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Abstract

This thesis presents data movement-reducing and communication-avoiding optimizations

and their practicable implementation for large-scale unstructured-mesh numerical simula-

tion applications. Utilizing the high-level abstractions of the OP2 domain-specific library,

we reason about techniques for reduced communications across a consecutive sequence of

loops – a loop-chain. The optimizations are explored for shared-memory systems where

multiple processors share a common memory space and distributed-memory systems that

comprise separate memory spaces across multiple nodes. We elucidate the challenges

when executing unstructured-mesh applications on large-scale high-performance systems

that are specifically related to data sharing and movement, synchronization, and commu-

nication among processes. A key feature of the work is to mitigate these problems for

real-world, large-scale applications and computing kernels, bringing together proven and

effective techniques within a DSL framework.

On shared-memory systems, We explore cache-blocking tiling, a key technique for

exploiting data locality, in unstructured-mesh applications by integrating the SLOPE

library, a cache-blocking tiling library, with OP2. For distributed-memory systems, we

analyze the trade-off between increased redundant computation in place of data movement

and design a new communication-avoiding back-end for OP2 that applies these techniques

automatically to any OP2 application targeting CPUs and GPUs.

The communication-avoiding optimizations are applied to two non-trivial applica-

tions, including the OP2 version of Rolls Royce’s production CFD application, Hydra, on

problem sizes representative of real-world workloads. Results demonstrate how, for se-

lect configurations, the new communication-avoiding back-end provides between 30 – 65%

runtime reductions for the loop-chains in these applications on both an HPE Cray EX

system and an NVIDIA V100 GPU cluster. We model and examine the determinants and

characteristics of a given unstructured-mesh loop-chain that lead to performance benefits

with communication-avoidance techniques, providing insights into the general feasibility

and profitability of using the optimizations for this class of applications.
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Chapter 1

Introduction

The end of frequency scaling in the middle of the last decade has led processor archi-

tectures to move towards massively parallel designs. According to the trend data shown

in Figure 1.1, it is clear that single-thread performance and frequency scaling of pro-

cessors have reached their limits. This suggests that future improvements in computing

power will have to come from other sources, such as parallel processing and more efficient

algorithms. Therefore, modern processors have featured a proliferation of arithmetic ca-

pability in the form of increasing discrete processor cores, both on traditional CPUs as

well as accelerator devices such as GPUs. For example, a snapshot of the number of pro-

cessor cores on a high-end CPU currently has close to 100 [17], while GPUs are designed

with over 2000 cores [18], albeit cores that are comparatively much simpler. Large-scale

clusters of these devices have reached hundred-thousands to millions of cores, as seen from

the recently unveiled exascale supercomputers [19].

However, the speed of memory and network channels interconnecting the proces-

sors and system/device memories have largely lagged behind [20], leading to significant

memory bandwidth bottlenecks. As a result, the performance of many conventional al-

gorithms optimized for fast floating-point operations has stalled. This phenomenon is

reflected in benchmarks like LINPACK (Linear Algebra PACKage) and HPCG (High-

Performance Conjugate Gradient), which provide critical insights into the challenges faced

by modern parallel applications [21, 22]. LINPACK [21], a benchmark focusing on solv-

ing dense systems of linear equations through LU factorization, traditionally emphasizes

floating-point performance and has long been a key metric for ranking supercomputers

on the TOP500 list [23]. Simultaneously, HPCG evaluates the performance of HPC sys-

tems for sparse linear algebra operations, specifically the Conjugate Gradient method,

placing a heavier emphasis on communication and memory access patterns [22]. The

main challenge identified by LINPACK and HPCG is the imbalance between the in-

creasing computational capabilities of processors and the slower growth in the speed of

memory and network channels. This imbalance leads to memory bandwidth limitations

and bottlenecks in performance, emphasizing the critical need for innovative algorithms

that address these challenges. Developing algorithms with reduced data movement, or
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1. Introduction

Figure 1.1: 50 years of microprocessor trend data [1]

communication-avoiding (CA) algorithms, have therefore become an intense area of re-

search [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34]. The underlying motivation of these

works is to exploit the significantly high computing capability of these processors in place

of communications, aiming to obtain higher performance gains.

The main challenge in adopting communication-avoiding optimizations or tech-

niques in real-world applications is the significant effort and difficulty in implementing

them and the subsequent code maintenance. The specific optimizations are highly com-

plex and involved, usually obfuscating the source code with platform-specific low-level

features. A large body of work has developed the underlying theory for CA techniques,

including tiling [7, 35, 36, 37, 38, 39, 40, 41, 42, 43] and reduced distributed-memory

systems communications [8, 37, 44, 45]. Compile time application of these optimizations,

based on the polyhedral model [46, 47, 48] have been developed within compiler frame-

works such as LLVM’s Polly [5] and Pochoir [3]. Another strand of works such as by

Demmel et al. [49, 50, 51, 52, 53, 54, 55, 56, 57, 58] have successfully developed libraries

that applications can utilize CA-optimized numerical methods. More recently, domain-

specific languages (DSLs) and similar high-level frameworks have demonstrated a pathway

in applying these exotic optimizations to larger, non-trivial applications. Key DSLs with

CA capabilities include Firedrake [59, 60] for unstructured-mesh based FE applications

and OPS [36] and Devito [61, 62] for structured-mesh based applications.

This research aims to examine and apply key data movement-reducing techniques

to large-scale, real-world applications. To this end, we build upon previous work by

Luporini et al. [8] bringing together techniques for reducing data movement for the
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unstructured-mesh applications class, codifying them through the OP2 DSL [6], an em-

bedded domain-specific language for developing unstructured-mesh applications. We be-

gin with a focus on optimizations with shared-memory parallelism, then move on to

distributed-memory parallel execution, and finally, the combination of shared-memory

and distributed-memory parallelizations on multi-core and many-core processors. A new

CA back-end for OP2 is designed such that any application using OP2 can utilize the

optimizations. The new back-end is then applied to our main application of interest,

Hydra [63], a production computational fluid dynamics (CFD) application used for aero-

engine design by Rolls Royce plc.

1.1 Motivation and Problem Statement

Communication-avoiding algorithms have a rich literature with reducing data movement

identified as a fundamental optimization [64]. Out of these techniques, improving data

locality by restructuring loops or rescheduling loop iterations, generally known as tiling

or loop-blocking, have long been well understood [41, 42, 65, 66]. The theoretical under-

pinnings of these loop transformations have been comprehensively described through the

polyhedral model [43, 67].

Many frameworks and libraries have been developed based on the polyhedral

model. Key works include PLuTo [4], a fully automatic polyhedral program optimization

system, Polly [5], an LLVM framework for high-level loop and data locality optimiza-

tions, Pochoir [3], a compiler and runtime system for implementing stencil computations

on multicore processors and PolyMage [68] and Halide [69] which specifically targets image

processing pipelines. All these works create polyhedra – multi-dimensional sub-iteration

spaces within loops with static, regular access patterns/dependencies. Such loops can

be readily viewed as iterations over a structured-mesh [70] with regular stencils defining

the dependency neighborhood. The extension of these algorithms to distributed-memory

systems requires them to account for the dependencies in the loop nests when the iter-

ation space is spread over a number of processes or disparate memory areas. This leads

to the need for those dependencies to be satisfied through communications of extra halo

layers. These extensions have been developed for several of the aforementioned frame-

works, for PLuTo [71, 72] and Distributed Halide [73] in addition to other works such as

R-STREAM [74] and work by Classen and Griebl [75].

However, applying these optimizations, particularly the ideas of the polyhedral

model for unstructured-mesh applications, are relatively limited in literature as a conse-

quence of the added complexity of managing the irregular dependencies specified by the

explicit connectivity of the unstructured-mesh. The dependence structure arises in these

applications due to their characteristic indirect memory accesses, specifically indirect in-

crements (e.g., D[map[i]] += f(...)) and indirect reads, through explicit connectivity

mappings [8]. The indirect accesses lead to the need to do the dependence analysis via

mappings, as opposed to the static dependence neighborhoods (e.g., specified by a stencil)

3



1. Introduction

commonly exploited in general static loop optimizations. As such, the analysis needs to

be carried out dynamically, at runtime, as demonstrated by Luporini et al. [8] based on

the loop-chain abstraction introduced in [24].

Sparse tiling [8] has been previously integrated into Firedrake [59, 60] using the

SLOPE library. Firedrake is a high-level DSL framework for the automated solution of

finite element computations. It requires problems to be specified in the Unified Form

Language (UFL) [76]. The specification is then used to generate parallel executables on a

range of hardware platforms. Both shared-memory and distributed-memory sparse tiling

is implemented in Firedrake [8] and the performance of a seismic exploration application,

Seigen [77], is benchmarked on a CPU cluster. One other work of note by Sarje et al. [31]

identified several performance-related challenges in unstructured-mesh-based applications

when running on distributed systems. The wait times incurred by processes due to the

imbalance of work and delays due to unstructured data access patterns are examined. It

presents a cost model for a partition consisting of the communication and computation

costs and attempts to identify a partitioning that minimizes load imbalances. Sarje et

al. [31] also present data reordering techniques to increase the spatial and temporal

locality of data in the memory hierarchy by using space-filling curves such as Morton,

Hilbert [78, 79] in comparison to a Cuthill-McKee ordering.

Despite the work mentioned above, we perceive that the study on communication-

avoidance work related to unstructured-mesh applications has key research gaps.

Firstly, as previously stated, the utilization of CA optimizations, especially within

the context of the polyhedral model for unstructured-mesh applications, remains limited

due to the intricate management of irregular dependencies that arise from the explicit con-

nectivity of unstructured-meshes. Importantly, the analysis of these dependencies must

occur dynamically at runtime. Furthermore, these indirect data accesses cause data races,

leading to complex halo structures, which are the additional mesh elements exchanged

among the processes for calculations. These halo structures need to be arbitrarily extend-

able due to the varying loop counts in loop-chains, which we do not find in the available

developed frameworks.

Secondly, to our knowledge, all the unstructured-mesh-based CA work has been

applied or demonstrated on small-scale applications and benchmarks. Research on their

application to large-scale, real-world codes or solvers is practically non-existent. Un-

derstandably developing a practical implementation to apply these techniques to such

applications is challenging. There is a compelling need for techniques such as DSLs to ap-

ply these optimizations automatically to substantially complex unstructured-mesh-based

applications.
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Thirdly, we found that utilizing sparse tiling simultaneously at both levels of paral-

lelism - on-node/shared-memory (OpenMP threads and CUDA) and distributed-memory

parallelism (over MPI) - has not been demonstrated before for unstructured-mesh-based

applications.

Finally, due to the indirect data accesses in these types of applications, it is not

possible to determine the profitability of these optimizations through compile-time or

static analysis, necessitating runtime analysis. In some cases, performance may degrade

on some loop-chains due to these CA techniques. Hence, it is important to develop

techniques to model the performance using analytic modeling to support and guide the

optimizations.

These open strands of work motivate the research in this thesis. We examine

sparse tiling on large-scale applications, develop a performance portable framework that

supports the execution of CA techniques on both CPU and GPU clusters, carry out

extensive performance benchmarking and analysis on the empirical results, and study the

profitability of the optimizations by developing analytical models.

1.2 Thesis Contributions

More specifically, the principal contributions of the thesis are as follows:

• Integration of shared-memory CA with OP2 (Chapter 3): We analyze

shared-memory communication-avoiding and data-movement reducing techniques

such as loop-chaining, sparse tiling, and cache-blocking tiling using the OP2 version

of standard benchmarking applications and mini apps. We integrate the SLOPE

library [8], which facilitates these techniques with the OP2 DSL with key improve-

ments to its coloring algorithm for these evaluations. We generate roofline graphs

and utilize performance analysis tools to analyze the empirical performance im-

provements gained with these experiments.

• Design of a novel distributed-memory CA back-end (Chapter 4): We

design a novel CA back-end for the OP2 DSL, focusing on its distributed-memory

parallel operation and reason about techniques for reducing the number of MPI

send-receive messages exchanged during the execution of a sequence of consecutive

loops, a loop-chain. A key new feature of the back-end is its ability to run standard

loops over unstructured-mesh sets interspersed with selected/annotated loop-chains

to obtain the best overall performance for the application.

• Analytical modeling of loop-chain performance with CA (Chapter 4, 5,

and 6): The performance of loop-chains with CA is analytically modeled. The

model is developed by investigating the careful trade-off of increasing computations

at shared MPI halos to satisfy loop dependencies in place of data movement via

message passing. The analytic model provides techniques to characterize the loop-

chains and insights if a given loop-chain will benefit from the CA back-end of OP2.
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• Integrating shared- & distributed-memory CA (Chapter 5 and 6): The

distributed-memory back-end is combined with shared-memory communications

avoiding and data-movement reducing techniques, specifically (1) sparse tiling, a

cache-blocking tiling optimization method by integrating the SLOPE [8] library

utilizing OpenMP threads on multi-core CPUs and (2) leveraging reduced MPI

message passing when executing in a cluster of GPUs, enabling lower overheads in

GPU-to-GPU communication with CUDA.

• Real-world, large-scale application benchmarking with CA (Chap-

ter 3, 4, 5, and 6): Finally, the CA back-end and extensions are applied to

the Hydra CFD application, using its recently re-engineered OP2 version [80], OP2

Hydra, for a number of use cases, with mesh sizes of 8M and 24M. Benchmarking is

carried out on the ARCHER2 supercomputer, a Cray-HPE EX system with AMD

EPYC 7742 cores, and the Cirrus GPU cluster with NVIDIA V100 GPUs at EPCC.

Results indicate significant performance gains: up to 65% on select node counts on

ARCHER2 (CPU) and Cirrus (GPU) clusters. However, they also point to the need

to carefully select which loop-chains have CA optimizations turned on, as in some chains

they lead to performance degradation over the non-CA version. To our knowledge, our

work presents one of the few, if not the only practical implementation of CA techniques

for a large-scale production code, at the size and scale of Hydra, from the unstructured-

mesh domain together with benchmarking and performance analysis on both multi-core

(CPU) and many-core (GPU) cluster systems. Reasoning about the viability and prof-

itability of these optimizations for real-world codes is also novel, particularly through

the development of an analytic model. Our work provides insights into the key determi-

nants and characteristics of a given general unstructured-mesh loop-chain that can lead

to performance benefits with CA optimizations.

In our research, we are implementing CA enhancements using OP2 as the main

DSL. While conducting the literature survey, we discovered that only a few libraries/D-

SLs support execution with unstructured-mesh applications, and Firedrake [59, 60] is one

such DSL. However, to apply these enhancements to an application through Firedrake,

the application must be written using the UFL (Unified Form Language). Further, our

primary interest lies in Hydra [63], which has a version developed with the OP2 DSL [81].

Our main aim is to apply these CA enhancements to the Hydra application eventually.

Several other applications, such as Airfoil, MG-CFD, and Volna, have already been con-

verted to their OP2 versions, which can be used to apply CA enhancements using the

OP2 DSL. Representing a set of loops using the OP2 API makes it easier to decide on

the appropriate CA enhancements. More importantly, the automatic code generation

support existing with the OP2 DSL will help us apply these enhancements effectively and

efficiently to these applications. Due to these reasons, we are choosing the OP2 DSL for

the implementation of these CA enhancements in our research. However, we believe that

these insights are more broadly applicable, even to applications developed without OP2.
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On the other hand, the work will also demonstrate how a high-level abstraction frame-

work such as OP2 can seamlessly deliver these complex and exotic code transformations

to real-world applications without affecting the science source, maintaining performance

portability.

The shared-memory parallelization performance of the SLOPE library [37] analysis

indicates that implementing cache-blocking tiling can lead to noteworthy performance

enhancements on shared-memory systems, with select configurations demonstrating gains

more than 40% over the respective OP2 OpenMP version of the application on the selected

computing platforms. Nevertheless, the effectiveness of cache-blocking tiling is heavily

influenced by various factors, such as the mesh partitioning approach, loop fusion strategy,

and tile size. It is crucial to carefully adjust these variables to optimize the shared-memory

parallelism performance for every application and platform.

Analysis of communication-avoidance with integrated shared-memory and

distributed-memory parallelism strategies showed that the combination of these does not

deliver better performance gains than the best-performing MPI version of the application

with communication-avoidance. The delay in thread-synchronizations in the OpenMP

parallelized sections of the code significantly impacts performance. However, applying

communication-avoidance enhancements in a GPU cluster to achieve reduced MPI com-

munication and lower overheads in GPU-to-GPU communication yielded considerably

better performance improvements, achieving up to 65% with GPU on-node paralleliza-

tions, as previously stated.

1.3 Thesis Overview

This thesis consists of seven chapters, with the current chapter outlining the motivation

and problems addressed, as well as the specific contribution of this research. The rest of

the thesis is organized as follows:

Chapter 2 provides a literature survey related to HPC, including computer archi-

tectures, performance metrics, fundamental laws and theories, parallel programming

models, performance optimization techniques, and domain-specific languages and

frameworks in HPC. Overall, this chapter offers an overview of existing work related to

communication-avoidance enhancements and a foundation for the thesis.

Chapter 3 analyzes the performance benefits of the SLOPE library [37] for shared-

memory parallelism using four main applications on three computing environments.

Airfoil [82], MG-CFD [83], Volna [84], and OP2 Hydra [63] are used as applications and

two Intel-based computing nodes, Scyrus and Telos and one AMD-based supercomputer,

ARCHER2, are used for performance analysis.
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Chapter 4 explains the development of the communication-avoidance framework

designed for distributed-memory systems for the OP2 DSL. This describes the changes

made to the OP2 DSL when introducing the novel CA framework, explaining how

the new OP2 framework can automatically generate CA optimizations for loop-chains.

Additionally, this chapter details the analytical performance model for the newly

developed CA framework for the OP2 DSL, which is used to identify the profitable

loop-chains for CA optimizations. This model can be used to analytically model

the runtime of the existing OP2 MPI execution and new CA back-end-based exe-

cution of loop-chains. We also present a comprehensive performance analysis of the

newly developed CA framework using the two applications, MG-CFD [83] and Hydra [63].

Chapter 5 explains the integration of the novel CA back-end with shared-memory

communication-avoidance and data-movement reducing optimizations through sparse

tiling, a cache-blocking tiling optimization method by integrating the SLOPE [8] library

utilizing OpenMP threads on multi-core CPUs. Performance benchmarking of MG-

CFD [83] and Hydra [63] on the ARCHER2 supercomputer showcases the effectiveness

of these integrated CA techniques.

Chapter 6 explores the synergy of the newly developed CA back-end with shared-

memory communication-avoidance and data-movement reducing optimizations targetting

reduced MPI message passing when operating in a cluster of GPUs, facilitating lower

overheads in GPU-to-GPU communication through CUDA. The performance evaluation

of MG-CFD [83] and Hydra [63] on the Cirrus GPU cluster highlights the successful

application of these integrated CA techniques.

Chapter 7 gives the research conclusions and explains further enhancements for the

current work with problems unsolved.
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Chapter 2

Background

This chapter establishes the foundation of the thesis, giving a comprehensive explanation

of: (1) High-Performance Computing (HPC) Architectures; (2) Performance Metrics and

Optimization Laws; (3) Parallel Programming Models; (4) Performance Optimization

Techniques; and, (5) Domain-Specific Languages (DSLs) and Frameworks in HPC.

2.1 High-Performance Computing (HPC) Architectures

High-performance computing enables us to tackle complex problems that demand exten-

sive computing power and speed. With advanced computing resources and techniques,

we can discover innovative solutions to the toughest challenges in scientific research, engi-

neering, financial modeling, simulations, and data analysis. High-performance computing

uses supercomputers, computer clusters, and parallel processing techniques to perform

computations at much faster speeds than typical desktops, laptops, or server computers.

The systems are highly scalable, allowing additional computing and storage resources to

be added as needed to accommodate larger datasets, more complex simulations, and fu-

ture computing needs. Efficient communication among computing nodes is critical for

parallel processing. High-speed interconnections with low latencies are necessary for data

exchange in HPC systems. Programmers must use various programming models and spe-

cialized software, such as MPI and OpenMP, to optimize HPC performance. Algorithms

are developed to address challenges such as increased power consumption due to data

movement among computing nodes. Programs running on HPC systems produce and

consume massive amounts of data during calculations, requiring large-scale storage de-

vices with low latencies that can be expanded according to changing demands. HPC

enables scientists to speed up time-to-solution and gain insights into complex problems

through advanced simulations that may not be possible with conventional computing.

Several computer architectures facilitate HPC. In this section, we will give an

overview of the main computer architectures, with a specific emphasis on multi-core,

many-core, and GPU architectures. Grasping the concept of these architectures is essen-

tial to unlock their enormous computational capacity.
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2.1.1 Flynn’s Taxonomy

In 1966, Michael Flynn described the computing process as the performance of a sequence

of instructions on a set of data, in its essential form [85, 86]. He classified computers into

four categories based on two streams, instruction and data, which are sequences of instruc-

tions or data seen by the machine during program execution as illustrated in Figure 2.1.

The categories are:

• Single Instruction Stream - Single Data Stream (SISD)

• Single Instruction Stream - Multiple Data Stream (SIMD)

• Multiple Instruction Stream - Single Data Stream (MISD)

• Multiple Instruction Stream - Multiple Data Stream (MIMD)
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Figure 2.1: Flynn’s Taxonomy

SISD In a computer with only one processor, there is only one stream of instructions

from the program that is applied to a single stream of data. Although this con-

cept is straightforward, improving the performance of such a system is challenging

nowadays as we have almost reached the limit of frequency scaling for processors.
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SIMD A program’s single instruction stream is sent to multiple processor cores to be

applied simultaneously to various data streams within those processor cores. This

method is beneficial because most applications function on data arrays that require

improved performance. The vectorization mechanism is used in today’s CPUs to

accomplish this. Intel’s Streaming SIMD Extensions (SSE) and Advanced Vector

Extensions (AVX) are examples of this, which allow for larger registers and more

complex instructions. This mechanism is also present in modern GPU processors.

MISD Some computing systems and algorithms designed for redundancy use the mech-

anism of applying multiple instructions to the same data within a single clock cycle,

which is not commonly seen in HPC.

MIMD Several programs, or even multiple instances of the same program, can run

independently on different processors. This allows for multiple instructions to be

executed on various data streams simultaneously within a single clock cycle. This

approach is frequently used in high-performance computing (HPC) systems and

requires message-passing and synchronization mechanisms, such as MPI, to ensure

the output of the algorithms or programs is correctly finalized.

It is important to note that Flynn’s taxonomy has evolved, and some modern architec-

tures may have characteristics that blur the boundaries between categories. Some of the

extensions or variations of Flynn’s taxonomy include:

• Single Instruction - Multiple Thread (SIMT)

• Single Program - Multiple Data (SPMD)

• Multiple Program - Multiple Data (MPMD)

SIMT This represents a blend of single instruction (SIMD) and multiple instruction

(MIMD) models where a single instruction is applied to multiple threads simulta-

neously. Each thread operates on its own set of data, often associated with modern

GPUs. It efficiently enables parallel processing, especially in graphics rendering and

scientific simulations, showcasing the evolution of parallel computing architectures.

SPMD This is a subtype of MIMD where multiple processors or threads execute the

same program but may operate on different sets of data. This model is commonly

associated with parallel programming paradigms, such as those used in parallel

computing environments or distributed systems.

MPMD This is another form of MIMD where different processors or threads execute

distinct programs concurrently, each working on its specific set of data. This model

is often seen in heterogeneous computing environments, where diverse tasks are

handled by different processing units.
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2.1.2 Multi-Core and Many-Core Architectures

After the end of the frequency scaling of the processors around 2004, there was a shift

in focus towards massive parallelism by increasing the processing core counts in a pro-

cessor which helps to increase the overall performance of applications. Multi-core and

many-core processors have been introduced to enhance computing systems’ efficiency and

performance. The distinction between these processors is based on the number of cores,

although the exact boundary is unclear.

Most modern computers, smartphones, and other devices are equipped with multi-

core processors. These processors have two to eight cores on a physical chip, which can

perform instructions independently. By sharing resources such as cache memory and

memory-controlling mechanisms, these cores can work together to boost system perfor-

mance. They are also capable of carrying out load-balancing tasks among them to improve

overall efficiency.

As technology advances, many-core systems are becoming more prevalent in HPC

systems. These systems integrate dozens to several hundred cores on the same physical

chip, allowing multiple cores to work in parallel to solve complex computational problems

across various domains. These cores have a simple architecture and share resources such

as caches and registers. Many-core processors are mainly used in supercomputers and

specialized computing clusters for tasks such as simulations, artificial intelligence work,

and data-intensive processing. With thousands of computing cores working together,

these systems can handle the most challenging computational problems with ease.

Both these architectures are built to support parallel computing and many-core

systems are specially employed in high-performance demanding systems.

2.1.3 GPU Architecture

Image and video processing requires a significant amount of parallel operations. To ad-

dress this, Graphics Processing Units (GPUs) were developed. These GPUs consist of

numerous efficient and dedicated cores, which are ideal for handling these types of appli-

cations. These cores operate at lower frequencies, have smaller caches and enable a large

number of threads to run in parallel, unlike CPU cores. This architecture facilitates the

SIMD (Single Instruction Stream - Multiple Data Stream) paradigm, where the same op-

eration is performed on a vector of contiguous data. A parallel PCI-Express Interconnect

connects these GPUs to the CPU.

At first, GPU architectures were primarily used for graphical purposes, such as in

video games. However, their potential for high performance in parallel applications, es-

pecially in matrix and vector computations, led to their increased popularity. To simplify

GPU programming, various languages have been developed, such as CUDA for NVIDIA

GPUs and OpenCL for a wider range of GPUs, including both NVIDIA and AMD archi-

tectures. Nowadays, GPUs have advanced to support general-purpose massively parallel

computations, moving them closer to CPUs in terms of functionality. In fact, around
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Figure 2.2: NVIDIA Tesla V100 architecture [2]

35% of modern supercomputers in the Top 500 are now equipped with GPUs to support

general-purpose applications [23].

In this thesis, we have NVIDIA Tesla V100 as the primary GPU type in one of

our testing platforms, Cirrus [87]. The architecture of this GPU is shown in Figure 2.2.

It is based on the Volta architecture and consists of 80 Streaming Multiprocessors (SMs)

grouped in six Graphical Processing Clusters (GPC) [2]. It also has a shared L2 cache of

6MB and a 4096-bit memory interface. Each SMM has 96KB shared-memory and 64 FP32

cores, resulting in a total of 5120 cores in the GPU, with 21.1 billion transistors. The Tesla

V100 has 16 GB or 32 GB of high-bandwidth (HBM) memory, providing excellent mem-

ory capacity and bandwidth for handling large datasets and complex computations. Its

NVLink technology enables seamless GPU-to-GPU communication in multi-GPU config-

urations. Furthermore, the Tesla V100 supports hardware-accelerated deep learning and

AI workloads with its Tensor Cores.

However, the latest available NVIDIA GPU architecture at the time of writing

this thesis is the ADA LOVELACE GPU architecture [88].

2.2 Performance Metrics and Optimization Laws

Measuring and optimizing the performance of an HPC system is a critical task. In this

section, we will define key performance metrics and explore optimization laws such as Am-

dahl’s Law and Gustafson’s Law, which guide our understanding of the scalability and

efficiency of an application. We also examine the roofline model, which assists in identi-

fying the bottlenecks that affect an application’s use of system bandwidth and processing

capacity. By doing so, we can work towards enhancing the overall system performance.
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2.2.1 Key Performance Metrics

In computing, engineering, and other fields, performance metrics are numerical measures

used to assess a system’s efficiency, effectiveness, and quality, process, or operation. These

metrics offer unbiased data and insights to determine how well a task or component is

performing compared to previous known statuses. Performance metrics are essential for

enhancing systems, identifying problem areas, and making informed decisions to achieve

improvements. In this thesis, we refer to key metrics such as execution time, setup time,

speedup, scalability, efficiency, and latency, and this section explains those metrics.

Execution Time Evaluating the effectiveness of systems and processes is crucial, and

performance metrics play a pivotal role in this evaluation. Runtime, also known

as Execution Time, measures the time taken by a computational process to reach

completion. It serves as a fundamental benchmark for optimizing the efficiency and

responsiveness of software applications, scientific simulations, and computational

tasks. Reducing execution time signifies improved performance and user experience.

Setup Time The essential preparatory period before a task or process begins, influencing

workflow efficiency and system readiness, is represented by Setup Time. During our

thesis experiments, we found that certain enhancements aimed at reducing execution

time can increase the setup time. However, we observed that this increase in setup

time is offset by the large number of iterations that these applications undergo.

Speedup Performance gain achieved by parallelizing tasks compared to their sequential

counterparts is measured by Speedup. High speedup values indicate effective utiliza-

tion of multiple processing units, which is crucial in accelerating resource-intensive

computations.

Scalability The system’s ability to adapt to increasing workloads without proportional

performance degradation is estimated by Scalability. We can identify whether an

application is capable of accommodating dynamic workloads according to its scala-

bility measures.

Efficiency Effectively utilizing resources such as CPU, memory, and energy to accom-

plish tasks is the essence of Efficiency. Given the limited availability of these re-

sources, it is important to increase efficiency in our applications and systems.

Latency Measuring the time delay between taking an action and receiving a response,

known as Latency, is a crucial metric for analyzing performance in real-time systems

and networks. Minimizing latency is essential for ensuring uninterrupted interac-

tions and data transmission.

When determining the effectiveness of an application or task, it is crucial to con-

sider performance metrics. We utilized various metrics throughout our thesis to draw

conclusions.
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2.2.2 Amdahl’s Law and Gustafson’s Law

The speedup of a given program on a multi-processor system is defined as the ratio

between the time spent on running the best sequential version of the program on a single

processor to the time spent on running the parallel version of the program on a multi-

processor system.

Speedup, S(n) =
Execution time using one processor (best sequential algorithm)

Execution time using a multi-processor with n processors
=

ts
tp

(2.1)

Serial section (1 - !) Parallelizable section (!)
Single

Processor

Multiple
Processors

" processors

1 - ! ! / "
Figure 2.3: Amdahl’s Law

Gene Amdahl proposed a method in 1967 to identify the theoretical speedups in

latency that can be achieved by considering the serial and parallel parts of the program in

a system where the resources can be improved. The performance of the serial section of

the program can be improved by increasing the clock frequency or improving the internal

layouts of the processor whereas the parallel sections can be improved by increasing the

number of computing cores in the system as shown in Figure 2.3.

S(n) =
1

(1− p)︸ ︷︷ ︸
proportion of time
spent on serial parts

+
p

n︸︷︷︸
proportion of time

spent on parallel parts

(2.2)

where:

S(n)− speedup of the program

p− proportion of the program that can be parallelized

n− number of processors or cores

John L. Gustafson formulated Gustafson’s Law in 1988, which is a principle in parallel

computing that provides a different perspective on the performance of parallel systems

compared to Amdahl’s Law. Gustafson’s Law focuses on the scalability of parallel systems

as the number of processors or cores increases.
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The central idea behind Gustafson’s Law is to adjust the problem size as more

processors are added, instead of fixing the problem size and analyzing how execution time

changes with varying numbers of processors like Amdahl’s Law. This means that parallel

systems should be designed to solve larger problems in the same amount of time as the

number of processors increases.

Mathematically, Gustafson’s Law can be represented as follows:

S(n) = 1 + (n− 1) · p (2.3)

where:

S(n)− speedup of the program

p− proportion of the program that can be parallelized

n− number of processors or cores

In this equation, as the number of processors (n) increases, the speedup (S(n))

also increases proportionally. The formula assumes that the fraction of the program that

can be parallelized (p) remains constant, which means that the portion of the program

that can be efficiently parallelized grows with the number of processors.

Gustafson’s Law is often applied in high-performance computing and parallel pro-

cessing environments where the goal is to solve more substantial problems efficiently as

more computational resources become available. This approach aligns with the idea that

many real-world applications can benefit from parallelization and by adapting the prob-

lem size, we can take full advantage of the available computational resources to solve

larger and more complex problems in a reasonable amount of time.

2.2.3 Roofline Model

The Roofline Model [89] is a performance modeling and optimization framework used

in high-performance computing. It is used to visualize and analyze the performance of

computational kernels or applications on modern computer architectures. It helps to

identify performance bottlenecks and opportunities for optimization.

The Roofline Model is simple yet powerful, as it ties together floating point op-

eration (FLOP) performance, arithmetic intensity (AI), and memory performance in a

2D graph. One way to measure peak memory performance is by using STREAM bench-

marks [90, 91]. By measuring AI for a given code snippet or kernel, one can find a point

on the horizontal axis. The performance of that kernel can then be determined by the

vertical line that passes through that point. For a given AI, the roofline represents the

maximum FLOP performance that can be achieved by the code on the specific hardware

architecture used. This can be calculated using the formula:

Max Attainable GFLOPs/s = min

 Peak Memory Bandwidth (BW)×AI

Peak FLOP Performance
(2.4)
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Figure 2.4: Roofline Model

In the Roofline Model graph shown in Figure 2.4:

• The X-axis represents the computational/arithmetic intensity (FLOPs/Byte).

• The Y-axis represents the achievable performance (GFLOPs/s).

• The Peak Performance Line represents the hardware’s theoretical peak performance.

• Different performance limits can be represented by rooflines. There are four distinct

performance regions that can be identified:

– Unattainable performance

– Bandwidth bound performance

– Compute bound performance

– Poor performance

• Data points can be plotted to show how specific applications or kernels perform in

relation to these limits.

The ridge point on the roofline model graph is characterized by its abscissa, which

is equal to the machine balance. The machine balance represents the point at which the

computational resources for computation and memory access are well-matched. At the

ridge point, the performance of a code on a specific hardware architecture is optimized,

indicating a balance between computation and memory access that maximizes the achiev-

able FLOP performance. In other words, the ridge point represents an ideal balance where

the computational resources are effectively utilized without being bottlenecked by either

computation or memory bandwidth. Kernels that lie close to the roofline are making good

use of the hardware resources. It is important to note that kernels with low GFLOPs/s
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can still make good use of a machine if they have a high % STREAM. Conversely, kernels

can have relatively high GFLOPs/s but still make poor use of a machine if they have a

low % Peak GFLOPs/s.

The Roofline Model helps developers identify if an application is under-utilizing

the hardware’s potential and provides insights into where optimization efforts should

be focused, such as improving computational intensity or reducing memory bandwidth

requirements.

2.3 Parallel Programming Models

In modern times, CPUs have evolved to include advanced multi-core technology. In the

past, it was customary to have one process attached to one computing core. However,

with the addition of more cores within a CPU, using the traditional MPI approach re-

sulted in more overhead when communicating between processes. To mitigate this issue,

we can increase the usage of shared-memory and caches by implementing shared-memory

parallelism. However, it is important to be mindful when replacing message passing

with multi-threaded execution since both approaches introduce different overheads. The

pragma-based OpenMP approach is a popular option for parallelizing work with multiple

threads due to its ease of implementation. Furthermore, several other task-based paral-

lelization methods have been introduced as alternatives to OpenMP-based parallelism.

To fully utilize the powerful computing capabilities of parallel architectures, we

must use various programming models. The distributed-memory parallelization model is

the highest-level approach, distributing the problem across the computing nodes of the

system. The de facto standard for this has been the Message Passing Interface (MPI) for a

long time. However, the Partitioned Global Address Space (PGAS) model has emerged as

an alternative to MPI. This approach divides a shared-memory region across distributed

processes and provides direct remote access to them.

In recent times, there have been notable advancements in General Purpose Graph-

ics Processor Units (GPGPUs), leading to the emergence of various programming models.

These models utilize specific languages tailored to harness the computing power of these

architectures. Notably, the CUDA programming language was developed specifically for

NVIDIA GPUs, while OpenCL is used for programming both NVIDIA- and AMD-based

GPUs. These parallel programming approaches aim to get the most out of GPGPUs.

2.3.1 Shared-Memory Systems

In a shared-memory system, all the processors or computing units access a shared global

memory. Processors use shared variables to communicate with each other and they can

read and write to any place in the shared-memory space. Sometimes, the memory units

that form the common memory system may not be available in the same location. Still,

they share a common address space when addressing the locations in the memory.
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These systems are relatively simple and provide simple programming approaches.

The data sharing mechanisms among the processors and shared data structures are not

complex due to the usage of common address space.

There will be scalability issues due to the complexities arising in interconnections

and memory-controlling mechanisms when increasing the number of computing cores in

the system. It will become challenging to keep memory consistency as multiple processors

try to access the same memory location simultaneously creating race conditions.

OpenMP

OpenMP is a popular shared-memory parallelization strategy that uses pragmas to create

and manage threads. Its ease of use and effectiveness make it widely used in applications.

For example, to parallelize a for loop, we use the omp parallel for pragma. This splits the

iterations into chunks and assigns them to different threads for parallel execution. At the

end of the parallel section, there is a thread-synchronization step where the solutions are

aggregated for the final solution.

The effectiveness and scalability of OpenMP parallelism is largely impacted by the

sequential parts of the program. However, this approach is suitable for regular applications

with loops that have dense computations [92].

2.3.2 Distributed-Memory Systems

In a distributed-memory system, each processor has a dedicated memory space of which

the management is assigned to the individual processor, and the processors communicate

with each other by exchanging messages.

These systems are easily scalable to a large number of processors since each in-

dividual processor possesses and manages its own memory which in return gives greater

flexibility in configuring the system.

Due to the nature of the system, various complex programming models such

as MPI must be used to exchange messages among the processors to exploit the

optimum computing power of the system. There are challenges in data distribution

and synchronization in these systems due to the distributed execution of the programs.

Some additional overheads coming due to message passing and communication among

processors may affect the performance of programs running on distributed-memory

systems.

In general, there will be a combination of both the shared- and distribute-memory systems

leveraging their advantages, minimizing the issues in scalability and memory management

and giving a simple programming model enhancing the performance of applications.
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MPI

MPI, or the Message Passing Interface, has become the standard for achieving distributed-

memory parallelism. There are several MPI implementations available, including

MPICH [93], OpenMPI [94], and Intel-MPI [95]. The concept behind MPI is to offer

an interface for parallelizing work by creating multiple processes known as MPI ranks or

tasks.

The standard MPI communication model supports point-to-point communication

between two processes. This involves exchanging data through private memory regions.

Both the sender and receiver must participate in the process, with the sender explicitly

indicating the message’s memory location and size. The message is then copied to an

internal communication buffer and sent to the receiver, where it is copied back to the

relevant memory location. To address latency issues, two message exchange mechanisms

are available: blocking and non-blocking.

In blocking-MPI communication, the functions MPI Send and MPI Recv are uti-

lized. The call to MPI Send function does not return until the message being sent has been

copied to the receiver’s buffer and communication has been completed. For non-blocking

communications, the functions MPI Isend and MPI Irecv are used. These functions re-

turn immediately, allowing the sender to continue with their computations or processing

while the receiver completes the communication. The function MPI Wait ensures the

completion of the MPI communication that was initiated.

MPI uses two message exchange protocols, known as Eager and Rendezvous, for

both blocking and non-blocking communication. The Eager protocol is suitable for small

message exchanges, while Rendezvous is ideal for larger message transfers. The protocol

selection can be influenced by setting environment variables that specify message size

limits.

Other collective and one-sided MPI communication methods can be employed

through functions such as MPI Gather, MPI Scatter, MPI Put, MPI Get, and various oth-

ers.

PGAS

Partitioned Global Address Space (PGAS) is another technique used to leverage

distributed-memory parallelism. It utilizes a global memory space that is partitioned

among the distributed processes. Each process has its own local space within this global

address space, enabling direct read and write.

PGAS is a highly effective solution for unstructured-mesh applications with irregu-

lar data access patterns [96]. With its one-sided communication approach, data movement

and memory duplication are reduced by writing directly to the receiver’s memory location.

This approach utilizes a Remote Direct Memory Access (RDMA) compatible network to

minimize CPU resources, with the network controller handling communication. Further-

more, there is no need for synchronization among processes due to this approach, as the
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receiver only needs to check whether incoming data is received in the buffer. Commu-

nication is also carried out in parallel with computations, preventing delays caused by

communication.

Although PGAS has some benefits, there are also some drawbacks to using it. One

of these is that the sender must know the receiver’s local information to package its data,

which can be an added burden. Additionally, many existing codes are built around MPI

communication, so integrating PGAS would require significant changes to the existing

frameworks that could be error-prone and resource-intensive.

Task-Based Parallelism

Task-based parallelism involves dividing a computation into a sequence of independent

tasks, each representing a specific unit of work. These tasks can be executed simultane-

ously using multi-core processors, GPUs and even distributed computing clusters. This

approach is ideal for applications with irregular and unbalanced workloads. Its capacity

to efficiently use available computing resources and adapt to changing workloads makes

it a powerful tool. Numerous frameworks have been developed to accomplish task-based

parallelism, such as StarPU [97] and PaRSEC [98].

2.4 Performance Optimization Techniques

To make the most of the computing and bandwidth resources in a system, we need to use

different performance-optimizing techniques. This involves arranging computations and

communications in the application to match the running platform’s architecture. In this

section, we will discuss loop transformation and communication optimization methods,

which can enhance an application’s performance.

2.4.1 Loop Transformation Techniques

Here, we will explore various loop transformation techniques that standard compilers and

libraries use to improve memory locality and parallelism in loop nests. A loop nest is a

situation in computer programming where one or more loops (typically for, while, or do-

while loops) are nested within another loop. To learn more about these transformations,

we primarily refer to the work of Bacon et al. [64]. We may also refer to other relevant

research materials to enhance our discussion.

Different compilers and libraries apply unique techniques at varying levels based

on their capabilities. Some only consider perfect loop nests, which have all statements

inside the innermost loop. The transformations we discuss mainly involve loop reordering,

which changes the execution order of loop iterations. To ensure the loop nest’s seman-

tics remain unaltered, a data dependence analysis is conducted before implementing any

transformations. If no dependencies are found, the loop nest can be made completely

parallelizable.
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Loop Interchange

To improve data locality, vectorization, or parallelism, it may be necessary to switch the

position of a loop within a perfect loop nest. However, it is important to be cautious

and prevent the benefits of one switch from being negated by another. If dealing with

imperfectly nested loops, additional customized changes may be required.

Loop Skewing

This transformation was introduced to facilitate the array accesses in loops for wavefront

propagation computations [99, 100]. Array accesses are transformed like wave propagation

in the outer loop nest with transformation functions such as w = f(w − 1, w + 1). This

is mostly associated with a loop interchange and the target polyhedron of the iteration

space becomes skewed.

Loop Reversal

Loop reversal changes the direction that a loop nest is being executed such as if it was

executed from the iteration, 0 to n − 1, now it is from the iteration, n − 1 to 0. This

helps various programming languages and processor architectures to avoid branching con-

ditions and temporary variables utilized during the loop nest execution. Loop reversal

can sometimes pave the way to other loop enhancements such as loop interchange.

Strip Mining

This transformation is commonly used to adjust the level of parallel execution in a loop

nest. It is particularly useful for vectorization scenarios where the number of parallel

operations can be controlled through this transformation. When one instruction is applied

to multiple data (SIMD), the granularity of the operation can be determined by this

transformation. However, if the strip size is not a multiple of the loop size, a clean-up

process will be required at the end of the loop execution.

Loop Distribution

The process of distributing or fission/splitting loops is primarily used for three purposes:

(i) create perfect loop nests, (ii) reduce the memory footprint when multiple statements

inside the same loop nest, and (iii) increase memory locality and avoid dependencies

among the statements.

Loop Fusion

The process of combining two or more loops is known as loop fusion, which is the opposite

of loop fission. The main goals of loop fusion are to (i) minimize the overhead of loops in

a program, (ii) improve data and cache locality by fusing them properly, and (iii) increase
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the number of instructions executed in parallel. Loop fusion is straightforward when the

loop bounds of the fusing loops are the same. However, if the loop bounds differ, only

certain parts of the loops can be fused, while the remaining iterations are placed in a

separate loop.

Loop Tiling

Enhancing data locality in high-performance computing can be achieved through tiling, a

useful technique. Loop tiling, in particular, involves dividing the iteration space of a loop

into smaller sections to keep them in the cache until they are needed for calculations.

This technique is helpful in reducing cache size requirements, as larger arrays can be

broken down into smaller blocks that easily fit into the cache. However, data dependency

analysis is crucial, just as with loop fusion. While tiling can be done manually for smaller

applications such as matrix multiplications, automating tiling for larger-scale applications

is becoming increasingly important, as highlighted by Reguly et al. [36]. The code example

in Listing 2.1 shows a tiling example of matrix multiplication.

1 // Consider the matrices as AN×N BN×N and CN×N

2

3 for (int i = 0; i < N; i++)

4 for (int j = 0; j < N; j++)

5 for (int k = 0; k < N; k++)

6 A[i][j] += B[i][k] * C[k][j];

7

8 // Take the tile size as w * w

9

10 for (int i = 0; i < N; i += w)

11 for (int j = 0; j < N; j += w)

12 for (int k = 0; k < N; k += w)

13 for (int i1 = i; i1 < min(i + w, N); i1++)

14 for (int j1 = j; j1 < min(j + w, N); j1++)

15 for (int k1 = k; k1 < min(k + w, N); k1++)

16 A[i1][j1] += B[i1][k1] * C[k1][j1];

Listing 2.1: Loop tiling example

2.4.2 Communication Optimization

When working with programs in a distributed environment, it is essential to share and

update data between multiple processes before performing calculations. Our discussion

is based on the communication optimization methods presented by Bacon et al. [64]. To

improve the performance of the system, it is important to maximize data reuse, minimize

the amount of data being used, and make optimal use of parallelism. Our research will

explore techniques to achieve these goals.
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Message Vectorization

When executing a loop in a distributed system, it is not efficient to send elements one

by one to other processes. Instead, each process calculates the loop bounds for itself and

other processes. Once this is done, the elements can be exchanged before the loops are

executed. This allows the exchanged array elements to be kept in a contiguous memory

location, which enables efficient use of internal buffers. This can lead to other compiler

optimizations, such as strip mining.

Message Coalescing

Coalescing, the grouping of overlapping and adjacent message data, enhances communi-

cation along with message vectorization.

Message Aggregation

When sending messages to another process, there are fixed costs involved, including com-

munication startup time, waiting time, and message packing and unpacking overheads.

To reduce the frequency of these costs, multiple messages can be combined and sent as a

single message. To achieve this, the program should have mechanisms in place for packing

multiple message data into the same message buffer and unpacking them to the relevant

data buffers at the receiving end.

Collective Communication

This is about the optimized features introduced by libraries and frameworks for mes-

sage communication such as scatter, gather, all-gather, and broadcast. Utilizing them

appropriately in a program significantly improves performance.

Message Pipelining

During message transmission, it is possible for processes to continue calculations on data

that do not rely on non-local data. This improves performance by reducing waiting

time for data. Using non-blocking send and receive methods where possible optimizes

computing resources. In our performance enhancements, we also utilize the technique of

latency-hiding while performing the core computations of datasets.

Redundant Message Elimination

When programming, it is crucial to be mindful of the data dependencies and messages

shared between processes to prevent unnecessary transmission of redundant messages.

Duplicate information may be present in some messages, and the data may remain un-

changed since the last exchange, making it unnecessary to transmit updates to the dataset

again. By detecting these scenarios, we can significantly enhance performance, given that

the cost of data exchange between processes is usually high.
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2.4.3 Polyhedral Model

1 for (int i = 1; i <= 2; i++) {

2 for (int j = 1; j <= 4; j++) {

3 A[i][j] = A[i][j] + 10;

4 }

5 }

(a) Original loop nest

T
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1 for (int j = 1; j <= 4; j++) {

2 for (int i = 1; i <= 2; i++) {

3 A[j][i] = A[j][i] + 10;

4 }

5 }

(b) Transformed loop nest
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Figure 2.5: Loop nest interchange transformation

We can use the polyhedral model as a way to analyze nested loop structures for apply-

ing the above-mentioned performance optimization methods, effectively. The polyhedral

model or the polytope model is a well-established mathematical and geometrical repre-

sentation of loop nests [5, 101]. It enables the iteration space of each statement to be

represented through the lattice points of a polyhedron, an n-dimensional geometric ob-

ject. This model is used in various frameworks such as Polly [5] as a powerful tool to

optimize loop nests. However, it should be noted that the polyhedron model is primarily

used to analyze affine loops. In other words, loop bounds and array references to data

access of loop nests should be affine functions of loop iterators and other loop parameters,

such as f(i) = 4 ∗ i+ 5 and g(N) = 2 ∗N , which are functions of the iterator, i and the

element count, N of the loop nest. Non-linear functions, such as f(i) = 4 ∗ i ∗ i + 5 and

g(N) = 2 ∗N ∗ i, are considered non-affine functions and if they are involved in the loop

bounds or array references, it is not possible to apply the polyhedral model for optimiza-

tions. Once the polyhedral model is built for a given loop nest, it is transformed through
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affine mapping functions for various purposes, such as achieving memory enhancements

and parallelism for efficiency. Such loop transformations include loop tiling, loop peeling,

loop reversal, loop skewing, loop shifting and so on. It is important to note that in order

to make any of the transformations valid, it has to preserve the semantics of the loop nest.

For this reason, a careful data dependence analysis is performed on the transformed loop

iteration space. Once the loop transformation is confirmed to be correct, it is applied

through polyhedral scanning [102, 103, 104, 105, 106, 107].

Consider the example elaborated in Figure 2.5. Figure 2.5a shows a loop nest

with affine loop bounds and array references which can be represented using the poly-

hedral model as in Figure 2.5c. Using the affine transformation function mentioned in

Figure 2.5d, the original polyhedron is transformed to Figure 2.5e for the required op-

timizations. The resulting transformed loop nest is given in Figure 2.5b. This is a

loop-interchange transformation that is used on several occasions to improve data cache

locality in programs.

2.5 Domain-Specific Languages (DSLs) and Frameworks in

HPC

In the fast-changing world of high-performance computing, maintaining code, achieving

performance portability, and future-proofing are major challenges. To overcome these,

Domain-Specific Languages and Active Libraries concentrate on a particular application

domain and offer a high-level programming method. This allows them to use domain

knowledge and achieve high performance on different hardware. Domain-specific lan-

guages (DSLs) and frameworks have recently gained traction in HPC as a way forward to

alleviate these issues. There are two main classes of DSLs, (1) standalone DSLs that define

a totally new language and (2) embedded DSLs that are hosted in a standard program-

ming language using its syntax, features, and compiling tools. Most of the DSLs fall into

the embedded category since it is very practical to utilize the existing efficient features of

a standard programming language and introduce new features to support domain-specific

tasks. Active libraries utilize their code generation facility to generate platform-specific

optimized code for programs written using the API of that particular language. Examples

of DSLs include OP2 [6] (which we use in this thesis) and Firedrake [59] for unstructured-

mesh-based applications, OPS [36] and Devito [61] for structured-mesh-based applica-

tions, TiDA [108] as tiling data abstraction, STELLA [109] for structured-mesh stencil

codes, Halide [110] for high-performance image processing, Pochoir [3] for implementing

stencil computations on multi-core processors, and Patus [111] for earthquake simulations.

Apart from that, there are several other frameworks developed for HPC applications that

help to enhance the performance of an application such as LLVM’s Polly [5] and Pluto [4].
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In this thesis, we utilize the OP2 DSL as the primary tool for implementing

communication-avoidance optimizations. Therefore, we have a separate section dedi-

cated to explaining the OP2 DSL after this section. This section covers other DSLs and

frameworks, as well as necessary basics.

2.5.1 Mesh Types

In this section, we will explore different mesh types used in computational simulations.

Mesh types are crucial not just for accurate simulations but also for designing domain-

specific languages (DSLs) tailored to specific computational needs. These mesh structures

form the basis of DSLs, enabling efficient data handling.

Meshing is the process of discretization of a surface or domain into smaller elements

or cells. This is a fundamental concept in numerical methods such as finite element

analysis (FEA) and computational fluid dynamics (CFD). This process helps to solve

partial differential equations (PDEs) numerically.

Depending on the context, a mesh divides the geometry into a collection of discrete

elements such as triangles, quadrilaterals, tetrahedrons, and so on. The shape and size of

the elements should be decided mainly on the accuracy level of the expected numerical

solution. In these physical problems, it is assumed that real-world physics happens at

the intersections, along the edges or middle of the grid element or cell. In other terms,

the calculations are performed on the data values assigned to the edges, nodes, or cells

of the mesh. Based on the way of the mesh creation process, meshes are categorized into

structured- and unstructured-meshes as shown in Figure 2.6.
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(b) Unstructured-mesh

Figure 2.6: Differnet types of meshes

In a structured-mesh, the mesh elements are regularly arranged and the neighbor-

ing elements can be identified easily. The generation of a structured-mesh is easy and it is

suitable for problems involving regular shapes such as pipes, cubes, and geometries which

can be decomposed into regular shapes. Storing the mesh elements of such a mesh is

memory efficient due to its regular nature. Most of the memory enhancement techniques

can be implemented during the compile time of the program due to the definite mesh

element arrangement.
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In an unstructured-mesh, the mesh elements have various shapes such as triangles

and tetrahedrons depending on the contours of the geometry being discretized. Storing

of the mesh elements demands a higher memory footprint, due to its irregular nature.

Neighboring mesh elements of this mesh type cannot be directly inferred, but have to

be identified through indirect data accesses of the mesh storing data structure. These

types of meshes can handle any type of geometry due to their element-storing pattern.

Enhancements to data accesses in these types of meshes are challenging when compared

to structured-meshes and those can be implemented at the runtime of the program which

needs a lot of processing and memory resources.

2.5.2 Firedrake

Firedrake [59, 60] is a software framework that uses the Finite Element Method (FEM) to

solve partial differential equations (PDEs) numerically. It is a well-known framework for

its flexibility and ease of use in the computational science domain. Firedrake simplifies

the development and execution of simulations by offering a domain-specific language for

PDE expression and an automatic code generation framework.

Firedrake’s FEM approach enables it to handle complex unstructured-meshes and

accelerate simulations through the use of modern hardware such as multi-core CPUs and

GPUs. One of its key features is automated code generation, which significantly reduces

the coding effort required to run simulations. This allows researchers and engineers to

focus on the mathematical aspects of their problems while simplifying the development

process and encouraging other collaborations rather than focusing on optimizing code for

individual computing platforms.

Overall, Firedrake is a valuable tool for computational scientists and engineers

looking to solve PDEs numerically. It offers a user-friendly interface, automates code

generation, and increases the efficiency of complex simulations.

2.5.3 Devito

Devito [61, 62] is a domain-specific language and code generation framework designed

specifically for computational geophysics. It combines high-level symbolic representations

with low-level code generation, providing a new approach to implementing complex nu-

merical algorithms. One of Devito’s key strengths is its ability to translate high-level

symbolic algorithm descriptions into highly efficient, platform-independent code.

This ability to bridge the gap between mathematical representations and optimized

code is significant. It simplifies the development of complex seismic simulations, releasing

researchers and geophysicists to focus on the scientific aspects of their work.

Devito is also optimized to utilize modern hardware architectures, including CPUs

and GPUs. This means that it not only simplifies development but also significantly

speeds up the execution of seismic simulations. This acceleration is critical in geophysics,

where processing large amounts of data efficiently is essential.
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In summary, Devito’s automated approach to stencil computations streamlines

workflows, improves efficiency, and optimally utilizes the power of parallel and distributed

computing resources. By simplifying complex seismic modeling and inversion tasks, De-

vito enables natural resource exploration.

2.5.4 TiDA

The TiDA (Tiling Data Abstraction) [108] offers a new approach to improve the efficiency

of parallelism and data locality in computer programs, especially with the current trend

of massive parallelism in modern hardware. Tiling is a technique that enhances the

performance of loops by optimizing data access patterns. TiDA intends to create a long-

lasting tiling abstraction that centralizes parameterized tiling information within array

data types, with minimal changes to the existing source code.

TiDA incorporates data layout information into array data types, which allows the

compiler and runtime system to manage parallelism, improve data locality, and schedule

tasks more intelligently. This simplifies the optimization process for parallel execution

and reduces the need for manual tuning.

2.5.5 STELLA

STELLA [109] is a domain-specific embedded language designed to facilitate the effi-

cient implementation of stencil codes on structured grids. Stencil codes are fundamental

in scientific simulations and numerical computations. STELLA offers a dedicated tool

for expressing and executing stencil computations with notable advantages. It operates

as an embedded language within a general-purpose programming environment, allowing

seamless integration with existing codebases. STELLA’s specialization ensures concise

and expressive code that closely aligns with the mathematical representation of stencil

operations.

Additionally, the language is optimized for structured grids, focusing on their reg-

ularity to enhance computational performance. STELLA is highly parallelizable, making

it well-suited for modern multi-core and parallel computing architectures. By provid-

ing a high-level abstraction for stencil computations, STELLA seeks to improve code

readability, maintainability, and productivity while delivering efficient performance in

stencil-based simulations and computations.

2.5.6 Halide

In the world of image processing, achieving both flexibility and high performance can be

difficult. Halide [110] aims to resolve this issue by allowing developers to define image pro-

cessing algorithms independently from how they are scheduled and executed on specific

hardware. This approach allows programmers to focus on the core logic of their image-

processing tasks, while Halide’s compiler generates efficient execution plans for various
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hardware platforms. This not only streamlines development but also facilitates optimiza-

tions, making it easier to adapt image processing code to diverse computing architectures

while maintaining high performance.

2.5.7 Pochoir

Pochoir [3] is a compiler and runtime system for implementing stencil computations on

multiple processors. A stencil refers to the value of a grid point in a d-dimensional spatial

grid at time t, expressed as a function of neighboring grid points at times preceding t. In a

stencil computation, the value of the grid point is updated repeatedly based on the values

of neighboring points and the value of itself. Pochoir is also a stencil-based compiler that

allows the developers to write their stencils using a domain-specific stencil language and

then translate it into high-performing C-like code after a two-phase mechanism as shown

in Figure 2.7 that has an efficient parallel cache optimizing algorithm.

Intel C++ 
Compiler

Pochoir
Spec

Pochoir
Template
Library

Serial 
Loops

(a) Phase 1: Stencil specification and Pochoir compliance verification
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Pochoir
Compiler

Pochoir
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Library

Optimized
Parallel Code

Pochoir
Spec

Pochoir
Cilk Code

(b) Phase 2: Optimized multi-threaded Cilk code generation

Figure 2.7: Pochoir two-phase compilation strategy [3]

This two-phase compilation strategy aims to enhance the performance of stencil

computations by utilizing the simplicity of template libraries and the optimization abilities

of multi-threading, particularly with the Cilk programming language.

Phase 1 During stencil computations, a template library is utilized to simplify expres-

sions. The code is compiled with the Intel C++ compiler, ensuring compliance with

the Pochoir framework as shown in Figure 2.7a.

Phase 2 Stencil code is then transformed into efficient Cilk code, incorporating parallel

constructs like spawn and sync. Designed for multi-threading, Cilk optimizes load

balancing and data locality for effective execution on multi-core processors. The

code is compiled using the Intel Cilk Plus compiler or similar tools as detailed

in Figure 2.7b.
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In summary, the Pochoir framework uses a two-phase compilation strategy which

simplifies stencil specification by using a template library and improves speed through

multi-threading via the Cilk programming language. This approach ensures that the

Pochoir criteria are met in the first phase and produces efficient and parallelized code in

the second phase, resulting in outstanding stencil computation performance.

2.5.8 Patus

Patus [111] is a software framework that simplifies the development of high-performance

stencil computations, particularly in the context of earthquake simulations. Patus of-

fers an easy-to-use environment that streamlines the creation of stencil-based code, while

still maintaining strong performance capabilities. Its ability to automate optimizations

and parallelism makes it ideal for modern multi-core and parallel computing architec-

tures. Evaluation within earthquake simulations has demonstrated Patus’ usefulness in

real-world scientific contexts, showing that it can expedite and improve the accuracy of

earthquake modeling and related computational tasks.

2.5.9 PLuTo

Many scientific engineering applications spend their time mostly on nested loops.

PLuTo [4, 67, 72, 112] is an automatic polyhedral source-to-source transformation frame-

work that can address this issue by transforming imperfectly connected nested loops for

parallelism and data locality. There are several tools chained together, as shown in Fig-

ure 2.8 to implement the PLuTo framework. The sequences of nested loops of the program

are identified by using a scanner/parser. The dependence tester is used to identify the

data dependencies among the loops in the nested loop sequence. After that, polyhedral

transformation is applied to the nested loop sequence so that it will possess data locality

optimizations.

Dependence polyhedra

Annotated  code

Compilable 
target code

(OpenMP 
parallelized)

Affine transformation 
framework 

(parallelization + 
locality optimiization)

LooPo 
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Polyhedral 

tile specifier

CLooGSyntactic 
Transformer

gcc/icc/
xlc

Nested loop
sequences

Statement-wise 
affine transforms

Updated domains and 
scatterings with 

supermodes

Figure 2.8: PLuTo source-to-source transformation system [4]
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The PLuTo framework optimizes code for performance while preserving its read-

ability. It determines the most effective loop transformations, such as tiling and skewing,

to minimize synchronization overhead and increase parallelism. PLuTo is also adaptable

to various hardware platforms, enabling developers to harness the performance benefits

of different parallel computing architectures.

2.5.10 Polly

Polly [5, 113] is a powerful framework that leverages the polyhedral model to improve

the data locality and loop parallelism of a program’s LLVM intermediate representation

(IR). LLVM is a collection of tools and technologies designed to create a compiler with a

language and platform-independent intermediate representation [114, 115]. With Polly, a

program’s data access patterns are analyzed and the optimal memory access patterns are

determined using the polyhedral model. Loop transformations, tiling, and loop fusion are

some of the techniques used by Polly to enhance program performance [116].

Export

SCoP Detection
Polyhedral 

SCoPLLVM IR LLVM IR
SIMD

OpenMP

JSCoP | scoplib

Import

Dependence 
Analysis

Manual Optimization / External Optimizers (PoCC/PLuTo)

Code Generation

Transformations

Figure 2.9: Polly architecture [5]

The Polly framework includes three main stages: front-end, middle-end, and back-

end passes, which work together to optimize the program, as shown in Figure 2.9. During

the front-end pass, the static control parts (SCoPs) of the program are identified and con-

verted to the polyhedral model. Next, the middle-end pass locates data locality enhance-

ments by analyzing the polyhedral model. These optimizations can be done through the

codes integrated into the Polly framework or through external optimizers such as PoC-

C/PLuTo [4] using the interface provided by Polly. It is important to consider which

option is best for the specific project and needs. The Polly framework is also capable

of identifying the loops that can be represented using OpenMP parallel loops and SIMD

instructions [113]. Finally, the back-end pass regenerates the optimized code with these

enhancements.
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2.5.11 Summary

Here, we will summarize the discussed DSLs and frameworks, highlighting their limita-

tions, which led us to choose OP2 DSL for communication-avoidance enhancements.

Table 2.1: Summary of DSLs/Frameworks

DSL/

Framework

Category Description Limitations

Firedrake Structured/

Unstructured

A finite element library for Python

designed to solve PDEs in both

structured and unstructured scenar-

ios. Utilizes MPI for parallelism and

PETSc for linear algebra. Major

applications include Finite Element

Analysis, with a focus on problems

such as heat conduction and fluid

dynamics.

Requires UFL (Unified

Form Language) for ex-

pressing variational forms,

which may be considered

a limitation for users unfa-

miliar with UFL. Limited

support for highly com-

plex geometries.

Devito Structured/

Unstructured

A high-level finite difference DSL for

Python, suitable for structured and

unstructured computations. Em-

ploys SymPy for symbolic mathe-

matics, NumPy for numerical oper-

ations, and OpenMP for paralleliza-

tion. Major applications include

Numerical Simulations, particularly

in seismic wave propagation studies.

Limited support for highly

complex equations. Some

complex expressions may

not be optimally trans-

lated to low-level code.

Performance may degrade

for problems with irregu-

lar geometries.

TiDA Structured A C++ library for time domain

analysis on structured grids, us-

ing OpenMP and MPI for paral-

lelism. Major applications include

Time Domain Analysis on Struc-

tured Grids, particularly for electro-

magnetic wave propagation studies.

Limited to time domain

analysis on structured

grids. Does not extend to

frequency domain analy-

sis. Limited support for

hybrid parallelism, which

may affect scalability on

some architectures.

STELLA Structured A domain-specific embedded lan-

guage designed for efficient imple-

mentation of stencil codes on struc-

tured grids. Highly parallelizable

and optimized for computational

performance on structured grids.

Major applications include Stencil

Code Implementation, with a focus

on environmental modeling and cli-

mate simulations.

Relatively steeper learning

curve due to its domain-

specific nature.
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Halide Structured/

Unstructured

A C++ DSL for image processing

designed for structured and unstruc-

tured image data. Primarily tai-

lored for efficient image processing

pipelines. Major applications in-

clude Real-time Image Processing in

computer vision and photography.

Limited support for non-

image processing tasks.

Not suitable for general-

purpose DSL use beyond

image processing. Lim-

ited optimization for non-

regular data access pat-

terns.

Pochoir Structured A C++ DSL for stencil computa-

tions on structured grids, optimized

for efficient stencil-based algorithms.

Major applications include Stencil

Computations, particularly in com-

putational fluid dynamics simula-

tions.

Limited to stencil com-

putations on structured

grids. May not be suit-

able for general-purpose

DSL use. Limited support

for dynamic adaptivity, re-

stricting its application to

static problems.

Patus Structured/

Unstructured

A performance portable DSL for

stencil computations in C++,

OpenMP, and CUDA, aiming for

portability across different hard-

ware platforms. Commonly used

for earthquake simulation and

other Performance Portable Stencil

Computations in seismology and

geophysics.

Limited to stencil com-

putations; potential

portability challenges.

May require careful

tuning for optimal per-

formance on diverse

architectures. Lack of

advanced debugging tools.

PLuTo Structured An automatic parallelization tool in

C, based on the Polyhedral model,

attempting to parallelize loop nests

for performance improvement. Ma-

jor applications include Automatic

Parallelization for numerical simula-

tions in scientific computing.

Limited support for irreg-

ular loop nests. Effective-

ness highly depends on the

regularity of loop struc-

tures. May produce sub-

optimal code for certain

algorithms.

Polly Structured A C++ polyhedral optimization

framework for LLVM, focusing on

optimizing structured computations

through loop transformations. Ma-

jor applications include Polyhedral

Optimization in optimizing linear al-

gebra computations.

Limited to polyhedral op-

timization in LLVM. May

not provide significant

benefits for unstructured

computations. Limited

support for complex

loop structures, impact-

ing the effectiveness of

transformations.
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2.6 OP2 DSL

OP2 [6] is an active library that allows users to easily translate their programs into

a format that is suitable for the running platform and libraries to be linked (e.g., MPI,

OpenMP, CUDA, SYCL, OpenCL, and OpenACC). It provides an abstraction framework

for the parallel execution of unstructured-mesh applications, which is an extension of

the OPlus [117] (The Oxford Parallel Library for Structured Solvers) library. As the

field of high-performance computing evolves rapidly, developers face challenges such as

performance portability, maintaining codes, and writing future-proof code. Fortunately,

OP2 decouples the scientific code from platform-specific enhancements, allowing us to

address these challenges with modifications to the library and achieve optimal solutions

for new and emerging technologies.

The OP2 domain-specific language (DSL) [6] provides a framework to solve

unstructured-mesh-based problems, representing them as a set of parallel loops with

problem-specific computational kernels. The relevant unstructured-mesh topology is rep-

resented in OP2 by the sets of nodes, edges, and cells and their connectivity information

using unique data structures. Further, general data structures such as arrays and vectors

manage the data attached to these mesh elements.

All these mentioned essential elements and processes of the OP2 application exe-

cution process enable a successful run of an application. In this section, we will look into

the basic concepts of OP2 in detail within the scope of the research.

2.6.1 Sets and Maps

OP2 describes the topology of a mesh (see Section 2.5.1 for mesh types) with abstract

entities, sets, and mappings or the connection between set entities. Edges, cells, and

nodes are the primary set elements that we see in applications. However, there may be

derivations of these main types, such as periodic edges, boundary edges, boundary cells,

and so on. To build the mesh inside the program, we need the information on how these

mesh elements are connected with each other. Mappings represent the connection between

a source set and a target set, with a fixed cardinality. For example, an edges-to-nodes

mapping will have information on the two sets of nodes that create edges in the mesh, as

shown in Listing 2.2.

1 op_set nodes = op_decl_set(nnode, "nodes");

2 op_set edges = op_decl_set(nedge, "edges");

3

4 op_map e2n = op_decl_map(edges, nodes, 2, en, "e2n");

Listing 2.2: OP2 sets and maps
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2.6.2 Data

Three main types of data are used to perform calculations in an OP2 application, as

shown in Listing 2.3. op dat is the abstraction given by the OP2 framework to store an

array/vector of data defined on the set elements of the mesh. These dynamic datasets in an

application are modified and exchanged among the processes during the computations. We

have global data, which is not associated with any of the sets and is commonly accessible

and modifiable by the computing kernels when passed into them by the application. Const

data is also not associated with any of the sets but read-only and is globally visible to

the computing kernels where they are accessed by referring to the given unique name.

1 // dynamic datasets

2 op_dat d_node_val = op_decl_dat(nodes, 2, "double", nval, "nval");

3

4 // constants

5 double gam = 1.4f;

6 op_decl_const2("gam", 1, "double", &gam);

7

8 // global data, prepare it as an argument to send to a computing kernel

9 double rms = 0.0;

10 op_arg d_rms = op_arg_gbl(&rms, 1, "double", OP_INC);

Listing 2.3: OP2 data

2.6.3 Parallel Loops

All the computations in an OP2 application are performed inside parallel loops by mapping

the computations over an iteration set. The complexities of the code, including platform-

specific and platform-independent enhancements, data exchange between processes or

between the host and the device, and parallel code execution, are hidden within these

parallel loops. The computing kernel accessed inside the parallel loop is executed over a

set of mesh elements such as edges, cells, and nodes. Sometimes, the iteration set used

for computations may be limited to a subset of the main sets, such as boundary edges.

The abstraction provided in the OP2 API for the parallel loops is op par loop

as shown in Listing 2.4. In the first three arguments, op par loop takes the function

pointer of the computing kernel, its name, and the iteration set, respectively. The datasets

used inside the computing kernel for the calculations are sent with the relevant dataset

pointer, data element location inside an n-dimensional piece of data, required mapping to

access data elements indirectly while performing iterations over the iteration set or OP ID

(identity mapping) for direct access of data, the data type of the dataset, and the access

descriptor, packed in the op arg dat abstraction.

The access descriptors indicate how the datasets are accessed inside the comput-

ing kernel. The main access descriptors used in the OP2 DSL are OP READ (read-only),

OP WRITE (write-only), OP INC (increment), and OP RW (read-write). Based on the access

mode of the arguments (op args) of the op par loop, the loops are categorized into two,

direct and indirect.
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1 void edge_kernel (double* nval1, double* nval2, double* pnval1,

2 double* pnval2) {

3 *nval1 += *pnval1 - *pnval2;

4 *nval2 += *pnval2 - *pnval1;

5 }

6

7 // loop over edges, updating nodes: update node values

8 op_par_loop(edge_kernel, "edge_kernel", edges,

9 op_arg_dat(dnval, 0, e2n, 2, "double", OP_INC),

10 op_arg_dat(dnval, 1, e2n, 2, "double", OP_INC),

11 op_arg_dat(dpnval, 0, e2n, 2, "double", OP_READ),

12 op_arg_dat(dpnval, 1, e2n, 2, "double", OP_READ));

Listing 2.4: Parallel loop written in OP2 API

Direct Loops

If all the op args in an op par loop are directly accessed inside the computing kernel,

such parallel loops are called direct loops. The iterations happen only up to the local set

size and no data exchange is required before executing the loop. The direct loop example

shown in Listing 2.5 shows how the dataset elements are accessed using an offset inside

the computing kernel with no mappings.

1 void node_kernel (double* nval, double* pnval) {

2 for (int i = 0; i < 2; i++) {

3 nval[i] += pnval[i];

4 }

5 }

6

7 // loop over nodes, updating nodes: update node values

8 op_par_loop(node_kernel, "node_kernel", nodes,

9 op_arg_dat(dnval, -1, OP_ID, 2, "double", OP_INC),

10 op_arg_dat(dpnval, -1, OP_ID, 2, "double", OP_READ));

Listing 2.5: Direct parallel loop written in OP2 API

Indirect Loops

If any of the op args in an op par loop are accessed indirectly through a mapping within

the computing kernel, the parallel loops are classified as indirect loops. If the loop involves

indirect reading of any of the datasets, data exchange is required before executing the

loop. The iterations are then performed, including any imported data elements from other

processes. The loop example shown in Listing 2.6 is an indirect loop, where op args are

accessed both directly and indirectly.
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1 void edge_kernel (double* nval1, double* nval2, double* eval) {

2 *nval1 += *nval2 - *eval;

3 *nval2 += *nval1 - *eval;

4 }

5

6 // loop over edges, updating nodes: update node values

7 op_par_loop(edge_kernel, "edge_kernel", edges,

8 op_arg_dat(dnval, 0, e2n, 2, "double", OP_INC),

9 op_arg_dat(dnval, 1, e2n, 2, "double", OP_INC),

10 op_arg_dat(deval, -1, OP_ID, 2, "double", OP_READ));

Listing 2.6: Indirect parallel loop written in OP2 API

2.6.4 Data Layout

The OP2 library supports datasets consisting of basic data types with multiple dimensions

by employing the op dat data structure. The data elements of the dataset, regardless of

dimension, are stored in a single dimension, following the row-major order. The size of

the data storing array is determined by multiplying the dataset’s dimension, data type,

and the size of the set on which the dataset is defined.

Direct Data Access

i i+1

2(i+1)2i

iteration set

op_dat 
(dim 2)

index

Figure 2.10: OP2 data layout for direct data access

During execution, the kernel is called several times depending on the iteration set’s

size and its halos. When accessing a dataset directly, as illustrated in Listing 2.5, the

kernel receives a pointer, as in Figure 2.10, indicating the start of the data chunk referred

to by the iteration set index, i. Since the iteration and dataset sets are identical, no data

indirection is involved.

Indirect Data Access

In cases where the iteration and dataset sets differ as in Listing 2.4 and Listing 2.6,

indirect data accesses occur during kernel execution as illustrated in Figure 2.11. The

indirection map is used to find the pointer to the start of the data chunk referred to by

the iteration set index, i. The kernel receives pointers equivalent to the arity/dimension

of the map to access elements of the dataset corresponding to the single set element of

the iteration set. For instance, in the given example, the kernel receives four pointers for

the index i and accesses four different locations in the dataset given by the map entries,

(i, 0), (i, 1), (i, 2), and (i, 3).
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Figure 2.11: OP2 data layout for indirect data access

2.6.5 Kernels

The computations to be performed on each element of the iteration set are defined by

a kernel. The kernel has a local perspective on these computations, regardless of the

OP2 back-end type (i.e., MPI, OpenMP, CUDA, and others) linked to the application.

For instance, if the application is running a multi-threaded version, the kernel has the

computations to be performed by a single thread on a single call. The kernels shown

in Listing 2.4, Listing 2.5, and Listing 2.6 clearly demonstrate the nature and API of a

kernel in the OP2 library. Data accessed through OP READ, OP INC, and OP RW is gathered

by utilizing the pointers passed to the kernel and indirection maps before executing the

kernel. Likewise, data modified through OP WRITE, OP INC, and OP RW is scattered/written

back to their memory locations using the indirection maps and pointers given to the kernel.

The kernel must not violate the data access descriptors given when describing the kernel

arguments using the op par loop API. Otherwise, it may lead to erroneous results due

to unhandled data races and uninitialized values during kernel execution.

2.6.6 Architecture

The OP2 library provides an API for describing scientific computations related to

unstructured-meshes, which is discussed in previous sections. After the code is writ-

ten following the OP2 API, it is translated into a platform-specific kernel and optimized

application code using a Python/CLANG LLVM-based translator [6]. The resulting code

is then compiled using a traditional compiler and linked with platform-specific libraries, as

explained in Figure 2.12. The resulting executable can be utilized to run the application

on the designated hardware platform, accessing relevant mesh data files.
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Figure 2.12: OP2 code generation

2.6.7 Supported Back-Ends

OP2 supports running the application on different multi-core and many-core architectures

with suitable back-ends linked to it as specified in Figure 2.12. Even though the running

platform and the linked back-end are different from each other, the user code does not

need to be changed. The user is given a unified API to write the scientific code without

having to consider the running platform. Our focus is on the back-ends used in our testing

when comparing the communication-avoidance work. We are continuously developing and

improving the supported back-ends and their features. The main supported back-ends

include:

Sequential Back-End

1 for (int n = 0; n < set_size; n++) {

2 int map0idx; int map1idx;

3 map0idx = arg0.map_data[n * arg0.map->dim + 0];

4 map1idx = arg0.map_data[n * arg0.map->dim + 1];

5

6 test_write_kernel(

7 &((double*)arg0.data)[5 * map0idx],

8 &((double*)arg0.data)[5 * map1idx]);

9 }

Listing 2.7: Sequential back-end kernel

The application runs sequentially on a single CPU core. The translator generates a

code that calls the computations inside a for loop for each index of the iteration set as

in Listing 2.7.
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OpenMP Back-End

The program operates with multiple threads on an SMP (Shared-Memory Processor) CPU

using OpenMP. The number of threads can be adjusted through a system environment

variable. OpenMP #pragmas are included in the generated kernel to enable parallel execu-

tion with multiple threads, as shown in Listing 2.8. To prevent data races, a color scheme

is created based on the problem size and number of threads, ensuring that adjacent indices

in the iteration set are not executed by threads with the same color.

1 op_plan *Plan = op_plan_get_stage_upload(name, set, part_size,

2 nargs, args, minds, finds, OP_STAGE_ALL, 0);

3

4 // execute plan

5 int block_offset = 0;

6 for (int col = 0; col < Plan->ncolors; col++) {

7

8 int nblocks = Plan->ncolblk[col];

9

10 # pragma omp parallel for

11 for (int blockIdx = 0; blockIdx < nblocks; blockIdx++) {

12 int blockId = Plan->blkmap[blockIdx + block_offset];

13 int nelem = Plan->nelems[blockId];

14 int offset_b = Plan->offset[blockId];

15

16 for (int n = offset_b; n < offset_b + nelem; n++) {

17 int map0idx;

18 int map1idx;

19 map0idx = arg0.map_data[n * arg0.map->dim + 0];

20 map1idx = arg0.map_data[n * arg0.map->dim + 1];

21

22 test_write_kernel(

23 &((double*)arg0.data)[5 * map0idx],

24 &((double*)arg0.data)[5 * map1idx]);

25 }

26 }

27 block_offset += nblocks;

28 }

Listing 2.8: OpenMP back-end kernel

MPI Back-End

The problem is divided equally among the processes used by the application. Each process

solves its assigned sub-problem sequentially, but all processes work in parallel. After

solving the sub-problems, the final solution is generated by combining the solutions. The

generated kernel can hide latency by overlapping computation and communication, and

it can execute computations sequentially within a process, as shown in the example code

in Listing 2.9.
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1 int set_size = op_mpi_halo_exchanges(set, nargs, args);

2

3 if (set_size > 0) {

4 for (int n = 0; n < set_size; n++) {

5 if (n == set->core_size) {

6 op_mpi_wait_all(nargs, args);

7 }

8 int map0idx; int map1idx;

9 map0idx = arg0.map_data[n * arg0.map->dim + 0];

10 map1idx = arg0.map_data[n * arg0.map->dim + 1];

11

12 test_write_kernel(

13 &((double*)arg0.data)[5 * map0idx],

14 &((double*)arg0.data)[5 * map1idx]);

15 }

16 }

17

18 if (set_size == 0 || set_size == set->core_size) {

19 op_mpi_wait_all(nargs, args);

20 }

Listing 2.9: MPI back-end kernel

CUDA Back-End

1 //set CUDA execution parameters

2 int nthread = OP_block_size;

3

4 for (int round = 0; round < 2; round++) {

5 int start = round == 0 ? 0 : set->core_size;

6 int end = round == 0 ? set->core_size : set->size + set->exec_size;

7 if (end - start > 0) {

8 int nblocks = (end - start - 1) / nthread + 1;

9

10 op_cuda_test_write_kernel<<<blocks, nthread>>>(

11 (double *)arg0.data_d,

12 arg0.map_data_d,

13 start, end, set->size + set->exec_size);

14 }

15 }

16 cutilSafeCall(cudaDeviceSynchronize());

Listing 2.10: CUDA back-end kernel

The application will offload the computations to the GPU when linking the application

to this back-end. The translator will generate a kernel as in Listing 2.10 considering the

GPU block sizes.
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MPI OpenMP Back-End

This is a combination of MPI and OpenMP where the problem is divided into small

sub-problems, assigned to individual processes, and inside a process, the sub-problem

is executed in parallel using multiple OpenMP threads. The application utilizes the

kernel detailed in Listing 2.8 with some additions to support MPI message exchanges

with latency hiding.

MPI CUDA Back-End

This is a combination of MPI and CUDA where the problem is divided into small sub-

problems, assigned to individual processes, and inside a process, the sub-problem is exe-

cuted in parallel using the threads in the GPU. The application utilizes the kernel detailed

in Listing 2.10 with some additions to support MPI message exchanges with latency hid-

ing.

MPI CommAvoid (CA) Back-End

This is the newest addition to the OP2 library, of which the details are explained in

Chapter 4. This communication-avoidance back-end developed for the OP2 library is one

of the main contributions of this research.
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Chapter 3

Communication-Avoiding

Optimizations on Shared-Memory

Systems

It is challenging to improve the vertical data movement of current computing sys-

tems [118]. Vertical data movement refers to moving data through the system’s memory

hierarchy to the processing elements and vice versa. This intranodal performance en-

hancement has become cumbersome due to the nature of data access patterns mostly

specific to individual programs. When a data element is accessed in a program, the rele-

vant data element and its surrounding data elements are fetched from the main memory

and brought to the fast cache of the system if it is not available in the cache at the

time of accessing. The current data in the cache is evicted and sent back to the main

memory with its updates to facilitate the incoming data. This fast cache is limited in

size in modern-day computing systems and it is time and energy-consuming to move data

to and from the cache. So, the data locality of the program plays a significant role in

its performance and it has become a priority to improve the data locality when running

a program. Various cache-replacing algorithms such as FIFO/LIFO (First-In, First-Out

/ Last-In, First-Out), LRU (Least Recently Used), LFU (Least Frequently Used), and

MRU (Most Recently Used) algorithms have been developed and integrated into modern

computing platforms to improve the data locality of the programs. However, the impact

of these algorithms on enhancing the performance of numerous scientific applications re-

mains constrained. This limitation arises from the unique and often intricate data access

patterns inherent in scientific applications.

3.1 Motivation

Our research is centered on applications that use unstructured-meshes. These types of

applications involve solving partial differential equations related to fluid, heat transfer,
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and stress analysis using the finite element method (FEM) and finite volume method

(FVM). In finite element analysis (FEA), these equations are transformed into a set

of simultaneous algebraic equations and represented as data parallel loops within the

application. This set of loops is then solved using variational methods in calculus by

minimizing an error function after a large number of iterations.

In these unstructured-mesh-based applications, the mesh connectivity information

must be given explicitly to the application through mappings such as edges-to-nodes and

cells-to-nodes. These map indirections result in many indirect memory accesses when

executing the application. Due to this reason, it is impossible to apply compile-time

loop executing enhancements such as traditional tiling to these applications. At the same

time, in the real world, the unstructured-mesh datasets used in these applications can

become quite large, which in turn limits the possibility of keeping the working dataset in

a level of cache of the processor until the application completes a considerable number

of computations. As a result, the application experiences continuous cache misses, which

force it to move data between various levels of memory very frequently, leading to a

decrease in performance due to memory bandwidth limitations.

We have several such unstructured-mesh-based benchmarks and applications, Air-

foil, MG-CFD, Volna, and Hydra, which use a set of data parallel loops to arrive at a final

solution. Airfoil [82] is an industrial representative CFD benchmark application that uses

a 2D unstructured-mesh and solves 2D Euler equations using scalar numerical dissipation.

MG-CFD [83] is a mini-application that represents a geometric unstructured CFD code

and Volna [84] is a CFD application used for the modeling of tsunami waves. Hydra [63]

is our main application of interest, which Rolls Royce uses to simulate next-generation

jet engine components. Improving the performance of these unstructured-mesh-based ap-

plications on a shared-memory system has become a pressing need, due to the limited

performance we experience with bandwidth limitations in modern computing platforms.

Several algorithms have been developed to enhance data locality by optimizing

data reuse within data-parallel loops in unstructured-mesh applications. Most of these

techniques are runtime data access pattern enhancements with an inspection/execution

scheme [7, 39]. SLOPE [37] is one such library, which is based on an inspector/executor

scheme that targets sparse tiling. We now explore the SLOPE library, developed by Lu-

porini et al. [37] embedding it to the OP2 DSL [6], to achieve performance enhancements

over the current best shared-memory version of the aforementioned applications.

3.2 Concepts and Approach

Fundamental concepts necessary to understand shared-memory parallelization enhance-

ments introduced by the SLOPE library [37] are explained in this section. These concepts

include loop transformation with sparse tiling mechanisms, inspector/executor schemes,

and loop-chain abstraction.
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3.2.1 Sparse Tiling

In Section 2.4.1, we explained traditional tiling and loop fusion, which enhance the perfor-

mance of a set of loops with improved data locality. When we combine these techniques,

loop fusion and loop tiling, we call it time tiling [8]. In many scientific computational

applications, a time iteration executes until a specified error function converges with

a given accuracy. In traditional or spatial tiling, we exploit the data locality within

the computation of a single time iteration. But in time tiling, we exploit data locality

over the time iterations of these applications by generating and executing tiles over the

time dimension. This time tiling concept was extensively studied for structured stencil

codes [35, 67, 119, 120]. Time tiling is known as sparse tiling in the unstructured-mesh

domain [39], which has little attention due to complexities arising in irregular mem-

ory accesses. The sparse tiling technique was initially developed by Douglas et al. [26]

with the name of unstructured cache-blocking. There was also no available framework

to utilize sparse tiling enhancements to unstructured-mesh applications until the SLOPE

library [8, 37, 121] was developed. Before the development of the SLOPE library, these

enhancements were manually applied to the applications, when required [39].

3.2.2 Full Sparse Tiling and Generalized Full Sparse Tiling

The sparse tiling method requires a sequential clean-up tile after computations, leading to

limited parallel performance [26]. However, a more recent approach by Strout et al. [38, 39]

partitions the unstructured-mesh, covering all iterations and eliminating the need for a

sequential clean-up tile. This improved method is known as ‘full sparse tiling’.

Previously, sparse tiling techniques have been implemented manually for specific

applications, such as moldyn, Gauss-Seidel, and the sparse matrix powers kernel [7]. It

has been challenging to develop a generalized full sparse tiling mechanism due to potential

overheads in the inspection phase. However, a possible solution was introduced by Strout

et al. [7] with the generalized full sparse tiling (gFST) mechanism. This approach utilizes

a newly developed loop-chain abstraction and a task-graph-based approach for achieving

shared-memory parallelism. Luporini et al. [8] later created the SLOPE library [121] based

on the gFST development, which uses a tile coloring algorithm instead of the task-graph

approach.

3.2.3 Inspector/Executor Schemes

Structured-meshes can be efficiently represented by computer programs due to their reg-

ular grid and uniform connectivity. This means that the number of neighbors remains

consistent, and the connectivity between mesh elements is clear, making it easy to access

data elements defined on mesh elements such as nodes, edges, and cells. As a result,

compilers and libraries can perform static performance analysis and compile-time en-

hancements, such as the vectorization of arrays, in structured-mesh-based applications.
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However, in unstructured-meshes, the cell shapes are arbitrary and the mesh con-

nectivity is irregular. The number of neighbors varies from mesh element to mesh element.

The mesh nodes may be distributed unevenly and the represented geometry is more com-

plex. The required memory footprint is higher since the explicit connectivity of the mesh

needs to be stored. Due to these reasons, the nature of the mesh is unpredictable un-

til it is loaded into the application. This prevents the compilers and the libraries from

performing static enhancements to the unstructured-mesh-based code in an application.

The need for separate phases to analyze and execute enhancements has emerged due to

this. Dynamic analysis is necessary and completing these runtime enhancements requires

significant time and resources.

Salz et al. [29] introduced an inspector/executor scheme to enhance data locality

in unstructured-mesh applications. Further, various inspector/executor schemes suitable

for specific types of applications were studied by different authors [7, 25, 38, 49].

In general, during the inspection phase, the iteration space execution order is

designed and decided based on the data access patterns of datasets of the loop-chain. This

may include reordering the iteration execution. The main objective of the inspection phase

is to ensure that none of the enhancements affect the problem’s final solution, meaning the

most challenging part is preserving the program’s semantics. The time and resources spent

on the inspection phase depend on the complexity of the loop enhancements targetted for

the loop-chain. The actual application computations are performed during the executor

phase, using the iteration order generated in the inspection phase to achieve performance

enhancements.

In real-world applications, the enhancements gained in the execution phase are

much higher than the overheads added in the inspection phase, especially with larger

datasets and a larger number of iterations. The generalized inspector/executor scheme

developed by Strout et al. [7] demonstrates that the gains in the execution phase outper-

form the overheads in the inspection phase.

3.2.4 Loop-chain Abstraction

A loop-chain is a sequence of consecutive loops without any global synchronization points

(such as global reductions) in between loops, specified or annotated with information

to facilitate runtime dependency analysis. The information should be provided by the

programmer or automatically derived from the code either through a code parse or a

DSL’s API. This information then enables us to reason about the dependencies of the

sequence of the loops collectively. For loop-chains over unstructured-meshes, a sparse

tiling schedule can be created from the analysis, providing an execution ordering of the

iterations over the mesh [8]. This ordering which is semantically equivalent to the original

can then be used to carry out the loop iterations.

For example, consider the two sequential loops detailed in Listing 3.1, over the

unstructured-mesh shown in Figure 3.1. The mesh consists of nodes, edges, and cells,
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Figure 3.1: Example unstructured-mesh with nodes, edges, and quadrilateral cells (data
values in parenthesis)

1 for (int t = 0; t < tmax; t++) { //main iteration loop

2 ...

3 // loop over edges, updating nodes: update residuals

4 for (int iter = 0; iter < nedges; iter++) {

5 int mapidx1 = en[it*2+0]; int mapidx2 = en[it*2+1];

6 res[2*mapidx1+0] += pres[2*mapidx1+0]-pres[2*mapidx1+1];

7 res[2*mapidx1+1] += pres[2*mapidx2+0]-pres[2*mapidx2+1];

8

9 res[2*mapidx2+0] += pres[2*mapidx2+1]-pres[2*mapidx2+0];

10 res[2*mapidx2+1] += pres[2*mapidx1+1]-pres[2*mapidx1+0];

11 }

12

13 // loop over edges, updating nodes: calculate edge flux

14 for (int iter = 0; iter < nedges; iter++) {

15 int mapidx1 = en[it*2+0]; int mapidx2 = en[it*2+1];

16 int mapidx3 = ec[it*2+0]; int mapidx4 = ec[it*2+1];

17

18 flux[2*mapidx1+0] += res[2*mapidx1+0]*cw[4*mapidx3+0]

19 - res[2*mapidx1+1]*cw[4*mapidx3+1];

20

21 flux[2*mapidx1+1] += res[2*mapidx2+1]*cw[4*mapidx3+2]

22 - res[2*mapidx1+0]*cw[4*mapidx3+3];

23

24 flux[2*mapidx2+0] += res[2*mapidx2+1]*cw[4*mapidx4+2]

25 - res[2*mapidx1+0]*cw[4*mapidx4+3];

26

27 flux[2*mapidx2+1] += res[2*mapidx1+0]*cw[4*mapidx4+0]

28 - res[2*mapidx1+1]*cw[4*mapidx4+1];

29 }

30 ...

31 }

Listing 3.1: Sequential loops in C

where a loop over edges, updating the nodes, at each end of the edge would require

explicit connectivity information specified by a mapping of edges-to-nodes, en. Two such

loops, occurring within a larger time-stepping iterative loop, are illustrated in lines 4-11

(update) and 14-29 (edge flux) in Listing 3.1. Both the loops increment data held on the

nodes, res and flux respectively, indirectly via the mapping array, en. The edge flux
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1 inline void update (double* res1, double* res2, double* pres1,

2 double* pres2) {

3 res1[0] += pres1[0]-pres1[1]; res1[1] += pres2[0]-pres2[1];

4 res2[0] += pres2[1]-pres2[0]; res2[1] += pres1[1]-pres1[0];

5 }

6

7 inline void edge_flux (double* flux1, double* flux2, double* res1,

8 double* res2, double* cw1, double* cw2) {

9 flux1[0] += res1[0]*cw1[0] - res1[1]*cw1[1];

10 flux1[1] += res2[1]*cw1[2] - res2[0]*cw1[3];

11

12 flux2[0] += res2[1]*cw2[2] - res1[1]*cw2[3];

13 flux2[1] += res1[0]*cw2[0] - res1[1]*cw2[1];

14 }

15

16 op_set nodes = op_decl_set(nnode, "nodes");

17 op_set edges = op_decl_set(nedge, "edges");

18 op_set cells = op_decl_set(ncell, "cells");

19

20 op_map e2n = op_decl_map(edges, nodes, 2, en, "e2n");

21 op_map e2c = op_decl_map(edges, cells, 2, ec, "e2c");

22

23 op_dat dres = op_decl_dat(nodes, 2, "double", res, "res" );

24 op_dat dpres = op_decl_dat(nodes, 2, "double", pres, "pres");

25 op_dat dcw = op_decl_dat(cells, 4, "double", cw, "cw" );

26 op_dat dflux = op_decl_dat(nodes, 2, "double", flux, "flux");

27

28 for (int t = 0; t < tmax; t++) { //main iteration loop

29 ...

30 // loop over edges, updating nodes: update residuals

31 op_par_loop(update, "update", edges,

32 op_arg_dat(dres, 0, e2n, 2, "double", OP_INC ),

33 op_arg_dat(dres, 1, e2n, 2, "double", OP_INC ),

34 op_arg_dat(dpres, 0, e2n, 2, "double", OP_READ ),

35 op_arg_dat(dpres, 1, e2n, 2, "double", OP_READ ));

36

37 // loop over edges, updating nodes: calculate edge flux

38 op_par_loop(edge_flux,"edge_flux", edges,

39 op_arg_dat(dres, 0, e2n, 2, "double", OP_READ),

40 op_arg_dat(dres, 1, e2n, 2, "double", OP_READ),

41 op_arg_dat(dcw, 0, e2c, 4, "double", OP_READ),

42 op_arg_dat(dcw, 1, e2c, 4, "double", OP_READ),

43 op_arg_dat(dflux, 0, e2n, 2, "double", OP_INC ),

44 op_arg_dat(dflux, 1, e2n, 2, "double", OP_INC ));

45 ...

46 }

Listing 3.2: Loops written in OP2 API

loop indirectly reads data, cell weights (cw), held on the two cells next to an edge, via the

mapping edges-to-cells, ec. The update and edge flux loops taken consecutively can be

viewed as a loop-chain with two parallel loops and specified using the OP2 DSL’s API [6]

as in Listing 3.2. According to the definition provided in [8], the loop-chain can be further

elaborated as follows:
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• Loop-chain L = L0, L1, ..., Ln−1, an ordered sequence of n loops : edge kernel,

cell kernel where n = 2, declared as op par loops.

• Iteration spaces S = S0, S1, ..., Sm−1, a collection of disjoint iteration spaces repre-

senting mesh element types : edges, nodes, and cells, m = 3, declared as op sets.

• Explicit connectivity between iteration spaces M = M0,M1, ...,Mo−1, where M :

Si → Sa
j is a map with arity a : e2n and c2n, o = 2, declared as op maps. For

example, e2n has an arity of 2, mapping an edge to two nodes and c2n has an arity

of 4, mapping a cell to four nodes.

• Access descriptors, one or more 2-tuples of the form of <M , mode> associated

with a loop Li where M is a map indicating indirect access or OP ID (identity

mapping) indicating direct access on data (specified by op dats in OP2) defined on

the iteration space of the loop. mode is the mode of data access, read (OP RW), write

(OP WRITE), or increment (OP INC). In OP2, the access descriptors are defined using

op arg dats API.

The above definition provides information to carry out an inspection or analysis

phase to create a set of tiles, i.e., the aforementioned sparse tiling schedule. The schedule

will guarantee those data dependencies are not violated such that each tile can be executed

in its entirety without any data access to/from outside the tile. Executing a tile, Ti entails

executing all the iterations from L0 belonging to that tile, followed by all the iterations

in that tile for L1 and so on up to Ln−1. Then the next tile, Ti+1 is executed in a similar

manner, continuing this pattern of execution until all the tiles have been completed. It is

important to note that sparse tiling assumes that the order of execution of loop iterations

does not affect the final result, at least within machine precision. This encompasses a

large number of explicit numerical schemes, particularly when solving PDEs in numerical

simulation applications.

3.2.5 OP2 Shared-Memory Parallelism

In this chapter, we are comparing the OP2 shared-memory parallelized version of an

application with the SLOPE version. Therefore, it is crucial to identify the current OP2

shared-memory parallelization support when comparing results.

In OP2, shared-memory parallelized execution is based on the principle that the

order in which iterations are executed should not affect the final outcome of the pro-

gram. This is achieved by assigning different sets of iterations to different threads in

a manner that prevents any race conditions from occurring. The OP2 library supports

application parallelization through iteration space partitioning and prioritizes these itera-

tions through coloring, executing the same colored iterations in parallel through OpenMP

thread parallelization.
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1 void edge_kernel_01 (double* nval1, double* nval2, double* pnval1,

2 double* pnval2) {

3 *nval1 += *pnval1 - *pnval2;

4 *nval2 += *pnval2 - *pnval1;

5 }

6 ...

7 for (int t = 0; t < T; t++) {

8 // L0: loop over edges, updating nodes: read node values

9 op_par_loop(edge_kernel_01, "edge_kernel_01", edges,

10 op_arg_dat(nodeval, 0, e2n, 2, "double", OP_INC),

11 op_arg_dat(nodeval, 1, e2n, 2, "double", OP_INC),

12 op_arg_dat(prev_nodeval, 0, e2n, 2, "double", OP_READ),

13 op_arg_dat(prev_nodeval, 1, e2n, 2, "double", OP_READ));

14

15 // L1: loop over cells, update nodes: read cell values

16 op_par_loop(cell_kernel, "cell_kernel", cells,

17 op_arg_dat(nodeval, 0, c2n, 4, "double", OP_INC),

18 op_arg_dat(nodeval, 1, c2n, 4, "double", OP_INC),

19 op_arg_dat(cellval, -1, OP_ID, 1, "double", OP_READ));

20

21 // L2: loop over edges, updating nodes: read edge values

22 op_par_loop(edge_kernel_02, "edge_kernel_02", edges,

23 op_arg_dat(nodeval, 0, e2n, 2, "double", OP_INC),

24 op_arg_dat(nodeval, 1, e2n, 2, "double", OP_INC),

25 op_arg_dat(edgeval, -1, OP_ID, 1, "double", OP_READ));

26 }

Listing 3.3: Section of an OP2 program to explain full sparse tiling with the SLOPE
library. Example inspired by Strout et al. [7].

In the code example Listing 3.3, the first loop, which is the edge kernel 01,

iterates over the edges and nodeval is incremented indirectly using e2n mappings. The

OP2 API is responsible for partitioning the edge iteration set and assigning colors in such

a way that no adjacent partitions, consisting of edges that update the same node/nodes,

have the same color. OP2 ensures that partitions of the same color are executed in parallel

by different threads, while partitions of different colors are executed serially in an order

arranged according to the data dependencies. The assigned thread executes elements in

a partition serially. To achieve better data locality, OP2 utilizes third-party partitioning

libraries such as Scotch [122] and METIS [123].

3.3 SLOPE Library

The SLOPE library, developed by Luporini et al. [8], is an open-source tool that en-

ables the creation of loop-chains and supports sparse tiling through an inspector/executor

scheme for unstructured-mesh applications.

Here, we utilize the loop-chain abstraction demonstrated in Section 3.2.4 in ex-

plaining the concepts of the SLOPE library. To illustrate the full sparse tiling process

in the upcoming sections, we refer to the example code provided in Listing 3.3. In this
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example, the first loop updates the nodeval dataset by iterating over the mesh edges and

reading the prev nodeval dataset, utilizing the edges-to-nodes, e2n mapping to access the

datasets indirectly. The second loop updates the nodeval dataset by iterating over the

mesh cells and reading the cellval dataset, utilizing the cells-to-nodes, c2n mapping to

access the nodeval dataset indirectly. In the third loop, the nodeval dataset is updated

while reading the edgeval dataset, with mapping indirections similar to the first loop.

3.3.1 Inspection Phase

1 int avg_tile_size = 5000; int seed_loop = 1;

2

3 // sets and maps

4 set_t* sl_nodes = set("nodes", nnode);

5 set_t* sl_edges = set("edges", nedge);

6 set_t* sl_cells = set("cells", ncell);

7

8 map_t* sl_pedge = map("e2n", sl_edges, sl_nodes, edge, nedge*2);

9 map_t* sl_pcell = map("c2n", sl_cells, sl_nodes, cell, ncell*4);

10

11 // descriptors

12 desc_list edge01_desc({desc(sl_pedge, INC),

13 desc(sl_pedge, READ)});

14

15 desc_list cell_desc({desc(sl_pcell, READ),

16 desc(DIRECT, WRITE)});

17

18 desc_list edge02_desc({desc(sl_pedge, INC),

19 desc(DIRECT, READ)});

20

21 // inspector initialization

22 map_list mesh_maps({sl_pedge, sl_pcell});

23 inspector_t* insp = insp_init(avg_tile_size, OMP, COL_DEFAULT, &mesh_maps);

24

25 // give the loop-chain arrangement

26 insp_add_parloop(insp, "edge_kernel_01", sl_edges, &edge01_desc);

27 insp_add_parloop(insp, "cell_kernel" , sl_cells, &cell_desc);

28 insp_add_parloop(insp, "edge_kernel_02", sl_edges, &edge02_desc);

29

30 insp_run(insp, seed_loop); // run the inspector

Listing 3.4: SLOPE inspector API. Generated for the OP2 loop-chain in Listing 3.3.

First, the information of the loops such as datasets and their data access patterns is given

to the SLOPE library as illustrated in Listing 3.4 to run the inspector and generate the

tiling schedule. In addition to the tiling schedule generation, the library provides an iter-

ation assignment summary for each tile, depending on the log level. It also facilitates the

generation of VTK files, which are used to visualize the tiling and coloring pattern of the

mesh. We made use of this feature to generate figures (Figure 3.11a, Figure 3.11b, Fig-

ure 3.13a, Figure 3.13b, Figure 3.20a, and Figure 3.20b) that illustrate the partitioning

and coloring of the meshes we tested.
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Figure 3.2: Mesh partitioning and coloring in inspection phase for the OP2 loop-chain
in Listing 3.3

To begin, we need to find a seed loop for our loop-chain. Seed loop [8, 37] is the

loop that initializes the tiles for the loop-chain, and it must fully represent the mesh. In

this case, we have chosen loop L1, which iterates over the cells, as our seed loop. The

inspector then partitions the iteration space of the seed loop into initial partitions, where

each partition (Pi - i
th partition) represents a tile (Ti - i

th tile). For example, the mesh

shown in Figure 3.2a has been partitioned into four tiles, which are then colored using

the minimum number of colors so that no adjacent tiles have the same color.
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Once the tiles are colored, we assign an iteration order or execution priority for the

seed loop tiles, with the priority determined by the assigned color. The lower the value

of the assigned color, the higher the execution priority of the tile. The color of the ith tile

will be represented as T c
i . In this example, we assigned the colors TR

0 , TG
1 , TB

2 , and TR
3

to the tiles. Before assigning iterations of other loops to the initial tiles, we consider the

data dependencies of the datasets.

Since L1 updates the nodes of the mesh, from nodes (N) to tiles (T), a projection

(ϕ : N → T) should be calculated before tiling the other loops’ iteration spaces. For

example, node 7 (n7), which has four cells (C) connected to it, can only be valid for

reading after the lowest priority tile updates it. We have established the execution priority

values as R < G, which can be achieved by applying the MAX function to the connected

mesh element colors. Hence, it can be established that node, n7 belongs to the tile, TG
1 .

This assignment of nodes of the seed loop, L1 to tiles is shown in Figure 3.2b.

We have two other loops, L0 and L2, in the loop-chain. Since we have chosen

L1 as the seed loop that is in the middle of the loop-chain, we have to perform forward

tiling for L2 and backward tiling for L0. To create a projection, ϕ from the seed loop

to L2, which iterates over the edges (E), we have to use the MAX function for the pro-

jection. For instance, the edge 15 (e15), which is bounded by two nodes belonging to

the Green and Blue tiles, needs to be assigned to the Blue tile considering its priority,

MAX(ϕ(n7), ϕ(n12)) = MAX(G, B) = 3 = B. This shows that e15 must be assigned to TB
2 .

Otherwise, reading of e15 value may occur before the updates from the Blue tile to the

node (if it were assigned to the Red tile), which will be erroneous. This edge partition-

ing of L2 is detailed in Figure 3.2c. Nodes of L2 should also be assigned using another

projection similar to what we performed for L1, which is elaborated in Figure 3.2e.

When tiling L0, to create a projection, ϕ from the seed loop, L1 to L0, which

also iterates over the edges, we have to use the MIN function for the projection, since we

are using backward tiling for that. For instance, the edge 14 (e14), which is bounded by

two nodes belonging to the Red and the Blue tiles, needs to be assigned to the Red tile

considering its priority since reading of e14 value should occur after the updates from the

Red tile to the node, MIN(ϕ(n6), ϕ(n11)) = MIN(R, B) = R = 1. This shows that e14 must

be assigned to TR
0 . Nodes of L0 should also be assigned using another projection similar

to what we performed for L1, using the MIN function. These two stages of partitioning

L0 edges and nodes are illustrated in Figure 3.2d and Figure 3.2f, respectively.

Conflicting Colors

The example in Figure 3.3 shows mesh partitioning and coloring of the same mesh illus-

trated in Figure 3.2 for the loop-chain given in Listing 3.3, but starting with a different

seed loop partitioning as in Figure 3.3a. The stages illustrated in Figure 3.3b, Figure 3.3d,

Figure 3.3f, and Figure 3.3c, Figure 3.3e are the outcomes of the same forward and back-

ward tiling and consequent node partitioning process explained previously for Figure 3.2.
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(a) Seed loop, L1, cell partitioning (b) Seed loop, L1, node partitioning

(c) L2, edge partitioning (d) L0, edge partitioning
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Figure 3.3: Conflicting colors

However, after the node partitioning of L0 in Figure 3.3f, a color conflict occurs. This

means that two adjacent tiles (T0 and T3) are assigned the same color, potentially leading

to data races during execution. To address this issue, the SLOPE library adds a fake

connection between the two conflicting tiles, which then restarts the coloring stage and

the entire process [8, 37]. This repetition of the process will continue until the inspection

phase is completed without any color conflicts.

The detailed algorithms for the inspection, forward and backward tiling, and pro-

jection are explained in [8, 37].
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3.3.2 Execution Phase

Once the inspection phase is finished, the tiling schedule is passed to the execution phase.

The shared-memory execution algorithm described in Algorithm 3.1 runs the iterations

corresponding to tiles of the same color in parallel. The colors are chosen sequentially

based on their priority assigned during the initial partitioning phase of the seed loop.

Algorithm 3.1: Loop-chain execution with shared-memory, SLOPE [8]

Input: A set of tiles (T)
Result: Execute loop-chain

1 foreach color do
2 foreach tile T ∈ T && T.color == color do
3 foreach iteration I ∈ T do
4 execute iteration(I );
5 end foreach

6 end foreach

7 end foreach

3.3.3 OP2-SLOPE Integration

Application OP2 Application (Embedded API in Fortran/C/C++)

Source-to-Source Translator (Python / Clang LLVM)

Modified Platform-Specific 
OP2 Application

Platform-Specific Optimized 
Application Files

Conventional Compiler (Eg. icc, nvcc, 
pgcc, clang, cray) + Compiler Flags

Hardware

Sequential (testing)

CUDA

SYCL
OpenCL
OpenMP

Loop-chain 
Config File for 

SLOPE

OP2 Platform-Specific
Optimized Back-End Libs 

Mesh File 
(hdf5)

Platform-Specific
Binary Executable

MPI
Link

SLOPE
Link

Figure 3.4: OP2 code generation with SLOPE

After recognizing the loop-chain improvements offered by the SLOPE library and

constructing a framework to facilitate Fortran-based applications, we seamlessly incorpo-

rated the SLOPE library into the OP2 DSL. Consequently, the architecture of the OP2

library in Section 2.6.6 has been adapted to include the SLOPE library, as depicted in Fig-

ure 3.4. We use a configuration file that specifies the loop names and loop count of the

loop-chain in the application. The OP2 code generator is then modified to automatically
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apply SLOPE library enhancements to the loop-chains specified in the configuration file.

We can directly generate an application binary linked with SLOPE using the OP2 DSL

itself.

3.4 Performance

We now investigate the performance of the SLOPE library with shared-memory paral-

lelism, applying it to four different existing applications developed with the OP2 library:

(i) Airfoil, an industrial representative benchmark application, (ii) MG-CFD, a repre-

sentative CFD mini-application, (iii) Volna, a tsunami wave simulation application, and

(iv) Hydra, large-scale production CFD application used at Rolls Royce plc.

We test the performance of the SLOPE library on three platforms: Scyrus, Telos,

and ARCHER2. Scyrus is a single computing node consisting of two Intel Xeon Silver

4116 CPU @ 2.10GHz processors, each with 12 cores (24 cores in total) arranged in

2×NUMA regions per node (12 cores per NUMA region). Telos is also a single computing

node consisting of two Intel Xeon Gold 6252 CPU @ 2.10GHz processors, each with 24

cores (48 cores in total) arranged in a 2×NUMA regions per node (24 cores per NUMA

region). These systems have 120GB and 384GB of memory, respectively, and a cache

hierarchy of 32KB each for L1 instruction and data caches, 1MB for L2 cache, and 16MB

for L3 cache, which is shared. The Intel icc compiler 2018 was used to compile application

codes for both these systems with the compiler flags, -O3 -fPIC -xHost. ARCHER2, on

the other hand, is a supercomputer with each node consisting of two AMD EPYC 7742

processors, each with 64 cores (128 total cores) arranged in 8×NUMA regions per node (16

cores per NUMA region) configuration. Each node is equipped with 256 GB of memory,

and the nodes are connected by an HPE Cray Slingshot, 2×100 Gb/s bi-directional per

node network. The GNU compiler collection version 10.2.0 was used on ARCHER2 with

the compiler flags, -O2 -eF -fPIC.

During our testing, we compare the SLOPE version of the application with the

standard OP2 OpenMP (omp) version on all three platforms mentioned in Table 3.1.

We ensure that threads are bound to cores by setting environment variables, export

OMP PLACES=cores and export OMP PROC BIND=close. To identify the impact of NUMA

(Non-Uniform Memory Access) on the performance of the applications, we conduct both

single socket and dual socket runs on these platforms. For single socket runs, we use 12

threads on Scyrus, 24 threads on Telos, and 64 threads on ARCHER2. For dual socket

runs, we use 24 threads on Scyrus, 48 threads on Telos, and 128 threads on ARCHER2.

We experiment with various tile sizes and identify the rough range that shows potential

performance benefits for a given system. We then vary the tile size with suitable intervals

to capture the best performance of the sparse tiled version (i.e., the SLOPE version).

Based on our empirical observations, we noticed that smaller tile sizes resulted in better

performance gains across the three testing platforms. Therefore, we conduct tests by

changing the tile size with smaller intervals for tile sizes below 10000 to determine the
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Table 3.1: Systems specifications

System Scyrus [17] Telos [17] ARCHER2 [125]
Intel Skylake Intel Cascade Lake HPE Cray EX

Processor Intel(R) Xeon(R) Silver 4116 Intel(R) Xeon(R) Gold 6252 AMD EPYC 7742
@ 2.10 GHz @ 2.10 GHz @ 2.25 GHz

(procs×cores) 2×12 2×24 2×64
/node

Mem/node 120 GB 384 GB 256 GB

Cache hierarchy 32KB/1MB/16MB 32KB/1MB/16MB 32KB/512KB/16MB
/proc(L1/L2/L3) L3 shared L3 shared L3 shared

Interconnect Single Node Single Node HPE Cray Slingshot
2×100 Gb/s
bi-directional/node

OS Debian 4.9.210-1 Debian 4.19.208-1 HPE Cray LE (SLES 15)

Compilers Intel icc 2018 Intel icc 2018 GNU 10.2.0

Flags -O3 -fPIC -xHost -O3 -fPIC -xHost -O2 -eF -fPIC

Memory BW 115.212 GB/s 140.8 GB/s 204.763 GB/s
Per Socket

optimal runtime for the SLOPE version. For these tests, we designed an experimental

setup where we vary the tile size in increments of 10 up to tile size 100, by 100 up

to tile size 1000, by 1000 up to tile size 10000, and by 10000 up to tile size 200000.

While presenting the results in graphs, we have selected the tile size region that best

demonstrates the runtime variation around the optimal performing tile size. In these

tests, we keep the OP PART SIZE, a tuning parameter in the OP2 library, as 128, which

is the default value. We only compare the execution time and subtract the setup or

plan time from the total execution time. We use two partitioners to partition the mesh,

Chunk [8] and METIS [124], but we present the results with the Chunk partitioner since

it gives the best performance during testing. When presenting the results, we take the

minimum runtime of at least 5 runs for each test scenario. Runtimes of all the tests

performed in this chapter are given in Section B.1 of Appendix B.

3.4.1 Airfoil

Airfoil [82] is an industrial representative CFD benchmark application. This application

uses a 2D unstructured grid and solves 2D Euler equations using scalar numerical dis-

sipation. This benchmarking application is used in testing the OP2 library for various

platform-specific implementations, code generated with various programming models such

as OpenMP, MPI, CUDA, and OpenACC.
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1 for (int i = 0; i < ncolors; i++) {

2 // for all tiles of this color

3 const int ntiles_per_color = exec_tiles_per_color(exec, i);

4

5 # pragma omp parallel for

6 for (int j = 0; j < ntiles_per_color; j++) {

7 // execute the tile

8 tile_t* tile = exec_tile_at(exec, i, j);

9 int loop_size;

10

11 // loop adt_calc

12 iterations_list& lc2n_0 = tile_get_local_map(tile, 0, "c2n");

13 iterations_list& iterations_0 = tile_get_iterations(tile, 0);

14 loop_size = tile_loop_size(tile, 0);

15 for (int k = 0; k < loop_size; k++) {

16 adt_calc(...);

17 }

18

19 // loop res_calc

20 iterations_list& le2n_1 = tile_get_local_map(tile, 1, "e2n");

21 iterations_list& le2c_1 = tile_get_local_map(tile, 1, "e2c");

22 iterations_list& iterations_1 = tile_get_iterations(tile, 1);

23 loop_size = tile_loop_size(tile, 1);

24 for (int k = 0; k < loop_size; k++) {

25 res_calc(...);

26 }

27

28 // loop bres_calc

29 iterations_list& lbe2n_2 = tile_get_local_map(tile, 2, "be2n");

30 iterations_list& lbe2c_2 = tile_get_local_map(tile, 2, "be2c");

31 iterations_list& iterations_2 = tile_get_iterations(tile, 2);

32 loop_size = tile_loop_size(tile, 2);

33 for (int k = 0; k < loop_size; k++) {

34 bres_calc(...);

35 }

36

37 // loop update

38 iterations_list& iterations_3 = tile_get_iterations(tile, 3);

39 loop_size = tile_loop_size(tile, 3);

40 for (int k = 0; k < loop_size; k++) {

41 update(...);

42 }

43 }

44 }

Listing 3.5: Airfoil loop-chain with SLOPE

Datasets

We use NACA (National Advisory Committee for Aeronautics) airfoils for our testing,

which are airfoil shapes developed for aircraft wings. The meshes are named considering

the number of cells or nodes of the mesh. For instance, the mesh of 720k nodes includes

around 720k cells and 1.5 million edges. Airfoil meshes with several sizes were generated

to analyze the behavior of the SLOPE library. The generated meshes include node sizes
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45000, 180000, 720000, 2880000, 6480000, and 11520000. Meshes ranging from 45k to

2880k nodes were utilized in tests conducted on Scyrus and Telos, while meshes ranging

from 720k to 11520k were used on ARCHER2. Mesh sizes were selected for each platform,

based on computing node resources to minimize system noise and runtime comparison

impact. Test results and graphs of 45k and 180k meshes on Scyrus and Telos, and 720k

and 2880k meshes on ARCHER2 are given in Section B.1.1 of Appendix B.

Loop-chain

This application runs for 2000 iterations within a time-stepping loop that consists of

five main loops: adt calc, res calc, bres calc, update, and save soln. The most

compute-intensive loop, res calc, performs approximately 100 floating-point operations

per mesh edge and is executed 2000 times throughout the application’s total execution.

The first two loops, adt calc and res calc, perform most computations. The

adt calc loop iterates over the cells, reads information from adjacent nodes and updates

a dataset after performing calculations. The res calc loop, on the other hand, iterates

over the edges and computes the flux over interior edges. The third loop, bres calc,

iterates over boundary edges and computes flux over them. The fourth loop, update,

iterates over the cells and updates values based on current calculations. Finally, the

save soln loop saves the previous solution by iterating over the cells of the mesh.

Out of these five loops, save soln and update are direct loops, while the others

use indirect mappings to read, write, or increment. The loops in Listing 3.5 are chained,

and all calculations are performed using double-precision floating-point arithmetic.

Results and Analysis

Figure 3.5, Figure 3.7, and Figure 3.9 display single socket Airfoil runs on Scyrus, Telos

and ARCHER2, respectively. Figure 3.6, Figure 3.8, and Figure 3.10 show dual socket

Airfoil runs on Scyrus, Telos, and ARCHER2, respectively. In these graphs, the runtime

of OP2 OpenMP Airfoil is marked for reference and it does not change with the tile size.

In Table 3.2, we can see a summary of the best performance gains for the SLOPE Airfoil

over the OP2 Airfoil for both single and dual socket runs on all three platforms. We

observed that the dual socket runs provide better performance gains on Scyrus. However,

on Telos and ARCHER2, the better-performing memory channel configuration (single

socket or dual socket) varies depending on the mesh size. The SLOPE Airfoil attained

peak performance of 44% for the 2880k mesh on Scyrus, 45% for the 2880k mesh on Telos,

and 49% for the 11520k mesh on ARCHER2. This insight indicates that the given meshes

have less impact on NUMA issues for the Airfoil application. Since airfoil meshes are 2D

and have less complexity than multi-grid 3D meshes, the connectivity information of the

mesh is not complex enough to disrupt its performance with NUMA. However, careful

analysis shows that in some tile size configurations, the SLOPE Airfoil performed worse

than the OP2 Airfoil due to poor cache performance with cache misses.
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Figure 3.5: Runtime variation of SLOPE Airfoil with tile sizes on Scyrus (Configurations:
single socket, 12 threads)
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Figure 3.6: Runtime variation of SLOPE Airfoil with tile sizes on Scyrus (Configurations:
dual socket, 24 threads)
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Figure 3.7: Runtime variation of SLOPE Airfoil with tile sizes on Telos (Configurations:
single socket, 24 threads)
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Figure 3.8: Runtime variation of SLOPE Airfoil with tile sizes on Telos (Configurations: dual
socket, 48 threads)
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Figure 3.9: Runtime variation of SLOPE Airfoil with tile sizes on ARCHER2 (Configurations:
single socket, 64 threads)
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Figure 3.10: Runtime variation of SLOPE Airfoil with tile sizes on ARCHER2 (Configura-
tions: dual socket, 128 threads)
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Table 3.2: Best SLOPE Airfoil performance on Skylake, Telos, and ARCHER2

System Dataset
Single Socket Dual Socket

Tile Size Gain % Tile Size Gain %

Scyrus
720k 5000 28.00 5000 44.63
2880k 3000 32.01 5000 44.78

Telos
720k 5000 36.60 1900 20.73
2880k 10000 39.07 3000 45.24

ARCHER2
6480k 20000 47.90 6000 20.71
11520k 20000 49.33 30000 47.11

(a) METIS partitioner, 5000 tile size, 6 colors (b) Chunk partitioner, 5000 tile size, 2 colors

Figure 3.11: 180k airfoil mesh partitioning and coloring
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threads, single socket, 2880k mesh)
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By using the Chunk partitioner instead of METIS, we are able to achieve higher

performance gains. In Figure 3.11a, we can see the 180k airfoil mesh partitioned with a

5000 tile size and colored using six colors with the METIS partitioner. In comparison to

that, Figure 3.11b displays the same mesh partitioned with the Chunk partitioner and

colored using two colors. The nature of the partitions has a significant impact on the

performance of the cache-blocking tiled execution of the application. A more detailed

explanation of the impact of the mesh partitioner is given in Section 3.5.2.

Further, we perform a roofline analysis for both OP2 omp Airfoil and SLOPE

Airfoil, of which the graph is shown in Figure 3.12. According to the roofline graphs, all the

loops of SLOPE Airfoil except adt calc are utilizing the memory of the platform better

than the OP2 version. The graph establishes the performance gains that we witnessed in

our tests and shows the fact that the more loops are memory-bound, the more performance

gains from SLOPE incorporation [8].

3.4.2 MG-CFD

MG-CFD [83] is a 3D unstructured multi-grid, finite-volume computational fluid dy-

namics (CFD) mini-app for inviscid-flow, developed by extending the CFD solver in the

Rodinia benchmark suite. In other words, it is a mini version of a commercially sensitive

application named Hydra used by Rolls Royce plc. for the simulation of components of

next-generation jet engines. This runs on a 3D mesh and employs multi-grid techniques

to increase the convergence rate for iterative solvers. The geometry of the coarse levels is

derived from the finest grid level. MG-CFD has been converted to use the OP2 API and

its performance has been previously benchmarked in [126].

Datasets

For our experiments, we use the NASA Rotor 37 meshes, which represent the geometry

of a transonic axial compressor rotor, widely used for validation in CFD. Considering the

resources of the testing systems, we have gathered our experiment findings for MG-CFD

using meshes containing 1M and 8M nodes.

Loop-chain

We are mainly interested in the four-stage Runge-Kutta (RK) scheme since that

sequence of loops contains the features that are suitable to make it a SLOPE

loop-chain. Namely, the RK loops are compute flux edge, compute bnd node flux,

time step and unstructured stream. The first loop, compute flux edge iterates

over the edges and computes the flux over the interior edges whereas the second

loop, compute bnd node flux iterates over the boundary edges and computes the flux

over them. time step is a direct loop that iterates over the nodes of the mesh

and performs some increments and updates values based on a previous status. The

unstructured stream loop was introduced as a memory-bound loop that has the same

65



3. Communication-Avoiding Optimizations on Shared-Memory Systems

1 int ncolors = exec_num_colors(exec[level]);

2

3 for (int rkcycle = 0; rkcycle < RK; rkcycle++) {

4 for (int color = 0; color < ncolors; color++) {

5 // for all tiles of this color

6 const int n_tiles_per_color = exec_tiles_per_color(exec[level], color);

7

8 # pragma omp parallel for

9 for (int j = 0; j < n_tiles_per_color; j++) {

10 // execute the tile

11 tile_t* tile = exec_tile_at(exec[level], color, j);

12 int loop_size;

13

14 // loop compute_flux_edge

15 iterations_list& le2n_0 = tile_get_local_map(tile, 0, "e2n");

16 iterations_list& iterations_0 = tile_get_iterations(tile, 0);

17 loop_size = tile_loop_size(tile, 0);

18 for (int k = 0; k < loop_size; k++) {

19 compute_flux_edge_kernel(...);

20 }

21

22 // loop compute_bnd_node_flux

23 iterations_list& lbe2n_1 = tile_get_local_map(tile, 1, "bn2n");

24 iterations_list& iterations_1 = tile_get_iterations(tile, 1);

25 loop_size = tile_loop_size(tile, 1);

26 for (int k = 0; k < loop_size; k++) {

27 compute_bnd_node_flux_kernel(...);

28 }

29

30 // loop time_step

31 iterations_list& iterations_2 = tile_get_iterations(tile, 2);

32 loop_size = tile_loop_size(tile, 2);

33 for (int k = 0; k < loop_size; k++) {

34 time_step_kernel(...);

35 }

36

37 // loop unstructured_stream_kernel

38 iterations_list& le2n_3 = tile_get_local_map(tile, 3, "e2n");

39 iterations_list& iterations_3 = tile_get_iterations(tile, 3);

40 loop_size = tile_loop_size(tile, 3);

41 for (int k = 0; k < loop_size; k++) {

42 unstructured_stream_kernel(...);

43 }

44 }

45 }

46 }

Listing 3.6: MG-CFD RK loop-chain with SLOPE

data access pattern as compute flux edge with very few FLOPS. Listing 3.6 details the

explained RK loops with SLOPE tiling.

66



3. Communication-Avoiding Optimizations on Shared-Memory Systems

Test Results and Analysis

We conduct a comparison between the SLOPE MG-CFD version and the standard OP2

OpenMP (omp) version of MG-CFD. In addition to the common testing strategies men-

tioned in Section 3.4, we tested MG-CFD with SLOPE using various loop-chain and grid

level combinations as outlined in Table 3.3. Like with Airfoil, we present our results

using the Chunk partitioner as it yielded the best performance numbers for MG-CFD.

The MG-CFD mesh, partitioned with a tile size of 5000 and colored with ten colors using

the METIS partitioner, is shown in Figure 3.11a. Figure 3.11b shows the same mesh

partitioned with the Chunk partitioner and colored using ten colors.

Table 3.3: SLOPE MG-CFD loop fusion schemes

Fusion
Scheme

Grid Level
Configuration

Loop Count
Configuration

Description

fs1 All four grid levels Single loop-chain Adding all RK loops to a single chain
and performing calculations for all 4
grid levels.

fs2 All four grid levels Two loop-chains Expand the RK loop such that the
time step loop is added before and
after the unstructured stream loop
and create two loop-chains.
loop-chain1 – compute flux edge,
compute bnd node flux, time step

loop-chain2 – unstructured stream,
time step

Perform calculations for all 4 grid lev-
els.

fs3 Fine grid only Single loop-chain Adding all RK loops to a single chain
and perform calculations only for the
fine grid.

fs4 Fine grid only Two loop-chains Expand the RK loop such that the
time step loop is added before and
after the unstructured stream loop
and create two loop-chains.
loop-chain1 – compute flux edge,
compute bnd node flux, time step

loop-chain2 – unstructured stream,
time step

Perform calculations only for the fine
grid.

We tested all four approaches mentioned in Table 3.3 for the NASA Rotor 37

1M and 8M node datasets. When analyzing the performance results, we understand

that the highest performance gains are visible for fs3 and fs4. The results summary

in Table 3.4, proves the given statement. This observation indicates that in multi-grid
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(a) METIS partitioner, 5000 tile size, 10 colors (b) Chunk partitioner, 5000 tile size, 10 colors

Figure 3.13: 1M MG-CFD mesh partitioning and coloring

systems, SLOPE will give maximum performance for calculations performed on the fine

mesh than the coarsened meshes due to the reduced spatial locality of the coarsened grid

levels.

Table 3.4: SLOPE MG-CFD single socket performance summary on Scyrus for loop fusion
schemes in Table 3.3

Dataset
Fusion Scheme Gain %

fs1 fs2 fs3 fs4

Rotor37 1M 6.56 0.48 5.71 24.84
Rotor37 8M 5.74 8.29 11.91 33.30

Table 3.5: Best SLOPE MG-CFD performance on Skylake, Telos, and ARCHER21

System Dataset
Single Socket Dual Socket

Tile Size Gain % Tile Size Gain %

Scyrus
1M 1800 24.84 4000 37.83
8M 7000 33.30 5000 50.32

Telos
1M 1800 31.57 4000 47.42
8M 5000 44.22 1500 -46.22

ARCHER2
1M 20000 -3.12
8M 50000 46.07

Figure 3.14, Figure 3.16 and Figure 3.18 show the runtime variation of the SLOPE

MG-CFD with different tile sizes for 1M and 8M meshes on Scyrus, Telos, and ARCHER2

for single socket runs. For dual socket runs, the runtime variation of the SLOPE MG-

CFD with different tile sizes on Scyrus and Telos for the same meshes are shown in

Figure 3.15 and Figure 3.17, respectively. MG-CFD performance for all three platforms

is summarized in Table 3.5. Analysis of the results summary reveals that MG-CFD

provides similar performance gains for both single and dual socket runs on Scyrus, while

on Telos, we observe negative gains for 8M mesh for the dual socket run, but better gains

1Dual socket MG-CFD runs with 128 threads on ARCHER2 have been excluded due to result deviation.
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Figure 3.14: Runtime variation of SLOPE MG-CFD with tile sizes on Scyrus (Configurations:
single socket, 12 threads)
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Figure 3.15: Runtime variation of SLOPE MG-CFD with tile sizes on Scyrus (Configurations:
dual socket, 24 threads)
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Figure 3.16: Runtime variation of SLOPE MG-CFD with tile sizes on Telos (Configurations:
single socket, 24 threads)
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Figure 3.17: Runtime variation of SLOPE MG-CFD with tile sizes on Telos (Configurations:
dual socket, 48 threads)
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Figure 3.18: Runtime variation of SLOPE MG-CFD with tile sizes on ARCHER2 (Configu-
rations: single socket, 64 threads)
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Figure 3.19: Roofline graphs of SLOPE MG-CFD and OP2 MG-CFD (Configurations: Telos,
24 threads, single socket, Rotor37 1M, fs4)
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for the 1M mesh for both the single and dual socket runs. Dual socket runs on Telos

encounter NUMA issues that adversely impact the 8M mesh run. On ARCHER2, better

gains are observed for the 8M mesh with single socket runs. However, within the tile size

range of our tests, the 1M mesh runs did not perform well on ARCHER2. The processing

power and memory capacity of ARCHER2 nodes are higher compared to those of Scyrus

and Telos nodes, as shown in Table 3.1. We presume that the resources in ARCHER2 are

more suitable for larger meshes, allowing for performance benefits through cache-blocking

tiling.

We conducted roofline tests for OP2 omp MG-CFD and SLOPE MG-CFD, and

the results are displayed in the graph in Figure 3.19. The roofline graphs indicate that

SLOPE MG-CFD’s loop-chains are using the platform’s memory more efficiently than

the OP2 version. The graph also confirms the performance improvements we observed

during our tests, demonstrating that the more memory-bound the loops are, the greater

the performance gain when utilizing the SLOPE library [8].

3.4.3 Volna

Volna is a novel tool that has been designed to model tsunami waves [84]. Volna acts as

a solver that can handle all aspects of a tsunami’s life cycle, from its generation, through

propagation and finally to the point where it runs up along the coast. It achieves this by

applying finite-volume non-linear shallow-water equations (NSWE) to unstructured trian-

gular meshes thus can be run in arbitrary complex domains. Furthermore, an OP2 version

of Volna has been developed which separates the scientific code from various parallel im-

plementations [127]. This makes Volna an ideal choice for operational purposes and a tool

with enormous potential for modeling tsunami waves and achieving high performance on

various platforms.

Datasets

Table 3.6 provides the details of the datasets utilized during our testing.

Table 3.6: Dataset properties

Dataset #Nodes #Edges #Cells

Catalina 49456 147653 98198
NU3 475292 1424856 949565

Loop-chain

We consider the main stages in the Volna simulation for our experiments. These stages

make up 90% of the total runtime and are crucial for the program’s performance [127].

The OP2 Volna performs the relevant computations of these stages using five parallel

loops. In the computeGradient and limiter loops, the program updates some state
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1 while (timestamp < ftime) {

2 ...

3 for (int color = 0; color < ncolors; color++) {

4 // for all tiles of this color

5 const int n_tiles_per_color = exec_tiles_per_color(exec[level], color);

6

7 # pragma omp parallel for

8 for (int j = 0; j < n_tiles_per_color; j++) {

9 tile_t* tile = exec_tile_at(exec[level], color, j); int loop_size;

10

11 // loop computeGradient

12 iterations_list& lc2c_0 = tile_get_local_map(tile, 0, "c2c");

13 iterations_list& iterations_0 = tile_get_iterations(tile, 0);

14 loop_size = tile_loop_size(tile, 0);

15 # pragma omp simd

16 for (int k = 0; k < loop_size; k++) {

17 computeGradient(...);

18 }

19

20 // loop limiter

21 iterations_list& lc2e_1 = tile_get_local_map(tile, 1, "c2e");

22 iterations_list& iterations_1 = tile_get_iterations(tile, 1);

23 loop_size = tile_loop_size(tile, 1);

24 # pragma omp simd

25 for (int k = 0; k < loop_size; k++) {

26 limiter(...);

27 }

28

29 // loop computeFluxes

30 iterations_list& le2c_2 = tile_get_local_map(tile, 2, "e2c");

31 iterations_list& iterations_2 = tile_get_iterations(tile,2);

32 loop_size = tile_loop_size(tile, 2);

33 # pragma omp simd

34 for (int k = 0; k < loop_size; k++) {

35 computeFluxes(...);

36 }

37

38 // loop numericalFluxes

39 iterations_list& iterations_3 = tile_get_iterations(tile, 3);

40 loop_size = tile_loop_size(tile, 3);

41 # pragma omp simd

42 for (int k = 0; k < loop_size; k++) {

43 numericalFluxes(...);

44 }

45

46 // loop spaceDiscretization

47 iterations_list& le2c_4 = tile_get_local_map(tile, 4, "e2c");

48 iterations_list& iterations_4 = tile_get_iterations(tile, 4);

49 loop_size = tile_loop_size(tile, 4);

50 for (int k = 0; k < loop_size; k++) {

51 spaceDiscretization(...);

52 }

53 }

54 }

55 }

Listing 3.7: Volna loop-chain with SLOPE
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variables defined on cells while iterating over the cells of the mesh. The computeFluxes

loop computes physical properties across the mesh edges and requires large amounts of

data to be accessed indirectly through edges-to-cells, e2c mapping. After initializing the

output data array defined over the cells, SpaceDiscretization loop applies fluxes to the

cell-centered state variables. This loop becomes complex due to the indirect increment

access patterns via the edges-to-cells, e2c mappings. The Volna loop-chain used for

performance testing with the SLOPE library is detailed in Listing 3.7.

Test Results and Analysis

During the testing process, the SLOPE Volna version was compared to the standard OP2

OpenMP (omp) version of Volna. The testing was conducted on all three platforms men-

tioned in Table 3.1, using both single and dual socket configurations. The SLOPE version

utilized the Chunk partitioner, which resulted in better performance. The partitioning of

the Catalina mesh using the METIS partitioner with a tile size of 500 and colored using

six colors can be seen in Figure 3.20a. Additionally, the same mesh partitioned using

the Chunk partitioner with a tile size of 500 and colored using six colors can be seen

in Figure 3.20b.

(a) METIS partitioner, 500 tile size, 6 colors (b) Chunk partitioner, 500 tile size, 6 colors

Figure 3.20: Volna Catalina mesh partitioning and coloring

Table 3.7: Best SLOPE Volna performance on Skylake, Telos, and ARCHER2

System Dataset
Single Socket Dual Socket

Tile Size Gain % Tile Size Gain %

Scyrus
Catalina 2000 -13.44 800 -7.90
NU3 40000 0.001 20000 2.49

Telos
Catalina 1900 -9.69 1500 -12.82
NU3 20000 -0.09 10000 -17.16

ARCHER2
Catalina 800 27.71 1500 50.90
NU3 9000 -40.94 9000 -50.65

Figure 3.21, Figure 3.23, and Figure 3.25 display the runtime variation of SLOPE

Volna single socket runs for different tile sizes on Scyrus, Telos, and ARCHER2,
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Figure 3.21: Runtime variation of SLOPE Volna with tile sizes on Scyrus (Configurations:
single socket, 12 threads)
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Figure 3.22: Runtime variation of SLOPE Volna with tile sizes on Scyrus (Configurations:
dual socket, 24 threads)
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Figure 3.23: Runtime variation of SLOPE Volna with tile sizes on Telos (Configurations:
single socket, 24 threads)
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Figure 3.24: Runtime variation of SLOPE Volna with tile sizes on Telos (Configurations:
dual socket, 48 threads)
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Figure 3.25: Runtime variation of SLOPE Volna with tile sizes on ARCHER2 (Configura-
tions: single socket, 64 threads)
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Figure 3.26: Runtime variation of SLOPE Volna with tile sizes on ARCHER2 (Configura-
tions: dual socket, 128 threads)
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respectively. These runs were conducted on the datasets outlined in Table 3.6. The

corresponding dual socket runs for the same datasets on the same systems are depicted

in Figure 3.22, Figure 3.24, and Figure 3.26. Based on the run summary presented in

Table 3.7, SLOPE Volna failed to produce significant performance benefits on both Scyrus

and Telos, regardless of the number of sockets used. However, for the Catalina dataset,

SLOPE Volna performed better on ARCHER2, both for the single and dual socket runs.
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Figure 3.27: Roofline graphs of SLOPE Volna and OP2 Volna (Configurations: Telos, 24
threads, single socket, Catalina)

The roofline test conducted on Telos for the Catalina dataset, as shown in Fig-

ure 3.27, suggests that Volna kernels are compute-bound and do not benefit from cache-

blocking tiling. Further, computing kernels need to be memory-bound to see performance

improvements with SLOPE [8]. However, the complex nature of the Volna meshes utilized

during testing and the partitioning nature as shown in Figure 3.20 may have adversely

affected the performance of SLOPE Volna.
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3.4.4 OP2 Hydra

Figure 3.28 depicts a gas turbine engine consisting of a fan, compressor, combustor, and

turbine. The engine’s compressor is made up of several blade rows attached to a shaft that

rotates at high speeds to compress the cold air entering the engine at atmospheric pressure.

The compressed air is then mixed with fuel and ignited inside the combustion chamber.

The resulting hot air drives the turbine, which in turn drives both the compressor and

the fan. The total thrust needed to propel the aircraft is produced by the fan and the

hot air exhaust after combustion. To simulate the full compressor, several models of

Reynold’s Average Navier-Stokes (RANS) or hybrid RANS/Large eddy simulation (LES)

are required. These models represent a simulation of rotor and stator blades that are

interlinked with sliding plane interfaces. The Hydra [63] application represents each of

these rotors and stators [80].

Figure 3.28: RR Trent XWB engine (©Rolls Royce plc. Reproduced with permission.)

Hydra [63] is a full-scale production application developed for modeling various

aspects of turbomachinery design. It is an unstructured-mesh finite-volume solver for the

compressible RANS equations in their steady and unsteady formulation (RANS/URANS).

It uses a 5-step Runge-Kutta method for time-stepping, with multi-grid and block-Jacobi

preconditioning. The OP2 version of Rolls Royce’s Hydra [80, 81] is developed and it

consists of around 500 parallel loops with significantly more complex computations per-

formed on the mesh than the loops in MG-CFD. The SLOPE library does not currently

support applications written in Fortran. However, there are many industrial legacy code

bases that are Fortran-based, such as Hydra. To address this need, we have developed

a Fortran-based API for the SLOPE library, which enables the use of its sparse tiling

features in Fortran-based applications.

Datasets

For our experiments, we utilize NASA Rotor 37 meshes containing 1M and 8M nodes.

These meshes represent the geometry of a transonic axial compressor rotor, which is

widely used for validation in CFD.
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Loop-chains

We identified 3 main time-consuming loop-chains in Hydra that come inside the main time-

stepping loop. Namely, they are iflux, vflux, and jinit. The loop-chain information

is given in Table 3.8.

Table 3.8: Loop-chain information

Loop-chain Loop count Loop names Iteration set

iflux 2 initviscres nodes

iflux edge edges

vflux 2 initres nodes

vflux edge edges

jinit 3 jac init nodes

jaca init nodes

accumedges edges

One of the main requirements to slopify a loop-chain is that the iteration space of

the seed loop should represent the whole mesh so that the iterations of the other loops can

be linked with the seed loop iteration partitioning. In other terms, the iteration spaces

of other loops should be within the mesh elements represented by the seed loop iteration

space. Some of the loop-chains in Hydra could not be slopified due to not fulfilling this

requirement.

Test Results and Analysis

We compare the individual loop-chains of Hydra’s SLOPE version and OP2 OpenMP

(omp) version to evaluate their performance. We vary the tile size according to empirical

intervals to measure the loop-chain’s performance. The most significant performance

improvements observed with the NASA Rotor 37 datasets (1M and 8M) are presented

in Table 3.9. Figure 3.29, Figure 3.31, and Figure 3.33 show the single socket runs of Hydra

on Scyrus, Telos, and Hydra, respectively. On the other hand, Figure 3.30, Figure 3.32,

and Figure 3.34 represent the dual socket runs of the same tests.

Upon analyzing the results, it is evident that the loop-chains, iflux and jinit

display the most significant improvement in performance. Notably, while Scyrus and

Telos perform better with the 1M mesh, ARCHER2 outperforms with the 8M mesh. Our

testing shows that using a single or dual socket has a minimal impact on performance,

indicating no significant issues with NUMA on Hydra within the scope of our testing.

After examining the system specifications outlined in Table 3.1, it appears that

Scyrus and Telos have less available bandwidth than ARCHER2. This is an important

factor because the SLOPE sparse tiling method achieves optimal results when bandwidth

is a limiting factor [8]. As a result, we observe more substantial performance improvements

on Scyrus and Telos for smaller meshes, and on ARCHER2 for larger meshes.
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Figure 3.29: Runtime variation of SLOPE Hydra loop-chains with tile sizes on Scyrus (Con-
figurations: single socket, 12 threads)
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Figure 3.30: Runtime variation of SLOPE Hydra loop-chains with tile sizes on Scyrus (Con-
figurations: dual socket, 24 threads)
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Figure 3.31: Runtime variation of SLOPE Hydra loop-chains with tile sizes on Telos (Con-
figurations: single socket, 24 threads)
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Figure 3.32: Runtime variation of SLOPE Hydra loop-chains with tile sizes on Telos (Con-
figurations: dual socket, 48 threads)
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Figure 3.33: Runtime variation of SLOPE Hydra loop-chains with tile sizes on ARCHER2
(Configurations: single socket, 64 threads)
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Figure 3.34: Runtime variation of SLOPE Hydra loop-chains with tile sizes on ARCHER2
(Configurations: single socket, 128 threads)
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Table 3.9: Best SLOPE Hydra loop-chain performance on Skylake, Telos, and ARCHER2

Dataset System Loop-chain
Single Socket Dual Socket

Tile Size Gain % Tile Size Gain %

1M

Scyrus
iflux 1700 10.92 4000 33.20
vflux 1700 0.77 800 12.17
jinit 1700 16.41 800 31.42

Telos
iflux 1700 23.74 1400 29.65
vflux 800 3.99 800 8.64
jinit 800 30.47 1200 35.53

ARCHER2
iflux 20000 10.25 10000 10.02
vflux 1000 9.57 10000 15.36
jinit 1000 19.38 9000 30.44

8M

Scyrus
iflux 8000 11.73 6000 26.20
vflux 8000 3.57 4000 11.28
jinit 4000 11.50 3000 23.20

Telos
iflux 5000 25.40 10000 24.66
vflux 1500 4.34 3000 3.23
jinit 1500 20.12 900 18.18

ARCHER2
iflux 200000 59.72 200000 75.35
vflux 200000 55.04 200000 80.47
jinit 200000 62.95 200000 82.42

In summary, the analysis highlights the complex relationship between system ar-

chitecture, mesh size, and optimization techniques. Understanding these dynamics pro-

vides valuable insights for future efforts to optimize computational workloads on similar

systems.

3.5 Factors Impacting Performance

3.5.1 Tile Size

The tile size refers to the dimensions of the subproblem that a processor or thread works

on. The variation in tile sizes can significantly impact performance, affecting the balance

between computation and memory access, as well as the potential for parallelism.

To achieve the benefits of cache-blocking tiling, it is crucial to balance computa-

tion and communication or data movement between various memory hierarchies of the

processor. The tile size should be chosen carefully to ensure an optimal balance between

computation and communication. Smaller tile sizes can reduce memory access latency

by using smaller data chunks, which may result in a higher proportion of computation

overhead relative to memory access time. Meanwhile, larger tile sizes can amortize mem-

ory access latency by fetching more data simultaneously, but this can increase memory

pressure and result in more cache misses.
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Increasing the application’s parallelism while reducing the Non-Uniform Memory

Access (NUMA) issues can further improve performance. Smaller tile sizes can improve

parallelism, allowing more threads or processors to work on different tiles simultaneously.

On the other hand, larger tile sizes may reduce parallelism as fewer tiles can fit into the

available compute resources.

Optimizing cache usage can also immensely help the application’s performance.

Smaller tile sizes may lead to better cache efficiency as they are more likely to fit entirely

within the cache. On the other hand, larger tile sizes may cause cache thrashing if they

exceed the cache capacity, resulting in more cache misses.

Optimizing Tile Size

The right tile size must be chosen to ensure optimal performance when utilizing sparse

tiling methods. Factors such as empirical analysis, problem characteristics, and target

hardware must be considered when determining the optimal tile size. Empirical analysis

and performance profiling should be conducted by experimenting with different tile sizes

until the one that provides the right balance between computation and memory access

is found. The nature of the problem and data structures should also be considered.

Smaller tiles may be better for applications with higher sparsity, while larger tiles can

help reduce memory overhead. Finally, the characteristics of the target hardware, such

as cache sizes, memory bandwidth, and the number of available cores/threads, should be

taken into account. It is important to keep in mind that the optimal tile size may vary

across different hardware platforms.

In conclusion, the optimal tile size plays a crucial role in performance when utilizing

sparse tiling methods. It influences the balance between computation and communica-

tion or memory access, parallelism, and cache efficiency. Careful analysis of the specific

application, problem characteristics, and target hardware is necessary to achieve optimal

performance gains.

3.5.2 Mesh Partitioner

When working with sparse matrices and tiling strategies in shared-memory parallel com-

puting, the choice of partitioner can greatly affect performance. Two common partitioning

approaches used in this context are METIS partitioning and Chunk partitioning.

METIS Partitioner

METIS [124] is a widely used tool for partitioning graphs, especially for dividing large

sparse matrices into smaller submatrices or tiles. METIS uses advanced algorithms to

create partitions that balance the workload and minimize communication between par-

titions. This helps reduce data movement between partitions and improve cache and

memory efficiency. METIS is particularly useful for tackling large-scale problems and is

utilized in many scientific and engineering applications.
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Chunk Partitioner

Dividing a matrix into fixed-size blocks or chunks, regardless of its graph structure, is

known as Chunk partitioning. Each Chunk is handled separately, which can result in

uneven workloads if the matrix’s sparsity pattern is highly irregular. Despite this, Chunk

partitioning is easy to implement and does not require much computational power. It

also provides consistent chunk sizes, which can be useful in certain situations.

The decision to use either METIS partitioning or Chunk partitioning depends on

the specific application and the characteristics of the sparse matrices. As explained by

Luporini et al. [37], the METIS partitioner may not perform well with SLOPE-based

applications due to a rise in TLB (Translation Lookaside Buffer) misses and less effective

hardware prefetching caused by more irregular tile expansion. Ultimately, the choice

should be based on the performance requirements and characteristics of the specific sparse

matrix computation problem. Experimentation and benchmarking with representative

datasets and workloads can help determine the most effective partitioning strategy for

the application.

3.5.3 Loop Fusion Scheme

Loop fusion is a compiler optimization technique which we have discussed in detail

in Section 2.4.1. We tested several loop-fusion schemes for the MG-CFD application

when testing with SLOPE. We found that one particular loop fusion scheme yielded bet-

ter performance gains than the others. This is a crucial factor when chaining a set of

loops. Rather than adding all the loops to a single chain, we can consider having multiple

loop-chains. Such an approach could help to:

1. Reduce loop overheads such as loop setup and loop termination conditions;

2. Turn data reuse into data locality by chaining loops that access similar datasets

together;

3. Improve opportunities for vectorization; and

4. Improve code maintainability and understandability by having smaller and logical

loop-chains.

However, the effectiveness of these approaches depends on the nature of the ap-

plication. Therefore, we should search for avenues that can offer effective loop fusion

schemes to improve performance through better data locality.
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3.6 Conclusion

We conducted an analysis of the SLOPE library’s performance on four different applica-

tions: Airfoil, MG-CFD, Volna, and Hydra. Our goal was to identify the benefits of using

sparse tiling and determine any possible improvements. We used Intel VTune and Advisor

profiling tools to investigate the sparse tiling behavior in Intel processor-based systems.

Through roofline analysis, we were able to reason about the positive and negative gains

of using sparse tiling. The computing kernels that did not perform well with the SLOPE

library are more compute-bound and memory enhancements with tiling are less likely to

improve their performance. The better-performing loop fusion schemes also suggest that

the performance improvements are from the improved cache performance with tiling. The

profiling tool analysis suggests that the data reuse with the adapted loop fusions schemes

has turned it into data locality. We conducted single socket and dual socket runs to

analyze how NUMA affects the performance of cache-blocking tiling. It was observed

that in some cases, NUMA issues can reduce the performance of the cache-blocking tiling

version. The extent to which NUMA affects the application’s performance depends on

the characteristics of the dataset and the behavior of the computing kernel, as well.

To optimize unstructured-mesh-based applications, sparse tiling is employed to

increase data locality through the efficient reuse of data in a sequence of loops. The

SLOPE library is a powerful tool that facilitates the creation of loop-chains and sparse

tiling, thereby improving the performance of these applications. The OP2 library is

currently used to generate code for parallel execution on different platforms, and we strive

to further enhance the performance by implementing the sparse tiling and loop fusion

mechanisms from the SLOPE library, which can reduce communication requirements.

Our experiments have revealed that the performance of the SLOPE library is influenced

by the nature and size of mesh partitions, as well as the loop fusion scheme utilized. By

optimizing these parameters, we can achieve even better performance improvements. Our

roofline tests have confirmed that the most significant speedups are attained when kernels

are bandwidth-bound.
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Chapter 4

Communication-Avoiding

Optimizations on

Distributed-Memory Systems

In the previous chapter, we examined how cache-blocking tiling and other shared-memory

parallelization techniques can improve the performance of unstructured-mesh-based ap-

plications. However, shared-memory computing has its limitations. Real-world problems

are often too big for a single node to handle and the demand for processing power has

increased exponentially in scientific, engineering, and data-intensive fields. There are also

challenges associated with handling intricate memory hierarchies, including NUMA issues.

Furthermore, considerations related to synchronization, cache coherency, and race condi-

tions present additional complexities. Therefore, to address these challenges and tackle

large-scale problems, distributed-memory parallelism is essential. Distributed systems

offer several key benefits that are crucial for HPC, as explained below.

One of the primary benefits of distributed parallelism is scalability. As compu-

tational demands increase, a distributed architecture allows for seamless expansion to

accommodate more extensive simulations, datasets, and computations. This scalability

ensures that HPC systems can handle growing workloads without sacrificing performance.

Distributed parallelism also provides high computational power, which is crucial for many

computationally intensive and time-consuming HPC problems. By spreading the workload

across multiple nodes, distributed parallelism harnesses the collective power of numerous

processors, accelerating computation and enabling the resolution of complex simulations

in feasible timeframes.

Furthermore, distributed parallelism facilitates processing large datasets by divid-

ing them into smaller chunks and distributing them across nodes for concurrent analysis.

This feature is especially crucial as the usage of big data continues to grow in various

HPC applications. Distributed parallelism empowers researchers to simulate and analyze

phenomena with greater fidelity and precision, leading to more accurate models and simu-
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lations. It also enables the simulation of complex systems by distributing the calculations

across nodes, collectively tackling various aspects of the simulation.

In summary, distributed-memory parallelism is essential to HPC as it empowers

researchers, scientists, and engineers to solve complex problems efficiently. It leads to

breakthroughs in science and technology, accelerates innovation across a wide range of

domains, and enables the exploration of new frontiers.

4.1 Need for Communication-Avoidance

When it comes to distributed-memory systems, there are some challenges that require

communication-avoidance techniques as a solution. One of the biggest issues is the la-

tency and overhead involved in inter-node/inter-process communication. This means that

when data has to travel across network boundaries, it can cause significant delays and

consumes valuable system resources. Limited bandwidth in distributed networks can also

lead to congestion and contention, making it difficult to exchange information efficiently.

Additionally, too much communication can cause some nodes to become overloaded with

data transfers, which can negatively impact the overall system performance. To combat

these obstacles, it is important to implement communication-avoidance strategies that

minimize communication, optimize resource utilization, and improve the efficiency and

scalability of distributed-memory systems.

The OP2 library [6] enables distributed-memory parallelism, utilizing its MPI

back-end to execute unstructured-mesh based applications written according to the OP2

API. The current halo structure and loop execution model involve multiple message ex-

changes among the application’s processes to achieve distributed execution. However,

communication bandwidth limitations in modern computing systems can hinder perfor-

mance gains from parallel execution. To fully exploit the computing power of these mas-

sively parallel systems, it is crucial to address issues such as multiple synchronizations

during loop execution and message exchange delays. Increasing computations instead

of communication can be more beneficial in these distributed systems. Thus, adding a

communication-avoidance (CA) back-end to the OP2 library has become a pressing need.

4.2 Communication-Avoidance Back-End

On a distributed-memory parallel level, as we will demonstrate, the idea is to move all

communications to the beginning of the loop-chain, eliminating per-loop halo exchanges

between neighboring processes, in place of a larger aggregated message. In this case,

each mesh partition held by an MPI process can be thought of as a single “tile”, which

will be executed without halo exchanges within the loop-chain. On a shared-memory

multi-threaded parallelization level, the idea would be to select sufficiently sized tiles

allowing us to keep a working set of data in the fast cache memory of processors reducing

the number of accesses from/to slower main memory per loop. The implementation of
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these ideas within OP2, creating a new communication-avoiding back-end and applying it

to large-scale unstructured-mesh applications, investigating performance, form the main

contribution of this chapter. We will (1) initially codify sparse tiling for distributed-

memory execution and then (2) extend it for GPU clusters integrating the back-end to

work with CUDA code generated by OP2 in a later chapter.

This section is dedicated to explaining the development of the new communication-

avoidance (CA) back-end for the OP2 library and its integration with relevant OP2 library

features.

4.2.1 OP2 Distributed-Memory Parallelism

OP2 uses an owner-compute model for parallelizing computations on a distributed-

memory parallel system [6]. In this model, the unstructured-mesh, defined by mappings

and data, is partitioned among a number of processes so that each process owns some

of the set elements. A process will only perform computations to update elements in

their own partitions but will require data from elements in other partitions held in sepa-

rate processes, specifically at the boundaries of the partitions. Thus, copies of data held

in foreign partitions need to be communicated following the standard “halo” exchange

mechanisms when using a message passing parallel implementation.
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Figure 4.1: OP2 partitioning over two MPI ranks and resulting halos on each rank [6]

Figure 4.1 illustrates this halo setup and configuration in OP2, where the back-end

separates the iteration space such that it is segmented into

(i) core – set of iterations that do not need to access halo data

(ii) export halo – mesh data to be sent from the local process to some foreign process

(iii) import halo – mesh data received from some foreign process
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The elements in the import and export halos are further separated into two groups

depending on whether redundant computations will be performed on them. For example,

in the mesh in Figure 4.1, a loop over edges updating cells will require edges 5,8, and 9

executed on rank X to update cells 4 and 5 (i.e., an import execute halo, ieh). However, a

loop over edges reading data on cells will require cells 0,4, and 5 to be imported onto rank

Y (i.e., an import non-execute halo, inh). The inh is essentially a read-only halo. These

then have a corresponding export execute (eeh) and export non-execute (enh) halos on

each of the local processes.

This section is built on those concepts and primarily compares the implementation

of OP2 MPI with the newly developed CA version. In order to explain and formulate

the communication-avoidance framework, we utilize the loop-chain abstraction introduced

in Section 3.2.4.

4.2.2 Halo Exchanges

Algorithm 4.1: Algorithm to determine a halo exchange and dirty bit management [9]

1 foreach indirect op arg do
2 if ((op arg.access = OP READ) || (op arg.access = OP RW)) &&

(op arg.dat.dirty bit = 1) then
3 do halo exchange(op arg.dat );
4 clear dirty bit(op arg.dat );

5 end if

6 end foreach

7 loop size← set size;

8 foreach indirect op arg do
9 if (op arg.access ̸= OP READ) then

10 loop size← set size+ ieh;
11 break;

12 end if

13 end foreach

14 execute loop (loop size);

During the execution of an OP2 application under MPI, a data exchange is initiated among

the processes depending on the type of the op par loop and its arguments, op args, when

a call to op par loop is made. If the call goes to an indirect loop and any of the op args

refers to an indirect read of a dataset that was previously modified, the relevant execute

and non-execute halos of that dataset must be exchanged before performing calculations

on elements not belonging to the core region and in the ieh region of the relevant dataset.

OP2 uses a dirty bit to identify the datasets modified during previous calculations. The

halo exchange process and dirty bit management are explained in detail in Algorithm 4.1.
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1 MPI_Isend(&grp_send_buffer[buf_start],

2 (arg_size - buf_start), MPI_CHAR,

3 exp_common_list->ranks[r], grp_tag, OP_MPI_WORLD,

4 &grp_send_requests[r]);

5 ...

6 MPI_Irecv(&grp_recv_buffer[imp_disp],

7 imp_size, MPI_CHAR,

8 imp_common_list->ranks[i], grp_tag, OP_MPI_WORLD,

9 &grp_recv_requests[i]);

Listing 4.1: MPI halo send and recv

When a halo exchange is triggered, it is handled by a call to

op halo exchange chained(int nargs, op arg *args, int exec flag) inside

op mpi rt support.c using non-blocking MPI sends and receives, as explained

in Listing 4.1.

4.2.3 OP2 Loop Execution

In OP2, the mesh data in op maps and op dats are held in 1D arrays with core, export,

and import halos structured as illustrated in Figure 4.2(a). This ordering then enables

latency hiding where the loop iterations in an op par loop, corresponding to the core can

be carried out while halo exchanges are in-flight as these iterations do not access halo data.

This latency-hiding algorithm is detailed in Algorithm 4.2. OP2 exchanges the ieh and

inh in separate messages. After all the messages have been sent/received, execution over

execute halos can be performed. In an op par loop, halos for an op dat are exchanged

only if (1) it is indirectly accessed as a read (OP READ) or a read/write (OP RW) and (2) a

preceding loop has modified it, i.e., the halos need updating. A dirty-bit is used to keep

track of when an op dat is updated (by an OP RW, OP WRITE, or an increment (OP INC))

in a loop, as already explained in Algorithm 4.1.

ieh 
0

set_size * dat_dim

eeh
n-1

eeh
1

eeh 
0

inh 
0

ieh 
1

inh 
1

ieh 
n-1

inh 
n-1

ieh
set_size * dat_dim

eeh inh

(b) data array with n-level halo extension

(a) data array with single-level halo extension

core

core

Figure 4.2: op dat and op map data structures with (a) single and (b) multiple halo levels
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Algorithm 4.2: OP2 loop execution

Input: op par loop l over set Sl

Result: Execute loop

1 MPI Isend(eeh, enh);
2 MPI Irecv(ieh, inh);

3 foreach iteration I ∈ Sc
l do

4 execute iteration(I );
5 end foreach

6 MPI Wait(eeh, enh, ieh, inh);

7 foreach iteration I ∈ Se
l , S

i
l do

8 execute iteration(I );
9 end foreach

4.2.4 Multi-Layered Halo Data Structure

The OP2 halos described above essentially maintain the data dependencies required to ex-

ecute each process’s partition independently in parallel. Explicit messages are exchanged

to update/sync the halos when carrying out computations in each op par loop. The

dependency neighborhood for a single loop, therefore, can be viewed as a halo layer with

a depth of 1 (see Figure 4.3). As shown in [8], in a loop-chain with n loops, syncs per

loop can be eliminated if a large dependency neighborhood, maximally a layer with depth

of n can be communicated at the start of the loop-chain and computed over, redundantly

to update the mesh elements to satisfy the dependencies, that would have otherwise been

updated as a halo exchange. Thus for the loop-chain with 2 loops detailed in Listing 3.2,

a halo depth of 2 needs to be maintained as illustrated in Figure 4.4.

The maximum depth of n is required only when in a loop-chain, L0, . . . , Ln−1,

each loop Li updates an op dat d and the next loop Li+1 read or read/writes to d. This

leads to iteration spaces that decrease in size for each loop in the loop-chain. Specifically,

to compute I iterations of the last loop in the chain, Ln−1, the loops Ln−1, Ln−2, . . . , L0

should be iterating over I plus halo depths of 1, 2, . . . , n respectively.

4.2.5 Loop-chains with CA

Algorithm 4.3 details the steps to follow until the loop-chain is executed with the CA

framework. In the main inspection/setup phase, halo exch dats identifies the op dats for

halo exchange based on their access modes and dirty-bit values. Then, calc halo layers

compute the number of halo layers required for each loop in the loop-chain, L. The

analysis is detailed in Algorithm 4.4. Given a loop-chain, Algorithm 4.4 calculates, the

minimum halo extension required for each op dat in each loop according to its individual

data access patterns. Then, the maximum halo extension required for a loop is obtained
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Figure 4.3: Halo layer with depth 1
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Figure 4.4: Halo layer with depth 2

based on the halo extensions calculated for each individual op dat in the loop, finally

making the loop’s halo extension effective for all the op dats in the loop. calc iters

(in Algorithm 4.3) computes the iteration counts within the core and halo layers, while

restructure elements separates each halo layer into core and eeh as illustrated in Fig-

ure 4.2(b) and renumbers mappings of core, eeh, and enh accordingly. OP2’s halo data

structure was extended to support this multi-layered halo setup. The loop-chain executes

core followed by eehn−1 to eeh0, then all the import halos ieh0 to iehn−1 (See lines 8-18

in Algorithm 4.3.).
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Algorithm 4.3: Loop-chain execution with CA

Input: Loop-chain, L = {L0, ..., Ln−1}, op dats, D used in L
Result: Execute loop-chain with CA

// Find op dats requiring halo syncs: Dh ⊆ D
1 Dh ← halo exch dats(D, < M, mode >, L);

// Compute #halo layers required for each loop in L
2 HLl ← calc halo layers(L,Dh);

// Find core, exec, & non-exec halo #iters for loops in L
3 Scl , Shl , Snl ← calc iters(Sl, HLl);

// Rearrange and renumber multi-layered core, eeh, & enh for each

op dat d ∈ Dh

4 Seeh,Senh ← restructure elements(Dh, HLl, Scl , Shl , Snl );

5 meeh+enh ← create grouped msg(Dh, Seeh,Senh);

6 MPI Isend(meeh+enh);

7 MPI Irecv(mieh+inh);

8 foreach loop l ∈ L do
9 foreach iteration I ∈ Sc

l do
10 execute iteration(I );
11 end foreach

12 end foreach

13 MPI Wait(meeh+enh, mieh+inh);

14 foreach loop l ∈ L do
15 foreach iteration I ∈ Shl do
16 execute iteration(I );
17 end foreach

18 end foreach

These steps will be elaborated below in detail to have a better idea about the

communication-avoidance framework.

4.2.6 Inspection Phase

Before the loop-chain execution, the OP2 library’s communication-avoidance back-end

needs to complete several stages known as the inspection phase. Some of these stages are

shared with the existing MPI back-end, which is explained in the ‘OP2 Developers Guide

- Distributed-Memory (MPI) Parallelisation’ by Mudalige et al. [9]. However, we have

improved it to enable our CA back-end to create multiple halo layers. In this section,

we will discuss the main stages of the inspection phase in the communication-avoidance

back-end which are detailed in lines 1-4 in Algorithm 4.3.
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1 op_dat dat0 = op_decl_dat(nodes, 2, "double", dat0_val, "dat0");

2 op_dat dat1 = op_decl_dat(nodes, 2, "double", dat1_val, "dat1");

3

4 // loop over edges, updating node values

5 op_par_loop(L0_kernel, "L0", edges,

6 op_arg_dat(dat0, 0, e2n, 2, "double", OP_INC),

7 op_arg_dat(dat0, 1, e2n, 2, "double", OP_INC),

8 op_arg_dat(dat1, 0, e2n, 2, "double", OP_READ),

9 op_arg_dat(dat1, 1, e2n, 2, "double", OP_READ));

10

11 // loop over edges, updating node values

12 op_par_loop(L1_kernel, "L1", edges,

13 op_arg_dat(dat0, 0, e2n, 2, "double", OP_READ),

14 op_arg_dat(dat0, 1, e2n, 2, "double", OP_READ),

15 op_arg_dat(dat1, 0, e2n, 2, "double", OP_WRITE),

16 op_arg_dat(dat1, 1, e2n, 2, "double", OP_WRITE));

17

18 // loop over cells, updating node values

19 op_par_loop(L2_kernel, "L2", cells,

20 op_arg_dat(dat0, 0, c2n, 3, "double", OP_WRITE),

21 op_arg_dat(dat0, 1, c2n, 3, "double", OP_WRITE),

22 op_arg_dat(dat0, 2, c2n, 3, "double", OP_WRITE),

23 op_arg_dat(dat1, 0, c2n, 3, "double", OP_READ),

24 op_arg_dat(dat1, 1, c2n, 3, "double", OP_READ),

25 op_arg_dat(dat1, 2, c2n, 3, "double", OP_READ));

Listing 4.2: Loop-chain (L) example written using OP2 API for CA

1. Find op dats requiring halo synchs in L

By analyzing a loop-chain, we can distinguish the data access patterns of each

op dat separately, allowing us to identify the op dats that require a halo exchange.

Requirement for halo exchange: Indirect read access (OP READ or OP RW) to a previ-

ously modified op dat (with OP WRITE, OP INC, or OP RW) inside a loop.

In the example provided in Listing 4.2, dat0 is modified (OP INC) in L0 and indirectly

read (OP READ) in L1 using edges-to-nodes (e2n) mappings. This requires a halo

exchange before executing L1. Similarly, dat1 is modified (OP WRITE) in L1 and

indirectly read (OP READ) in L2 using cells-to-nodes (c2n) mappings. This also

requires a halo exchange before executing L2.

Therefore, in this example, two halo exchanges need to be triggered when execut-

ing the code using standard loop execution. This leads to multiple synchronization

points in the code, which negatively affects the loop execution performance. How-

ever, for the CA back-end, we identify these locations beforehand and avoid multiple

synchronization points during the execution of a sequence of loops.

2. Compute #halo layers required for each loop in L

Once the op dats that require a halo exchange have been identified, it is essential to

determine the minimum halo extension needed for each op dat in each loop. This

96



4. Communication-Avoiding Optimizations on Distributed-Memory Systems

Algorithm 4.4: calc halo layers

Input: Loop-chain, L = {Ln−1, . . . , L0}, op dats requiring halo syncs, Dh, their
access descriptors, <M , mode>, loops where op dats (∈ Dh) are accessed,
ADh

Output: Halo extensions, HE for loops in loop-chain, L

// Calculate halo extension for individual op dats in loops

1 foreach op dat D ∈ Dh do

2 halo ext← 0;
3 ind rd← false // True for indirect read

4 foreach loop l ∈ L do // Iterate from loop n-1 to 0

5 HEDl
← 1;

6 if Dl<M , mode> ̸= NULL && l ∈ ADl
then

7 if ind rd && (mode = OP WR || mode = OP INC || mode = OP RW) then

8 HEDl
← halo ext+ 1;

9 halo ext← 0;
10 ind rd ← false;
11 continue;

12 end if

13 if M ̸= ID && (mode = OP RD || mode = OP RW) then

14 halo ext← halo ext+ 1;
15 HEDl

← halo ext;
16 ind rd ← true;
17 continue;

18 end if

19 if M = ID && (mode = OP RD || mode = OP RW) then

20 HEDl
← 1;

21 halo ext← 0;
22 ind rd ← false;
23 continue;

24 end if

25 end if

26 end foreach

27 end foreach

// Calculate effective halo extension for loops

28 foreach loop l ∈ L do
29 HEl = max(HEDh

l
)

30 end foreach

calculation is based on the unique data access patterns of each op dat. After the

minimum halo extension has been determined for each op dat, it is necessary to

determine the maximum halo extension required for the loop. This maximum halo

extension is based on the halo extensions calculated for each individual op dat in

the loop. Ultimately, the halo extension of the loop is made effective for all op dats
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1 typedef struct op_halo_info_core {

2 int *nhalos; //array of number of halos, nhalos

3 int *nhalos_bits; //bitmask to track required halos

4 int *nhalos_calc_bits; //bitmask to track required halos for calculation

5 int max_nhalos; //max number of halos

6 int max_calc_nhalos; //max number of halos used for calculation

7 int nhalos_count; //number of elements in nhalos array

8 int nhalos_cap; //capacity of nhalos array

9 } op_halo_info_core;

10 typedef op_halo_info_core* op_halo_info;

Listing 4.3: op halo info core data structure

in the loop. This process is explained in Algorithm 4.4, and the data structure,

op halo info core as in Listing 4.3 is used to keep track of halo information.

According to the algorithm in calc halo layers, it appears that dat0 will require

a halo extension of 2 in L0 and 1 in L1, while dat1 will need a halo extension of 2

in L1 and 1 in L2. Therefore, the effective halo extensions for the loops will be 2 in

L0, 2 in L1, and 1 in L2.

It is important to note that in a different loop-chain, dat0 and dat1 may require

a different maximum halo extension than the calculated halo extension of 2. The

library and data structure provided in Listing 4.3 supports halo extensions of more

than 2. We have tested the library for a halo extension of 32 in our experiments.

3. Find core, exec, & non-exec halo #iters for loops in L

Once the loop-chain information and their halo extensions have been finalized, the

sizes of the core, exec, and non-exec components are calculated. To create the

import and export halo lists, we utilize the halo list core data structure outlined

in Listing 4.4. We have improved the data structure to support information on

multiple halo layers.

The steps required for this main stage are explained below. We are utilizing the

current OP2 MPI back-end as our reference, so these steps have some common func-

tionalities with what is explained in [9]. However, there are some differences: these

steps have been enhanced to support multiple halo layers and they are called in an

outer loop until we generate the required number of halos. Additionally, there are

new steps added to facilitate our multiple halo generation process. The enhance-

ments and new steps are easily identifiable by comparing them to ‘OP2 Developers

Guide - Distributed-Memory (MPI) Parallelisation’ by Mudalige et al. [9].

(a) Generate export lists for execute set elements

The program will iterate through all the set elements allocated to each MPI

process. It will check if any mappings related to those set elements refer to set

elements of the to-set of the mappings that belong to foreign MPI processes.

For instance, if edge 17 is made up of nodes 8 and 12, and node 12 belongs
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1 typedef struct {

2 op_set set; // set related to this list

3 int size; // number of elements in this list

4 int *ranks; // MPI ranks to be exported to or imported from

5 int ranks_size; // number of MPI neighbors to be exported to/imported from

6 int *disps; // displacement of the starting point of each rank's

7 // element list

8 int *sizes; // number of elements exported to/imported from each ranks

9 int *list; // the list of all elements

10

11 // added to support multiple halo levels

12 int num_levels; // number of halo levels

13 int *ranks_disps_by_level; // displacement of each rank's element list

14 // inside a halo level

15 int *disps_by_level; // displacement of each halo level's element list

16 int *level_sizes; // total halo level sizes

17 } halo_list_core;

18 typedef halo_list_core *halo_list;

19

20 // halo lists to support standard OP2 halos

21 halo_list *OP_export_exec_list; // eeh list

22 halo_list *OP_import_exec_list; // ieh list

23

24 halo_list *OP_import_nonexec_list; // inh list

25 halo_list *OP_export_nonexec_list; // enh list

26

27 // halo lists to support extra halo layers for communication-avoidance

28 halo_list **OP_aug_export_exec_lists; // eeh lists

29 halo_list **OP_aug_import_exec_lists; // ieh lists

30

31 halo_list **OP_aug_export_nonexec_lists; // inh lists

32 halo_list **OP_aug_import_nonexec_lists; // enh lists

Listing 4.4: halo list core data structure and its use in the CA back-end

to a foreign MPI process, edge 17 will be identified as a mesh element to be

exported. These identified set elements will be added to an export execute

halo (eeh) list. The halo list will also keep track of the ranks to which the set

element should be exported. Before adding an element to the eeh list, it will

verify that the same element was not previously exported to the same MPI

process for an inner halo layer.

(b) Generate import lists for mappings and execute sets

Each MPI process exchanges the eeh lists with the neighboring MPI processes.

They will create the relevant import execute halo (ieh) lists to use in exchanging

mappings and data elements.

(c) Exchange mapping entries using the import/export execute halo lists

All the mappings related to the from-set elements in the eeh layers will be

exchanged with the relevant MPI processes using the created eeh and ieh lists.

The received mapping entries will be appended to the existing map array in the

op map data structure in the process.
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(d) Generate import lists for mappings and non-execute sets

Each MPI process will iterate through all its mappings, including the mappings

of the imported halo layers. It will check for any unavailable elements referred

to by the mappings (i.e., elements in the to-set of the mappings) that are not

in the ieh lists. These unavailable elements will be added to an inh list which

will be sorted according to the local index of the foreign process.

(e) Generate export lists for mappings and non-execute sets

Each MPI process will then exchange its import non-execute halos with its

neighbors. It will use that to create export non-execute halos. After this stage,

all the halo lists will be completed and they will be used to exchange data

among the MPI processes.

(f) Exchange data defined on execute set elements using the import/-

export lists

The data defined on execute set elements will be exchanged with the processes’

neighbors by using the created eeh and ieh lists. This data will be appended

to the data array of the op dat data structure of the receiving process.

(g) Exchange data defined on non-execute set elements using the im-

port/export lists

The data defined on non-execute set elements will be exchanged with the pro-

cesses’ neighbors by using the created enh and inh lists. This data will also

be appended to the data array of the op dat data structure of the receiving

process.

(h) Update set attributes for the generated halo layer

After creating the halo layer, the attributes in the op set will be updated with

core and halo sizes (execute and non-execute). These sizes are utilized in halo

exchanges and further halo layer generation.

(i) Create and exchange augmented partition ranges

After creating a halo layer, the partition boundary will expand and the next

halo layers will have to be created based on the latest expanded boundary of

the partition with imported halos. To facilitate this, the new partition range of

the process, which is now augmented, will be exchanged among all the available

processes of the system to support further halo expansion if there is any.

(j) Renumber mapping tables

Having exchanged all the extra mapping information of the added halo lay-

ers, they are renumbered according to the local set element arrangement as

illustrated in Figure 4.2 for single and multiple halos.
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(k) Create MPI send buffers

At this stage, data buffers to exchange halo information of op dats during the

application execution will be created. A common buffer will also be created

considering the maximum possible size for the grouped halo exchanges.

4. Rearrange and renumber multi-layered core, eeh, & enh for each op dat

(a) Separate core elements

Once all the import and export halo lists, both execute and non-execute, have

been created, each process can determine the number of computations it can

perform without waiting for information from other processes. These core

computations can be carried out while the halo information is still in-flight.

To enable computation and communication to overlap, the data elements will

be rearranged or the core elements will be separated, as shown in Figure 4.2.

(b) Save the original set element indices

Since the set elements are rearranged, it is necessary to keep track of the orig-

inal data arrangement when formulating the final answer for the application.

Saving the original set element indices supports that purpose.

(c) Clean up and compute rough halo size numbers

Temporary data arrays are released after these steps. Only the halo lists (im-

port/export and execute/non-execute), which are used during calculations of

the application, are kept in memory. Especially when it comes to multiple

halo layers, information on the intermediate halo layers which are used to gen-

erate the final required halo layer, will only be kept if they are used in the

calculations.

4.2.7 Execution Phase

In our applications, we only create loop-chains for loops that result in multiple halo

exchanges during execution. The remaining loops are executed using the standard OP2

loop execution mechanism. With the newly developed CA version, both loop-chains and

individual loops can be executed without any effect on their performance.

This section will outline the primary steps involved in executing a loop-chain using

the CA back-end, utilizing the information on extra halos generated during the inspection

phase. These steps are detailed in lines 5-18 in Algorithm 4.3.

1. Create grouped halo message

In the communication-avoidance framework, we aim to minimize the need for multi-

ple synchronization points in a loop-chain. To achieve this, we identify and exchange

the necessary halos for distributed loop execution before moving on to the loop-chain

execution. This eliminates the need to exchange halos between each loop. During

this process, we must also add any extra halos identified during the inspection phase.
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Figure 4.5: Grouped halo array

To further reduce the number of messages exchanged for the entire loop-chain, we

organize the halos from multiple loops and op dats into the same data structure.

This allows us to construct a single message per MPI rank to be sent/received (lines

5-7, 13 in Algorithm 4.3), as shown in Figure 4.5.

Algorithm 4.3 also does latency hiding. This means that the iterations of each loop

in the chain that involve the core are executed first while the halos are in-flight.

Once the send/receive operations are completed, the iterations related to non-core

elements, including the additional iterations for the extra halos, are executed.

2. Core iteration execution

During the inspection phase, we separate the core iterations as outlined in Step 4a

of Section 4.2.6. These iterations can be executed without the halo information

from neighboring processes. To save the time spent on communicating halos, we

start executing the core iterations while the halos are in-flight. The core iterations

consist of iterations from all the loops in the loop-chain, which are executed in the

loop-order.

For example, in the loop-chain presented in Listing 4.2, the core sections of L0, L1,

and L2 are executed in the loop order before their non-core iterations. The core

sizes for these loops generally decrease gradually from the first loop to the last loop.

In the example given in Listing 4.2, the core sizes are Sc
L0 > Sc

L1 > Sc
L2.

3. Message reception and unpacking

Line 13 of Algorithm 4.3 includes the MPI Wait command, which indicates that the

message exchange between processes is complete. However, in the CA version, the

message content cannot be directly received by the data buffer of the op dat as in

the OP2 standard halo message exchange. This is because we have added halos of
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Figure 4.6: OP2 code generation/translation process

multiple op dats to a single message. To continue with further calculations, this

grouped halo message must be properly unpacked for relevant op dat data buffers.

4. Non-core iteration execution

Once the halo exchange is finished, non-core iterations are executed. These involve

executing the export-exec halos (eeh) and import-exec halos (ieh). If the loop has n

halos, the execution will occur from eehn−1 to eeh0 and from ieh0 to iehn−1.

4.2.8 Automatic Code Generation

The OP2 framework is designed to generate optimized code for various platforms with

different programming models, using a highly effective code generation process as shown

in Figure 4.6. It is especially useful when dealing with complex mathematical compu-

tations on unstructured-mesh data. OP2 supports two major programming languages,

namely Fortran and C/C++. The biggest advantage of OP2 is its ability to abstract par-

allel programming complexities and platform-specific optimizations. As a result, scientists

and researchers can focus on their scientific objectives.

The OP2 code generation process can handle code written in either Fortran or

C/C++, converting it into a common intermediate representation (IR). This IR acts as

a connector, allowing high-level, easy-to-read code to be turned into low-level, machine-

executable code that can be optimized for different hardware architectures. The IR in-

cludes loop descriptions and elemental kernels that are shared by both supported lan-

guages. A major benefit of OP2 code generation is that the code is still understandable

to humans, meaning developers and scientists can easily view and comprehend it. This

human-readable IR is beneficial when trying to understand platform-specific optimizations

applied during the code generation process.
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The OP2 code generation process allows specific scientific simulations to be op-

timized and parallelized using annotations and directives. These directives determine

whether computations should be performed on CPUs or GPUs and which parallel pro-

gramming models to use, such as CUDA, OpenMP, OpenACC, SYCL/OneAPI, and HIP.

The newest addition to the code generation process is the communication-avoidance (CA)

enhancement generation which we have described in this chapter. To further improve

efficiency, OP2 offers parallelization templates for both Fortran and C/C++, which gen-

erate optimized code for various platforms to utilize their massive parallelism. These

enhancements are applied to computational kernels to ensure that they run efficiently on

designated hardware. The code generation process utilizes the Python language for code

analysis, transformations, and generating optimizations. This process has no opaque-

/black box layers and is easy to understand.

4.2.9 OP2-CA Integration

Application OP2 Application (Embedded API in Fortran/C/C++)

Source-to-Source Translator (Python / Clang LLVM)
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Figure 4.7: OP2 code generation with CA

After developing the CA back-end we added automatic code generation support for

communication-avoidance optimizations to the OP2 library. These optimizations have

been integrated into OP2 in a way that enables applications developed with OP2 API to

use the new features without changing the high-level source. The only change to OP2’s

original architecture explained in Section 2.6.6 is the addition of a loop-chain configuration

file that specifies loop names, loop count, and maximum halo extension of loops to be

chained within the application. The OP2 code-generator has been modified to generate

the loop-chain execution template in Algorithm 4.3 for the selected loops. The generated

code for CA optimizations is human-readable and can be compiled with a traditional

compiler that links the new CA back-end library. This results in an executable that can

run on the chosen hardware.
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4.3 Analytic Model for Loop-chain Performance

In the previous section, we introduced a new communication-avoidance back-end for the

OP2 library. Our next step is to determine if a loop-chain will benefit from this enhance-

ment. To do so, we can create an analytic performance model to analyze the runtimes of

OP2 loops and compare them to equivalent loop-chains executed with the communication-

avoiding setup. This can be achieved by parameterizing loop characteristics, communica-

tion patterns, and machine properties.

4.3.1 OP2 Loop Execution

Considering the execution of a single OP2 loop, l as detailed in Algorithm 4.2, its runtime

can be modeled by (i) the time taken for computing Sc
l (core) and Se

l +Si
l (execute halo)

number of iterations, (ii) time taken to sync/communicate halos, minus any overlap of

computation and communication. If we note Se
l + Si

l = Sh
l = S1

l to indicate that this is

execution over a single halo layer, then the time taken by an OP2 loop is given by:

Top2,l = MAX
[
glS

c
l , 2dlpl(L+m1

l /B)
]
+ glS

1
l (4.1)

Here, gl is the compute time for one iteration of the loop body, dl is the number of

op dats with halos to be synced, pl is the maximum number of neighboring processes to

communicate halos with per MPI process. m1
l is the maximum message size (in bytes)

sent to a neighbor for either eeh or enh halos. The superscript 1 indicates the number

of halo layers exchanged (1 is the default for OP2 loops). The multiplier 2 accounts for

the time for sending a separate message for eeh and enh. The maximum message size

and number of neighbors per MPI process are only known at runtime after the mesh

partitioning [6]. The maximum is used for each of the components above to model the

critical path of the runtime, where for example we assume that the halo exchange cost

between processes only completes as the slowest exchange between a pair of processes. L

and B are the latency and bandwidth of the network respectively. Then, the time taken

for n number of OP2 loops in a loop-chain, L is simply the sum of the time taken by the

individual loops:

Top2,L =

n−1∑
l=0

Top2,l (4.2)

4.3.2 CA Loop-chain Execution

When the loop-chain is executed with the communication-avoidance setup using the multi-

layered halo data structures, a single grouped halo message is exchanged per neighboring

process. This and the execution steps in Algorithm 4.3 lead to a total runtime of the full

loop-chain:

Tca,L = MAX

n−1∑
l=0

glS
c
l , p(L+mr/B + c)

+
n−1∑
l=0

glS
h
l (4.3)
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As detailed in Algorithm 4.3, Sh
l includes iterations from the execute halos of multiple

levels for each loop. The message size, mr is the maximum grouped message size sent to

each neighbor, which combines both the eeh and enh into a single message, as discussed

before. r (where r ≤ n) indicates the maximum number of halo layers required to carry

out the CA algorithm for the loop-chain. Thus, mr is given by:

mr =
n−1∑
l=0

( dl−1∑
d=0

(Seeh,hl
d + Senh,hl

d )× δ
)

(4.4)

Here, dl is the number of halo syncing dats in loop l, hl is the halo extension for loop l,

Seeh,hl
d - eeh size up to level hl of the set on which the dataset d is defined, Senh,hl

d - enh size

of level hl. Not all enh levels up to hl are packed into the message; only the levels updated

are included. Given that a larger number of messages are grouped for communication, an

additional compute cost (a packing and unpacking cost) c is added to communication per

neighbor. Finally, p is the maximum number of neighbors communicated by a process

when exchanging the grouped message, and δ is the size of a data element of the op dat

d in bytes.

4.3.3 Insights from Performance Model

The execution time of an OP2 parallel loop is determined by the slowest of the core

iteration execution time and the halo message exchange time, as shown in Equation (4.1).

When executing a series of OP2 parallel loops, each loop is executed one after the other,

resulting in a total execution time for all loops, as demonstrated in Equation (4.2). In

the CA version, the loops in the loop-chain are combined, and the core iterations of all

the loops are executed first before executing the non-core iterations. This is different

from the OP2 version, where the non-core iterations of the loops are executed right after

the respective loop’s core iterations. Moreover, Equations (4.2) and (4.3) illustrate that

the CA version is more efficient since it sends a single message to a specific neighboring

process instead of sending multiple messages to the same neighbor as in the OP2 version.

When there are more loops in the loop-chain, the CA version executes more core

iterations while the message exchange is happening, resulting in faster communication

compared to core computations. However, according to Equations (4.1) and (4.2), in

the OP2 version, message exchange time can become the dominant factor compared to

core iteration execution time at higher loop counts due to increased message exchanges.

Therefore, we can assume that for longer loop-chains, the CA version will be more ben-

eficial in terms of saving time on communication and yielding higher gains in both lower

and higher node/process counts than the OP2 version.

When we increase the number of processes for a fixed problem size, the problem

size allocated for each process decreases. Because of this, a single process executes fewer

core iterations. Therefore, when we scale the problem, the communication time or the halo

message exchange time becomes dominant for both the OP2 and CA versions, as described
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in Equations (4.2) and (4.3). At this point, the version that performs the communications

faster becomes the winner. The CA version reduces the number of messages sent, which

results in lower communication time compared to the OP2 version even at lower loop

counts, especially at higher node/process counts. Therefore, it can be hypothesized that

CA performance gains will appear at higher node/process counts (i.e., with larger machine

sizes) in a strong scaling scenario, particularly when the number of core iterations per

partition (one partition is assigned per process in OP2) is smaller.

Furthermore, the communication time depends on the maximum number of halo

layers (r) determining the message size (mr). If r is significantly smaller than n, then

the gains of the CA version are likely to be large. However, any performance gains from

faster communications can be diminished if the sum of the times to execute over the

multiple halos given by
∑n−1

l=0 glS
h
l in Equation (4.3), is significantly larger than the sum

of times to execute over a single halo region, given by glS
1
l in Equation (4.2). Therefore,

the maximum number of halo layers involved in the CA execution of the loop-chain has

a significant impact on performance.

4.3.4 Challenges in Performance Modeling

Modeling the performance of unstructured-mesh applications presents various challenges

arising from the nature of unstructured-meshes and the complexities they introduce into

the computational simulations.

• Mesh Complexities

When working with unstructured-meshes, the application needs to be provided with

explicit connectivity information. This is due to the irregular node connectivity and

element shapes. During application execution, accessing data and mesh elements

requires the use of indirection maps, which can make predicting the application’s

behavior challenging.

• Load Imbalance

When an unstructured-mesh application is executed in a distributed environment,

the mesh may not be partitioned and allocated equally to the system’s processes.

This inefficient load balancing can lead to poor performance prediction and resource

allocation.

• Communication Overhead

Irregular mesh structures cause irregular communication patterns among the sys-

tem’s processes. Message sizes, message senders, and receivers are unpredictable at

compile time in an unstructured-mesh application. Modeling the impact of uneven

data movement and synchronization overhead can be a challenging task.
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• Cache Performance

The indirect memory accesses in these applications cause non-contiguous memory

accesses. Mesh renumbering and data rearrangement steps taken to enhance the

cache performance are not predictable during the compile time of the application.

Considering the caching effect in performance modeling has become another chal-

lenge that researchers face.

• Application Complexities

Most real-world unstructured-mesh applications consist of thousands to millions of

lines of code and are written using various programming languages such as Fortran

and C/C++ integrating multiple libraries including MPI, OpenMP, CUDA, and

SYCL. The computations in them are even more complex to understand. Mod-

eling the performance of such complex and coupled code requires multiple other

interactions to be considered.

Addressing these challenges requires a comprehensive understanding of compu-

tational science, unstructured-mesh complexities, and performance modeling techniques.

To effectively capture the complexities of unstructured-mesh simulations and account for

their impact on different aspects of performance, such as computation, memory usage,

communication, and scalability, sophisticated models must be developed. This level of

precision is essential to ensure optimal results.

4.4 Performance

We now investigate the performance of the communication-avoiding back-end, applying

it to two existing applications developed with OP2: (1) a representative CFD mini-app,

MG-CFD [83] used for benchmarking and co-design and (2) the recently developed OP2

version of Hydra, OP2 Hydra [80], a large-scale production CFD application used at Rolls

Royce plc. The OP2 code generator was extended so that it can automatically generate

the loop-chain execution template in Algorithm 4.3 for selected loops. Then, the OP2

MPI back-end can be swapped with the new CA back-end and linked at compile-time.

The high-level science source remains unmodified.

Performance is benchmarked on the ARCHER2 supercomputer, an HPE Cray EX

system located at EPCC. Table 4.1 briefly details the key hardware and setup of the

system. Each ARCHER2 node consists of two AMD EPYC 7742 processors, each with 64

cores (128 total cores) arranged in an 8×NUMA regions per node (16 cores per NUMA

region) configuration [125]. Each node is equipped with 256 GB of memory. The nodes are

interconnected by an HPE Cray Slingshot, 2×100 Gb/s bi-directional per node network.

The GNU compiler collection version 10.2.0 was used on ARCHER2 with compiler flags

noted in the table. For the MPI communication, Cray MPICH 8.1.23 was used. Runtimes

of all the tests performed in this chapter can be found in Section B.2 of Appendix B.
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Table 4.1: System specifications

System ARCHER2 HPE Cray EX [125]

Processor AMD EPYC 7742 @ 2.25 GHz
(procs×cores)/node 2×64
Mem/node 256 GB
Interconnect HPE Cray Slingshot 2×100 Gb/s bi-directional/node
OS HPE Cray LE (SLES 15)
Compilers GNU 10.2.0
Flags -O2 -eF -fPIC

MPI Cray MPICH 8.1.23

Unstructured-mesh-based applications require explicit connectivity information of

mesh elements, which limits their ability to perform compile-time performance enhance-

ments and static performance analysis. Before making any code changes for CA en-

hancements, we can only execute the inspection phase of the CA back-end linked to the

application and gather the information required for the analytical model to predict the

profitability of applying CA enhancements to the identified loop-chains. To support this,

we have enhanced our CA back-end so that we can gather required information such as

message sizes, and core and halo sizes by only executing the inspection phase of the CA

back-end. This gathered information is used to analyze and establish the performance

results of the thesis.

4.4.1 MG-CFD

MG-CFD [83] is a 3D unstructured multi-grid, finite-volume computational fluid dynamics

(CFD) mini-app for inviscid-flow, developed by extending the CFD solver in the Rodinia

benchmark suite. More information about MG-CFD can be found in Section 3.4.2. The

code for MG-CFD is available as open-source software and can be accessed through [128].

To conduct our experiments, we used the NASA Rotor 37 meshes with 8M and 24M

nodes. These meshes are commonly used for CFD validation and represent the geometry

of a transonic axial compressor rotor.

Synthetic Loop-chains

As discussed in Section 4.2.2, an OP2 loop will exchange MPI halos for an op dat if it

is to be indirectly read (OP READ) in a loop but has been modified (OP WRITE, OP INC, or

OP RW) in a preceding loop. In this case, we note the op dat’s halos are dirty at the start of

the loop, triggering an MPI halo exchange before accessing halo values for computation.

As such, two consecutive loops, the first, modifying an op dat followed by a second,

reading the same data indirectly, will be our target access pattern (i.e., access descriptor

in the loop-chain abstraction), for applying sparse tiling. However, consecutive loops with

the above access descriptor do not exist in MG-CFD. Nevertheless, the relatively small
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1 for (int i = 0; i < nchains; i++) {

2 // loop which modifies dataset var

3 op_par_loop(ca_write_kernel, "ca_write_kernel", op_edges[l],

4 op_arg_dat(var[l][i], 0, en[l], 5, "double", OP_INC),

5 op_arg_dat(var[l][i], 1, en[l], 5, "double", OP_INC));

6

7 // loop which reads the modified(dirtied) dataset var

8 op_par_loop(ca_read_kernel, "ca_read_kernel", op_edges[l],

9 op_arg_dat(var[l][i], 0, en[l], 5, "double", OP_READ),

10 op_arg_dat(var[l][i], 1, en[l], 5, "double", OP_READ),

11 op_arg_dat(ew[l] , -1, OP_ID, 3, "double", OP_READ),

12 op_arg_dat(fluxes[l], 0, en[l], 5, "double", OP_INC),

13 op_arg_dat(fluxes[l], 1, en[l], 5, "double", OP_INC));

14 }

Listing 4.5: Expandable synthetic 2-loop-chain

size and simplicity of MG-CFD means that we could add a synthetic sequence of loops to

create the required setup. With such a configuration, we are then able to create arbitrarily

extendable loop-chains with the above target access pattern allowing to examine the

limits of a single loop-chain and observe its consequent performance, reasoning with the

performance model. The new loops introduced to MG-CFD consist of two loops [16]

as detailed in Listing 4.5. The first, ca write kernel modifies an op dat named, var

through an indirect increment, OP INC, operation while iterating over the edges. Thus,

var becomes dirty at the end of this loop. The second loop, ca read kernel, indirectly

reads var. ca read kernel is in fact a copy of the most time-consuming loop in MG-

CFD, the compute flux edge loop that has the same access modes. This enables us to

make an effective comparison between reducing communications, i.e., no halo exchanges

in the second loop, and the consequent increase in the (redundant) computations over the

larger depth halos in the first loop.

This 2-loop-chain is enclosed within an outer loop whereby setting its iteration

count, nchains, we can create longer loop-chains to explore performance. For instance,

setting nchains = 8 expands the existing loop-chain with 2 loops in Listing 4.5, 8 times

to generate a loop-chain with 16 loops. However, the number of halo layers needed by

the loop-chain will be decided by considering the data access patterns of the datasets in

the expanded loop-chain according to Algorithm 4.4. With nchains = 1, the execution

of the loop-chain, according to Algorithm 4.3, will not reduce the number of MPI mes-

sages exchanged. However, for nchains > 1, taking the resulting sequence of loops as

a single loop-chain and applying Algorithm 4.3, we can see how multiple halo exchanges

can be combined into a single larger message. We use this configuration to explore the

performance on the ARCHER2 supercomputer.
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ARCHER2 Results
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Figure 4.8: MG-CFD CA performance with 8M mesh on ARCHER2
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Figure 4.9: MG-CFD CA performance with 24M mesh on ARCHER2

Figure 4.8 and Figure 4.9 present execution times (min. of at least five runs each, CoV

< 0.01) of MG-CFD on ARCHER2 for a mesh size of 8M and 24M, respectively. The

reported runtime is the time taken by the main iteration loop. We have not included

the constant cost for the inspection phase, which gets amortized (and is negligible) for

larger numbers of main iterations, as is typical for real-world applications. Note the log

scale of the y-axis. For both cases, we compare the original OP2 and the CA runtimes

for loop-chains with loop counts n = 2, 4, . . . , 32. For each run, we utilized the full 128

cores/node (128 MPI procs/node). Additionally, to obtain the best partitions per process,

i.e., the smallest MPI halos and the least number of neighbors per process, we used the

k-way partitioner routine from the ParMETIS library [124]. Increasing n from 2 to 32

will result in the original OP2 loops exchanging 16× more messages per neighbor. Only a

single message is exchanged in the CA version. However, the grouped halo message size,

mr for CA can potentially contain a maximum of n halo layers. According to the data

access patterns of the synthetic loop-chain, r is set to 2 for our benchmarking, making

the message size m2. We investigate the performance for the case where the number of

op dats exchanged remains constant at 2 per loop-chain. While this scenario is synthetic,

as shown by Reguly et al. [36], for structured-mesh codes, it is a prevalent case we see in
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Table 4.2: MG-CFD on ARCHER2 - 8M Mesh - Model Components: OP2 comms
(
∑

(2dpm1)) - CA comms (pmr) in bytes, OP2 core iterations (
∑

(Sc)) - CA core iterations
(
∑

(Sc)), OP2 halo iterations (
∑

(S1)) - CA halo iterations (
∑

(Sh)), and performance gain%
of CA over OP2

#Nodes #Loops
8M Mesh

OP2 CA
Gain%∑

(2dpm1)
∑

(Sc)
∑

(S1) pmr
∑

(Sc)
∑

(Sh)

1

2 2088960 395966 30622 4141880 381001 96763 -4.74
4 4177920 791932 61244 4141880 706526 193526 -1.02
8 8355840 1583864 122488 4141880 1223225 387052 4.08
16 16711680 3167728 244976 4141880 1842929 774104 2.37
32 33423360 6335456 489952 4141880 2110935 1548208 1.59

4

2 877600 96494 14408 1763200 90460 42292 -17.56
4 1755200 192988 28816 1763200 161214 84584 -11.75
8 3510400 385976 57632 1763200 258408 169168 -2.65
16 7020800 771952 115264 1763200 341095 338336 7.90
32 14041600 1543904 230528 1763200 351631 676672 15.62

16

2 365400 23148 5850 747600 20962 17485 -2.50
4 730800 46296 11700 747600 34634 34970 3.91
8 1461600 92592 23400 747600 47264 69940 10.85
16 2923200 185184 46800 747600 49646 139880 19.16
32 5846400 370368 93600 747600 49646 279760 26.00

64

2 168360 5658 2260 356160 4783 7277 -9.70
4 336720 11316 4520 356160 7125 14554 -13.08
8 673440 22632 9040 356160 8285 29108 15.98
16 1346880 45264 18080 356160 8295 58216 20.20
32 2693760 90528 36160 356160 8295 116432 34.45

real-world applications. The same was observed for Hydra, an unstructured-mesh code,

but within much smaller loop-chains (see Section 4.4.2).

For both the 8M and 24M meshes, better runtimes can be seen at higher node

counts with CA. The performance gains are also larger for higher loop counts. This aligns

with the insights from the model, where the CA version saves on the number of messages

sent without an increase in the message size. Up to 35% faster runtimes can be seen

with CA, compared to the original OP2. Empirical measurements for the above runs

provide further evidence for the performance trends. Table 4.2 and Table 4.3 detail the

computation and communication model component factors for the 8M and 24M mesh

execution with MG-CFD on ARCHER2. These were obtained by recording the message

sizes and number of MPI neighbors for each tested configuration and substituting these

values into the analytic model.

In Table 4.2 and Table 4.3, we can observe that the number of core computations

(
∑

(Sc)) performed during the halo exchange increases as the loop count increases for a

given node count. The CA version performs fewer total core computations in the loop-

chain than the OP2 version. However, in the CA version, all the core computations are

performed together before executing the non-core computations. In contrast, the non-core

computations of a given loop are executed immediately after its core iteration execution in
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Table 4.3: MG-CFD on ARCHER2 - 24M Mesh - Model Components

#Nodes #Loops
24M Mesh

OP2 CA
Gain%∑

(2dpm1)
∑

(Sc)
∑

(S1) pmr
∑

(Sc)
∑

(Sh)

1

2 4476960 1383744 78678 8791200 1346416 241975 -6.71
4 8953920 2767488 157356 8791200 2562399 483950 -11.63
8 17907840 5534976 314712 8791200 4662827 967900 -21.60
16 35815680 11069952 629424 8791200 7772310 1935800 -25.76
32 71631360 22139904 1258848 8791200 11029298 3871600 -26.35

4

2 2776200 340060 32220 5497800 325105 99731 -5.47
4 5552400 680120 64440 5497800 601197 199462 0.11
8 11104800 1360240 128880 5497800 1029981 398924 6.30
16 22209600 2720480 257760 5497800 1513264 797848 4.93
32 44419200 5440960 515520 5497800 1681473 1595696 2.66

16

2 1006720 82868 13344 2039840 77673 38976 -20.50
4 2013440 165736 26688 2039840 137854 77952 -11.72
8 4026880 331472 53376 2039840 217854 155904 -4.20
16 8053760 662944 106752 2039840 277656 311808 6.73
32 16107520 1325888 213504 2039840 283708 623616 16.47

64

2 406080 20154 5348 825600 18125 16183 -8.76
4 812160 40308 10696 825600 29980 32366 -5.24
8 1624320 80616 21392 825600 41653 64732 7.83
16 3248640 161232 42784 825600 44690 129464 19.68
32 6497280 322464 85568 825600 44690 258928 31.65

the OP2 version. This allows the CA version to hide latency for the halo message exchange

better than the OP2 version for higher loop counts in lower node counts, providing better

gains for the CA version, as explained in Section 4.3.3.

For instance, let us consider the performance gains for the 8M mesh in node 1

from Table 4.2. The number of core computations (
∑

(Sc)) for the CA version increases

from 381001 to 2110935 for loop counts 2 to 32 while keeping the exchanged halo message

size (pmr) constant at 4141880 bytes. In the OP2 version, for the same configurations, core

iterations increase from 395966 to 6335456, and the message size (
∑

(2dpm1)) increases

from 2088960 to 33423360 in bytes. Although the core computations (
∑

(Sc)) increase in

the OP2 version, they are not utilized together for latency hiding in the same way as the

CA version. Hence, from loop count 8, the CA version starts to give performance benefits,

due to latency hiding, even though it has extended halo computations (
∑

(Sh)) compared

to the OP2 version. Based on the performance model data presented in Table 4.2, we can

observe that the OP2 version outperforms the CA version in terms of the total amount

of communications (measured in bytes), starting from loop count 8. In other terms,

this indicates that the communication reduction strategy implemented in the CA version

begins to have a significant impact on the loop-chain at this point. This behavior is

consistent across all other node counts as well.

We utilized Scalasca [129] and Score-P [130] to verify our analytical model’s anal-

ysis of the results. Figure 4.10a and Figure 4.10b show the mean runtime of 0.78 seconds
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(a) OP2 version (b) CA version

Figure 4.10: MG-CFD execution time in seconds for synthetic loop-chain (Configurations:
#Nodes - 1, #Loops - 2)

(a) OP2 version (b) CA version

Figure 4.11: MG-CFD data exchange in bytes for synthetic loop-chain (Configurations:
#Nodes - 1, #Loops - 2)

for the OP2 version and 0.84 seconds for the CA version, respectively, for loop count

2 in node count 1. Similarly, Figure 4.11a and Figure 4.11b show the exchanged mean

data size of 2.32 × 107 bytes for the OP2 version and 4.62 × 107 bytes for the CA ver-
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(a) OP2 version (b) CA version

Figure 4.12: MG-CFD execution time in seconds for synthetic loop-chain (Configurations:
#Nodes - 1, #Loops - 32)

(a) OP2 version (b) CA version

Figure 4.13: MG-CFD data exchange in bytes for synthetic loop-chain (Configurations:
#Nodes - 1, #Loops - 32)

sion, respectively, for the same configurations. This profile data indicates that the OP2

version performs better than the CA version at loop count 2 in node count 1 with lower

communication which aligns with our performance model insights.
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(a) OP2 version (b) CA version

Figure 4.14: MG-CFD data exchange in bytes for synthetic loop-chain (Configurations:
#Nodes - 64, #Loops - 32)

Furthermore, Figure 4.12a and Figure 4.12b show the mean runtime of 12.52 sec-

onds for the OP2 version and 11.29 seconds for the CA version, for loop count 32 in node

count 1. Furthermore, Figure 4.13a and Figure 4.13b show the exchanged mean data size

of 3.71× 108 bytes for the OP2 version and 4.62× 107 bytes for the CA version, for the

same configurations. This profile data demonstrates that the CA version outperforms the

OP2 version at loop count 32 in node count 1 with lower communication which can also

be inferred from the performance model data in Table 4.2, as explained earlier.

These profiling results support our arguments based on the analytical model, where

the OP2 version performs better for lower loop counts in lower nodes, whereas the CA

version performs better for higher loop counts in lower node counts, provided that a

sufficiently large number of core computations are available for latency hiding, considering

the aggregated message size in the CA version. Looking at the data presented in Table 4.3,

it can be observed that for 24M, the CA version does not outperform the OP2 version for

any of the loop counts tested on a single node. This indicates that the CA version lacks

adequate core computations to mask the latency that comes with the aggregate message

size increase in the CA version.

Per node, as the loop count increases, the amount of data communicated among the

neighbors increases in the OP2 version (
∑

(2dpm1)), while it remains constant in the CA

version (pmr). The amount of core computations performed during the halo exchange is

always smaller for the CA execution compared to the OP2 version. However, the amount

of computations over the halos that are performed after the halo exchange is always higher

in the CA version. As the node count increases, the number of core computations reduces
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for both the OP2 and the CA versions, and communication costs become dominant. For

instance, in Table 4.2, at node count 64, the amount of data exchanged in the OP2 version

increases from 168360 to 2693760 in bytes, while the core computations increase from 5658

to 90528. In the CA version, the message size remains constant at 356160 bytes, while

core computations increase from 4783 to 8295, which is not sufficient for complete latency

hiding of message exchange. In both versions, communication becomes dominant, and

the version that performs less communication with a lesser number of messages, which

is the CA version, gives better performance gains. Insights from Scalasca and Score-

P profiling data in Figure 4.14 show that the amount of communication is significantly

lower in the CA version (mean - 3.67× 106 bytes) compared to the OP2 version (mean -

2.71×107 bytes). Through this, we can confirm that our performance model prediction of

a potential performance gain with lower communication at higher node and loop counts

is accurate.

To summarize, we observed that for the 8M mesh, the benefits of reduced commu-

nication with CA become evident from 1 node onwards at the 8 loop count configuration.

Similarly, for 4 nodes, this becomes apparent at 16 loop count. However, in the case of

the 24M mesh, this advantage begins at a higher node count of 4 with a 4 loop count

configuration.

4.4.2 OP2 Hydra

Our second application is the OP2 version of Rolls Royce’s Hydra CFD application [80,

81] which we previously examined in Chapter 3. Hydra is a comprehensive production

application designed for modeling various aspects of turbomachinery design, and its details

can be found in Section 3.4.4. We are currently testing the same 8M and 24M node

NASA Rotor 37 meshes that were previously tested with MG-CFD. OP2 Hydra consists

of roughly 500 parallel loops, with more complex computations performed on the mesh

than in the loops of MG-CFD.

A number of loop-chains were identified to target CA optimizations. Table 4.4 and

Table 4.5 detail six loop-chains selected for our benchmarking. The constituent loops,

their iteration set, access modes of op dats that require halo exchanges, and required

max halo layers for each loop are detailed in the tables. The loop-chains in Table 4.4

(vflux, iflux, and jacob) require only a single layer of halos, while the loop-chains

in Table 4.5 (weight, period, and gradl) require multiple layers of halos for execution.

However, these loop-chains consist of the most time-consuming loops in Hydra [81]. The

relative costs or the proportional contributions of the loop-chains to the total runtime of

Hydra are vflux 18%, iflux 5%, gradl 8%, and jacob 2%. The loop-chains, weight

and period are inside the setup phase and outside the main time-stepping loop.
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Table 4.4: OP2 Hydra loop-chains with single halo layer (HEl = 1).

loop-chain: iflux (loop count = 2)

Parallel loop (l) Iteration set (S) Halo exchanged datasets HEl

initviscres nodes - 1
iflux edge edges qrg 1

loop-chain: vflux (loop count = 2)

Parallel loop (l) Iteration set (S) Halo exchanged datasets HEl

initres nodes - 1
vflux edge edges qp, xp, ql, qmu, qrg 1

loop-chain: jacob (loop count = 3)

Parallel loop (l) Iteration set (S) Halo exchanged datasets HEl

jac period pedges jac, jaca 1
jac centreline cbnd - 1
jac corrections bnd jac 1

ARCHER2 Results

Performance of each loop-chain on ARCHER2 up to 128 nodes (16k cores) is detailed

in Figure 4.15 and Figure 4.16 (CoV < 0.08). This is the cumulative time taken by each

loop-chain for 20 iterations of the main time-stepping loop. Hydra’s default partitioner

based on the recursive inertial bisection of the mesh is used in all these experiments. We

collected information on message sizes, core and halo sizes, the number of neighboring

processes, and other parameters through the CA back-end inspection phase to analyze the

results. The data in Table 4.6 and Table 4.7 is used for our analysis with the analytical

model.

In Table 4.6, we can observe that the loop-chains, weight, period, and jacob

exhibit performance improvements with Hydra for the 8M mesh on ARCHER2. The

weight loop-chain specifically shows the highest gain of 14% at the 128 node run, where

it has one of the highest communication reductions of 53% compared to the OP2 version,

with a relatively low computation increase compared to other node counts. However,

in Table 4.7, for the 24M mesh run, we do not see any performance gains for the weight

loop-chain. This is primarily due to the higher aggregated message size, with relatively low

core iterations for latency hiding, and a comparatively high increase in halo computations.

For the period loop-chain, we observe that the highest performance gain of 42%

occurs at the 64 node run where the communication reduction is the highest in comparison

to all other runs, as in Table 4.6. Additionally, there is only a relatively low increase in

computation for the 8M mesh. A similar trend is also observed for the 24M mesh in

Table 4.7 for the period loop-chain. However, for the iflux and vflux loop-chains,
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Table 4.5: OP2 Hydra loop-chains with multiple halo layers (HEl >= 1)

loop-chain: weight (loop count = 5)

Parallel loop (l) Iter. set (S) Access modes and halo ext. HEl

modeqo HEqo

sumbwts bnd INC 2 2
periodsym pedges RW 1 1
centreline cbnd WRITE 2 2
edgelength edges RW 2 2
periodicity pedges RW 1 1

loop-chain: period (loop count= 6)

Parallel loop (l) Iter. set (S) Access modes and halo ext. HEl

modeqo HEqo modevol HEvol

negflag pedges - 1 RW 2 2
limxp edges RW 2 READ 1 2
periodicity pedges RW 1 - 1 1
limxp edges RW 2 READ 1 2
periodicity pedges RW 1 - 1 1
negflag pedges - 1 RW 1 1

loop-chain: gradl (loop count = 2)

Parallel loop (l) Iter. set (S) Access modes and halo ext. HEl

modeqp HEqp modeql HEql

edgecon edges INC 2 INC 2 2
period pedges RW 1 RW 1 1

there are no performance gains with the CA version for both the 8M and 24M mesh runs,

even though there is neither communication reduction nor computation increase in the

CA version when compared to the OP2 version. Despite sending an aggregated message

for halo exchanges instead of multiple messages for individual datasets, this message

aggregation did not help to hide the latency in the CA version due to a low number of

core iterations. As a result, no significant performance gains were observed.

In the jacob loop-chain, we avoid sending a redundant message in the CA version

with no halo increase. The data in both Table 4.6 and Table 4.7 shows that the jacob

loop-chain only experiences a reduction in communication with no increase in computation

in the CA version. This scenario is always favorable for the CA version as it avoids extra

computations and communication. However, for the gradl loop-chain, we observe both

an increase in communication (i.e., negative communication reduction) and an increase

in computation for the CA version. Hence, the gradl loop-chain does not provide any

performance benefits for either the 8M or 24M mesh runs.
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Figure 4.15: Hydra CA performance with 8M mesh on ARCHER2
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Figure 4.16: Hydra CA performance with 24M mesh on ARCHER2

In summary, results indicate that the loop-chains with the highest communication

reduction, period and jacob showed performance improvements with CA – 42% and 40%

on 64 nodes for the 8M problem, respectively. The weight loop-chain showed performance

gains only with 8M mesh with a maximum of 14% on 128 nodes due to its communication

reduction not being adequate enough to outperform the computation increase with 24M

mesh. Other loop-chains, executing them as individual OP2 loops gave the best perfor-

mance. Again the insights from the model as in Table 4.6 and Table 4.7, align with these

results where loop-chains with higher communication reduction preferably with large loop

counts tend to break-even the balance of computation vs communications performance.

4.5 Conclusion

Loop-chains with a higher communication reduction compared to the increased redundant

computation due to added halo extensions show performance gains in Hydra. The com-

munication reduction and the total core size for latency hiding of period is significantly

higher than that of weight, giving it a higher performance gain as indicated through the
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Table 4.6: Hydra loop-chains (LCs) on ARCHER2 - 8M Mesh - Model Components
L
C
(#

L
o
op

s)

#
N
o
d
es 8M Mesh

OP2 CA Loop-chain
Gain%

Comm
Reduction

%

Comp
Increase

%
∑

(2dpm1)
∑

(Sc)
∑

(S1) pmr
∑

(Sc)
∑

(Sh)

w
ei
gh

t(
5) 4 31694400 50206 37538 21051360 50184 135189 3.57 33.58 72.23

16 16387200 13045 19346 8610624 13045 62767 -6.42 47.46 69.18
64 5121792 3458 6616 2154240 3458 23373 11.01 57.94 71.69
128 2482272 1800 3612 1150560 1800 14121 14.29 53.65 74.42

p
er
io
d
(6
) 4 51063200 93122 75076 17542800 93089 271347 3.11 65.64 72.33

16 26401600 22652 38692 7175520 22652 128252 35.16 72.82 69.83
64 8251776 5434 13232 1795200 5434 47115 42.35 78.24 71.92
128 3999216 2622 7224 958800 2622 27821 34.25 76.03 74.03

ifl
u
x
(2
) 4 5282400 62842 16674 5282400 62842 16674 -3.84 0.00 0.00

16 2731200 15403 7360 2731200 15403 7360 -4.75 0.00 0.00
64 853632 3737 2686 853632 3737 2686 -18.37 0.00 0.00
128 413712 1821 1572 413712 1821 1572 -20.93 0.00 0.00

v
fl
u
x
(2
) 4 59867200 62842 16674 59867200 62842 16674 -9.11 0.00 0.00

16 30953600 15403 7360 30953600 15403 7360 -11.58 0.00 0.00
64 9674496 3737 2686 9674496 3737 2686 -0.44 0.00 0.00
128 4688736 1821 1572 4688736 1821 1572 3.68 0.00 0.00

ja
co
b
(3
) 4 89800800 3658 10432 45780800 3658 10432 25.59 49.02 0.00

16 46430400 1719 5993 23670400 1719 5993 4.57 49.02 0.00
64 14511744 741 1965 7398144 741 1965 40.61 49.02 0.00
128 7033104 489 1020 3585504 489 1020 33.48 49.02 0.00

gr
ad

l(
2)

4 52824000 46548 27106 105256800 46537 123131 -141.72 -99.26 77.99
16 27312000 11326 13353 43053120 11326 55039 -288.51 -57.63 75.74
64 8536320 2717 4651 10771200 2717 20065 -302.88 -26.18 76.82
128 4137120 1311 2592 5752800 1311 11983 -202.80 -39.05 78.37

model in Table 4.6 and Table 4.7. Loop-chains such as iflux and vflux, which reduce

the number of messages with a grouped halo, perform latency hiding with core execu-

tion but with no reduction of communication, are unlikely to give performance gains on

CPU clusters. Loop-chains such as gradl which cause an increase in communication and

computation, tend to degrade the performance even with sufficient latency hiding core

computations and grouped halos. On the other hand, loop-chains such as jacob, which

reduce communication with latency hiding and no computation increase, always tend to

give performance benefits.

In general, there is a message size increase and a message count decrease in the

CA version. However, it does not change the load balance of the tasks divided among the

processes compared to the OP2 version. Message exchange between processes is always

associated with message packing and unpacking costs. CA/OP2 message packing cost

ratio is equivalent to the CA/OP2 total halo message sizes ratio. However, the OP2

version does not suffer from a message unpacking cost since the messages related to a

particular dataset are directly copied to the relevant dataset array when receiving the

message. However, there is an additional message unpacking cost for the CA version
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Table 4.7: Hydra loop-chains (LCs) on ARCHER2 - 24M Mesh - Model Components
L
C
(#

L
o
o
p
s)

#
N
o
d
es 24M Mesh

OP2 CA Loop-chain
Gain%

Comm
Reduction

%

Comp
Increase

%
∑

(2dpm1)
∑

(Sc)
∑

(S1) pmr
∑

(Sc)
∑

(Sh)

w
ei
gh

t(
5
) 4 123187680 175002 93379 87674208 174962 463440 -34.63 28.83 79.85

16 52273008 45374 48580 26528640 45374 220806 -75.07 49.25 78.00
64 21682080 12001 19674 8653680 12001 70853 -63.24 60.09 72.23
128 9895104 6198 11408 3988608 6198 40843 -12.12 59.69 72.07

p
er
io
d
(6
) 4 198469040 328836 186758 73061840 328776 926734 31.78 63.19 79.85

16 84217624 80496 97160 22107200 80496 441079 25.64 73.75 77.97
64 34932240 19562 39348 7211400 19562 144921 27.78 79.36 72.85
128 15942112 9606 22816 664768 9606 81427 34.78 95.83 71.98

ifl
u
x
(2
) 4 20531280 220854 63381 20531280 220854 63381 -1.27 0.00 0.00

16 8712168 54387 28734 8712168 54387 28734 -5.74 0.00 0.00
64 3613680 13317 7972 3613680 13317 7972 -4.49 0.00 0.00
128 1649184 6572 4530 1649184 6572 4530 -5.91 0.00 0.00

v
fl
u
x
(2
) 4 232687840 220854 63381 232687840 220854 63381 -12.72 0.00 0.00

16 98737904 54387 28734 98737904 54387 28734 -18.29 0.00 0.00
64 40955040 13317 7972 40955040 13317 7972 -11.14 0.00 0.00
128 18690752 6572 4530 18690752 6572 4530 -11.91 0.00 0.00

ja
co
b
(3
) 4 349031760 10642 14999 177937760 10642 14999 28.79 49.02 0.00

16 148106856 5126 9923 75505456 5126 9923 28.36 49.02 0.00
64 61432560 2220 5851 31318560 2220 5851 18.19 49.02 0.00
128 28036128 1395 3439 14292928 1395 3439 40.21 49.02 0.00

gr
a
d
l(
2)

4 205312800 164360 78380 438371040 164340 445413 -122.10 -113.51 82.40
16 87121680 40248 38657 132643200 40248 207445 -157.35 -52.25 81.37
64 36136800 9781 13823 43268400 9781 61785 -248.07 -19.74 77.63
128 16491840 4803 7969 19943040 4803 34610 -262.79 -20.92 76.97

when copying the data elements of multiple datasets received in the same message to

relevant dataset arrays. However, this unpacking cost becomes negligible due to the chunk

memcopy operations performed on the received messages in the CA version compared to

the multiple message exchange cost of the OP2 version.
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Chapter 5

Integrating Shared- and

Distributed-Memory

Communication-Avoiding

Optimizations for CPUs

So far, we have studied the performance of unstructured-mesh-based applications that

utilize communication-avoidance techniques in shared- and distributed-memory systems.

It is important to analyze the behavior of each optimization strategy separately and then

combine them to enhance the performance of these applications on high-performance

systems. By doing so, we can identify new challenges and opportunities for optimizing

unstructured-mesh-based applications with communication-avoidance. In this chapter, we

evaluate the performance of unstructured-mesh applications for shared- and distributed-

memory parallelization (SDMP) optimizations on CPU clusters, using the best-performing

OP2 version with the communication-avoidance (CA) version of the same application.

5.1 Shared- and Distributed-Memory Parallelism

In order to address complex computational problems and overcome limitations posed by

modern supercomputer architecture, this approach combines two parallelisms: shared-

memory and distributed-memory. However, when merging these two parallelisms, ap-

plications may face challenges in improving performance with communication-avoidance

techniques. In this section, we will examine the advantages and strengths of this hybrid

approach regardless of the optimization strategy.

• Scalability and optimal resource utilization

On-node parallelism exploits shared-memory’s high bandwidth and low latency

within a single node, while distributed-memory parallelism spans multiple nodes

for scalability. Combining both approaches ensures that the total computational
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power of each node is harnessed efficiently while also enabling scaling across the

entire system for broader problem sizes.

• Balanced communication and computation

Optimizing the data movement mechanism in a node’s memory system can be

achieved through on-node memory parallelism while improving inter-node commu-

nication strategies can be done through distributed-memory parallelism. Many

applications have components that can benefit from both approaches, but it is im-

portant to avoid interference between the enhancements to prevent any negative

impact on performance.

• Enhanced parallelism

We can increase the parallelism of an application by increasing the running thread

and node counts allocated for the application. This introduces some flexibility

to the applications in selecting the optimizations going to be applied. We must

develop hybrid algorithms to support shared- and distributed-memory parallelism.

Enhancing the algorithms to cater to these requirements is very challenging but

rewarding.

Developing a framework to combine shared- and distributed-memory systems

presents new challenges, despite the benefits of optimal resource utilization, efficient

memory management, scalability, and versatility.

First, we will explore SDMP on CPU clusters. We will elaborate the OP2 implementation

that supports SDMP for CPU clusters and the extension of our CA back-end further to

add shared-memory parallelization techniques with the SLOPE library along with the

distributed-memory parallelization enhancements. We will compare the best-performing

CPU version of OP2 with the CA-based SDMP version.

5.2 OP2 based SDMP for CPU Clusters

When dealing with diverse computer systems such as distributed-memory computing clus-

ters, it is essential to utilize multiple layers of parallelism to achieve parallel execution

of an application [9]. This involves combining thread-level and process-level parallelism,

which is the combination of shared-memory and distributed-memory parallelism. The

OP2 library currently has a CPU cluster back-end that uses OpenMP multi-threading for

shared-memory parallelization and MPI message communication for distributed-memory

parallelism. When integrating shared- and distributed-memory parallelism, OP2 was de-

signed with the following considerations in mind:

1. Combining the distributed-memory handling strategy, the owner-compute model [9],

with the coloring algorithm used in parallelizing on-node computations.
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2. Overlapping mechanism of computation (which includes the coloring algorithm ex-

ecution and core iteration calculation phase) and communication (which involves

inter-node/process message/halo exchange).

Algorithm 5.1: Loop-chain inspection/execution with CA+SLOPE

Input: Loop-chain, L = {L0, ..., Ln−1}, op dats, D used in L, Tile size(t)
Result: Execute loop-chain with CA + sparse tiling

// Find op dats requiring halo syncs: Dh ⊆ D
1 Dh ← halo exch dats(D, < M, mode >, L);

// Compute #halo layers required for each loop in L
2 HLl ← calc halo layers(L,Dh);

// Find core, exec, & non-exec halo #iters for loops in L
3 Scl , Shl , Snl ← calc iters(Sl, HLl);

// Rearrange and renumber multi-layered core, eeh & enh for each

op dat d ∈ Dh

4 Seeh,Senh ← calc halos(Dh, HLl, Scl , Shl , Snl );

// SLOPE inspection algorithm will assign all iterations including ieh

to tiles

5 T (Tc, Th) ← slope inspection(Scl , Shl , Snl , t);

6 meeh+enh ← create grouped msg(Dh, Seeh,Senh);

7 MPI Isend(meeh+enh);

8 MPI Irecv(mieh+inh);

9 foreach color do
10 foreach tile T ∈ Tc && T.color == color do
11 foreach iteration I ∈ T do
12 execute iteration(I );
13 end foreach

14 end foreach

15 end foreach

16 MPI Wait(meeh+enh, mieh+inh);

17 foreach color do
18 foreach tile T ∈ Th && T.color == color do
19 foreach iteration I ∈ T do
20 execute iteration(I );
21 end foreach

22 end foreach

23 end foreach
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5.3 Integrating CA Back-End and SLOPE Library

The CA back-end developed and explained in Chapter 4, supports the distributed-memory

parallelism with communication-avoidance. The SLOPE library [8, 121] explained in

Chapter 3, supports shared-memory parallelism with communication-avoidance through

OpenMP, enhanced with full sparse tiling. We incorporated these two versions to achieve

shared- and distributed-memory parallelism with inter- and intra-node communication-

avoidance.

5.3.1 CA+SLOPE Inspection for Distributed-Memory Parallelism

To enable communication-avoidance in a distributed-memory platform using the SLOPE

library, the Algorithm 4.3 is improved as detailed in Algorithm 5.1.

First, it is necessary to divide and distribute the unstructured-mesh among the

application’s processes as in Figure 5.1. Then, we identify the op dats that require a halo

exchange during the execution of a specific loop-chain. Using the algorithm presented in

Algorithm 4.4, we determine the additional halo layers needed for these op dats. After

that, we calculate the required sizes for the halos (execute and non-execute), as well as

for the core. Finally, we rearrange and renumber the multi-layered halo data structure

based on the local arrangement of the mesh elements. These steps resemble those of the

new CA back-end in Chapter 4 and are further elaborated in Section 4.2.6.
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Figure 5.1: Mesh partitioning for processes

The information generated so far in the above-mentioned steps in the CA back-

end will be fed to the SLOPE library to carry out its inspection phase for shared-memory

parallelism (see line 5 in Algorithm 5.1).
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5.3.2 SLOPE Inspection with Distributed-Memory Parallelism

The SLOPE library can now receive information on core, boundary (export-exec and

import-exec), and non-exec iterations since the CA back-end has generated the required

halos. The first step involves selecting the seed loop for the loop-chain. This loop is

the one in which the iteration space is initially partitioned and assigned to tiles. The

iteration space should fully represent the unstructured-mesh so that projections can be

made when assigning iterations of the other loops to tiles. The terminology used in the

SLOPE library is well-explained in Chapter 3, but a brief explanation is provided here

for clarity. It is important to note that for distributed-memory parallelism, the seed loop

must be the first loop of the loop-chain [8]. This is a limitation of the SLOPE library.

Firstly, the core region of the seed loop (L0) is segmented into partitions and

allocated distinct colors. To ensure optimal execution, neighboring partitions must not

have the same color. The color assignment follows an ascending order, with lower numbers

signifying higher priority. This helps to improve spatial locality when moving execution

from one tile to another, particularly when partitions with adjacent color numbers are

also physically adjacent.
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Figure 5.2: Coloring Rank X

The process of partitioning and coloring is applied to the boundary iterations

(export-exec and import-exec iterations) of the seed loop, L0. During the assignment of

colors to tiles, color numbers with lesser priority than those assigned to the core region

tiles are used. This ensures that core tiles are executed before boundary tiles during the

execution phase, while the halo exchange is in-flight, to hide latency.

The SLOPE library maps all iterations of the non-exec region to a single tile and

assigns the lowest priority color number. These iterations are not executed but are read

when executing other iterations. Figure 5.2 and Figure 5.3 show the partitioning and
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Figure 5.3: Coloring Rank Y

coloring of the mesh in Figure 5.1, distributed between rank X and rank Y of the system.

After completing the seed loop iteration space partitioning and coloring, the SLOPE

inspection phase moves to other loops of the loop-chain. The iterations of the other loops

are assigned to tiles using projections calculated with the MAX function, as explained in

Section 3.3.1. This is because only forward-tiling is available with distributed-memory

parallelism.

5.3.3 SLOPE Execution with Distributed-Memory Parallelism

Once the tile schedule has been established, it is time to move on to the execution phase.

This process is clearly outlined in lines 6-23 of Algorithm 5.1. The first step involves

creating a grouped halo message using the steps described in Section 4.2.7. Once the

message has been formed, it is sent and the loop execution begins. During the message

transit, the assigned iterations for the core tiles are executed in parallel. Tiles of the

same color will execute their assigned iterations together, with the colors being executed

in order of priority, one after the other.

The library waits until the halo exchange is complete before proceeding with the

boundary/halo tile execution. The execution of core tiles during the exchange of halo

messages allows for overlapping computation and communication. After receiving the

halo messages, the boundary tile iterations are executed in the same manner as the core

tile execution. The halo tile computations include redundant computations from imported

halo regions.

The expected outcome of the SDMP for CPU clusters with the SLOPE library

is that the efficiency gained through spatial locality will outweigh the redundant com-
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putation overhead. This will be accomplished through communication-avoidance with

grouped message exchange and by avoiding multiple synchronization points in loop-chain

execution, which will help reduce existing communication overhead. To achieve this goal,

it is important that the redundant computations are fewer in number than the core com-

putations. This will also result in a reduction of redundant information exchange. These

aspects will be further analyzed and explained in the following sections, along with real-

world application testing.

5.3.4 OP2-CA-SLOPE Integration

Application OP2 Application (Embedded API in Fortran/C/C++)

Source-to-Source Translator (Python / Clang LLVM)

Modified Platform-Specific 
OP2 Application

Platform-Specific Optimized 
Application Files

Conventional Compiler (Eg. icc, nvcc, 
pgcc, clang, cray) + Compiler Flags

Hardware

Sequential (testing)

CUDA

SYCL
OpenCL
OpenMP

Loop-chain 
Config File for 
SLOPE + CA

OP2 Platform-Specific
Optimized Back-End Libs 

Mesh File 
(hdf5)

Platform-Specific
Binary Executable

MPI (+ CA)
Link

SLOPE
Link

Figure 5.4: OP2 code generation with CA+SLOPE

To enhance both shared- and distributed-memory parallelizations with the OP2

DSL, we integrated the newly developed CA back-end and SLOPE library into the OP2

library. Figure 5.4 shows the modifications added to the original OP2 architecture which

is explained in Section 2.6.6. We use a configuration file, similar to that used for the CA

framework, to specify the loop count, loops, and their halo extensions. The OP2 code

generator was then modified to generate code with both CA and SLOPE optimizations

added to the loop-chain. This generated code is compiled using a traditional compiler,

with the CA back-end and the SLOPE library linked in, to produce an executable for the

designated computing platform.
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5.4 Performance Model Extension for CA with On-Node

Sparse Tiling

We have created an analytical performance model in Section 4.3 for the new

communication-avoidance back-end that we developed in Chapter 4. We are expanding

the same model to include support for CA with the SLOPE library.

As we explained earlier, sparse tiling has been integrated to avoid on-node com-

munication. This was done by incorporating the SLOPE library [8, 121] and getting

OP2 to generate code that uses SLOPE’s inspector/execution functions. The CA with

SLOPE execution algorithm, Algorithm 5.1, retains the multi-layered halo creation rou-

tines from Algorithm 4.3, but changes the loop execution to a colored tile execution over

the core, eeh, and ieh as detailed in previous sections and by Luporini et al. [37]. Tiles per

color can now be executed in parallel using OpenMP threads. Tiled execution will result

in a modified grind time, γl replacing gl in Equation (4.3). Additionally, each MPI process

will handle a larger partition, resulting in larger message sizes sent to each neighbor.

Equation (4.3) needs to be adjusted to reflect these changes. The relevant equa-

tions for OP2 and CA versions are shown below.

Top2,l = MAX
[
glS

c
l , 2dlpl(L+m1

l /B)
]
+ glS

1
l (5.1)

Tca,L = MAX

n−1∑
l=0

γlS
c
l , p(L+mr/B + c)

+

n−1∑
l=0

γlS
h
l (5.2)

5.5 Performance

During our analysis in Chapter 3, we looked into the efficiency of the SLOPE library

when it comes to shared-memory parallelism. Additionally, in Section 4.4, we looked into

the performance of the CA back-end. Our current objective is to evaluate the combined

performance of both frameworks for shared- and distributed-memory parallelism. To ac-

complish this, we will be utilizing MG-CFD and OP2 Hydra as our primary applications,

as we did during the CA back-end testing for CPUs. To conduct our performance assess-

ment, we will be utilizing the ARCHER2 supercomputer, of which the specifications are

given in Table 4.1.

We conducted a series of tests on ARCHER2 for MG-CFD to find the best com-

bination of MPI processes and thread count per process that can deliver optimal perfor-

mance with SDMP. Our tests varied the number of MPI processes and thread count per

process for a single node, considering both the OP2 MPI+OpenMP and the CA+SLOPE

versions of MG-CFD, as shown in Figure 5.5.

Our runtime results, as shown in Figure 5.5 revealed that the MPI-only version

(with 128 MPI processes and a single OpenMP thread per MPI process) provided the best
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Figure 5.5: MG-CFD single node runtime variation for different Process × Thread combina-
tions on ARCHER2 for different loop counts (〈version〉 - 〈loop count〉)1

performance for the OP2 and CA based MG-CFD version. However, there were instances

where combinations of (i) 64 MPI processes per node and 2 OpenMP threads per MPI

process and (ii) 32 MPI processes per node and 4 OpenMP threads per MPI process,

surpassed the performance of the MPI-only version.

Based on these findings, we decided to continue testing the above process and

thread combinations for our SDMP performance testing with MG-CFD and Hydra. Run-

times of all the tests performed in this chapter can be found in Section B.3 of Appendix B.

5.5.1 MG-CFD

We are using the same synthetic loop-chain setup as introduced in Section 4.4.1. The loop-

chain is now expressed according to the SLOPE API, or slopified, as shown in Listing 5.1.

The CA back-end integration and its communication-avoidance code changes made to the

loop-chain remain unchanged.

We tested MG-CFD with the slopified synthetic loop-chain on ARCHER2, increas-

ing the node count from 1 to 64. We tried two thread combinations, keeping

(i) 64 MPI processes per node and 2 OpenMP threads per MPI process and

(ii) 32 MPI processes per node and 4 OpenMP threads per MPI process.

Out of the two, we received better performance for the 64 MPI processes × 2 OpenMP

threads combination. We present results for the said combination in the coming sections.
1Larger runtimes for loop counts 16 and 32 are excluded from the graph for clarity.
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1 for (int nc = 0; nc < nchains; nc++) {

2 for (int color = 0; color < ncolors; color++) {

3

4 // for all tiles of this color

5 const int n_tiles_per_color = exec_tiles_per_color(exec[l], color);

6

7 # pragma omp parallel for

8 for (int j = 0; j < n_tiles_per_color; j++) {

9

10 tile_t* tile = exec_tile_at(exec[l], color, j);

11 if (tile == NULL)

12 continue;

13

14 int loop_size;

15 int tile_id = 0;

16

17 // loop test_write_kernel

18 tile_id = 2 * i + 0;

19 iterations_list& le2n_0 = tile_get_local_map(tile, tile_id, "e2n");

20 loop_size = tile_loop_size(tile, tile_id);

21

22 for (int k = 0; k < loop_size; k++) {

23 test_write_kernel(

24 &(((double*)(p_var[l][index]->data))[le2n_0[k*2 + 0] * 5]),

25 &(((double*)(p_var[l][index]->data))[le2n_0[k*2 + 1] * 5]));

26 }

27

28 // loop test_read_kernel

29 tile_id = 2 * i + 1;

30 iterations_list& le2n_1 = tile_get_local_map(tile, tile_id, "e2n");

31 iterations_list& iterations_1 = tile_get_iterations(tile, tile_id);

32 loop_size = tile_loop_size(tile, tile_id);

33

34 for (int k = 0; k < loop_size; k++) {

35 test_read_kernel(

36 &(((double*)(p_var[l][index]->data))[le2n_1[k*2 + 0] * 5]),

37 &(((double*)(p_var[l][index]->data))[le2n_1[k*2 + 1] * 5]),

38 &(((double*)(p_edge_weights[l]->data))[iterations_1[k] * 3]),

39 &(((double*)(p_fluxes[l]->data))[le2n_1[k*2 + 0] * 5]),

40 &(((double*)(p_fluxes[l]->data))[le2n_1[k*2 + 1] * 5]));

41 }

42 }

43 }

44 }

Listing 5.1: Expandable synthetic 2-loop-chain written using SLOPE API
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ARCHER2 Results
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Figure 5.6: MG-CFD CA+SLOPE performance with 8M mesh on ARCHER2
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Figure 5.7: MG-CFD CA+SLOPE performance with 24M mesh on ARCHER2

Figure 5.6 and Figure 5.7 showcase the runtimes of three different versions of

MG-CFD on ARCHER2: standard OP2, CA-only, and CA+SLOPE. These versions were

tested on NASA Rotor 37, 8M and 24M mesh datasets. The results indicate that while

the CA+SLOPE version showed only slight improvements in two test cases, it failed to

outperform the best-performing versions of OP2 and CA-only in all other scenarios.

We utilized Scalasca [129] and Score-P [130] to identify the performance bottleneck

in the CA+SLOPE version. Our analysis showed that the CA+SLOPE version spends a

significant amount of time on the implicit barrier that follows the #pragma omp parallel

for section in the code. To illustrate this, we present Figure 5.8a, Figure 5.8b, and Fig-

ure 5.8c, which demonstrate the time spent on the expandable loop-chain by the OP2,

CA, and CA+SLOPE versions respectively for the 64 node run with a loop count of 16

on ARCHER2. The CA and the OP2 MPI versions have 8192 MPI processes and the

CA+SLOPE version has 4096 MPI processes with 2 threads attached to each MPI pro-

cess. The mean time values for the 8192 processing elements of each version of the three

runs are 9.47×10−2, 4.18×10−2, and 8.51×10−2 in seconds. Additionally, the coefficient

of variance (CoV) values for the three runs stand at 0.066, 0.042, and 0.138, respectively.
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(a) OP2 version (b) CA version

(c) CA+SLOPE version

Figure 5.8: MG-CFD execution time in seconds for synthetic loop-chain (Configurations:
#Nodes - 64, #Loops - 16)

These results suggest that the CA+SLOPE version has a higher CoV for the runtime,

making it more susceptible to poor performance due to delays in the execution of some

threads. Our testing has shown that the CA and OP2 MPI-only versions of MG-CFD

tend to perform better than the CA+SLOPE version since they do not experience thread

synchronization issues at the end of the synthetic loop-chain execution.
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5.5.2 OP2 Hydra

We used OP2 Hydra with the identified loop-chains illustrated in Table 3.8 to test for

the CA+SLOPE combination. We were able to slopify only three loop-chains due to the

limitation mentioned in Section 5.3.2.

The performance was benchmarked on ARCHER2, increasing the node count from

1 to 64, similar to MG-CFD. We tried two thread combinations, keeping

(i) 64 MPI processes per node and 2 OpenMP threads per MPI process and

(ii) 32 MPI processes per node and 4 OpenMP threads per MPI process.

Out of the two, we received better performance for the 64 MPI processes × 2 OpenMP

threads combination. We present results for the said combination in the coming sections.

We have presented the individual loop-chain runtimes in the graphs for analysis.

ARCHER2 Results
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Figure 5.9: Hydra CA+SLOPE performance with 8M mesh on ARCHER2
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Figure 5.10: Hydra CA+SLOPE performance with 24M mesh on ARCHER2
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Figure 5.9 and Figure 5.10 depict the runtimes of Hydra loop-chains on ARCHER2

for the NASA Rotor 37 dataset with 8M and 24M meshes. The three versions of Hydra

tested were the standard OP2 version, the CA-only version and the CA+SLOPE ver-

sion. However, the results were similar to our previous experience with MG-CFD, as the

CA+SLOPE version of Hydra was not able to outperform the best-performing version

out of the other two, OP2 and CA-only.

5.6 Conclusion

After analyzing the results, it seems that achieving performance improvements with

SLOPE for distributed-memory parallelism with CA in the tested applications is ex-

tremely challenging. To investigate this issue, we utilized analysis tools that are available

on the ARCHER2 supercomputer. Scalsca [129] profiling analysis on ARCHER2 revealed

that a significant amount of time is spent on the implicit barrier after the #pragma omp

parallel for section of the slopified loop-chains. This synchronization delay occurs

at the end of the loop-chain, and the runtime is determined by the slowest performing

thread. This lag in performance is a primary reason why an MPI+OpenMP version of

an application cannot outperform the MPI-only version, despite utilizing the benefits of

both shared- and distributed-memory parallelism.
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Chapter 6

Integrating Shared- and

Distributed-Memory

Communication-Avoiding

Optimizations for GPUs

Now, we will explore how well the shared- and distributed-memory parallelization (SDMP)

optimizations work on GPU clusters. We will describe the OP2 implementation that

supports the SDMP for GPU clusters, as well as the extension of the communication-

avoidance (CA) back-end explained in Chapter 4, for GPU clusters. After that, we will

compare the performance of the OP2 distributed-memory parallelized version with the

new CA version that was developed for GPUs.

6.1 OP2 based SDMP for GPU Clusters

This explanation of SDMP in OP2 for GPUs is based on the OP2 open-source code

base [131] and the ‘OP2 Developers Guide - Distributed-Memory (MPI) Parallelisation’

by Mudalige et al. [9]. The distributed-memory back end developed for a cluster of GPUs

assumes that one MPI process will communicate with a single GPU. Communication be-

tween nodes is made possible through MPI messages, while CUDA is utilized for GPU

computations. In cases where a single node comprises multiple GPUs, the MPI process

can choose an available GPU as its computing device, making the implementation of the

OP2 library back-end simple. Applications written with the OP2 API can be executed

on heterogeneous platforms without modifications to the existing scientific source code.

The OP2 library generates code for hybrid parallelism, and computation and communi-

cation overlap is achieved by separating mesh elements into core and boundary elements,

which includes export exec and import exec elements. Only the core computations are

performed, while the MPI processes complete the message exchange required for further
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computations. The OP2 library partitions both the core and boundary regions, assigning

two sets of colors to these partitions so that the execution priority of the core set elements

is preserved. Within a region (i.e., core or boundary), partitions are assigned colors so that

no two adjacent partitions have the same color, and partitions with the same color are

executed in parallel. The execution mechanism of MPI and CUDA hybrids is described

in detail in Algorithm 6.1.

Algorithm 6.1: MPI+CUDA halo exchange [9]

1 for each op dat requiring a halo exchange do
2 Execute CUDA kernel to gather export halo data
3 Copy export halo data from GPU to host
4 Start non-blocking MPI communication
5 end for

6 for each color (i) do
7 if color ̸= core colors then
8 Wait for all MPI communications to complete
9 for each op dat requiring a halo exchange do

10 Copy import halo data from host to GPU
11 end for
12 end if
13 Execute CUDA kernel for color (i) mini-partitions
14 end for

6.2 CA Back-End for GPUs

We extended our communication-avoidance back-end developed in Chapter 4 to support

the GPUs. We incorporated our communication-avoidance (CA) algorithm for loop-chain

execution with the GPU kernel execution through the OP2 library. In this implementa-

tion, the multi-layered halo setup and the steps in the inspection phase (from line 1 to 7)

explained in Algorithm 4.3 will remain the same.

The communication-avoiding algorithm in Algorithm 4.3 has targeted only

distributed-memory parallel execution. Extending the CA distributed-memory execu-

tion to a cluster of GPUs can also be carried out, given that the OP2 library generates

code for CUDA with MPI. In the GPU CA version, the halos are transferred via MPI

by first copying it to the host over the PCIe bus. This implementation does not utilize

NVIDIA’s GPUDirect [132] technology for transferring data between the GPUs. Instead,

a communication pipeline is set up, allowing for maximum overlap of kernels, memcopy,

communication, and core computations. We found that this performs better than GPUDi-

rect, which often did not run simultaneously with the computing kernels [9]. Again, the

multi-layered halo setup will remain the same, but an extra data copy from host to device

and vice versa will occur during the halo exchange.
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6.3 Performance Model Extension for CA with GPUs

We detailed an analytical performance model in Section 4.3 for the new communication-

avoidance back-end that we developed in Chapter 4. Here, we expand the same model to

include support for GPUs in the CA back-end.

Given that the concepts and behavior of the CPU-based communication-avoidance

remain the same for the GPU-based communication-avoidance version, we only have to

accommodate the extra data copy from host to device and vice versa that will occur

during halo exchange, into our performance model. This cost can be approximated by a

larger communication latency Λ replacing L in Equations (4.2) and (4.3). Additionally,

gl will need to be estimated for a GPU.

Then the Equations (4.1) and (4.3) will be modified as below to reflect the changes

for the GPU-based CA version.

Top2,l = MAX
[
glS

c
l , 2dlpl(Λ +m1

l /B)
]
+ glS

1
l (6.1)

Tca,L = MAX

n−1∑
l=0

glS
c
l , p(Λ +mr/B + c)

+
n−1∑
l=0

glS
h
l (6.2)

6.4 Performance

We conducted a performance test on the CA back-end developed for a GPU cluster, using

the same applications, MG-CFD and Hydra, that were used to test the CA back-end on

a CPU cluster. A detailed explanation of these applications can be found in Section 3.4.2

and Section 3.4.4. Our testing was carried out on the NASA Rotor 37 datasets of sizes

8M and 24M.

Performance is benchmarked on the Cirrus GPU cluster, an SGI/HPE 8600 GPU

cluster at EPCC. Table 6.1 briefly details the system’s key hardware and system setup.

The Cirrus GPU cluster consists of 4×V100 GPUs per node configuration, each node also

consisting of 2×Intel Xeon Gold 6248 (Cascade Lake) processors, each with 20 cores (40

total cores). A node has 384GB of main memory and a single V100 GPU has 16GB of

global memory. For the MPI communication, MPT 2.25 was used. Runtimes of all the

tests performed in this chapter can be found in Section B.4 of Appendix B.

6.4.1 MG-CFD

The details about the MG-CFD application can be found in Section 3.4.2. The synthetic

loop-chains introduced in Section 4.4.1 to MG-CFD and the same loop count combina-

tions, 2, 4, 8, 16, and 32 were used in the tests on the GPU cluster. We used the NASA

Rotor 37 datasets with 8M and 24M problem sizes for testing on Cirrus. CUDA codes

that are relevant to running MG-CFD with the GPU back-end are automatically gener-
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Table 6.1: System specification

System Cirrus [87]
SGI/HPE 8600 GPU Cluster

Processor Intel Xeon Gold 6248 (Cascade Lake) @ 2.5 GHz
+ NVIDIA Tesla V100-SXM2-16GB GPU

(procs×cores)/node 2×20 + 4×GPUs
Mem/node 384 GB + 40GB/GPU
Interconnect Infiniband FDR, 54.5 Gb/s
OS Linux CentOS 7
Compilers nvfortran (nvhpc 21.2)
Flags CUDA 11.6 and sm 70 -O2 -Kieee
MPI MPT 2.25

ated without altering the scientific source of the application. We executed the problems

on nodes ranging from 1 to 16, with each node having 4×NVIDIA V100 GPUs. Each

GPU was allocated 1 MPI process.

Cirrus Results
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Figure 6.1: MG-CFD CA performance with 8M mesh on Cirrus
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Figure 6.2: MG-CFD CA performance with 24M mesh on Cirrus
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Table 6.2: MG-CFD on Cirrus - 8M Mesh - Model Components: OP2 comms (
∑

(2dpm1))
- CA comms (pmr) in bytes, OP2 core iterations (

∑
(Sc)) - CA core iterations (

∑
(Sc)), OP2

halo iterations (
∑

(S1)) - CA halo iterations (
∑

(Sh)), and performance gain% of CA over OP2

#Nodes #Loops
8M Mesh

OP2 CA
Gain%∑

(2dpm1)
∑

(Sc)
∑

(S1) pmr
∑

(Sc)
∑

(Sh)

1

2 1511520 12669842 115550 2968160 12565576 339811 0.55
4 3023040 25339684 231100 2968160 24840643 679622 -1.29
8 6046080 50679368 462200 2968160 48784059 1359244 -10.34
16 12092160 101358736 924400 2968160 94285662 2718488 -28.24
32 24184320 202717472 1848800 2968160 175975342 5436976 -73.63

2

2 2891600 6476154 102140 5593800 6414004 286807 2.39
4 5783200 12952308 204280 5593800 12592540 573614 5.62
8 11566400 25904616 408560 5593800 24287910 1147228 4.06
16 23132800 51809232 817120 5593800 45183143 2294456 -2.68
32 46265600 103618464 1634240 5593800 78016632 4588912 -13.46

4

2 2425360 3201376 101282 4770360 3156436 272576 3.27
4 4850720 6402752 202564 4770360 6138997 545152 8.69
8 9701440 12805504 405128 4770360 11610254 1090304 10.21
16 19402880 25611008 810256 4770360 20715755 2180608 9.73
32 38805760 51222016 1620512 4770360 32605403 4361216 10.34

8

2 2519600 1610000 65194 4995200 1565961 201363 -4.72
4 5039200 3220000 130388 4995200 2985327 402726 10.66
8 10078400 6440000 260776 4995200 5447831 805452 19.19
16 20156800 12880000 521552 4995200 9107757 1610904 26.44
32 40313600 25760000 1043104 4995200 12839618 3221808 32.21

16

2 2625280 796106 46004 5228160 771171 141630 -12.24
4 5250560 1592212 92008 5228160 1452591 283260 8.67
8 10501120 3184424 184016 5228160 2583733 566520 23.44
16 21002240 6368848 368032 5228160 4094136 1133040 33.11
32 42004480 12737696 736064 5228160 5242007 2266080 42.57

Figure 6.1 and Figure 6.2 detail the execution times (min. of at least five runs each,

(CoV < 0.005)) on the GPU cluster. Based on our analysis, it is clear that both the

8M and 24M meshes show better runtimes with higher node counts when using CA on

a GPU cluster. Additionally, the performance gains are even more significant for higher

loop counts. These findings align with the insights from the performance model explained

in Section 4.3.3. The model components in Table 6.2 and Table 6.3 indicate that the CA

version can reduce the number of messages sent while keeping the message size the same

for the expandable loop-chain for a given node count, resulting in better performance. We

have observed up to a 42% improvement in runtimes with CA compared to the original

OP2. These results show similar trends to ARCHER2 results in Section 4.4.1.

Let us consider the performance gains of the 8M mesh in node count 8 from

the data in Table 6.2. The core computations for the loop count 2 in the OP2 version

and the CA version are 1610000 and 1565961, respectively. The total message sizes

exchanged between the processes are 2519600 and 4995200 in bytes, whereas the extra

halo computations are 65194 and 201363 respectively. Based on these numbers from

the performance model, it appears that the OP2 version will perform better with lesser
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Table 6.3: MG-CFD on Cirrus - 24M Mesh - Model Components

#Nodes #Loops
24M Mesh

OP2 CA
Gain%∑

(2dpm1)
∑

(Sc)
∑

(S1) pmr
∑

(Sc)
∑

(Sh)

1

2 3270960 44909058 231958 6433920 44673831 701926 1.36
4 6541920 89818116 463916 6433920 88420673 1403852 -0.26
8 13083840 179636232 927832 6433920 173254913 2807704 -8.35
16 26167680 359272464 1855664 6433920 336929494 5615408 -27.23
32 52335360 718544928 3711328 6433920 643729070 11230816 -67.34

2

2 4833760 22371632 238952 9599520 22235355 696083 1.95
4 9667520 44743264 477904 9599520 43940744 1392166 -2.01
8 19335040 89486528 955808 9599520 85814587 2784332 -15.92
16 38670080 178973056 1911616 9599520 163554342 5568664 -48.91
32 77340160 357946112 3823232 9599520 295830306 11137328 -118.57

4

2 5984440 11199072 219758 12012280 11077260 588295 3.29
4 11968880 22398144 439516 12012280 21685890 1176590 3.18
8 23937760 44796288 879032 12012280 41534880 2353180 -2.47
16 47875520 89592576 1758064 12012280 75926241 4706360 -23.89
32 95751040 179185152 3516128 12012280 127462695 9412720 -65.87

8

2 5237200 5588800 164622 10413200 5493891 445604 0.92
4 10474400 11177600 329244 10413200 10645647 891208 8.09
8 20948800 22355200 658488 10413200 20024758 1782416 9.05
16 41897600 44710400 1316976 10413200 35499926 3564832 7.69
32 83795200 89420800 2633952 10413200 56573598 7129664 6.58

16

2 7312640 2782282 113964 14569600 2717141 361358 -12.82
4 14625280 5564564 227928 14569600 5200806 722716 8.44
8 29250560 11129128 455856 14569600 9573441 1445432 19.75
16 58501120 22258256 911712 14569600 16277318 2890864 28.93
32 117002240 44516512 1823424 14569600 23394858 5781728 33.27

communication and computations than the CA version while hiding the latency with a

higher number of core computations compared to the CA version. The empirical results

in Figure 6.1 also show that the OP2 version is better with 2 loop counts in node count 8.

However, as the loop count increases in node count 8, the CA version starts to perform

better. At loop count 16, the core computations in the OP2 version and the CA version

are 12880000 and 9107757, respectively. The OP2 version requires 521552 extra halo

computations and exchanges 20156800 bytes between processes, while the CA version

requires 1610904 extra halo computations and exchanges 4995200 bytes. Although the

OP2 version has higher core iterations to hide latency and lower extra halos to compute,

the amount of communication it has to make is higher compared to the CA version.

With this performance model information, we can predict that this higher communication

reduction in the CA version will lead to a higher performance gain than the OP2 version

at loop count 16 on 8 nodes. This explained behavior can be seen in other higher node

and loop counts as well, which can be justified by our analytical model. Similar behavior

can be observed with the 24M mesh on Cirrus as shown in Table 6.3.
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(a) OP2 version (b) CA version

Figure 6.3: MG-CFD MPI data exchange in bytes for the synthetic loop-chain (Configura-
tions: #Nodes - 8, #Loops - 2)

Time (%) Total Time (ns) Avg (ns) Min (ns) Max (ns) Operation

-------- --------------- -------- -------- --------- ------------------

75.3 40 ,334 ,928 77 ,716.6 1,344 3,803,436 [CUDA memcpy HtoD]

24.7 13 ,206 ,910 43 ,159.8 1,504 95,871 [CUDA memcpy DtoH]

Total (MB) Avg (MB) Min (MB) Max (MB) Operation

---------- -------- -------- -------- ------------------

281.828 0.543 0.000 18.238 [CUDA memcpy HtoD]

149.925 0.490 0.001 0.664 [CUDA memcpy DtoH]

(a) OP2 version

Time (%) Total Time (ns) Avg (ns) Min (ns) Max (ns) Operation

-------- --------------- -------- -------- --------- ------------------

78.5 48 ,014 ,718 91 ,631.1 1,248 4,183,777 [CUDA memcpy HtoD]

21.5 13 ,150 ,272 42 ,974.7 1,408 215 ,423 [CUDA memcpy DtoH]

Total (MB) Avg (MB) Min (MB) Max (MB) Operation

---------- -------- -------- -------- ------------------

311.089 0.594 0.000 19.845 [CUDA memcpy HtoD]

150.642 0.492 0.001 0.994 [CUDA memcpy DtoH]

(b) CA version

Figure 6.4: MG-CFD HtoD and DtoH data exchange in bytes for the synthetic loop-chain in
a single process. (Configurations: #Nodes - 8, #Loops - 2)
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(a) OP2 version (b) CA version

Figure 6.5: MG-CFD MPI data exchange in bytes for the synthetic loop-chain (Configura-
tions: #Nodes - 8, #Loops - 16)

Time (%) Total Time (ns) Avg (ns) Min (ns) Max (ns) Operation

-------- --------------- -------- -------- --------- ------------------

67.3 50 ,611 ,628 48 ,478.6 1,280 3,421,377 [CUDA memcpy HtoD]

32.7 24 ,620 ,521 29 ,627.6 1,440 56,575 [CUDA memcpy DtoH]

Total (MB) Avg (MB) Min (MB) Max (MB) Operation

---------- -------- -------- -------- ------------------

426.011 0.408 0.000 17.126 [CUDA memcpy HtoD]

304.116 0.366 0.001 0.405 [CUDA memcpy DtoH]

(a) OP2 version

Time (%) Total Time (ns) Avg (ns) Min (ns) Max (ns) Operation

-------- --------------- -------- -------- --------- ------------------

75.0 51 ,199 ,748 97 ,709.4 1,216 4,047,743 [CUDA memcpy HtoD]

25.0 17 ,047 ,154 55 ,709.7 1,408 210 ,846 [CUDA memcpy DtoH]

Total (MB) Avg (MB) Min (MB) Max (MB) Operation

---------- -------- -------- -------- ------------------

327.713 0.625 0.000 19.525 [CUDA memcpy HtoD]

169.407 0.554 0.001 1.124 [CUDA memcpy DtoH]

(b) CA version

Figure 6.6: MG-CFD HtoD and DtoH data exchange in bytes for the synthetic loop-chain in
a single process. (Configurations: #Nodes - 8, #Loops - 16)
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To verify the results and analytical model explanation further, we utilized different

frameworks and tools such as Scalasca [129], Score-P [130], and NVIDIA Nsight [133]. The

profiling data obtained from Scalasca and Score-P in Figure 6.3 indicates that the OP2

version involves fewer MPI communications compared to the CA version (mean values:

OP2 – 4.72×107 bytes, CA – 9.36×107 bytes). Additionally, the NVIDIA Nsight statistics

output in Figure 6.4 shows that the OP2 version has fewer HtoD (OP2 – 281.828 MB,

CA – 311.089 MB) and DtoH (OP2 – 149.925 MB, CA – 150.642 MB) data exchanges

than the CA version for the loop count 2 on 8 nodes. Our analytical model supports the

notion that the OP2 version will outperform the CA version in this scenario, which is

confirmed by these empirical results and profiling data.

On the other hand, the Scalasca and Score-P profiling information in Figure 6.5

shows that the CA version involves fewer MPI communications compared to the OP2

version (mean values: OP2 – 3.78 × 108 bytes, CA – 9.36 × 107 bytes). Similarly, the

NVIDIA Nsight statistics output in Figure 6.6 indicates that the CA version has fewer

HtoD (OP2 – 426.011 MB, CA – 327.713 MB) and DtoH (OP2 – 304.116 MB, CA –

169.407 MB) data exchanges than the OP2 version for the loop count 16 in node count 8.

These findings indicate that the CA version is expected to perform better than the OP2

version. The analytical model insights explained before align with the profiling data, and

the empirical results confirm them.

To summarize, we have observed a notable enhancement in runtimes – up to 42%

with CA, compared to the original OP2. These results exhibit similar trends as the

ARCHER2 results mentioned in Section 4.4.1.

6.4.2 OP2 Hydra

We used the OP2 version of Hydra that is explained in Section 3.4.4 and its identified

loop-chains as illustrated in Table 4.4 and Table 4.5 to test the CA back-end developed for

GPUs. NASA Rotor 37 datasets of size 8M and 24M were used, similar to CA back-end

testing on ARCHER2. Test problems of OP2 Hydra range from a single node to 16 nodes,

each having a single MPI process attached to a GPU, totaling 4 MPI processes per node

to cater to the 4×V100 GPUs in a Cirrus computing node.

Cirrus Results

Figure 6.7 and Figure 6.8, show the execution times on the Cirrus GPU cluster (min. of

at least five runs each, (CoV < 0.07)). These times represent the cumulative time taken

by each loop-chain for 20 iterations of the main time-stepping loop. We used Hydra’s

default partitioner, which is based on the recursive inertial bisection of the mesh for all

these experiments. During our analysis, we collected information on message sizes, core

and halo sizes, the number of neighboring processes, and other parameters through the

CA back-end inspection phase. We will use the data in Table 6.4 and Table 6.5 for our

analysis with the analytical model.
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The use of CA leads to significantly greater performance gains, particularly with

loop-chains such as iflux, vflux, and jacob, which perform up to 31%, 42%, and 68%

faster on the node counts benchmarked. For loop-chains iflux and vflux, the CA version

does not show any communication or computation reduction compared to the OP2 version,

as shown in Table 6.4 and Table 6.5. However, in the CA version, we send an aggregated

message to neighboring processes and a single data exchange from HtoD and DtoH for a

loop-chain, which reduces communication overheads arising from message exchanges and

makes the CA version faster than the OP2 version. In the jacob loop-chain, we reduce a

redundant message in the CA version, with no increase in computation, which results in

lower MPI and host-device communication, thereby making the loop-chain perform better.

In the gradl loop-chain, there is an increase in communication and computation in the

CA version, as shown in Table 6.4 and Table 6.5. Nonetheless, we observe performance

gains in the CA version. This is mainly due to the reduction in the number of messages

exchanged and the number of host-device communication initiations. The overheads of

MPI message initiation and host-device communication initiation are reduced in the CA

version, thereby providing performance benefits.
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Figure 6.7: Hydra CA performance with 8M mesh on Cirrus
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Figure 6.8: Hydra CA performance with 24M mesh on Cirrus
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Table 6.4: Hydra loop-chains (LCs) on Cirrus - 8M Mesh - Model Components
L
C
(#

L
o
o
p
s)

#
N
o
d
es 8M Mesh

OP2 CA Loop-chain
Gain%

Comm
Reduction

%

Comp
Increase

%
∑

(2dpm1)
∑

(Sc)
∑

(S1) pmr
∑

(Sc)
∑

(Sh)

ifl
u
x
(2
) 2 2110080 4329931 51070 2110080 4329931 51070 9.61 0 0

4 2101440 2142362 50641 2101440 2142362 50641 12.48 0 0
8 2951424 1078221 32597 2951424 1078221 32597 26.09 0 0
16 2148120 533985 23002 2148120 533985 23002 10.50 0 0

v
fl
u
x
(2
) 2 23914240 4329931 51070 23914240 4329931 51070 41.87 0 0

4 23816320 2142362 50641 23816320 2142362 50641 18.41 0 0
8 33449472 1078221 32597 33449472 1078221 32597 15.57 0 0
16 24345360 533985 23002 24345360 533985 23002 13.98 0 0

ja
co
b
(3
) 2 35871360 43919 38173 18287360 43919 38173 57.89 49.02 0

4 35724480 23702 21135 18212480 23702 21135 66.66 49.02 0
8 50174208 15286 12344 25579008 15286 12344 20.01 49.02 0
16 36518040 9570 8819 18617040 9570 8819 56.24 49.02 0

gr
a
d
l(
2)

2 21100800 3247872 89243 40948800 3247650 350370 17.96 -94.06 74.53
4 21014400 1605737 71776 41804160 1605594 276585 6.27 -98.93 74.05
8 29514240 807639 44941 58803840 807477 192585 -26.08 -99.24 76.66
16 21481200 399196 31821 42680880 399090 134260 -61.10 -98.69 76.30

Table 6.5: Hydra loop-chains (LCs) on Cirrus - 24M Mesh - Model Components

L
C
(#

L
o
o
p
s)

#
N
o
d
es 24M Mesh

OP2 CA Loop-chain
Gain%

Comm
Reduction

%

Comp
Increase

%
∑

(2dpm1)
∑

(Sc)
∑

(S1) pmr
∑

(Sc)
∑

(Sh)

ifl
u
x
(2
) 2 5864832 14943786 119476 5864832 14943786 119476 21.95 0 0

4 6329856 7484548 109879 6329856 7484548 109879 24.62 0 0
8 3926736 3737781 82311 3926736 3737781 82311 29.23 0 0
16 3926208 3737781 82311 3926208 3737781 82311 30.77 0 0

v
fl
u
x
(2
) 2 66468096 14943786 119476 66468096 14943786 119476 39.91 0 0

4 71738368 7484548 109879 71738368 7484548 109879 24.35 0 0
8 44503008 3737781 82311 44503008 3737781 82311 8.71 0 0
16 44497024 3737781 82311 44497024 3737781 82311 19.41 0 0

ja
co
b
(3
) 2 99702144 116254 69602 50828544 116254 69602 56.59 49.02 0

4 107607552 61854 37518 54858752 61854 37518 52.54 49.02 0
8 66754512 34375 21196 34031712 34375 21196 43.90 49.02 0
16 66745536 34375 21196 34027136 34375 21196 68.29 49.02 0

gr
ad

l(
2)

2 58648320 11197574 189078 145693200 11197258 717218 9.82 -148.42 73.64
4 63298560 5603810 147397 125349120 5603626 601317 18.10 -98.03 75.49
8 39267360 2794400 103507 78320880 2794400 422284 11.70 -99.46 75.49
16 39262080 2794400 103507 78315600 2794400 422284 16.15 -99.47 75.49

In summary, the majority of loop-chains experience a speedup when utilizing

CA on the Cirrus GPU cluster, as compared to the ARCHER2 CPU cluster, as shown

in Section 4.4.1.
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6. Integrating Shared- and Distributed-Memory Communication-Avoiding Optimizations for GPUs

6.5 Conclusion

When analyzing the results of MG-CFD and Hydra for GPU-based communication-

avoidance, it becomes apparent that higher node counts yield greater performance gains.

This indicates that reducing inter-process communication can significantly increase the

performance of a loop-chain. The Hydra loop-chain performance on the GPU cluster

shows significant gains when compared to CPU-based communication-avoidance, as il-

lustrated in Section 4.4.2. The loop-chains iflux, vflux, and gradl exhibit greater

performance gains on the GPU cluster, even with fewer nodes than the ARCHER2 CPU

cluster. This suggests that cutting down on host-device communications improves per-

formance on GPU clusters. Using data from the inspection phase of the CA back-end

and profiling information gathered with NVIDIA Nsight, Scalasca, and Score-P, we have

demonstrated that our analytical performance model can effectively reason about loop-

chain performance gains. In general, loop-chains on GPUs are more likely to benefit from

communication-avoidance compared to CPU-based communication-avoidance, as there is

a reduction in both host communication and host-device communication.
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Chapter 7

Conclusions and Future Work

The field of high-performance computing (HPC) has experienced significant changes in

recent years. The traditional method of increasing processor speed through frequency

scaling has reached its limits due to high energy consumption. Instead, processors have

evolved into massively parallel designs, resulting in multi-core, many-core, and hetero-

geneous architectures. These new designs offer hope for improved performance through

parallelism.

However, these new architectures have brought new challenges, such as slow mem-

ory and network interconnections, which can limit the intended speedups. When an

application runs, data moves between various memory levels of the same processor and

among the various processes of the application over a network through message pass-

ing. Minimizing communication is essential to achieve performance benefits from these

computing architectures.

One potential solution is communication-avoidance (CA), but it is a challenge to

apply this to existing applications without altering the scientific source. The continued

development of these applications is at risk due to the need to exploit the full performance

of future computing systems. For decades, these applications have performed well, and

to ensure uninterrupted scientific research, it is crucial to maintain their performance

portability across a wider range of computing platforms.

Most real-world scientific applications are based on unstructured-meshes [8, 54,

118]. The development of frameworks to support reduced communication for these appli-

cations creates different challenges due to the irregular nature of memory accesses. Even

if we developed frameworks to support these requirements, unthinkingly applying them to

applications can cause performance degradation in some scenarios. Therefore, identifying

the profitability of applying these techniques is also a pressing requirement in the HPC

community.
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7. Conclusions and Future Work

7.1 Contributions and Conclusions

In this thesis, we thoroughly reviewed relevant literature in critical areas, including

communication-avoidance frameworks for structured-mesh and unstructured-mesh appli-

cations. Our ultimate goal is to seamlessly apply communication-avoidance and data

movement-reducing techniques to real-world, large-scale, unstructured-mesh applications

utilizing the OP2 DSL.

• Integration of shared-memory CA with OP2 (Chapter 3): The first contri-

bution of this thesis was to conduct a profitability analysis of utilizing the SLOPE

library for shared-memory parallelism by integrating it with the OP2 DSL. Based on

previous research conducted by Luporini et al. [37], the performance gains exhibited

by benchmarking applications against their OpenMP implementation on Intel-based

platforms were promising. In our study, we integrated the SLOPE library with the

OP2 DSL and evaluated its performance using both real-world and benchmarking

applications, including Airfoil, MG-CFD, Volna, and Hydra, on two Intel-based

platforms (Scyrus and Telos) and one AMD-based supercomputer (ARCHER2). To

enable the SLOPE library to function with Hydra, we developed a Fortran-based

framework. Our findings demonstrate that we achieved better performance gains,

ranging from 10% to 60%, in general for Airfoil, MG-CFD, and Hydra, across all

three testing platforms. However, we only observed marginal gains for Volna on

ARCHER2. These shared-memory optimizations were not previously tested on

real-world, large-scale industrial applications. We tested these optimizations with

Hydra, which is the largest known real-world application tested with these shared-

memory optimizations which gave us more than 50 – 60% performance gains for

individual loop-chains for select configurations on our testing platforms.

• Design of a novel distributed-memory CA back-end (Chapter 4): As the

second contribution, we have developed a novel communication-avoidance (CA)

back-end tailored for the OP2 DSL. Our primary emphasis is on enabling efficient

distributed-memory parallel operation, and we have carefully considered methods to

minimize the volume of MPI send-receive messages that occur during the execution

of a series of sequential loops, known as a loop-chain. A significant advancement

introduced in this back-end is its capability to seamlessly execute standard loops,

alongside selectively integrated loop-chains over unstructured-meshes. This innova-

tive approach is aimed at optimizing the overall performance of applications, pro-

viding flexibility and versatility in execution. This developed new open-source CA

back-end for the OP2 library is available in [11]. We received 30 – 40% performance

improvements for MG-CFD and Hydra with this CA back-end. Again, applying

these distributed-memory communication-avoidance enhancements to a large-scale,

real-world application like Hydra has not been previously done, according to our

knowledge.
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• Analytical modeling of loop-chain performance with CA (Chapter 4, 5,

and 6): As the third contribution, the performance evaluation of loop-chains inte-

grated with communication-avoidance (CA) is achieved through an analytical mod-

eling process. This model is designed by analyzing the critical trade-off: it involves

enhancing computations within the shared MPI halos to fulfill loop dependencies

while minimizing data movement via message passing. In simple terms, it seeks

to strike a balance between executing tasks within the same computational domain

(shared MPI halos) to reduce the need for communication between different process-

ing units while ensuring that loop dependencies are satisfied correctly. The analysis

performed for Hydra and MG-CFD testing along with the model suggests that the

model offers valuable insights into whether a specific loop-chain would benefit from

the communication-avoidance (CA) capabilities provided by the new framework. In

essence, it assists in making informed decisions about whether to implement CA

techniques for a particular loop-chain, based on its inherent characteristics. By

introducing this performance model, we tried to fulfill the need for a performance

model to evaluate the CA enhancements in unstructured-mesh applications. We

believe that this model can further be developed to accurately predict the runtime

enhancements quantitatively.

• Integrating shared- & distributed-memory CA (Chapter 5 and 6): The

fourth contribution is demonstrating communication-avoidance enhancements using

both on-node/shared-memory and distributed-memory parallelism for unstructured-

mesh-based applications. The implementation of the distributed-memory back-end

is enriched by the incorporation of strategies aimed at enhancing shared-memory

communication efficiency and reducing data movement. Two distinct techniques

play a key role in this optimization process. Firstly, we employ sparse tiling,

which involves the utilization of cache-blocking tiling optimization methods. This

is achieved by integrating the SLOPE library [8] and leveraging OpenMP threads

on multi-core CPUs. We tested this approach with MG-CFD and Hydra. We iden-

tified that due to the OpenMP thread synchronization overhead, this version is not

able to surpass the gains we achieved through our new CA back-end. Secondly,

when our system operates within a cluster of GPUs, we strategically employ re-

duced MPI message passing through our CA back-end. This approach is designed

to minimize the inherent overheads associated with GPU-to-GPU communication,

efficiently harnessing the capabilities of CUDA. Again we tested this approach with

MG-CFD and Hydra and yielded significant loop-chain performance gains leading

to 30 – 65% of improvements for some loop-chains in Hydra.

• Real-world, large-scale application benchmarking with CA (Chap-

ter 3, 4, 5, and 6): Finally, it is important to note that we are able to automat-

ically generate code for all the mentioned communication-avoidance optimizations

for any application written using the OP2 API, without altering the original source
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code. These communication-avoiding optimizations were applied to two non-trivial

applications, including the OP2 version of Rolls Royce’s production CFD applica-

tion, Hydra on problem sizes representative of real-world workloads. The results

indicate that the new communication-avoiding back-end provides between 30 – 65%

runtime reductions for the loop-chains in these applications on both an HPE Cray

EX system and an NVIDIA V100 GPU cluster.

7.2 Thesis Limitations and Future Work

Upon careful review of the contributions of the thesis, we have identified a number of ex-

tensions to the communication-avoiding optimizations used for unstructured-mesh appli-

cations with the OP2 DSL. Our proposed future work is closely linked to the identification

and resolution of the limitations of the thesis. Proactively addressing these limitations

will not only expand our research scope but also establish a strong foundation for future

research, contributing to a more comprehensive understanding of the thesis.

7.2.1 Analytical Model Enhancements and Further Validations

Our analytical model effectively determines whether implementing communication-

avoiding (CA) techniques will benefit loop-chains, regardless of the platform used. How-

ever, we have not quantitatively predicted the performance gains that applying CA tech-

niques will provide on a specific system. As a direction for future research and develop-

ment, leveraging this analytical model to its full potential offers several promising oppor-

tunities. Firstly, focusing on the quantitative prediction of performance gains remains

a significant challenge. Enhancing the model to provide precise estimates of speedup or

runtime reduction on a particular system is critical. This can involve refining the model’s

algorithms and incorporating more granular platform-specific data, such as cache laten-

cies, memory bandwidth, and processor architecture details. By doing so, researchers can

offer a more concrete and actionable understanding of the benefits that CA techniques

can bring to specific computing environments.

Furthermore, extending the model to encompass a broader spectrum of CA tech-

niques and optimizing strategies is valuable. Different CA methods, such as loop trans-

formation and loop tiling with the SLOPE library, may yield varying performance im-

provements depending on the nature of the application and the underlying hardware.

Evaluating a wider array of CA techniques within the model can help developers choose

the most effective strategies for their specific use cases.

Additionally, conducting empirical validation by applying the model to more real-

world applications and hardware platforms can offer valuable insights and benchmarks.

This empirical validation can help refine the model’s accuracy and utility in practical

scenarios.
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7.2.2 CA Back-End Memory Enhancements

When using communication-avoidance enhancements with distributed-memory paral-

lelism, additional halo layers must be generated to support the computations of the

loop-chain during the inspection phase of the CA algorithm. The maximum halo ex-

tension possible for a loop-chain with n loops is n. However, based on our experiments

and real-world code analysis, it is rare to require such extreme halo extensions for a loop-

chain to apply CA optimizations, considering the data access patterns of the datasets.

Typically, two levels of halo extension are sufficient for a loop-chain.

To support latency hiding of a loop-chain with n loops, we must calculate core

sizes. This involves determining the number of mesh elements that can perform compu-

tations without halo information coming from other processes. The core sizes relevant to

individual loops of the loop-chain gradually decrease from loop 0 to loop n − 1. To per-

form this calculation, n levels of halo layers must be generated, which requires a significant

amount of memory. Further, the core size calculation has to be performed considering

the information of all the halo layers together.

However, we can optimize this situation by developing a mechanism to calculate

effective core sizes for the loops of the loop-chain without needing the information of

the halos to be exported. We can also analytically determine an effective length for a

loop-chain by enhancing the model. Alternatively, we can develop a memory-efficient

mechanism to store halo information in the system.

7.2.3 Automate Code Generation with Lazy Evaluation

The practice of generating code with lazy evaluation or delayed evaluation [36, 134], in-

volves creating code or performing computations only when required. This technique

is commonly utilized in functional programming languages, where expressions are as-

sessed only when necessary. The purpose of lazy evaluation is to optimize performance

and resource utilization by avoiding upfront code generation or computation, particu-

larly in situations where it would be ineffective or repetitive. In our present workflow,

loop-chain data is provided to the OP2 code generator via a configuration file, allowing

communication-avoidance optimizations to be integrated as elaborated in Section 4.2.8.

Lazy evaluation can significantly enhance performance by avoiding unnecessary

code generation or computation until it is genuinely required. This approach conserves

system resources by generating code or computing values only when necessary, thereby

reducing memory and CPU usage. By utilizing lazy evaluation, software systems can dy-

namically adjust to changing conditions or user requests without the burden of precom-

puting everything. Overall, generating code with lazy evaluation is a powerful technique

for optimizing software systems and improving their efficiency by deferring code genera-

tion and computation until the point of need and applying this to CA code generation

will greatly benefit applications.

153



7. Conclusions and Future Work

7.2.4 SLOPE Evaluation for Distributed-Memory Parallelism

In our evaluation of the SLOPE library, we tested its capabilities for both shared- and

distributed-memory parallelism. We found that the library performed better in terms

of shared-memory parallelism improvements. However, when compared to the MPI

communication-avoidance version of the same application, the performance gains with

distributed-memory parallelism were not as promising. To determine the reasons be-

hind this, we used profiling tools and performance counters of the respective systems,

employing frameworks such as Scalasca [129], Score-P [130], and NVIDIA Nsight [133].

We believe that further performance benefits can be achieved by utilizing cache-blocking

tiling enhancements with the SLOPE library in a distributed system, by tuning various

parameters such as partitioning mechanism, tile size, and loop fusion scheme. However,

this requires analysis with more applications, as the performance analysis of SLOPE on

a distributed system is not fully understood and explained in this thesis.

7.2.5 Evaluation Scope

In order to further our research, we intend to broaden the testing range of the CA

framework to encompass additional large-scale production applications that possess larger

datasets. Furthermore, we will conduct a series of benchmarking exercises on the applica-

tion utilizing CA enhancements across a variety of hardware, including cloud computing

architectures. This comprehensive evaluation will provide us with the ability to assess the

framework’s versatility and adaptability, which may lead to the discovery of new insights

and optimizations that can be advantageous for a vast array of large-scale production

applications.

The computing capabilities of modern computer systems are rapidly advancing

through the use of massively parallel designs. To fully realize the performance benefits of

these systems, there is a continuous effort to improve programming models, languages, and

compiler technologies. However, the development of memory and system interconnects is

not keeping pace, creating challenges and bottlenecks to achieving optimal performance.

As researchers, we are dedicated to finding solutions to these challenges and achieving

the desired high performance. We hope that our communication-avoiding framework and

analysis will help the HPC community in achieving high performance across a variety of

computing systems with unstructured-mesh-based applications.
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Appendix A

Analytical Performance Model

and Extensions

A.1 Model Parameters

Table A.1: Model Parameters

Symbol Parameter

δ Size of a data element of an op dat, d (in bytes)

γl Compute time for one iteration of the loop, l with OpenMP threads

Λ Latency in a GPU cluster

B Bandwidth

c Message packing and unpacking cost

dl Number of op dats in loop, l

gl Compute time for one iteration of the loop, l

hl Halo extension for loop, l

L Latency

mr Maximum grouped message size (in bytes) sent to each neighbor with r halo
layers

m1
l Maximum message size (in bytes) sent to a neighbor by loop, l with a single

halo extension

r Maximum number of halo layers

S1
l Execute halo number of iterations in loop, l

Sc
l Number of core iterations, in loop, l

Seeh,hl

d eeh size of op dat, d in level, hl

Senh,hl

d enh size of op dat, d in level, hl

Tca,L Total CA runtime of the full loop-chain, L
Top,L Total OP2 runtime of the full loop-chain, L
Top2,l Time taken by an OP2 loop, l
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A. Analytical Performance Model and Extensions

A.2 Model Equations

Table A.2: Model Equations for CA in CPUs

Top2,l = MAX
[
glS

c
l , 2dlpl(L+m1

l /B)
]
+ glS

1
l (4.1)

Top2,L =
∑n−1

l=0 Top2,l (4.2)

Tca,L = MAX
[∑n−1

l=0 glS
c
l , p(L+mr/B + c)

]
+

∑n−1
l=0 glS

h
l (4.3)

mr =
∑n−1

l=0

(∑dl−1
d=0 (Seeh,hl

d + Senh,hl

d )× δ
)

(4.4)

Table A.3: Model Equations for CA+SLOPE in CPUs

Top2,l = MAX
[
glS

c
l , 2dlpl(L+m1

l /B)
]
+ glS

1
l (5.1)

Top2,l = Top2,L =
∑n−1

l=0 Top2,l (4.2)

Tca,L = MAX
[∑n−1

l=0 γlS
c
l , p(L+mr/B + c)

]
+
∑n−1

l=0 γlS
h
l (5.2)

mr =
∑n−1

l=0

(∑dl−1
d=0 (Seeh,hl

d + Senh,hl

d )× δ
)

(4.4)

Table A.4: Model Equations for CA in GPUs

Top2,l = MAX
[
glS

c
l , 2dlpl(Λ +m1

l /B)
]
+ glS

1
l (6.1)

Top2,l = Top2,L =
∑n−1

l=0 Top2,l (4.2)

Tca,L = MAX
[∑n−1

l=0 glS
c
l , p(Λ +mr/B + c)

]
+
∑n−1

l=0 glS
h
l (6.2)

mr =
∑n−1

l=0

(∑dl−1
d=0 (Seeh,hl

d + Senh,hl

d )× δ
)

(4.4)
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Appendix B

Runtimes of Benchmarked

Applications

B.1 Chapter 3 Runtimes

B.1.1 Airfoil Runtimes

Airfoil on Scyrus
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Figure B.1: Runtime variation of SLOPE Airfoil with tile sizes on Scyrus (Configurations:
single socket, 12 threads)
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B. Runtimes of Benchmarked Applications

Table B.1: OP2 Airfoil single socket runtimes on Scyrus (Figure 3.5 and Figure B.1 runtimes
in seconds)

Dataset 45k 180k 720k 2880k

Runtime 0.561775 2.220399 12.935843 56.355947

Table B.2: SLOPE Airfoil single socket runtimes on Scyrus (Figure 3.5 and Figure B.1
runtimes in seconds)

Tile Size
Dataset

45k 180k 720k 2880k

10 0.714785 4.190064 19.750397 80.882672

20 0.610721 3.455958 17.228653 69.129627

30 0.581380 3.376573 17.921530 76.310450

40 0.577666 2.811221 14.770937 60.431816

50 0.560892 2.886324 15.269426 61.041949

60 0.547484 2.674847 14.049804 56.384127

70 0.595857 2.993242 15.938952 56.686419

80 0.561616 2.518239 12.821020 52.298359

90 0.650726 2.661099 13.362161 54.002008

100 0.583686 2.431420 12.293901 49.826369

200 0.594954 2.324475 10.998508 43.465889

300 0.581575 2.285609 10.481665 42.722016

400 0.589496 2.275106 10.210875 40.691182

500 0.515577 2.049839 10.412590 41.698055

700 0.660148 2.189034 10.564054 42.313412

800 0.730214 2.115431 10.157988 39.183951

900 0.656346 2.289435 10.453009 40.628714

1000 0.505558 2.123638 9.930281 40.065023

1100 0.561643 2.266564 10.577793 40.083843

1200 0.612298 2.363878 9.726265 39.296631

1300 0.654401 2.049866 9.791468 40.969865

1400 0.698142 2.223718 9.648914 40.140013

1500 0.740457 2.329224 9.480500 39.417587

1600 0.786118 2.455126 9.796535 39.384502

1700 0.817963 2.499810 9.511664 39.772540

1800 0.623608 2.287381 9.845416 40.038697

1900 0.479601 1.993180 9.420419 39.693293

2000 0.507002 2.085001 9.697634 39.635236

3000 0.755358 2.414803 9.401034 38.316301

4000 0.985140 2.070845 9.702355 38.565953
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B. Runtimes of Benchmarked Applications

5000 1.218848 2.719587 9.314103 39.714908

6000 1.454535 3.195992 9.325539 39.869166

7000 1.692932 3.681877 10.590664 41.485369

8000 1.931627 2.146237 9.938513 39.437245

9000 2.181366 2.549360 11.079361 40.239452

10000 2.499895 2.836063 9.625196 39.186767

20000 5.004690 5.338074 12.318517 40.241840

30000 5.458979 7.789340 10.388432 42.310622

40000 5.537685 10.148882 12.562068 43.017358

50000 5.493871 12.462985 14.830921 49.866435

60000 5.538027 14.921072 17.236441 43.412955

70000 5.498342 17.359141 19.559304 47.773494

80000 5.529213 19.740128 21.992207 52.577039

90000 5.374573 22.140423 24.450038 57.816414

100000 5.356998 22.121871 26.847816 62.478880

200000 5.510362 22.054166 51.562993 60.979093
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Figure B.2: Runtime variation of SLOPE Airfoil with tile sizes on Scyrus (Configurations:
dual socket, 24 threads)
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B. Runtimes of Benchmarked Applications

Table B.3: OP2 Airfoil dual socket runtimes on Scyrus (Figure 3.6 and Figure B.2 runtimes
in seconds)

Dataset 45k 180k 720k 2880k

Runtime 0.412988 1.136187 10.563269 59.265646

Table B.4: SLOPE Airfoil dual socket runtimes on Scyrus (Figure 3.6 and Figure B.2 runtimes
in seconds)

Tile Size
Dataset

45k 180k 720k 2880k

10 0.433405 1.770485 17.072581 62.349406

20 0.384686 1.404496 13.251190 55.061190

30 0.393538 1.341518 12.723296 59.151089

40 0.443276 1.230942 11.188272 49.725604

50 0.385354 1.253973 10.938642 49.686617

60 0.386365 1.279974 10.303955 47.001029

70 0.491185 1.631375 11.462427 49.708697

80 0.420674 1.229336 9.593036 43.524737

90 0.512089 1.280238 9.923822 47.607112

100 0.436825 1.197229 8.994714 44.970755

200 0.438565 1.213759 7.710096 38.093569

300 0.397200 1.297851 7.396432 35.654002

400 0.443092 1.257238 7.118014 37.414774

500 0.328596 1.357440 7.600414 40.015298

700 0.471690 1.235115 7.434603 36.807422

800 0.542792 1.257140 7.101304 34.500297

900 0.484172 1.347269 7.154988 39.025431

1000 0.324739 1.139175 7.099369 38.309201

1100 0.355050 1.290239 7.249109 37.751486

1200 0.380499 1.431875 6.551782 33.005407

1300 0.417712 1.463059 6.563885 37.618948

1400 0.447063 1.450801 6.485960 37.445905

1500 0.496285 1.531334 6.502588 34.017422

1600 0.535406 1.553923 6.532751 36.861093

1700 0.564411 1.624192 6.536165 37.799055

1800 0.596810 1.368917 6.654997 36.388806

1900 0.617261 1.005147 6.394931 36.864405

2000 0.651502 1.129851 6.447443 37.572793

3000 0.890323 1.570894 6.513751 35.392721

4000 1.132446 1.127704 6.016922 35.369937
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B. Runtimes of Benchmarked Applications

5000 1.419000 1.483060 5.849367 32.723671

6000 1.651840 1.817098 6.484060 36.017985

7000 1.916368 2.164393 7.271735 34.969183

8000 2.143349 2.457315 6.101321 33.992531

9000 2.401822 2.750451 6.614361 34.689807

10000 2.632416 3.045109 7.218386 34.050142

20000 5.049091 5.621079 7.543451 37.688152

30000 5.696119 8.062770 10.835841 40.896651

40000 5.721782 10.494105 13.054772 40.579907

50000 5.636676 12.901638 15.275511 44.560704

60000 5.726252 15.445660 17.899137 41.031675

70000 5.639073 18.021478 20.395213 39.255162

80000 5.552789 20.503967 22.991800 38.377582

90000 5.747018 23.160678 25.385062 39.214770

100000 5.666040 23.334943 28.056769 40.495644

200000 5.668282 23.117419 53.028009 63.774301
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Airfoil on Telos
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Figure B.3: Runtime variation of SLOPE Airfoil with tile sizes on Telos (Configurations:
single socket, 24 threads)

Table B.5: OP2 Airfoil single socket runtimes on Telos (Figure 3.7 and Figure B.3 runtimes
in seconds)

Dataset 45k 180k 720k 2880k

Runtime 0.314889 0.934244 6.010700 33.049485

Table B.6: SLOPE Airfoil single socket runtimes on Telos (Figure 3.7 and Figure B.3 runtimes
in seconds)

Tile Size
Dataset

45k 180k 720k 2880k

10 0.326647 1.383191 11.281713 47.866050

20 0.284708 1.109996 8.323846 39.909846

30 0.278887 1.083859 8.584480 40.297558

40 0.293748 1.017714 6.758000 34.359125

50 0.288099 1.002145 6.762467 34.070897

60 0.284200 1.042978 6.581178 32.195019

70 0.328253 1.113048 7.167197 31.443945

80 0.306969 0.953830 5.779171 29.543800
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90 0.362502 1.004215 5.914965 30.269083

100 0.306432 0.944363 5.442379 28.318925

200 0.300338 0.982150 4.863403 24.745245

300 0.288333 1.044464 4.611417 23.346048

400 0.347167 1.039411 4.593589 22.823226

500 0.247640 0.982713 4.841101 22.648141

700 0.335099 0.939781 4.662177 23.266360

800 0.376633 1.016644 4.690303 21.172355

900 0.390853 1.114022 4.635190 22.065230

1000 0.245961 0.887450 4.323784 21.663082

1100 0.265805 0.986084 5.001544 21.567178

1200 0.285607 1.053439 4.319924 21.238750

1300 0.304897 1.076292 4.173937 22.160948

1400 0.327884 1.138184 4.304943 21.803871

1500 0.348824 1.207496 4.095102 21.750731

1600 0.366333 1.282107 4.386773 21.450900

1700 0.386875 1.330398 4.346725 21.391056

1800 0.406566 1.147570 4.502188 21.765455

1900 0.422813 0.823689 4.093225 21.487715

2000 0.442973 0.874888 4.145816 21.098102

3000 0.651155 1.305060 4.330634 20.379830

4000 0.844520 0.889514 4.045517 21.014105

5000 1.050331 1.121405 3.810552 21.076505

6000 1.247852 1.304915 4.294515 20.952834

7000 1.479323 1.515155 5.184481 21.905345

8000 1.675557 1.738439 4.031838 20.757691

9000 1.872525 2.012349 4.519653 20.349526

10000 2.096996 2.149783 5.029571 20.135149

20000 4.343870 4.429180 5.342553 21.035578

30000 4.857210 6.279182 7.427241 22.014496

40000 4.672218 8.335975 9.642531 26.389965

50000 4.830525 10.332107 11.503359 30.678299

60000 4.696699 12.351136 13.481256 23.263006

70000 4.739407 14.313449 15.666895 23.975629

80000 4.648723 16.362397 17.616654 25.662047

90000 4.649929 18.472699 19.801606 27.408524

100000 4.770324 18.290331 21.875405 29.054171

200000 4.729834 18.352099 43.007626 49.790345
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Figure B.4: Runtime variation of SLOPE Airfoil with tile sizes on Telos (Configurations:
dual socket, 48 threads)

Table B.7: OP2 Airfoil dual socket runtimes on Telos (Figure 3.8 and Figure B.4 runtimes
in seconds)

Dataset 45k 180k 720k 2880k

Runtime 0.364595 0.711550 2.433992 21.973881

Table B.8: SLOPE Airfoil dual socket runtimes on Telos (Figure 3.8 and Figure B.4 runtimes
in seconds)

Tile Size
Dataset

45k 180k 720k 2880k

10 0.246403 0.719211 7.928876 39.890182

20 0.246545 0.651104 5.286274 30.738565

30 0.237736 0.647529 4.197228 27.296473

40 0.257689 0.765753 3.553281 24.898964

50 0.240236 0.639011 3.262831 23.632566

60 0.258204 0.634364 3.017306 22.645859

70 0.310798 0.835055 3.908188 19.819081

80 0.322543 0.702049 2.718799 20.610236

90 0.375375 0.629522 3.136567 20.156827

100 0.252522 0.648719 2.579825 19.294939

178



B. Runtimes of Benchmarked Applications

200 0.239801 0.685253 2.288864 17.019304

300 0.220872 0.742494 2.277544 15.914276

400 0.306701 0.713848 2.287923 15.342409

500 0.372067 0.733795 2.590767 14.725309

700 0.420619 0.707113 2.614190 15.197392

800 0.447005 0.723073 2.360668 15.139343

900 0.330242 0.780929 2.238191 14.194450

1000 0.365616 0.560747 2.503488 13.787795

1100 0.378008 0.618328 2.494869 13.300055

1200 0.398647 0.701810 2.275069 14.841986

1300 0.417747 0.782268 2.039064 14.182133

1400 0.439447 0.870220 2.230224 14.313324

1500 0.461164 0.938773 2.399918 14.686659

1600 0.486538 1.007140 2.308257 13.700386

1700 0.507062 1.076715 2.362023 13.038931

1800 0.540664 0.805510 2.445114 13.782824

1900 0.548432 0.498888 1.929516 14.346134

2000 0.574254 0.546686 2.098114 12.929859

3000 0.802666 0.930260 2.668906 12.031945

4000 1.017630 1.273634 2.063766 12.536388

5000 1.233446 1.475829 2.769259 13.072716

6000 1.498142 1.721539 2.848898 13.677677

7000 1.710935 1.931000 3.254027 15.170143

8000 1.843843 2.137402 2.097465 14.089327

9000 2.138721 2.350707 2.435492 14.982730

10000 2.344507 2.551807 2.797979 13.696222

20000 4.432708 4.713426 6.087756 16.408144

30000 5.030773 6.840138 8.127291 16.320459

40000 4.986417 8.910655 10.248862 17.183143

50000 4.879248 10.683413 12.485792 17.734345

60000 4.933151 12.915222 14.660914 21.130399

70000 4.916940 14.993983 16.807490 23.333301

80000 4.840861 16.933324 18.960504 25.219948

90000 4.944569 19.102339 21.194465 27.449257

100000 4.938915 19.174475 23.233967 28.381594

200000 4.879722 19.105937 44.591647 50.632948
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Airfoil on ARCHER2
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Figure B.5: Runtime variation of SLOPE Airfoil with tile sizes on ARCHER2 (Configura-
tions: single socket, 64 threads)

Table B.9: OP2 Airfoil single socket runtimes on ARCHER2 (Figure 3.9 and Figure B.5
runtimes in seconds)

Dataset 720k 2880k 6480k 11520k

Runtime 2.098819 54.010133 243.103564 442.813455

Table B.10: SLOPE Airfoil single socket runtimes on ARCHER2 (Figure 3.9 and Figure B.5
runtimes in seconds)

Tile Size
Dataset

720k 2880k 6480k 11520k

10 2.776299 96.797528 285.042764 404.782525

20 2.097814 70.249535 241.574711 359.479268

30 1.936240 61.284793 213.178551 340.420254

40 1.860452 61.186344 209.865580 336.509560

50 1.828446 57.274016 200.169877 334.851348

60 1.939031 58.809502 204.781928 333.232781

70 7.036345 61.483404 201.729857 387.893776

80 2.196397 56.225664 195.912861 323.298345
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90 3.553884 64.721229 195.508436 376.175293

100 1.764851 53.750807 190.878717 314.289960

200 1.770972 50.660311 169.203114 281.014433

300 3.001669 50.657479 162.391133 266.467724

400 3.972443 42.501758 160.132528 261.389471

500 3.858908 50.353884 155.896357 306.268432

700 5.015537 56.862163 151.696960 294.008871

800 4.645305 53.305503 148.566345 249.543516

900 2.623576 51.992299 153.673903 290.775615

1000 3.511091 54.578062 146.150419 289.808401

1100 4.900559 49.415965 149.338218 285.284003

1200 4.694448 53.813354 149.419284 242.754410

1300 3.475146 53.686826 146.643772 285.835179

1400 1.658303 56.550766 149.092366 284.871961

1500 3.511534 53.233150 146.133837 285.562455

1600 4.912663 52.719789 151.699894 240.330565

1700 5.691431 54.986408 151.683009 290.780104

1800 6.371815 49.514963 151.821948 286.371570

1900 6.738621 49.227214 149.478900 287.210583

2000 6.617326 50.286845 145.150467 282.030008

3000 3.604012 51.620310 146.602608 282.204639

4000 5.118087 53.253875 146.014791 278.761972

5000 4.374946 52.233323 142.328291 274.522582

6000 3.477047 50.998690 141.014924 264.045715

7000 4.998790 58.515646 137.038918 260.253534

8000 5.354281 48.902816 135.367101 254.606259

9000 5.617710 50.934431 130.169186 255.408677

10000 5.771688 50.145820 128.633806 247.331762

20000 10.374723 50.759350 126.663513 224.347470

30000 12.586128 53.371906 127.186634 229.229612

40000 14.497252 59.993755 145.552905 252.631524

50000 16.870494 68.355873 155.604306 282.021534

60000 18.040263 71.867263 171.112379 303.707871

70000 19.298107 72.423159 170.774450 323.682965

80000 21.172859 71.784852 178.031119 316.008810

90000 23.044332 74.289881 170.249120 321.385849

100000 23.979683 73.068051 170.710569 316.932817

200000 38.357019 83.787013 162.438671 295.685308
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Figure B.6: Runtime variation of SLOPE Airfoil with tile sizes on ARCHER2 (Configura-
tions: dual socket, 128 threads)

Table B.11: OP2 Airfoil dual socket runtimes on ARCHER2 (Figure 3.10 and Figure B.6
runtimes in seconds)

Dataset 720k 2880k 6480k 11520k

Runtime 5.719125 6.381400 159.464374 451.544639

Table B.12: SLOPE Airfoil dual socket runtimes on ARCHER2 (Figure 3.10 and Figure B.6
runtimes in seconds)

Tile Size
Dataset

720k 2880k 6480k 11520k

10 2.307857 67.336804 261.186822 423.116941

20 2.429602 41.551264 194.027518 372.866546

30 3.112655 28.983436 176.000177 337.999412

40 3.707923 23.368659 164.565760 322.758051

50 2.135930 21.154470 168.506715 326.162950

60 4.404856 19.505137 157.318391 332.268872

70 15.039407 19.106999 177.955689 452.913442

80 5.616679 16.445856 151.364931 316.506769

90 12.539012 47.795653 145.707741 385.411420

100 2.308343 14.980698 153.610612 305.208350

200 8.901996 11.275063 145.001654 277.408654
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300 8.336638 24.766135 136.266640 264.191270

400 8.416379 9.956405 139.742306 258.219157

500 12.539065 39.187939 158.084911 310.529849

700 12.115432 49.182059 157.685667 290.677843

800 7.641549 42.428218 135.039467 252.425217

900 4.810070 21.014798 127.377968 295.788716

1000 7.574638 40.279520 148.432124 287.201598

1100 8.197793 49.508780 153.221279 290.615159

1200 7.594798 40.847601 138.985930 252.135329

1300 6.294267 30.717664 132.436368 292.713819

1400 1.684884 46.933277 144.980276 296.069677

1500 7.664590 54.950595 150.334532 289.685101

1600 8.358552 37.813420 158.499218 253.522992

1700 8.914331 31.274914 154.482784 286.163039

1800 9.614951 21.933444 158.096642 275.668477

1900 10.221579 14.570019 145.220865 274.618608

2000 10.674624 32.472173 148.435990 288.168530

3000 11.552667 33.889885 142.167435 282.153732

4000 7.808235 50.557685 135.192855 283.472914

5000 7.680660 32.590458 154.957468 281.690941

6000 7.790711 32.877176 126.442662 277.660433

7000 7.848474 44.883912 145.144240 264.937470

8000 7.995536 36.473220 159.290301 272.527429

9000 8.048782 34.141873 142.923058 265.009825

10000 8.193214 29.998711 136.474513 258.583432

20000 12.145644 55.078333 127.179831 241.242701

30000 14.060348 59.110585 138.834320 238.820168

40000 16.178879 63.679446 156.191807 267.728153

50000 18.741501 69.323181 160.922162 299.179294

60000 19.708379 75.088615 175.005477 344.994032

70000 21.104475 74.424369 174.753076 351.467380

80000 25.055466 74.232365 178.435701 322.097234

90000 24.457430 76.299700 175.462612 325.881928

100000 25.618732 76.201162 176.792638 323.453651

200000 40.407442 85.126102 167.208434 304.170476
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B.1.2 MG-CFD Runtimes

MG-CFD on Scyrus

Table B.13: OP2 MG-CFD runtimes on Scyrus (Figure 3.14 and Figure 3.15 runtimes in
seconds)

Configuration Single Socket Dual Socket

Dataset 1M 8M 1M 8M

Runtime 1.760776 13.820041 1.468171 13.420122

Table B.14: SLOPE MG-CFD runtimes on Scyrus (Figure 3.14 and Figure 3.15 runtimes in
seconds)

Configuration Single Socket Dual Socket

Tile Size
Dataset

1M 8M 1M 8M

10 7.939703 62.955604 6.232795 50.578720

20 5.389059 43.396475 4.194236 33.467970

30 4.448334 35.278409 3.354948 27.602593

40 4.066493 31.385879 2.974452 25.968002

50 3.636544 28.278403 2.759377 22.914829

60 3.284215 25.754759 2.514562 20.978687

70 3.128684 24.621912 2.402059 19.563343

80 2.929191 23.017472 2.273236 19.673442

90 2.770091 21.501499 2.123871 17.755781

100 2.486191 20.428958 2.049454 16.696700

200 1.952867 15.172964 1.588995 13.184359

300 1.698048 13.069231 1.399728 11.789455

400 1.613303 12.190750 1.284641 11.074802

500 1.564664 11.589213 1.218530 10.234793

700 1.518623 11.133854 1.135140 9.190694

800 1.475565 11.022027 1.101928 9.009418

900 1.456017 10.507981 1.066310 8.821902

1000 1.428164 10.629663 1.054433 8.474080

1100 1.352805 10.700190 1.041419 8.423364

1200 1.387800 10.199983 1.020354 8.398445

1300 1.402804 10.385612 1.009819 8.316531

1400 1.397682 10.426708 0.991365 8.203343

1500 1.356989 10.443432 0.989825 7.968122

1600 1.348749 10.525191 0.971450 7.977849

1700 1.359209 10.003141 0.972574 7.769816
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1800 1.323318 9.832828 0.968915 7.855542

1900 1.326283 9.934556 0.977543 7.685347

2000 1.347742 9.924918 0.964078 7.533777

3000 1.373582 9.521758 0.978464 7.170999

4000 1.373923 9.647112 0.912657 6.958864

5000 1.341486 9.492282 0.979938 6.665794

6000 1.459825 9.334325 1.060357 6.995231

7000 1.413459 9.216858 0.995943 6.949896

8000 1.474247 9.591742 1.075343 7.016371

9000 1.633316 9.760198 1.142772 7.031111

10000 1.530314 9.914950 1.111997 7.305823

20000 1.725586 11.223732 1.180524 8.594357

30000 1.917623 11.928001 1.210997 9.199701

40000 1.518152 11.279708 1.365917 8.969287

50000 1.449752 11.885534 1.436894 9.058953

60000 1.979901 11.191337 2.002135 9.024264

70000 2.027487 11.648975 2.041609 9.054110

80000 2.287114 11.196433 2.420382 9.292282

90000 2.589478 11.069466 2.715925 8.645147

100000 2.428816 11.946976 2.478976 9.685748

200000 5.903811 12.514334 6.107621 9.442719
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MG-CFD on Telos

Table B.15: OP2 MG-CFD runtimes on Telos (Figure 3.16 and Figure 3.17 runtimes in
seconds)

Configuration Single Socket Dual Socket

Dataset 1M 8M 1M 8M

Runtime 0.721983 6.401104 0.585744 1.764256

Table B.16: SLOPE MG-CFD runtimes on Telos (Figure 3.16 and Figure 3.17 runtimes in
seconds)

Configuration Single Socket Dual Socket

Tile Size
Dataset

1M 8M 1M 8M

10 3.599551 28.780068 2.332777 21.954373

20 2.276020 19.493188 1.616972 14.081973

30 1.872717 16.093425 1.247262 12.970889

40 1.674570 13.916012 1.132111 12.032626

50 1.523361 12.650854 1.011694 10.659607

60 1.400645 11.805784 0.944210 10.079135

70 1.273348 11.042734 0.884342 7.833606

80 1.182164 10.429928 0.847787 9.362309

90 1.128697 9.740297 0.795115 9.179010

100 1.046743 9.239099 0.759705 8.707754

200 0.789475 7.109023 0.544022 7.187283

300 0.668309 6.028640 0.504018 5.879311

400 0.625215 5.382601 0.456768 5.381697

500 0.596699 5.002959 0.418088 5.291686

700 0.556176 4.730640 0.385848 4.370531

800 0.549698 4.527607 0.377431 4.229830

900 0.544051 4.570188 0.359665 4.102553

1000 0.535177 4.430808 0.349957 3.954079

1100 0.511405 4.360550 0.353950 3.847662

1200 0.509214 4.280895 0.325498 3.522612

1300 0.510633 4.249656 0.324577 3.326501

1400 0.508712 4.184378 0.311773 3.601852

1500 0.521788 4.030419 0.334201 2.579643

1600 0.499869 4.087464 0.323956 4.015107

1700 0.512031 3.941751 0.317326 3.922187

1800 0.493992 3.942140 0.316471 3.894580
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1900 0.508460 3.908546 0.321262 3.872578

2000 0.500956 3.861167 0.330089 3.319634

3000 0.535601 3.602337 0.335962 3.054438

4000 0.517436 3.597788 0.308013 3.483324

5000 0.559656 3.570290 0.329872 3.392768

6000 0.631131 3.604194 0.368228 3.202515

7000 0.599854 3.662455 0.348269 3.449719

8000 0.672450 3.734479 0.337476 3.547593

9000 0.737808 3.796476 0.393885 3.533058

10000 0.701054 3.944737 0.422591 3.579572

20000 0.777937 4.913187 0.629235 4.230025

30000 0.856493 5.363671 0.832020 4.814375

40000 1.007668 5.241790 0.994504 4.762174

50000 1.076766 5.117237 1.070516 4.826534

60000 1.584168 5.292683 1.571269 5.067150

70000 1.605126 5.413499 1.604146 4.029694

80000 1.858387 5.462502 1.842085 4.279601

90000 2.116304 5.009750 2.123021 3.936481

100000 1.994557 6.089356 1.965338 4.318543

200000 5.027318 5.652018 5.054690 5.231214
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MG-CFD on ARCHER2

Table B.17: OP2 MG-CFD runtimes on ARCHER2 (Figure 3.18 runtimes in seconds)

Configuration Single Socket

Dataset 1M 8M

Runtime 1.279166 24.685086

Table B.18: SLOPE MG-CFD runtimes on ARCHER2 (Figure 3.18 runtimes in seconds)

Configuration Single Socket

Tile Size
Dataset

1M 8M

10 3.710585 41.218753

20 2.508669 33.057660

30 2.461383 29.273404

40 2.358940 29.242021

50 2.246009 27.976216

60 2.331704 26.933452

70 2.143611 25.439981

80 1.966228 27.247368

90 2.010967 24.139178

100 1.935035 24.783447

200 1.692404 22.718691

300 1.799512 21.530610

400 1.920217 19.978984

500 1.765485 19.299961

700 1.721805 18.341839

800 1.661764 17.306678

900 1.655385 16.979023

1000 1.597075 16.709506

1100 1.562559 17.725141

1200 1.535571 16.815970

1300 1.555862 16.588503

1400 1.536940 15.776978

1500 1.540632 16.067251

1600 1.462462 15.963022

1700 1.477918 15.547380

1800 1.451671 15.564542

1900 1.551131 15.520512

2000 1.463854 15.508275
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3000 1.423240 14.742529

4000 1.447099 14.685381

5000 1.371646 14.103297

6000 1.357494 13.920225

7000 1.348410 13.972873

8000 1.340421 13.652662

9000 1.334576 13.989957

10000 1.336149 14.155744

20000 1.319138 13.609494

30000 1.455471 13.744435

40000 1.625466 13.522063

50000 1.765295 13.312235

60000 2.266779 14.063736

70000 2.319472 13.886287

80000 2.611098 13.424312

90000 2.886669 13.658245

100000 2.807055 13.689275

200000 6.004063 14.138655
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B.1.3 Volna Runtimes1

Volna on Scyrus

Table B.19: OP2 Volna runtimes on Scyrus (Figure 3.21 and Figure 3.22 runtimes in seconds)

Configuration Single Socket Dual Socket

Dataset Catalina NU3 Catalina NU3

Runtime 2.496774 124.809682 1.543411 89.449858

Table B.20: SLOPE Volna runtimes on Scyrus (Figure 3.21 and Figure 3.22 runtimes in
seconds)

Configuration Single Socket Dual Socket

Tile Size
Dataset

Catalina NU3 Catalina NU3

10 29.921846 13.933021

20 19.501469 9.250273 7447.795986

30 9.124965 5568.861942 4.594535 3614.275555

40 4.862043 4225.478018 2.534343 2710.710986

50 4.554766 1292.571921 3.691698 843.519793

60 4.417344 881.942552 2.360177 574.917470

70 4.295775 6023.918484 2.256121 3870.777673

80 9.008719 3919.129473 2.140471 2580.356229

90 10.572906 5357.268460 5.326607 3130.967418

100 4.011382 988.939786 2.254798 640.180885

200 3.823003 539.181064 2.248541 336.843385

300 3.372189 537.730997 1.972008 348.064940

400 3.363709 474.924598 1.863129 306.905193

500 3.015037 499.933385 1.780696 317.521603

700 3.187168 204.383188 1.891337 129.164990

800 3.119536 201.850173 1.665280 200.954898

900 3.123099 376.147761 1.868140 243.646002

1000 2.843973 204.567597 1.948652 133.199018

1100 2.993942 202.958643 2.083368 132.152273

1200 3.164456 210.542395 2.109166 134.774208

1300 3.278477 206.861241 2.227893 139.061513

1400 3.471352 309.128048 2.343514 135.573922

1500 3.045969 210.491820 1.895420 141.249795

1600 3.127717 204.674414 1.990102 128.416163

1Some of the SLOPE Volna runtimes for smaller tile sizes are not included in the tables due to increased
execution time.
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1700 3.089828 206.790264 2.074759 136.802580

1800 3.164951 201.283914 1.946865 133.880048

1900 2.885482 203.600191 1.813383 135.177901

2000 2.832507 204.581578 1.854197 136.131357

3000 3.561948 192.773536 2.092827 126.762589

4000 3.034038 183.488172 2.718769 118.424412

5000 3.184274 170.950104 3.129409 114.365665

6000 3.608053 188.345554 3.550377 127.438008

7000 4.075217 157.453148 4.036531 109.013354

8000 4.498560 166.742431 4.496186 116.394681

9000 4.883690 160.352694 5.061389 110.903383

10000 5.358443 158.724387 5.331901 104.989887

20000 9.597188 132.268719 9.601459 87.221041

30000 13.818190 174.867655 13.913055 104.374340

40000 16.884571 124.627123 16.938577 125.090795

50000 20.817461 146.832063 20.971385 147.308641

60000 20.831699 168.428924 20.932167 168.633580

70000 20.861719 192.090424 21.009545 192.453780

80000 20.858138 213.548625 20.971221 213.948832

90000 20.675212 236.770531 20.809683 237.408588

100000 20.408281 260.443272 20.515981 261.807362

200000 20.517654 487.798751 20.543645 490.760746
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Volna on Telos

Table B.21: OP2 Volna runtimes on Telos (Figure 3.23 and Figure 3.24 runtimes in seconds)

Configuration Single Socket Dual Socket

Dataset Catalina NU3 Catalina NU3

Runtime 1.026248 60.705009 0.713585 49.422140

Table B.22: SLOPE Volna runtimes on Telos (Figure 3.23 and Figure 3.24 runtimes in
seconds)

Configuration Single Socket Dual Socket

Tile Size
Dataset

Catalina NU3 Catalina NU3

10 9.257547 4.702890

20 6.121004 4741.469493 3.827582 4321.453749

30 3.010537 2344.052679 1.885374 1560.160739

40 1.679095 1722.669075 1.104433 1099.755066

50 2.283657 531.136033 1.549770 183.799853

60 1.585417 362.142410 1.933445 248.957546

70 1.552561 2433.063550 1.034077 2030.852856

80 1.461314 1631.509096 2.128603 1063.149433

90 3.531927 2008.556217 2.281476 1265.714917

100 1.525437 414.646671 1.048522 276.728015

200 1.413664 228.306144 1.075826 131.614666

300 1.258100 233.011007 0.982733 170.891401

400 1.287376 204.750068 0.938550 150.766042

500 1.221639 211.705800 0.878664 152.763001

700 1.285403 86.217697 0.971244 63.370069

800 1.141996 133.315049 0.837308 65.155204

900 1.227658 162.040126 0.944965 121.337284

1000 1.285089 88.122266 0.948360 66.340566

1100 1.389142 88.318372 0.930195 155.087454

1200 1.396157 90.416048 1.057659 167.440811

1300 1.469816 93.091612 1.097419 69.965877

1400 1.558598 90.118478 1.149589 101.534756

1500 1.195387 94.282091 0.805069 69.613247

1600 1.271160 85.679405 0.854109 65.564485

1700 1.388402 91.675268 0.863106 68.294300

1800 1.260975 89.258015 0.980857 118.138838

1900 1.125692 90.475349 1.023368 69.434958
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2000 1.163983 91.377746 1.037813 71.403193

3000 1.398509 86.144495 1.387845 67.494515

4000 1.728368 79.748089 1.776605 66.352718

5000 2.143319 78.857438 2.173021 67.300309

6000 2.520546 89.751848 2.578760 73.773945

7000 2.893919 75.834212 2.900672 64.430613

8000 3.155727 81.704993 3.243714 68.842992

9000 3.496842 78.629092 3.551363 63.721414

10000 3.811064 73.810100 3.894678 57.904235

20000 6.883825 60.072484 6.995613 59.691949

30000 10.100779 76.354523 10.223722 75.316994

40000 11.969175 92.760372 12.108369 92.283532

50000 15.051260 109.738016 15.136187 108.854130

60000 15.067212 125.458974 15.145740 125.329704

70000 15.026410 144.316248 15.184368 143.279255

80000 14.962971 159.324152 15.125359 158.425760

90000 14.915412 177.387419 15.056660 176.393065

100000 14.714286 194.472391 14.839329 193.872290

200000 14.671915 365.238359 14.826270 363.700666
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Volna on ARCHER2

Table B.23: OP2 Volna runtimes on ARCHER2 (Figure 3.25 and Figure 3.26 runtimes in
seconds)

Configuration Single Socket Dual Socket

Dataset Catalina NU3 Catalina NU3

Runtime 1.545005 66.631699 2.903588 64.237475

Table B.24: SLOPE Volna runtimes on ARCHER2 (Figure 3.25 and Figure 3.26 runtimes in
seconds)

Configuration Single Socket Dual Socket

Tile Size
Dataset

Catalina NU3 Catalina NU3

10 4.017659 7.548402

20 3.499108 8.512839

30 2.143481 3014.337009 4.858965 4276.985132

40 1.264754 2105.899395 3.255981 1627.902361

50 1.475060 556.120471 3.469751 942.955235

60 1.622196 536.507315 6.443164 465.193135

70 1.692036 988.279696 3.363306 1392.911143

80 3.435506 308.793921 6.912753 280.038068

90 1.754331 1578.707033 3.350593 1447.335421

100 1.833271 608.407148 3.318451 436.519588

200 1.798045 940.333450 2.776503 1613.022212

300 1.564665 3049.070303 2.277948 708.455172

400 1.384516 125.801805 1.945414 146.520006

500 1.326572 225.070493 1.702930 147.657249

700 1.386064 119.760735 1.749781 140.910106

800 1.116954 124.062751 1.507749 143.348112

900 1.211124 122.721198 1.542785 140.218940

1000 1.282077 129.612550 1.576839 233.349609

1100 1.344120 123.945603 1.635220 143.395861

1200 1.421053 302.761403 1.711425 139.876780

1300 1.494327 128.509121 1.784012 140.555878

1400 1.536533 214.712946 1.841274 238.136794

1500 1.165310 123.129371 1.425677 141.131066

1600 1.209043 120.793912 1.475108 134.933626

1700 1.259070 119.614611 1.523736 139.891403

1800 1.299620 225.782905 1.566481 155.995546
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1900 1.355705 124.188684 1.626564 133.294108

2000 1.432454 119.330523 1.685851 133.884447

3000 1.919302 111.949290 2.181636 126.710590

4000 2.465322 108.219987 2.742361 111.477223

5000 3.090459 100.709302 3.430276 109.002377

6000 3.553315 105.214075 3.855603 106.942209

7000 4.093264 98.376264 4.421244 99.240162

8000 4.706117 98.299956 5.242819 103.596324

9000 5.214249 93.909034 5.687052 96.773318

10000 5.635220 96.032544 6.082998 97.718178

20000 10.242768 102.683110 10.733723 105.333116

30000 14.960879 117.797522 15.741874 122.214644

40000 17.031453 137.257175 17.857068 142.483744

50000 21.914704 158.501889 23.001771 164.836012

60000 21.936089 180.035647 23.046504 187.332683

70000 21.926703 204.626917 22.953647 214.383883

80000 21.915375 229.310140 22.877380 237.570998

90000 21.918167 256.478577 22.973167 266.664109

100000 21.961801 280.657113 23.026474 291.013086

200000 21.940809 539.734834 23.039283 554.547419
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B.1.4 OP2 Hydra Runtimes

OP2 Hydra on Scyrus

Table B.25: OP2 Hydra single socket runtimes on Scyrus (Figure 3.29 runtimes in seconds)

Dataset 1M 8M

Loop-chain iflux vflux jinit iflux vflux jinit

Runtime 25.399872 81.787834 20.236053 272.804718 668.075500 207.988312

Table B.26: SLOPE Hydra single socket runtimes on Scyrus (Figure 3.29 runtimes in seconds)

Dataset 1M 8M

Tile Size
Loop-chain

iflux vflux jinit iflux vflux jinit

10 73.088005 142.235870 33.935959 860.716858 1309.488953 383.828125

20 58.804207 126.364021 28.952049 680.940369 1126.035828 323.568481

30 50.227982 117.544106 25.743820 558.324585 1027.863892 280.776428

40 48.164032 111.659981 23.595947 554.480164 980.108490 268.660461

50 45.447899 107.063766 22.343994 527.829468 936.964233 250.032379

60 43.212135 103.608284 21.547943 477.220703 878.759583 237.152039

70 39.799957 101.352066 21.059982 460.050537 883.320404 234.283966

80 37.428185 100.880104 20.447937 449.024231 870.642670 231.247986

90 36.711899 100.208046 20.180084 421.580505 864.360291 221.971924

100 35.384010 99.151863 19.884209 413.543854 845.616852 219.599487

200 29.564240 91.568329 18.415939 330.704926 764.280090 203.012207

300 27.539902 87.655746 17.872009 313.372131 731.504089 197.867737

400 26.672173 86.047882 17.611977 294.802551 712.764191 195.152405

500 26.455994 84.808075 17.476067 286.452179 700.836792 192.519897

700 25.203941 83.396042 17.299965 271.432831 673.715729 189.919617

800 24.412048 82.379822 17.116035 270.204529 675.727722 188.372253

900 24.488106 81.980003 17.043991 258.767090 675.604401 189.076019

1000 24.435867 82.720001 17.275978 256.652679 667.860352 187.775482

1100 24.423813 83.132126 17.359924 256.620667 668.323730 186.888031

1200 24.027863 83.016045 17.240051 255.142975 667.268555 186.480011

1300 24.004143 82.768051 17.172020 253.847260 668.892334 186.575775

1400 24.419731 82.964035 17.384079 252.055237 660.199738 185.216003

1500 24.315941 83.164139 17.459984 251.386017 659.724152 185.160126

1600 24.091919 83.412064 17.375977 250.568176 661.987793 184.364197

1700 22.624138 81.156120 16.915970 250.316711 661.787598 186.864105

1800 23.848015 82.624092 17.203995 247.872192 658.784363 185.103882
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1900 23.924042 82.400215 17.248009 248.856995 659.203918 184.219940

2000 23.160042 82.300186 17.339928 248.244080 657.299591 185.036499

3000 24.680130 85.335915 18.140068 242.888702 654.011627 184.223724

4000 23.356239 81.952179 17.536026 247.011841 651.764771 184.080292

5000 25.472099 87.339767 18.704002 249.640594 648.448975 184.372528

6000 26.147942 89.464195 19.268013 249.633301 652.964203 185.396149

7000 24.536240 83.419594 18.071823 242.731842 650.151947 186.599548

8000 27.396042 93.347946 20.504036 240.812714 644.208435 184.099945

9000 26.103790 91.128006 19.679962 243.558899 651.291351 185.799805

10000 26.663773 93.568253 20.107918 243.340668 654.227142 188.147797

20000 31.915955 109.691925 23.899948 246.859192 662.757080 190.515930

30000 32.948166 113.068092 24.864014 249.807800 670.891968 191.275757

40000 33.604034 116.819878 25.660141 261.273010 700.223663 200.571503

50000 36.248199 127.252014 27.319931 257.677307 688.579590 201.815979

60000 45.012161 156.544106 34.199928 263.195374 715.748413 204.896362

70000 49.316277 176.616028 37.796005 274.975647 750.476593 215.300262

80000 65.251556 236.568108 50.695961 275.212738 736.944427 212.468506

90000 62.612083 225.399696 47.956085 268.131683 716.095001 207.655670

100000 69.747444 250.283882 53.375931 276.209503 736.456482 212.944244

200000 113.899643 402.143738 88.487938 340.543579 912.243866 269.252167

Table B.27: OP2 Hydra dual socket runtimes on Scyrus (Figure 3.30 runtimes in seconds)

Dataset 1M 8M

Loop-chain iflux vflux jinit iflux vflux jinit

Runtime 47.943764 98.404045 27.116249 344.860809 748.428162 252.400452

Table B.28: SLOPE Hydra dual socket runtimes on Scyrus (Figure 3.30 runtimes in seconds)

Dataset 1M 8M

Tile Size
Loop-chain

iflux vflux jinit iflux vflux jinit

10 120.979919 190.983749 47.340134 1198.798584 1647.084900 549.487732

20 91.328140 160.891983 38.415909 921.516174 1323.620178 440.175598

30 79.287842 149.864258 33.615952 739.504150 1229.329895 381.456360

40 76.555695 138.436127 31.740082 736.390869 1141.378845 355.735535

50 72.500061 133.427872 30.292053 676.569092 1063.501099 322.076660

60 69.867645 127.467789 28.504044 606.394104 1004.705200 302.723938

70 64.515976 123.972153 27.279922 600.415527 1006.523560 297.512085

80 61.391998 121.531937 26.420059 573.848877 972.395996 288.147644
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90 59.792114 120.580261 26.191879 533.980774 960.764160 277.064270

100 57.300201 119.664093 25.963882 510.680115 944.487305 266.904175

200 46.715942 102.215805 21.980087 401.072449 822.917419 233.007446

300 42.036331 95.155716 20.207932 361.051697 777.934387 222.764771

400 39.788208 92.608032 19.620026 336.392273 743.380127 212.915344

500 38.659821 91.160004 19.484085 326.301270 728.907654 211.904236

700 37.363792 88.951828 19.255875 299.028748 702.745422 205.316101

800 35.108063 86.427811 18.595863 293.327942 714.200439 203.547913

900 35.839478 87.656181 18.995895 284.683472 698.111755 201.528076

1000 35.383530 86.916054 18.912056 284.407471 694.083740 202.735107

1100 35.023163 89.371841 19.344162 284.100830 692.959412 200.364136

1200 34.511803 87.659996 19.064018 279.955017 684.268494 198.779846

1300 34.391907 88.867966 19.088005 274.589233 686.688171 200.248047

1400 34.811890 89.816010 19.367996 282.496216 686.096680 197.555664

1500 34.523895 90.280212 19.748062 277.695862 684.760254 197.356262

1600 33.859940 89.552307 19.284012 269.848572 683.004578 196.212341

1700 33.016251 87.519928 18.996086 269.076904 675.802734 195.715179

1800 33.807953 89.996078 19.284073 264.264709 672.900879 194.579834

1900 34.512596 90.052193 19.515976 269.167542 676.972717 195.460022

2000 33.984116 90.876022 19.560089 263.940735 671.372314 194.632324

3000 33.687836 95.020210 20.824043 258.804993 664.563843 193.851410

4000 32.027908 90.811722 20.099976 257.331879 664.020782 195.203644

5000 35.419678 102.088127 22.436073 262.800507 669.582703 195.515961

6000 35.139969 100.303947 22.327942 254.508087 669.681000 195.572144

7000 32.639923 97.103973 21.792038 259.884399 675.647522 199.380371

8000 37.615913 110.179947 25.183914 260.817078 667.663818 198.883789

9000 36.359840 109.619873 24.515991 264.383881 678.604065 200.524017

10000 35.756088 111.667862 25.099976 259.755310 674.459839 199.292236

20000 39.448151 121.880196 27.415916 273.087952 705.867615 212.755798

30000 53.519867 176.924347 39.804085 286.139587 723.040344 218.071869

40000 59.428040 202.287788 45.523857 299.367218 742.535736 228.115906

50000 73.271782 256.503693 56.227821 300.220917 743.431396 232.552185

60000 89.952347 314.808098 69.835892 319.659912 815.752594 245.452362

70000 100.111893 354.024376 76.484047 312.995514 781.540405 242.655884

80000 130.864685 472.312012 100.499641 336.542725 843.540039 262.304504

90000 126.000183 454.072006 97.516182 330.080872 833.027527 256.060333

100000 139.644196 503.676346 108.331802 350.371887 868.038788 268.476074

200000 229.403290 808.927658 179.903793 430.392456 1112.140381 334.278931
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OP2 Hydra on Telos

Table B.29: OP2 Hydra single socket runtimes on Telos (Figure 3.31 runtimes in seconds)

Dataset 1M 8M

Loop-chain iflux vflux jinit iflux vflux jinit

Runtime 28.870171 73.221611 21.049042 297.475311 575.923676 190.775986

Table B.30: SLOPE Hydra single socket runtimes on Telos (Figure 3.31 runtimes in seconds)

Dataset 1M 8M

Tile Size
Loop-chain

iflux vflux jinit iflux vflux jinit

10 70.295441 125.656189 31.882080 844.550964 1150.273926 350.913635

20 55.489227 111.842224 26.239029 659.184875 976.719727 285.046875

30 47.755142 104.409302 23.058571 538.266785 897.493530 247.379395

40 45.191467 97.767708 21.504135 539.400391 846.502930 237.596191

50 42.092606 92.459229 19.929550 499.319092 794.661926 220.684570

60 40.434410 89.476364 19.272743 457.152405 755.973633 207.822266

70 37.333183 87.399811 18.502144 442.100708 743.301147 201.430939

80 35.457062 87.315514 18.293884 436.008972 738.746460 200.761414

90 34.478271 85.606033 17.945068 406.730225 724.001678 195.261658

100 33.308517 84.198120 17.593254 388.026733 701.280823 186.964508

200 28.266495 77.182480 15.862862 322.421936 649.172516 172.820831

300 25.596222 73.394806 15.256905 290.840088 621.726379 167.070709

400 24.841225 72.568184 15.052849 274.639893 604.055695 163.112885

500 24.323792 72.626617 14.913429 266.152863 599.021362 164.068634

700 23.574478 72.730034 14.909981 254.053955 578.403931 157.474091

800 22.548874 70.299599 14.635078 245.168396 576.933014 156.885742

900 22.608047 71.711815 14.897003 244.372681 575.415833 156.830933

1000 22.787750 72.304359 14.859550 241.222504 576.012787 158.433777

1100 23.261299 73.283554 15.201958 238.339203 569.434937 155.135010

1200 22.289543 73.071739 15.033073 232.908295 560.945221 153.667938

1300 22.587929 73.607628 15.239395 228.998688 567.492645 158.285736

1400 22.452576 74.085678 15.542870 230.917297 555.297821 154.437622

1500 23.549271 76.586189 16.470573 227.706940 550.949127 152.399017

1600 22.810631 74.264908 15.309196 228.493774 556.750641 157.104462

1700 22.015877 72.552338 15.070686 225.027710 556.542389 154.915009

1800 23.153053 75.754967 15.781975 221.976166 560.017639 153.999878

1900 22.876015 74.351669 15.379898 229.255341 561.866486 155.501251

2000 22.536667 74.977570 15.272362 226.023102 560.419891 154.456635
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3000 24.282776 79.449059 16.830658 221.952148 561.291931 156.222046

4000 22.721939 75.614464 15.964409 221.996216 558.573792 155.432800

5000 25.076340 85.147087 17.920067 221.920013 559.280396 155.581757

6000 25.524559 83.908485 17.817764 222.501953 560.541992 156.865356

7000 23.627876 81.557068 17.523270 224.340942 568.492157 158.566284

8000 28.050751 91.521759 20.048836 225.652130 567.011047 161.810883

9000 26.834717 91.457970 19.656654 229.009430 566.934174 159.111115

10000 27.654816 94.044426 20.167259 224.377991 563.888245 160.136627

20000 30.088478 103.251259 22.423317 234.056183 595.236481 170.081299

30000 43.614845 150.929520 33.376312 241.281403 612.422028 177.192017

40000 48.294334 170.232094 35.814308 251.699951 624.595398 184.142731

50000 59.758064 212.756790 44.779503 251.084442 619.019440 181.412903

60000 74.582634 262.585289 55.676666 267.232605 689.718109 201.842438

70000 82.014999 297.175392 61.441315 261.950989 655.612244 194.054230

80000 108.304245 399.593613 81.675560 279.857208 697.941742 203.831299

90000 104.996056 382.432892 79.011551 278.138489 704.166473 209.216339

100000 117.379021 427.811020 90.399330 287.464630 715.865112 210.121948

200000 192.112419 680.017830 146.926300 358.897552 929.166626 275.062805

Table B.31: OP2 Hydra dual socket runtimes on Telos (Figure 3.32 runtimes in seconds)

Dataset 1M 8M

Loop-chain iflux vflux jinit iflux vflux jinit

Runtime 48.963837 84.995422 27.717880 367.243225 594.236633 202.846405

Table B.32: SLOPE Hydra dual socket runtimes on Telos (Figure 3.32 runtimes in seconds)

Dataset 1M 8M

Tile Size
Loop-chain

iflux vflux jinit iflux vflux jinit

10 92.289490 161.047394 46.518143 1168.999512 1447.282227 445.107178

20 78.699997 136.960999 29.713409 840.721008 1151.231873 340.991516

30 79.026031 128.211044 28.647568 742.088013 1052.126099 294.095886

40 72.440796 118.184723 27.405380 780.582031 1014.806824 276.015198

50 67.391403 111.542007 26.348999 656.139954 934.309143 302.708740

60 70.965775 109.072464 23.327332 596.317322 854.076477 242.789551

70 64.510361 104.972031 24.079147 566.965637 795.201660 227.800903

80 66.139847 105.043320 27.014130 542.181885 833.019165 228.550171

90 60.397690 102.051102 22.853165 490.756165 790.952332 216.964783

100 58.235275 99.482300 24.061478 487.946838 784.654236 277.753113
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200 50.993958 87.765839 19.032074 499.941162 718.351257 214.287476

300 42.676498 81.829880 17.979904 475.048279 661.395935 182.051758

400 39.181366 78.794769 19.305206 395.684143 631.628967 173.982910

500 38.886139 78.322372 19.142151 424.567139 620.856323 177.212585

700 39.330383 78.800720 18.575302 395.909485 588.008667 207.231689

800 35.792725 77.654556 18.034851 371.603516 588.455872 183.036926

900 37.163086 78.058197 18.178177 289.516663 586.703430 165.977966

1000 37.267654 79.255127 18.865189 346.524536 590.620300 170.834351

1100 37.228455 80.996857 18.131454 367.591431 589.110901 170.953613

1200 36.757553 80.957458 17.870361 365.499817 600.345154 167.668762

1300 34.746902 81.487320 18.794662 364.640381 598.905212 168.704651

1400 34.446793 82.537735 18.450226 390.919067 598.060852 169.524109

1500 35.866989 82.509659 18.985992 375.591675 586.466919 168.419250

1600 36.578339 85.759979 19.807602 351.313660 591.378540 168.995605

1700 34.896835 81.621765 18.174194 351.703674 582.528259 189.302795

1800 36.069214 86.715927 19.081436 332.375183 577.910950 183.593750

1900 37.250885 86.780304 20.029083 345.021484 587.742249 169.479126

2000 37.187698 86.071198 18.799179 338.162903 581.279785 172.609131

3000 37.744919 97.024033 21.855774 277.062256 575.036621 171.344788

4000 36.178024 92.465561 20.534805 306.189026 585.501221 176.184265

5000 40.679276 119.100388 25.773804 324.949402 589.270020 173.816711

6000 38.388351 99.639069 22.176895 304.445679 581.915955 181.152222

7000 38.132309 96.876007 22.152161 292.534851 600.097290 175.417725

8000 38.214355 108.072937 25.403427 339.946533 599.547180 176.765198

9000 36.935623 108.909821 24.531097 321.302551 603.796936 189.511780

10000 39.223114 119.866028 26.958588 276.689087 610.690796 181.100952

20000 60.188446 204.746689 45.162552 312.336792 677.568176 203.249756

30000 86.671738 297.759842 65.225632 339.323425 684.049561 202.993713

40000 96.772369 341.098907 73.426025 381.059265 733.146240 217.959045

50000 119.654510 426.907883 89.927399 347.972168 745.047913 224.320374

60000 149.416626 530.725815 114.130386 373.222290 816.821350 252.014221

70000 164.898178 590.698547 124.468140 377.350586 756.419128 234.156555

80000 218.093552 803.150879 164.822144 365.705505 777.217957 241.263611

90000 211.357758 761.367401 158.410721 398.687927 849.470581 249.554443

100000 235.349045 855.437714 178.042007 367.881042 848.567017 258.568542

200000 390.451416 1386.409348 306.288971 518.796448 1265.501770 386.538330
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OP2 Hydra on ARCHER2

Table B.33: OP2 Hydra single socket runtimes on ARCHER2 (Figure 3.33 runtimes in
seconds)

Dataset 1M 8M

Loop-chain iflux vflux jinit iflux vflux jinit

Runtime 123.986202 189.672642 57.442844 2064.460693 2299.738647 949.684753

Table B.34: SLOPE Hydra single socket runtimes on ARCHER2 (Figure 3.33 runtimes in
seconds)

Dataset 1M 8M

Tile Size
Loop-chain

iflux vflux jinit iflux vflux jinit

10 197.336494 313.567123 86.736122 3149.510193 3243.888733 1246.821045

20 133.657852 248.175560 61.419418 2643.987122 2825.856934 1026.038574

30 157.384033 259.829575 67.046471 2383.356262 2655.644165 941.837280

40 142.201263 240.553398 66.011147 2369.808960 2610.481018 965.908264

50 136.206932 238.269043 65.242149 2304.694214 2518.972839 951.851379

60 150.415154 244.718315 69.342049 2203.286194 2454.261902 938.880310

70 152.604813 250.327301 69.620178 2204.829895 2493.563110 940.817871

80 154.649643 246.945503 68.310127 2106.375916 2475.817322 916.775024

90 131.603722 229.924469 62.163040 2109.142517 2440.929871 882.747986

100 134.699677 235.236954 60.897675 2149.651367 2436.195129 876.452026

200 144.591415 215.027336 57.315491 1993.498474 2190.335999 794.551819

300 135.105057 192.744453 51.687546 1915.475342 2109.682190 779.093323

400 137.690933 194.532875 52.207466 1811.203552 2012.395447 750.681824

500 132.364983 191.455994 52.434166 1740.465881 1962.513977 725.481689

700 132.841805 189.472282 51.170082 1631.052124 1831.332092 685.548218

800 126.272568 183.529198 49.407120 1592.353271 1787.842224 661.343811

900 129.214211 187.626266 50.907364 1582.593811 1766.163208 653.730530

1000 115.386520 171.520142 46.311493 1551.014709 1735.447327 641.801697

1100 117.391235 175.342705 47.069397 1533.376648 1749.209656 637.213196

1200 122.603592 176.689346 49.104851 1513.080139 1722.849487 628.673828

1300 121.266258 174.820396 47.579643 1492.497253 1697.943909 620.916809

1400 123.717323 177.436668 47.589859 1457.518433 1635.105652 608.976624

1500 121.921967 175.584526 47.592834 1469.643860 1654.082397 608.366394

1600 123.045799 178.108749 48.101669 1426.782776 1618.257751 601.506226

1700 117.884094 174.942665 46.817345 1422.641663 1621.450256 594.148438

1800 123.690147 175.011345 47.844124 1418.707947 1593.676208 591.129211
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1900 122.186050 178.812866 47.592331 1389.405884 1568.904114 589.108215

2000 125.319916 183.419327 48.868225 1383.502991 1564.383240 582.061584

3000 116.379875 180.410034 48.102509 1351.400024 1546.007141 560.196472

4000 121.417763 180.597321 48.599983 1319.438782 1520.905518 545.637512

5000 118.594994 180.383217 51.141136 1310.881165 1511.309631 548.084351

6000 123.963127 176.285309 51.401131 1284.274780 1465.033142 537.757874

7000 122.607780 182.476265 53.207870 1282.660583 1457.668457 525.416016

8000 121.009560 186.268532 53.463692 1299.457642 1472.978271 527.068054

9000 114.731766 177.186325 51.902946 1292.680603 1464.800476 531.876343

10000 111.999565 182.978279 51.580605 1287.059387 1471.544067 528.750244

20000 111.279564 226.487701 59.565479 1316.202026 1615.906189 600.978882

30000 123.996704 262.635719 77.028687 1316.991516 1610.733398 628.341553

40000 136.238998 234.684586 74.271030 1383.690125 1659.044739 665.155090

50000 157.319466 240.523148 74.899483 1274.887207 1526.135010 641.848450

60000 190.696472 258.760117 79.029137 1269.557800 1454.793945 615.124939

70000 200.573273 246.445557 76.450768 1228.247742 1439.569214 603.982605

80000 255.913017 282.394257 88.111069 1246.916260 1444.042725 611.095947

90000 244.987717 250.003578 77.350609 1124.419861 1303.839844 545.593262

100000 265.879982 251.954239 78.490318 1124.895081 1307.900757 537.360474

200000 296.781174 222.206230 68.702583 831.640076 1033.874207 351.883850

Table B.35: OP2 Hydra dual socket runtimes on ARCHER2 (Figure 3.34 runtimes in seconds)

Dataset 1M 8M

Loop-chain iflux vflux jinit iflux vflux jinit

Runtime 330.913330 483.549698 158.775543 4206.099976 4799.358459 2016.226807

Table B.36: SLOPE Hydra dual socket runtimes on ARCHER2 (Figure 3.34 runtimes in
seconds)

Dataset 1M 8M

Tile Size
Loop-chain

iflux vflux jinit iflux vflux jinit

10 535.870621 598.662598 191.044968 6781.271484 6828.332520 2885.359253

20 332.429199 410.443405 127.878937 5647.601929 6050.831909 2509.407715

30 444.459167 551.112839 167.194702 5202.412231 5716.537598 2322.251099

40 395.769958 507.816589 157.550400 5155.490356 5587.999146 2374.281250

50 413.486954 526.756165 164.728683 5013.248047 5447.409058 2335.802124

60 449.147827 589.133316 178.353195 4854.680054 5344.083740 2257.328125

70 433.487137 588.425415 175.853439 4740.109863 5417.717285 2289.335938
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80 476.774292 624.518768 184.794281 4713.338501 5438.072510 2206.750366

90 348.058075 467.069489 147.691727 4704.209839 5443.615723 2186.931519

100 364.658600 482.497681 142.280838 4789.292480 5436.142578 2168.114624

200 441.246033 558.371628 156.611725 4378.978394 4656.067505 1769.830566

300 357.421371 478.693420 131.010468 4330.541992 4521.027222 1723.598877

400 395.046799 552.413162 141.499374 4053.523315 4367.587280 1646.079956

500 357.911224 496.359756 131.077576 3846.475830 4155.664307 1553.095215

700 382.570190 536.558105 138.758209 3455.767578 3879.185425 1434.619507

800 351.097580 500.351059 130.563858 3407.194336 3804.308716 1381.213928

900 366.460800 517.088806 132.100525 3292.340332 3707.071411 1353.455933

1000 322.939285 471.264694 123.372162 3239.146362 3659.856445 1345.947571

1100 322.688248 472.627060 121.878082 3212.364014 3596.536621 1313.375549

1200 321.788361 481.625015 124.895584 3142.365601 3547.388672 1282.970093

1300 331.238724 492.931671 126.561996 3140.703125 3533.443359 1284.847046

1400 345.929184 515.184372 130.996582 3084.749390 3459.455261 1253.193604

1500 344.029343 506.526016 128.084991 2998.802490 3431.746460 1240.782959

1600 337.549591 504.803268 129.032806 3003.247925 3379.809753 1221.167908

1700 337.071091 498.111816 127.996979 2983.241211 3347.098022 1212.414795

1800 342.454407 510.844528 130.037872 2967.259094 3351.786621 1207.256409

1900 347.932846 511.274628 131.159424 2974.486084 3322.058044 1201.058411

2000 329.167236 491.963455 126.457672 2869.693481 3271.166260 1174.378967

3000 316.121109 473.051437 121.102058 2821.223511 3135.558289 1120.922668

4000 343.445374 471.978424 121.289932 2764.006592 3061.336182 1090.361877

5000 340.948883 470.316147 116.258156 2739.197327 3038.557373 1073.992004

6000 352.286636 468.835266 119.744492 2746.900696 3023.345581 1073.439392

7000 347.957809 454.919434 119.760757 2721.781433 3013.649658 1064.176453

8000 348.468933 477.174911 122.538567 2675.129150 2985.896606 1059.108704

9000 312.850937 431.642868 110.446159 2669.615845 3018.427673 1066.748840

10000 297.727432 409.295944 111.302650 2653.486267 2968.921570 1059.705200

20000 302.475143 488.110229 131.763260 2693.872681 2967.045593 1087.492249

30000 333.377228 531.059677 162.409554 2458.898987 2681.209961 1030.502869

40000 348.609314 466.614975 150.853058 2172.135742 2317.156555 907.437256

50000 381.318298 473.871384 151.680717 1895.254456 1983.659668 807.814148

60000 440.049194 515.130844 160.025261 1736.673035 1788.948120 728.991455

70000 468.232666 478.278534 154.379990 1687.629089 1753.675232 722.814026

80000 584.577087 549.682144 176.386032 1623.768921 1674.896912 685.266968

90000 560.474121 482.132126 154.592903 1394.610901 1367.849731 566.834045

100000 599.614746 484.025192 155.163780 1354.224182 1327.393188 552.188110

200000 619.518814 417.862976 135.212654 1036.879639 937.083740 354.233521
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B.2 Chapter 4 Runtimes

B.2.1 MG-CFD on ARCHER2

Table B.37: MG-CFD on ARCHER2 with CA (Figure 4.8 and Figure 4.9 Runtimes in
seconds)

#Nodes #Loops
8M Mesh 24M Mesh

OP2 CA OP2 CA

1

2 2.930993 3.070072 10.720874 11.440359
4 3.729141 3.76727 13.615567 15.198768
8 5.314055 5.097041 19.446233 23.646258
16 8.487252 8.286247 31.047089 39.046114
32 14.84507 14.608413 54.202636 68.485632

4

2 0.533928 0.62771 2.523079 2.661125
4 0.617511 0.690082 3.209099 3.205468
8 0.784929 0.805743 4.57852 4.290228
16 1.103811 1.016651 7.312483 6.951929
32 1.725986 1.456325 12.803113 12.462673

16

2 0.140511 0.144029 0.464795 0.560076
4 0.166266 0.159771 0.542713 0.606314
8 0.213651 0.190464 0.680995 0.709576
16 0.311171 0.251564 0.957947 0.893476
32 0.511894 0.378806 1.529867 1.277988

64

2 0.055831 0.061244 0.139191 0.15138
4 0.061306 0.069327 0.154382 0.162465
8 0.086132 0.072372 0.199901 0.18425
16 0.116883 0.093278 0.293077 0.23541
32 0.187194 0.122697 0.505667 0.345632
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B.2.2 OP2 Hydra on ARCHER2

Table B.38: Hydra loop-chains (LCs) on ARCHER2 with CA (Figure 4.15 and Figure 4.16
Runtimes in seconds)

Loop-chain #Loops # Nodes
8M Mesh 24M Mesh

OP2 CA OP2 CA

weight 5

4 0.003632 0.003502 0.016106 0.021683
16 0.001663 0.00177 0.005264 0.009216
64 0.001663 0.00148 0.002075 0.003387
128 0.002136 0.001831 0.002014 0.002258

period 6

4 0.005638 0.005463 0.036079 0.024612
16 0.002777 0.001801 0.011307 0.008408
64 0.002594 0.001495 0.003845 0.002777
128 0.002228 0.001465 0.002808 0.001831

iflux 2

4 0.538475 0.559158 3.005577 3.043602
16 0.146362 0.15332 0.679062 0.718018
64 0.050812 0.06015 0.169861 0.17749
128 0.037903 0.045837 0.088684 0.093933

vflux 2

4 2.002327 2.184647 7.38031 8.319183
16 0.601913 0.671631 2.662613 3.149704
64 0.16037 0.161072 0.722778 0.803314
128 0.102722 0.098938 0.334167 0.373962

jacob 3

4 0.245201 0.182465 1.167717 0.831589
16 0.08873 0.084671 0.635101 0.454987
64 0.038177 0.022675 0.149994 0.122711
128 0.026886 0.017883 0.115051 0.068787

gradl 2

4 1.102699 2.66539 5.095749 11.317764
16 0.259811 1.009399 2.040604 5.251663
64 0.090149 0.36319 0.406281 1.414154
128 0.062042 0.187866 0.207031 0.751099
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B.3 Chapter 5 Runtimes

B.3.1 MG-CFD on ARCHER2

Table B.39: SLOPE MG-CFD on ARCHER2 with CA+SLOPE (Figure 5.6 and Figure 5.7
Runtimes in seconds)

#Nodes #Loops
8M Mesh 24M Mesh

OP2 CA CA+SLOPE OP2 CA CA+SLOPE

1

2 2.930993 3.070072 3.1699 10.720874 11.440359 13.28962
4 3.729141 3.76727 4.066019 13.615567 15.198768 16.943315
8 5.314055 5.097041 6.190342 19.446233 23.646258 25.889221
16 8.487252 8.286247 8.42447 31.047089 39.046114 36.816682
32 14.84507 14.608413 14.567548 54.202636 68.485632 64.280083

4

2 0.533928 0.62771 0.666905 2.523079 2.661125 2.842304
4 0.617511 0.690082 0.797093 3.209099 3.205468 3.664547
8 0.784929 0.805743 1.087776 4.57852 4.290228 5.51643
16 1.103811 1.016651 1.671237 7.312483 6.951929 8.066924
32 1.725986 1.456325 2.791609 12.803113 12.462673 14.063178

16

2 0.140511 0.144029 0.178726 0.464795 0.560076 0.602067
4 0.166266 0.159771 0.214978 0.542713 0.606314 0.722715
8 0.213651 0.190464 0.291028 0.680995 0.709576 0.979169
16 0.311171 0.251564 0.444391 0.957947 0.893476 1.445786
32 0.511894 0.378806 0.761229 1.529867 1.277988 2.407379

64

2 0.055831 0.061244 0.07155 0.139191 0.15138 0.167686
4 0.061306 0.069327 0.085915 0.154382 0.162465 0.20439
8 0.086132 0.072372 0.109746 0.199901 0.18425 0.274202
16 0.116883 0.093278 0.15648 0.293077 0.23541 0.411426
32 0.187194 0.122697 0.248331 0.505667 0.345632 0.690589
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B.3.2 OP2 Hydra on ARCHER2

Table B.40: Hydra loop-chains (LCs) on ARCHER2 with CA+SLOPE (Figure 5.9 and Fig-
ure 5.10 Runtimes in seconds)

LC #Loops # Nodes
8M Mesh 24M Mesh

OP2 CA CA+SLOPE OP2 CA CA+SLOPE

iflux 2

4 0.538475 0.559158 0.724365 3.005577 3.043602 3.532005
16 0.146362 0.15332 0.215073 0.679062 0.718018 0.86351
64 0.050812 0.06015 0.076233 0.169861 0.17749 0.223907
128 0.037903 0.045837 0.058044 0.088684 0.093933 0.120422

vflux 2

4 2.002327 2.184647 2.338379 7.38031 8.319183 8.884483
16 0.601913 0.671631 0.769852 2.662613 3.149704 3.272095
64 0.16037 0.161072 0.233521 0.722778 0.803314 0.89679
128 0.102722 0.098938 0.118958 0.334167 0.373962 0.455566

jinit 3

4 0.482712 0.505889 0.572700 1.789101 1.849808 2.022552
16 0.126160 0.131485 0.160965 0.554749 0.556625 0.636688
64 0.036804 0.040100 0.050354 0.128235 0.128296 0.148590
128 0.025818 0.025269 0.031433 0.075378 0.076294 0.088013
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B.4 Chapter 6 Runtimes

B.4.1 MG-CFD on Cirrus

Table B.41: MG-CFD on Cirrus with CA (Figure 6.1 and Figure 6.2 Runtimes in seconds)

#Nodes #Loops
8M Mesh 24M Mesh

OP2 CA OP2 CA

1

2 0.911974 0.906979 2.934365 2.894385
4 1.210799 1.226389 3.944769 3.955132
8 1.799157 1.985154 5.942899 6.439425
16 2.987328 3.830864 9.951074 12.661138
32 5.35759 9.302618 17.976473 30.081926

2

2 0.534429 0.521662 1.557592 1.527173
4 0.709469 0.669624 2.089259 2.131246
8 1.045167 1.00278 3.133208 3.631902
16 1.716853 1.762862 5.216451 7.767716
32 3.070534 3.483697 9.377847 20.497252

4

2 0.346886 0.335531 0.928538 0.897967
4 0.452898 0.413558 1.217522 1.17884
8 0.656619 0.589563 1.821676 1.866581
16 1.076307 0.971551 2.996623 3.712419
32 1.888532 1.693314 5.412619 8.9781

8

2 0.237628 0.24885 0.552221 0.547137
4 0.307161 0.274408 0.72114 0.662816
8 0.436196 0.35251 1.05518 0.959713
16 0.693798 0.510327 1.715036 1.583089
32 1.221451 0.828059 3.110476 2.905805

16

2 0.1712 0.192156 0.40924 0.461693
4 0.218904 0.199921 0.521129 0.477164
8 0.311043 0.238145 0.752973 0.604293
16 0.490245 0.327924 1.254412 0.891559
32 0.866135 0.497408 2.184823 1.45791

209



B. Runtimes of Benchmarked Applications

B.4.2 OP2 Hydra on Cirrus

Table B.42: Hydra loop-chains (LCs) on Cirrus with CA (Figure 6.7 and Figure 6.8 Runtimes
in seconds)

Loop-chain #Loops # Nodes
8M Mesh 24M Mesh

OP2 CA OP2 CA

iflux 2

2 0.520004 0.470032 2.460052 1.920059
4 0.239975 0.210037 1.300079 0.980042
8 0.22995 0.169952 0.889938 0.629776
16 0.189957 0.170013 0.52002 0.360016

vflux 2

2 2.45993 1.429947 8.770309 5.269836
4 1.519897 1.240097 6.159912 4.660034
8 1.219994 1.030029 4.480026 4.090027
16 0.929993 0.799942 4.069977 3.279984

jacob 3

2 0.379929 0.159988 0.760056 0.329956
4 0.239914 0.079987 0.590042 0.280045
8 0.150009 0.119987 0.410004 0.229996
16 0.159973 0.070007 0.410019 0.13002

gradl 2

2 1.670013 1.370056 5.499924 4.95993
4 0.960251 0.900085 3.150024 2.579941
8 0.690048 0.870026 1.709946 1.509949
16 0.360016 0.580002 1.609985 1.349899
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