4.5.1. Application of the triangle inequality yields

kPw
bN ,N(St1 N 2

p

NB1, SN 2

p

NB2)� P( 1
p

2
Wt1 2 B1, 1

p
2
W1 2 B2)kL1(P)

 kPw
bN ,N(St1 N 2

p

NB1, SN 2

p

NB2)� Qw
bN ,N((ti, Bi)

2
i=1)kL1(P)

+ kQw
bN ,N((ti, Bi)

2
i=1)� P( 1

p
2
Wt1 2 B1, 1

p
2
W1 2 B2)kL1(P).

The first term on the right-hand side vanishes by Lemma 4.4.2, whereas the
second term vanishes due to Corollary 4.5.4.

Using standard estimates, one can show that the transition probabilities
of the interpolated polymer path are well approximated by the corner points
of the discrete path. Thus, Proposition 4.5.1 also holds for the rescaled and
interpolated polymer paths under p#Pw

bN ,N :
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Corollary 4.5.5. For bb 2 (0, 1) and 0 < t1 < . . . < tk  1, we have

lim
N!•

��p#Pw
bN ,N

�
Xt1 2 B1, . . . , Xtk 2 Bk

�

� P( 1
p

2
Wt1 2 B1, . . . , 1

p
2
Wtk 2 Bk)kL1(P) = 0,

for every choice of bounded measurable sets (Bi)k
i=1 2 (R2)k satisfying l(∂Bi) = 0.

Tightness and uniqueness of the limit

In Corollary 4.5.5 we showed convergence of polymer marginals evaluated
on bounded, factorised, continuity sets in L1(P). This can be lifted to un-
bounded measurable sets U ⇢ (R2)k satisfying the same properties. How-
ever, we want to stress that this does not imply weak convergence of the
polymer marginals yet, since exceptional points of the disorder can depend
on the choice of sets U. Nevertheless, we are able to show weak convergence
of quenched finite-dimensional distributions in probability, since probabil-
ity measures on (R2)k are uniquely identified by evaluation on a countable
family of sets.

We begin by recalling a standard result: A sequence of random variables
on a metric space converges in probability if and only if every subsequence
has a further subsequence, which converges almost surely, see for example
[Kal02, Lemma 4.2]. Thus, in order to show convergence in probability of the
marginal distributions, it suffices to prove tightness along sufficiently many
subsequences and identify the limit points using a p-system. This step is
motivated by the recent article [Jun23], where Junk showed convergence of
the polymer-endpoint distribution in bond disorder for d � 3, using a very
similar approach.

For the p-system, on which we will identify the limiting finite-
dimensional distributions, we choose half-open cylinders:

E
k := {[a1, b1)⇥ · · ·⇥ [a2k, b2k) ⇢ (R2)k : ai, bi 2 Q and ai < bi , 1  i  2k},

which generate the Borel-sigma-algebra on (R2)k. Note that E k has countably
many elements, and let {Ei}

•
i=1 be an arbitrary enumeration of them. We

omitted the dependency of Ei’s on k for the sake of a lighter notation.
We start by showing that there exist sufficiently many subsequences along

which finite-dimensional distributions (evaluated on sets in E
k) converge al-

most surely.
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Lemma 4.5.6. Let 0  t1 < . . . < tk  1, then for every sequence (Nj)j2N in N
there exists a subsequence (Njm)m2N and W1 = W1((Nj)j2N, (ti)1ik) ⇢ W with
P(W1) = 1, such that for every w 2 W1

lim
m!•

p#Pw
bNjm

,Njm
((Xt1 , . . . , Xtk) 2 E) = P( 1

p
2
(Wt1 , . . . , Wtk) 2 E) 8E 2 E

k.

Proof. Let (Nj)j2N be an arbitrary sequence in N. We prove the lemma only
for a single marginal t 2 [0, 1], the multi-marginal case follows along the
same lines.

First, Corollary 4.5.5 implies that for every # > 0 and Ei 2 E

lim
j!•

P(|p#Pw
bNj ,Nj

(Xt 2 Ei)� P( 1
p

2
Wt 2 Ei)| > #) = 0.

In particular, for every i, m 2 N there exists a Mi,m 2 N such that

P(|p#Pw
bNj ,Nj

(Xt 2 Ei)� P( 1
p

2
Wt 2 Ei)| >

1
m )  m�12�m

8j � Mi,m.

We define a subsequence of (Nj)j using jm := jm�1 _ max1im Mi,m, then for
every m 2 N

P(9i  m with |p#Pw
bNjm

,Njm
(Xt 2 Ei)� P( 1

p
2
Wt 2 Ei)| >

1
m )  2�m,

which is summable in m. The Borel-Cantelli lemma then yields

P
�

sup
im

|p#Pw
bNjm

,Njm
(Xt 2 Ei)� P( 1

p
2
Wt 2 Ei)| >

1
m infinitely often

�
= 0,

which implies that

W1 :=
�

w 2 W : lim
m!•

sup
im

|p#Pw
bNjm

,Njm
(Xt 2 Ei)� P( 1

p
2
Wt 2 Ei)| = 0

 

has full mass, i.e. P(W1) = 1. This concludes the proof.

Finally, we can prove convergence of the quenched polymer marginals.

Proof of Proposition 4.1.1. We fix 0  t1 < . . . < tk  1 and let (Nj)j2N be a
sequence in N. In Lemma 4.5.6 we proved the existence of a subsequence
(Njm)m2N and disorders W1, with P(W1) = 1, such that

lim
m!•

p#Pw
bNjm

,Njm
((Xt1 , . . . , Xtk) 2 E) = P( 1

p
2
(Wt1 , . . . , Wtk) 2 E) , (4.58)
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for all w 2 W1 and E 2 E
k. Tightness of the sequence

✓
p#Pw

bNjm
,Njm

((Xt1 , . . . , Xtk) 2 ·)

◆

m2N

is an immediate consequence of (4.58), see the proof of Proposition 4.4.1, and
the limiting probability measure is uniquely determined by the p-system E

k.
Overall, we showed that for every sequence (Nj)j2N in N there exists a

subsequence (Njm)m2N, along which the finite-dimensional distributions con-
verge almost surely to the ones of Brownian motion with diffusion matrix

1
p

2
I2. This is equivalent to weak convergence of the polymer marginals in

P-probability.

4.5.2 An invariance principle for polymer paths

We are finally ready to prove Theorem 4.0.1. Using tightness of the annealed
polymer paths (Lemma 4.4.3) and convergence of the finite-dimensional dis-
tributions (Proposition 4.1.1), we can prove the desired result. The steps re-
semble very much the ones when proving the invariance principle for the
simple random walk. However, due to the double randomness of paths and
the environment, cf. Remark 4.1.4, we require an additional argument to con-
clude the full invariance principle.

We begin by proving a functional central limit theorem:

Proposition 4.5.7. Let bb 2 (0, 1) and bN as in (4.3). Then for every F 2

Cb(C[0, 1])

p#Ew
bN ,N [F(X)] ! E[F( 1

p
2
W)], as N ! •, in P-probability,

where E is the expectation with respect to the Wiener measure on C[0, 1].

Remark 4.5.8. Convergence in the functional central limit theorem above also holds
in L1(P), since the random variables (p#Ew

bN ,N [F(X)])N are uniformly bounded by
kFk•. In particular, this implies convergence of expectations which is equivalent to
the annealed invariance principle, cf. Proposition 4.4.1.

Proof. Let F 2 Cb(C[0, 1]). The statement in the proposition is equivalent to

lim
N!•

P(|p#Ew
bN ,N [F(X)]� E[F( 1

p
2
W)]| > #) = 0 8# > 0. (4.59)
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In the following, we fix # > 0 and choose d > 0 arbitrary. Let then K =

K(d, #, F) ⇢ C[0, 1] be a compact set such that

P( 1
p

2
W 2 Kc) 

#

8kFk•
(4.60)

and

sup
N2N

µbN ,N(Kc) = sup
N2N

E[p#PbN ,N(Kc)] 
d #

8kFk•
. (4.61)

A set K with these properties exists due to tightness of the Wiener measure
and tightness of the annealed polymer measure, see Lemma 4.4.3.

Throughout the remainder of the proof, we will denote by
Pt1,...,tk : C[0, 1] 7! (R2)k the projection of a path onto previously chosen
coordinates 0  t1 < . . . < tk  1, i.e.

Pt1,...,tk(X) = (Xt1 , . . . , Xtk) 2 (R2)k.

Restricting the domain of F to the compact set K, we can approximate F uni-
formly by cylinder functions on C(K, R), i.e. functions that only depend on
finitely many coordinates of the path, using the Stone-Weierstrass theorem
[Lax02, Theorem 13.4]. More precisely, there exist 0  t1 < . . . < tk  1 and
a continuous f : Pt1,...,tk(K) 7! R such that k f � Pt1,...,tkkK,•  kFk• and

kF � f � Pt1,...,tkkK,• := sup
j2K

|F(j)� f (jt1 , . . . , jtk)| <
#

4
. (4.62)

Using the Tietze extension theorem [Rud86, Theorem 20.4], we can extend f
continuously from Pt1,...,tk(K) to (R2)k. At the same time, this yields a con-
tinuous extension of f � Pt1,...,tk on C[0, 1]. The extension can be chosen in
such a way that k f � Pt1,...,tkk•  k f � Pt1,...,tkkK,•  kFk•. Estimating now
(F � f �Pt1,...,tk) on K and Kc respectively, after applying the triangle inequal-
ity, yields

|p#Ew
bN ,N [(1K + 1Kc)(F � f � Pt1,...,tk)(X)]

� E[(1K + 1Kc)(F � f � Pt1,...,tk)(
1
p

2
W)]|

 2kF � f � Pt1,...,tkkK,• + 2kFk•
��p#Pw

bN ,N(K
c) + P( 1

p
2
W 2 Kc)

��.
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Thus, due to (4.62) and the choice of K in (4.60), the previous display implies

|p#Ew
bN ,N [(F � f � Pt1,...,tk)(X)]� E[(F � f � Pt1,...,tk)(

1
p

2
W)]|


3#

4
+ 2kFk•p#Pw

bN ,N(K
c). (4.63)

All together, we can upper bound the term of interest

|p#Ew
bN ,N [F(X)]� E[F( 1

p
2
W)]|

 |p#Ew
bN ,N [ f (Xt1 , . . . , Xtk)]� E[ f ( 1

p
2
Wt1 , . . . , 1

p
2
Wtk)]|

+ |p#Ew
bN ,N [(F � f � Pt1,...,tk)(X)]� E[(F � f � Pt1,...,tk)(

1
p

2
W)]|,

which implies that

P(|p#Ew
bN ,N [F(X)]� E[F( 1

p
2
W)]| > 2#)

 P(|p#Ew
bN ,N [ f (Xt1 , . . . , Xtk)]� E[ f ( 1

p
2
Wt1 , . . . , 1

p
2
Wtk)]| > #)

+ P(|p#Ew
bN ,N [(F � f � Pt1,...,tk)(X)]� E[(F � f � Pt1,...,tk)(

1
p

2
W)]| > #).

The first term on the right vanishes, as N ! •, due to Proposition 4.1.1. On
the other hand, the second term can be further upper bounded using (4.63),
such that

sup
N2N

P(|p#Ew
bN ,N [(F � f � Pt1,...,tk)(X)]� E[(F � f � Pt1,...,tk)(

1
p

2
W)]| > #)

 sup
N2N

P
�
p#Pw

bN ,N(K
c) > #

8kFk•

�


8kFk•

#
sup
N2N

E[p#Pw
bN ,N(K

c)]  d,

where we applied Markov’s inequality, before using again (4.61). Because
d > 0 can be chosen arbitrarily small after taking the large N limit, (4.59)
follows. This concludes the proof.

It is only left to lift the functional central limit theorem (in P-probability)
to an invariance principle as stated in Theorem 4.0.1. In fact, we can show
more generally the equivalence of functional central limit theorem and in-
variance principle for random probability measures:

Proposition 4.5.9. Let (S, d) be a separable, complete metric space and (W,G, P)

a probability space. Moreover, let (Pw
N)N2N be random probability measures and P

a deterministic probability measure on (S,F ), with F denoting the Borel-s-algebra.
Then the following two statements are equivalent
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(i) For every F 2 Cb(S), Ew
N [F] ! E[F] in P-probability,

(ii) Pw
N

d
! P in P-probability,

where Ew
N and E denote the expectations with respect to Pw

N and P, respectively. The
statement remains true, when replacing convergence in probability with almost sure
convergence.

First, we remind the reader that a set of functions A ⇢ Cb(S), where S
Polish, is called weak convergence determining, if for nn, n 2 M1(S)

lim
n!•

Z
F dnn =

Z
F dn 8F 2 A ,

implies nn
d
! n.

The following lemma, which is a Corollary of [BK10, Lemma 2], states
that we can always find such a family of functions which is countable.

Lemma 4.5.10. Let (S, d) be a separable and complete metric space, then there exists
a countable algebra A = {Fi}i2N ⇢ Cb(S) that is weak convergence determining.

Proof. First, note that the family A ⇢ Cb(S), of uniformly continuous
functions with bounded support, strongly separates points. Then [BK10,
Lemma 2] yields existence of a countable subfamily A := {Fi}i2N ⇢ A that
strongly separates points and remains closed under multiplication. Lastly,
applying [EK86, Theorem 3.4.5], which states that an algebra in Cb(S) that
strongly separates points is convergence determining, finishes the proof.

Proof of Proposition 4.5.9. We begin by proving the direction (i) to (ii). Let
{Fi}i2N ⇢ Cb(S) be a countable family of functions that is weak conver-
gence determining, whose existence is guaranteed by Lemma 4.5.10. For ev-
ery i 2 N, we have

lim
N!•

Ew
N [Fi] = E[Fi], in P-probability. (4.64)

Now a diagonal argument, as we performed it in the proof of Lemma 4.5.6,
yields that for every sequence (Nj)j ⇢ N there exists a further subsequence
(Njm)m and a set W ⇢ W, with P(W) = 1, such that

lim
m!•

p#Ew
Njm

[Fi] = E[Fi] 8i 2 N , w 2 W .
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Because {Fi}i2N is weak convergence determining, this implies Pw
Njm

d
! P,

as m ! •, for every w 2 W. This is equivalent to weak convergence in
P-probability as stated in (ii).

The reverse direction, from (ii) to (i), is immediate. Moreover, replacing
convergence in P-probability with P-almost-sure convergence, we can sim-
ply use that for every Fi there exists a set Wi ⇢ W with P(Wi) = 1 such that
(4.64) holds pointwise for every w 2 Wi. Taking now the countable intersec-
tion over all such Wi’s, we conclude Pw

N
d
! P P-almost surely.

Proof of Theorem 4.0.1. The invariance principle for the polymer measures fol-
lows now directly from the functional CLT in Proposition 4.5.7 and Proposi-
tion 4.5.9.

Instead of taking the detour via the functional central limit theorem
first, we could have also argued that {Law(p#Pw

bN ,N)}N ⇢ M1(M1(C[0, 1]))
is tight. Together with convergence of finite-dimensional distributions,
Corollary 4.5.5, this yields a direct argument for the invariance principle.
However, we want to put emphasis on the (non-trivial) equivalence of the
functional CLT and the invariance principle in the case of random path
measures whenever the limit is deterministic.

Lastly, we note that Proposition 4.5.9 also concludes the invariance princi-
ple from the functional CLT in higher dimensions [CY06, Theorem 1.2], which
was – to the author’s best knowledge – not yet mentioned in the literature.

Corollary 4.5.11 (Invariance principle for d � 3, weak disorder). Let bb � 0
such that weak disorder holds, i.e. limN!• Zbb,N(0, 0, N, ?) > 0, then

p#Pw
bb,N

d
! P

� 1
p

d
W 2 ·

�
, as N ! •, in P-probability ,

with P being the d-dimensional Wiener measure. The statement holds in particular
for all bb 2 [0, bc(d)), with bc(d) defined in (1.8).

4.5.3 Local limit theorem for the polymer marginals

We want to close this chapter by proving the local limit theorem for the
marginals of the polymer measure, Proposition 4.0.2. Recall from (4.9), that
finite-dimensional distributions of the discrete polymer measure can be writ-
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ten as

Pw
bN ,N(Sm1 = z1, . . . , Smk = zk) (4.65)

=
1

ZbN ,N(0, 0, N, ?)

k+1

’
j=1
ZbN ,N(mj�1, zj�1 | mj, zj) qmj�mj�1(zj � zj�1) ,

where m0 = z0 = 0, mk+1 = N and zk+1 = ?. Together with Proposition 4.2.1
and [CSZ17b, Theorem 2.12], this suffices to deduce Proposition 4.0.2.

Proof of Proposition 4.0.2. By the local limit theorem, we know that
N
2 qni�ni�1(zi � zi�1) converges to p(ti�ti�1)/2(xi � xi�1). It is only left to
show convergence in distribution of the partition functions in (4.65). We will
prove that, as N diverges,

����
1

ZbN ,N(0, 0, N, ?)

k+1

’
j=1
ZbN ,N(mj�1, zj�1 | mj, zj) (4.66)

�

k

’
j=1

ZbN ,N(m�

j , ?, mj, zj)ZbN ,N(mj, zj, m+
j , ?)

����
L1(P)

! 0,

where (m±

j )
k
j=1 are non-negative integers such that

0  m�

j < mj < m+
j < m�

j+1 < N and lim
N!•

|m±

j � mj|

N
> 0.

For example, we can choose m�

1 = 0 and m±

j = bmj ±
1
3 |mj±1 � mj|c for the

remaining variables.
We will justify the convergence in (4.66), using a chain of triangle inequal-

ities. First, we note that

����
1

ZbN ,N(0, 0, N, ?)

k+1

’
j=1
ZbN ,N(mj�1, zj�1 | mj, zj)

� ZbN ,N(0, ?, m1, z1)
k+1

’
j=2
ZbN ,N(mj�1, zj�1 | mj, zj)

����
L1(P)

vanishes, as N tends to infinity. The proof follows the same lines as the one
of (4.50), in Lemma 4.4.2. Next, we replace the remaining point-to-point par-
tition functions (ZbN ,N(mj�1, zj�1 | mj, zj))

k+1
j=2 with their point-to-plane coun-

terparts by Proposition 4.2.1. For the sake of brevity, we restrict ourselves
to k = 2 for the remainder of this proof, the general case follows using a
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telescopic sum argument in the subsequent step. We have

����ZbN ,N(0, ?, m1, z1)

✓ 3

’
j=2
ZbN ,N(mj�1, zj�1 | mj, zj)

�
�
ZbN ,N(m1, z1, m�

2 , ?)ZbN ,N(m+
1 , ?, m2, z2)

�
ZbN ,N(m2, z2, N, ?)

◆����
L1(P)

= kZbN ,N(0, ?, m1, z1)kL1(P)

⇥ kZbN ,N(m1, z1 | m2, z2)� ZbN ,N(m1, z1, m�

2 , ?)ZbN ,N(m+
1 , ?, m2, z2)kL1(P)

⇥ kZbN ,N(m2, z2, N, ?)kL1(P).

Here, we made use of the disorder’s independence on the disjoint
time intervals (0, m1], (m1, m2] and (m2, N], and applied the fact that
ZbN ,N(mk, zk | N, ?) = ZbN ,N(mk, zk, N, ?). The middle term on the right-
hand side vanishes due to Proposition 4.2.1, whereas the remaining terms
are all equal to one. This finally yields (4.66), by adding and subtracting the
above introduced intermediate terms and applying the triangle inequality.

The last step consists of determining the limiting distribution of the par-
tition functions in

k

’
j=1

ZbN ,N(m�

j , ?, mj, zj)ZbN ,N(mj, zj, m+
j , ?).

Using [CSZ17b, Theorem 2.12], see (4.14) and the discussion thereafter, we
know the (joint) limit of point-to-plane partition functions is given by inde-
pendent log-normal random variables:

(ZbN ,N(m�

j , ?, mj, zj), ZbN ,N(mj, zj, m+
j , ?))k

j=1
d
! (: eY�(tj,xj) :, : eY+(tj,xj) :)k

j=1,

where Y±(tj, xj) are independent centred Gaussian random variables with
variance log(1 � bb2)�1.
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Chapter 5

Size-biased diffusion limits and
the inclusion process

We consider the inclusion process (h(L,N)(t))t�0 on the complete graph
of size L with N particles. Let us recall from the introduction that the
inclusion process is characterised by the infinitesimal generator

LL,N f (h) :=
L

Â
x,y=1
x 6=y

hx(d+ hy)[ f (hx,y)� f (h)] , (5.1)

with h 2 WL,N := {h 2 NL
0 : ÂL

x=1 hx = N} and hx,y denoting the
configuration h where one particle moved from x to y, i.e. hx,y = h +

ey
� ex, with (ex)z := 1x=z, provided hx > 0.

The scope of this chapter, based on the paper [CGG23], is to determine
the dynamics of the condensate, cf. Definition 1.1.1, of the inclusion
process (5.1) in the thermodynamic limit N/L ! r, i.e. N, L ! • such
that N/L ! r. The presented approach covers all scaling regimes of the
system parameters and does not rely on previous results on condensa-
tion. In fact, the clustering of particles on diverging scales is an implicit
consequence of the derived scaling limits.
In the case where the diffusivity d vanishes like the inverse of the sys-
tem size, i.e. d(L)L = O(1), the derived scaling limit is equivalent to
the well known Poisson-Dirichlet diffusion [EK81], offering an alterna-
tive viewpoint on these well-established dynamics. In particular, the
presented approach yields a natural extension of the Poisson-Dirichlet
diffusion to infinite mutation rate.

181
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In the introduction, we saw that condensation is a macroscopic phenomenon
and difficult to describe in terms of the microscopic state space WL,N . Instead
a suitable macroscopic state space has to be considered. We begin the chapter
by introducing some notation.

Preliminaries on size-biased sampling

First, we will write ĥ 2 WL,N , when representing entries of h 2 WL,N in
decreasing order, i.e.

ĥ1 > ĥ2 > · · · > ĥL > 0 .

Then, by appropriate rescaling, 1
N ĥ lies in the so called Kingman simplex

r :=

(
p 2 [0, 1]N : p1 � p2 � . . . ,

•

Â
i=1

pi  1

)
, (5.2)

which is a compact space with respect to the product topology, and our first
candidate for a macroscopic state space. Due to its structure, the Kingman
simplex is a common state space in population genetics. In particular, it sup-
ports a one-parameter family of probability measures: the Poisson-Dirichlet
distributions.

The Poisson-Dirichlet distribution was first introduced by Kingman
[Kin75] as a natural limit of Dirichlet distributions. Another, more intuitive
construction, uses a stick-breaking procedure: Let U1, U2, . . . be independent
Beta(1, q)-distributed random variables (supported on [0, 1]) and define

V1 := U1 , V2 := (1 � U1)U2 , V3 := (1 � U1)(1 � U2)U3 , . . . ,

i.e. we start with a stick of unit length and continue by breaking a random
fraction of U1 apart. Then, we iteratively do the same with the remaining part
of the stick. The resulting random vector V = (Vi)i�1 is said to be GEM(q)-
distributed. Reordering the entries of V in decreasing order yields bV, which is
known to be Poisson-Dirichlet distributed with parameter q, see e.g. [Fen10].
We will write PD(q) for the Poisson-Dirichlet distribution with parameter q.
Note that PD(q) gives full mass to the set

r :=

(
p 2 r :

•

Â
i=1

pi = 1

)
⇢ r .

Later, the Poisson-Dirichlet was identified as the unique stationary measure
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of the split-merge dynamics [ZZMWD04, Sch05] and the Poisson-Dirichlet
diffusion [EK81]. Despite it being introduced in the field of population genet-
ics, the Poisson-Dirichlet distribution also appeared in statistical mechanics
[GUW11, BU11, IT20] and recently in the study of IPS [JCG19, CGG22].

A last, and very important, ingredient for this chapter is size-biased sam-
pling. Let us introduce the size-biased sampled configuration h̃ with respect to
h 2 WL,N . We start by constructing a random permutation s iteratively as
follows: First,

(i) s(1) = x with probability hx
N , x 2 {1, . . . , L} ,

and for any following index k = 1, . . . , L

(ii) s(k) = x with probability hx
N�Âk�1

j=1 hs(j)
,

for all x 2 {1, . . . , L} \ {s(1), . . . , s(k � 1)} .

The size-biased sampled distribution h̃ is then given by h̃k = hs(k). In other
words, in the kth iteration of the construction, we pick (uniformly at ran-
dom) one of the (remaining) particles and assign the total number of parti-
cles, found at the same location to h̃k. The procedure terminates, once no
more particles can be sampled. For convenience, we fill all remaining entries
of h̃ with zeros, to reach length L.

The reader may think of size-biased sampling in terms of labelling all par-
ticles, according to their location, and uniformly at random picking a particle.
Once a particle, thus a location, is picked, all particles having the same label
(location) are removed and the procedure repeats. We refer to [JCG19, Defi-
nition 2] and [CGG22, Section 2.2] for details.

yxz

y
y
y
y
yx

x
x
x
x
x
x
x

Figure 5.1: Size-biased sampling of a particle configuration (N = 30), where
location y was picked in the first iteraton. In the second iteration, x will be
sampled with probability hx

N�hy
= 8

25 . Note that empty sites, such as z, will
not be sampled.
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Condensation in the inclusion process

For the inclusion process, condensation was first studied in [GRV11], how-
ever for spatially inhomogeneous systems on a finite lattice. The finite lat-
tice case has been subject to further studies in [GRV13, BDG17, KS21]. The
present chapter concerns the study of the inclusion process in the thermody-
namic limit N/L ! r � 0. In this case, condensation was studied heuris-
tically in [CCG14]. They considered a one-dimensional periodic lattice with
totally asymmetric dynamics and strongly vanishing diffusion rate. A modi-
fied model with stronger particle interactions, leading to instantaneous con-
densation, has been considered in [WE12, CCG15]. On a rigorous level, the
thermodynamic limit of stationary distributions (pL,N)L,N (assosciated to the
generators (LL,N)L,N) was subject of [JCG19]. They observed that the conden-
sation regime d = d(L) ! 0, as L ! •, is subdivided into three parts:

• If dL ! 0, then the condensate is given by a single cluster, and if in addi-
tion dL log L ! 0, this cluster is holding all particles.

• If dL ! q 2 (0, •), then the condensate concentrates on macroscopic
scales and is distributed according to a Poisson-Dirichlet distribution
PD(q) in the sense

1
N

ĥ d
! PD(q) ,

where ĥ denotes the ordered configuration h ⇠ pL,N .

• On the other hand, if dL ! •, the condensate is located on mesoscopic
scales and the clusters are independent. More precisely,

d(h̃1, . . . , h̃n)
d
! Exp( 1

r )
⌦n , (5.3)

where h̃ denotes a size-biased sample of h ⇠ pL,N .

In fact, the above classification holds for any irreducible and spatially homo-
geneous dynamics on diverging finite graphs, where the inclusion process
has stationary product measures. [JCG19] entirely characterises the station-
ary condensates for the inclusion process, since condensation only occurs if
d ! 0. It was proven in [CGG22] that perturbations of the transition rates (in
the case q  1) still give rise to a Poisson-Dirichlet distributed condensate.

From the summary of condensation results for the inclusion process
above, we can see the importance of size-biased sampling: In the case d(L)L !

•, the “strong ordering” 1
N ĥ does not pick up information of the condensate
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on mesoscopic scales, while also disregarding the bulk phase of the system.
Instead, size-biased sampling allows for the analysis of both the bulk and
condensed phase, see also [CGG22].

5.1 Results and comparison to the literature

The chapter’s results are twofold. On the one hand, we describe conver-
gence of the inclusion process towards measure-valued diffusions, which are
parametrised by q := limN/L!r dL 2 [0, •]. In the case q < •, the deter-
mined scaling limit is equivalent to the well known infinitely-many-neutral-
alleles diffusion model [EK81], also known as Poisson-Dirichlet diffusion. On
the other hand, the new description of the infinitely-many-neutral-alleles dif-
fusion model, allows us to construct a natural extension of the process, when
q = •.

5.1.1 Scaling limits of the inclusion process

In the beginning of this chapter, we introduced the Kingman simplex as a
suitable macroscopic state space. However, the basis of this chapter is to
consider a different choice, allowing for a finer analysis of the underlying
dynamics. In the following, we distinguish between the cases q < • and
q = •.

When q < •, we embed particle configurations into M1([0, 1]), with the
topology induced by weak convergence of measures, using the maps

µ(·)
L,N : WL,N ! M1([0, 1]) of the form µ(h)

L,N :=
L

Â
x=1

hx

N
dhx

N
. (5.4)

Note that this corresponds to a size-biased empirical measure on the space of
mass fractions [0, 1]. Not every measure in M1([0, 1]) can be approximated
by particle configurations using µ(·)

L,N , e.g. every point mass adz in (5.4) satis-
fies a � z. Instead, we restrict ourselves to the closed subspace

E := µ(r)
⇢ M1([0, 1]) , (5.5)

defined as the range of the function

µ(·) : r ! M1([0, 1]) with µ(p) := (1 � kpk1)d0 +
•

Â
i=1

pidpi , (5.6)
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where kpk1 := Â•
i=1 pi and r denotes the Kingman simplex (5.2). We may

often drop the subscripts in (5.4) and simply write µ(·), but the meaning will
be clear from the context. Moreover, we will sometimes write µ#h instead
of µ(h) in order to avoid overloaded notation. The above mappings µ(·) and
µ(·)

L,N do not preserve spatial information of particle configurations, but this
also does not enter the dynamics on the complete graph. Note that the map
(5.6) was already mentioned in [EK81], however, only to prove denseness of
the domain of functions considered there.

In order to describe the limiting dynamics, we consider the domain of
functions

D(Lq) ={sub-algebra of C(E) generated (5.7)

by functions µ 7! µ(h) , h 2 C3([0, 1])} .

We associate a pre-generator of a superprocess, which acts on functions
H(µ) = µ(h1) · · · µ(hn) 2 D(Lq) via

Lq H(µ) := 2 Â
1k<ln

�
µ(BhkBhl)� µ(Bhk)µ(Bhl)

�
’
j 6=k,l

µ(hj) (5.8)

+ Â
1kn

µ(Aqhk)’
j 6=k

µ(hj) ,

with Bh(z) := h(z) + zh0(z) = (zh(z))0. Here, the first part is usually referred
to as interaction term and Aq denotes the single-particle operator of the form

Aqh(z) :=(1 � z)(Bh)0(z) + q(Bh(0)� Bh(z)) (5.9)

=z(1 � z)h00(z) + (2 � z(2 + q))h0(z) + q(h(0)� h(z)) .

The operator Bh(z) should be thought of as a “size-biased derivative”, which
appears due to our choice of embedding (5.4). For example, a single site
containing a mass fraction z 2 [0, 1] will be represented by a point-mass zdz.
Thus, changes in z will result both in a change of the amount of mass and its
position.

Our first result identifies the process described by Lq as the correct scaling
limit of the inclusion process.
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Theorem 5.1.1 ([CGG23]). Let r 2 (0, •) and d = d(L) such that dL ! q 2

[0, •). If h(L,N)(0) such that µ#h(L,N)(0) d
! µ0 2 E, then as N

L ! r

⇣
µ#h(L,N)(t)

⌘

t�0

d
! (µt)t�0 , in D([0, •), E) . (5.10)

Here (µt)t�0 denotes the measure-valued process on E (5.5) generated by Lq (5.8),
with initial value µ0.

In Proposition 5.2.6 we prove that the closure of (Lq ,D(Lq)) is indeed
the generator of a Feller process on the state space E. An immediate conse-
quence of Theorem 5.1.1 is that the inclusion process exhibits condensation
for arbitrary times t > 0, independent of the initial condition.

For the case q = •, i.e. dL diverging, we expect clusters on the scale 1/d,
cf. (5.3). In this case, we consider the embedding

µ̂(·) = µ̂(·)
L,N : WL,N ! M1(R+) with µ̂(h)

L,N :=
L

Â
x=1

hx

N
ddL hx

N
, (5.11)

mapping particle configurations into the space of probability measures
M1(R+), again with the topology induced by weak convergence of mea-
sures. In contrast to q < •, any measure in M1(R+) can be approximated
by particle configurations using (5.11), cf. Lemma 5.2.7 below, which is why
we do not have to restrict ourselves to a strict subset of probability measures
as above.

The lack of compactness of R+ allows for diverging rescaled masses of
particle configurations, thus when dL ! •, we expect the scaling limit to be
a measure-valued process on M1(R+), with R+ = [0, •]. We include • to
describe mass on larger scales than 1/d. Indeed the correct limit turns out to
be a process on M1(R+) without interaction and single-particle operator

Âh(z) :=(Bh)0(z) + (Bh(0)� Bh(z)) (5.12)

=zh00(z) + (2 � z)h0(z) + (h(0)� h(z)) ,

acting on h in the domain

D(Â) := {h : h(•) = 0 and h|R+ 2 C3
c (R+)} (5.13)

[ {constant functions} ⇢ C(R+) .



188 CHAPTER 5. SIZE-BIASED DIFFUSION LIMITS

Slowing down the evolution of the inclusion process appropriately, we have:

Theorem 5.1.2 ([CGG23]). Let r 2 (0, •) and d = d(L) ! 0 such that dL ! •.
If µ̂#h(L,N)(0) d

! µ̂0 2 M1(R+), then as N
L ! r

⇣
µ̂#h(L,N)� t

dL
�⌘

t�0

d
! (µ̂t)t�0 , in D([0, •),M1(R+)) . (5.14)

Here (µ̂t)t�0 denotes the measure-valued process on M(R+) with initial value µ̂0

generated by

L̂H(µ) = Â
1kn

µ(Âhk)
n

’
m=1
m 6=k

µ(hm) , (5.15)

with H(µ) = µ(h1) · · · µ(hn), hk 2 D(Â).

The operator L̂ may be interpreted as a Fleming-Viot process without
interaction. This is in contrast to the generator Lq , which does not have
Fleming-Viot interactions of the form

2 Â
1k<ln

�
µ(hkhl)� µ(hk)µ(hl)

�
’
j 6=k,l

µ(hj) .

We will see that the limiting dynamics L̂ are deterministic with absorbing
state µ̂ = Exp(1) 2 M1(R+). In fact, the statement of Theorem 5.1.2 can
be reformulated into a hydrodynamic limit (Proposition 5.3.6). Moreover, if
µ̂0(R+) = 1, then µ̂t(R+) = 1 for every t � 0, and mass does not escape to
larger scales (Corollary 5.3.8).

Again, an immediate consequence of the theorem above is condensation
of the inclusion process, in the regime dL ! •, for any positive time and
initial condition. The fact that the dynamics were slowed down appropri-
ately, implies rapid mixing in the inclusion process. Overall, Theorems 5.1.1
and 5.1.2 fully determine the dynamics of the inclusion process, with vanish-
ing diffusivity, on complete graphs in the thermodynamic limit with density
r 2 (0, •). For a discussion of the boundary cases r 2 {0, •}, we refer to
Section 5.4.
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5.1.2 A size-biased viewpoint on the PD-diffusion

In their seminal work [EK81] Ethier and Kurtz introduced the infinitely-
many-neutral-alleles diffusion model, as a natural scaling limit of finite-
dimensional Wrigh–Fisher diffusion models. This process is also commonly
referred to as Poisson-Dirichlet diffusion, which we will use throughout
the chapter. In this section, we will see that the measure-valued process de-
scribed in Theorem 5.1.1 provides an alternative description of the Poisson-
Dirichlet diffusion. The latter is an infinite-dimensional Feller process on
r (5.2) with pre-generator1

Gq f =
•

Â
i,j=1

pi(1i=j � pj)∂
2
pi pj

f � q
•

Â
i=1

pi∂pi f , (5.16)

acting on functions in the domain

Dmon(Gq) := {sub-algebra of C(r) generated by 1, j2, j3, . . .} , (5.17)

where jm(p) := Â•
i=1 pm

i for m � 2. Gq acts on such test functions with the
convention that occurring sums on the right-hand side of (5.16) are evaluated
on r, and extended to r by continuity. The name Poisson-Dirichlet diffusion
is adequate, since its unique invariant distribution is the Poisson-Dirichlet
distribution PD(q).

Naturally, one can consider the mapping of the Poisson-Dirichlet diffu-
sion under µ(·) (5.6), which yields a process in E ⇢ M1([0, 1]). As already
indicated above, this push-forward process indeed agrees with the process
derived in Theorem 5.1.1.

Proposition 5.1.3. Let (µt)t�0 be the measure-valued process generated by Lq (5.8)
with initial data µ0 2 E, then

(µt)t�0
d
=
⇣

µ(Xt)
⌘

t�0
, (5.18)

where (Xt)t�0 denotes the corresponding Poisson-Dirichlet diffusion generated by
Gq (5.16), with µ(X0) = µ0. The following properties translate immediately from
(Xt)t�0 to (µt)t�0:

(i) The process (µt)t�0 has a unique stationary distribution, which is reversible.

1The original formulation of the pre-generator in [EK81] includes a multiplicative factor of
1
2 which we omitted here.
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It is given by P = µ#PD(q), i.e. the the law of

µ(X) =
•

Â
i=1

XidXi , X ⇠ PD(q) . (5.19)

(ii) The process (µt)t�0 has continuous sample paths in E.

(iii) For any initial value µ0 2 E, we have

P(µt({0}) = 0 8t > 0) = 1 . (5.20)

Together with Theorem 5.1.1, this yields the following corollary.

Corollary 5.1.4. Let r 2 (0, •) and d = d(L) such that dL ! q 2 [0, •). If
h(L,N)(0) such that 1

N ĥ(L,N)(0) d
! X0 2 r, then

1
N

⇣
ĥ(L,N)(t)

⌘

t�0

d
! (Xt)t�0 , as

N
L

! r . (5.21)

Here (Xt)t�0 denotes the Poisson-Dirichlet diffusion on r with parameter q and
initial value X0, generated by Gq (5.16), and ĥ denotes the ordered particle configu-
ration.

The measure valued process generated by L̂ is the natural extension of
the process Lq (and thus to the Poisson-Dirichlet diffusion generated by Gq)
when q ! •. A first indication for this relationship can already be observed
on the level of stationary distributions. From Proposition 5.1.3(i), we recall
that the stationary distribution with respect to Lq is given by the size-biased
sample of PD(q). Consider X(q)

⇠ PD(q) and sample an index I 2 N such
that

I = i with probability X(q)
i , (5.22)

i.e. we pick the index I with size-bias. It is well known [Fen10, Theorem 2.7]
that X(q)

I ⇠ Beta(1, q). Now, the following connection between a Beta and an
Exponential distribution holds:

q Beta(1, q)
d
! Exp(1) , as q ! • . (5.23)

Hence, as q ! •, the rescaled size-biased sample q X(q)
I converges weakly to

an Exp(1) random variable, which is the absorbing state of the deterministic
dynamics induced by L̂ (Corollary 5.3.10).
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This relationship can also be made sense of on the level of processes, sum-
marised in the following diagram:

�
Lq , E

� �
Gq ,r

�
, if q < •

�
LL,N , WL,N

� n

�
L̂,M1(R+)

�
, if q = • .

q!• when

8
>><

>>:

z 7! qz ,

t 7! t/q .

N/L!r

d 1
N hx

d dL
N hx

We analyse the inclusion process
�
LL,N , WL,N

�
and consider the two cases

q < • (Theorem 5.1.1) and q = • (Theorem 5.1.2), with appropriate em-
beddings of configurations in the space of probability measures. In the case
q < • the limiting process is equivalent to the Poisson-Dirichlet diffusion
generated by Gq (Proposition 5.1.3). Furthermore, our size-biased approach
allows for a meaningful limit when q = •, identifying a natural extension for
models with Poisson-Dirichlet diffusion limit. For this matter, we introduce
the scaling operator Sq : E ! M1(R+), which linearly scales measures on
the unit interval to measures on the interval [0, q]:

Sq : µ(dz ) 7! µ(d z
q ) . (5.24)

Theorem 5.1.5 ([CGG23]). Let (µ(q)
t )t�0 be the process generated by Lq and

(µ̂t)t�0 be the process generated by L̂. If Sqµ(q)
0

d
! µ̂0 2 M1(R+), then

�
Sqµ(q)

t/q

�
t�0

d
! (µ̂t)t�0 , in C([0, •),M1(R+)) , as q ! • , (5.25)

where we consider the topology induced by weak convergence on M1(R+).

Remark 5.1.6. In the above theorem, we saw that scaling of space is necessary to
observe a meaningful limit as q ! •. Similarly, one could scale the Kingman
simplex to qr. However, in the limit we lack the property of distinguishing between
separate scales. Consider for example q = n2, n 2 N, and the sequence

p(q) = 1
2
� 1
p

q
, . . . , 1

p
q| {z }

p
q times

, 1
q , . . . , 1

q| {z }
q times

, 0, . . .
�
2 r . (5.26)
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Then q p(q)i ! •, for every i 2 N. On the other hand,

Sqµ(pq) = 1
2 d 1

2
+ 1

2 d 1
2

p
q

d
!

1
2 d 1

2
+ 1

2 d• 2 M1(R+) , (5.27)

which captures both the amount of diverging mass and information on scales 1
q . This

highlights the fact that considering the space E, instead of r, is essential for a detailed
analysis of the Poisson-Dirichlet diffusion, in the boundary case q ! •.

Our results link the inclusion process directly to the Poisson-Dirichlet dif-
fusion (5.16), which allows for an enhanced understanding of the latter. In
the literature, the precise dynamics within the Poisson-Dirichlet diffusion re-
main difficult to grasp, due to the restriction of test functions in Dmon(Gq)

(despite being a convenient choice). In [EK81], also an enlarged domain of
test-functions of the form

p 7!

•

Â
i=1

h(pi) , h 2 C2([0, 1]) with h(0) = h0(0) = 0 , (5.28)

was considered. However, this does not improve the understanding of the
dynamics on an intuitive level, which is particularly due to the fact that
“sums are evaluated on r and extended to r by continuity”. Therefore, leav-
ing for example the question open, if the immediate clustering in the Poisson-
Dirichlet diffusion (Proposition 5.1.3(iii)) is a consequence of this convention
or the dynamics. In the present work, we instead consider test functions of
the form

p 7! h(0) +
•

Â
i=1

pi(h(pi)� h(0)) , h 2 C2([0, 1]) . (5.29)

For a fixed p 2 r, the right-hand side is the expectation with respect to
the probability measure µ(p), recall (5.6). Thus, functions can be evaluated
directly on r (without continuous extension). Notably, the functions jm in
(5.17) are of the form (5.29) with h(p) = pm�1. This size-biased viewpoint
allows to represent observables in the Poisson-Dirichlet diffusion in terms of
one-dimensional diffusions, thanks to a duality result, see Section 5.2.3 below.

The Poisson-Dirichlet diffusion was treated previously as a measure-
valued process in M1([0, 1]) in [EG87, EK87]. There it was considered as
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a Fleming-Viot process, characterised by the generator

LFV H(n) = 2 Â
1k<ln

�
n(hkhl)� n(hk)n(hl)

�
’
j 6=k,l

n(hj) (5.30)

+ Â
1kn

n(AFVhk)’
j 6=k

n(hj) .

when applied to a cylindrical test function of the form H(n) = n(h1) · · · n(hn),
with mutation operator

AFVh(u) := q
Z 1

0
[h(w)� h(u)] dw . (5.31)

Here, elements in [0, 1] are interpreted as types, and uniform jumps at rate
q in the mutation operator correspond to mutation events. In the thermody-
namic limit, these dynamics can be derived directly from the inclusion pro-
cess on a complete graph with dL ! q 2 (0, •), using the embedding

h 2 WL,N 7!

L

Â
x=1

hx

N
d x

L
2 M([0, 1]) . (5.32)

This is presented briefly in Section 5.2.4. The corresponding process describes
the spatial distribution of mass on the rescaled lattice. This is different from
the approach in this chapter, where we ignore spatial information and only
keep track of the mass distribution, cf. (5.6). On the other hand, our approach
is more robust and allows for an extended analysis of the model when q = •.
The embedding (5.32) was also considered in [CT16] for the inclusion process
on a complete graph of fixed size. They study convergence to equilibrium in
the long-time limit, with diverging mass N ! •.

The usual approach in the literature to construct the Poisson-Dirichlet dif-
fusion, is to take the large L-limit of an L-dimensional diffusion model. Al-
ternatively, discrete models have been considered, then convergence to the L-
dimensional diffusion model, when N ! •, is proven first. See for example
[EK81, CBE+17, RW09]. To our best knowledge, the present work [CGG23]
is the first to consider a thermodynamic limit. This makes sense, both from a
physical and population genetics perspective.

Applying our approach to other geometries may be possible for dense
random graphs along the lines of [BHM+22], which have diverging degrees
leading to a self-averaging effect similar to the complete graph. In general,
spatial models are difficult to treat since the inclusion process, after the em-
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bedding (5.6), is not Markovian in general. Consider for example nearest-
neighbour dynamics on a regular lattice, then it is known that the random-
walk and the inclusion part of the dynamics have two different time scales
[ACR21], and more sophisticated methods are necessary to treat this case.

5.1.3 The Trotter–Kurtz approximation theorem

In this section, we present our main tool which we shall use throughout the
chapter, namely the Trotter–Kurtz approximation theorem. It states that con-
vergence of generators is equivalent to the convergence of semigroups. In
the special case of Markov generators, this suffices to conclude convergence
of the corresponding processes.

In the following, let (Ln)n2N, L be Banach spaces and p̂n : L ! Ln

bounded linear transformations.

Proposition 5.1.7 (Trotter–Kurtz). For n 2 N, let (T (n)
t )t>0 and (Tt)t>0 be

strongly continuous contraction semigroups on Ln and L, with generators An and
A. Furthermore, let D be a core for A. Then the following statements are equivalent:

(i) For every f 2 L and T > 0,

lim
n!•

sup
t2[0,T]

kT
(n)

t p̂n f � p̂nTt f k = 0 .

(ii) For every f 2 L and t > 0,

lim
n!•

kT
(n)

t p̂n f � p̂nTt f k = 0 .

(iii) For every f 2 D, there exist fn 2 D(An) such that

lim
n!•

k fn � p̂n f k = 0 and lim
n!•

kAn fn � p̂nA f k = 0 .

We refer the reader to the original works [Tro58, Kur69], for a reference
of the above proposition see [EK86, Theorem 1.6.1]. The result holds for a
wide class of semigroups, in particular, it can be applied to generators of
Feller processes which yields the following convergence result: For n 2 N, let
Sn and S be metric spaces, with S compact. Moreover, consider measurable
embeddings in : Sn ! S, for all n 2 N.
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Proposition 5.1.8. Let (Tt)t>0 be a Feller semigroup on C(S), and for n 2 N,
let (T (n)

t )t>0 be a semigroup on B(Sn) (bounded measurable functions) given by a
transition function. If

(i) X(n) := in � Y(n) has sample paths in D([0, •), S), where Y(n) = (Y(n)
t )t>0

is the Markov process corresponding to (T (n)
t )t>0,

(ii) for every f 2 C(S) and t > 0

lim
n!•

kT
(n)

t p̂n f � p̂nTt f k• = 0 ,

where p̂n f := f � in,

(iii) and X(n)
0

d
! n 2 M1(S).

Then, as n ! •,

(X(n)
t )t>0

d
! (Xt)t>0 , in D([0, •), S) ,

with (Xt)t>0 being the Feller process associated to (Tt)t>0, with initial law n.

The proposition holds in greater generality for locally compact, separa-
ble metric spaces S, see [EK86, Theorem 4.2.11]. We also refer the reader to
[Kal02, Theorem 19.25].

It is remarkable that convergence of the semigroups in Proposition 5.1.8
implies tightness of the corresponding processes, which is worth a brief
explanation. To conclude tightness of (X(n)

t )t>0, it suffices to show that
( f (X(n)

t ))t>0 is tight for all f 2 C(E) [EK86, Corollary 3.9.3]. To see this, first
note that convergence of the semigroups implies convergence of the gener-
ators in the sense of Proposition 5.1.7(iii) above. Thus, for every f 2 D(A)

there exists a sequence fn 2 D(An) such that

t 7! fn(X(n)
t )�

Z t

0
An fn(X(n)

s )ds

is a martingale, while k fn � p̂n f k•,Sn ! 0. Here An and A denote the gener-
ators of the semigroups in Proposition 5.1.8. The martingale structure allows
to uniformly control (in time and n) a modulus of continuity of ( f (X(n)

t ))t>0

on D([0, •), R), implying tightness. This can be extended to all f 2 C(S).
For details, we refer the reader to [EK86, Theorem 3.9.4]. On the other hand,
convergence of finite-dimensional distributions of (X(n)

t )t>0 is an immediate
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consequence of the convergence of semigroups, which concludes the desired
result.

Structure of the chapter

In Section 5.2 we show that Lq generates a Feller process and prove Theo-
rem 5.1.1. We make use of explicit approximations of the inclusion process
generator and the Trotter-Kurtz approximation theorem. Moreover, we prove
the equivalence of the Poisson-Dirichlet diffusion and our scaling limit in
Section 5.2.2. Lastly, we discuss the advantages of considering size-biased
dynamics in Section 5.2.3 and prove convergence of the inclusion process to
a Fleming-Viot process in Section 5.2.4. In Section 5.3 we determine the scal-
ing limit when q = •, following a similar approach as in the case q < •.
We finish the section by proving the convergence 1

qLq ! L̂ stated in The-
orem 5.1.5. Lastly, we discuss boundary cases r 2 {0, •}, fluctuations and
open problems in Section 5.4.

5.2 Scaling limits in the case dL ! q < •

5.2.1 The measure-valued process

In this section, we will prove that the measure-valued process generated by
Lq (5.8) is a Feller process on the state space E (5.5). Furthermore, we deduce
weak convergence for the inclusion process (on the path space) embedded in
the space of probability measures on the unit interval.

At this point, the space of size-biased probability measures E might still
seem abstract. However, as we see in the following lemma, it is in fact iso-
morphic to the Kingman simplex.

Lemma 5.2.1. The map µ(·) : r ! E, cf. (5.6), is an isomorphism.

Proof. First note that surjectivity is trivial due to the definition of E. Now,
consider p, q 2 r such that p 6= q. Then there exists an index i 2 N such that
pi 6= qi and pj = qj for all j < i, without loss of generality assume pi > qi.
Then

µ(p)([pi, 1]) �
i

Â
j=1

pj >
i�1

Â
j=1

qj = µ(q)([pi, 1]) . (5.33)
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thus, µ(p)
6= µ(q).

In order to show that the map µ(·) is continuous, consider a sequence
of partitions (p(n))n2N converging to p in r. Then for every h 2 C([0, 1])
(uniformly in n)

���
•

Â
i=M

p(n)i (h(p(n)i )� h(0))
���  sup

0z 1
M

|h(z)� h(0)| ! 0 , as M ! • , (5.34)

where we used the fact that pi 
1
i for any i 2 N. This implies in particular

µ(p(n)) d
! µ(p), recalling that µ(p)(h) = h(0) + Â•

i=1 pi(h(pi)� h(0)).

Continuity of the inverse is now immediate: Let (µn)n2N be a sequence in
E, weakly converging to µ 2 M1([0, 1]), then we can identify each µn with
a unique p(n) satisfying µ(p(n)) = µn. Due to compactness of r, it suffices to
consider convergent subsequences, say (p(nj))j2N with limit p. By assump-
tion and continuity of µ(·)

µ# p(nj) d
! µ(p) = µ , (5.35)

which particularly implies that µ 2 E. This concludes that each accumulation
point must agree with (µ(·))�1(µ) = p.

Approximation of infinitesimal dynamics

The key result of this section is the following convergence result on the level
of pre-generators.

Proposition 5.2.2. Let r 2 (0, •) and d = d(L) such that dL ! q 2 [0, •). For
every H 2 D(Lq), cf. (5.7), we have with LL,N defined in (5.1)

lim
N/L!r

sup
h2WL,N

��LL,N H(µ(·))(h)� (Lq H)(µ(h))
�� = 0 . (5.36)

We split the proof of Proposition 5.2.2 into two parts. First, we only con-
sider test functions of elementary form H(µ) = µ(h), which corresponds to
measuring a single observable h 2 C3([0, 1]). We then extend the convergence
result to arbitrary test functions in the domain, which requires to understand
correlations between several observables. As usual, it turns out that only
pairwise correlations contribute to leading order.
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Lemma 5.2.3. Let r 2 (0, •) and d = d(L) such that dL ! q 2 [0, •). Consider
H 2 D(Lq) of the elementary form H(µ) = µ(h), for some h 2 C3([0, 1]). Then

lim
N/L!r

sup
h2WL,N

��LL,N H(µ(·))(h)� µ(h)(Aqh)
�� = 0 , (5.37)

where Aq is the single-particle generator (5.9).

Proof. Let h 2 C3([0, 1]) and define H(µ) := µ(h). For the sake of conve-
nience we introduce the notation h̃(z) := z h(z). Thus,

H(µ(h)) = H(µ#h) = µ(h)(h) =
L

Â
x=1

hx

N
h
�hx

N
�
=

L

Â
x=1

h̃
�hx

N
�

, (5.38)

which allows us to write

H(µ#hx,y)� H(µ#h) = h̃
�hy+1

N
�
� h̃

�hy
N
�
+ h̃

�hx�1
N

�
� h̃

�hx
N
�

=
1
N

h̃0
�hy

N
�
+

1
2

1
N2 h̃00

�hy
N
�
�

1
N

h̃0
�hx

N
�

(5.39)

+
1
2

1
N2 h̃00

�hx
N
�
+

1
6

1
N3 h̃000(x) ,

using a second-order Taylor approximation of h̃, with x 2 [0, 1]. Therefore,
we have uniformly over configurations h 2 WL,N

LL,N H(µ(·))(h) = Â
x,y2L
x 6=y

hx(d+ hy)
h 1

N
h̃0
�hy

N
�
+

1
2

1
N2 h̃00

�hy
N
�

�
1
N

h̃0
�hx

N
�
+

1
2

1
N2 h̃00

�hx
N
�i

+ o(1) ,

where we used that h̃000 2 C([0, 1]). We split the sum into two parts, analysing
terms with coefficients dhx and hxhy separately. We begin with the latter:

• The contribution of inclusion rates hxhy is limited to

Â
x,y2L
x 6=y

hx

N
hy

N
h̃00
�hx

N
�
= Â

x2L

hx

N

⇣
1 �

hx

N

⌘
h̃00
�hx

N
�

, (5.40)

due to exact cancellation of the first-order terms h̃0.

• On the other hand, contributions of the random-walk dynamics, induced
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by rates dhx, are given by

d Â
x,y2L
x 6=y

hx

N


eh0
�hy

N
�
+

1
2

1
N
eh00
�hy

N
�
� eh0(hx

N ) +
1
2

1
N
eh00
�hx

N
��

= dL Â
x2L

hx

N

"
1
L Â

y 6=x

eh0
�hy

N
�
�

L � 1
L

eh0
�hx

N
�
#
+ o(1) , (5.41)

because second-order terms h̃00 vanish in the thermodynamic limit due to
��������
d Â

x,y2L
x 6=y

hx

2N2

⇣
h̃00
�hx

N
�
+ h̃00

�hy
N
�⌘
��������
 dL Â

x2L

hx

N2 kh̃00k• 
dL
N

kh̃00k• ! 0 .

Furthermore, we can absorb errors arising from replacing L�1
L h̃0 with h̃0,

into o(1).

Now, combining (5.40) and (5.41) yields

LL,N H(µ(·))(h) (5.42)

= Â
x2L

hx

N

⇣
1 �

hx

N

⌘
h̃00
�hx

N
�
+ dL

h
h̃0(0)� Â

x2L

hx

N
h̃0
�hx

N
�i

+ o(1) ,

where we additionally used Lemma 5.2.5 below to conclude the uniform ap-
proximation 1

L Ây2L ,y 6=x h̃0
�hy

N
�
= h̃0(0) + o(1). Rewriting (5.42) in terms of

µ(h), we have

LL,N H(µ(·))(h) (5.43)

= µ(h)�Z(1 � Z)h00(Z) + 2(1 � Z)h0(Z) + dL(h(0)� h(Z)� Zh0(Z))
�
+ o(1)

where Z ⇠ µ(h) and we used that h̃0(z) = h(z) + zh0(z) = Bh(z) and h̃00(z) =
2h0(z) + zh00(z) = (Bh)0(z). Lastly, since kBhk• < • and dL ! q, we indeed
have

LL,N H(µ(·))(h) = µ(h)(Aqh) + o(1) , (5.44)

uniformly over all h 2 WL,N . This concludes the proof.

Remark 5.2.4. The equivalence to the Poisson-Dirichlet diffusion can already be
observed in (5.42) when considering h to be of the form h(z) = zm�1, m � 2. In this
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case H(µ(h)) = µ(h)(h) = ÂL
x=1 h̃

�hx
N
�
= jm

� h
N
�
, cf. (5.17), and

LL,N H(µ(·))(h) = Gq jm
� ĥ

N
�
+ o(1) . (5.45)

In the previous proof, we made use of the fact that a Riemann approxima-
tion over rescaled particle configurations is approximately given by evalua-
tion against a point-mass at zero. The following lemma provides a rigorous
proof of this fact.

Lemma 5.2.5. Let h 2 C(R+) and r 2 [0, •). Then for any zL ! 0

lim
N/L!r

sup
h2WL,N

����
1
L

L

Â
x=1

h(zLhx)� h(0)
���� = 0 . (5.46)

Proof. Let # > 0 and h 2 WL,N , then

����
1
L

L

Â
x=1

h(zLhx)� h(0)
����



����
1
L

L

Â
x=1

1zLhx>#

�
h(zLhx)� h(0)

�����+
����

1
L

L

Â
x=1

1zLhx#

�
h(zLhx)� h(0)

�����

 2khk•
1
L

L

Â
x=1

1zLhx># +
1
L

L

Â
x=1

1zLhx#

��h(zLhx)� h(0)
��

 2khk•
1
L

L

Â
x=1

1zLhx># + sup
0v#

��h(v)� h(0)
�� 1
L

L

Â
x=1

1zLhx# .

The first term on the right-hand side vanishes, because the number of sites
satisfying zLhx > # is upper bounded by zL N #�1 (otherwise the total mass
exceeds N). Thus,

1
L

L

Â
x=1

1hx>#z�1
L


zL N

#L
. (5.47)

The second term, on the other hand, is upper bounded by sup0v#

��h(v)�
h(0)

��, which vanishes in the small #-limit. Note that both upper bounds are
uniform in WL,N . Now, taking first the thermodynamic limit N/L ! r before
taking # ! 0, finishes the proof.

After having proved the statement of Proposition 5.2.2 for specific func-
tions, we can proceed with the proof of the full statement.
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Proof of Proposition 5.2.2. Let H 2 D(Lq). We assume H has the form

H(µ) = µ(h1) · · · µ(hn) , hk 2 C3([0, 1]) , 1  k  n , (5.48)

since linear combinations of such functions can be treated by linearity of the
operators and the triangle inequality. Thus, considering h 2 WL,N and the
configuration after one particle jumped from x to y, we have

H (µ#hx,y) =
n

’
k=1

(µ#hx,y) (hk)

=
n

’
k=1

h
ehk
�hy+1

N
�
� ehk

�hy
N
�
+ ehk

�hx�1
N

�
� ehk

�hx
N
�
+ µ(h)(hk)

i
.

Now, expanding the product yields

H (µ#hx,y)

= H (µ#h) +
n

Â
k=1

h
ehk
�hy+1

N
�
� ehk

�hy
N
�
+ ehk

�hx�1
N

�
� ehk

�hx
N
�i n

’
l=1
l 6=k

µ(h)(hl)

+ Â
1k<ln

h
ehk
�hy+1

N
�
� ehk

�hy
N
�
+ ehk

�hx�1
N

�
� ehk

�hx
N
�i

(5.49)

⇥

h
ehl
�hy+1

N
�
� ehl

�hy
N
�
+ ehl

�hx�1
N

�
� ehl

�hx
N
�i n

’
j=1

j 6=k,l

µ(h)(hj) + r(h) ,

with r denoting the remainder. This expansion allows to split

LL,N H(µ(·))(h) =
L

Â
x,y=1
x 6=y

hx(d+ hy) [H(µ#hx,y)� H(µ#h)] (5.50)

into three parts:

• First, we make use of Lemma 5.2.3 which yields

L

Â
x,y=1
x 6=y

hx(d+ hy)
n

Â
k=1

[ehk(
hy+1

N )� ehk(
hy
N ) + ehk(

hx�1
N )� ehk(

hx
N )]

n

’
l=1
l 6=k

µ(h)(hl)

=
n

Â
k=1

LL,N
�
µ(·)(hk)

�
(h)

n

’
l=1
l 6=k

µ(h)(hl)
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=
n

Â
k=1

µ(h)(Aqhk)
n

’
l=1
l 6=k

µ(h)(hl) + o(1) .

• Next, we prove that the remainder r has no contribution. More precisely,
for any non-negative sequence aN satisfying N2 aN ! 0, i.e. aN lies in
o( 1

N2 ), we have

aN

L

Â
x,y=1
x 6=y

hx(d+ hy)  aN (dL + N)N ! 0 . (5.51)

This includes, in particular, the remainder r(h) because each summand lies
in O( 1

N3 ), recall that each square bracket in (5.49) vanishes uniformly like
N�1, cf. (5.39).

• Lastly, we derive the interaction part where two observables are affected
by the transition of a particle. Again, we perform a Taylor approximation
for each of the two square brackets appearing in (5.49). Due to (5.51), to-
gether with (5.39), it suffices to consider only products of first-order terms
h̃0. Therefore, we are left with

1
N2 Â

1k<ln

L

Â
x,y=1
x 6=y

hx(d+ hy)
⇥
h̃0k(

hy
N )� h̃0k(

hx
N )

⇤⇥
h̃0l(

hy
N )� h̃0l(

hx
N )

⇤ n

’
j=1

j 6=k,l

µ(h)(hj)

plus some vanishing term, which we will denote by o(1). For the same
reason, we include the random-walk interactions coming from dhx in o(1),
and finally arrive at

Â
1k<ln

L

Â
x,y=1
x 6=y

hx

N
hy

N
⇥
h̃0k(

hy
N )� h̃0k(

hx
N )

⇤⇥
h̃0l(

hy
N )� h̃0l(

hx
N )

⇤ n

’
j=1

j 6=k,l

µ(h)(hj) + o(1)

= 2 Â
1k<ln

�
µ(h)(h̃0kh̃0l)� µ(h)(h̃0k)µ

(h)(h̃0l)
� n

’
j=1

j 6=k,l

µ(h)(hj) + o(1) ,

where we expanded the product of square brackets and added the (non-
contributing) diagonal x = y, before writing the expression in terms of
µ(h). Also, recall that h̃0 = Bh.
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Overall, combining the three bullets above, we conclude

LL,N H(µ(·))(h) = Lq H(µ(h)) + o(1) , (5.52)

uniformly in h 2 WL,N . This finishes the proof.

Convergence to the measure-valued process

The measure-valued process takes values in the space E = µ(r)
⇢ M1([0, 1]),

cf. (5.5). Due to Lemma 5.2.1, E itself is closed, thus, compact, when consid-
ering the topology induced by weak convergence. Because this topology co-
incides with the subspace topology, the Hausdorff property of E is inherited
from M1([0, 1]).

In this section, we show that the dynamics described by Lq give rise to a
Feller process and prove Theorem 5.1.1, which states that the process arises
naturally as the scaling limit of the inclusion process.

Proposition 5.2.6. For q 2 [0, •) the linear operator (Lq ,D(Lq)) is closable and
its closure generates a Feller process on the state space E ⇢ M1([0, 1]).

The proof follows along the lines of [EK81, Theorem 2.5], where existence
of the Poisson-Dirichlet diffusion is proven.

Proof. Throughout the proof, we will make use of the sub-domain

Dmon(Lq) :=
n

sub-algebra of C(E) generated by functions

µ 7! µ(h) with h(z) = zm , m 2 N0

o
⇢ D(Lq) . (5.53)

First note that, due to the Stone-Weierstrass theorem, Dmon(Lq) (and there-
fore D(Lq)) is dense in C(E), since it separates points: Consider µ, s 2 E
such that µ 6= s, then µ(zm) 6= s(zm) for some m 2 N since otherwise all
moments, and hence µ and s, agree.

Next, dissipativity of (Lq ,D(Lq)) follows from (LL,N)L,N , since for any
H 2 D(Lq) we have

k(l � LL,N)H(µ(·))kWL,N ,• � lkH(µ(·))kWL,N ,• 8l > 0 , (5.54)

with k · kWL,N ,• denoting the supremum norm on C(WL,N). The left-hand side
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is upper bounded by

k(l � Lq)HkE,• + kLq H(µ(·))� LL,N H(µ(·))kWL,N ,• , (5.55)

since {µ(h) : h 2 WL,N} ⇢ E, with k · kE,• denoting the supremum norm on
C(E). The second term vanishes due to Proposition 5.2.2. On the other hand,
using Lemma 5.2.7 below, we have

kHkWL,N ,• = sup
h2WL,N

|H(µ(h))| ! sup
p2r

|H(µ(p))| = kHkE,• . (5.56)

In the remainder of the proof, we first conclude that Dmon(Lq) is a core
for Lq , using the fact that Lq is triangulisable. Then, the full statement fol-
lows immediately by an extension argument. For that purpose, we define
subspaces

Dn(Lq) := {H 2 Dmon(Lq) : deg(H)  n}, (5.57)

where deg(H) = m1 + · · ·+ mk if H is of the form µ(zm1) · · · µ(zmk), mj 2 N
for 1  j  k. When H is given by linear combinations of such products, the
degree denotes the maximum degree of the products. Note that

�
Dn(Lq)

�
n�1

defines an increasing sequence with limit Dmon(Lq). It is only left to show
that Lq maps elements of Dn(Lq) back into itself. This is, however, imme-
diate since both parts of the generator Lq (5.8) map polynomials of a certain
degree back into polynomials of the same degree, i.e. Lq is triangulisable. By
[EK86, Proposition 1.3.5] this is enough to conclude that (Lq ,Dmon(Lq)) is in-
deed closable, and gives rise to a strongly continuous contraction semigroup
(Tt)t�0 on C(E).

We can verify that D(Lq) is a core, by noting that

Range
�
l � Lq |D(Lq)

�
� Range

�
l � Lq |Dmon(Lq)

�
(5.58)

is dense in C(E) for some l > 0, [EK86, Proposition 1.3.1]. Moreover, gener-
ators are maximal dissipative, hence, we know that the closures of both cores
D(Lq) and Dmon(Lq) must agree, see e.g. [EK86, Proposition 1.4.1], and gives
rise to the same semigroup (Tt)t�0. It is only left to show that the semigroup
is positive and conservative, in particular E is invariant under the dynamics
Lq . In order to see this, we apply Proposition 5.1.7, which concludes that
convergence of generators in Proposition 5.2.2 implies for all H 2 C(E) and
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t � 0

lim
N/L!r

sup
h2WL,N

��T(L,N)
t H(µ(·))(h)� (TtH)(µ(h))

�� = 0 , (5.59)

where T(L,N) denotes the semigroup generated by LL,N . Now, both positivity
and conservation follow from (T(L,N))L,N . This concludes the proof.

It is natural to ask why going through the inconveniences of extending
the core from Dmon(Lq) to D(Lq) is necessary. We will see in the next section,
that the extended core allows for a better interpretation of the underlying
dynamics in the Poisson-Dirichlet diffusion.

The missing component in the proof above is that any element in r can
be approximated by particle configurations, independently of the thermody-
namic limit considered.

Lemma 5.2.7. Let N
L ! r 2 [0, •], then for any p 2 r there exist h(L,N)

2 WL,N

such that

1
N

ĥ(L,N) =
1
N

h(L,N)
! p , in r .

Proof. Consider p 2 r with kpk1 = Â•
i=1 pi = 1� g, we then define h̄(L,N)

i :=
bpi Nc, for i 2 {1, . . . , L}. Hence, there are

ML,N(p) := N �

L

Â
x=1

h̄(L,N)
x = g N +

L

Â
i=1

(piN � bpi Nc)  g N + L

particles to spare. Thus, defining h(L,N)
2 WL,N via

h(L,N)
x := h̄(L,N)

x +
jML,N(p)

L

k
+ 1x(ML,N(p) mod L) , x 2 {1, . . . , L} ,

yields the desired approximation, since ML,N(p)
N L ! 0, as N, L ! •.

The proof of convergence of the inclusion process (when embedded in the
space of probability measures) to the measure-valued process characterised
by Lq , is now an immediate consequence of a classical convergence theorem.

Proof of Theorem 5.1.1. We apply Proposition 5.1.8, which states that conver-
gence of the semigroups in (5.59) implies convergence of the corresponding
processes. This immediately concludes the desired convergence result.
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We can now use Theorem 5.1.1, to prove convergence of the inclusion
process to the Poisson-Dirichlet diffusion.

Proof of Corollary 5.1.4. Every function jm can be written in terms of an ex-
pectation

p 7! µ(p)(hm) = jm(p) ,

with hm(z) := zm�1. Thus, we have

⇣
jm

� 1
N ĥ(L,N)(t)

�⌘

t�0
=
⇣
(µ#h(L,N)(t))(hm)

⌘

t�0

d
!

�
µt(hm)

�
t�0 , (5.60)

using Theorem 5.1.1. This convergence can be extended to arbitrary ele-
ments in Dmon(Gq), in particular such sequences are tight. Thus, the sequence
�� 1

N ĥ(L,N)(t)
�

t�0

�
L,N is tight and has subsequential limits, see e.g. [EK86,

Theorem 3.9.1]. As convergence of finite dimensional marginals follows from
(5.60), we conclude the statement together with Proposition 5.1.3, which is
proved in the next subsection.

5.2.2 Equivalence of the superprocess with PD-diffusion

In this section, we prove Proposition 5.1.3 and investigate the equivalence of
the measure-valued process generated by Lq (5.8) and the Poisson-Dirichlet
diffusion on the simplex r, generated by Gq (5.16). We already saw in the
proof of Lemma 5.2.3, cf. (5.42), the similarity of dynamics Lq and Gq . Indeed,
a simple calculation shows that the two can be linked: Using the embedding
(5.6), we get for all p 2 r and H(µ) = µ(h), with h 2 D(A),

Lq H(µ(p)) = µ(p)(Aqh)

=
�
1 � kpk1

�
Aqh(0)

+
•

Â
i=1

pi

⇣
pi(1 � pi)h00(pi) +

�
2(1 � pi)� qpi

�
h0(pi) + q(h(0)� h(pi))

⌘
.

Defining now f (p) := µ(p)(h), we have

Lq H(µ(p)) = Gq f (p) + 2h0(0)(1 � kpk1) , (5.61)

where we used that ∂pi f (p) = �h(0) + pih0(pi) + h(pi) and ∂pi pj f (p) =

1i=j
�
2h0(pi) + pih00(pi)

�
.
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Remark 5.2.8. In [EK81], the domain of Gq was extended from D(Gq) to the sub-
algebra of C(r) generated by functions of the form p 7! Â•

i=1 g(pi), with g 2

C2([0, 1]) such that g(0) = g0(0) = 0. This yields a similar expression as (5.61),
cf. [EK81, Display (2.17)]. However, the expression again only made sense with the
convention that sums are evaluated on r and extended by continuity, in which case
the second summand in (5.61) disappears.

Proof of Proposition 5.1.3. In order to show the equivalence of the two pro-
cesses, it suffices to restrict ourselves to the domains generated by mono-
mials, as defined in (5.17) and (5.53).

First note that every function H 2 Dmon(Lq) can be mapped naturally to
a fH 2 Dmon(Gq) (and vise versa): Let H 2 Dmon(Lq) be of the form H(µ) =

µ(h1) · · · µ(hn), with hk(z) := zmk�1, then fH = jm1 · · · jmn where we recall
jm(p) = Â•

i=1 pm
i . Then

(Lq H)(µ(p)) = 2 Â
1k<ln

mkml
�
µ(p)(hkhl)� µ(p)(hk)µ

(p)(hl)
�

’
j 6=k,l

µ(p)(hj)

+ Â
1kn

µ(p)(Aqhk)’
j 6=k

µ(p)(hj) , (5.62)

where we used that Bhk = mk hk. Rewriting the right-hand side in terms of
j’s, we have

(Lq H)(µ(·)) = 2 Â
1k<ln

mkml
�

jmk+ml�1 � jmk jml

�
’
j 6=k,l

jmj

+ Â
1kn

Gq jmk ’
j 6=k

jmj ,

where we used µ(p)(Aqhk) = Gq jmk from (5.61). Thus, (Lq H)(µ(·)) agrees
with Gq fH on Dmon(Gq), cf. [EK81, Display (2.13)]. Let (Xt)t�0 be the Poisson-
Dirichlet diffusion, then for every H 2 Dmon(Lq)

H(µ(Xt))�
Z t

0
Lq H(µ(Xs)) ds = fH(Xt)�

Z t

0
Gq fH(Xs) ds (5.63)

defines a martingale in t. Thus, (µ(Xt))t�0 solves the martingale problem for
(Lq ,Dmon(Lq)).

Now, it is almost immediate that properties (i) – (iii) in Proposition 5.1.3
hold for the measure valued process (µt)t�0. First, let G, H 2 Dmon(Lq)

and choose corresponding fG, fH 2 Dmon(Gq) as above. We know that
(LqG)(µ(p)) = Gq fG(p). Writing n = PD(q) for simplicity, we have for
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P := µ#n

P(HLqG) = n
�

H(µ(p))(LqG)(µ(p))
�
= n( fHGq fG) . (5.64)

It is known that n = PD(q) is the unique invariant distribution with respect
to Gq [EK81, Theorem 4.3]; which is also reversible. Together with the above
display, this yields P(HLqG) = P(GLq H).

Continuity of the trajectories in (ii) follows from the diffusion property of
(Xt(w))t�0 and continuity of the map µ(·).

Lastly, (iii) follows because

P (µt({0}) = 0 8t > 0) = P
⇣

µ(Xt)({0}) = 0 8t > 0
⌘

= P (Xt 2 r 8t > 0) = 1 ,

where the last equality is a consequence of [EK81, Theorem 2.6].

Remark 5.2.9. Naturally, we could have proven convergence of the inclusion pro-
cess to the Poisson-Dirichlet diffusion directly and then defined the measure-valued
dynamics using the embedding via µ(·). This would have slightly shortened the expo-
sition in the present section, since it would not have been necessary to verify existence
of the limiting dynamics. We refrained from doing so, for a better understanding of
the underlying dynamics of the measure-valued process, in particular on the extended
domain D(Lq).

We conclude this section with a brief study of the single-particle dynamics
(5.9):

Aqh(z) := z(1 � z)h00(z) + (2(1 � z)� qz)h0(z) + q(h(0)� h(z)) ,

which characterises a Feller process on the unit interval. The process evolves
according to a diffusion with an additional renewal mechanism, due to jumps
to zero.

Lemma 5.2.10. The Beta distribution Beta(1, q) is the unique invariant distribution
with respect to Aq .

Proof. For q = 0, we interpret the degenerate distribution Beta(1, 0) as the
Dirac point mass d1. The statement is then clear since Aqh(1) = 0, in this case
the point mass is even reversible.
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Now, let q > 0 and consider H(µ) := µ(h), then by Proposition 5.1.3(i)

0 = P(Lq H) =
Z

µ(Aqh) P(dµ) = E
h •

Â
i=1

Xi Aqh(Xi)
i
= E[Aqh(X̃1)] ,

where X ⇠ PD(q). It is well known that the first size-biased marginal X̃1 is
Beta(1, q)-distributed [Fen10, Theorem 2.7].

Uniqueness of the invariant distribution is due to Harris recurrence of
the process, see e.g. [MT93]. For the case q > 0, the resetting mechanism
guarantees that the process returns to zero infinitely often almost surely. On
the other hand for q = 0, Aq agrees with a Jacobi diffusion, see (5.66) below,
and the corresponding process runs into the absorbing state z = 1 in finite
time, independent of the initial condition.

Due to the jumps to zero, one does not expect that Beta(1, q), q > 0, is re-
versible with respect to Aq . Indeed, this can be verified easily by considering
the example h(x) = x and g(x) = x2, in which case for every q > 0

Beta(1, q)(gAqh) =
8qG(q + 1)

G(q + 4)
6=

6qG(q + 1)
G(q + 4)

= Beta(1, q)(hAq g) .

5.2.3 The advantage of a size-biased evolution

Throughout the previous sections, we have seen two viewpoints of the same
dynamics. The classical Poisson-Dirichlet diffusion considers a ranked con-
figuration space. However, this obscures the dynamics on microscopic scales,
which results in defining the right-hand side of the generator Gq (5.16) to be
“evaluated on r and extended to r by continuity”. Alternatively, one can
consider unordered dynamics, i.e. observing the evolution from a fixed posi-
tion, or a size-biased viewpoint.

The Poisson-Dirichlet diffusion concentrates immediately on configura-
tions with macroscopic-sized fragments (condensation occurs), which can
only be supported on a vanishing fraction of the volume. Hence, an un-
ordered state space can only describe dynamics up to a certain point, at which
the mass at the observed positions disappears. The goal of this section is to
emphasise that a size-biased viewpoint allows for both, a complete descrip-
tion of the macroscopic dynamics, while observing interaction with the mi-
croscopic scale.
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Time evolution on fixed sites

First, we look at arbitrary finite positions and observe the evolution of mass
on them. As the inclusion process is spatially homogeneous, we may choose
for simplicity h 7! (h1, . . . , hn).

We start by only considering the evolution on the first site. Performing
similar approximations as in Section 5.2, we can see for an arbitrary function
h 2 C3([0, 1]) that

LL,Nh( (·)1
N )(h) = AJac(q)h(

h1
N ) + o(1) , (5.65)

where

AJac(q)h(z) := z(1 � z)h00(z)� qz h0(z) . (5.66)

In fact, AJac(q) emerges from (5.42) when fixing a position x. The operator
AJac(q) is the generator of a Jacobi-diffusion, cf. [FPRW23], and describes the
evolution of a single chunk of mass located at a given position.

To describe the evolution on the first n positions we introduce for
i = 0, 1, . . . , n

xi = xi(h) :=

8
<

:
hi if 1  i  n

N � Ân
j=1 xj if i = 0 ,

(5.67)

where x0 denotes the remaining mass in the system outside locations 1, . . . , n.
Thus, the rescaled vector 1

N x lies in Dn+1 := {p 2 [0, 1]n+1 : Ân
i=0 pi = 1}.

Again, by approximation of the generators, one can show that

1
N (x(t))t�0

d
! WFn+1(q, 0, . . . , 0) . (5.68)

Here, WFn+1(q, 0, . . . , 0) denotes the Wright-Fisher diffusion on Dn+1 which
is characterised by the generator

AWFn+1(q,0)h(z0,...,n) =
n

Â
i,j=0

zi(1i=j � zj)∂
2
zizj

h(z0,...,n) (5.69)

+ q
n

Â
i=1

zi(∂z0 h � ∂zi h)(z0,...,n) ,

acting on those h that have an extension to Rn+1 which is twice continuously
differentiable.
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For a single observable, the Jacobi-diffusion has an absorbing state at z =

0, which it runs into in finite time almost surely [Dur08, Section 7.10]. Simi-
larly, the Wright-Fisher diffusion will be absorbed at (1, 0, . . . 0) 2 Dn+1, after
which the process does not capture the dynamics of the infinite-dimensional
process anymore as all the mass has moved away from the first n sites.

For the Poisson-Dirichlet diffusion, the relationship to the Jacobi and
Wright-Fisher diffusion has been studied in the two-parameter setting
[FPRW23] in greater generality. There a Fleming-Viot construction of the pro-
cess, cf. (5.32), is used. Because they start from the Poisson-Dirichlet diffusion
on r, there is no underlying graph structure and instead of placing mass at a
fixed position, they choose a uniform random variable on [0, 1] which deter-
mines the position of the point mass.

It is interesting to note that the boundary behaviour of the Jacobi diffusion
agrees with the one of the PD-diffusion. More precisely, in the case of the
Jacobi diffusion the state 1 can be reached if and only if q < 1, see e.g. [Shi81,
Theorem 4.1] or [Dur08, Section 7.10]. Similarly, the PD-diffusion (Xt)t�0 hits
the finite dimensional sub-simplices r\ {Ân

i=1 pi = 1}, for any n � 1, if and
only if q < 1 [Sch91].

Duality and size-biased time evolution

For a measure valued process with generator Lq (5.8), the evolution with
respect to a simple test function H(µ) = µ(h) is given by Dynkin’s formula

dµt(h) = µt(Aqh) dt + dM(h)
t , 8h 2 D(A) . (5.70)

Here, (M(h)
t )t>0 is a martingale. Continuity of the process (µt)t�0, and thus

of the martingale (M(h)
t )t�0, follows from the equivalence with the Poisson-

Dirichlet diffusion in Proposition 5.1.3. Now, taking expectations in (5.70),
we see that µ̄t := Eµ0 [µt] satisfies

d
dt

µ̄t(h) = µ̄t(Aqh) , 8h 2 D(A) ,

which is solved by the time evolution of (Eµ0 [h(Zt)])t>0, for a Feller process
(Zt)t�0 on [0, 1] with generator Aq and initial distribution µ0. As a conse-
quence, we have the following duality

Eµ0 [µt(h)] = Eµ0 [h(Zt)] , 8h 2 D(A) , (5.71)
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where (Zt)t�0 is the one-dimensional diffusion with resetting to 0, generated
by Aq . The identity can be extended to all h 2 C([0, 1]) by standard argu-
ments, see [EK93, Section 6] or the proof of Proposition 5.3.5 below.

In analogy to known duality properties of the microscopic particle system
[GKR07, CGR21], this can be used to get closed evolution equations for mo-
ments. For example, h(z) = z describes the expected second moment of the
mass distribution and we get

d
dt

Eµ0 [µt(z)] = Eµ0 [AqId(Zt)]

= Eµ0

h
2
�
1 � (1 + q)Zt

�i
= 2 � 2(1 + q)Eµ0 [µt(Z)] ,

(5.72)

which has an exponential solution that converges to the stationary point 1
1+q ,

the expected second moment of the GEM(q) distribution, in accordance with
Proposition 5.1.3(i). The duality in (5.71) is also interesting from a computa-
tional point of view, as it allows to continuously track the expected behaviour
of the infinite-dimensional process. For this, only a finite-dimensional diffu-
sion is necessary, which does not run into any absorbing states (in contrast
when observing a fixed set of lattice sites), e.g. (5.72).

Dualities for measure-valued processes were previously considered in
[DH82] and [DK99], see also [EK93, Section 6] for a summary. We stress once
more the difference in point of view: In previous works, the dual particles en-
code the position of clusters on the underlying lattice. On the other hand, in
our size-biased approach the state of dual particles characterises the fragmen-
tation of mass in a given configuration/partition. In particular, dual particles
take into account microscopic states, due to the resetting to 0.

In Proposition 5.3.5, we will see that for dL ! • such dualities extend
directly to nonlinear test functions H(µ), due to the absence of an interaction
part in the generator L̂ (5.15).

5.2.4 Convergence to a Fleming-Viot process

This section is an extended remark on how to prove convergence of the in-
clusion process to the Fleming-Viot process (5.30), with mutation operator
(5.31)

AFVh(u) = q
Z 1

0
[h(w)� h(u)] dw .
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Instead of considering the generator LL,N (5.1) on WL,N , it is more convenient
to define the inclusion process on a state space that keeps track of particle
positions. More precisely, we define

SL,N := LN
L , with LL := {1, . . . , L} .

Now, the (labelled) inclusion process is described by the infinitesimal gener-
ator

GL,N g(s) =
N

Â
i,j=1

[g(si!sj)� g(s)] + d
N

Â
i=1

Â
x2L

[g(si!x)� g(s)] , (5.73)

where

si!x
j :=

8
<

:
x if i = j ,

sj if i 6= j ,
(5.74)

denotes the updated position after the i-th particle jumped onto site x. The
generator GL,N characterises a Markov process on SL,N , which we denote by
(s(L,N)(t))t>0. We can recover the corresponding unlabelled particle configu-
ration using

i : SL,N ! WL,N with i(s)x :=
N

Â
i=1

1si=x ,

in particular we have LL,N f (i(s)) = GL,N f (i(·))(s), for all f 2 C(WL,N).

Once more, we interpret particle configurations as probability measures
on [0, 1]. However, now we consider the embedding

n(·) : s 7!
1
N

N

Â
i=1

dsi
L
2 M1([0, 1]) , (5.75)

where rescaled particle locations are encoded on the “type space” [0, 1]. The
convergence of processes, under the embedding (5.75), follows from the ap-
proximation of generators in analogy to our main result. Again, we start with
test functions of the form

n(s)(h) =
1
N

N

Â
i=1

h
� si

L
�

, h 2 C3([0, 1]) ,
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in which case the action of GL,N reads

GL,Nn(s)(h) =
N

Â
i,j=1

1
N
⇥
h( sj

L )� h( sj
L )
⇤
+ d

N

Â
i=1

Â
x2L

1
N
⇥
h( x

L )� h( si
L )
⇤

.

Because the first sum on the right-hand side vanishes by symmetry, we are
only left with

GL,Nn(s)(h) = d
N

Â
i=1

Â
x2L

1
N
⇥
h( x

L )� h( si
L )
⇤
= dL · n(s)

 
1
L Â

x2L
h( x

L )� h

!
,

which implies the uniform convergence

lim
N/L!r

sup
s2LN

���GL,N(n
(·)(h))(s)� n(s)(AFVh)

��� = 0 .

By considering cylindrical test-functions, this convergence can be extended to
a core of the Fleming-Viot process with generator LFV (5.30), in full analogy
to our main results. We leave out further details.

Overall, this yields convergence of the (labelled) inclusion process in the
following sense: If n#s(L,N)(0) d

! n0 then

⇣
n#s(L,N)(t)

⌘

t>0

d
! (nt)t>0 , in D([0, •),M1([0, 1])) ,

where (nt)t>0 denotes the Fleming-Viot process generated by (5.30) with ini-
tial condition n0.

5.3 The diffusion limit in the case dL ! •

This section treats the scaling limit of the inclusion process in the regime
dL ! •, where condensation on mesoscopic scales is expected. This case
may also be considered as an interpretation of the Poisson-Dirichlet diffusion
with infinite mutation rate q = •. Clearly, this corresponds to an infinite
drift towards zero in the single particle operator Aq , cf. (5.9). Thus, in order
to see non-trivial dynamics, we have to rescale time appropriately. Recalling
(5.43), we see that

1
dL

LL,N H(µ(·))(h) = µ(h)
⇣
(h(0)� h(z)� zh0(z))

⌘
+ o(1) , (5.76)
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where H(µ) = µ(h), h 2 C3([0, 1]). The time-change also eradicates the
interaction term in the corresponding measure-valued process. Indeed, we
are left with a process that pushes mass (deterministically) from the interval
(0, 1] onto zero. Hence, mass will not accumulate on the macroscopic scale.
Instead, we need to consider an appropriate mesoscopic scale to see the actual
dynamics of the fast mixing mechanism.

In [JCG19] it was proven that, at stationarity, mass condenses on the meso-
scopic scale of order d�1, when r 2 (0, •), cf. (5.3). Thus the embedding of
particle configurations into M1(R+) via (5.11) with µ̂(h) = ÂL

x=1
hx
N ddL

N hx
is an

appropriate a-priori choice.2 In order to take mass into account which lies
on larger scales, we will consider probability measures M1(R+) on the one-
point compactification R+ = [0, •]. We equip M1(R+) with the topology
induced by weak convergence, thus, M1(R+) is compact.

5.3.1 Deriving the diffusion limit

Once more, we rely on the Trotter-Kurtz approximation to conclude the scal-
ing limit in Theorem 5.1.2. We follow the same steps as in Section 5.2, carried
out below for completeness.

Proposition 5.3.1. Let H 2 D(L̂), then

lim
N/L!r

sup
h2WL,N

����
1
dL

LL,N H(µ̂(·))(h)� L̂H(µ̂(h))

���� = 0 . (5.77)

Below, we will show that the interaction term of the limiting measure-
valued process indeed vanishes. First, we only consider test functions of the
form µ 7! µ(h).

Lemma 5.3.2. Let r 2 (0, •) and H(µ) = µ(h), with h 2 D(Â) (5.13). Then

lim
N/L!r

sup
h2WL,N

����
1
dL

LL,N H(µ̂(·))(h)� µ̂(h)(Âh)
���� = 0 , (5.78)

where Â is the single-particle generator defined in (5.12).

Proof. We assume that h 2 C3
c (R+), since the claim is trivially true for con-

stant functions. Moreover, we will write px := dL hx
N .

2For the case r 2 (0, •), also the choice ddhx is appropriate and leads to a r dependent
limit. However, for the boundary cases r 2 {0, •}, the given choice turns out to be the correct
one.
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Following the same steps as in the proof of Lemma 5.2.3, we have

1
dL

LL,N H(µ̂(·))(h) = 1
2N2

L

Â
x,y=1
x 6=y

hxhy
�eh00(px) + eh00(py)

�
(5.79)

+
1

L N

L

Â
x,y=1
x 6=y

hx
�eh0(py)� eh0(px)

�
+ o(1) ,

where we gained an additional factor (dL)�1 by rewriting hx
N h(dhx) =

1
dL h̃(px). Here we used again the fact that second-order terms in the sec-
ond sum have a vanishing contribution, and first-order terms in the first sum
cancel exactly, cf. proof of Lemma 5.2.3. Hence, (5.79) can be written as

1
dL

LL,N H(µ(·))(h) = Â
x2L

hx

N

⇣
1 �

px

dL

⌘
h̃00(px) (5.80)

+

"
1
L Â

y2L
h̃0(py)� Â

x2L

hx

N
h̃0(px)

#
+ o(1) .

Using again Lemma 5.2.5, we have 1
L Ây2L h̃0(py) = h̃0(0) + o(1). Hence,

1
dL

LL,N H(µ(·))(h) = µ̂(h) �h̃00(p) + [h̃0(0)� h̃0(p)]
�
+ o(1)

= µ̂(h)�Âh
�
+ o(1) ,

where we additionally used the fact that h̃00 is bounded and of compact
support, thus, p

dL h̃00(p) vanishes in the thermodynamic limit because dL !

•.

Remark 5.3.3. Considering the state space M1(R+) instead of M1(R+), (5.80)
suggests that Â should act via

H 7!
�
µ 7! µ(Âh) + (1 � µ(1))h(0)

�
, (5.81)

on functions H : M1(R+) 7! R of the form H(µ) = µ(h). The extra term takes
into account the transfer of mass from larger scales (above N

dL ), which is pushed onto
microscopic scales, cf. Corollary 5.3.8. However, µ 7! µ(1) is not a continuous
function on M1(R+). Instead, the mass transport from larger scales is implicit in
the generator L̂, as we will see below.

Proof of Proposition 5.3.1. It suffices to consider functions H 2 D(L̂) of the
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form H(µ) = µ(h1) · · · µ(hn), with hk 2 C3
c (R). The interaction term of the

operator L̂ is again given by the second-order term of the following expan-
sion

H(µ̂#hx,y)

= H(µ̂(h))

+
1
dL

n

Â
k=1

[ehk(py + dL
N )� ehk(py) + ehk(px �

dL
N )� ehk(px)]

n

’
l=1
l 6=k

µ̂(h)(hl)

+
1

(dL)2 Â
1k<ln

[ehk(py + dL
N )� ehk(py) + ehk(px �

dL
N )� ehk(px)] (5.82)

⇥ [ehl(py + dL
N )� ehl(py) + ehl(px �

dL
N )� ehl(px)]

n

’
j=1

j 6=k,l

µ̂(h)(hj)

+
1

(dL)3 r(h) .

In the first order term, each summand can be treated individually using
Lemma 5.3.2. It only remains to check that both second-order term and re-
mainder have no contribution.

A first-order Taylor expansion yields the following bound
���eh(py + dL

N )� eh(py) + eh(px �
dL
N )� eh(px)

���

= dL
N

����h̃
0(py)� h̃0(px) +

1
2
dL
N (h̃00(xy) + h̃00(xx))

����

 2dL
N (kh̃0k• + kh̃00k•),

where xx, xy 2 [0, dN] correspond to the associated remainder term. Hence,
the second-order term in (5.82), after applying 1

dLLL,N , is upper bounded (up
to a constant) by

1
dL Â

1k<ln

1
N2

L

Â
x,y=1
x 6=y

hx(d+ hy)(kh0kk• + kh00k k•)(kh0lk• + kh00l k•)
n

’
j=1

j 6=k,l

khjk• ,

which vanishes as dL ! •. For the same reason, higher order terms in the
expansion (5.82) have no contribution either.

The closure of (Â,D(Â)) generates a Feller semigroup on R+. Thus, the
closure of (L̂,D(L̂)) generates a Fleming-Viot process on the compact space
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M1(R+), with trajectories in C([0, •),M1(R+)) [EK87, Theorem 2.3], in the
absence of interaction. We now have everything at hand, to prove Theo-
rem 5.1.2.

Proof of Theorem 5.1.2. Once more, convergence of generators (thus semi-
groups, cf. Proposition 5.1.7) in Proposition 5.3.1 suffices to conclude con-
vergence of the processes in D([0, •),M1(R+)), by Proposition 5.1.8. Note
that any fixed initial condition µ 2 M1(R+) can be approximated by par-
ticle configurations using the embedding µ̂(·), cf. Lemma 5.3.4 below. This
completes the proof.

Lemma 5.3.4. Let r 2 [0, •] and d = d(L) such that

N
L

! r , dL ! • and
dL
N

! 0 .

Then for any µ 2 M1(R+), there exist h(L,N)
2 WL,N such that

µ̂#h(L,N) d
! µ . (5.83)

Proof. We will see that it suffices to approximate discrete measures of the
form

a0d0 + a•d• +
m

Â
i=1

aidpi 2 M1(R+) , (5.84)

with pi 2 (0, •), 1  i  m. Let n be such a probability measure.

We explicitly construct configurations in WL,N that converge to n under
the map (5.11)

µ̂(h) = µ̂(h)
L,N =

L

Â
x=1

hx

N
ddL hx

N
,

when considering the thermodynamic limit N/L ! r 2 [0, •].

First, we consider the point masses lying in (0, •). For convenience, let
us introduce

ki :=
�

N
dL

pi

⌫
and #i :=

�
aiN
ki

⌫
.

Note that ki ! •, as N/L ! r, by assumption.

Now, let h0 be the vector given by gluing together vectors (ki, . . . , ki) 2
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N#i , 1  i  m. Recalling that pi > 0, we then have

1
L

m

Â
i=1

#i 6
m

Â
i=1

ai N
1
2 ki L

6 2d
m

Â
i=1

ai
pi

,

and the right-hand side vanishes, because the sum is finite. We will assume
that the resulting vector h0 lies in NL, since we can append zeros until h0 has
length L. In particular, the relative number of empty sites converges to one.

It only remains to distribute the remaining particles, to create the point
masses at zero and infinity. Thus far, only #S = Âm

i=1 #i sites are occupied in
h0. We start by adding k• := ba•Nc particles onto the (#S + 1)-th position of
h0 (which is empty). This corresponds to the point mass at infinity.

The number of particles allocated to h0 is upper bounded by

k• +
m

Â
i=1

ki #i 6 a•N +
m

Â
i=1

aiN = (1 � a0)N .

We distribute the remaining k0 := N � k• � Âm
i=1 ki #i particles as uniform as

possible, among all empty sites of h0 (there are #0 := L � #S � 1 many). This
yields the configuration

hx :=

8
<

:
h0

x if 1  x  #S + 1,
j

k0
#0

k
+ 1x2{#S+2,...,#S+1+(k0 mod #0)} otherwise.

Because the number of non-empty sites in h0 is relatively vanishing, all parti-
cles distributed on previously empty sites will correspond to the point mass
at zero. Note that h 2 WL,N by construction.

Indeed, the constructed particle configuration h approximates the discrete
measure arbitrarily well in the thermodynamic limit, as for every f 2 Cb(R+)

we have

µ̂(h)( f ) =
L

Â
x=#S+2

hx

N
f
✓
dL
N

hx

◆
+

k•

N
f
✓
dL
N

k•

◆
+

m

Â
i=1

ki
N

#i f
✓
dL
N

ki

◆
,

which converges to

lim
N/L!r

µ̂(h)( f ) = a0 f (0) + a• f (•) +
m

Â
i=1

ai f (pi) = n( f ) .

Now, for every µ 2 M1(R+) there exists a sequence (nn)n2N of measures of
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the form (5.84) such that nn
d
! µ. Moreover, each nn can be approximated by a

sequence (h(L,N)
n )L,N following the above approach. Hence, we can construct

a sequence of configurations with the desired property, using a diagonal ar-
gument.

5.3.2 Duality and the hydrodynamic limit

The evolution of a single observable H(µ̂t) := µ̂t(h), h 2 D(Â), can be ex-
pressed by Dynkin’s formula as

dµ̂t(h) = µ̂t(Âh) dt + dM̂(h)
t , (5.85)

with the quadratic variation of the martingale M̂(h)
t given in terms of the carré

du champ operator:

⇥
M̂(h)⇤

t =
Z t

0

⇣
L̂H2(µ̂s)� 2HL̂H(µ̂s)

⌘
ds .

Note that
⇥
M̂(h)⇤ vanishes because L̂H2 = 2HL̂H, cf. (5.15). Hence, M̂(h) = 0

and (µ̂t)t>0 solves the ODE

dµ̂t(h) = µ̂t(Âh) dt . (5.86)

Therefore, the absence of interaction in L̂ leads to a deterministic evolution
of (µ̂t(h))t�0, which can be described by a single particle, evolving accord-
ing to Â. Unlike in the case of dL ! q < •, we can fully characterise the
semigroup of L̂ by considering only the evolution with respect to the single
particle generator Â.

Proposition 5.3.5. Let g 2 C(Rn
+) and define G(µ) := µ⌦n(g), then for any

µ̂0 2 M1(R+)

G (µ̂t) = Eµ̂⌦n
0

⇥
g(Ẑt)

⇤
, 8t � 0 , (5.87)

where (µ̂t)t>0 evolves with respect to L̂ and (Ẑt)t�0 is the process consisting of n
independent copies generated by the single-particle generator Â (5.12). Notably, for
n = 1 we have µ̂t = Law(Ẑt), whenever the initial conditions agree in the sense
that Ẑ0 ⇠ µ̂0.

Proof. We follow the same steps as in [EK93, Section 6], which we reproduce
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here for completeness. First, we define the operator

Ĉ(n)g(z1, . . . , zn) :=
n

Â
k=1

Âg(z1, . . . , zk�1, · , zk+1, . . . , zn)(zk) , (5.88)

acting on functions g 2 C2(Rn
+), which satisfies

L̂H(µ) = µ⌦n�Ĉ(n)gH
�

,

for any H 2 D(L̂) of the form H(µ) = µ(h1) . . . µ(hn), with hi 2 D(Â), and
gH := h1 ⌦ · · ·⌦ hn 2 C2(Rn

+). This implies

(l � L̂)H(µ) = µ⌦n��l � Ĉ(n)�gH
�

, 8l > 0 , µ 2 M1(R+) . (5.89)

Thus, for any g 2 C(Rn
+) and l > 0, we have

µ⌦n((l � Ĉ(n))�1g) = (l � L̂)�1�
•
⌦n ((l � Ĉ(n))(l � Ĉ(n))�1g)

�
(µ)

= (l � L̂)�1G(µ) ,

where G(µ) := µ⌦(g). Now, we use the fact that

Eµ̂0 [G(µ̂t)] = lim
m!•

⇣
1 �

t
m
L̂

⌘�m
G(µ̂0) = lim

m!•
µ̂⌦n

0

⇣⇣
1 �

t
m

Ĉ(n)
⌘�m

g
⌘

.

Because the expression inside the expectation on the right-hand side con-
verges uniformly in C(Rn

+), we can take the limit inside the expectation.
Overall, this yields

Eµ̂0 [G(µ̂t)] = µ̂⌦n
0

⇣
lim

m!•

⇣
1 �

t
m

Ĉ(n)
⌘�m

g
⌘
= Eµ̂⌦n

0

⇥
g(Ẑt)

⇤
, (5.90)

where Ẑ is the process generated by Ĉ(n).
Now, let us consider the case n = 1, for which (5.90) reads

µ̂t(h) = Eµ̂0 [µ̂t(h)] = Eµ̂0

⇥
h(Ẑt)

⇤
, 8t � 0 , h 2 C(R+) , (5.91)

where we additionally used the fact that µ̂t(h) is deterministic, cf. (5.86). In
particular, (5.91) implies that µ̂t = Law(Ẑt), and the measure-valued evolu-
tion (µ̂t)t>0 is indeed deterministic. Thus, the expected value on the left-hand
side of (5.90) has no affect and can be dropped.

The duality result in Proposition 5.3.5, and equivalently Theorem 5.1.2,
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can be interpreted in the sense of a hydrodynamic limit.

Proposition 5.3.6 (Hydrodynamic limit). Consider the process (µ̂t)t�0 generated
by L̂ with initial data µ̂0 2 M1(R+). Then for every t > 0, µ̂t has a Lebesgue-
density f (t, ·) on R+. The evolution of the density ( f (t, ·))t>0 solves

8
<

:
∂t f (t, z) = z ∂2

z f (t, z) + z ∂z f (t, z)

limz!0 f (t, z) = 1
(5.92)

with limt!0
R •

0 h(z) f (t, z) dz = µ̂0(h) for every h 2 Cc(R+).

Remark 5.3.7. The diffusion part of the generator Â, given by

ÂDh(z) := zh00(z) + (2 � z)h0(z) . (5.93)

ÂD generates the so called Cox-Ingersoll-Ross model, see e.g. [Mar11], which is a
well studied diffusion process in mathematical finance and population genetics.

Proof. First consider the case of an initial condition that has no atom at infin-
ity, i.e. k f0kL1(R+) = 1, and let z0 2 [0, •). The Cox-Ingersoll-Ross model
generated by ÂD is known to have a density g(t, ·|z0), for any positive time
and initial data [Mar11, Display below (3.2)]. In fact, it is explicitly given and
for z0 = 0 it evaluates to

g(t, z|0) =
z

(2`t)2 e�z(2`t)�1
with `t := 1

2 (1 � e�t) . (5.94)

Furthermore, for any t > 0 we have gt(·|z0)
��
(0,•)

2 C•((0, •)) [Mar11,
Proposition 3.2]. The resetting mechanism is given by a Poisson jump pro-
cess, thus, [APZ13, Theorem 1] guarantees that also the process (Ẑt)t�0, gen-
erated by Â, has a density which is given by

f (t, z|z0) = e�tg(t, z|z0) +
Z t

0
e�sg(s, z|0) ds . (5.95)

We note that f (t, ·|z0) inherits the regularity properties of g(t, ·|z0) on (0, •).
This follows from the change of variable r = z/(2`s) with dr

ds = �
z

(2`2
s )

e�s

which yields for every z > 0

f (t, z|z0) = e�tg(t, z|z0) +
Z •

z
2`t

e�r dr = e�tg(t, z|z0) + e�z(2`t)�1
. (5.96)

Hence, f (t, ·|z0) 2 C•((0, •)).
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It is only left to verify that ( f (t, ·))t�0 indeed solves the given PDE. Using
integration by parts, we see that for any h 2 C2

c (R+), we have

µt(Âh) =
Z •

0
f (t, z) Âh(z) dz =

Z •

0
Â⇤ f (t, z) h(z) dz , (5.97)

with the adjoint action defined as

Â⇤ f (z) := z f 00(z) + z f 0(z) + d0(z)
�
1 � f (z)

�
. (5.98)

Hence, the density f =
�

f (t, ·)
��
(0,•)

�
t�0 in (5.96) solves the PDE

∂t f = Â⇤ f , f (0, ·) = dz0 . (5.99)

From (5.96), it is easy to see that limz!0 f (t, z) = 1 for any t > 0, since
g(t, 0|z0) = 0 for all z0 � 0. Thus, the boundary term in (5.98) vanishes
and we are left with the PDE in the statement.

Lastly, consider f0 = d•. The only way (Ẑt)t�0 can escape infinity is
via the resetting mechanism. Therefore, (5.96) still applies with g(t, z|z0) re-
placed by d•, since P(Ẑt = •) is equal to the probability that the process
has not jumped yet. One can check that also f (·|•) solves the given PDE
on (0, •) with the correct boundary condition. The result for arbitrary initial
conditions now follows by integrating over the densities with respect to µ0

and Leibniz rule.

Given the explicit form of the density (5.96), we can read of the evolution
of the mass process (µt(R+))t�0.

Corollary 5.3.8. For all t > 0, we have

µ̂t(R+) = 1 � (1 � µ̂0(R+))e�t . (5.100)

Proof. We integrate the PDE from Proposition 5.3.6 in space, which yields

∂tk f (t, ·)kL1(R+) =
Z •

0

�
z ∂2

z f (t, z) + z ∂z f (t, z)
�

dz . (5.101)

Using integration by parts, the right-hand side simplifies to

dat = (1 � at) dt , a0 = µ0(R+) . (5.102)

Its solution is given by (5.100).
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Figure 5.2: Simulations for both the inclusion process (N = L = 1024,
d = L�1/2 = 1

32 ) and the jump diffusion generated by Â agree, in accordance
with Proposition 5.3.5. The black graph shows the density profile of the em-
bedded inclusion process (5.11) (1000 samples), whereas the grey histogram
represents the density of the jump diffusion (10000 samples). Both profiles
converge rapidly to the unit exponential density (green line), cf. Lemma 5.3.9.
We considered an initial condition µ̂0 = dz, z '

25
32 .

Let us summarise the invariance and exponential ergodicity property of
(µ̂t)t�0.

Lemma 5.3.9. The process (Ẑt)t�0 satisfies the following properties:

(i) The exponential distribution Exp(1) is the unique invariant probability mea-
sure.

(ii) We have

��Law(Ẑt)� Exp(1)
��

TV  e�t , 8t � 0 . (5.103)

Proof. The fact that the exponential distribution is invariant can be explic-
itly proven using integration by parts, but also follows directly from [APZ13,
Corollary 1]. The exponential ergodicity is a consequence of [APZ13, Theo-
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rem 2]. The same result yields that the process is Harris recurrent, thus, the
Exponential distribution is the unique invariant distribution.

It is an immediate consequence, that the point mass on the Exponential
distribution is an absorbing point for the measure valued process.

Corollary 5.3.10. The atom P̂ = dExp(1) 2 M1(M1(R+)) is reversible with re-
spect to the dynamics induced by L̂.

Proof. Let H 2 D(L̂) be of the form H(µ) = µ(h1) · · · µ(hn). For simplicity
we write n := Exp(1) 2 M1(R+). Then

L̂H(n) =
n

Â
j=1

n(Âhi)’
l 6=j

n(hl) = 0 , (5.104)

as n is invariant with respect to Â, cf. Lemma 5.3.9. Thus, P̂(FL̂H) = 0 =

P̂(HL̂F).

5.3.3 A natural extension of the PD-diffusion

In this section we prove Theorem 5.1.5, which states that Lq (which is equiv-
alent to the Poisson-Dirichlet diffusion Gq) has a limit as q ! • under appro-
priate rescaling.

Proof of Theorem 5.1.5. Once more, the statement is a conclusion of the Trotter-
Kurtz approximation theorem. We state the essential steps for completeness.
Let H 2 D(L̂) be of the form µ 7! µ(h1) · · · µ(hn), hk 2 D(Â), and define
Hq 2 D(Lq) by

E 3 µ 7! µ(h1(q ·)) · · · µ(hn(q ·)) , (5.105)

with hk(q ·)’s elements of C3([0, 1]). We have

Âhk(qz)�
1
q

Aqhk(q ·)(z) = z
�
qz h00k (qz) + 2 h0k(qz)

�
. (5.106)

If hk is a constant function, the right-hand side vanishes. On the other hand,
if hk 2 C3

c (R+), we can write

sup
µ2E

��µ
�
(Âhk)(q·)

�
�

1
q µ
�

Aqhk(q ·)
��� Chk sup

µ2E
µ
�
Z 1qZ2supp(hk)

�

=Chk sup
z2[0,1]

{z1qz2supp(hk)} ,
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where Z ⇠ µ and Chk is a finite constant, depending on hk. The right-hand
side vanishes as q ! •, due to hk having compact support. Along the same
lines, we can show that the interaction term of 1

qLq disappears. Overall we
conclude

lim
q!•

sup
µ2E

�� 1
qLq Hq(µ)� (L̂H)(Sqµ)

�� = 0 . (5.107)

Again, the convergence of generators suffices to conclude weak convergence
on the process level.

5.4 Discussion and outlook

We conclude this chapter with a discussion of boundary cases in the setting
considered and outline future directions, as well as work in progress.

Throughout the chapter, we assumed that r = limN,L!• N/L 2 (0, •).
However, the derived scaling limits do not depend on the actual value of
r, as we study the distribution of mass after renormalising by N. As long
as N, L ! •, our results extend to the boundary cases r 2 {0, •}, up to a
regime around r = 0 in the case dL ! •. In this regime we see an interesting
transition of the clustering behaviour, see Lemma 5.4.1 below.

First consider q < • and d ! 0, for which both cases r 2 {0, •} are
covered by our proof. For r = 0, i.e. N ⌧ L, this is clear intuitively, as
an increasing number of empty sites does not affect the dynamics since the
total diffusivity per particle is dL ! q. On the other hand, if r = • it may
seem surprising that the number of sites L does not play a role (as long they
are divergent). Here, the core lies in Lemma 5.2.7, which states that for any
thermodynamic limit, we can approximate configurations in r (equivalently
measures in E) by a sequence of particle configurations. Indeed, having a
closer look at the proof of Lemma 5.2.7, we see it is only necessary that a
macroscopic excess mass of order O(N) can be distributed uniformly over
sites while not being visible under the macroscopic rescaling 1

N . This is the
case, since we can always allocate O(N

L )-many particles on sites (which might
itself diverge), however, under macroscopic rescaling we have 1

N
N
L ! 0.

Our approach can further be adapted, with minimal changes in
Lemma 5.2.5, to cover the situation of fixed L and d = d(N) ! 0, as N ! •.
This has been considered in [BDG17, KS21], to study the metastable dynam-
ics of a single condensate on a large time scale. In our time scale, the system
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is described by a Wright-Fisher diffusion (5.69) with a single cluster site as
absorbing state, describing convergence to a typical stationary configuration.

Now assume q = •. In the case r 2 (0, •), the results in the present chap-
ter, and also [JCG19], yields that a size-biased chosen chunk (at equilibrium)
is approximately exponentially distributed with mean ⇠

N
dL . In fact, looking

at the proof of Theorem 5.1.2, the result remains true as long as dL/N ! 0.
This trivially holds when r = •, in which case cluster sizes live on the scale
of order

N
dL

�
1
d

. (5.108)

On the other hand, if N/L ! 0 we have no control over dN (in contrast to
N/L ! •, which implies dN ! • since dL ! •). Therefore, for r = 0 the
convergence in Theorem 5.1.2 remains true, only if dL/N ! 0, i.e. d ⌧ N/L.
Assume on the other hand that N

dL ! g 2 (0, •], then we don’t expect any
clustering of particles on diverging scales. In fact, we see a finer structure
emerging in the limit on scales of order one.

⌧ d g d � d

1n=1 Geom( 1
1+g ) Exp(1) on scales N

dL

N
L ! r 2 (0, •)r = 0 r = •

Figure 5.3: Graphical summary of the clustering of particles at equilibrium
for the inclusion process when dL ! •. The distributions displayed describe
the first size-biased marginal h̃1 on the appropriate scale. Note particularly
the transition from diverging scales to scales of order 1, when moving from
the regime r � d into r ⇠ gd.

Lemma 5.4.1. Assume that N
L ! 0, as N, L ! •, d ! 0 and dL ! • such that

N
dL ! g 2 [0, •). Then

lim
N/L!0

pL,N(h̃1 2 ·) = Geom
✓

1
1 + g

◆
. (5.109)

Here pL,N denotes the unique invariant distribution with respect to LL,N.

Hence, for r = 0 and dL ! •, there is a critical scaling N ⇠ dL, be-
low which the equilibrium measure does not exhibit clustering of particles
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on diverging scales. Note that the lemma is independent of the underlying
graph structure and holds more generally for irreducible and spatially homo-
geneous dynamics, as in [JCG19].

Before proving the above lemma, we require some notation and repre-
sentations, which can be found in more detail in [JCG19]. Recall that pL,N

denotes the unique invariant distribution with respect to LL,N supported on
WL,N , which is given explicitly by

pL,N(dh) = 1
ZL,N

L

’
x=1

wL(hx) dh , (5.110)

where dh denotes the counting measure, ZL,N the appropriate partition func-
tion and wL describing weights of the form

wL(n) =
G(n + d)
n!G(d)

, (5.111)

arising from the choice of transition rates in LL,N . The partition function can
be explicitly written in terms of

ZL,N =
G(N + dL)
N!G(dL)

. (5.112)

Proof of Lemma 5.4.1. Recall the definition of size-biased sampling from the
beginning of the chapter (above Figure 5.1), then

pL,N(h̃1 = n) =
L

Â
x=1

n
N

pL,N(hx = n) =
L
N

n wL(n)
ZL�1,N�n

ZL,N
, (5.113)

which is equal to zero if n = 0. Thus, in the following let n > 0. We re-
place the terms in the previous display with the corresponding expressions
in (5.111) and (5.112), which yields

pL,N(h̃1 = n) =
L
N

G(n + d)
(n � 1)!G(d)

G(N � n + d(L � 1))
G(N + dL)

N!
(N � n)!

G(dL)
G(d(L � 1))

⇠
dL
N

G(n + d)
d (n � 1)!G(d)

G(N � n + dL)
G(N + dL)

Nn . (5.114)

We analyse the remaining terms individually. First,

G(n + d)
d (n � 1)!G(d)

=
1

d (n � 1)!

n�1

’
k=0

(k + d) =
n�1

’
k=1

k + d

k
! 1 ,
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and second,

G(N � n + dL)
G(N + dL)

Nn = Nn
n�1

’
k=0

G(N � (k + 1) + dL)
G(N � k + dL)

=
n

’
k=1

1
1 � k

N + dL
N

.

Overall, we conclude that

pL,N(h̃1 = n) ⇠
dL
N

✓ N
dL

1 + N
dL

◆n

!
gn�1

(1 + g)n , (5.115)

since N
dL ! g. This finishes the proof.

A natural next step, in view of the hydrodynamic limit Proposition 5.3.6,
when dL ! •, is to study fluctuations around the equilibrium. A second
moment calculation with respect to the stationary measure yields

pL,N

⇣�
µ̂(h)(h)� Exp(1)(h)

�2
⌘
⇠

1
dL

pL,N
�
h̃1

dL
N h(h̃1

dL
N )2�

! 0 , (5.116)

for any h 2 Cb(R+). Hence, in order to see a non-trivial limit, we should
investigate fluctuations of order

p
dL by studying the limiting behaviour of

p

dL
⇣
(µ̂#h(L,N)( t

dL ))(h)� Exp(1)(h)
⌘

, t � 0 , (5.117)

with time slowed down as indicated in Theorem 5.1.2. Due to decoupling of
the size-biased marginals, the fluctuations are expected to be Gaussian.

The approach in this chapter (based on the work [CGG23]) should be ro-
bust towards perturbation of transition rates, as we do not require the ex-
plicit form of the partition function. Throughout the chapter, we have fo-
cused on the one parameter family of Poisson-Dirichlet diffusions. There
exists a two-parameter extension of the process, which was introduced in
[Pet09]. This process has gained a lot of attention over the past years
[RW09, FSWX11, Eth14, CBE+17], just to name a few. It would be interest-
ing to investigate the size-biased approach in this setting. The two parameter
process has only been studied when fixing finitely many locations/sites and
observing the evolution of mass on them, see for example [FPRW23] and also
the discussion in Section 5.2.3.

Furthermore, it would be interesting to investigate diffusion limits of the
generalised version of the inclusion process with non-trivial bulk, studied in
[CGG22]. Numerical simulations and heuristic arguments suggest that the
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macroscopic phase evolves under the dynamics described in Theorem 5.1.1.
At the same time, one can observe a transfer of mass between the bulk and
the condensate, whose evolution is described by a system of ODEs, similar to
Corollary 5.3.8.
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D. Spanò. Wright–Fisher construction of the two-parameter
Poisson–Dirichlet diffusion. The Annals of Applied Probability,
27(3), 2017.

[CCG14] J. Cao, P. Chleboun, and S. Grosskinsky. Dynamics of Conden-
sation in the Totally Asymmetric Inclusion Process. Journal of
Statistical Physics, 155(3):523–543, 2014.

[CCG15] Y.-X. Chau, C. Connaughton, and S. Grosskinsky. Explosive
condensation in symmetric mass transport models. Journal of
Statistical Mechanics: Theory and Experiment, 2015(11):P11031,
2015.

[CD20] S. Chatterjee and A. Dunlap. Constructing a solution of the
(2 + 1)-dimensional KPZ equation. The Annals of Probability,
48(2), 2020.

[CDR10] P. Calabrese, P. Le Doussal, and A. Rosso. Free-energy distri-
bution of the directed polymer at high temperature. EPL (Eu-
rophysics Letters), 90(2):20002, 2010.



234 BIBLIOGRAPHY

[CES21] G. Cannizzaro, D. Erhard, and P. Schönbauer. 2D anisotropic
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