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The mind is a glass floor.

The mind is the spirit’s tear.

The mind is our prior and subsequent ghost.

The mind is the Bullion Express and the blood on the tracks.

The mind is a stone door.

The silver on the backs of mirrors.

The wave that defines the coast.

It’s what the drunk grave robbers couldn’t stuff in their sacks.

The mind is the sum of all and more.

The spasm between one and zero in the Calendar of Black-Hole Years.

The contract between the lash and the whipping post.

A quilt of dreams stitched with facts.

. . .

The mind is what thought is for.

The parking lot at the Mall of Fears.

The fire-pit for the piggy roast.

What the soul surrendered and won’t take back.

The mind is neither either nor or.

The real center of an empty sphere.

— Jim Dodge, Stone Junction
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Abstract

Modern telecommunications have transformed the way that people communicate.

The situation is dynamic, with a rapidly changing technological and cultural landscape.

Furthermore, interactions between this landscape and human behaviour are complex and

difficult to predict. The work in this thesis is inspired by the general problem of describing

these systems.

We begin with an investigation into historical trends in language, finding that the

word entropy of American English has increased steadily since around 1900. We also find

differences in word entropy across media categories. These changes are explored in the

context of the attention economy, which is the dynamic of increasing competition for human

attention in response to a rising abundance of information. A model of information foraging

in the attention economy is developed to describe the trends in word entropy.

Word entropy is a property of word distributions, which follow Zipf’s law: a power

law relationship between the frequency of words and their rank in that frequency distribu-

tion. As well as word entropy, we also see trends in changes in Zipf’s law over the 20th

century. There is difficulty in investigating these trends due to bias in estimators of the Zipf

exponent. The source of this bias is explored and shown to be due to inappropriate assump-

tions in the estimators. The correct estimator is derived but found to be computationally

intractable.

Modern advances in information search and social media have been implicated in

the creation of separated silos of thought in society and the driving of dangerous political

polarisation. This is connected to confirmation bias, which is the tendency for people to

search for and consume information in a way that maintains their existing beliefs. A model

of confirmation bias is developed that is based on a boundedly rational model of belief

updating, which takes into account cognitive limitations.
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Chapter 1

Introduction

1.1 Motivation

When was the last time you looked at your phone? In the modern world we are

ever-connected, with increasing daily hours of screentime [Rideout et al., 2010] and

rising global mobile phone use [Agar, 2013]. This is all driven by recent advances

in telecommunications technology [Bawden and Robinson, 2008] that have changed

how we communicate and relate to the world [Lacohée et al., 2003], with some users

even experiencing their smartphone as an extension of the self [Park and Kaye,

2019]. But does this represent a bright beacon of human progress or are we turned-

on, plugged-in and zoned-out?

Modern communication technology provides us with many valuable bene-

fits including entertainment [Vorderer, 2001], education [Hills, 2019] and sense-

making [Hills, 2019]. But there is also a “dark side” to communication [Bawden

and Robinson, 2008; Hills, 2019] and associated negative effects including addiction

[Andreassen et al., 2016; van den Eijnden et al., 2016], anxiety [Bawden and Robin-

son, 2008; Woods and Scott, 2016; Anderson et al., 1980] and attention disorders

[Andreassen et al., 2016; Ra et al., 2018].

At the social level, communication underpins our ability to work together.

Effective communication can help us to “put our heads together” to collectively find

solutions to problems [Hargadon and Bechky, 2006]. Working together is more im-

portant than ever as we face crucial collective challenges including climate change,

global conflict and advanced artificial intelligence. But there is a dark side here

too, with negative aspects that can work to drive people apart through misinforma-

tion [Wang et al., 2019], conspiracy beliefs [Shahsavari et al., 2020], radicalisation

[Thompson, 2011], and political polarisation [Hills, 2019].
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Why would we build communication systems that do not serve us? For one

thing, it can be fundamentally difficult to predict or control these systems, made up

as they are of complex interactions between people, culture, ideas and technology.

These interactions are not static, and the situation is constantly changing and evolv-

ing. Additionally, media producers have mixed incentives that include a struggle to

capture human attention [Evans, 2020]. Understandably, human behaviour is not

necessarily well suited to flourish in this modern media environment.

Over 50 years ago Simon et al. [1971] pointed out that in the modern world

people have access to an abundance of information, in stark contrast to our ancestral

evolutionary environment where information was relatively scarce. This trend has

only continued in recent times with the advent of digital computing and the internet,

and today many of us have instant access to an incredible wealth and diversity of

information [Bawden and Robinson, 2008].

An abundance of information creates a scarcity in what information consumes

— attention [Simon et al., 1971]. Human attention is valuable and its scarcity

creates competition in what has been termed the attention economy [Goldhaber,

1997]. Money flows with attention and there is a pressure on media companies to

capture both, which is only exacerbated by ad-supported media [Evans, 2020] and

the quantification of attention [Terranova, 2012].

In this context, the motivation for the work in this thesis is to make a con-

tribution towards understanding the nature of communication in the modern world.

The hope is that a better understanding can help to avoid the negative consequences

outlined above. The greater hope is that we can build better communication systems

that work with human behaviour to improve all of our lives through better media

experiences. The even greater hope is that we can unlock human potential through

enhanced collective problem solving that can help us meet the pressing challenges

facing humanity.

1.2 Chapter Overview

If media is competing for human attention then what are the dimensions of this

competition? There is evidence that human attention is attracted to information

that is belief-consistent [Hills, 2019; Taber and Lodge, 2006], negative [Hills, 2019;

Davis and McLeod, 2003], social [Hills, 2019; Davis and McLeod, 2003], predictive

[Hills, 2019] and information dense [Itti and Baldi, 2009; Radach et al., 2003]. It is

the last of these, information density, that we will focus on in Chapter 2, “The

Rising Entropy of English in the Attention Economy”. We find evidence
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that the information density (or word entropy) of American English is rising, and

we develop a model of the attention economy to account for these trends.

Specifically, in Chapter 2 we will ask how word distributions are changing

in the attention economy. We consider 3 measures of the lexical diversity of word

distributions: word entropy, type token ratio, and Zipf exponent [Bentz et al., 2015].

However, computational measures of the Zipf exponent are biased [Hanel et al., 2017;

Corral et al., 2019; Piantadosi, 2014] and it is unclear how to account for these biases.

Chapter 3, “Bias in Zipf’s Law Estimators” investigates the source of this bias

and explores potential avenues for building better estimators.

Beyond information density, human attention is also attracted to belief-

consistent information [Hills, 2006; Taber et al., 2009; Hart et al., 2009]. This is

known as confirmation bias in the selection of sources. More generally, confirmation

bias is “the seeking or interpreting of evidence in ways that are partial to existing

beliefs, expectations, or a hypothesis in hand” [Nickerson, 1998]. Confirmation bias

has been connected to political polarisation [Del Vicario et al., 2017], which is a grow-

ing social problem that is exacerbated by modern media environments [Settle, 2018,

Chapter 4]. Chapter 4, “Confirmation Bias Emerges from an Approxima-

tion to Bayesian Reasoning”, presents a cognitive model of confirmation bias,

including an explanation for the bias for belief-consistent information.

1.3 Approach

Communication is a human problem. When thinking about human (and animal)

behaviour we can make a distinction between proximate and ultimate causes [Mayr,

1961; Laland et al., 2011]. A proximate cause answers the “how” question, or

describes the mechanisms of behaviour. An ultimate cause is concerned with the

evolutionary reason “why” a behaviour exists, or what adaptive benefit it serves. A

classic example is the migration of birds [Mayr, 1961], which can be understood both

in terms of proximate mechanisms that spur an individual bird to travel, related

to the endocrine system and the shortening length of the day; and the ultimate

evolutionary cause of the adaptive advantage found in migrating to a place with

more food available. While the distinction is useful, a full behavioural explanation

will include both proximate and ultimate causes in a complementary way.

One approach that bridges the gap between proximate and ultimate causes

is adaptive rationality. The view is that the human mind is well adapted to

efficiently solve problems that were regularly encountered by our ancestors [Hasel-

ton et al., 2009]. To put this in another way, the proximate mechanisms of human
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cognition can be understood as solutions to the ultimate goal of survival and repro-

duction in our evolutionary past. Adaptive rationality is similar to bounded ratio-

nality [Simon, 1990] and resource rationality [Lieder and Griffiths, 2020]. All share

the perspective that cognition has to work within cognitive constraints that include

limitations on information and computational resources. The ultimate evolutionary

goal of propagation of genes is influenced not only by the quality of cognition but

also it’s efficiency [Daw et al., 2008].

Adaptive rationality is connected to the idea of heuristics, which are cogni-

tive strategies that perform well while being efficient. Fundamentally, the evolution-

ary function is not on truth seeking or perfect computation but instead on survival

and propagation of genes [Friedrich, 1993]. In order to meet a specific evolutionary

challenge there may be a variety of potential cognitive and behavioural strategies.

Good heuristics have clear adaptive advantages over more computationally demand-

ing forms of cognition — they are quick, efficient and can even outperform more

complex strategies [Haselton et al., 2009; Bouskila and Blumstein, 1992].

However, heuristics might not perform as well when taken out of the environ-

ment for which they are adapted [Haselton et al., 2009]. We see this in behavioural

experiments where researchers need to be careful about overgeneralising findings in

artifical settings to behaviour in the real world [Orne, 1962]. This applies not only

to behavioural experiments but also the world at large. Behavioural adaptations

that are well adapted to the context of the ancestral evolutionary environment may

not necessarily generalise well to other contexts (such as the modern world). When

studying human behaviour from an adaptionist perpective, we can consider how

behaviour observed in the modern world might be expressions of adaptations to the

ancestral evolutionary environment.

1.4 Background

This section provides a broad overview of the relevant background to the research

presented in the thesis. Additional and more concise context is provided in each

chapter.

1.4.1 Information Foraging

Chapter 2, “The Rising Entropy of English in the Attention Economy”, asks how

people react to the rising abundance of information in the attention economy. To

shed light on this question we can turn to information foraging [Pirolli and Card,

1999], a range of models that describe how people manage, search for, and consume
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information. These models are based on food foraging models from ecology. The

justification for using these models in the context of information is that food and

information foraging are similar search problems, and that human behaviour is opti-

mised for information foraging in a similar way that animal (and human) behaviour

is optimised when foraging to food [Pirolli and Card, 1999]. This is connected to

the idea that human beings are informavores, i.e. that our adaptive success is tied

to our ability to efficiently process information [Dennett, 2008; Pinker, 2003; Pirolli

and Card, 1999]. Pirolli and Card [1999] suggested that human information forag-

ing behaviour might be an evolutionary adaptation that built on existing cognitive

mechanisms that govern food foraging. This connection was later supported by com-

parative biological studies of neural architecture controlling spatial foraging and the

cognitive control of attention [Hills, 2006; Hills et al., 2015].

In order to understand information foraging models it is helpful to first de-

scribe food foraging models. Optimal foraging theory is a range of models in ecology

that make the assumption that food foraging behaviour in animals is optimised to

maximise the rate of calorie intake (see e.g. [Stephens and Krebs, 1986]). Given

the structure of the food foraging environment, predictions can be made about the

expected behaviour of foragers, with good empirical support in a range of contexts

in animals [Werner and Mittelbach, 1981; Stephens and Krebs, 1986] and humans

[O’Connell and Hawkes, 1981; Kaplan and Hill, 2017; Smith et al., 1983; Winter-

halder, 1986]. For example, Charnov’s marginal value thoerem [Charnov, 1976]

predicts how long foragers will spend in different patches of food (e.g. a raspberry

bush) before moving on to the next patch (e.g. when all the easy to reach raspber-

ries have been harvested). Chapter 2 focuses on a different foraging model called

the prey choice model [MacArthur and Pianka, 1966], explained below.

The prey choice model asks how an optimal forager should choose which

prey items to consume [Stephens and Krebs, 1986; MacArthur and Pianka, 1966].

Each type of prey is assumed to have an expected “handling” time (how long it will

take to hunt and eat), as well as an expected utility (in the form of calories), and

an expected prevalence (how often these prey items are encountered). From these

constraints, we can derive which prey items will be included in the diet of an optimal

forager, and which prey will be ignored. The derivation (which is shown in Chapter

2) results in a “diet condition”, which states that an optimal forager will only pursue

prey with a minimum “profitability” (the expected utility of the prey divided by the

expected time to handle the prey). This can help explain animal behaviour such

as the fact that oystercatchers, a type of bird whose diet can include mussels, will

ignore small mussels (that have little meat) and also ignore large mussels (that take
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a long time to break into) but instead prefer medium sized mussels (which have

some meat and can be eaten quite quickly) — the medium sized mussels are the

most “profitable” prey [Meire and Ervynck, 1986]. Another consequence of the prey

choice model is that in an abundant prey environment the diet condition is higher,

while in a scarce environment the diet condition drops [Stephens and Krebs, 1986],

i.e. a starving oystercatcher will be less picky about its mussels.

Following a conceptual review article by Sandstrom [1994], Pirolli and Card

[1999] pioneered the use of food foraging models to describe information foraging in

human behaviour. Analogously to food foraging, a key assumption is that people

optimise their utility rate (or specifically maximise their rate of gaining valuable in-

formation). This raises a difficulty in comparision to food foraging — we can easily

quantify the calories in a prey item, it is much less clear how to measure the value of

information, which is subjective and more multidimensional. We do not necessarily

need to measure the sum total of value. Instead, we focus on information rate or

density, which can be considered one dimension of the total value of information.

And we have reason to believe that human attention will be attracted to high den-

sity information from fundamental adaptive arguments as well as behavioural eye

tracking experiments [Radach et al., 2003; Itti and Baldi, 2009]. We can measure

information density using entropy, a concept from information theory.

1.4.2 Information Theory

The central text in the field of information theory is the article “A Mathematical

Theory of Communication” by Shannon [1948], which is concerned with the engi-

neering challenge of transmitting information from a source to a receiver. Shannon

provides a definition of a quantity of information that is related to the reduction in

uncertainty that the information provides,

I “ ´logpppxqq ,

where ppxq is the prior probability of receiving the message x. This measure

has the benefit of being relatively intuitive, is independent of the coding scheme

used to transmit information and is additive. For example, if a message can have

one of 8 values then the information contained in the message is log8 (assuming each

of the values is equally likely). This can be encoded in binary as 3 symbols such

that each symbol has one of 2 possible values i.e. 0 or 1 (a binary string of length

3 has 8 possible values). The amount of information transmitted in the 3 binary

symbols is 3log2 “ log8. Relatedly, a “bit” of information is simply the information
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transmitted by 1 binary symbol, which is equivalent to the information measure

with a logarithmic base of 2. In our example a message with 8 possible values can

be conveyed with 3 bits of information.

To quantify the information density of a given coding scheme we can simply

take an expectation over the information per symbol,

H “ ´
ÿ

x

ppxqlogpppxqq .

This gives the entropy, H, a name taken from statistical mechanics (the

thermodynamic entropy is of the same form). Entropy is a deep concept with

applications to disparate fields [Pierce, 2012]. For our purposes we can think of

entropy as an information rate or density.

Finally mutual information is the amount of information shared between

two variables. More precisely, IpX,Y q is the expected reduction in uncertainty we

learn from variable X by learning the value of variable Y (or vice-versa). This is

an important concept when thinking about how to encode information into symbols

for transmission — we might want to maximise the mutual information between

the signals in the coding scheme and the message being communicated [MacKay,

2003]. In Chapter 2, “The Rising Entropy of English in the Attention Economy” we

will discuss a linguistic model by Cancho and Solé [2003] that considers the mutual

information between a) a set of objects that we want to refer to and b) the symbols

(or words) that are associated with those objects. This model is discussed further

below.

1.4.3 The Entropy of Language

Human language has many proposed functions beyond transmitting information,

not limited to facilitating thinking [Bloom and Keil, 2001] and maintaining social

relationships in large groups [Dunbar, 2004]. While human communication (and

language) is more complicated than the simple model of communication provided

by Shannon, the general mathematical constraints do apply (at least approximately).

While remembering these limitations, we can carefully apply Shannon’s theory to

language.

From an information theory perspective, language can be thought of as a

coding scheme that consists of a series of symbols (or words) which transmit infor-

mation between a sender and receiver. We can ask what is the information density

(or entropy) of words in language. The calculation of entropy (equation 1.4.2) re-

quires values for the probability of receiving each symbol, (ppxq). The probability of
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a word appearing is highly context dependent and depends on the preceding words

and paragraphs. In an engineering environment, the entropy of a source can be

calculated exactly if we know the mechanism through which the source generates

information [Shannon, 1948]. Human language is generated by cognition and we

are not able to interrogate the generative mechanism so easily (although Shannon

[1951] used a “guessing game” behavioural experiment to do just this).

Where we don’t have access to the data generating mechanism of a source,

we can estimate entropy by looking at a long enough sequence of symbols generated

by the source [Schürmann and Grassberger, 1996]. In principle, one can estimate

the probability of a word appearing given the preceding words. However, in order

for this estimator to be accurate one would need a lot of data. For example, given

the sentence “the dog barks at the ”, we can predict that the next word is likely

to be “noise” or “postman” or “cat”. But in order to give reliable estimates for

these probabilities we would need to find many examples of sentences of this exact

format, which would require a very large amount of text. And this only considers

the context of the preceding 5 words. Language is more complicated and has long-

range correlations between words [Ebeling and Pöschel, 1994]. For example, if the

word “post” was mentioned over 100 words ago in the preceding paragraph then we

might predict that it is more likely that “the dog barks at the postman”.

While we may not be able to accurately estimate the actual entropy of a

word, we can use maximum likelihood to estimate a N-gram entropy by taking

into account a limited window of previous words and counting the frequencies of a

word appearing given the context in the window [Shannon, 1951]. The 1-gram or

unigram word entropy considers no context and simply estimates the probabilities

of words based on their total observed frequencies in a text sample. The bigram

word entropy takes into account one word of context (so a window of two words in

total). The trigam word entropy considers a window of three words, and so on. As

more words are considered the amount of text that is needed for accurate estimates

rises significantly.

In Chapter 2, “The Rising Entropy of English in the Attention Economy”, we

use the maximum likelihood estimator for the unigram word entropy. The argument

for using this estimator is that it correlates with the experienced level of novelty

or repetition by a reader. Additionally, it is difficult to find lots of very large

text samples, especially when looking at historical trends. In Chapter 2 we used

text samples of N “ 2000 words, and the estimators of higher N-grams have little

meaning with text samples of this size.
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1.4.4 Zipf’s Law

Unigram word entropy is a measure on the word distribution of natural language.

In Chapter 2 we also estimate 2 alternate measures: Zipf exponent and type token

ratio. Zipf’s law describes the empirical relationship of a power law between the

frequency (number of occurrences) of words f in natural language and the empirical

rank of those words in the frequency distribution re,

fpreq9r´αe . (1.1)

The Zipf exponent, α, is usually around 1 although does vary across text

samples [Ferrer i. Cancho, 2005; Montemurro and Zanette, 2002]. We investigate

this variation in Chapter 2.

A reasonable question to ask is why Zipf’s law appears: what is the underly-

ing process from which this statistical pattern emerges? Power laws can emerge from

a variety of different processes including e.g. preferential attachment, phase tran-

sitions, combinations of exponentials [Newman, 2005], and fractals [Brown et al.,

2002]. Accordingly a variety of explanations have been proposed for Zipf’s law [Pi-

antadosi, 2014]. At one extreme we have very simple but unrealistic models of Zipf’s

law such as random typing of letters and spaces to form words [Miller, 1957]. In

random typing longer words are less likely to appear than short words and the word

distribution forms a power law (this process can also be described by a fractal prob-

ability tree [Mandelbrot, 1982]). Zipf [1949] put forward the idea that the pattern

emerges from the principle of least effort and the aim of communicating with the

least amount of work.

The principle of least effort was expanded on more recently [Cancho and

Solé, 2003] in a way that incorporates information theory to balance the preferences

of speakers and listeners. In this study it is argued that listeners prefer highly in-

formative messages while speakers prefer messages with low entropy because they

require less effort to generate. The authors use a model that considers a vocabulary

of symbols that can be assigned to refer to a set of objects. Through simulation they

assign these symbols in a way that simultaneously a) maximises the mutual infor-

mation between the objects and signals and b) minimises the entropy of the signals.

They found that when these two objective functions are more or less balanced there

is a phase transition and a power law in the signal frequency distribution emerges,

just as in Zipf’s law. Chapter 2 borrows the assumption that listeners prefer highly

informative messages, and connects this idea to information foraging models.
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1.4.5 Zipf’s Law Estimators

If we take logarithms of Zipf’s law (Equation 1.1), we find a linear relationship,

logfpreq “ ´αlogpreq ` logC , (1.2)

where C is a constant. If we plot this relationship on a log-log graph then we

will find a straight line. Given some data, one approach to fit the Zipf exponent, α,

is to first log transform the data and then use ordinary least squares regression to

find an estimator for the exponent. However, the assumptions underpinning linear

regression do not apply in this case [Clauset et al., 2009]. Specifically, homoscedas-

ticity is unlikely to apply to the errors in the dependent variable following a log

transformation. For example, if errors are Gaussian in linear space, they are no

longer Gaussian in log space and this assumption no longer holds. As such, ordi-

nary least squares regression of power laws can involve large errors in estimates of

the power law exponent [Clauset et al., 2009].

An alternative method to fitting power laws involves maximum likelihood

estimation [Clauset et al., 2009]. This overcomes the problems relating to the inap-

propriate assumptions in ordinary least squares regression. However, the power law

estimators also make inappropriate assumptions and have been shown to be biased

in the case of Zipf’s law [Hanel et al., 2017; Corral et al., 2019]. Specifically, the

estimator given by Clauset et al. [2009] assumes that errors in the dependent and

independent variable are independent. However, in Zipf’s law the power law is be-

tween the frequency of words and the rank of words in that frequency distribution. If

a word is randomly oversampled and has a higher than expected empirical frequency,

it can also move up the empirical frequency ranking, i.e. errors in the frequency

and frequency-rank are correlated. This introduces a bias, which is investigated

thoroughly in Chapter 3, “Bias in Zipf’s Law Estimators”.

1.4.6 Beliefs

While information theory is one perspective on human language, it doesn’t capture

meaning [Shannon, 1948]. Human beings have beliefs that are updated as we receive

data about the world through sensory information and communication [L Griffiths

et al., 2008]. A common approach to modelling inference behaviour is Bayesian

probability theory. Bayes theroem provides the “rational” approach to updating

beliefs about whether some hypothesis is true, P pHq, given data, D,

P pH|Dq “
P pD|HqP pHq

P pDq
. (1.3)
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Bayesian updating of beliefs given data is optimal for a rational agent (see

e.g. L Griffiths et al. [2008]). We can therefore use this model as a starting point for

how we might expect people to make inferences, considering the assumption that

historical adaptive pressures drove human cognition towards optimal behaviours

[Haselton et al., 2009].

The formalisation in equation 1.3 considers just one belief (or hypothesis)

about the world. However, people have lots of beliefs about the world and it is

rational to take multiple beliefs into account when making inferences from data

[Gershman, 2019]. The canonical example is that if a scientist detects faster than

light travel then they might question their beliefs in the quality of their measuring

instruments before questioning their belief in the lightspeed limit.

Questioning the validity of measurements is a way of “explaining away” data

that is inconsistent with an existing set of beliefs. More generally, people can ques-

tion the reliability of a source of information. There is evidence that people do

hold beliefs about source reliability [Mahoney, 1977; Liberman and Chaiken, 1992;

Taber and Lodge, 2006; Lord et al., 1979]. Source reliability, or other beliefs, can be

incorporated into Bayes theorem [Merdes et al., 2020; Hahn et al., 2018]. And the

interactions between beliefs can be captured by Bayesian networks [Pearl, 2009].

One problem with Bayesian networks as models of human cognition is that

the computation of inference in such situations can become intractable [Cooper,

1990]. That is, the computation required to calculate probabilities given data be-

comes infeasible due to taking too long or using up too much memory space. As

such, when modelling human inference it is reasonable to take an adaptive ratio-

nality approach [Haselton et al., 2009] and take into account cognitive limitations.

Specifically, models should consider how human cognition can efficiently approxi-

mate otherwise computationally intractable inferences [Daw et al., 2008]. This is

the approach taken in Chapter 4, “Confirmation Bias Emerges from an Approxima-

tion to Bayesian Reasoning”.

1.4.7 Summary

In summary, the chapters in the thesis all relate to research problems encountered

when asking how human behavior interacts with modern communication systems.

The main approach to modelling human behaviour is adaptive rationality, which

assumes that human cognition tends towards rationality, although limited by cogni-

tive constraints. The chapters that follow were published as academic articles and

they retain that structure, which is a suitable way to present the work. This in-

cludes abstracts, introductions, discussions and supplementary information for each
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chapter. Chapter 5, “Discussion”, summarises and brings together the results of the

main content chapters, and explores possible future work.
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Chapter 2

The Rising Entropy of English

in the Attention Economy

2.1 Abstract

We present evidence that the word entropy of American English has been rising

steadily since around 1900, contrary to predictions from existing sociolinguistic the-

ories. We also find differences in word entropy between media categories, with

short-form media such as news and magazines having higher entropy than long-

form media, and social media feeds having higher entropy still. To explain these

results we develop an ecological model of the attention economy that combines ideas

from Zipf’s law and information foraging. In this model, media consumers maximize

information utility rate taking into account the costs of information search, while

media producers adapt to technologies that reduce search costs, driving them to

generate higher entropy content in increasingly shorter formats.

2.2 Introduction

Word entropy is a measure of the amount of repetition (low entropy) or novelty

(high entropy) in word distributions. Empirical word distributions typically follow

Zipf’s law, which describes a power law between a word’s observed frequency and

that word’s rank in the frequency distribution [Zipf, 1949]. This empirical power

law is remarkably stable with an exponent around 1 [Bentz et al., 2015; Baixeries

et al., 2013; Ferrer i. Cancho, 2005]. The stability of Zipf’s law suggests some under-

lying mechanism, and Zipf himself hypothesised a principle of least effort between

speakers and listeners. More recently this principle has been expanded to show that
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power laws in word distributions can emerge from a balance between maximising

the benefits of receiving highly informative messages (preferred by listeners) and

minimising the costs of generating high word entropy text (preferred by speakers)

[Ferrer i. Cancho, 2005].

In recent times this balance between the efforts of listeners and speakers has

changed. Modern communication systems have transformed the way that we share

and consume information, in particular by increasing the accessibility of information

[Hills, 2019]. In the words of Herbert Simon this creates a “poverty of attention”

[Simon et al., 1971], such that media producers must compete for the limited re-

source of human attention [Evans, 2020; Ciampaglia et al., 2015; Terranova, 2012].

This dynamic has been called the attention economy, a combination of forces influ-

encing the production and consumption of information, with consequences including

a shortening collective attention span [Lorenz-Spreen et al., 2019]. If information

adapts to the balance between the preferences of media producers and consumers,

then increased competition for attention tips the balance toward the preferences of

the consumers. That is, information markets (the distribution of available content)

should rise in information density, and specifically, entropy.

We can envision this adaptive process in terms of information foraging [Pirolli

and Card, 1999; Sandstrom, 1994]. Information foraging describes how people search

for and consume information in different environments, including web browsing

[Pirolli, 2009b] software debugging [Lawrance et al., 2010a,b; Piorkowski et al., 2013],

and the design of information and social environments [Pirolli, 2009b; Piorkowski

et al., 2013; Bhowmik et al., 2015]. The basic rationale of this approach is borrowed

from ecological models of foraging, which have been shown to be appropriate to a

wide range of search problems ranging from spatial foraging to cultural evolution

[Hills et al., 2015]. Indeed, handling the exploration versus exploitation trade-off

that is common to all of these environments has been proposed to be a defining

selective force in the evolution of cognition [Hills, 2006; Todd and Hills, 2020].

In what follows, we first investigate the evolution of information across a wide

variety of media sources over the last two centuries, a time marked by increasing

media competition. We show how this reveals a characteristic pattern of rising

entropy that affects different categories of media in different ways (e.g., books versus

news versus social media). We then create a model of the attention economy that

expands on existing models of information foraging to incorporate competition for

human attention between media producers. This model explains both the general

increase in word entropy and the differences in word entropy across categories.
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2.3 Materials and Methods

Text Corpora

To investigate the recent history of information evolution we examine a va-

riety of text corpora. The Corpus of Historical American English (COHA) [Davies,

2012] has 116, 614 texts spanning the 1810s to 2000s, balanced between categories

of fiction (n “ 11, 010), non-fiction (n “ 2, 635), news (n “ 41, 677) and magazines

(n “ 61, 292). The Corpus of Contemporary American English (COCA) has over

150,000 texts from between 1990 to 2008 split between fiction, popular magazines,

newspapers, academic journals and spoken word [Davies, 2009]. For our analysis

we used a publicly available sample of COCA with 2, 362 texts split between cat-

egories of fiction (n “ 275), academic journals (n “ 266), news (n “ 872) and

magazines (n “ 949). The British National Corpus (BNC) contains 8, 098 texts

from between 1960 and 1993 including written categories of fiction (n “ 904), aca-

demic prose (n “ 994), newspapers (n “ 972), non-academic prose and biography,

other published materials and unpublished materials [Burnard, 2007]. Fiction and

newspapers are common categories across the corpora. Magazines are a common

category between COHA and COCA. We grouped as non-fiction the categories of

COHA non-fiction, COCA academic journals and BNC academic prose.

The text sample data was cleaned before analysis in a standard way [Gerlach

and Font-Clos, 2020]. COHA and COCA are similar formats and so followed the

same procedure. For both:

• Stripped any headers not a part of the main chapter text samples.

• Removed any XML text tags.

• Removed any sentences that contained “@” symbols. COHA and COCA ran-

domly replace words with @ symbol in groups of ten for copyright reasons

[Rudnicka, 2018].

• Removed apostrophes and extra whitespace.

• Used python’s natural language toolkit (nltk) package to convert text to tokens

[Bird et al., 2009].

• Selected the last 2000 tokens (words) of the text sample for processing. This

avoids, as much as possible, anomalous text that sometimes appears at the

start of text samples such as a contents section.
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For the BNC data, python’s natural language toolkit package comes with a

BNC corpus reader [Bird et al., 2009], which was used to extract tokens. The only

other treatment was to remove extra whitespace and apostrophes as with COCA

and COHA.

The cleaned datasets had the following surviving sample counts with N ě

2000 words:

• COHA total n “ 22, 253. Fiction n “ 8, 164, non-fiction n “ 2, 046, news

n “ 725, magazines n “ 11, 318.

• COCA total n “ 985. Fiction n “ 167, non-fiction n “ 166, news n “ 39,

magazines n “ 133.

• BNC total n “ 1, 319. Fiction n “ 447, non-fiction n “ 477, news n “ 395.

The COHA dataset was analysed as a timeseries, so requires a large number

of samples. The BNC and COCA, being corpora from much narrower time ranges,

were analysed as distributions and as such require less samples.

Social Media Data

We also investigated social media. The Twitter dataset consisted of 1.6

million tweets scraped from the twitter API between April and June 2009 [Go et al.,

2009] and available online at https://www.kaggle.com/kazanova/sentiment140. To

simulate a Twitter feed the tweets were chronologically collated to create n “ 1000

text samples with N ě 2000 words each.

For Reddit, we aimed to capture text samples that were representative of the

text a user would see when visiting the site. To achieve this we used Reddit’s API to

download posts from the Reddit homepage feed at https://oauth.reddit.com/.json.

Following Reddit’s API rules, we first registered an app and all requests were au-

thenticated with OAuth2. We downloaded 10,000 posts in JSON format in this

way. We extracted the text from the posts and combined them to create n “ 90

text samples with length N ě 2000 words each. During processing we found a small

number of non-English posts in the feed, which were removed.

The social media data was then cleaned:

• Removed apostrophes and extra whitespace.

• Removed any urls.

• Removed hashtags and usernames i.e. any words containing “@” or “#”.
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• Used python’s natural language toolkit (nltk) package [Bird et al., 2009] to

convert the collated samples into a list of tokens, and the last 2000 tokens

taken.

Social media statuses are by nature short and are usually much smaller than

N “ 2000 words, and lexical measures of short text samples have little meaning.

Our analysis is on the level of the social media feed and we generated large text

samples through the collation of posts. This kind of collation will naturally create

text samples with high lexical diversity. This isn’t a flawed analysis — the high

information density of a social media feed is related to the collation of statuses and

how people actually consume social media.

Measures of information evolution

Information evolution is measured using unigram word entropy. For robust-

ness we also analysed the type token ratio and Zipf exponent of text samples, which

are also measures of lexical diversity [Bentz et al., 2015]. The lexical measures are

all sensitive to sample size, so we used truncated text samples to N “ 2000 words.

Empirical unigram word entropy, H1, is a function of the relative frequencies

of each word, fi, summed over the set of W unique words in the text sample. We use

the maximum likelihood or plug-in estimator, which has the benefit of being simple

and well known. And it has been shown to correlate well with more advanced

estimators [Bentz et al., 2017].

H1 “ ´

W
ÿ

i“1

filog2fi . (2.1)

Type token ratio (TTR) is the number of unique words (types) divided by

the total words (tokens) in a text sample.

TTR “
#types

#tokens
. (2.2)

Words in natural language are typically approximately distributed as a power

law distribution between type frequency, fi, and type rank in that frequency dis-

tribution, rpfiq [Clauset et al., 2009]. This power law is parameterised by the Zipf

exponent, α, which describes the steepness of the distribution in log space. Maxi-

mum likelihood estimation was used to estimate the Zipf exponent [Clauset et al.,

2009]. This estimator has the benefit of being widely used and well known. It shows

bias (as do all Zipf estimators [Pilgrim and Hills, 2020]), but the bias is systematic

so can be ignored for the purpose of comparision of text samples.
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fi9rpfiq
´α . (2.3)

Each of the measures were applied once to the same set of distinct text

samples.

Timeseries Breakpoint Analysis

The Corpus of Historical American English (COHA) provides historical text

samples across fiction, non-fiction, news and magazines categories. The type token

ratio, word entropy and Zipf exponent were calculated for each text sample with

over 2000 words.

For each media category and lexical measure, the results were binned into

years and the median taken each year. The median was used to reduce the effect of

outliers (similar results were found when using the mean). These were plotted on a

scatterplot (see Supplementary Information).

Visually, the scatterplots are suggestive of some change in the gradient of

the lexical measure in time. In order to estimate the location of these breakpoints,

we used python’s piecewise-regression package [Pilgrim, 2021] with default settings.

The regression fits and locations of breakpoints are shown in the scatterplots in the

Supplementary Information.

We ran a similar analysis with the categories combined. In order to combine

the categories, we first took means for each year and category and then took the

mean across categories for each year. It is more natural to use means than medians

when combining categories, and the influence of outliers is smaller as there is more

data than in the individual categories. The scatterplot and piecewise-regression fit

for the combined word entropy is shown in the Supplementary Information.

Timeseries Trend Analysis

For each category and lexical measure, trend analyses were carried out on

the annual median values. This was done between the years 1900 and 2009 (the last

year of data). KPSS and MK tests were carried out for each measure and media

category in COHA (full results in Supplementary Information).

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test assumes the null hy-

pothesis of a stationary timeseries. p-values below 0.05 mean that we can reject this

hypothesis at 5% significance and provide evidence of a trend. The test was applied

using python’s statsmodels package [Seabold and Perktold, 2010].

The Mann-Kendall (MK) test is a non-parametric trend test [Hussain and

Mahmud, 2019]. The test assumes no serial correlation i.e. errors in one observa-

tion do not predict errors in other observations [Hussain and Mahmud, 2019]. The

text corpora are constructed from independent text samples so this is a reasonable
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assumption. The null hypothesis is that the data has no trend, and the p-value

tells us the probabilty that the data was observed under the null hypothesis. At 5%

significance we reject the null hypothesis if p ă 0.05. The test was carried out using

python’s pymannkendall package [Hussain and Mahmud, 2019]

In the Supplementary Information we calcaulte Pearson’s R between maga-

zine circulation and word entropy.

Timeseries Smoothing

While we included scatterplots for annual binned data in the Supplementary

Information, the trends are easier to see visually with a smoothed timeseries. For

Figures 2.2 and 2.3 the timeseries was smoothed using a moving average with mea-

sures of text samples from ˘ 5 years. The 95% confidence interval was calculated as

the standard error of this mean calculation multiplied by 1.96 (assuming normally

distributed errors). For each lexical measure, the mean was plotted for each year

with the confidence interval region shaded. We only included years where we had a

minimum of 10 data points within the window.

We report the smoothed timeseries for each of the COHA text categories, as

well as the categories combined. The timeseries for media categories were combined

by taking an average across the timeseries annual means for the media categories

that had a value for that year. The 95% confidence interval was again calculated as

1.96 times the standard error. For each year, the standard error of the estimate of

the mean, SEX̄ was computed based on the delta method,

SEX̄ “

b

řn
i“1 SE

2
i

n
, (2.4)

with n depending on how many media categories had values for the annual

mean each year.

Differences Between Media Categories

We looked at the distributions of the lexical measures within media categories

in COCA, the BNC and COHA (restricted to 2000-2007 to avoid the effect of his-

torical changes). To test for differences between the groups we carried out ANOVA

tests across categories within each corpora separately for each of the lexical mea-

sures. At 5% significance, p ă 0.05 provides evidence that the media categories are

drawn from different underlying population distributions. The tests were carried

out using python’s statsmodels package [Seabold and Perktold, 2010]

For visualisation, the distributions of word entropy for each media category

are shown as a kernel density estimate with the bandwidth determined by the Scott

rule and the density trimmed to the data range.
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US Magazine Circulation

The data for magazine circulation numbers (reported in the Supplementary

Information) were taken from Sumner’s “The Magazine Century American Maga-

zines Since 1900” [Sumner, 2010] Chapter 1, which are attributed to data originally

from the Audit Bureau of Circulation. This data source does not track all US mag-

azines, but does track well-known magazines. The data was plotted without further

treatment.

2.4 Results

2.4.1 The Rising Entropy of American English

We analysed the Corpus of Historical American English (COHA), a balanced corpus

with text samples from the 1810s to the 2000s categorised into news, magazines,

fiction and non-fiction [Davies, 2012]. As discussed in the Methods section, we

analysed text samples truncated to N “ 2000 words. We found a clear trend of

rising lexical diversity since approximately 1900 as measured by word entropy, type

token ratio and Zipf exponent (Figure 2.1).

The trends in separate media categories follow the same pattern of rising lex-

ical diversity as measured by word entropy (Figure 2.2). We analysed the timeseries

of annual averages since 1900 for each media category (fiction, non-fiction, news,

magazines) and lexical measure (word entropy, Zipf exponent, type token ratio) us-

ing Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and Mann-Kendall (MK) tests on

the annual median values (using the annual mean gives similar results). This gives

a total of 4ˆ3ˆ2 “ 24 trend tests. All 24 tests show significant evidence of a trend

at p ă 0.05 And 22 out of 24 tests show significant evidence of trends at p ă 0.01

(the tests for a trend in type token ratio in non-fiction had KPSS p “ 0.015 and

MK p “ 0.013). Overall there is very strong evidence for a trend of rising lexical di-

versity in all media categories between 1900 and 2010. For full results and a deeper

analysis, see the Supplementary Information.

2.4.2 Higher Entropy in Short-form Media

The historical trend (Figure 2.2) suggests modern differences in entropy between

media categories. However, we also know that short-form media has become es-

pecially prominent with the recent rise of online platforms for media distribution,

such as social media, RSS feeds, and news platforms that present short headlines

and snippets that link to long-form articles. To investigate these different media
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Figure 2.1: Lexical diversity of text samples in the Corpus of Historical American
English as measured by a) word entropy, b) type token ratio and c) Zipf exponent.
Timeseries are smoothed with a moving average window of ˘ 5 years, and averaged
over media categories. Shaded region shows 95% confidence interval of this average.

categories, we examined the Corpus of Contemporary American English (COCA)

and the British National Corpus (BNC), as well as social media data from Twit-

ter and Reddit. Figure 2.3 shows the distribution of word entropy across different

media categories. Within COHA (limited to 2000-2007), BNC, and COCA there

were significant differences in all lexical measures across media categories (ANOVA

tests p ă 0.01). Full statistical results are in the Supplementary Information. Over-

all, short-form media categories of news and magazines have higher entropy than

long-form media, and social media feeds have the highest entropy of all.

It should be noted that when analysing social media data we collated posts

to create text samples with N “ 2000 words, to match the length of the other media

type analyses. Combining posts will naturally lead to high entropy text, with fast

switching of contexts and high novelty. This mirrors how people actually consume

social media. Essentially, social media platforms generate high entropy information

environments in the form of feeds of short messages from different users. This is not
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Figure 2.2: Timeseries of word entropy across media categories in the Corpus of
Historical American English. For each media category, the timeseries was smoothed
using an average over a window of ˘ 5 years. The shaded regions are 95% confidence
intervals of this average. All media categories show an upward trend in word entropy
from 1900.

necessarily a linguistic change in how people generate English; it is a change in how

people consume English text.

2.4.3 Information Foraging in the Attention Economy

The results are suggestive of a link between competition for attention and word

entropy. To explain these results we generate a model of the attention economy

based on information foraging. Foraging models relate the consumption of informa-

tion items with some utility gain to the forager. To bridge utility rates to lexical

measures, we borrow the idea of information signal entropy from Shannon [Shan-

non, 1948]: the entropy of a source of information is a function of the probability

of seeing each symbol given the preceding symbols. For our purposes entropy can

be thought of as a rate of information. If information foragers gain utility from

information then, by definition, an increase in entropy, H, is associated with an
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Figure 2.3: Word entropy of very short-form (social) media, short-form (news and
magazines) and long-form (fiction and non-fiction) media. For each media category,
distributions are kernel density estimates cut to the data range, with quartile posi-
tions shown. The COHA data was restricted to 2000-2007 to minimise the effect of
historical changes.

increase in utility rate, r. This aligns with Zipf’s principle of least effort [Zipf, 1949;

Ferrer i. Cancho, 2005].

H9r . (2.5)

Animal foragers modulate the selectivity of their diet in response to the

environment, becoming more selective in times of abundance [Stephens and Krebs,

1986]. Why waste energy hunting difficult prey when there are plenty of easy calories

around? Humans act in the same way when selecting information to consume [Pirolli

and Card, 1999; Simon, 1969]. We have all experienced situations where we do not

have access to the internet, for example on a plane or train journey, and we become

less selective in what we read or watch.

This characterisation of attention corresponds to the prey choice model,
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which describes which types of prey are worth pursuing and consuming [Stephens

and Krebs, 1986]. And this has been applied to information foraging before [Pirolli

and Card, 1999]. The derivation of the prey model followed here is exactly analogous

to that found in the prey choice model in food foraging. Our contribution will come

at the end of this section, where we extend the model to include media competition

for attention.

Assume an information forager searches a media environment and encounters

information of types, i, at Poisson rates λi. If consumed, information provides a

benefit ui in a handling time ti, during which time the forager is not searching.

Alternatively, the forager can choose to ignore information of a certain type and

keep searching. The forager’s choices to consume or ignore information determine

the expected total time spent searching, Ts, and handling, Th, information, as well

as the total utility gain, U . Given these constraints, the forager aims to optimise

the expected overall rate of utility of foraging given by

Rmedia “
U

Ts ` Th
. (2.6)

Here media describes the forager’s local environment, such as a media plat-

form. Media platforms are analogous to foraging patches in optimal foraging theory.

The forager’s choices of which information types to consume can be described as

an information diet, D. The total expected utility is U “
ř

D λiuiTs. Similarly the

total expected handling time is Th “
ř

D λitiTs. Substituting in and cancelling Ts,

we can write the expected utility rate given a diet

Rmedia “

ř

D λiui
1 `

ř

D λiti
. (2.7)

Consuming an information item carries an expected opportunity cost of not

spending that item’s handling time looking for other items, equal to tiRmedia, and

an expected utility gain of ui. To maximise expected utility rate a forager should

therefore consume the item if the item utility rate, ri “
ui
ti
, is greater than the

overall media platform utility rate, Rmedia,

ri ě Rmedia . (2.8)

This diet threshold condition is a familiar result from foraging theory [Stephens

and Krebs, 1986; MacArthur and Pianka, 1966; Pirolli and Card, 1999]. To find the

optimal diet, item types can be ranked in order of ri and added to the diet one by

one until this inequality fails [MacArthur and Pianka, 1966]. See the Supplementary
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Information for a more thorough derivation.

We can now ask which information types a forager should include in their

diet, D, to maximise their expected overall utility rate as a consequence of rising

information prevalence, here λi. For items with ri ă Rmedia, increasing prevalence

has no effect as these items are still not included in the diet. For items with ri ě

Rmedia, increasing prevalence will mean more time spent handling these items and

less time spent searching, so the overall media platform utility rate will increase,

BRmedia

Bλi
ě 0 @i . (2.9)

Combining this with the information diet criterion (Inequality 2.8), increas-

ing information prevalence increases the information utility rate required for diet

inclusion: foragers become more selective when prey (or information) is abundant,

analogous to the prey model in optimal foraging theory [Stephens and Krebs, 1986].

We now extend traditional foraging theory to information co-evolution by

asking how media producers respond to increasing selectivity among information

foragers. By assuming there is some cost to media of producing more informative

messages — a standard assumption underlying Zipf’s principle of least effort [i Can-

cho and Solé, 2003; Zipf, 1949] — we conclude that an abundance of information

creates an adaptive pressure that drives media producers to create information with

a higher utility rate. A proxy for utility rate is information density, or word entropy.

Figure 2.4 shows a simple simulation of this dynamic.

2.4.4 Competition Between Media Platforms Drives Differences

Between Short- and Long-form Media

Information is distributed in media platforms (e.g., newspapers, magazines, books,

Twitter, Reddit). The forager has to choose not only which information to consume

within a media platform, but also which media platforms to visit. Analogous to the

information choice model (Equation 2.8): an optimal information forager will visit

a media platform if the expected media utility rate is greater than the background

utility rate from foraging in the overall environment (see Supplementary Information

for the full model),

Rmedia ě Renv . (2.10)

The utility rate of a media platform, Rmedia, is a summation over Poisson

processes (Equation 2.7). To simplify this, let ūm be the average utility of informa-

tion items consumed in the media platform, t̄m the average time spent consuming
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Figure 2.4: Simulation of information foraging in the attention economy. Informa-
tion items are generated with random utility rates in quantities proportional to the
information prevalence. Given the information environment, foragers only consume
information items above a minimum information density (blue markers) in order to
maximise their foraging rate. Information that is not consumed has less chance of
survival (grey markers). Overall the surviving information types have higher utility
rates at higher information prevalence.

information items, and λm the rate of encounter of any item in the diet. Equation

2.7 then becomes a variation of Holling’s disc equation [Holling, 1959] (full derivation

in Supplementary Information)

Rmedia “
λmūm

1 ` λmt̄m
. (2.11)

This equation is visualised in Figure 2.5 a.

The criteria for inclusion in an information forager’s diet is then

1

λmūm
`

1

r̄m
ď

1

Renv
. (2.12)

The inclusion of a media platform in the information diet is therefore deter-
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Figure 2.5: The media patch model. a) The expected utility rate of a media patch
(dashed line) is determined by the time spent searching for (horizontal solid line)
and consuming (diagonal solid line) information items. b) In a low prevalence envi-
ronment long-form media has an advantage, although at low prevalence foragers are
not very selective. c) At high prevalence less time is spent searching between item
acquisition. To reach the same overall patch utility rate (dotted grey line), short-
form media needs a higher information utility rate (gradient of the solid diagonal
red line) than long-form media (gradient of the solid diagonal blue line).

mined by three properties of the information items that it contains and which would

be included in the forager’s information diet: the average utility (i.e. size) of a item,

ūm; the average item utility rate, r̄m; and the prevalence of items within the media

platform, λm.

Short-form media platforms such as news and magazines involve more time

spent switching (and searching for) articles than long-form media platforms such as

books. In order to reach the same overall media platform utility rate, Rmedia, short

form media types need to have higher information utility rates (Figure 2.5 c). This

creates a differential selective pressure on short- and long-form media producers.

Given some Renv, the short-form media platform needs higher average information

utility rates, r̄m, to be accepted in the forager’s diet than the long-form media.

The long-form media experiences a relaxed selective pressure on information utility

rates because there is less time spent switching in these media platforms. This can

describe the differences in the observed information utility rates in short- and long-

form media as well as the trend towards increased information rates with increasing

media prevalence.
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2.4.5 Social Media

Inequality 2.12 includes a weaker condition for diet inclusion, 1
λmūm

ď 1
Renv

. This

indicates that information prevalence directly limits the minimal average size of

information for diet inclusion. As information prevalence increases, foragers will

tolerate media platforms with smaller and smaller information item sizes (Figure

2.6). More intuitively, Twitter only works in a world with instant messages — few

people would go to a library in order to check out a single Tweet.

Figure 2.6: Minimum average information size, umin, for media platform diet inclu-
sion for varying levels of information prevalence, λm. Increasing average information
utility rates, r̄m, can increase this limit only to a point. Very short-form media plat-
forms like social media can only capture attention in a world with high information
prevalence.

Finally, our model quantifies the selective forces acting to make media plat-

forms more accessible. If a media platform reduces the expected search time between

information encounters, 1
λm

, then they reduce the left hand side of Inequality 2.12

and become more competitive. This asymmetrically effects utility for short-form

media, 1
λmūm

; for long-form media this term is already small. This could be an

explanation for innovations towards minimising time spent searching in short-form

media platforms such as infinite scroll and autoplay videos.
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2.5 Discussion

We provide evidence that the word entropy of American English has increased over

the 20th century. Furthermore, this change is marked by differences across different

media categories, with the highest entropy levels found in the shortest media forms.

Using a model of the attention economy based on information foraging, we show

how a simple model of information selection can drive the observed changes. The

attention economy model explains two results: a rise in entropy as information

becomes more abundant and a rise in preferences for information dense short-form

media.

Our findings offer an interesting contrast to the Linguistic Niche Hypothesis

[Lupyan and Dale, 2010], which predicts a loss of complex morphological forms in

English due to the influence of second language learners. There is ample evidence

that English is undergoing morphological simplification [Michel et al., 2011; Lieber-

man et al., 2007; Zhu and Lei, 2018], and we might expect this to be associated with

a decrease in word entropy (further explored in the Supplementary Information).

Our findings show the opposite. Our claim is that the pressure towards information

density overcomes the effect of reduced word entropy through linguistic simplifica-

tion. However it may be that a reduction in morphological complexity and a rise

in information entropy are related — in attention markets people may be attracted

to both simplicity [Hills and Adelman, 2015] and novelty. Specifically, a loss in

morphological complexity may be driven by a pressure towards simplicity and a

reduction in the repetition of more difficult to process linguistic forms. That is, the

features of the attention economy that drive rising entropy may also drive reduced

morphological complexity.

Language evolution has been shown to follow a number of principles governed

by human psychology. These principles have, for example, included features of bi-

ological and cultural evolution [Smith and Kirby, 2008; Christiansen and Chater,

2008], learning [Hills and Adelman, 2015; Christiansen and Chater, 2008; Lupyan

and Dale, 2010], cooling by expansion [Petersen et al., 2012], word formation and

distribution [i Cancho and Solé, 2003], and the decay of morphological complexity

[Lupyan and Dale, 2010; Lieberman et al., 2007]. Our results extend the psycholog-

ical consequences on language evolution to word entropy in response to information

abundance.

Considering people as information foragers, our model describes observed

empirical changes in word entropy of English over time and both within and be-

tween media categories in response to increasing information abundance. Empirical
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findings support the idea that people’s attention is attracted to high entropy and

high complexity information [Itti and Baldi, 2009; Radach et al., 2003]. Our analysis

of historical data shows the entropy of information markets respond predictably to

increased competition. The attention economy model offers a simple explanation:

humans are, within limits, information rate maximisers responding to rising infor-

mation abundance and media producers adapt their content to compete for more

limited attention.

Humans choices are based on more than entropy. For example, humans re-

spond to social cues and risk [Hills, 2019] just as animals consider factors other than

calorie rate such as macro-nutrient content and predators when foraging for food

[Stephens and Krebs, 1986]. Moreover, information producers are not only inter-

ested in capturing attention, but also in influence [Chen and Stallaert, 2014; Evans,

2020]. Nonetheless, just as animal foraging models have been shown to predict hu-

man behaviour in a variety of domains [Winterhalder, 1986; Pirolli and Card, 1999;

Pirolli, 2009a; Fu and Pirolli, 2007; Hills et al., 2012], our analyses suggests these

models also extend to the shape of information evolution and cultural history, just

as the co-evolutionary arguments of Darwin might have predicted [Darwin, 2011].
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2.6 Supplementary Information— Linguistic Niche Hy-

pothesis

The finding that word entropy, and lexical diversity, is rising in American English is

the opposite of what might be predicted by the Linguistic Niche Hypothesis. That

hypothesis makes predictions about the complexity of language morphology (e.g. I

ate, la casita) and syntax (e.g. I did eat, la pequeña casa), with the assumption that

complexity is balanced between the two. The Linguistic Niche Hypothesis [Lupyan

and Dale, 2010] suggests that languages in large, spread out social systems tend to

have simpler morphological forms, with the grammatical work instead being done

through syntax [Lupyan and Dale, 2010]. The hypothesised mechanism for this is

that second language learners prefer simpler forms so that complex morphological

forms disappear over time [Lupyan and Dale, 2010]. A global lingua franca like

English should therefore be undergoing morphological simplification, and evidence

does suggest that this is the case with the regularisation of English past tense

verbs [Michel et al., 2011; Lieberman et al., 2007] and a loss of inflectional diversity

[Zhu and Lei, 2018]. Further work suggests that this morphological simplification

should correlate with a reduction in lexical diversity as measured by type token ratio

[Bentz et al., 2015; Kettunen, 2014] (or word entropy) — complex morphological

forms are non-repetitive (many unique word types per word token) whilst syntactic

grammatical modifiers are repetitive (few unique word types per word token). We

find that lexical diversity is instead rising in American English. We suggest some

possible explanations:

1. English morphology is overall becoming more complex, against the Linguistic

Niche Hypothesis.

2. English morphology is becoming simpler without an increase in syntactic

complexity. This would be a further refutation of the already beleaguered

[Deutscher et al., 2009; Sampson, 2009] equicomplexity assumption, which

states that mature languages have broadly equal grammatical complexity, bal-

anced between morphology and syntax.

3. Lexical diversity (and Type Token Ratio) is not a good measure of morpho-

logical complexity. The increase in lexical diversity is instead driven by more

concise information and a wider, and faster switching of, contexts in written

media.

The third option here is in our opinion at least partly responsible. If people

31



are drawn towards higher utility rate information then that could drive English to

be more concise and to switch contexts more quickly.

2.7 Supplementary Information — Historical Analysis

of US Magazine Publishing

As a case study we investigated the history of magazine publishing in America.

Figure 2.7 shows the historical trend in COHA magazine word entropy alongside

magazine circulation figures and important events. Magazine publishers are in a two-

sided market where they sell magazines to consumers and attention to advertisers

[Evans, 2020], with the majority of revenue from selling attention [Sumner, 2010].

This wasn’t always the case in the US — prior to the 1890s most magazine revenue

was from sales, with advertising considered undesirable [Sumner, 2010]. Towards the

late 19th century a combination of rapidly decreasing printing costs, growth in the

literate population, discounts from the US postal service and the ability to target

adverts to a niche readership led to a new business model to emerge [Sumner, 2010].

This new model involved selling magazines lower than the price of production, which

increased circulation so that those costs could be recouped by advertising revenue

[Sumner, 2010]. Before 1893, most magazines sold for 25 cents — until a price war

led to the magazines McClure’s, Munsey’s and Cosmopolitan dropping their prices

to 10 cents and subsequently enjoying rises in circulation and advertising revenue

[Sumner, 2010]. The 10 cent magazines contributed to a tripling in total magazine

readership from 1890 in 1905 [Sumner, 2010], and there was a huge jump in word

entropy in the same period (Figure 2.7).

The Audit Bureau of Circulation was created by advertisers in 1914 [Sumner,

2010] to more accurately measure magazine readership numbers. This quantification

of attention further increased pressure on magazine publishers to improve their

circulation numbers in order to sell advertising. Other changes included moving

advertisements from the back of the magazine to alongside the main content — a

move that forced copywriters to improve the appeal of the content through adding

color and improving graphics [Sumner, 2010].

Word entropy continues to rise throughout the 20th century alongside mag-

azine circulation, with a Pearson’s correlation coefficient r“ 0.91 (p ă 0.001), al-

though both rise over time so that confounding factors are not ruled out (Figure

2.7). After the 1890s, the biggest drop in word entropy was during the great de-

pression when magazine circulation also fell. There is a suggestion in the data that

things change around the year 2000, as magazine circulation drops but word entropy
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continues to rise. The rise of digital media around this time is perhaps the biggest

change in publishing since the printing press so we would not expect the same trends

to necessarily continue — and digital media represents a new competitive pressure.

Figure 2.7: Historical analysis of word entropy in magazines (red dotted, timeseries
calculated as in previous figure) with key events (pink) and US Monthly Magazine
circulation as reported by the Audit Bureau of Circulations (purple).

2.8 Supplementary Information — Prey Choice Model

Derivation

In the main chapter text we justify the prey choice algorithm using an argument that

considers the opportunity cost of spending time handling a prey versus searching

in the environment. Here we derive the same result more rigorously. This is a

completely analogous derivation as found in optimal foraging theory [Stephens and

Krebs, 1986]. As in the main chapter text, we have information types, i, that are

encountered with rates λi while searching. Each information item, if consumed,

provides a benefit ui in a handling time ti, during which the forager is not searching
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for other items.

In the main chapter text, a media patch expected utility rate is given by,

Rmedia “

ř

D λiui
1 `

ř

D λiti
. (2.13)

This assumes that information types are either in the diet, D, in which case

they are always consumed upon encounter, or alternatively the items are not in

the diet and never consumed. We can generalise this so that forager’s have some

probability of consuming an information type upon encounter, pi,

Rmedia “

ř

λiuipi
1 `

ř

λitipi
. (2.14)

The forager can choose the probability of paying attention to each informa-

tion type, and a forager’s strategy can be defined as a vector p “ rp1, p2, ..., pns.

These choices are independent. To find the strategy that gives the maximum util-

ity rate we can consider each of these choices, pj , independently. To find the best

strategy we separate pj from the summations and differentiate

BRmedia

Bpj
“

λjujp1 ` pjλjtj `
ř

i‰j piλitiq ´ λjtjppjλjuj `
ř

i‰j piλiuiq

p1 ` pjλjtj `
ř

i‰j piλitiq2
. (2.15)

Cancelling like terms

BRmedia

Bpj
“

λjujp1 `
ř

i‰j piλitiq ´ λjtjp
ř

i‰j piλiuiq

p1 ` pjλjtj `
ř

i‰j piλitiq2
. (2.16)

The sign of this does not depend on pj . So if BR
Bpj

ą 0, Rmedia will be

maximised with pj “ 1, and otherwise with pj “ 0. The condition for pj “ 1 is

uj
tj

ą

ř

i‰j piλiui

1 `
ř

i‰j piλitiq
. (2.17)

The right hand side is the total expected rate of utility for all items except

for item j, R␣j . The item should be included in the diet if the utility rate of the

item, ri “
uj

tj
, is greater than the overall rate of foraging without the item.

rj ě R␣j . (2.18)

This is equivalent to the diet inclusion criteria given in the main chapter

text. To find the optimal diet, one can add items in order of their utility rate until
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the inequality fails.

2.9 Supplementary Information — Patch Choice Model

and Non Constant Patches

The patch choice model considered in the main chapter text is analogous to the

information choice model. Patches of each type are randomly encountered in the

environment and encountered as a Poisson processes with rates λmedia. We also

assume that patches have a constant expected rate of utility, Rmedia, and some

finite time, Tmedia until the rate drops to zero, which gives each patch a total utility,

Umedia. Foragers can choose to either consume or ignore a patch upon encountering

it. This model is identical to the information choice model so that we can follow

that derivation and jump to the conclusion that a patch will be included in the diet

if the patch utility rate is greater than or equal to the overall rate of foraging in the

environment, Rmedia ě Renv.

Information patches in the real world have non-constant utility rates. Com-

monly patch marginal utility will decrease with time [Stephens and Krebs, 1986;

Charnov, 1976]. This can happen as finite prey are consumed [Bettinger and Grote,

2016; Stephens and Krebs, 1986]. For example, within a patch an optimal forager

will consume the most profitable items first if they can, which then makes those

items more scarce and reduces the overall utility rate in the patch as time goes on

[Bettinger and Grote, 2016]. Examples are collecting raspberries from a bush, or

checking your email. Information items themselves may degrade while being con-

sumed, for example news articles often follow an inverted pyramid structure where

the most important information is presented first, with extra paragraphs adding

marginally diminishing extra information [Pöttker, 2003]. Magazines, fiction and

non-fiction have their own styles and utility curves. Overall we can say that utility

rates in patches, and information, are not constant.

An optimal forager now has to choose both which patches to consume and

how long to spend in those patches. This problem was solved by Charnov’s marginal

value theorem [Charnov, 1976], which we derive here in the context of information

items. We follow the model and derivation given by Stephens and Krebs [Stephens

and Krebs, 1986]. We characterise each patch type, k, with an expected utility

return rate as a function of time spent within the patch, gkptkq. We assume that

patches are encountered randomly with rate λk as Poisson processes. The forager’s

decision is now how long to spend in each patch type, with a strategy described as

t “ rt1, t2, ..., tks (ti “ 0 meaning the patch is ignored) . We can write the expected
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patch utility rate as

Rmedia “

ř

k λkgkptkq

1 `
ř

k λktk
. (2.19)

Similarly to the prey choice derivation, we differentiate with respect to the

time spent in a patch type, tj ,

BRmedia

Btj
“

λjg
1
jptjqp1 `

ř

k λktkq ´ λjp
ř

k λkgkptkqq

p1 `
ř

k λktkq2
, (2.20)

where g1jptjq “
Bgjptjqq
Btj

. Setting this equal to zero, we find the maximum Renv

when

g1jptjq “ Renv @j . (2.21)

This is Charnov’s marginal value theorem [Charnov, 1976] and states that

an optimal forager will leave a patch when the marginal utility rate of the patch

equals the overall rate of utility from foraging in the environment. And foragers will

not spend any time in a patch if the marginal rate never reaches the environmental

rate i.e. g1jptjq ă Renv @tj . This makes sense intuitively — time spent in a patch

with rate gj carries an opportunity cost of time not spent foraging in the wider

environment with utility rate Renv.

We can find which patches will be visited using the “patches as prey” al-

gorithm [Stephens and Krebs, 1986]. This is a similar algorithm to the diet choice

model but with patches ranked in order of their maximum profitability,
gkpt

˚
k q

t˚
k

. patch

types are added to the diet one at a time, with the marginal value theorem applied

to all included patches after adding each new patch to recalculate the environmental

utility rate. This is done with all patch types, or until Inequality 2.21 fails.

How would this model of patches effect the conclusions of the main chapter

text? As in the main chapter text, we assume that media producers have an incentive

to create information patches that attract and hold attention. People are still driven

towards patches with high patch utility rates. If patch degradation occurs through

consuming the most attractive items first then then there would still be a selective

pressure toward high utility rate information items, as this would make the patch

more attractive before degradation and keep foragers in the patch for longer as it

degrades. And this pressure would still apply more strongly to short-form media

than long-form media (due to more time switching between short-form media). The

conclusions in the main chapter text would still follow, although the full model would

be more complicated. We are confident that the conclusions would hold under any
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reasonable model of patch degradation.

2.10 Supplementary Information — The Merged Pois-

son Process for Patches

Here we justify using average values to describe the expected patch utility rates,

instead of summations over information types. We have not seen this derivation

before in the foraging literature, but it is relatively straightforward. The result is

used without derivation in Pirolli [2009b].

In the main chapter text we write down an equation for the expected patch

rate in terms of the characteristics of the information within the patch diet, D,

Rmedia “

ř

iPD λiui
1 `

ř

iPD λiti
. (2.22)

In this model, information types are encountered as independent Poisson

processes with rates, λi, during time spent searching, with total searching time

Ts. Items have utilities ui and handling times ti. With some simple algebraic

manipulation we can write down

Rmedia “
p
ř

D λiq

ř

D λiuiTs
ř

D λiTs

1 ` p
ř

D λiq

ř

D λitiTs
ř

D λiTs

. (2.23)

The rate of a combined Poisson process is equal to the sum of the rate of the

independent Poisson processes, λp “
ř

D λi [Gallager, 2012].

We define the average utility of items encountered in the patch as the total

utility gained divided by the total number of items handled,

ūp “

ř

D λiuiTs
ř

D λiTs
. (2.24)

Similarly the average time spent handling items encountered is the total time

spent handling divided by the number of items handled,

t̄p “

ř

D λitiTs
ř

D λiTs
. (2.25)

Substituting these relations into equation 2.23,

Rmedia “
λpūp

1 ` λpt̄p
. (2.26)
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We can therefore replace the patch rate equation (equation 2.22) with av-

erages taken over the merged Poisson process. This is a variation of Holling’s disc

equation [Holling, 1959], considering average values.

2.11 Supplementary Information — Full Statistical Re-

sults

2.11.1 Timeseries Analysis

The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test considers a null hypothesis of

no trend. This is a one-sided test. Table 2.1 reports the KPSS statistics and the

p-values for each of the analysed categories in the Corpus of Historical American

English (COHA). Exact p-values are difficult to calculate below 0.01 and are not

provided by python’s statsmodels package [Seabold and Perktold, 2010], we have

therefore denoted these as ă 0.01 where applicable.

The Mann-Kendall test is a non-parametric trend test with the null hypoth-

esis of no trend. This is a two-sided test. We report (Table 2.1) the normalised

z-score, the p-value, Kendall’s Tau, the Mann-Kendall score and slope. Exact p-

values below 0.01 and are not provided by python’s statsmodels package [Seabold

and Perktold, 2010], we have therefore denoted these as ă 0.01 where applicable.

2.11.2 Differences in Media Categories

We ran ANOVA tests to test for differences between media categories in each of

the lexcical measures in the British National Corpus (BNC), Corpus of Contempo-

rary American English (COCA), and the Corpous of Historical American English

(restricted to 2000-2007). Results are shown in Table 2.2.

2.12 Supplementary Information — Type Token Ratio

and Zipf exponent

Figure 2.8 shows the historical trend in type token ratio in COHA. Figure 2.9 shows

the trend in Zipf exponent in COHA.

Figure 2.10 shows the distribution of type token ratio in text samples across

media categories. Figure 2.11 shows the same for Zipf’s law.

Overall these trends support the trends found in word entropy in the main

chapter text.
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Word Entropy

KPSS (KPSS Statistic, p-value) Mann-Kendall (z, p-value, Tau, MK score, slope)

news (1.4725, ă0.01) (7.5198, ă0.01, 0.5157, 2451.0000, 0.0046)

magazines (1.7361, ă0.01) (10.9990, ă0.01,0.7172, 4144.0000, 0.0027)

fiction (1.2372, ă0.01) (7.5911,ă0.01, 0.4927, 2900.0000, 0.0017)

non-fiction (1.4084, ă0.01) (5.9100,ă0.01, 0.3836, 2258.0000, 0.0019)

Type Token Ratio

KPSS (KPSS Statistic, p-value) Mann-Kendall (z, p-value, Tau, MK score, slope)

news (1.1982, ă0.01) (5.3317, ă0.01,0.3657, 1738.0000, 0.0005)

magazines (1.0223, ă0.01) (5.9933, ă0.01, 0.3908, 2258.0000, 0.0002)

fiction (0.8972, ă0.01) (5.9891, ă0.01, 0.3887, 2288.0000, 0.0003)

non-fiction (0.6866, 0.0148) (2.4774, 0.0132,, 0.1609, 947.0000, 0.0001)

Zipf exponent

KPSS (KPSS Statistic, p-value) Mann-Kendall (z, p-value, Tau, MK score, slope)

news (1.5085, ă0.01) (-7.8083, ă0.01, -0.5355, -2545.0000, -0.0002)

magazines (1.7521, ă0.01) (-11.4025, ă0.01, -0.7435, -4296.0000, -0.0001)

fiction (1.3244, ă0.01) (-7.5335, ă0.01, -0.4890, -2878.0000, -0.0001)

non-fiction (1.2890, ă0.01) (-6.1038, ă0.01, -0.3962, -2332.0000, -0.0001)

Table 2.1: Timeseries analysis across different categories and measures for text
samples from COHA between 1900 and 2009. In each cell, the p-value of a
Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test and a Mann Kendall (MK) test
are shown respectively. Significant trends at p ă 0.01 are emboldened. For both
tests, p-values below 0.01 mean we can reject the null hypothesis of stationarity at
1% significance.

Word Entropy ANOVA

COHA (DOF:3) (F = 86, p = 7.68e-54)

COCA (DOF:3) (F = 37, p = 8.99e-22)

BNC (DOF:2) (F = 689, p = 1.76e-205)

Type Token Ratio ANOVA

COHA (DOF:3) (F = 34, p = 5.95e-22)

COCA (DOF:3) (F = 19, p = 5.21e-12)

BNC (DOF:2) (F = 425, p = 3.63e-143)

Zipf Exponent ANOVA

COHA (DOF:3) (F = 92, p = 2.14e-57)

COCA (DOF:3) (F = 41, p = 3.54e-24)

BNC (DOF:2) (F = 712, p = 2.67e-210)

Table 2.2: Analysis of differences in word measures across media categories within
each text corpus. ANOVA tests are reported. All are significant.
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Figure 2.8: Historical timeseries of type token ratio in the Corpus of Historical
American English. Type token ratio was calculated for text samples from COHA
truncated with N “ 2000 words. For each media category and year, a moving
average of all valid samples with ˘5 years was calculated. The shaded region shows
a 95% confidence interval for this average.

2.13 Supplementary Information — Timeseries Break-

point Analysis

As discussed in Methods, we carried out a piecewise-regression analysis on the me-

dian annual values for each of the lexical measures and media categories (Figure

2.12). With the type token ration for the News media category, the breakpoint was

found close to the edge of the data. If we restrict the position to avoid being close

to the edge then the breakpoint is estimated in a similar location as to the Word

Entropy and Zipf exponent. The short-form media shows signs of a rise in lexical

diversity before long-form media, consistent with the model in the main chapter

text.

We ran the same analysis with the media categories collated to give an aver-

age mean each year (Figure 2.13). Notably, the confidence interval for the breakpoint
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Figure 2.9: Historical timeseries of Zipf exponent in text samples in written media
categories in American English. The timeseries was calculated in the same way as
in the previous figure.

includes the year 1900.
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Figure 2.10: Distribution snapshots of type token ratio across different text corpora
for text samples with N “ 2000 words. COHA samples are from the year 2000
onwards only. Social media text samples were collated from status updates.
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Figure 2.11: Distribution snapshots of the Zipf exponent across different text corpora
for text samples with N “ 2000 words. COHA samples are from the year 2000
onwards only. Social media text samples were collated from status updates.
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Figure 2.12: Median annual values for each category and lexical measure. The
points were fit with a piecewise-regression, with red lines showing the estimated
breakpoints. The shaded region shows a 95% confidence interval for those break-
points.
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Figure 2.13: Mean annual values for the media categories combined for word entropy.
Annual means were first found within each media category, and then averaged over
the media categories. The points were fit with a piecewise-regression, with red
lines showing the estimated breakpoint. The shaded region shows a 95% confidence
interval for that breakpoint.
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Chapter 3

Bias in Zipf’s Law Estimators

3.1 Abstract

The prevailing maximum likelihood estimators for inferring power law models from

rank-frequency data are biased. The source of this bias is an inappropriate likelihood

function. The correct likelihood function is derived and shown to be computation-

ally intractable. A more computationally efficient method of approximate Bayesian

computation (ABC) is explored. This method is shown to have less bias for data

generated from idealised rank-frequency Zipfian distributions. However, the existing

estimators and the ABC estimator described here assume that words are drawn from

a simple probability distribution, while language is a much more complex process.

We show that this false assumption leads to continued biases when applying any of

these methods to natural language to estimate Zipf exponents. We recommend that

researchers be aware of these biases when investigating power laws in rank-frequency

data.

3.2 Introduction

If we take a book and rank each word based on how many times it appears, we

will find that the number of occurrences of each word is approximately inversely

proportional to its rank [Zipf, 1949]. The second most frequent word will appear

approximately 1
2 as often as the most frequent word, the third around 1

3 as frequently.

This describes a power law relationship between the frequency of a word, n, and the

word’s rank in terms of its frequency, re, with exponent γ « 1 [Piantadosi, 2014],

npreq9r´γe . (3.1)

46



This is known as Zipf’s law and is consistent, in a general sense, across human

communication [Ferrer i. Cancho, 2005; Moreno-Sánchez et al., 2016]. We do not

have a satisfactory reason why this is [Piantadosi, 2014] and the exponent, γ, is not

always 1 but varies between different speakers [Ferrer i. Cancho, 2005] and texts

[Ferrer i. Cancho, 2005; Montemurro and Zanette, 2002]. Sound analytical tools are

needed to investigate these research areas.

Equation 3.1 describes an observed empirical relationship. This is sometimes

expressed as a relationship between a word’s probability of occurrence [Baixeries

et al., 2013; Shannon, 1951] and the word’s rank in the probability distribution, rp,

pprpq9rp
´λ . (3.2)

The conflation of equations 3.1 and 3.2 causes the prevailing maximum likeli-

hood estimators to miscalculate λ in equation 3.2 with a positive bias [Corral et al.,

2019; Hanel et al., 2017] (Figure 3.1). This bias applies specifically to rank-frequency

distributions, where the ranks of events are not known a priori and instead are ex-

tracted from the frequency distribution, as is the case in equation 3.1. The existing

maximum likelihood estimators make the assumption that the observed empirical

frequency rankings of data (re in equation 3.1) are equivalent to rankings in an

underlying probability distribution (rp in equation 3.2) [Corral et al., 2019], this is

the source of the bias. The nth most frequent word is assumed to be the nth most

likely word, which is not necessarily the case.

In the 2000s there were a series of papers [Clauset et al., 2009; Goldstein et al.,

2004; Bauke, 2007; Newman, 2005] describing a method of maximum likelihood esti-

mation that gave more accurate (lower bias) estimates for power law exponents than

graphical methods [Clauset et al., 2009]. The most influential of these is Clauset

et al’s paper [Clauset et al., 2009]. The estimators had been derived and presented

before [Goldstein et al., 2004] (as early as 1952 in the discrete case [Seal, 1952]) but

Clauset et al’s paper popularised the idea and provided a clear methodology includ-

ing techniques to perform goodness of fit tests [Clauset et al., 2009]. In all of these

papers, the derivation of the likelihood function assumes that there is some a priori

ordering on an independent variable. This works very well for power laws with some

natural way to order events, such as the size vs frequency of earthquakes [Clauset

et al., 2009]. However, it does not work so well with rank-frequency distributions,

where the rank is extracted empirically from the frequency distribution, so that the

empirical rank and frequency are correlated variables [Piantadosi, 2014], both de-

pendent on the same underlying mechanism. This difference was not addressed by

Clauset et al, who include examples of applying their estimator to rank-frequency
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Figure 3.1: Bias in maximum likelihood estimation for rank-frequency data. 100
values of λ between 1 and 2 were investigated. For each λ, samples with N “

100, 000 were generated from an unbounded power law distribution and Clauset et
al’s estimator was applied to the empirical rank-frequency distribution. This was
repeated 100 times and results averaged. There is a clear and strong positive bias
for λ Æ 1.5.

.

data [Clauset et al., 2009]. The same data can look very different depending on

whether we know it’s true rank or not, as shown in Figure 3.2.

Recently Clauset et al’s estimator has been shown, empirically, to be biased

for some rank-frequency distributions [Hanel et al., 2017; Corral et al., 2019]. In par-

ticular, Clauset et al’s method over-estimates exponents with rank-frequency data

generated from known power law probability distributions with exponents below

about 1.5 [Hanel et al., 2017] (Figure 3.1). The problem is related to low sampling

in the tail [Hanel et al., 2017; Corral et al., 2019], so that the observed empirical

ranks tend to “bunch up” above the line of the true probability distribution before

decaying sharply at the end of the observed tail (Figure 3.2). To our knowledge this

bias has not been adequately explained or solved.

• In 2014 Piantadosi et al [Piantadosi, 2014] suggested splitting a corpora and

calculating ranks of words from one part of the split and frequencies from
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Figure 3.2: Difference between distributions with probability and empirical ranks.
Data was generated from an underlying power law probability distribution with ex-
ponent λ “ 1, number of possible events W “ 60 and N “ 200 samples. The dotted
blue line shows the probability distribution. The blue circles show the sampled
event frequencies with a priori known probability ranks. The red crosses show the
empirical rank-frequency distribution from the same data. There is a significant
difference between the two distributions. The current estimators are designed to fit
data with a priori known ranks, not empirical ranks.

.

the other, breaking the correlation of errors. However the method does not

take into account uncorrelated errors in the ranks. In particular, the empirical

ranks of events in the tail will almost certainly be lower than the actual ranks

in the probability distribution as many events in the tail will not be observed

at all.

• Hanel et al [Hanel et al., 2017] identified the problem and suggested using a

finite set of events instead of Clauset et al’s unbounded event set [Clauset et al.,

2009]. This gives more accurate results in the limited case that the number

of possible events, W , is finite and known [Hanel et al., 2017]. Often W is

not known and the choice of W can substantially change the results. With

Zipf’s law in language, W represents the writer’s vocabulary and is usually
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modelled as unbounded [Piantadosi, 2014; Clauset et al., 2009; Bauke, 2007].

This seems appropriate given that Heaps’ Law suggests that the number of

unique words in a document continues to rise indefinitely as the document

length increases [Heaps, 1978].

• In 2019 Corral et al [Corral et al., 2019] examined the problem and explored

a technique of transforming the data to a distribution of frequencies represen-

tation, fpnq, which is also a power law type distribution that they call the

Zipf’s law for sizes. This distribution does have an a priori known indepen-

dent variable of frequency sizes, so the bias described here does not apply to

this representation. However there is still difficulty in estimating the rank-

frequency exponent, as a power law in the rank-frequency distribution, npreq,

will only approximately map to a power law in the distribution of frequencies,

fpnq, for real-world sample sizes [Corral et al., 2019].

Overall these ad-hoc methods can remove the bias to some extent but not

completely. The methods also introduce a host of somewhat arbitrary choices for

the researcher to resolve.

We derive a new maximum likelihood estimator that does not make the false

assumption that the empirical ranks, re, are equivalent to the probability ranks, rp.

The new estimator considers all the possible ways that the events could be ranked

in the underlying probability distribution to generate the observed empirical data.

Unfortunately this new likelihood function is computationally intractable for all but

the smallest data sets. In order to estimate parameters for larger data sets, we

turn to approximate Bayesian computation (ABC), a method that is designed for

situations where likelihood functions cannot be computed [Beaumont, 2010]. We

show that this method has much lower bias than Clauset et al’s estimator for rank-

frequency data generated from simple power laws. We further explore two different

implementations of ABC and find that they give different results when applied to

word distributions in books because ABC and Clauset et al’s method both assume

an underlying power law probability model, while natural language arises from a

more complex model. We suggest that this false assumption means that maximum

likelihood estimation with simple models will always have some arbitrary bias when

studying rank-frequency data in natural language, including both ABC and Clauset

et al’s method.
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3.3 Model

3.3.1 Likelihood Function - General Case With No A Priori Order-

ing

A vector of data, d “ rd1, d2, ...dN s, represents N observations of a random variable

X. Each of these observations are one of a discrete set of W events, with no a priori

ordinality. An example is words in a book.

We can transform the vector d to counts of each event, ordered from most

to least frequent, n “ rnpxp1qq, npxp2qq, ..., npxpW qqs. npxpreqq represents the count

of the reth most common event, where re is the event’s ranking in the empirical

frequency distribution. For ease of notation we will refer to npxpreqq as npreq.

We assume a simple model where each of these events has some unknown

fixed probability of being observed, ppxrpq “ PrpX “ xrpq, where rp is the event’s

rank in the underlying probability distribution.

The key insight is that given an event’s empirical rank, we do not know

that event’s rank in the underlying probability distribution. We can describe the

mapping of events from the data generating probability ranking to the empirical

ranking with a vector s, so that sprpq “ re. For example s “ r2, 1, 3s would mean

that the second most probable event was observed empirically the most number of

times, the most probable event was seen the second most number of times, and the

third most likely seen third most. For any valid mapping, s must be a permutation

of the integers from 1 to W. Figure 3.3 shows an example mapping.

We assume that the probability distribution is parameterised by θ. Consid-

ering Bayes’ rule

ppθ|nq “
ppn|θqppθq

ppnq
. (3.3)

The likelihood can be written as (ignoring constants of proportionality)

ppn|θq “

W
ź

re“1

ppxpreqq
npreq . (3.4)

This likelihood equation is in terms of the events’ empirical rank, re, whereas

the underlying probability model is in terms of probability rank, rp. To convert the

likelihood to be in terms of rp we condition on the mapping vector, s,

ppn|θ, sq “

W
ź

rp“1

ppxrpqnpsprpqq . (3.5)
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Figure 3.3: An example mapping from probability to empirical ranks. The observed
data n “ r8, 6, 3, 2, 1, 1s can arise from any valid permutation of events from the
probability distribution. Here the permutation is s “ r2, 1, 5, 3, 4, 6s. The 1st most
likely event is observed the second most times (sr1s “ 2), etc. The likelihood of the
data given this permutation is ppn|s, θq “ p61p

8
2p

1
3p

3
4p

2
5p

1
6

.
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Using the law of total probability we sum over all possible mappings of proba-

bility rankings onto empirical rankings. SpW q is the set of all possible permutations

of the numbers 1 to W, known as the symmetric group,

ppn|θq “
ÿ

sPSpW q

W
ź

rp“1

ppxrpqnpsprpqq . (3.6)

Equation 3.14 is the likelihood for any data that represents observations

of discrete events, where the events have no a priori ordering in relation to the

underlying model. The equation generalises to W Ñ 8, suitable to describe models

with unbounded event sets, as is the case in many Zipf type models.

3.3.2 Likelihood Function - Power Laws With No A Priori Ordering

A common model applied to rank-frequency distributions is the power law, used by

Zipf in his study of words [Zipf, 1949]. A power law probability distribution is of

the form

ppxrpq “
r´λp

Zλ
, (3.7)

where λ is the power law exponent, Zλ is a normalising factor. We use the

simplest form of Zipf’s law for ease of analysis. The method described here can be

used with other models such as the Zipf-Mandelbrot law [Mandelbrot, 1953]. The

normalising factor is

Zλ “

W
ÿ

rp“1

r´λp , (3.8)

where W is the number of possible events. In the limit W Ñ 8, Zλ becomes

the Riemann zeta function, ζpλq [Clauset et al., 2009].

Considering equation 3.14, the likelihood can be written as

Lpλ|nq “
ÿ

sPSpW q

W
ź

rp

˜

r´λp

Zλ

¸npsprpqq

. (3.9)

And the differential of the likelihood with respect to λ is

B

Bλ
Lpλ|nq “

ÿ

sPSpW q

˜˜

NZ 1λ
Zλ

`

W
ÿ

rp

npsprpqqlnprpq

¸

ˆ

W
ź

rp

ˆ

rp
´λ

Zλ

˙npsprpqq
¸

, (3.10)
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where Z 1λ is the differential of the normalising factor with respect to λ.

To find the maximum likelihood estimator, we can use numerical methods to

either a) maximise equation 3.9 or b) find the root of equation 3.10 (Figure 3.4).

The prevailing estimators from the literature (often implicitly) assume that

the empirical ranks match the probability ranks [Piantadosi, 2014; Clauset et al.,

2009; Bauke, 2007], so that they only consider the leading term in the main sum

in both equations 3.9 and 3.10 (associated with the identity permutation sI “

r1, 2, ...,W s). This is the source of the bias in the existing estimators.

Figure 3.4: Likelihood functions of the full likelihood (blue) and only the leading
term (red). Both likelihoods are calculated for the data n “ r10, 3, 3, 2, 1, 1s. The
leading term of the full likelihood is equivalent to the likelihood function as defined
by Hanel et al [Hanel et al., 2017], which is adapted for finite event sets from Clauset
et al’s estimator [Clauset et al., 2009]. The top figure shows the full likelihood
compared to Hanel et al’s likelihood, with the maximum likelihood estimators shown
as dashed lines. The bottom figure shows the differential of the likelihood functions.
The form of the differential of the full likelihood is markedly different to only the
first term. There is a substantial difference in the maximum likelihood estimator,
with the Hanel et al estimator giving λ̂ “ 1.27 and the full estimator giving λ̂ “ 1.16.

The number of terms in the likelihood function (equation 3.14) scales as

OpW !q, so that naive computation of the likelihood is impractical even at W « 10.

The computation can be shown to be equivalent to the computation of the perma-
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nent of a matrix with entries aij “ ppxjq
npiq. The best known algorithm for exactly

computing the permanent of a matrix is Ryser’s algorithm [Ryser, 1963; Glynn,

2010] with complexity OpW2W q. This is computationally intractable for real world

data sets such as text corpora with vocabularies of W ą 1000. A more in-depth

discussion on the computational complexity can be found in the Supplementary

Information.

3.3.3 Approximate Bayesian Computation

Approximate Bayesian computation is a technique for approximating posterior dis-

tributions without calculating a likelihood function [Sunn̊aker et al., 2013; Beaumont

et al., 2002; Csilléry et al., 2010]. Instead, we assume a model, M, simulate data,

ni, from possible parameters, λi, and observe how close that simulated data is to the

empirical data using a distance measure ρpni, nobsq [Sunn̊aker et al., 2013; Csilléry

et al., 2010]. The ABC rejection algorithm is based upon the principle that we can

approximate the actual posterior by estimating the probability of λ given that the

data is within some small tolerance, ϵ, of the observed empirical data [Sunn̊aker

et al., 2013; Sisson et al., 2007]. This assumes that the model, M, is a good repre-

sentation of the actual data generating process.

ppλ|n “ nobs,Mq « ppλ|ρpn, nobsq ă ϵ,Mq (3.11)

ppλ|ρpn, nobsq ă ϵ,Mq “
ppρpn, nobsq ă ϵ|λ,Mqppλ|Mq

ppρpn, nobsq ă ϵ|Mq
(3.12)

The ABC rejection algorithm begins by sampling parameter values from the

prior. For each of these parameter values, data is then generated from the model

and tested on the condition ρpni, nobsq ă ϵ [Sunn̊aker et al., 2013]. With enough

samples, the density of successful parameters will approximate the right hand side

of Equation 3.12, and an approximation for the posterior distribution [Sunn̊aker

et al., 2013]. If we use a uniform prior then this will be a proportional estimate to

the likelihood.

An ideal distance measure, ρpni, nobsq, would involve comparing Bayesian

sufficient summary statistics from the data [Csilléry et al., 2010]. Usually in practice

Bayesian sufficiency cannot be achieved [Csilléry et al., 2010; Sunn̊aker et al., 2013],

and some information will be lost so that the approximation of the posterior includes

some error [Sunn̊aker et al., 2013]. A common technique is to summarise the data

sets with summary statistics, Spnq, and define the distance as the difference between

those, ρpni, nobsq “ Spniq ´Spnobsq [Beaumont, 2010; Sunn̊aker et al., 2013; Csilléry
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et al., 2010]. Recently the Wasserstein distance, a metric between distributions,

has been shown to work well as a distance measure [Bernton et al., 2019]. This is a

principled approach that avoids the difficult selection of summary statistics [Bernton

et al., 2019], and this is the measure that we use here.

The ABC rejection algorithm requires a small tolerance in order to find a

good estimate for the posterior [Sisson et al., 2007]. This in turn requires a high den-

sity of samples in order to have enough successful parameters to build the posterior

approximation. To sample at a high density across a reasonable parameter space

with a uniform prior would be prohibitively computationally expensive. Instead,

we use population Monte Carlo to sample from a proposal distribution that focuses

on areas of high posterior probability while avoiding areas of negligible probability

[Cappé et al., 2004]. At each time step, the results are weighted using principles from

importance sampling to account for the fact that we are sampling from the proposal

distribution instead of the prior [Cappé et al., 2004]. This algorithm, adapted from

[Beaumont et al., 2009], is shown in Algorithm 1 and Figure 3.9 (the 2 parameter

algorithm is equivalent, with the variance replaced by a covariance matrix). The pa-

rameters in the algorithm were set following trial and error to balance computation

time and accuracy.

We also investigated an alternative approximate Bayesian computation ap-

proach known as ABC regression. Instead of the Wasserstein distance, we used the

mean of the log transformed event counts as a summary statistic with this method.

Full details are in the Supplementary Information.

3.4 ABC Results

3.4.1 Approximate Bayesian Computation with Zipf Distributions

Rank-frequency data was generated (N “10,000) from an unbounded power law

with exponents ranging from 1 to 2. For each generated data set, the exponent was

estimated using a) Clauset et al’s estimator and b) ABC-PMC with the Wasserstein

distance. This was repeated 100 times to find the mean bias and variance. The

ABC method has much lower bias and similar variance to Clauset et al’s method,

(Figure 3.10).

We also investigated how the bias changes with varying sample size. Rank-

frequency data was generated with λ “ 1.1 and varying sample size up toN “1,000,000.

Clauset et al’s estimator shows positive bias at all values of N, although it decreases

with large N. ABC shows much lower bias for all values of N. The variance of ABC

is higher for N Æ 1000. Overall the variance is still very low, and is insignificant
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Algorithm 1: Approximate Bayesian Computation Popula-
tion Monte Carlo Zipf’s Law

Input: The observed data n “ rn1, n2, . . . , nW s, θmin Ð 1.001, θmax Ð

3, survivalFraction Ð 0.4, nParticles Ð 256, nGenerations Ð

10
Output: Maximum likelihood estimator θ̂
priorDist Ð uniformDistpθmin, θmaxq

nData Ð sumpnq

tolerance Ð 8

proposalDist Ð priorDist
for g Ð 1 to nGenerations do

θs Ð arraypq

ds Ð arraypq

weights Ð arraypq

for i Ð 1 to nParticles do
hit Ð FALSE
while !hit do

θ Ð proposalDist.samplepq

if θmin ď θ ď θmax then
z Ð generateDatapθ, nDataq

d Ð wassersteinDistancepn, zq

if d ď tolerance then
θsris Ð θ
dsris Ð d
weightsris Ð

priorDist.evaluatepθq{proposalDist.evaluatepθq

hit Ð TRUE

tolerance Ð getTolerancepds, survivalFractionq

var Ð weightedV ariancepθs, weightsq

proposalDist Ð KDEpθs, weights, bandwidth “ sqrtp2 ˆ varqq

posterior Ð KDEpθs, weights, bandwidth “ sqrtpvarqq

θ̂ Ð maxpposteriorq

return θ̂

57



compared to the positive bias showed by Clauset et al’s estimator (Figure 3.11).

In addition to the results shown here, we explored a variation of the algorithm

using ABC rejection with the mean of the logged event counts as a summary statistic.

This method has similarly low bias and variance as the results shown here. See the

Supplementary Information for full details.

3.4.2 Approximate Bayesian Computation with Zipf-Mandelbrot

Model

The Zipf-Mandelbrot law is a modification of Zipf’s law derived by Mandelbrot that

accounts for a departure from a strict power law in the head of the rank-frequency

distribution [Mandelbrot, 1953],

pprpq9prp ` qq´λ , q P r0, 1, 2...s . (3.13)

We tested the ABC PMC algorithm with this 2 parameter model. The

algorithm is of the same form as Algorithm 1, with the variance replaced with a

covariance matrix. The algorithm is demonstrated with one generated data set

with q “4, λ=1.2 and N “100,000. ABC PMC performs well, with close estimates

to the true parameters (see Figure 3.8). The approximated likelihood function

gives negligible probability for q “0, suggesting that the algorithm can discriminate

between data generated from Zipf’s law and the Zipf-Mandelbrot law.

3.4.3 Analysis of Books

Both Clauset et al’s method and the approximate Bayesian computation method

described here assume a Zipfian data generating model. We have demonstrated

that ABC-PMC with the Wasserstein distance works well for data generated from

a known power law, with much lower bias than Clasuet et al’s method. In the

Supplementary Information, we also describe an ABC regression method using the

mean log of the word counts that has similar low bias when applied to data from a

power law distribution.

It is reasonable to suggest that natural language is a more complex process

than drawing words from a power law probability distribution. Indeed, deep learning

language models like GPT-3 use billions of parameters [Brown et al., 2020]. As such,

models that assume Zipfian data generating models are not necessarily suitable

for analysing language. To demonstrate the problem, we analysed books using

a) Clauset et al’s method, b) ABC-PMC with the Wasserstein distance c) ABC

regression with the mean of the log transformed word counts as a summary statistic
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(Table 3.1). All of the books were downloaded from Project Gutenberg [Gut, 2020].

Each text sample was first “cleaned” by removing all punctuation, replacing numbers

with a # symbol, and converting all text to lowercase. The word frequencies were

then counted.

The two forms of ABC give different results, which bracket the results of

the Clauset et al estimator. This does not imply that the Clauset et al is the

best approximator as we show above that it is biased upwards. What these results

indicate is that there is no correct “ground truth” because the assumed underlying

models are wrong.

Book Clauset et al ABC PMC with Wasserstein ABC regression with mean log

Moby Dick 1.19 1.25 1.16
A Tale of Two Cities 1.21 1.27 1.17
Alice In Wonderland 1.22 1.25 1.18
Chronicles of London 1.19 1.20 1.15
Ulysses 1.18 1.22 1.14

Table 3.1: Comparision of estimators of Zipf’s law in books.

3.5 Discussion

We have demonstrated that the prevailing Zipf’s law maximum likelihood estimators

for rank-frequency data are biased due to an inappropriate likelihood function. This

bias is particularly strong in the range of natural language, with exponents close to

1. The correct likelihood function is intractable. We have presented one approach

to overcoming this bias using a likelihood-free method of approximate Bayesian

computation. The ABC method is shown to work well with data generated from

actual power law distributions, with lower bias than Clasuet et al’s estimator.

ABC works well in an idealised situation where the true model is known.

However when applied to analysing books, the two ABC approaches that we ex-

plored give very different estimates for the Zipf exponents. The Zipfian approaches

we investigate all assume a simple bag of words probability model, whereas our re-

sults on books indicate that natural language generation is a more complex process–

otherwise the two ABC methods would converge. The ABC algorithms are searching

a parameter space for the closest model based on the distance measure. This works

well when the parameter space includes the true data generating process. But with

natural language the assumed simple Zipf model is wrong so there is no “correct”

location in the parameter space (or the “correct” location is outside the parameter

space). Different distance measures will prejudice different aspects of the observed

data and so arrive at different estimates. This bias is arbitrary in nature and there
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seems to be no reasonable way to decide which distance measure is “correct”. The

error lies in the assumption of an incorrect data generating model. This problem

applies to ABC and Clauset et al’s estimator, and seems to be inherent in apply-

ing maximum likelihood estimation using simple models to describe rank-frequency

power laws in natural language.

Zipf’s law for word types [Corral et al., 2019] is an empirical relationship be-

tween frequencies of words and ranks in that frequency distribution. The difficulty

arises when a probabilistic model is used to describe the mechanism that is generat-

ing this relationship, when the actual mechanism is more complex. The main aim of

this publication is to clearly show that Clauset et al’s estimator is biased for rank-

frequency data. The correct likelihood function provides an unbiased framework

that works well when the underlying data generating process is known. This does

not appear to be the case for natural language. All Zipf estimators have some bias

and the best choice will depend on the specific application. Graphical methods such

as ordinary least squares may be more suitable to study Zipf’s law when investigat-

ing the empirical relationship between ranks and frequencies (Equation 3.1) and not

the probability distribution (Equation 3.2). The bias in rank-frequency estimation

provides some support for focusing on the alternative frequency-size representation

of word counts and Zipf’s law for sizes [Corral et al., 2019] when studying natural

language.

3.6 Supplementary Information— Computational Com-

plexity

The general likelihood for inferring probability distributions from rank-frequency

data is given in the main paper as

ppn|θq “
ÿ

sPSpW q

W
ź

rp

ppxrpqnpsprpqq . (3.14)

The number of terms in the likelihood function scales as OpW !q, so that naive

computation of the likelihood is impractical even atW « 10 . When analysing Zipf’s

law for words in a book W represents the writer’s vocabulary. Even considering a

lower bound for W as the number of unique words in a book, W ą 1000 so that the

likelihood is extremely computationally expensive using a naive algorithm. Here we

will explore how to make this computation more efficient.

The full likelihood function (equation 3.14) is equivalent to the calculation

of the permanent of a matrix with entries aij “ ppxjq
npiq:
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, (3.15)

Lpθ|n,Mqq “ perpAq . (3.16)

The permanent is similar to the determinant, with the difference that the

negative signs in the Laplace expansion formula for the determinant are all positive

[Agrawal, 2008]. A well known algorithm for exactly computing the permanent of a

matrix is Ryser’s algorithm [Ryser, 1963; Glynn, 2010] with complexity OpW2W q.

The exact computation of the permanent is thought to be #P -hard [Valiant, 1979;

Scott, 2011], so that no polynomial algorithm exists if P ‰ NP . A polynomial

time approximation algorithm for the permanent of a non-negative matrix (as our

matrix is), was discovered by Jerrum et al. [2004], with complexity OpW 10q. These

algorithms are improvements on the naive case but are still prohibitively computa-

tionally expensive for the use case of a text corpora with a vocabulary of W ą 1000.

We investigated a method of reducing the computational complexity of Ryser’s

algorithm (in our case) by several orders of magnitude by considering tied empirical

ranks, which are equivalent to repeated columns in the matrix A. This can be done

but the computation time remains extremely prohibitive. A lower bound to an esti-

mate of the computational complexity using this technique would be OpF2F q, where

F is the number of unique empirical counts, as the computation would be at least

as complex as computing the permanent of a matrix of the unique columns. This

would remain prohibitively computationally expensive for real world data sets. The

slim hope that remains is to use the structure and symmetry of the matrix to find

some shortcut or a reasonable approximation, we leave this as an open question.

3.7 Supplementary Information—Approximate Bayesian

Computation Regression with Mean Log

Approximate Bayesian computation is a technique for approximating posterior dis-

tributions without having to calculate a likelihood function [Sunn̊aker et al., 2013;

Beaumont et al., 2002; Csilléry et al., 2010]. Instead, we simulate data, ni, from

possible parameters, λi, and observe how close that simulated data is to the em-

pirical data (using a distance measure ρpni, nobsqq. By looking at the behaviour of
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simulated data with close distances, we can approximate the posterior distribution,

ppλ|nobsq.

In order to use ABC to we need a way to measure the “distance” be-

tween two data sets. A common technique is to summarise the data sets with a

summary statistic, Spnq, and define the distance as the difference between those,

ρpni, nobsq “ Spniq ´Spnobsq [Beaumont, 2010; Sunn̊aker et al., 2013]. A good sum-

mary statistic will capture a lot of information relevant to the likelihood function

so that ppλ|nq „ ppλ|Spnqq []. With rank-frequency distributions, the mean of the

logs of the observations is of a similar form to the likelihood function derived in the

main paper. Through experiment this statistic was found to be a good candidate

summary statistic,

Si “

W
ÿ

re“1

nipreqlogpreq . (3.17)

There are several flavours of ABC [Beaumont, 2010; Csilléry et al., 2010].

Here we use the regression method [Beaumont et al., 2002; Csilléry et al., 2010;

Leuenberger and Wegmann, 2010]. We only consider distances within some toler-

ance, ϵ, of the observed data, i.e. |Spniq ´ Spnobsq| ă ϵ. The regression method has

advantages over the rejection method that it is computationally more efficient and

does not require careful tuning of the tolerance [Beaumont et al., 2002]. The key

assumption is a linear approximation within the tolerance region:

λi “ βSpniq ` α ` ϕi . (3.18)

Assuming that ϕ has an invariant distribution within this tolerance region,

we can find estimates β̂ and α̂ using ordinary least squares regression. To estimate

the posterior we are interested in ppλ|Spnobsqq, which can be estimated by translating

the data points along the regression line,

λ˚i “ λi ´ β̂pSpniq ´ Spnobsqq . (3.19)

The frequency histogram of these translated points will be approximately

proportional to the likelihood function. The histogram can be smoothed using a

kernel density estimate and the mode taken to find the maximum likelihood estima-

tor. The process is summarised in Figure 3.9.
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3.7.1 ABC Regression Results

Rank-frequency data was generated (N “ 10000) from an unbounded power law

with exponents ranging from 1 to 2. For each generated data set, the exponent was

estimated using a) Clauset et al’s estimator and b) ABC. This was repeated 100

times to find the mean bias and variance. The ABC method has much lower bias

and similar variance to Clauset et al’s method, (Figure 3.10).

We also looked at changing sample size. Rank-frequency data was gener-

ated with λ “ 1.1 and varying sample size up to N “ 1000000. Clauset et al’s

estimator shows positive bias at all values of N, although it decreases with large

N. ABC regression shows much less bias at all tested values of N. The variance of

ABC regression is higher for N Æ 1000. Overall the variance is still very low, and

is insignificant compared to the positive bias showed by Clauset et al’s estimator

(Figure 3.11).

Overall ABC regression with the mean log as a summary statistic shows

much less bias and similar variance to Clauset et al’s estimator, when applied to

data generated from a Zipfian probability distribution.

63



Figure 3.5: Approximate Bayesian computation with population Monte Carlo
(ABC-PMC). a) Given the observed data. b) Particles are generated from a proposal
distribution and data is simulated for each particle. For each particle, the Wasser-
stein distance is measured between the simulated data and the observed data. c)
This is repeated until nParticles samples are generated with Wasserstein distance
within a tolerance ϵ. d) A new proposal distribution is generated by a weighted
kernel density estimate on the accepted particles, with a weighting based on im-
portance sampling principles. A new tolerance is set based upon a proportion of
survivalFraction particles with the smallest distances found in this time step. This
is repeated for a given number of generations. The final successful particles are used
to generate an approximation of the posterior distribution using a weighted kernel
density estimate. Figure adapted in part from [Sunn̊aker et al., 2013] and [Csilléry
et al., 2010].
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Figure 3.6: Bias in ABC (solid blue) vs Clauset et al’s estimator (dashed red) for
unbounded power laws. For each of 100 values of λ between 1.01 and 2, rank-
frequency data (N “10,000) was generated by sampling an unbounded power law.
This was run 100 times. The left figure shows the known λ and the mean estimated
λ. The centre figure shows the mean bias, with a 68% confidence interval shaded.
The right figure shows the variance of the estimators. The ABC estimator has much
lower bias and similar variance to Clauset et al’s estimator.

Figure 3.7: Bias in ABC (solid blue) vs Clauset et al’s estimator (dashed red) for
unbounded power laws. Rank-frequency data was generated for λ “ 1.1 with varying
sizes, N . This was run 100 times. The left figure shows the known λ against the
mean estimated λ. The centre figure shows the mean bias, with a 68% confidence
interval shaded. The right figure shows the variance of the estimators. The bias is
much lower with ABC. The ABC estimator has higher variance than Clauset et al
at low N, although the variance is still very low.
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Figure 3.8: Results of ABC-PMC for the Zipf-Mandelbrot law with data generated
with known exponent λ “ 1.2 and q “ 4 (red cross) with N “100,000 words. The
likelihood function (darker blue regions have higher likelihood) was approximated
using a kernel density estimate. The mode of the KDE gives the maximum likelihood
estimate (green circle). The estimator correctly identifies q and is close to the correct
exponent λ.
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Figure 3.9: Approximate Bayesian computation regression with the mean log. ABC
proceeds as shown. a) A summary statistic Spnq is calculated from the observed
data. b) Parameters are sampled from a uniform distribution. For each parameter,
λi a set of data, ni, is generated, and a summary statistic, Spniq, is calculated.
c) A tolerance is chosen to accept a given proportion, Pϵ, of the simulations with
close summary statistics to the observed data, shown as the shaded region. A linear
regression is fit to the accepted simulation results. d) The accepted parameters
are adjusted along the regression line to Spniq “ Spnobsq. The histogram of these
corrected parameter values approximates the likelihood function. A kernel density
estimate is used to smooth the likelihood and find the maximum likelihood estimate
for λ. Here the initial data was generated with λ “ 1.02 and the maximum likelihood
estimator was λ̂ “ 1.023, this is a typical result. Figure idea adapted from [Sunn̊aker
et al., 2013] and [Csilléry et al., 2010].

67



Figure 3.10: Bias in ABC regression (blue solid line) vs Clauset et al’s estimator
(red dashed line) for unbounded power laws. Rank-frequency data was generated
with N “ 10, 000 for 100 values of λ between 1.01 and 2. This was run 100 times.
The left figure shows the known λ against the mean estimated λ̂ over 100 runs. The
central figure shows the mean bias (the difference between the mean estimated λ̂
and λ) with a shaded 68% confidence interval. The right figure shows the variance
of the estimators. The ABC estimator has much less bias and similar variance to
Clauset et al’s estimator.

Figure 3.11: Bias in ABC regression (blue solid line) vs Clauset et al’s estimator
(red dashed line) for unbounded power laws. Rank-frequency data was generated
for λ “ 1.1 with varying sizes, N . This was run 100 times. The left figure shows
the known λ against the mean estimated λ̂. The centre figure shows the mean
bias, with a 68% confidence interval shaded. The right figure shows the variance of
the estimators. The ABC estimator has much smaller bias and similar variance to
Clauset et al’s estimator.
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Chapter 4

Confirmation Bias Emerges

from an Approximation to

Bayesian Reasoning

4.1 Abstract

Confirmation bias is defined as searching for and assimilating information in a way

that favours existing beliefs. We show that confirmation bias emerges as a natural

consequence of boundedly rational belief updating by presenting the BIASR model

(Bayesian updating with an Independence Approximation and Source Reliability).

In this model, an individual’s beliefs about a hypothesis and the source reliability

form a Bayesian network. Upon receiving information, an individual simultaneously

updates beliefs about the hypothesis in question and the reliability of the informa-

tion source simultaneously. If the individual updates rationally then this introduces

numerous dependencies between beliefs, the tracking of which represents an unreal-

istic demand on memory. We propose that human cognition overcomes this memory

limitation by assuming independence between beliefs, evidence for which is provided

in prior research. We show how a Bayesian belief updating model incorporating this

independence approximation generates many types of confirmation bias, including

biased evaluation, biased assimilation, attitude polarisation, belief perseverance and

confirmation bias in the selection of sources.

69



4.2 Introduction

Confirmation bias is the search for and assimilation of information in a way that

favors the preservation of prior beliefs [Nickerson, 1998]. It has been described as

one of the most pernicious [Nickerson, 1998] of the cognitive biases, with impacts felt

in many social domains including religion [Batson, 1975; Nickerson, 1998], politics

[Nyhan and Reifler, 2010; Lord et al., 1979; Nickerson, 1998; Taber and Lodge,

2006], climate change [Cook and Lewandowsky, 2016; Hart and Nisbet, 2012], health

and medicine [Liberman and Chaiken, 1992; Nickerson, 1998; Malthouse, 2022],

justice [Nickerson, 1998], stereotyping [Darley and Gross, 1983], conspiracy theories

[McHoskey, 1995], and science [Mahoney, 1977; Nickerson, 1998]. Understanding

the underlying cognitive mechanisms that drive confirmation bias is therefore of

fundamental theoretical and practical interest.

Confirmation bias encompasses numerous distinct but closely related be-

haviours [Klayman and Ha, 1987; Friedrich, 1993; Fischhoff and Beyth-Marom, 1983;

Nickerson, 1998]. Though many such behaviours have been identified, we focus on

five here which have received wide empirical support (see Klayman [1995] for a

review): i) biased evaluation: judging information that opposes one’s views more

critically than that which supports them [Koehler, 1993; Lord et al., 1979; Taber

and Lodge, 2006; Russo et al., 1996]; ii) biased assimilation: whereby people are

less influenced by opposing than confirmatory sources [Lord et al., 1979; Taber and

Lodge, 2006]; iii) attitude polarisation: extreme views both for and against a hy-

pothesis can become more extreme upon seeing the same evidence [Lord et al., 1979;

Taber and Lodge, 2006]; iv) belief perseverance: the reluctance to change beliefs in

the face of disconfirmatory evidence [Anderson et al., 1980; Batson, 1975]; and v)

confirmation bias in the selection of sources: preferring sources of information that

confirm existing beliefs [Taber and Lodge, 2006; Redlawsk, 2002]. 1

Given confirmation bias’ wide prevalence and potential negative impact, a

natural question is why confirmation bias exists at all? Sufficiently costly tendencies

should be expected to disappear under evolutionary pressures [Nickerson, 1998],

unless they are themselves an adaptive solution to a more costly alternative. While

confirmation bias may be an impediment to finding the truth, the adaptive force on

cognition is primarily towards pragmatic survival and only secondarily concerned

1There are many other behaviours that may fall under the umbrella of confirmation bias. Im-
portantly is positive hypothesis testing, where people search for evidence in a way that will verify
existing hypotheses as opposed to falsifying those hypotheses [Klayman, 1995; Klayman and Ha,
1987; Wason, 1960, 1968]. It has been claimed that this should not be labelled as a confirmation
bias and is instead a search heuristic which is useful in many real-world contexts [Klayman and Ha,
1987].
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with truth seeking [Friedrich, 1993]. In light of this, we may ask is confirmation bias

truly a dysfunction, or does it serve some adaptive purpose?

Explanations for confirmation bias have been put forward at the social [Mercier

and Sperber, 2011; Norman, 2016; Peters, 2020], individual [Kunda, 1990; Nickerson,

1998; Friedrich, 1993; Festinger, 1962] and information processing levels [Jern et al.,

2014; Cook and Lewandowsky, 2016; Gerber and Green, 1999; Koehler, 1993; Hen-

derson and Gebharter, 2021]. These levels of analysis are qualitatively different but

are nonetheless connected. Social behaviour emerges from individual behaviour, and

individual behaviour emerges, in part, from information processing. In this paper

we present a normative explanation at the information processing level, although

our description complements many existing social and individual explanations.

Before we go further, it is helpful to discuss the definition of “bias”. In the

psychological literature, the word bias is used to mean a variety of things [Hahn

and Harris, 2014]. This ranges from the everyday usage of the term as a leaning or

tendency in one direction, to the precise use in statistics of a systematic departure

from accuracy. Within the context of research on beliefs, bias is usually accepted

to mean a departure from a normative model [Hahn and Harris, 2014], which is

often Bayesian rationality [Klayman, 1995; Hahn and Harris, 2014]. This definition

introduces difficulties because behaviour that is irrational given one belief-updating

model may be rational given a different belief-updating model. This has been the

case for biased evaluation [Koehler, 1993] and attitude polarisation [Jern et al., 2014;

Cook and Lewandowsky, 2016; Henderson and Gebharter, 2021]. We aim to sidestep

the issue by not claiming that the behaviours are fundamentally biased under all

possible belief-updating models. Rather, we will define behaviours as departures

from specific rational belief updating models described in previous literature.

Our contribution is multifold. We present a model of information process-

ing that can generate a large range of empirically confirmed confirmation bias type

behaviours, more so than other explanations. In particular, we explore existing

Bayesian models of inference in a world with uncertain beliefs and unreliable sources

of information [Koehler, 1993; Bovens et al., 2003; Olsson, 2011; Hahn et al., 2018;

Merdes et al., 2020]. We argue that maintaining full rationality is impossible for

realistic agents due to the high memory demands of remembering dependencies be-

tween beliefs. As a consequence, humans are forced to make approximations in order

to maintain complex world models. We demonstrate how these approximations to

rationality can introduce small biases that magnify as data is processed sequentially

over time. In different task domains, these biases encompass the five confirmation

bias behaviours we list above.
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We will begin with a discussion of information processing models of belief

updating in the literature. This will lead to a description of the BIASR model and

an interrogation of each of its assumptions. We will then evaluate each of the 5

confirmation bias type behaviours we list above, defining each and showing how the

BIASR model can generate the behaviour. We will end with a general discussion of

the model and it’s position in the literature.

An example may help build intuition. Alice has a neutral belief about vaccine

safety. She talks to her new neighbour Bob, who tells her that vaccines have not

been thoroughly tested and that they are dangerous. Alice is at first not entirely

convinced, but she does become slightly more wary about vaccines. The next week

Bob again tells Alice about the dangers of vaccines. Alice is more receptive now

as she already has a slight belief that vaccines are dangerous, and she starts to see

Bob as reliable because his information matches her slight belief. This continues

for several weeks until Alice is convinced that vaccines are dangerous and that Bob

is a very reliable source of information. When Alice now hears on the news that

vaccines are safe she is not convinced — after all, both she and Bob can’t both

be wrong, especially considering how knowledgeable Bob is. Alice’s beliefs about

the reliability of Bob and the dangers of vaccines are correlated. If she forgets this

correlation then she does not give enough consideration to the counterfactual world

where Bob is wrong and vaccines are safe. In this example Alice exhibits biased

evaluation, biased assimilation and belief perseverance.

Table 4.1: Comparison of information processing models of confirmation bias.
Checkmarks denote which behaviours have been explained using the different mod-
els.

Simple Version
of Bayes’
theorem

Biased
Evaluation
Prior to Assimi-
lation[Gerber
and Green,
1999; Lord
et al., 1979]

Bayesian
Updating
Including
Source
Reliability
[Koehler, 1993]

Belief-based
Sequential
Updating with
Source
Reliability
[Bovens et al.,
2003; Olsson,
2011; Merdes
et al., 2020;
Hahn et al.,
2018]

Bayesian
Networks [Jern
et al., 2014;
Henderson and
Gebharter,
2021; Cook and
Lewandowsky,
2016]

BIASR.
Bayesian
updating with
an
Independence
Approximation
and Source
Reliability

Biased Evaluation 51 51 51 51 51
Biased Assimilation 51 51 51
Attitude Polarisation 51 51
Belief Perseverance 51 51 51
Selection of Sources 51
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4.3 Models of Information Processing

Bayes’ theorem provides the objectively optimal way to update beliefs given new

evidence, where beliefs are described in terms of degrees of uncertainty. For human

cognition, inference affects behaviour, which in turn affects adaptive success. One

could therefore expect that adaptive pressures over our evolutionary history would

drive our inference mechanisms towards Bayesian rationality.

The simple version of Bayes’ theorem is

P pH|Dq “
P pD|HqP pHq

P pDq
. (4.1)

If one applies this simple rule to a single hypothesis, H, then data from all

sources is treated equally. There is no judgement of evidence quality. Under this

model, any unequal treatment of evidence is considered biased evaluation. Indeed,

bias as the unequal consideration of evidence is a definition of confirmation bias

(often implicitly) used in the literature [Lord et al., 1979; Plous, 1991; Lord et al.,

1984; Miller et al., 1993].

The simple version of Bayes’ theorem is not adequate in terms of describing

either observed or desirable behaviour (see Table 4.1 and below). Indeed, it is

reasonable to judge the quality of evidence based on assessments of the reliability

of the source [Fischhoff and Beyth-Marom, 1983]. Lord et al. [1979] state,

“Our subjects’ main inferential shortcoming ... did not lie in their incli-

nation to process evidence in a biased manner. Willingness to interpret

new evidence in the light of past knowledge and experience is essential

for any organism to make sense of, and respond adaptively to, its envi-

ronment. Rather, their sin lay in their readiness to use evidence already

processed in a biased manner to bolster the very theory or belief that

initially “justified” the processing bias.”

Here Lord et al. [1979] are suggesting biased evaluation prior to assimi-

lation. Data is first evaluated based on prior beliefs, with unlikely data considered

as less reliable evidence. And then the result of this evaluation determines the

weight of the evidence in updating those same prior beliefs. This idea was for-

malised mathematically by Gerber and Green [1999], who present a Bayesian model

of belief updating combined with biased learning. The biased learning is represented

as a weakening of the strength of evidence that disconfirms prior beliefs, before up-

dating those same beliefs within the Bayesian machinery. They provide an example
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of a politician’s supporters considering whether the politician is corrupt or not. In

this example, evidence in support of corruption is discounted by a factor, α ă 1.

Russo et al proposed a similar model involving “predecisional distortion of

information” in relation to choice among alternatives [Russo et al., 1996; Russo,

2014, 2018]. Prior preferences influence the evaluation of data, and this evaluation

influences how the data is used to update beliefs, generating a bias towards initial

preferences [Russo, 2014, 2018]. These ideas can describe biased evaluation and

biased assimilation, and can go some way to describing belief perseverance [Carlson

et al., 2006] (Table 1). Though useful, these models are not Bayesian and do not

have a clear normative basis.

The Bayesian framework does, however, allow us to incorporate evidence

evaluation in the form of Bayesian updating including source reliability.

Koehler [1993] argues that a normative account of belief updating should consider

an individual’s prior beliefs about source reliability as well as evidence evaluation.

Koehler [1993] proposes a rational Bayesian model that includes source reliability

and which is able to generate biased evaluation (Table 1). This model supports pro-

posals in the literature that judging evidence based on prior beliefs is not necessarily

irrational, such that it can be rational to consider unlikely evidence more critically

[Lord et al., 1979; Koehler, 1993; Klayman, 1995; Fischhoff and Beyth-Marom, 1983].

This idea is extended by Bovens et al. [2003] and Olsson [2011] to account for

sequential belief updates when receiving data over time. In both these cases, individ-

uals maintain separate beliefs about a central hypothesis and source reliability, and

upon receiving information those beliefs are updated simultaneously [Merdes et al.,

2020]. This type of Bayesian updating has been described as a “belief-based”

strategy for inference in a world with unknown source reliability [Hahn et al.,

2018; Merdes et al., 2020]. As data is received, beliefs about the central hypothesis

and source reliability both change over time, which influence how subsequent data

is interpreted. It has been shown that these models demonstrate order effects such

that the order in which information is received changes the final belief [Hahn et al.,

2018]. This has been described as a form of confirmation bias [Hahn et al., 2018;

Merdes et al., 2020] (connected to belief perseverance), and the updating process is

a departure from Bayesian rationality in the same way as the model that we present.

In this research, the normative argument is that the rational approach would be too

much of a cognitive burden, as it would require remembering all data received so

far and updating from initial priors whenever data is received [Hahn et al., 2018].

However, we contend that this normative argument is not complete as it does not

consider the alternative rational approach of maintaining a joint belief distribution
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over the central hypothesis and source reliability.

More generally, Bayesian networks are graphical representations of causal

and information dependencies between variables which can describe how to rea-

son about events that could be caused by multiple factors [Pearl, 2009]. Cook and

Lewandowsky [2016] used Bayesian networks to explain attitude polarisation in par-

ticipants who were given evidence about climate change. They demonstrated that

polarisation can be rational given a Bayesian network, because individuals’ beliefs

about the evidence they observed were influenced not only by whether they believed

climate change was true, but also by their worldview and trust in scientists [Cook

and Lewandowsky, 2016].

Jern et al. [2014] generalise this idea by describing the set of Bayesian net-

works that can lead rational agents to attitude polarisation — crucially this set of

networks share the property that upon receiving some data, beliefs about more than

one hypothesis are updated simultaneously. In order to generate rational attitude

polarisation, individuals require differences in prior beliefs about the “central” hy-

pothesis in question, and importantly also some difference in other “auxiliary” prior

beliefs [Gerber and Green, 1999; Henderson and Gebharter, 2021]. For example,

those with strong views about the dangers of climate change may also believe that

scientific evidence is more reliable than those who are less worried about climate

change [Cook and Lewandowsky, 2016]. Bayesian networks can also be used to

describe biased evaluation [Jern et al., 2014] (Table 1).

So far our discussion of information processing has centered on Bayesian

rationality. However, this is not necessarily the appropriate normative standard

when modelling human probabilistic reasoning. We must also take into account

realistic cognitive constraints [Dasgupta et al., 2020; Klayman, 1995; Daw et al.,

2008]. People update many hypotheses simultaneously [Gershman, 2019], which

can be computationally demanding [Dasgupta et al., 2020]. Dependencies between

hypotheses mean the computational scale of inference can quickly overwhelm any

realistic agent, who will be forced to make approximations to optimal Bayesian

inference. To understand how human cognition may overcome this limitation we

can take inspiration from computer science, a field with much experience in the

approximation of computationally expensive Bayesian reasoning [Sanborn, 2017].

This path from computer science to human cognition is a well worn road, and

algorithms such as Markov Chain Monte Carlo have shed light on human cognitive

processes including behavioural biases [Sanborn, 2017].
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4.4 The BIASR Model Assumptions

We present the BIASR model (Bayesian updating with an Independence Approxi-

mation and Source Reliability; see Figure 4.1), which rests on the following assump-

tions:

1. Source reliability. Upon receiving information, we update our beliefs about

the reliability of the source.

2. Simultaneous updating. We update our beliefs about source reliability and

the central hypotheses at the same time.

3. Independence approximation. Simultaneous updating introduces dependencies

between our beliefs about a) central hypotheses and b) source reliabilities. Our

model approximates these dependencies away by taking marginal beliefs and

assuming independence.

4. Sequential Updating. Data is received and processed sequentially over time.

The independence approximation is applied between sequential updates.

Each of these assumptions will be explored in the following sections. The

belief updating process under BIASR is visualised in Figure 4.1.

Figure 4.1: The BIASR belief updating model. a) Data received is believed to be
causally influenced by both the true value of the hypothesis at hand and the source
reliability in a collider Bayesian network. b) When receiving data, beliefs about
the hypothesis and source reliability are updated simultaneously. c) This updating
introduces information dependencies (grey dotted line) between beliefs. d) These
belief correlations can be approximated away by assuming independence. e) This
approximation simplifies the Bayesian network structure. The process repeats when
more data is received.

4.4.1 Source Reliability

It is rational to hold and update beliefs about the reliability of sources of information

Merdes et al. [2020]; Hahn et al. [2018]. Doing so allows us to weigh the quality of

evidence based on the source and protects against the influence of unreliable sources
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that may foster misinformation. The inclusion of source reliability in belief updating

models has been suggested as a possible rational basis for the conjunction fallacy

[Bovens et al., 2003; Jarvstad and Hahn, 2011; Fischhoff and Beyth-Marom, 1983;

Tversky and Kahneman, 1983]. There is also an abundance of empirical evidence

that people track source reliability [Mahoney, 1977; Liberman and Chaiken, 1992;

Taber and Lodge, 2006; Lord et al., 1979].

4.4.2 Simultaneous Updating of Source Reliability and Central Hy-

potheses

In the absence of an objective standard of truth, we can judge a source’s reliability

based on our assessment of the plausibility of the information received [Hahn et al.,

2018]. If someone tells us that Elvis Presley is outside, it’s a fair guess that we won’t

believe them. Instead, we are likely to downgrade our belief in them as a reliable

source. We update our belief about their source reliability and Elvis simultaneously.

Our strong prior belief in the hypothesis that Elvis is not outside is protected by an

auxiliary hypothesis in the reliability of the source. In this way our belief in source

reliability can absorb disconfirmatory evidence about strongly held central beliefs

(Figure 4.2). Empirical evidence shows that people do consider information about

source reliability when updating beliefs about a hypothesis, and vice versa [Collins

et al., 2018].

The idea that our beliefs are not updated in isolation is known, in the con-

text of scientific epistemology, as the Duhem-Quine thesis [Gershman, 2019]. No

hypothesis can be tested in isolation and upon receiving evidence we update a set of

beliefs together, sometimes partitioned into central and auxiliary hypotheses, while

maintaining overall coherence. The auxiliary hypotheses (e.g., source reliability)

can act to absorb disconfirmatory evidence, allowing us to maintain central beliefs

(Figure 4.2). This can be rational; if a scientist detects faster than light travel it

is sensible to question the accuracy of the measurements [Gershman, 2019; Lord

et al., 1979]. Empirically, scientists question whether disconfirmatory evidence is

the result of an error before abandoning a central hypothesis [Dunbar, 1995]. And

people test hypotheses more extensively when told that discomfirmatory evidence

may be in error [Gorman, 1989].

Following existing models in the literature [Koehler, 1993; Merdes et al.,

2020], our model assumes that individuals believe evidence, D P t0, 1u, is influenced

by both the truth value of the central hypothesis, H P t0, 1u, and the reliability of

the source, R P t0, 1u (Figure 4.1). In our model all sources are less than perfectly

reliable, but a “reliable” source, R “ 1, has less noise and is more likely to report
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Figure 4.2: Simultaneous updating of source reliability, R, and the central hypothe-
sis, H. Blue (thick) bars show the joint belief distribution. Orange (thin) bars show
the marginal belief distributions. a) The Bayesian network structure describes how
the individual believes the data is influenced by the true values of the central hy-
pothesis and source reliability, given by c) the conditional probability distribution.
b) Prior beliefs favour the central hypothesis, P pH “ 1q “ 0.8, and are neutral
about the source reliability, P pR “ 1q “ 0.5. d) The posterior following disconfirm-
ing evidence shows how disconfirmatory data can be explained away as coming from
an unreliable source, with only a small impact on belief in the central hypothesis.
e) The posterior following confirming evidence is updated towards stronger belief in
both the central hypothesis and the reliability of the source.

the true value of the central hypothesis than an “unreliable” source, R “ 0, which

has more noise. These probabilities can be quantified as P pD “ 1|R “ 1, H “ 1q

for the reliable source and P pD “ 1|R “ 0, H “ 1q for the unreliable source (and

symmetrical in the case that H “ 0). A quantitative example is given in Figure

4.2. The true values of the central hypothesis and the source reliability are causally

independent. Our individual has prior beliefs in the central hypothesis, P pHq, and

the source reliability, P pRq. Assuming initial independence between these beliefs,

this is a collider type Bayesian network, H´ ą D ă ´R. Notably, this is one of

the set of Bayesian networks that Jern et al. [2014] proved can lead to attitude

polarisation. Beliefs are simultaneously updated by Bayes’ rule,

P pH,R|Dq “
P pD|H,RqP pH,Rq

P pDq
. (4.2)
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Initially, the individual’s beliefs inH andR are independent so that P pH,Rq “

P pHqP pRq and we can simplify the update rule to

P pH,R|Dq “
P pD|H,RqP pHqP pRq

P pDq
. (4.3)

A general property of causal graphs of this structure, including collider type

Bayesian networks, is that upon receiving data, beliefs in H and R are no longer inde-

pendent [Pearl, 2009] (Figure 4.1). Mathematically, the individual’s beliefs no longer

fulfil the independence relationship and P pHqP pRq ‰ P pH,Rq. If we later learn that

Elvis is alive, we should update our belief in our friend’s reliability. Moreover, upon

receiving subsequent evidence from the same source about the same hypothesis, in

order to remain Bayesian rational we can no longer use the simpler update rule

(Equation 4.3) and must instead consider the full joint belief distribution (Equation

4.2).

Notably, this formalism is different to previous work on belief-based updat-

ing [Merdes et al., 2020; Hahn et al., 2018]. In that work, beliefs are assumed

to be stored marginally, i.e. individuals have some belief about the hypothesis in

question and a separate belief about the reliability of a source. Given this belief

structure, the rational benchmark is to remember the entire history of data received

and carrying out full inference on all the data at each timestep [Hahn et al., 2018],

which Merdes et al. [2020] argue is unrealistic and not normative. We argue that

the more complete rational benchmark also includes the possibility of maintaining

a joint belief distribution as described here. However, as we will see in the following

section, normative arguments based on cognitive limitations recover the marginal

belief structure.

4.4.3 Independence Approximation

In our minimal example (Figure 4.2) we are considering only one central hypothesis,

H, and one source reliability, R, each of which can take values of either 1 or 0. In this

case, the joint belief distribution is relatively small, with 4 possible combinations,

tpH “ 1, R “ 1q, pH “ 1, R “ 0q, pH “ 0, R “ 1q, pH “ 0, R “ 0qu, shown as the

blue (thick) bars in Figure 4.2. In our actual day to day reasoning we track many

more hypotheses, each with many possible values, and evidence from many different

sources. If we combine all these then there are many possible combinations to track

in the joint belief distribution.

We can ask how the size of the hypothesis space scales as we add more

attributes to a world model. In computer science, the amount of computational
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resources that an algorithm uses is known as the computational complexity. This

can be measured in terms of processing time or memory space. Big O notation

is a way of comparing the computational complexity of algorithms as the size of

inputs to that algorithm grows. As we add new attributes to our world model the

memory space requirements scale exponentially, as „ Opknq, where n is the number

of attributes and k is the number of hypotheses per attribute. This is the curse

of dimensionality [Bellman, 2015 (1957]. If we were tracking 300 binary attributes

about the world then the joint belief distribution would have size 2300 « 1090 —

more than the number of atoms in the observable Universe.

This combinatorial explosion in memory space will quickly exhaust any rea-

sonable level of cognitive resources (or for a fixed cognitive resource, will limit the

richness and resolution of the agent’s world model). A realistic agent would there-

fore require an approximation to optimal Bayesian reasoning, and this should be

included in a normative account. Alternatively, one could remember the entire

history of data received from all sources and carry out the full inference with the

initial priors each time new data is received, but this also imposes an unrealistic

computational burden [Merdes et al., 2020].

Variational approximations are an approach to approximating Bayesian rea-

soning that can reduce computational requirements associated with large posterior

distributions [Ormerod and Wand, 2010]. One option is to take a mean field approxi-

mation of the joint posterior distribution by partitioning variables and assuming that

the partitions are independent [Ormerod and Wand, 2010; Sanborn and Silva, 2013].

This kind of approximation has been applied before to understanding how human

behaviour can emerge as a consequence of cognition overcoming computationally

intractable problems, in the realm of associative learning [Sanborn and Silva, 2013;

Sanborn, 2017]. At one extreme, if we assume all variables are independent then

our memory requirements now scale linearly as „ Opknq, a vast improvement. We

can now track 300 binary attributes with a belief distribution of size 600. If we limit

belief partitions to d variables, then computation scales linearly as „ Opnpdkqq.

This type of partial or structured mean field approximation [Sanborn, 2017] will

preserve dependencies between some variables while avoiding the curse of dimen-

sionality. Figure 4.3 shows an example of this partial approximation with d “ 10

variables, as compared to no approximation and a full mean field approximation. It

should be noted that we are still updating beliefs simultaneously — the mean field

approximation disentangles these beliefs following simultaneously updating.

The quality of this compression in terms of loss of information will depend

upon the degree to which the attributes being inferred are actually independent,
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Figure 4.3: Memory space scaling as a function of number of binary attributes.
With no approximation (red dashed line) memory requirements scale exponentially
(a straight line on this log-linear figure). A full mean field approximation (blue solid
line) scales linearly. A partial approximation (grey dotted line) scales exponentially
up to d and then linearly after, in this case with d “ 10.

and the type of approximation we make. A common choice of measure to guide the

approximation is to minimise the Kullback-Leibler divergence between the full pos-

terior and the approximated posterior [Sanborn, 2017; Ormerod and Wand, 2010].

This is achieved by taking marginal belief distributions for each attribute. By as-

suming independence the full joint belief distribution can be approximated from the

marginal belief distributions (Figure 4.1),

P pH,Rq « P pHqP pRq . (4.4)

Human cognition is unlikely to always use a full approximation, such that

people would be unable to remember any dependencies between beliefs — the key

point is that people are unlikely to remember all the dependencies and will have

to make some approximations. Do these approximations include forgetting depen-

dencies between source reliability and more central beliefs? There is evidence that

people do not always correctly associate sources of information with their beliefs

and instead people can experience source confusion where the belief remains but

the source is mis-attributed [Johnson et al., 1993].
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4.4.4 Sequential Updating

A common assumption underlying Bayesian inference is exchangeability, i.e. that

the order that data is received is irrelevant [Gelman et al., 1995]. Data can be

processed in any order, or all at once, and the final beliefs will be the same. This

assumption holds in the rational case if the data generating process is static, as

in our model. However, exchangeability does not hold under the BIASR model

because the independence approximation introduces path dependency, such that

biases accumulate over successive steps. Therefore, the order that data is received

and sequentially processed influences the final beliefs. A general consequence of

sequential updating with approximations to Bayesian inference is the potential loss

of exchangeability and the introduction of effects that are dependent on the order

of processing [Daw et al., 2008].

There is evidence that people do not process data all at once, but update

sequentially. Empirical evidence for this includes the primacy effect [Bruner and

Potter, 1964], where the order that data is seen has an influence on final beliefs. In

the realm of decision making, Russo [2014] describe a stepwise evolution of preference

paradigm. This stepwise updating has been shown empirically in many contexts,

with experiments showing that people sequentially update their preferences and

their opinion on the diagnosticity of the data [Russo, 2014].

4.5 Evaluation of Five Forms of Confirmation Bias

In this section we evaluate the BIASR model in relation to the five forms of confir-

mation bias outlined in Table 1. For each form of confirmation bias, we first discuss

the literature and empirical evidence. We then define a mathematical requirement

for this behaviour in the context of Bayesian rationality. Following this definition,

we simulate the behaviour under different models of information processing.

For each form, we simulate how an individual could update their beliefs about

whether a central hypothesis is true or false, H P t1, 0u, and whether a source is

reliable or not, R P t1, 0u. If a source is reliable, they transmit the true state of

the hypothesis 75% of the time, P pD “ 1|H “ 1, R “ 1q “ 0.75. If the source

is unreliable, they transmit the true value only 50% of the time, P pD “ 1|H “

1, R “ 0q “ 0.5. In most cases we use a neutral prior on the source reliability,

P pRq “ 0.5, and a strong prior belief in the central hypothesis, P pHq “ 0.8. In

the case of attitude polarisation, we also include a strong prior belief against the

central hypothesis, P pHq “ 0.2. And in the case of belief perseverance we start

with a neutral prior in the central hypothesis, P pH “ 1q “ 0.5. In all the examples,
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the simulated individual receives multiple datums sequentially from either a single

source or two sources. The values used, and the problem setup itself, are intended

to minimally demonstrate the behaviours as clearly as possible. The behaviours are

robust and emerge under a wide range of parameters.

We consider 3 information processing models:

1. Simple version of Bayes’ theorem. Beliefs in source reliability are not updated

at all, i.e. the prior belief, in this case P pRq “ 0.5, remains the same. Beliefs

in the central hypothesis are updated according to Bayes’ rule,

P pH|Dq “
P pHq

ř

R P pD|H,RqP pRq

P pDq
. (4.5)

2. Rational updating including source reliability. Beliefs about the central hy-

pothesis and source reliability are updated simultaneously. This introduces a

dependency in the joint belief distribution, P pH,R|Dq. This dependency is

remembered between successive datums by updating using Bayes’ rule over the

full joint belief distribution (Equation 4.2). Give the data generating process,

this is the rational way to update beliefs. As such, exchangeability holds and

this is equivalent to updating on all data received using initial priors.

3. BIASR model (Bayesian updating with an Independence Approximation and

Source Reliability). Beliefs are updated as in the rational case, but dependen-

cies between the central hypothesis and source reliability are forgotten between

successive datums. We take marginal beliefs

P pHq “
ÿ

R

P pH,Rq (4.6)

and

P pRq “
ÿ

H

P pH,Rq . (4.7)

We ignore dependencies by using these marginal beliefs in the independent

version of Bayes’ rule (Equation 4.3).

4.5.1 Biased Evaluation (Biased Assimilation)

In the confirmation bias literature, the terms biased evaluation and biased assimila-

tion are often used interchangeably. We can strictly define evaluation as the judge-
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ment of the quality of the evidence and assimilation as concerning the degree of

belief change in the central hypothesis at hand. These are separate, but connected,

beliefs. In many studies what could strictly be thought of as biased evaluation is

sometimes called biased assimilation [Lord et al., 1984; Miller et al., 1993]. This is

understandable as the meanings of the two overlap: if a piece of evidence is rated

as “more convincing”[Lord et al., 1984] or “more persuasive”[Miller et al., 1993], is

that evaluation or assimilation? From a cognitive dissonance perspective, assimila-

tion and evaluation are connected through coherence in beliefs — a disconfirmatory

piece of evidence creates a cognitive dissonance that can be resolved through biased

evaluation [Kunda, 1990]. Or more simply, contrary evidence is explained away as

coming from an unreliable source. An early mention of confirmation bias is found

in the writings of Bacon [1620], who also links evaluation and assimilation,

“Once a human intellect has adopted an opinion (either as something it

likes or as something generally accepted), it draws everything else in to

confirm and support it. Even if there are more and stronger instances

against it than there are in its favor, the intellect either overlooks these

or treats them as negligible or does some line-drawing that lets it shift

them out of the way and reject them. This involves a great and pernicious

prejudgment by means of which the intellect’s former conclusions remain

inviolate.” Francis Bacon

There is strong empirical evidence for biased evaluation, some of which also

supports biased assimilation. Mahoney [1977] found that scientists judged studies

more harshly when the findings disagreed with their own theoretical positions. This

was followed by Lord et al. [1979], who ran an experiment with two sets of students

— those with strong prior opinions either for or against capital punishment. Both

groups were shown the same set of evidence that consisted of studies for and against

capital punishment. When the students were asked to rate the quality of the evi-

dence, the studies that agreed with their position were rated higher than those that

disagreed. Students were also asked to self-report on their degree of attitude change

following reading the studies, finding that the students rated confirmatory studies

as having a greater influence. Lord, Ross and Lepper went on to replicate those

findings and explore confirmation bias in different contexts in a range of papers,

[Vallone et al., 1985; Lord et al., 1984].

Gilovich [1983] recruited volunteer students to gamble on American football

games, and found evidence of biased evaluation in the post-match description of

losses and wins, with losses more likely to be explained away. They were even able
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to influence participants’ future likelihood of gambling on a match by mentioning

that a previous match was decided by a “fluke” play that could have gone either

way, and so bringing into question the reliability of the previous match result as a

predictor of future results. Liberman and Chaiken [1992] found that caffeine drinkers

were more critical of messaging that linked caffeine to health problems [Liberman

and Chaiken, 1992]. Koehler [1993] found a bias in scientists evaluating studies

that either agreed or disagreed with their prior positions. McHoskey [1995] found

that prior beliefs had a strong effect on people’s ratings of the persuasiveness of

evidence for and against a conspiracy. Malthouse [2022] found biased evaluation in

the assessment of evidence for the efficacy of vaccines. These studies represent just

some of the empirical evidence for biased evaluation.

It has often been pointed out that judging evidence based on prior beliefs

is not irrational, as it can be rational to consider unlikely evidence more critically

[Lord et al., 1979; Koehler, 1993; Klayman, 1995; Fischhoff and Beyth-Marom, 1983].

Nevertheless this effect is still often called biased evaluation — judging confirmatory

sources more favourably, and disconfirmatory sources less favourably. We will follow

this naming convention and define a sufficient condition given our minimal model:

P pR|Dforq ą P pR|Dagainstq , (4.8)

where Dfor is a set of data that agrees with a prior hypothesis, and Dagainst

disagrees to the same extent.

Figure 4.4 shows biased evaluation effects with a strong initial prior belief in

the central hypothesis, P pHq “ 0.8, and a neutral prior belief in source reliability,

P pRq “ 0.5. With the BIASR model, we see biased evaluation as the confirmatory

sources (Figure 4.4 a) are judged to be more reliable than the disconfirmatory sources

(Figure 4.4 b). Given our model setup, the message receiver will eventually be

persuaded and come to trust the source. This is because at worst an unreliable source

is sending only noise. If we instead allowed anti-reliable sources, who consistently

lie, then the overall effect would be stronger and it is possible for trust in a source

to consistently move towards 0.

Notably, when given confirmatory information the belief in the reliability

of the source is lower in the BIASR model than the rational Bayesian network

model (Figure 4.4 a). This was unexpected and is related to an underestimation of

probability mass for the correlated beliefs P pH “ 1, R “ 1q in the BIASR model.

This is explored in the Supplementary Information.

Given our model, a sufficient condition for biased assimilation is if an indi-

vidual updates their beliefs in the central hypothesis more so than they would do
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under the rational version of Bayes’ theorem with the Bayesian network. In the case

of confirmatory evidence

P pH|Dforq ą P pH|Dforqrational . (4.9)

And in the case of disconfirmatory evidence,

P pH|Dagainstq ą P pH|Dagainstqrational . (4.10)

Biased assimilation is simulated in Figure 4.4. The BIASR model shows a

stronger posterior belief in the central hypothesis than rational updating under both

the Bayesian network and simple models, for both confirmatory and disconfirmatory

evidence.

What causes these dynamics? When receiving confirmatory data a positive

correlation is induced between H and R — it is more likely that the source is either

correct and reliable, P pH “ 1, R “ 1q, or incorrect and unreliable, P pH “ 0, R “

0q, than the alternatives. With the BIASR model, the agent forgets about this

correlation, i.e. the agent forgets that their belief in the central hypothesis is partly

due to their belief in the source reliability, and vice versa. One consequence is that

the agent does not give enough consideration to the counterfactual world where the

central hypothesis is wrong and the source is unreliable. A similar pattern happens

with disconfirmatory evidence. During the independence approximation, probability

mass is effectively moved away from correlated beliefs where those beliefs go against

an indiviudal’s priors. This is explored further in the Supplementary Information,

where we explore belief updating across the entire joint belief distribution, P pH,Rq.

We gave an intuitive example of confirmatory evidence in the Introduction

with Alice and Bob. Here we give an example in the case of disconfirmatory evidence.

Alice has a strong belief that vaccines are dangerous. She meets a new acquaintance,

Chris, who tells her that vaccines are actually safe. This goes against Alice’s strongly

held views and so she naturally questions how reliable Chris is, and only updates her

beliefs about vaccines slightly. The next time they meet, Chris again raises points

about vaccine safety. This information again goes against Alice’s views, and this

time she already has question marks over Chris’s reliability and is able to dismiss the

evidence more easily. Over time, Alice is able to hold onto her belief that vaccines

are dangerous and dismiss Chris as an unreliable source. Under the BIASR model,

she does not remember the relationship between her belief in Chris’ reliability and

her beliefs in vaccine safety. As a consequence, she gives little consideration to the

possibility that Chris is reliable and vaccines are safe.
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Figure 4.4: Assimilation and evaluation for confirmatory evidence and disconfirma-
tory evidence for sequential information from the same source. The BIASR model
shows biased evaluation with a) confirmatory sources judged to be more reliable
than b) disconfirmatory sources (the blue line is higher in the top-left figure than
the top-right figure). The BIASR model shows biased assimilation, with a stronger
posterior belief in the central hypothesis than the simple and rational models fol-
lowing both c) confirmatory and d) disconfirmatory evidence (the blue line is the
highest line in both bottom figures).

4.5.2 Attitude Polarisation

In the study that we described above by Lord et al. [1979], people’s evaluation of the

evidence for and against capital punishment depended on their prior beliefs: Those

who were pro-capital punishment self-reported that the evidence swayed them to be

more fervent in their beliefs, and those who were against capital punishment stated

that they also became more fervent, in the opposite direction — the two groups

diverged in their beliefs after seeing the same data. This attitude polarisation has

been replicated in the context of climate change [Cook and Lewandowsky, 2016],

gun control [Taber and Lodge, 2006], affirmative action [Taber and Lodge, 2006],

the Iraq war [Nyhan and Reifler, 2010], the JFK assassination [McHoskey, 1995],
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homosexual stereotypes [Munro and Ditto, 1997], drug use [Taber et al., 2009],

freedom of speech [Taber et al., 2009] and nuclear energy [Plous, 1991].

A sufficient condition for attitude polarisation, given our model, is that in-

dividuals with different prior beliefs in the central hypothesis update in opposite

directions,

$

&

%

P pH|Dq ą P pHq, if P pHq ą 0.5

P pH|Dq ă P pHq, if P pHq ă 0.5
. (4.11)

D is the same set of evidence shown to both individuals, which can include

more than one source and multiple datums from each source, both for and against

hypotheses.

When considering a single hypothesis in isolation, it is a property of Bayesian

updating that different prior beliefs will converge given the same data (or more

precisely, not diverge). However, if we have a more complicated belief structure

then it can be rational for individuals to update in opposite directions. This was

confirmed by Jern et al. [2014], who prove a family of Bayesian network motifs

that can lead to attitude polarisation. They go on to analyse the results of Lord

et al. [1979] and offer two potential Bayesian network structures that could create

attitude polarisation in this experiment. For instance, if an individual who has a

strong pro-capital punishment prior also has a belief that the consensus is biased

against capital punishment, then studies that are anti-capital punishment can be

explained away as resulting from the biased consensus, while studies that are pro-

capital punishment are strong evidence in support of capital punishment [Jern et al.,

2014]. If individuals who are anti-capital punishment also believe that there is a

bias in consensus, in this case a bias in favour of capital punishment, then it is

rational for these individuals to also strengthen their beliefs when seeing the same

data [Jern et al., 2014]. The pro- and anti- groups can rationally update their beliefs

in opposite directions.

The rational basis for attitude polarisation was explored further by Hender-

son and Gebharter [2021] using a Bayesian network where evidence is influenced

by the true values of the central hypothesis and source reliability, as in the BIASR

model. They conclude that attitude polarisation can arise only if the individu-

als have different prior beliefs in both the central hypothesis and source reliability

[Henderson and Gebharter, 2021]. This is a property of the Bayesian networks that

generate rational attitude polarisation [Jern et al., 2014; Cook and Lewandowsky,

2016; Henderson and Gebharter, 2021] — they require different priors not only in

the central hypothesis but also auxiliary beliefs.
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The Bayesian network structures described by Jern et al. [2014] give a good

explanation for attitude polarisation when central and auxiliary priors are different

between polarising groups. However, the BIASR model generates attitude polar-

isation under the stricter condition that the pro- and anti- individuals differ only

in their prior beliefs in the central hypothesis, and have the same auxiliary prior

beliefs. In our model,

$

&

%

P pH|Dq ą P pHq, if P pHq ą 0.5, P pRq “ r

P pH|Dq ă P pHq, if P pHq ă 0.5, P pRq “ r
, (4.12)

where P pRq “ r is the same prior belief in source reliability for both indi-

viduals.

As shown in Figure 4.5, the BIASR model leads to attitude polarisation

when data is presented from two different sources, even when individuals only differ

in their prior belief in the central hypothesis, P pH “ 0.8q and P pH “ 0.2q. The

simple and rational Bayesian models do not. As such the BIASR model meets both

the general and stricter conditions we have defined for attitude polarisation. Strong

prior beliefs either for or against the central hypothesis become more extreme overall.

Intuitively, let us consider the case where Alice starts with a strong prior

belief in the dangers of vaccines. She is given two studies to read, one for and one

against vaccine safety. The first study begins by stating that vaccines are safe —

Alice starts to think that the study is not reliable, as she is confident that vaccines

are dangerous. After reading on, the study makes another point about vaccine

safety, Alice is now more easily able to dismiss this as she already has doubts over

the study’s reliability. As Alice reads on, she becomes convinced that the study is

not credible and the later information has very little impact on her beliefs. The

second study raises questions about vaccine safety. As Alice reads this study, her

confidence in its credibility grows as it provides information that aligns with her

existing beliefs in the dangers of vaccines, and she uses this evidence to bolster

those same beliefs. Alice’s beliefs about the dangers of vaccines and the reliability

of the studies become correlated, and if she forgets about these correlations then

attitude polarisation emerges.

4.5.3 Belief Perseverance

People can persevere in their beliefs with greater tenacity than the evidence would

warrant [Klayman, 1995]. Belief perseverance is typically defined with a temporal

aspect in the sense that once a belief is formed it will persist even once the evidence
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Figure 4.5: Attitude polarisation. Data from a source is followed by data from a
new second source with the opposite view. With a strong initial prior (top), the
BIASR model shows positive biased assimilation from the first data source followed
by negative biased assimilation, overall increasing belief in the central hypothesis.
With a low initial prior belief (bottom) we also see biased assimilation of both
sources of data, overall decreasing belief in the hypothesis. Both positions become
more extreme from seeing the same set of data under the BIASR model, showing
attitude polarisation.

that formed its basis is discredited [Anderson et al., 1980; Ross et al., 1975]. In

an early experimental study Ross et al. [1975] gave participants false feedback on a

task (either good, average or bad). This (reasonably) influenced the participants’

opinion of their task performance, but the participants held onto these opinions

even after they were told that the feedback was fictitious. This effect was explored

further by Anderson et al. [1980], who gave participants fictitious data suggesting

that firefighters who were courageous were more likely to be successful in their jobs.

This induced participant beliefs that persisted even once the data was revealed to

be fictitious.

It has been noted that belief perseverance is connected to the primacy effect
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[Nickerson, 1998], where data observed earlier has a larger impact on belief than

data seen more recently. Bruner and Potter [1964] showed participants images, and

found that they were slower to recognise those images when they came into focus

slowly, as compared with participants who saw the same image without first seeing it

out of focus. They attributed this effect to the perseverance of hypotheses generated

while the image was out of focus. This was followed in the late 60s with a series of

studies that tested participants’ ability to form opinions through sampling, finding

that early data could induce beliefs that were then held onto more strongly than

would be Bayesian rational in light of later evidence against the belief [Geller and

Pitz, 1968; Peterson and DuCharme, 1967; Jones et al., 1968].

In belief perseverance, the order that beliefs are formed is important. And

if beliefs are formed from observed data, then the order that data is received is

important. In contrast to the exchangeability principle of Bayesian rationality, i.e.

that the order of the data received should not make a difference to the posterior

beliefs, we define belief perseverance as the observation that data received earlier

has a stronger influence on final beliefs than opposing data received later,

P pH|Dq ą P pH|Dqrational , D “ rDfor, Dagainsts . (4.13)

Figure 4.6 shows a simulation of belief perseverance. Starting from a neutral

prior, P pHq “ 0.5, both the simple and rational models end up with the same

posterior belief as they began with, after seeing an equal amount of evidence for

and against. In the BIASR model, the initial data drives belief in H beyond what is

rational. Once the belief is ingrained, negative biased assimilation then slows down

disconfirmation of belief. Here, we have simulated data as coming from separate

sources. If we instead used a single source then we still observe belief perseverance

but the effect is not as strong.

4.5.4 Confirmation Bias in Selection of Sources

Confirmation bias is usually defined not only in terms of assimilating information,

but also in the selection of information in a way that supports existing beliefs. Taber

and Lodge [2006] replicated and extended Lord et al. [1979]’s study on attitude

polarisation. Participants were chosen who held strong beliefs about either gun

control or affirmative action. They were then shown sources for and against those

positions, but some participants also had the opportunity to choose the sources they

wished to read. Those with strong prior beliefs selected the sources that were likely

to agree with their position. Redlawsk [2002] found a similar effect in a behavioural
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Figure 4.6: Belief perseverance. Data for, then data against, the central hypothesis
are received from different sources given neutral initial priors in both the central
hypothesis and source reliability. Under simple and rational models, the belief in
the central hypothesis returns to the prior belief. With the BIASR model, biased
assimilation dynamics mean that the data received earlier has a stronger effect on
posterior beliefs than data received later.

experiment where they simulated a presidential primary election. Once participants

had developed a preference for a candidate, they were more likely to search for

information about that candidate. This form of confirmation bias may go beyond

the selection of external sources, and Kunda [1990] also suggested a confirmation

bias in the selection of memories and cognitive processes.

In order to extend our model to selection of sources we must add an extra

assumption – agents are limited in that they cannot consume data from all sources

and must be selective. An optimal selection would presumably be based on some

kind of value function on the sources. This is difficult to model as value is subjec-

tive and would need to take into account complicated utility functions [Klayman

and Ha, 1987]. Principled approaches [Klayman and Ha, 1987; Klayman, 1995] for

quantifying the value of a source include a) quantifying the expected change in the
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probability of an agent guessing correctly about a hypothesis following information

from the source, b) the diagnosticity of a question (or source) given by the expected

log likelihood ratio. The likelihood ratio quantifies the degree of belief change given

some data, equivalent to the ratio of posterior and prior odds. Here we use the

expected log likelihood ratio as a measure of the value of a source, Q, defined as

Q “

ˇ

ˇ

ˇ

ˇ

P pD “ 1qlog

ˆ

P pD “ 1|H “ 1q

P pD “ 1|H “ 0

˙ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

P pD “ 0qlog

ˆ

P pD “ 0|H “ 1q

P pD “ 0|H “ 0

˙ˇ

ˇ

ˇ

ˇ

.

(4.14)

This is adapted from Slowiaczek et al. [1992]. If agents select sources based

on their value in terms of diagnosticity, then we can define confirmation bias in the

selection of sources as valuing a confirmatory source’s relative diagnosticity more so

than would be rational,

Q|Dfor

Q|Dagainst
ą

ˆ

Q|Dfor

Q|Dagainst

˙

rational

. (4.15)

We can calculate the diagnosticity of a source using equation 4.14, for the sim-

ple, rational and BIASR models. See the Supplementary Information for a derivation

using the joint belief distribution.

Figure 4.7 shows the diagnosticity of sources for agents updating under the

simple, rational and BIASR models. In the simple case the diagnosticity of sources

is invariant. In the rational case there is little difference in the diagnosticity of

sources, and the disconfirmatory sources are actually slightly preferred. With the

BIASR model, there is a much greater difference in the diagnosticity of sources,

with confirmatory sources much preferred. An individual that can choose only one

source would much prefer the confirmatory source under the BIASR model, if that

choice was made based on the source diagnosticity.

4.6 Empirical Evidence Aligned with the Independence

Approximation

We have shown that the BIASR model can generate a range of confirmation bias

type behaviours. If the model is capturing, in some sense, how people actually

behave then we would expect to see a difference in behaviour depending on whether

information is processed incrementally or all at once. Processing data all at once

will give the same result as rational incremental processing, i.e. no bias. However,

according to the BIASR model, sequential processing will show path dependence.
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Figure 4.7: Confirmation bias in the selection of sources. a) The source diagnosticity
is constant with the simple version of Bayes’ theorem. b) In the rational model,
the source diagnosticities are similar, and in fact the disconfirmatory sources have
a slightly higher diagnosticity. c) With the BIASR model, the diagnosticity of
confirmatory sources is much greater than disconfirmatory sources. d) The ratio of
diagnosticity is much higher in the BIASR model, while in the simple and rational
cases this ratio stays around 1.

An experimental manipulation would be to encourage participants to either

a) process information incrementally or b) process information all at once. We ex-

pect to see more confirmation bias when the information is processed incrementally.

We found two previous experimental studies where this distinction was made.

4.6.1 Redlawsk (2002)

Redlawsk [2002] describes the difference between on-line processing, where informa-

tion is evaluated immediately and sequentially versus memory processing where in-

formation is remembered and then evaluated all at once when a decision is required.

In an experiment, they simulated a presidential election and gave participants in-

formation about candidates. In the on-line condition, no further instructions were

given as on-line processing is assumed to be the default behaviour. In the memory-

based condition participants were encouraged to remember the information that

they saw; they were told that they would be tested on it later, as well as being told

that they would need to justify their choice to an experimenter. They investigated
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how participants reacted to incongruent (negative) information once they had devel-

oped a preference for a candidate. In the online condition this negative information

actually increased the preference for the candidate, while in the memory condition

the negative information reduced the candidate rating: In the on-line condition the

incongruent information seems to be negatively evaluated to such an extent that it

provides evidence in favour of the candidate.

Redlawsk [2002] attribute the difference to an additional accuracy motiva-

tion to the memory-based processors, within the framework of motivated reasoning

[Kunda, 1990]. Within this framework, the memory-based processors are motivated

for greater accuracy due to the instruction that they will need to justify their choices,

and they achieve this by processing the information all at once (or remembering the

dependencies between beliefs). The BIASR model suggests that the bias arises be-

cause of path dependence in the on-line condition. Figure 4.8 shows the data as

presented by Redlawsk [2002] alongside a simulated replication of the effect with

the BIASR model. Here, we used the same model as in the earlier simulations, with

the change that unreliable sources are now anti-reliable, so are more likely to give

false information, i.e. P pD “ 1|H “ 1, R “ 0q “ 0.35.

4.6.2 Carlson, Meloy and Russo (2006)

In this experiment [Carlson et al., 2006], participants were asked to make a choice

between two restaurants after seeing each of the restaurants’ attributes. The six

attributes were typically neutral but included one for each restaurant that was much

in its favour (for example, one restaurant has a professional dessert chef while the

other has a small assortment of standard desserts). The order of attributes were

manipulated so that the target restaurant had its very positive attribute revealed

first, and the opposing restaurant had the attribute in fourth position. As a further

treatment, in Study 1 the attributes were shown sequentially, while in Study 3 the

attributes were shown together on a single page for each restaurant. They found

a significant preference for the target restaurant in Study 1, but not in Study 3.

Confirmation bias was not detected when information was presented in one block,

but was detected when the same information was presented sequentially.

The authors of the study interpret the result within Russo’s predicisional

distortion of information framework. When incorporating information sequentially,

a positive first attribute creates an initial preference for the target restaurant that

then biases the interpretation of subsequent data so that overall the target restaurant

is preferred. This framework is similar to our model and the findings here support

both perspectives. Within the BIASR model, the preference for the target restaurant
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Figure 4.8: Replication of the Redlawsk result. a) The data presented by Redlawsk.
Following negative information about a preferred candidate, the online processors
increase their rating for the candidate, while the memory processors decrease their
rating. b) A replication with the BIASR model. We start with a prior preference
for the candidate and a neutral prior in source reliability (not shown). Unreliable
sources are considered anti-reliable, i.e. negative information from an unreliable
source actually acts as evidence for a candidate. We simulate receiving a series
of negative pieces of information from the source. Similarly to Redlawsk: in the
BIASR condition belief in the candidate increases, while it decreases in the rational
condition.

in Study 1 is described by belief perseverance, i.e. the first attribute observed has a

greater weight on the final choice than the fourth attribute. Alternatively, when data

is shown all at once it is more likely to be processed together, which is equivalent

to remembering the history of belief dependencies. We have simulated this result

within the BIASR model (Figure 4.9). We used a similar setup as in the earlier

simulations, but now messages can be negative, slightly positive or very positive,

D P r0, 1, 2s respectively. We chose this setup because it replicates the result with a

minimal change to the existing model.

4.7 Discussion

The traditional normative argument is that rational behaviour should enjoy higher

evolutionary fitness [Daw et al., 2008]. As argued here and noted before, a normative
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Figure 4.9: Replication of the Carlson, Meloy and Russo result. Information is
received about attributes of a restaurant. The attributes that are received are
either “1”: neutral (or slightly positive); or “2”: strongly positive. a) In the BIASR
model the strong initial positive message induces a bias towards restaurant 1 (M1)
which persists. b) In the rational model, the order that data is received does not
influence the final beliefs and both restaurants are judged to be of equal expected
quality. The beliefs are simulated using c) the conditional probability distribution.

account should also include cognitive limitations [Dasgupta et al., 2020; Klayman,

1995; Daw et al., 2008], such that when considering computationally intractable

problems evolutionary pressures will favour organisms with efficient approximations

to rationality [Daw et al., 2008]. We have argued that maintaining dependencies

within large belief networks is computationally intractable given realistic memory

constraints. We showed how human cognition can overcome this limitation through

the BIASR model (Bayesian updating with an Independence Approximation and

Source Reliability). And this approximation leads directly to many confirmation

bias behaviours. Our results are general, and similar problems will be encountered

by artificial agents with large world models.

Previous information processing models of confirmation bias either introduce

irrationality without a complete explanation, or they explain the bias as rational

given a certain belief updating structure. Irrationality can be included by, for exam-

ple, adding a factor to reduce the weight of disconfirmatory evidence [Gerber and

Green, 1999]. Our contribution offers a principled source of irrationality based on

a boundedly rational approximation to Bayesian rationality. This approximation

leads to a simplification of the rational model which is equivalent to the “belief-

based” updating described in previous research [Merdes et al., 2020; Bovens et al.,

2003; Hahn et al., 2018; Olsson, 2011]. Additionally, our single model is able to

generate many forms of confirmation bias. We do not claim that the BIASR model

is the full story, and for example Bayesian networks [Jern et al., 2014] can explain

much of the empirical evidence for attitude polarisation. However, the BIASR model
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demonstrates a variety of other confirmation biases that the Bayesian rational model

does not, suggesting that it is capturing an important aspect of boundedly rational

cognition.

We have focused on a very simple Bayesian network to demonstrate that

confirmation bias can arise from the BIASR model. We do not claim that this

simple model is how people actually update their beliefs. However, the behaviour

is robust and emerges under a wide range of conditional probability distributions.

The assumptions also hold (and are even strengthened) with more complex belief

structures. We present a model based on two types of sources (reliable or not).

However, inference that includes beliefs about types of sources in general would be

susceptible to confirmation bias in the same way (including for example biased or

anti-reliable sources).

We have included an assumption that human information processing is de-

scribed by the mathematics of Bayesian networks, and that human memory can be

analysed in the same way as computer memory. Our feeling is that these principles

are fundamental to information processing and so it is reasonable to assume that

human cognition is at least partly bound by them.

4.7.1 Social and Individual Explanations

The BIASR model is at the information processing level. However, there have also

been explanations of confirmation bias at the social and individual level. Our model

is not in opposition to these explanations, but instead complements them.

There have been a range of social explanations for confirmation bias.

Mercier and Sperber [2011] claim that confirmation bias can improve group cog-

nition. If biased individuals argue to support their own belief then the result can be

that overall there is a more efficient group search through hypothesis space, which is

then reconciled through debate. This idea could describe the scientific process. In-

deed, scientists are not immune to confirmation bias [Koehler, 1993; Dunbar, 1995;

Mahoney, 1977] and history is littered with individual scientists who steadfastly held

onto their beliefs despite disconfirmatory evidence [Nickerson, 1998]. Building on

this idea, Norman [2016] argues that the purpose of human reasoning in general

is to align group intentions and confirmation bias helps in this regard by strongly

entrenching group mythology and beliefs that can persevere over time and so main-

tain group cohesion. Another perspective is that believing something strongly can

influence others and help to bring it about [Peters, 2020], a form of self-fulfilling

belief [Snyder, 1984].

At the individual level, confirmation bias may help to navigate asymmetric
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error utilities [Nickerson, 1998; Friedrich, 1993] (being wrong about believing there

isn’t a lion is more problematic than being wrong that there is a lion). From an

adaptive perspective, a wider utility function is being optimised beyond truth seek-

ing, and confirmation bias helps to drive behaviour towards a beneficial outcome in

this wider game. This is almost certainly true if we assume that human behaviour

is adaptive. While the threat of being eaten is obvious, the principle applies to

other threats such as identity or self-perception. Kunda [1990] made the case that

reasoning is motivated only sometimes by accuracy, and other times by a desire to

arrive at certain conclusions. In this account, the individual’s motivation will deter-

mine which cognitive processes are put to use. If accuracy is desired, then deeper

processing is carried out. But if an individual has a motivation to e.g. preserve their

self-image or identity, then they can introduce biases in their reasoning that lead

to the preservation of those beliefs [Kunda, 1990]. People are not completely free

to believe whatever they want, and are instead constrained by the available cogni-

tive resources and by the need for coherence within beliefs, at least to the extent

that they could justify themselves to someone else [Kunda, 1990]. The desire for

coherence is an older idea that is also a part of the influential cognitive dissonance

theory [Festinger, 1962]. Biased evaluation, biased assimilation and belief persever-

ance can be understood as the reconciliation of the dissonant beliefs “I believe that

I am someone who holds correct beliefs” and “this evidence disconfirms my beliefs”

[Kunda, 1990]. However, notably it has been argued that dissonance theory does

not easily predict attitude polarisation [Lord, 1989]. Motivated reasoning and the

avoidance of dissonance are a part of the puzzle, but it still leaves the question open

of describing the cognitive processes involved.

As social behaviour emerges from individual behaviour, so individual be-

haviour emerges from cognitive processing. Kunda’s perspective on motivated rea-

soning [Kunda, 1990] is enriched by our framework. Motivated reasoning relies on

the assumption of different cognitive faculties that have differential levels of accuracy

and effort. Our model provides a clear account of using extra cognitive resources

to improve the accuracy of reasoning. An individual with an accuracy motivation

could update their beliefs without applying the independence approximation, and

instead use extra memory resources to consider dependencies between beliefs and

avoid biases. We can also see the link to emotional states and hot vs cold cognition

[Kunda, 1990] — one can imagine a hot-headed individual quickly jumping to false

conclusions while a cooler head carefully thinking through the evidence and belief

dependencies.

Given that confirmation bias exists, we can speculate that it would make
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sense for adaptive pressures to build other behaviours around this bias — nature

is parsimonious. A purely rational agent would reason about the world and then

decide on their actions based on these beliefs combined with an expected utility

distribution. In certain situations it may be more cognitively efficient to shortcut

this two-step process by leveraging confirmation bias to drive behaviour based on

less than rational beliefs. Given that confirmation bias exists at the individual level,

we can speculate that adaptive pressures built useful group dynamics upon it such as

argumentation and debate [Mercier and Sperber, 2011], persistent group ideologies

and mythologies [Norman, 2016] and even the will to force reality towards our beliefs

[Peters, 2020].

4.8 Conclusion

The BIASR model is based on principled assumptions, generates many confirmation

bias type behaviours, and aligns well with both empirical evidence and other expla-

nations in the literature. The main principle of the BIASR model is that put forward

by Daw et al. [2008], who contend that rationality is not the appropriate normative

standard when studying human and animal behaviour. Instead, where rational com-

putation is expensive we should expect to see efficient approximations to rationality.

We demonstrate that an independence approximation is one way in which cognition

can overcome intractable computational demands, providing a fuller normative ex-

planation for the “belief-based” updating described in earlier work [Merdes et al.,

2020; Olsson, 2011; Bovens et al., 2003; Hahn et al., 2018]. Given its general nature,

the independence approximation deserves further investigation as a more general

cognitive mechanism for boundedly rational reasoning with memory constraints.

4.9 Supplementary Information — The Diagnosticity of

a Source

In the main text, we wrote down the diagnosticity of a question as the expected log

likelihood ratio of the answers,

Q “

ˇ

ˇ

ˇ

ˇ

P pD “ 1qlog

ˆ

P pD “ 1|H “ 1q

P pD “ 1|H “ 0

˙ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

P pD “ 0qlog

ˆ

P pD “ 0|H “ 1q

P pD “ 0|H “ 0

˙ˇ

ˇ

ˇ

ˇ

.

(4.16)

Here, we show how this can be applied to joint belief distributions in P pH,Rq.

The likelihood of data given a hypothesis can be written as,
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P pD|Hq “
P pD,Hq

P pHq
. (4.17)

In our case, we would prefer this in a form based on the joint belief distribu-

tion that includes the source reliabilities. By the law of total probability,

P pD|Hq “
P pD,H,R “ 1q ` P pD,H,R “ 0q

P pH,R “ 1q ` P pH,R “ 0q
. (4.18)

The numerator can be rewritten in terms of conditional probabilities on

(H,R),

P pD|Hq “
P pD|H,R “ 1qP pH,R “ 1q ` P pD|H,R “ 0qP pH,R “ 0q

P pH,R “ 0q ` P pH,R “ 1q
. (4.19)

The terms of the right hand side are now all known given the simulated

models in the main text. And this relation can be used to calculate the numerators

and denominators of the likelihood ratios in Equation 4.16.

Additionally we can calculate

P pDq “
ÿ

H,R

P pD|H,RqP pH,Rq . (4.20)

We can therefore straightforwardly calculate the expected diagnosticity of a

source given a joint belief distribution. In the rational case, we can use the full joint

distribution, and update that rationally as we receive more data. In the BIASR case,

we can approximate the joint distribution by P pH,Rq “ P pHqP pRq, and use that

approximation both in the diagnosticity equation and between subsequent datums

from a source.

4.10 Supplementary Information — Simulations of the

Full Joint Belief Distribution

We found it useful for building intuitions to examine the behaviour of the full belief

distribution, P pH,Rq, when receiving evidence. This is presented here in the case

of confirmatory and disconfirmatory evidence. We follow the same simulation setup

as described in the main paper.
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Figure 4.10: Joint belief distribution given confirmatory evidence. The rational
model has more probability mass in the correlated beliefs a) P pH “ 1, R “ 1q and
e) P pH “ 0, R “ 0q, than the BIASR model. In the BIASR model, most of this
correlated probability mass is transferred to the belief b) P pH “ 1, R “ 0q, and a
small amount to d) P pH “ 0, R “ 1q. Overall this means that for the marginal
beliefs the BIASR model has a c) stronger posterior belief in the central hypothesis,
P pH “ 1q, and g) a smaller posterior belief in the source reliability, P pR “ 1q,
compared to the rational case.

4.10.1 Confirmatory Evidence

In the confirmatory case (Figure 4.10), the belief dependencies act in a way to

induce a positive correlation between H and R. The independence approximation,

by definition, removes this correlation. For this reason the BIASR model (compared

to the rational model) gives less probability weight to the beliefs P pH “ 1, R “ 1q

and P pH “ 0, R “ 0q, and so more to the beliefs P pH “ 1, R “ 0q and P pH “

0, R “ 1q. As P pH “ 0, R “ 1q is very small compared to the other beliefs, most

of the correlated probability mass is transferred to P pH “ 1, R “ 0q during the

independence approximation. In the BIASR model this strengthens the posterior

belief in the central hypothesis beyond what would be rational. And it weakens the

posterior belief in the source reliability compared to the rational case.
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Figure 4.11: Joint belief distribution given disconfirmatory evidence. The rational
model has more probability mass in the negatively correlated beliefs b) P pH “

1, R “ 0q and d) P pH “ 0, R “ 1q, than the BIASR model. In the BIASR model,
most of this probability mass is transferred to the belief e) P pH “ 0, R “ 0q, and
a small amount to a) P pH “ 1, R “ 1q. Overall this means that for the marginal
beliefs the BIASR model has, compared to the rational model, a c) stronger posterior
belief in the central hypothesis, P pH “ 1q, and g) a much weaker posterior belief in
the source reliability, P pR “ 1q compared to the rational case.

4.10.2 Disconfirmatory Evidence

We see a similar pattern with disconfirmatory evidence (Figure 4.11). Now there is

a negative correlation and the beliefs P pH “ 1, R “ 0q and P pH “ 0, R “ 1q gain

more probability mass in the rational case compared to the BIASR model. With

the independence approximation, the correlated probability mass is transferred to

the beliefs P pH “ 0, R “ 0q and P pH “ 1, R “ 1q. When summing over the joint

belief distribution, this results in the BIASR model having a higher marginal belief

in the central hypothesis , P pH “ 1q, and a weaker belief in the source reliability,

P pR “ 1q. The independence approximation allows the individual to diminish their

belief that the source is reliable and the hypothesis is false.
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Chapter 5

Discussion

5.1 Summary of Contributions

Chapter 2: The Rising Entropy of English in the Attention Economy

began with empirical results that show that word entropy (and more broadly lexical

diversity) has been rising steadily in American English since around 1900. Addition-

ally, in the modern era, the word entropy of short-form media (news, magazines) is

higher than in long-form media (fiction books, non-fiction); this was found in both

American and British English. Even shorter-form media in the form of social media

feeds from Twitter and Reddit were shown to have even higher word entropy than

traditional media. A model of information foraging in the attention economy was

developed that describes the rising word entropy as well as the media differences.

This model also predicts that very short-form media (such as social media) is only

competitive in a world with easy access to information (fast switching).

Chapter 3 - Bias in Zipf’s Law Estimators concerns the methodological

problem of fitting power laws models to rank-frequency data (i.e. Zipf’s law). Sys-

tematic bias in prevailing maximum likelihood estimators was shown to be due to

an inappropriate likelihood function. This bias is fundamentally due to correlated

errors in frequency and frequency-rank and low sampling in empirical data from

the tail of the underlying data generating process. The correct likelihood function

is derived for words drawn from an underlying power law probability distribution.

Unfortunately, computation of the maximum likelihood was found to be computa-

tionally intractable for real-world text samples. A method of Approximate Bayesian

Computation was explored and shown to be effective at approximating the maxi-

mum likelihood with much less bias. However, applying this algorithm to real-world

text samples introduces arbitrary biases depending on the selection of the summary
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statistic that is minimised in the algorithm. It was argued that these biases are

fundamental to fitting Zipf’s law, and that all current estimators for Zipf’s law in

language are biased as they do not represent the true data generating process.

Chapter 4 - Confirmation Bias Emerges from an Approximation

to Bayesian Reasoning involves a comprehensive review of the confirmation bias

literature and the presentation of the BIASR model (Bayesian Updating with an

Independence Approximation). The 5 main forms of confirmation bias were clearly

described and defined (biased evaluation, biased assimilation, attitude polarisation,

belief perseverance, selection of sources). Existing explanations for confirmation

bias were summarised and reviewed. It was argued that in a world with potentially

unreliable sources, data received can provide information about central hypotheses

and source reliability. Inference from data in such a world is represented as a col-

lider type Bayesian network containing beliefs about central hypotheses and source

reliability. Given this model, maintaining a joint belief distribution is a rational ap-

proach as it maintains information dependencies between beliefs that are introduced

as data is received. Maintaining these joint belief distributions introduces unrealis-

tic memory demands for agents with large world models. The cognitive burden can

be greatly reduced by taking an independence approximation between beliefs. This

represents the arguments underlying the BIASR model. Simulations show that each

of the 5 listed forms of confirmation bias are generated under the BIASR model, as

well as other empirical results in the literature.

5.2 Future directions

5.2.1 Chapter 2 - The Rising Entropy of English in the Attention

Economy

A key assumption made in the model is that people are attracted to high entropy

text. There are existing experimental results from eye-tracking experiments that

show that people are attracted to complex information in advertisements [Radach

et al., 2003] and towards surprising information when watching films [Itti and Baldi,

2009]. There are also evolutionary arguments as to why people would be attracted

to high density information. A future direction would be to test this assumption

experimentally when showing people high and low entropy text. This kind of experi-

ment could also be extended to test the information foraging model more completely

by observing how people choose between different items of textual information, how

long they spend reading each item and the time spent switching and searching be-

tween items. Information prevalence and/or time required to switch between items

105



could be manipulated in different experimental conditions.

The chapter considers English text. Future work could investigate other lan-

guages and types of text. A difficulty here will be finding suitable text corpora. The

Corpus of Historical American English (used to investigate trends in the chapter)

is a particularly high quality text corpora. One option is Google Ngrams [Michel

et al., 2011], which has historical text samples for many languages. However, this

is not a balanced corpora and the corpus composition changes over time. For ex-

ample, the collections for US and British English have been shown to significantly

change composition over historical time towards more scientific terms [Pechenick

et al., 2015]. This could be due to Google collecting data by scanning books in Uni-

versity libraries, which introduces large amounts of textbooks in the second half of

the 20th century. Any trends in word entropy found in Google Ngrams may reflect

either changes in language use or changes in corpus composition.

Attention economy effects may be more pronounced in some other languages

than in American English. In many countries there has been a more rapid and

recent transition from a low competition media environment to a highly connected

and competitive media environment, with the global phenomena of the internet,

smartphones and social media. As such, we may see more pronounced attention

economy effects on language use in these kinds of countries, which may be detectable

without long-term balanced text corpora.

5.2.2 Chapter 3 - Bias in Zipf’s Law Estimators

There do not seem to be clear future directions in terms of finding better Zipf’s law

estimators. Instead, the chapter argues that there is inherent bias in the estimators

due to a disconnect between the complexity of the data generating process (human

cognition) and the assumptions in the estimators. However, there is scope for future

work that encourages a more consistent application of estimators. One approach

would be to release an easy to use python or R package designed specifically for

analysing Zipf’s law in language. This could be released alongside an accompanying

paper that clearly explains the various forms of Zipf’s law and the estimators. Ideally

this could be developed in collaboration with prominent Zipf’s law researchers such

as Ferrer-i-Cancho’s group in Spain. This would provide consistency in the use of

estimators as well as data cleaning processes. A challenge in relation to this is the

development of hypothesis tests tailored specifically to Zipf’s law, which would be

expected in a statistical package. Existing hypothesis tests for power-law models

use bootstrapping of data from models to generate p-values [Clauset et al., 2009] —

it is unclear whether this is entirely suitable for rank-frequency data.
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5.2.3 Chapter 4 - Confirmation Bias Emerges from an Approxima-

tion to Bayesian Reasoning

The BIASR model makes some clear predictions about human behaviour, which

can be tested through behavioural experiments. Specifically, the model predicts

that confirmation bias behaviour should appear when people update their beliefs

sequentially when receiving data. This could be manipulated in alternative experi-

mental conditions where people are either shown information sequentially or all at

once, which should result in less confirmation bias. Alternatively, the alternative

experimental condition could be to ask participants to remember the information

that they have seen, which should encourage the participant to remember informa-

tion dependencies. Similar previous experiments were described in the main chapter

[Redlawsk, 2002; Carlson et al., 2006]. An experiment with pre-registered hypothe-

ses based specifically on the BIASR model would carry more weight and represent

a good test of the model. This experiment could also test when and how people

use conditional dependencies when updating beliefs. For example, the participants

could receive some negative information about a person from a particular news

source, then later on find out that the news source is very unreliable. We can test if

the beliefs about the person are updated or not after learning that the news source

is poor quality.

Confirmation bias has been implicated as a factor in increasing political po-

larisation [Del Vicario et al., 2017]. The BIASR model lends itself well to simulating

group behaviour. A group model could be based on a network of agents who main-

tain beliefs in a central hypothesis as well as beliefs about the reliability of each of

the other agents. A similar group level model has been investigated before [Martins,

2013] and shown to generate polarisation in some conditions. The BIASR model

on a network represents a Bayesian opinion dynamics model with simultaneously

updating edge weights (beliefs in reliability), which is similar to a “trust matrix” as

proposed by Degroot [1974]. As well as shedding light on political polarisation in

the modern era, the updating of source reliability may also be an adaptation that

overcomes fundamental biases in wisdom of crowd effects [Becker et al., 2017], as

network weights (and influence) become correlated with agent accuracy. Simulation

and/or behavioural experiments along these lines could be valuable contributions.

5.3 The PhD Experience

I wanted to add a personal note to describe the PhD experience, which is not

captured by the thesis so far.
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Six months into the PhD the COVID pandemic hit. This was very disruptive

but fortunately I had spent the first 6 months having regular meetings with my main

supervisor Thomas Hills, and had established a good working relationship. While

I was only 6 months into the PhD, I was 18 months into the programme at the

Mathematics of Real-World Systems Center for Doctoral Training (CDT), which

began with a year-long Masters course. In this Masters year I had built good

relationships with my coursemates and faculty which helped immensely during the

COVID period in terms of support. More generally I would recommend a CDT to

any PhD candidate — I found the training to be very valuable. And having a cohort

of coursemates was even more valuable.

During COVID I moved away from the campus at Warwick and back home

to Manchester for 18 months. As things began opening up again following the

pandemic, I started a placement at the Alan Turing Institute in London. This

meant that the majority of my PhD experience was remote. This raised lots of

challenges including some degree of academic isolation. Fortunately I was able to

find support from my supervisor Thomas Hills, other faculty staff, coursemates,

other PhD students, and friends and family.

I was fortunate in that I was able to do a lot of in-person teaching before

the COVID lockdown, as a teaching assistant in 4 courses. This helped me to gain

confidence in public speaking, thoroughly learn the taught material, and generally

gain some teaching experience. I continued teaching some courses remotely during

the PhD, which I believe was much easier having had the in-person experience. I

find teaching very valuable. I find it fulfilling to be able to support students in their

own learning. And the practice of explaining things to people at a variety of levels

really helps build my own understanding and intuitions.

Of course I discovered that in research there are a lot of dead-ends. The

work presented in this thesis represents research projects that came to fruition, but

there were others that did not. This included spending a long time trying to find

a better estimator for calculating the entropy of text, using for example Lempel-

Ziv compression [Schürmann and Grassberger, 1996; Ziv and Lempel, 1978] — I

discovered that this is a very difficult problem. During the groundwork for Chapter

2 we also analysed Google Ngrams [Michel et al., 2011], but in the end did not

use this dataset due to concerns of the unbalanced composition of the text samples

[Pechenick et al., 2015]. I also spent some time investigating generative models for

Zipf’s law [Cancho and Solé, 2003] in connection with Chapters 2 and 3. In that case

I ran out of time and might come back to the research question in the future. Overall

these dead-ends were necessary parts of the research process and did give benefits

108



in terms of deepening my domain knowledge in those areas and also improving the

meta-skill of recognising good research projects.

As mentioned above, as a part of the Center for Doctoral Training programme

I spent a year before the PhD competing a Masters. This included a research project

under the supervision of Weisi Guo. I was fortunate enough to be given a very

tractable problem by Weisi and we made some decent progress. I was able to publish

the Masters project as an article in Nature Scientific Reports, “Organisational Social

Influence in Heirarchical Graphs: From Anarchy to Tyranny” [Pilgrim et al., 2020].

This was published a few months into the PhD and it gave me a good “early win”.

Publishing something early also helped me to get over fear and trepidation in sending

articles to journals. I think that an easy trap to fall into is to be overly cautious

about sending things for publication and to delay too long (a trap which I also fell

into on occasion).

During the PhD there were other projects beyond the work presented in this

thesis. These were not included as they were either not research focused or my

contribution was not easily extracted from the group collaboration. In the former

case (not research focused) I developed and published a python package along with

an article in the Journal of Open Source Software titled “piecewise-regression in

python” [Pilgrim, 2021]. I also wrote an opinion article for PLOS Computational

Biology “Ten Simple Rules for Working with Other Peopleś Code” [Pilgrim et al.,

2023]. I was involved in other projects where I was not the lead author includ-

ing a chapter in a book with Joe Austerweil and Kesong Cao, “Burstier Events:

Analysing Human Memory over a Century of Events Using the New York Times”

[Austerweil et al., 2022]; and an article in the Conference on Autonomous Agents

and Multiagent Systems with Stas Zhydkov, Jacques Bara and Paolo Turrini, “The

Grapevine Web: Analysing the Spread of False Information in Social Networks with

Corrupted Sources”, which has been accepted and due for publication in Summer

2022. And last but not least I was involved in several behavioural studies with Eu-

gene Malthouse, Daniel Sgroi and Thomas Hills, the first of which, “When Fairness

is Not Enough: The Disproportionate Contributions of the Poor in a Collective Ac-

tion Problem”, is in press and due for publication at the Journal of Experimental

Psychology General.

Overall, I found the PhD experience challenging but ultimately worth it. I

think it is important to remember to enjoy and celebrate the successes and to put the

difficulties and challenges in perspective. I have changed a lot during the process,

and I believe that I have become a better researcher and scientist. I intend to stay

in academia and continue to research how people communicate and work together.
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