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Abstract

Orthogonal transforms are the key aspects of the encoding and decoding
process in many state-of-the-art compression systems. The transforms in block-
based predictive transform coding (PTC) is essential for improving coding
performance, as it allows decorrelating the signal in the form of transform
coefficients. Recently, the Graph-Based Transform (GBT), has been shown
to attain promising results for data decorrelation and energy compaction
especially for block-based PTC. However, in order to reconstruct a frame for
GBT using block-based PTC, extra-information is needed to be signalled into
the bitstream, which may lead to an increased overhead. Additionally, the
same graph should be available at the reconstruction stage to compute the
inverse GBT of each block.

In this thesis, we propose a set of a novel class of GBTs to enhance the
performance of transform. These GBTs adopt several methods to address the
issue of the availability of the same graph at the decoder while reconstructing
video frames. Our methods to predict the graph can be categorized in two types:
non-learning-based approaches and deep learning (DL) based prediction. For
the first type our method uses reference samples and template-based strategies
for reconstructing the same graph. For our next strategies we learn the graphs
so that the information needed to compute the inverse transform is common
knowledge between the compression and reconstruction processes. Finally,
we train our model online to avoid the amount, quality, and relevance of the
training data.

Our evaluation is based on all the possible classes of HEVC videos, consist of
class A to F/Screen content based on their varied resolution and characteristics.
Our experimental results show that the proposed transforms outperforms
the other non-trainable transforms, such as DCT and DCT/DST, which are
commonly employed in current video codecs in terms of compression and
reconstruction quality.
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Chapter 1

Introduction

Since early age tremendous effort has been rendered on improvement of imaging
technology and as a consequence in 90s revolutionary progress has been achieved
the way we capture our movement and activities, interact with each other
and represent our surroundings. Latest imaging technologies, however, require
acquiring large amounts of data, which impacts on storage and communication
infrastructures. Therefore, the improvement in compression techniques became
essential to cope up with the increasing data sizes.

Digital signal processing (DSP) has been a successful pillar for many
compression methodologies. In video and image compression standard of High
Efficiency Video Coding (HEVC) [11], intra prediction process shares several
high performance coding. A particularly important variation of the problem
of image compression is to achieve an optimal size of compressed images
without affecting the accuracy. HEVC has been used for lossless compression.
On the other hand, to achieve an optimal size of compressed images, lossy
compression is desirable. Lossy compression methods are based on the principle
of expanding a signal into orthonormal bases using an orthogonal transform,
with the expectation that most information is captured by a few basis functions.
For a random signal with a known covariance function, it is well known that
the Karhunen Loéve transform (KLT) [12] is the linear transform with the
best energy compaction property. The KLT basis functions of typical natural
images are close to the Discrete Cosine Transform (DCT), thus the DCT has
been championed as the best suited transform for compression applications.
Unfortunately, the DCT offers little adaptability to the characteristics of the
signal, as a fixed transform is usually applied to all signals.

The increasing data sizes associated with new imaging technologies have
encouraged new ways to improve compression methods. This has driven the
emerging field of DSP on graphs (DSPG), which aims at extending to the graph
domain the generalized operators and localized, multi-scale transforms defined

for discrete scalar functions on regular Euclidean spaces [13, 14]. Although
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Figure 1.1: Principle block diagram of the research.

images (and frames of videos) are 2D regular signals, they can be formulated
as graphs by connecting every pixel (node) with its neighboring pixels (nodes),
and by interpreting pixel values as the values of the graph signal at each node.
Representing signals as graph allows exploiting their underlying structure,
which is in general not possible following conventional DSP methods. The
Graph-Based Transforms (GBT) has been recently shown to attain promising
results for data de-correlation and energy compaction. This comes as an
intrinsic consequence of the underlying graph structure, which can accurately
reflect the correlation among pixels. In general, there are two variants of GBTs.
The first one is constructed based on the specific graph representing the signal
to be transformed. This variant accurately reflects the characteristics of the
signal, but may require signalling additional information so the decoder can
reconstruct the graph [15]. The second variant consists in using separable
transforms that can be applied to rows and columns of a matrix of signal values
(i.e. a block pixel) [16]. This may require understanding the characteristics
of the data from training data, but requires no additional information to be
signalled to the decoder.

In this research, a novel next generation of graph-based compression meth-
ods for the latest imaging data is proposed. This research contribute to the
realization of a predictive transform coding (PTC) framework based on DSPG,
as schematically summarized in Fig. 1.1, where imaging data are predicted
and coded, on a block-by-block basis, by using graph-based motion estimation,
graph-based transformation (i.e. using GBTs). This research aims at designing
effective and low-complexity GBTs by determining the most appropriate graph
construction for different imaging data. This research has the potential to
impact compression methods for both, new image formats, such as light-field
images, and new video formats, such as Ultra high definition (UHD), high

dynamic range (HDR), screen-content (SC) and free viewpoint videos.

1.1 Motivation behind this research

Making progress in representing an image as graphs became popular for dis-
crete and mathematically simple representation that lends itself well to the
development of efficient and provably correct methods. Graph is always a

minimalistic image representation. Also, graphs are flexibility in representing
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Figure 1.2: Video compression/decompression pipeline used by the HEVC and
VVC standards for block-based intra-prediction.

Figure 1.3: Partition of a frame into non-overlapping blocks.

different types of images. Further, a lot of work has been done on graph theory
in other applications. As a consequence, the probability of re-use of existing
algorithms and theorems developed for other fields in image analysis has been
increased. In literature since long time an image was proposed to represent as
a graph being a real-valued, non-negative function of two real variables and the
value of this function at a point will be called the gray-level of the image at the
point [17]. The advantages of adopting graph-based image representation are
enormous, even in the modern era. The real driving force behind this research
is to use GBT to circumvent the compression domain by utilising representing
an image as a graph concepts. Consequently, our research explored the existing
GBT for coding purpose since the GBT is quite adaptive to the signal since
for each residual block a unique graph is generated to accurately reflect the
correlation among residual values. In literature, block-based predictive PTC
[11, 18] is an integral part of modern video codecs such as the HEVC [19]
and the Versatile Video Coding (VVC) [20] standards. Intra-prediction is an



important tool used by block-based PTC, where each video frame is divided
into several non-overlapping blocks and processed in a block-wise manner
(see Fig. 1.3). Specifically, each block is predicted based on the surrounding
pixel values located immediately above and to the left by using one of several
intra-prediction modes. These modes include several angular modes, a planar
mode, and a DC mode. Each angular mode predicts a block using a specific
direction to accurately model edges and directional patterns, while the planar
and DC modes predict gradually-changing and smooth textures, respectively .
A residual block is obtained for each block by computing the difference between
the original and predicted block. Each residual block is then transformed,
and the resulting transform coefficients are quantized and encoded to create a
compressed bit-stream. To reconstruct the frame, the bit-stream is decoded,
dequantized and inverse-transformed to recover the residual blocks. Each
decompressed residual block is then added to the predicted block to recover the
original block (with some losses due to the transformation and quantization -
see Fig. 1.2). However, in literature we found a gap where the reconstruction
at decoder side needs to have the same graph information to perform GBT.
More precisely, at the decoder extra-information is needed to be signaled into
the bitstream, which may lead to an increased overhead. This information
includes the prediction mode used for each block, the block sizes, details of the
inverse transform, and the level of quantization. In this research we focus to
address the gap to reduce this overhead with novel ideas so that the information
needed to compute the inverse transform can be used as a common knowledge
between the compression and reconstruction processes. As an instance, all of
our methods used reference samples to avoid sending the information of the
block to be encoded at the decoder.

Our research includes the luma component of modern video frames of
HEVC standard (see Fig. 1.4, Fig. 1.5). Apart from the HEVC test sequences
our research is applied on Whole Slide (WSI) Pathology images (see Fig. 1.6).

1.2 Research objective

In recent days GBTs shows promising results in terms of energy compaction and
reconstruction. However, still it can not reach the level of KLT which is well
known as an optimal transformation. Consequently, it is always encouraged to
develop transformations which avoid the complexity of calculating eigenvector
from covariance function for residual signal. Also, in both the cases of KLT and
GBT, it require additional signalling to the decoder to reconstruct the image
or video sequence which reduces the gain of compression. Thus the overall
objective of this research is to develop a high-end compression technique for

image and video sequences by exploiting the field of graph signal processing



and machine learning algorithms.

1.2.1 Research questions and approaches
Our research question is two-fold:

e OQur first question is how this research helps to avoid overheads of sending
additional information to the decoder to reconstruct the sequence? More
precisely, we want to find ways to use the GBT without having to send
extra information to the decoder to be able to reconstruct the transform

coefficients.

e Our second research question is how to develop an image transformation
in graph domain similar to KLT in terms of de-correlation and energy
compaction which reduces the computational cost and increase the gain

in compression?

As a solution to the 1% research question this work encourage to develop
improved graph structure and prediction methods which avoids signalling over-
head by exploiting the prediction models such as template based prediction in
several domains, prediction inaccuracy modeling and many more. Approaching
to the 2" research question it involves machine learning algorithms. The ob-
jective is to exploit the optimization algorithm to minimise the gap in between
the graph Laplacian and covariance function. More precisely, this research
builds model with set of parameters which generates a signal with updated
parameters of the graph signal by learning to produce an estimate towards

minimizing the cost function with the covariance function of KLT.

1.3 Contribution

1.3.1 Overall contribution to the thesis: Non-learning and
learning based prediction

In this thesis we have addressed the issue of availability of the same graph
at the decoder. As a solution we have provided two potential prediction
strategy to predict the graph, each of which has advantages and disadvantages.
We have proposed non-learning based methods for predicting the graph in
Chapters 3 and Chapter 4. More precisely, these techniques heavily rely
on mathematical derivations, including template-based strategy or modeling
of prediction inaccuracy. The fundamental benefit of a non-learning based
technique is that the results are independent of the quantity, amount, and
applicability of training data. To infer any answer, however, requires a thorough
understanding of mathematics because these approaches are solely reliant on

mathematical optimizations. However, since ML/DL approaches have their



Figure 1.4: Class A: Luma component of Traffic (cropped). Resolution 2560 x
1600. Frame 30.



| Geneva.

Figure 1.5: Class Screen Content: Luma component of Map. Resolution 1280
x 720. Frame 60.
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Figure 1.6: (a) G component of colon tissue. Resolution 1024 x 1024. (b) G
component of lymphatic tissue. Resolution 1024 x 1024.

foundation on the relevance of training data, it is quite straightforward and
more versatile to improve the accuracy of prediction for the graphs generated
by such methods compared to other non-learning based approaches. We do not
necessarily require mathematicians to implement any M1/DL based prediction
methods. The proposed methods in the following chapters (Chapter 5, Chapter
6, and 7) are based on DL for predicting graphs. These DL based approaches
are able to automatically learn from data and make predictions without any

human intervention.

1.3.2 Chapter-wise contribution

The contribution of this thesis area as follows:

1. Methods for designing a framework to avoid signaling overhead
while reconstructing in decoder for pathology image (Chapter
3)

1.1 This chapter focuses on construction based on the specific graph
representing the signal to be transformed and its performance for
data de-correlation and energy compaction of images, within the
context of block-based PTC using intra-prediction. Specifically,
we introduce a new framework that eliminates the need to signal
additional information to the decoder. This is achieved by computing

the GBT based on a predicted residual signal, which is computed



1.2

1.3

using only the reference samples used to predict a block. This

variant accurately reflects the characteristics of the signal.

This framework is evaluated on a wide range of pathology images;

specifically WSIs depicting different tissue types.

In this chapter, results are reported in terms of the energy compac-
tion properties of the GBT and the Mean Squared Error (MSE) of

the reconstructed images.

2. Designing a GBT with Weighted Self-Loops (GBT-L) for PTC
Based on Template Matching (Chapter 4)

2.1

2.2

2.3

Proposed a novel class of GBT within the context of block-based
PTC. The GBT-L is constructed using a 2D graph with unit edge
weights and weighted self-loops in every vertex. The weighted self-

loops are selected based on the residual values to be transformed.

To avoid signalling any additional information required to compute
the inverse GBT-L, we also introduce a coding framework that uses
a template-based strategy to predict residual blocks in the pixel and

residual domains.

Evaluation results on several video frames of natural and screen-
content video frames and medical images, in terms of the percentage
of preserved energy and mean square error, show that the GBT-L
can outperform the Discrete Sine Transform (DST), DCT and the
Graph-based Separable Transform (GBST).

3. Offline learning of graphs based on deep neural networks for
GBTs for Intra-Prediction of Imaging Data (Chapter 5 and
Chapter 6)

3.1

In Chapter 5 we introduces a novel class of Graph-based Transform
based on neural networks (GBT-NN) within the context of block-
based predictive transform coding of imaging data. To reduce the
signalling overhead required to reconstruct the data after transform-
ation, the proposed GBT-NN predicts the graph information needed
to compute the inverse transform via a neural network. To make the
same graph available to the decoder for reconstruction, a template-
based prediction strategy is used to predict the residual followed
by a neural network (NN) that estimates the graph to perform the
GBT. Specifically, this approach involves two prediction methods:
predicting the residuals and using the predicted residuals as an input
to the NN to predict the graph. This approach, unfortunately, tends

to degrade the quality of the reconstructed residual at the decoder.



3.2 In Chapter 6 we attempted to address the issue of predicting twice
and present a novel class of GBT based on 3D convolutional neural
networks (GBT-CNN) within the context of block-based predictive
transform coding of imaging data which uses the 3 reconstructed
blocks surrounding the block to be encoded as input. The proposed
GBT-CNN uses a 3D convolutional neural network (3D-CNN) to
predict the graph information needed to compute the transform and
its inverse, thus reducing the signalling cost to reconstruct the data

after transformation.

3.3 In both Chapter 5 and Chapter 6 evaluation results on several
video frames and medical images, in terms of the percentage of
energy preserved by a sub-set of transform coefficients and the mean
squared error of the reconstructed data, and the transform coding
gain, show that the GBT-NN and GBT-CNN can outperform the
DCT and DST, which are widely used in modern video codecs.
GBT-CNN outperforms GBT-NN.

4. Online Learning of graphs for GBT(GBT-ONL) (Chapter 7)

4.1 In general, the idea of learning GBTs offline for compression by
using ML has gained increasing popularity recently as discussed
in Chapter 5 and Chapter 6.1. However, the performance of such
Machine Learning (ML) and Deep Learning (DL)-based methods
depends on the amount, quality, and relevance of the training data.
This Chapter 7 address the problem of offline training and leverage
online training to learn GBTs without requiring of any training data
or offline training processes. We specifically propose an online GBT,
hereinafter called GBT-ONL, for block based PTC in the context
of intra-prediction. The GBT-ONL predicts the graph Laplacian
needed to compute the GBT of each block by using an over-fitted
NN that is optimized online. This allows the model to adapt to each
block to accurately predict the graph needed to compute the GBT.

4.2 Since the training is performed online, it can be replicated at the
decoder, thus avoiding the need to signal extra information to

compute the inverse GBT for reconstruction.

1.4 Thesis outline

This thesis is organised as follows:

e Chapter 2: Literature Review

This chapter reviews the history and the current state-of-the-art in four
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key areas of image and video compression, predominant transforms for
image and video coding, Graph based Transforms for image and video

coding, and ML /DL for compression.

e Chapter 3: Graph-Based Transforms based on Prediction In-
accuracy Modelling
This chapter introduces the idea of graph prediction for GBTs to avoid
signaling overhead by proposing the idea of inaccuracy modeling for
prediction (GBT-PI). Additionally, a framework is proposed for encoding-

decoding based on proposed model.

e Chapter 4: Graph-Based Transforms with Weighted Self-loops
on Template based Prediction Strategy
This chapter introduces the idea of emphasizing on vertex weight of
the graph to perform more accurate signaling of the residual block by
proposing a GBT with self-loop (GBT-L). Additionally, this chapter
proposes a coding framework for template matching and template pooling

techniques in residual and pixel domain.

e Chapter 5: Graph-Based Transforms based on Neural Net-
works for Intra-Prediction of Imaging Data
This chapter elaborates the necessity of learning graphs for GBTs ex-
ploiting the deep neural network architecture of multi-layer perceptron
by proposing a class of GBT's based on Neural Networks (GBT-NN).

e Chapter 6: Graph-Based Transforms based on 3D Convolu-
tional Neural Network for Intra-Prediction of Imaging Data
This chapter introduces the idea of predicting graphs for GBTs by using
the surrounded blocks of the residual block based on 3D convolutional
neural network (GBT-CNN).

e Chapter 7: Online Graph-based Transforms for Intra-Predicted
Imaging Data
This chapter introduces the idea of online training of the graphs for GBTs
(GBT-ONL) which avoids any pre-trained model for prediction.

e Chapter 8: Conclusion and Future Work
In the final chapter, we summarise the contributions of this thesis. We
then discuss applications of our work and new research directions made

possible by the presented contributions.

1.5 Research Summary

In this research we have mainly focused on implementing novel ideas in the
areas of GBT for block-based PTC. Each chapter of this thesis is a novel idea to

11



enhance the performance of GBT to enhance the compression framework. The
journey of the thesis initially started with various non-learning based methods
to predict the graph for GBT, followed by offline deep learning based ideas and
ended up to online learning of GBT. Additionally, apart from predicting the
graph we propose a complete framework of encoding-decoding process. While
building ideas we emphasized to avoid signaling overhead while reconstructing
the signal at the decoder. Evaluation results shows, each chapter provides us a
gradual improvement in predicting the graph. Our publication establishes the

novelty in this field of work.
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Chapter 2

Literature Review

In this chapter, we survey works related to the contributions of this thesis. The
chapter is organised as follows: Section 2.1 presents a overview of image and
video compression techniques. Section 2.2 explains the predominant transforms
for compression. Section 2.3 demonstrate the GBT in details related to our

research, and Section 2.4 elaborates learning for compression.

2.1 Lossy and lossless image/video compression

Recently, the use of large volumes of image data in many applications like
internet has been increasing rapidly. So, to make an effective use of storage
space and also bandwidth of the network, image compression [21, 22] is re-
quired (see Fig. 2.1). We have two kinds of image compression - one is lossy
and other is lossless image compression. With lossless compression, every bit
of data initially in a file remains once it is decompress, and every informa-
tion is restored. Further, lossless compression retains raster values during
compression. At the same time, it still manages to reduce file size. On the
other hand, lossy compression reduces a file by permanently removing specific
information, particularly redundant information. As an example, LZ77 is a
lossless compression file type and JPEG is a format that uses lossy compression.

Indeed, lossless compression algorithms allow the original data to be perfectly

Compression
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______________________________________ I

_____________________________________ Channel
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1
|
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Figure 2.1: A general compression scheme. [1]
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Figure 2.2: Lossy and lossless compression scheme. [2]

reconstructed from the compressed data. Basically, lossless compression more
efficiently rewrites the original file’s data [23]. The most likely application is
for acquisition. So, anywhere high bit depth precision is required for retaining
dynamic range, including with cameras and their proprietary RAW formats.
The resulting files, however, are often significantly larger than image and audio
files compressed with lossy compression because no quality is lost. On the other
hand, lossy image compression produces a compressed image where quality of
the image is maintained with some data loss. Lossy compression is widely used
compared to lossless compression. One of the major difficulties encountered in
lossy image compression is how to preserve image quality in such a way that
the compressed image is always identical to the authentic, as opposed to the
types of methods that exist in lossless image compression that can maintain
the quality of the images authenticity (see Fig. 2.2 ). There are numerous
methods for compressing images that can be used with various algorithms
such as Huffman code [24], Chaudhuri and Hocquengham (BCH) codes [25],
Multiple-Tables Arithmetic Code [26], Fractal Coding [27], Block Truncation
Coding [28], and many others. The image is transformed in the transform
domain to gain a rarely coefficient matrix using Discrete Wavelet Transform
(DWT), DCT, and Fast Fourier Transform (FFT). The DCT method is very
similar to the Discrete Fourier Transform (DFT), which converts a signal or
image from the spatial domain to the frequency domain. Because of the wide
range of images, including binary images, RGB images, and image intensities.
Then use image compression to reduce the size of the data or techniques to

reduce the number of bits required to reflect an image.

2.1.1 Related work on lossy image compression

There is a need for compression algorithms that are more adaptable than

current codecs due to new media formats, evolving hardware technologies, and
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a variety of requirements and content types. Now a days most of the image
and video compression techniques adopt machine learning or deep learning
concepts. In [29] the first conduct a comprehensive literature survey of learned
image compression methods. The literature is organized based on a number
of factors, such as network architecture, entropy model, and rate control, to
jointly improve the rate-distortion performance with a neural network. By
reviewing wide range of previous publications, the fundamental problems with
picture compression techniques are exposed in this survey, along with potential
solutions using cutting-edge advanced learning techniques. This study offers a
chance to further the development of more effective image compression. They
increase rate-distortion performance, particularly on high-resolution images,
by incorporating a coarse-to-fine hyper-prior model for entropy estimation and
signal reconstruction. In [30] authors propose a new approach to the problem of
optimizing autoencoders for lossy image compression. They show autoencoders
have the potential to fill this gap, but they are challenging to directly tune
because the compression loss is inherently non-differentiable. In [31] the authors
present a lossy image compression architecture, which utilizes the advantages
of convolutional autoencoder (CAE) to achieve a high coding efficiency. First,
they design a novel CAE architecture to replace the conventional transforms
and train this CAE using a rate-distortion loss function. Second, to generate
a more energy- compact representation, we utilize the principal components
analysis (PCA) to rotate the feature maps produced by the CAE, and then
apply the quantization and entropy coder to generate the codes. In [32] the
authors propose a method for lossy image compression based on recurrent,
convolutional neural networks that outperforms BPG (4:2:0), WebP, JPEG2000,
and JPEG as measured by MS-SSIM. They introduce three improvements over
previous research that lead to this state-of-the-art result using a single model.
First, they modify the recurrent architecture to improve spatial diffusion,
which allows the network to more effectively capture and propagate image
information through the network’s hidden state. Second, in addition to lossless
entropy coding, they use a spatially adaptive bit allocation algorithm to more
efficiently use the limited number of bits to encode visually complex image
regions. Finally, they show that training with a pixel-wise loss weighted by
SSIM increases reconstruction quality according to multiple metrics. In [33]
the authors introduce a novel wavelet difference reduction (WDR) and singular
value decomposition (SVD)-based lossy picture compression method (WDR).
The performance of the WDR compression is enhanced by the combination of
these two approaches. WDR, compression delivers high compression whereas
SVD compression offers very high image quality but low compression ratios.
An input picture is first compressed using SVD in the Proposed approach, and
then it is compressed once more using WDR. The WDR method is also used to
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obtain the system’s required overall compression ratio. Several test photos were
used to evaluate the suggested image compression approach, and the outcomes
were compared to those of WDR and JPEG2000. In [34] authors propose a fast
solving method of fuzzy relational equation and applied to lossy compression and
reconstruction problem, where it is confirmed that the computation time of the
reconstructed image is decreased to 1/335.6 the compression rate being 0.0351,
and it achieves almost equivalent performance for the conventional lossy image
compression methods based on DCT and vector quantization. In [35], authors
propose a novel invertible framework called Invertible Lossy Compression (ILC)
to largely mitigate the information loss problem. Specifically, ILC introduces an
invertible encoding module to replace the encoder-decoder structure to produce
the low dimensional informative latent representation, meanwhile, transform
the lost information into an auxiliary latent variable that won’t be further coded
or stored. The latent representation is quantized and encoded into bit-stream,
and the latent variable is forced to follow a specified distribution, i.e. isotropic
Gaussian distribution. In this way, recovering the original image is made
tractable by easily drawing a surrogate latent variable and applying the inverse
pass of the module with the sampled variable and decoded latent features.
Experimental results demonstrate that with a new component replacing the
auto-encoder in image compression methods, ILC can significantly outperform
the baseline method on extensive benchmark datasets by combining with
the existing compression algorithms. In [36] three lossy image compression
techniques - Discrete DCT, Singular Value Decomposition (SVD) and DWT
are used to perform image compression. These techniques are compared
using some performance measures such as Peak Signal-to- Noise Ratio(PSNR),
Compression Ratio(CR), Structural Similarity Index Measure(SSIM) and Mean
Square Error(MSE). In [37] the authors aim to evaluate (1) storage needs,
(2) subjective image quality, and (3) accuracy of caries detection in digital
radiographs compressed to various levels by a lossy compression method. In
[38] authors present a study of image compression methods algorithm for
compare the best techniques on lossy image compression. Based on the findings
of this study, four alternative ways of measuring the percentage of picture
compression for each of the three methods—DCT, FFT, and DWT—starting
with compressing images with sizes of 10%, 30%, 50%, and 70% have been
developed. The optimal approach for compressing the image of the current
percentage size can be determined by comparing the three ways with four

distinct presentation measurement changes.
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2.1.2 Modern image and video compression schemes

Digital video has grown pervasive in our daily lives; there are gadgets that can
show, capture, and send video everywhere we look. UHD resolution video may
now be recorded and displayed thanks to recent technological advancements.
The capacity of the current Internet and TV networks is insufficient to transport
vast amounts of HD video, let alone UHD, at this time [39]. In January 2010,
a formal request for proposals (CfPs) on video compression technologies was
made, and 27 proposals were submitted in response. These ideas were put forth
at the initial JCT-VC gathering in April 2010. According to the evaluations
that followed, some ideas may achieve the same visual quality as H.264/MPEG-
4 advanced video coding (AVC) high profile at just half the bit rate and at a
cost of a two- to tenfold increase in computational complexity. Compared to
the reference AVC high-profile encoder, some alternative ideas could achieve
good subjective quality and bit rates with less computational complexity. Since
then, JCT-VC has made a significant effort to establish the HEVC standard, a
new compression standard that aims to significantly outperform the current
H.264/AVC high profile standard in terms of compression efficiency. The JCT-
VC group’s initial goal was to combine the salient elements of the top seven
highly effective solutions into a single test model under consideration (TMuC),
which served as the foundation for the first HEVC software codec known as HM
[40]. JCT-VC has since hosted a number of meetings and assessed hundreds of
submissions from both industry and academia. The best of these submissions
underwent comprehensive evaluation and were incorporated into the HEVC
standard. The main structure of the HEVC similar to the H.264/AVC encoder.
Each picture in H.264/AVC is divided into 16 x 16 macroblocks, with the
ability for each macroblock to be further divided into smaller blocks (as tiny
as 4 x 4) for prediction [41]. The development of larger block structures with
adaptable subpartitioning techniques is one of the key factors in HEVC’s
improved compression efficiency. Each picture in HEVC is partitioned into
square picture areas called largest coding unit (LCU)s, which can be as large
as 64 x 64. In general, the LCU concept in HEVC is similar to that of a
macroblock in previous coding standards. LCUs are further subdivided into
smaller units known as coding unit (CU)s, which serve as the basic unit for
intra- and intercoding. Depending on the picture content, CUs can be as large
as LCUs or recursively split into four equally sized CUs and become as small
as 8 x 8. In HEVC, a content-adaptive coding tree structure comprised of
CUs is created as a result of recursive quarter-size splitting [42, 43]. Each CU
can be further subdivided into smaller units, which serve as the foundation
for prediction. These are known as prediction unit (PU)s. Each CU can have

one or more PUs, and each PU can be as big as the root CU or as small as
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4 x 4 in luma block sizes. While an LCU can be recursively split into smaller
and smaller CUs, a CU cannot be split into PUs (it can be done only once).
Asymmetric or symmetric PUs can exist. Symmetric PUs can be square or
rectangular (nonsquare) and are used in intraprediction (only square PUs are
used) as well as interprediction. HEVC, like other video-coding standards,
applies a discrete cosine transform (DCT)-like transformation to decorrelated
residuals. A transform unit (TU) is the fundamental unit for the transform and
quantization processes in HEVC. The size and shape of the TU are determined
by the size of the PU. The size of square-shaped TUs can range from 4 x 4
to 32 x 32. Nonsquare TUs are available in 32 x 8, 8 x 32, 16 x 4, and 4 x 16
luma samples. Each CU can have one or more TUs, and each square CU can
be divided into smaller TUs using a quad-tree segmentation structure.

It is well-known that intra prediction is the technology to predict a block,
using what we already have decoded in the neighboring blocks of the same frame.
Our research framework assumes a block-based PTC method that employs
the set of intra-prediction modes currently used in the HEVC standard. This
set comprises 33 angular prediction modes that model 33 different directional
patterns; a DC mode and a PLANAR mode that generate smooth surfaces. For
our research frame it is useful to categorise the type of residual block sharing
some characteristics of interest, such as, the blocks predicted with same mode
might have edge structure with similar orientation. Fig. 2.3(a) illustrates the
prediction directions associated with the angular modes. The basic prediction
principle for all angular modes is exemplified in Fig. 2.3(b) . Application of
intra-prediction method to a 4 x 4 residual block is illustrated in Fig. 2.3(c) and
Fig. 2.3(d). The Versatile Video Coding (VVC) standard’s intra prediction and
mode coding are discussed in [44, 45]. The Joint Video Experts Team produced
this standard together (JVET). It adheres to the established hybrid block-
based codec architecture that served as the foundation for earlier standards.
Nearly all of the intra prediction aspects of VVC either have significant changes
compared to its forerunner H.265/HEVC or are brand-new. In VVC, there
are 65 intra directional prediction options as opposed to 33 in HEVC. Fig.
2.4 provides an example of the increasing directions. DC and planar modes
are still in use in addition. To eliminate division operations, only samples
from the longer side of the non-square block are used to calculate the average
DC value for the DC mode. Similar to HEVC, intra mode coding consists of
two components: 64 non-MPM modes using six-bit fixed length coding and
three MPM modes from spatial neighbours. For non-square blocks, some of
the traditional intra prediction modes are adaptively replaced by wide-angle
directions, keeping the total number of intra prediction modes unchanged (67)
[12]. The new prediction directions for non-square blocks are shown in Fig. 2.5,

where the block width is smaller than block height. In general, more modes
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Table 2.1: Characteristics of tested HEVC video sequences.

Sequence Resolution ]é‘g%r%llte rggg(?}?s) d?ﬁ%h Source
4:2:0 YUV sequence
Class A
Traffic (Fig. 1.4) 2560x1600 150 30 8§ CTC2D
People_on_street 2560x1600 150 30 8 CTC 2D
Nebuta_festival 2560x1600 150 30 10 CTC 2D
Class B
Kimono 19201080 240 24 8 CTC 2D
Cactus 1920x 1080 500 50 8 CTC2D
Park_scene 1920x1080 240 24 8 CTC 2D
BQTerrace 1920x 1080 600 60 8 CTC2D
Class C
Race_horse 832x480 300 30 8 CTC 2D
BQMall 832x480 600 60 8 CTC2D
Party_scene 832x480 500 50 8 CTC2D
Basketball _drill 832x480 500 50 8 CTC2D
Class D
Race_horse_D 416 x240 300 30 8 CTC 2D
Blowing_bubble  416x240 500 50 8 CTC2D
BQ-square 416x240 600 60 8 CTC2D
Basketball_pass 416 x240 500 50 8 CTC 2D
Class E
Kristine_and_Sara 1280x720 600 60 8 CTC 2D
Four_people 1280720 600 60 8 CTC 2D
Jhonny 1280x720 600 60 8 CTC2D
Class F/SC
China_speed 1024x768 500 30 8 CTC2D
Slide_show 1280% 720 500 20 8 CTC 2D
Map (Fig. 1.5)  1280x720 600 60 8 CTC2D
Programming 1280720 600 60 8 CTC 2D

will be coming from the longer side of the block. In the case in Fig. 2.4, some
modes near the top-right angular mode (mode 66 in Fig. 2.4) are replaced
by additional angular mode below the bottom-left angular mode (mode 2 in
Fig. 2.4). To support these prediction directions, the top reference with length
2W + 1, and the left reference with length 2H + 1, are defined as shown in
Fig. 2.5. Table 2.1 of HEVC test sequences are of several class based on the
resolution and characteristics which motivated us to test our experiments on
various types of contents i.e. natural images of different resolutions, and screen

content images.

2.1.3 Intra-prediction of HEVC and VVC standard

HEVC and VVC uses block-based intraprediction to take advantage of spatial
correlation within a picture. The Joint Collaborative Team on Video Coding’s
HEVC standard’s intra coding methods are described in [46] in general terms
(JCT-VC). The HEVC intra coding system is founded on spatial sample pre-
diction, transform coding, and postprocessing processes, similar to traditional

hybrid codecs. A quad tree-based variable block size coding structure, block-
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Figure 2.3: HEVC intra-prediction modes (a) Prediction direction, (b) Predic-
tion principle [3], (c) A sample residual block with left and above reference
samples, (d) Predicted block with ideal Horizontal prediction mode (Mode 10),
(e) Another sample residual block with left and above reference samples, (f)
Predicted block with ideal Vertical prediction mode (Mode 26).
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Figure 2.4: VVC modes. [4]

size agnostic angular and planar prediction, adaptive pre- and post filtering,
and prediction direction-based transform coefficient scanning are novel features
that help to boost compression efficiency. The work in [46] examines the design
concepts used in the creation of the new intra coding techniques and evaluates
how well each tool compresses data. Both operational cycle counts and bench
marking an optimised implementation are used to determine the computational
complexity of the newly introduced intra prediction methods. The bitrate
reduction offered by the HEVC intra coding over the H.264/advanced video
coding standard is reported using objective measurements. The Joint Explora-
tion Model (JEM) algorithm and a matching software implementation were
developed by the JVET, which was established following the development of
HEVC, as part of its exploration of video coding technologies with improved
coding efficiency. According to the Bjontegaard delta bit rate (BD-rate) metric,
the technology investigated in the most recent JEM version further improves
the compression capabilities of the hybrid video coding approach by introdu-
cing new tools, reaching up to 30% bit rate reduction compared to HEVC,
and going above and beyond that in terms of subjective visual quality. As
a result, a joint CfP for a new standardisation initiative known as VVC. All
of the technology that was suggested in the CfP responses was based on the
traditional block-based hybrid video coding design, but it was extended by

new components like partitioning, intra- and inter-picture prediction, predic-
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tion signal filtering, transforms, quantization/scaling, entropy coding, and
in-loop filtering. An overview of the technology that was suggested in the
CfP answers is given in [47], with an emphasis on methods that have not yet
been investigated in the context of JEM. A video sequence can effectively
use intra prediction to reduce the coded information included in an image or
intra frame. Today’s common procedure is to extrapolate the reconstructed
pixels surrounding the target block to be coded to build a sample predictor
block. The target block is subtracted from the sample predictor block, and the
residual data is then transformed, quantized, and encoded using entropy. In the
majority of sequences, this technique works well for creating sample predictor
blocks. However, sample prediction blocks with complex texture cannot be
represented using the extrapolation method. Additionally, pixels that are far
distant from the pixel location are typically inadequately predicted. In [48] an
innovative method for creating sample predictors by template matching in a
region of reconstructed pixels is provided. Real-time mobile video applications
have become challenging to create in recent times due to low latency and power
constraints. A fast decision method for intra-coding unit size based on a new
fuzzy support vector machine classifier is proposed in [49] in order to solve the

above problems.
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2.2 Predominant transformations for image com-

pression

Image compression technology is the basis of all kinds of media compression and
transmission, and its compression effect is directly related to the compression
effect of media. In image compression framework transformation is a near-
reversible process (due to finite precision arithmetic) that provides an image
representation that is more amenable to the efficient extraction and coding of
relevant information. The predominant transforms for image compression also
includes DWT along with mentioned KLT and DCT. If one can find a reversible
transformation that removes the redundancy by de-correlating the data, then
an image can be stored more efficiently. The KLT is the linear transformation
that accomplishes this. The basis vectors of the KLT are the eigen-vectors of
the image covariance matrix. Its effect is to diagonalize the covariance matrix,
removing the correlation of neighboring pixels. Another popular block-based
linear transformation is DCT. DCT coefficients can be viewed as weighting
functions that, when applied to the n? cosine basis functions of various spatial
frequencies (n x n templates), will reconstruct the original block. DWT has
a number of applications for signal coding, to represent a discrete signal in
a more redundant form, often used to denoise two dimensional image signals.
Wavelet decompresses an image as a whole. On the contrary, as our research
framework adapts a block-based PTC there is no use of wavelet transform
in PTC. Among several commonly used image compression coding methods
Transform coding is one of the methods which is used to compress still images
[50]. In the following subsections we discuss the details of the predominant

transforms.

2.2.1 Karhunen-Loéve Transform

Karhunen-Loeve Transforms are has many names [51] cited in literature as
Karhunen-Loeve Expansion [52], PCA [53], Principal (or Principle) Factor
Analysis (PFA) [54], SVD [55], Proper Orthogonal Decomposition (POD) [56].
Further KLT is also cited in literature as Galerkin Method [57] where this
variation is used to find solutions to certain types of Partial Differential Equa-
tions, specially in the field of Mechanical Engineering and electromechanically
coupled systems. Additionally, KLT is also cited as Hotelling Transform [58, 59]
and Collective Coordinates [60] in few literature. KLT has been widely used
in several sectors as studies of turbulence [61, 62], thermal/chemical reac-
tions [63, 64], feed-forward and feedback control design applications [65, 66]
where KLT is used to obtain a reduced order model for simulations or control

design, and data analysis or compression [67-72] mostly in characterization
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of human faces, map generation by robots and freight traffic prediction etc.
In [67] authors propose the use of natural symmetries (mirror images) in a
well-defined family of patterns (human faces) is discussed within the framework
of the Karhunen-Loeve expansion. This results in an extension of the data
and imposes even and odd symmetry on the eigenfunctions of the covariance
matrix, without increasing the complexity of the calculation. The resulting
approximation of faces projected from outside of the data set onto this optimal
basis is improved on average. In [68] authors study a method to query large
online database using image content as the basis of queries. They address the
problems of vectors with high dimensionality with KLT that helps to reduce
dimensionality without introducing the dismissals. In [69] the authors prove
the KLT for a class of signals to be a set of periodic sine functions and this
KL series expansion is obtained via an FFT algorithm. This fast algorithm
obtained is useful in data compression and other mean-square signal processing
application. In [70] the authors analyze a Karhunen-Loeve transform technique
for ECG data compression. This transform has been, applied in two different
ways: to the entire beat signal and to independent windows (P wave, QRS
complex and ST-T complex). The optimum number of coefficients and bits
for coding the signal is analyzed for the MIT-BIH Arrythmia database. The
data compression performance of both choices are: for the entire beat a mean
compression ratio of 12.1 with a mean MSE of 0.3% and for shorter windows
a mean compression ratio of 17.21 with a mean value of MSE of 0.44%. In
[71] the authors propose a neural model approach for performing adaptive
calculation of the principal components (eigen-vectors) of an input sequence’s
covariance matrix. The algorithm is based on applying Oja’s modified Hebbian
learning rule to each new covariance matrix that results from calculating the
previous eigen-vectors. It is demonstrated that the approach converges to
the next dominant component that is linearly independent of all previously
determined eigen-vectors. By minimising an error function of the learning rate
along the gradient descent direction, the optimal learning rate is calculated.
The method is used to adaptively encode grey-level images by calculating a
limited number of KLT coefficients that meet a specified performance criterion.
In [73] the authors provide the reasoning behind the found discrepancies of
spatial PCA for network-wide anomaly detection. The authors revisit PCA for
anomaly detection and evaluate its performance on their data. They develop
a slightly modified version of PCA that uses only data from a single router.
Instead of correlating data across different spatial measurement points, they
correlate the data across different metrics. With the help of the analyzed
data, they explain the pitfalls of PCA and underline our argumentation with
measurement results. They show that the main problem is that PCA fails

to capture temporal correlation. They propose a solution to deal with this
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problem by replacing PCA with the KLT. They find that when they consider

temporal correlation, anomaly detection results are significantly improved.
The concepts of KLT is based on eigen-values and eigen-vectors. If C is a

matrix of dimension n x n then the scalar A is called eigen-value if C if there

is a non-zero vector e € R™ such that:

Ce = )e (2.1)

where the vector e is the is called an eigen-vector of the matrix C corresponding
to the eigen-value A. Lets consider a population of random vectors of the

following form:
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Here the quantity x; may represent the value ( grey level ) of the image i. Let

us consider the mean vector of the population as:

T T
m, = EBl{x} = [mi mo o oma] = [Ble) Blm) o B
(2.3)

The covariance matrix of the population is defined as:
C = E{(x - m,)(x - m,)"} (2.4)

For M vectors of a random population, where M is large enough

| M
My =37 ;xk (2.5)

Lets assume, R be a matrix whose rows are formed from the eigen-vectors of
the covariance matrix C of the population and they are ordered so that the
first row of R is the eigen-vector corresponding to the largest eigen-value, and
the last row the eigen-vector corresponding to the smallest eigen-value. Then

the transform we can define as
y = R(X - mx) (26)

is defined as KLT. For reconstruction the original vectors x from its corres-
ponding y we apply
x=R"y+m, (2.7)

We form a matrix R, from the p eigen-vectors which correspond to the p
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largest eigen-values, yielding a transformation matrix of largest eigen-values,
yielding a transformation matrix of size p x n. The y vectors would then be p

dimensional. The reconstruction of the original vector X is
x=R]y+m, (2.8)

It can be proven that the mean square error between the perfect reconstruction

x and the approximate reconstruction X is given by the expression

n P p
ems =[x =% [P=) N =D N=> N (2.9)
Jj=1 j=1

p+1

By using R, instead of R for the KL transform we can achieve compression of
the available data.
The KLT is not implemented in practise despite its excellent theoretical

features for the following reasons:

e Since its basis functions depend on the image’s covariance matrix, they

must be recalculated and communicated for each image.

e Perfect de-correlation is not possible, since images can rarely be modelled

as realisations of ergodic fields.

e There are no fast computational algorithms for its implementation.

2.2.2 DCT

DCT has emerged as a image transformation in most visual system. DCT
has been widely developed by video coding standards, as, MPEG, JVET etc
and also been used for modern standards as HEVC, and VVC. It is a lossless
transform. However, due to it’s properties (de-correlation of an input and
concentration of most of the information in lower bins) it is being used in
lossy algorithms. DCT represents an image as a sum of sinusoids of varying
magnitudes and frequencies. The DCT2 function computes the two-dimensional
DCT of an image. DCT has several properties, such as, decorrelation, energy

compaction, separability, symmetry, orthogonality. The DCT helps separate the
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image into parts (or spectral sub-bands) of differing importance (with respect
to the image’s visual quality). The DCT is similar to the discrete Fourier
transform: it transforms a signal or image from the spatial domain to the
frequency domain (Fig 2.6). In [74] propose a new framework for digital image
processing; it relies on inexact computing to address some of the challenges
associated with the DCT compression. The proposed framework has three levels
of processing; the first level uses approximate DCT for image compressing
to eliminate all computational intensive floating-point multiplications and
executing the DCT processing by integer additions and in some cases logical
right /left shifts. The second level further reduces the amount of data (from the
first level) that need to be processed by filtering those frequencies that cannot
be detected by human senses. Finally, to reduce power consumption and delay,
the third level introduces circuit level inexact adders to compute the DCT. For
assessment, a set of standardized images are compressed using the proposed
three-level framework. Different figures of merits (such as energy consumption,
delay, power-signal-to-noise-ratio, average-difference, and absolute-maximum-
difference) are compared to existing compression methods; an error analysis is
also pursued confirming the simulation results. In [75] authors introduce a fast
JPEG image compression algorithm based on DCT. The algorithm introduces
the process of image coding and decoding for JPEG. The encoding part of
the image can process the BMP format image by JEPG, and compress it
into a binary file for real-time storage. The image can be decompressed by
the corresponding decoding program. In addition, in the process of image
transmission, taking advantage of the fact that human vision is not sensitive to
chroma, JPEG format can be used to encode static image, and the color RBG
of JPEG image can be changed into brightness y, chroma Cr and CB, which
can not only effectively reduce chroma data, but also achieve compression.
In [76] authors propose a hybrid Integer wavelet transform (IWT) and DCT
based compression technique to obtain increased quality of decompressed
image compared to DWT+ DCT based compression technique. The proposed
combined IWT + DCT based compression technique reduces the fractional loss
compared to DW'T based compression so the proposed technique provides better
image quality of decompressed image on high compression ratio compared to
DWT based and hybrid DWT DCT based image compression techniques. In
[77] the authors propose a low-complexity 8-point orthogonal approximate DCT
. The proposed transform requires no multiplications or bit-shift operations.
The derived fast algorithm requires only 14 additions, less than any existing
DCT approximation. Moreover, in several image compression scenarios, the
proposed transform could outperform the well-known signed DCT, as well as
state-of-the-art algorithms. In [77] authors propose a block transform for image

compression, where the transform is inspired by DCT but achieved by training
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CNN models. Specifically, the authors adopt the combination of convolution,
nonlinear mapping, and linear transform to form a non-linear transform as well
as a non-linear inverse transform. The transform, quantization, and inverse
transform are jointly trained to achieve the overall rate-distortion optimization.
For the training purpose, the authors propose to estimate the rate by the
I1-norm of the quantized coefficients. They also explore different combinations
of linear/non-linear transform and inverse transform. Experimental results
show that our proposed CNN-based transform achieves higher compression
efficiency than fixed DCT, and also outperforms JPEG significantly at low bit
rates. In [78] authors propose a block transform for image compression, where
the transform is inspired by DCT but achieved by training convolutional neural
network (CNN) models. Specifically, they adopt the combination of convolution,
nonlinear mapping, and linear transform to form a non-linear transform as well
as a non-linear inverse transform. The transform, quantization, and inverse
transform are jointly trained to achieve the overall rate-distortion optimization.
For the training purpose, they propose to estimate the rate by the /3 norm
of the quantized coefficients. They also explore different combinations of
linear /non-linear transform and inverse transform. Experimental results show
that the proposed CNN-based transform achieves higher compression efficiency
than fixed DCT, and also outperforms JPEG significantly at low bit rates. In
[79] DCT based image compression using blocks of size 32x32 is considered. An
effective method of bit-plane coding of quantized DCT coefficients is proposed.
Parameters of post-filtering for removing of blocking artifacts in decoded images
are given. The efficiency of the proposed method for test images compression is
analyzed. It is shown that the proposed method is able to provide the quality of
decoding images higher than for JPEG2000 by up to 1.9 dB. In [80] a model is
developed to approximate visibility thresholds for DCT coefficient quantization
error based on the peak-to-peak luminance of the error image. Experimentally
measured visibility thresholds for R, G, and B DCT basis functions can be
predicted by a simple luminance-based detection model. This model allows
DCT coefficient quantization matrices to be designed for display conditions
other than those of the experimental measurements: other display luminances,
other veiling luminances, and other spatial frequencies (different pixel spacings,
viewing distances, and aspect ratios). In [81] authors attempt to implement
basic JPEG compression using only basic MATLAB functions. In this paper
the lossy compression techniques have been used, where data loss cannot affect
the image clarity in this area. Image compression addresses the problem of
reducing the amount of data required to represent a digital image. It is also
used for reducing the redundancy that is nothing but avoiding the duplicate
data. It also reduces the storage area to load an image. For this purpose

the authors are using JPEG. JPEG is a still frame compression standard,
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which is based on, the DCT and it is also adequate for most compression
applications. The DCT is a mathematical function that transforms digital
image data from the spatial domain to the frequency domain. In [82] authors
present an application of the DCT compression technique on medical images of
the IRM type. The arithmetic coding method is used to encode the coeflicients.
The tests of this lossy compression/ decompression technique are performed on
two IRM images representing the brain, in axial and sagital views, of a patient
suffering from a cerebral hemorrhage. The obtained results on these images
show that the DCT technique permits to considerably improve the compression
rate while maintaining a good image quality when threshold varies in the
interval: 0 < TH < 20 for block sizes: 16 x 16 and 32 x 32. However, a severe
degradation of the quality of the reconstructed medical image is observed when
the threshold is greater than 30. In [83] the authors show DCT is a technique
for converting a signal into elementary frequency components. Here we develop
some simple functions to compute the DCT and to compress images. These
functions illustrate the power of mathematical in the prototyping of image
processing algorithms.

The most common DCT used for compression are of 2 types. The general

equation for a 1D (N data items) DCT is defined by the following equation:

%N 1
F(u) < ) Z:oA cos[ (2@+1)} () (2.10)
where
1
AG) =4 V2 for==0 (2.11)
1 otherwise

The general equation for a 2D (N by M image) DCT is defined by the

following equation:
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Figure 2.7: A block (4 x 4) of a residual signal represented as a 4-connected
graph.

2.2.3 DCT/DST

DCT/DST transform is one of the predominant transforms use for video and im-
age compression. The energy compaction of spatial domain data into frequency
domain data during video compression depends heavily on transformation. The
spatial residual signals in the HEVC intra prediction are concentrated into
low-frequency components using DCT and DST techniques. DCT has demon-
strated strong compression performance in both intra and inter residual coding,
although its coding effectiveness declines when the spatial residual signals are
not evenly distributed. The work in [84] that uses residual-rearranged DST or
DCT to boost HEVC intra coding’s coding effectiveness. For all block sizes,
the suggested technique chooses the DCT or residual-rearranged DST with
the highest coding efficiency. The experimental results show that, compared
with the HEVC intra coding, the proposed method reduces the luma BD
rates by 2.6%. Similarly, in [85], authors present a mode-dependent transform
scheme that applies either the conventional DCT or type-7 DST for all the
video-coding intra-prediction modes: vertical, horizontal or oblique. Their
approach is applicable to any block-based intra prediction scheme in a codec,
that employs transforms along the horizontal and vertical direction separably.
Here the authors prove that this is indeed the case for the other oblique modes.
The choice of using DCT/DST is based on intra-prediction modes, and requires
no additional signaling information or Rate-Distortion search. Simulations are
conducted for the DCT/DST algorithm in TMuC 0.9, the reference software
for the ongoing HEVC standardization. The authors show that the DCT/DST
scheme provides significant BD-Rate improvement over the DCT for intra
prediction in video sequences. In [86] a refined generalized signal flow graph for
the direct 2-D DCT and 2-D DST computation (the so-called 2-D DCT/DST

universal computational structure) is described.
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Figure 2.8: (a) Values of the example residual block. ((b) Normalized residual
values to the range [0, 1]. (c) Corresponding graph with a 4-connected topology
with unit edge weights and self-loops in each vertex. (d) All-connected topology
with no self-loops (i.e., each node is connected to every node in the graph).

2.3 GBT for image and video coding

In this section, we first describe how GBTs are computed for blocks of residuals.
For example as shown in Fig. 2.7, a residual block is represented as a graph
by 4 connectivity pattern which lead to particular interpretations in graph
transform domain. The review is followed by a summary of how GBTs are
used the context of block-based PTC. We then review several works that
have attempted to learn GBTs offline, followed by relevant works that have

attempted to learn other transforms used for image and video compression.

2.3.1 GBTs for blocks of residuals

The GBT of a residual (square) block S € RYN*VN with N residual values is
usually constructed by eigendecomposition of the graph Laplacian, L, of its
undirected graph G' = (V, E, A), where V is the set of N nodes V = {v,}N_,, E
is the set of edges, and A € RV*¥ ig the symmetric weighted adjacency matrix.
The entry A;; in A represents the weight of the edge e;; connecting vertices v;

and vj;, with A;; = Aj;. If there is no edge e = (4, j) connecting pixel locations
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i and j, A;; = 0. Large values in A usually represent a high similarity between
the connected nodes, according to a given criterion. The graph Laplacian L, is
computed as L = D — A, where D is the diagonal degree matrix, whose n‘*
diagonal element is equal to the sum of the weights of all edges incident onto
node v,,. The eigendecomposition of L is used as the orthogonal transform for
the residual block, since it has a complete set of eigen-vectors with real, non-
negative eigen-values. Let us denote the eigendecompostion of L by {Ag, uy}
where \,/u, is the ¢'* eigen-value/eigen-vector pair and U is the set of eigen-
vectors. Analogous to the classical Fourier transform, one can define the GBT,
§ of signal s € RY which resides on the nodes of G, as the expansion of s in

terms of the eigen-vectors of L:

IN|-1
S(\g) = (s,ug) = Y s(k)uy(k) =Fs (2.14)
k=0
where F = U~! is the graph Fourier transform and the set of eigen-values of L,
denoted by o(L) = (Ao, A1, ,An—1), is the entire corresponding spectrum.
The original signal can be reconstructed by the inverse GBT, which is given
by s = F~'§ = Us. As a graph is defined by an adjacency matrix, A, it is
possible to generate different transforms for the same block by using different
graph connectives and weights of G [15]. In general, the graph connectivity
and the edge weights are inferred from the data (see Fig. 2.8). A Gaussian
kernel is usually used to define the edge weights of the graph, w;; for vertices 4
and j:

[dist(i,)]?

e 202 | ifdist(i,j) <a

Wij =
0, otherwise
where W is the calculated weight of two connecting vertices, ¢ and j, dist(i, )
represents the Euclidean distance between the residual value associated with

nodes 7 and j, 0 is the kernel width, and a is a hyper-parameter.

2.3.2 GBTs in the context of PTC

Within the context of block-based PTC, the GBT performs significantly well in
generating de-correlated coefficients that can compact the signal’s energy into a
few significant coefficients [87]. In [88], the authors show a theoretical analysis
of optimal PTC based on the Gaussian Markov Random Field (GMRF) model
to contruct GBTs. It is shown that PTC for graph-based models is optimal as
long as the image follows the GMRF model closely since the eigen-analysis of
the precision matrix of the GMRF model is optimal in de-correlating the signal.
Several works on the Graph Fourier Transform (GFT), which is also a GBT, has
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been conducted within the context of PTC [18, 89, 90]. As an instance in [91]
the authors propose an optimized transform for the prediction residual, based on
GFT by introducing a intra-prediction schemes exploiting the cluster differences
between neighboring pixel pairs and the cluster mean to predict the block. The
cluster indices are transmitted per block, allowing the decoder to mimic the
same intra-prediction which outperforms combinations of their previous intra-
prediction and ADST coding by 2.5 dB in PSNR on average. In our previous
work [7], we propose novel class of GBT in PTC which is constructed using a
2D graph with unit edge weights and weighted self-loops in every vertex. The
weighted self-loops are selected based on the residual values to be transformed.
We have shown the self-loop for each vertex of the graph for GBT's can accurately
represent the residual signal. To avoid signalling any additional information
required to compute the inverse GBT, we also introduce a coding framework
that uses a template-based strategy to predict residual blocks in the pixel and
residual domains. Our evaluation results on several video frames and medical
images show that this approach can outperform the DCT/DST, DCT and the
Graph-based Separable Transform (GBST). Our another work [6] for GBT in
PTC we introduce a novel framework that eliminates the need to signal graph
information to the decoder to recover the coefficients. This is accomplished by
computing the GBT using predicted residual blocks, which are predicted by a
modeling approach that employs only the reference samples and information
about the prediction mode. Evaluation results on several pathology images, in
terms of the energy preserved and MSE when a small percentage of the largest
coefficients are used for reconstruction, show that the GBT can outperform
the DCT/DST and DCT. GBTs for inter-prediction [15, 92] has also gained
popularity in video coding domain by significantly outperforming traditional
DCT and KLT in terms of rate-distortion performance. The authors propose
novel graph-based transforms (GBTSs) for coding inter-predicted residual block
signals by developing edge adaptive GBTs (EA-GBTs) derived from graphs
estimated from residual blocks design template adaptive GBTs (TA-GBTs) by
introducing simplified graph templates generating different set of GBTs with
low transform signaling overhead. The experimental results show their methods
significantly outperform traditional DCT and KLT in terms of rate-distortion
performance. In a recent paper by S. Bagheri and et.al [93], authors we pursue
a hybrid model-based / data-driven approach, to encode an intra-prediction
residual block: the first few eigenvectors of a transform matrix are derived
from a statistical model, e.g., the asymmetric discrete sine transform (ADST),
for stability, while the remaining are computed from emirical covariance matrix
for data adaptivity. The transform computation is posed as a graph learning
problem, where we seek a graph Laplacian matrix minimizing a graphical lasso

objective inside a convex cone sharing the first K eigenvectors in a Hilbert
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Figure 2.9: Prediction inaccuracy modeling technique (explained in details in
Chapter 3 ).

space of real symmetric matrices. Authors efficiently solve the problem via

augmented Lagrangian relaxation and proximal gradient.

2.3.3 Non-learning based prediction in GBTs

Within the context of block-based PTC, to avoid the signalling overhead of
graph information to the decoder for reconstruction our research work [6, 7] ex-
ploits on several non-learning based prediction models which only use reference
samples and intra-prediction mode at the decoder side for reconstruction of

image and video sequences as those are always available to the decoder. As an

Region to be used to predict the current block

Figure 2.10: Template based prediction strategy (explained in details in Chapter
4).
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instance in [94] the authors develop transforms for directional intra prediction
residuals (see Fig. 2.9). In particular, authors observe that the directional
intra prediction is most effective in smooth regions and edges with a particular
direction. In the ideal case, edges can be predicted fairly accurately with an
accurate prediction direction. In practice, an accurate prediction direction is
hard to obtain. Based on the inaccuracy of prediction direction that arises
in the design of many practical video coding systems, authors estimate the
residual covariance and propose a class of transforms based on the estimated
covariance function. Similarly, in [95-97] authors used template based strategy
where the surrounded residual values are considered as a reference for predicting

residuals instead of using the actual residual information (see Fig. 2.10).

2.3.4 Offline learning of GBT's

Recently, several works that attempt to learn optimal GBTs in the context
of block-based PTC have been proposed. In [98], the author proposes two
different techniques to design GBTs. In the first technique, they formulate
an optimization problem to learn graphs from data and provide solutions for
optimal separable and non-separable GBT designs, called GL-GBTs. The
optimality of the proposed GL-GBTs is also theoretically analyzed based on
GMRF models for intra and inter predicted block signals. The second technique
develops edge-adaptive GBTs (EA-GBTSs) in order to flexibly adapt transforms
to block signals with image edges (discontinuities). The advantages of EA-
GBTs are both theoretically and empirically demonstrated. The experimental
results show that the proposed transforms can significantly outperform the
traditional KLT. To accomplish this task, they train a large model offline
with a large dataset collected by predicting blocks of several sizes with several
intra-prediction modes. In [99], the authors propose a new class of transform
named as graph template transforms (GTT) that approximates the KLT by
exploiting a priori information known about signals represented by a graph-
template. In order to construct a GTT (i) a design matrix leading to a class
of transforms is defined, then (ii) a constrained optimization framework is
employed to learn graphs based on given graph templates structuring a priori
known information. The experimental results show that some instances of the
proposed GTTs can closely achieve the rate-distortion performance of KLT
with significantly less complexity. The work in [100] proposes a new edge model
for edge adaptive graph-based transforms (EA-GBTSs) in video compression.
More specifically, the authors consider step and ramp edge models to design
graphs used for defining transforms, and compare their performance on coding
intra and inter predicted residual blocks. In order to reduce the signaling

overhead of block-adaptive coding, a new edge coding method is introduced for
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the ramp model. The experimental results show that the proposed methods
outperform classical DCT-based encoding and that ramp edge models provide
better performance than step edge models for intra predicted residuals. In
[16], the authors introduce a novel class of transforms, called GBSTs, based on
two line graphs with optimized weights. For the optimal GBST construction,
the authors formulate a graph learning problem to design two separate line
graphs using row- wise and column-wise residual block statistics, respectively.
They analyze the optimality of resulting separable transforms for both intra
and inter predicted residual block models. The work shows that separable
DCT and ADST (DST-7) are special cases of the GBSTs. The experimental
results demonstrate that the proposed optimized transforms outperform 2-D
DCT/ADST and separable KLT. Our previous work [10] proposed a novel class
of GBT based on 3D convolutional neural networks (GBT-CNN) within the
context of block-based PTC of imaging data. The proposed GBT-CNN uses a
3D convolutional neural network (3D-CNN) to predict the graph information
needed to compute the transform and its inverse, thus reducing the signalling
cost to reconstruct the data after transformation. The GBT-CNN outperforms
the DCT and DCT/DST in terms of the percentage of energy preserved by a
subset of transform coeflicients, the mean squared error of the reconstructed
data, and the transform coding gain according to evaluations on several video
frames and medical image. Further, in [101], a GBT is learned for predictive
light field compression. In [102], the authors address a problem of learning
graph Laplacians by adopting a factor analysis model for the graph signals
that enforces minimizing the variations of the signals on the learned graph. It
is important to note that the methods reviewed here require to train a model

offline with the appropriate training data.

2.4 Machine Learning/ Deep Learning for compres-

sion

Apart from GBTs, other methods to learn transforms for compression purposes
may be found in the literature [103, 104]. For example, in [105], the authors
propose a fully unsupervised deep-learning framework that is able to extract
a meaningful and sparse representation of raw high frequency signals by em-
bedding important properties of the fast discrete wavelet transform (FDWT)
in the architecture. With their framework, the denoising FDW'T becomes a
fully learnable unsupervised tool that does not require any type of pre- or
postprocessing or any prior knowledge on wavelet transform. The application
of wavelet transform is broadly used on imaging data [106, 107]. In [106] the

authors learn the DNA structure using wavelet transform. In [107] an optimal
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wavelet transform is proposed for the detection of micro-aneurysms in retina
photographs by learning adapted wavelet filters. However, for block-based
PTC Wavelet is not very popular since wavelet transform decompresses an
image as a whole. On the contrary, as our research framework adapts a block-
based PTC there is no use of wavelet transform in PTC. Since the DCT is
widely used for block-based PTC, many works attempt to learn the mapping
relationship between JPEG images and original images to reduce compression
artifacts by using deep neural network [108-112]. Since the KLT is considered
as the optimal transform that generates the most de-correlated coefficients, a
huge volume of research groups works on learning the KLT offline [113]. For
example, in [114] the authors propose a novel signal-independent separable
transform based on the KLT to improve the efficiency of both intra and inter
residual coding. In the proposed method, the drawbacks of the traditional
KLT are addressed. A group of mode-independent intra transform matrices
is calculated from abundant intra residual samples of all intra modes, while
the inter separable KLT matrices are trained with the residuals that cannot be
efficiently processed by the discrete cosine transform type II (DCT-II). KLT
matrix are trained offline by combining all the residual blocks with different
intra modes to take sufficient residual characteristics into the covariance matrix.
In [115] the authors again propose a framework to design separable transforms
from prediction residual statistics. The work model the data as a 2D GMRF
and approximate its inverse covariance by a matrix with a separable structure,
thus explicitly constructing a separable orthonormal matrix that approximates
the KLT. The designed transforms can adapt to prediction residual statistics,
have low complexity (compared to non separable transforms), require selecting
few parameters and outperform hybrid DCT/ADST separable transform for
intra coding of AV1 residuals. In literature DL models are also exploited for
learning KLT [116].

2.5 Summary

This chapter presented an overview of existing research related to our con-
tributions in graph-based signal processing for image and video compression.
Firstly, we contextualised the importance of compression for images and videos.
We discussed the literature on recent compression schemes. We ave reviewed
several related works on the modern compression standard. At the end, we
discussed on the mostly used PTC, i.e., intra-prediction of modern video coding
standard.

Secondly, we discussed the importance of predominant transforms in the
field of compression. We reviewed the recent and relevant works on KLT, DCT,
and DCT/DST which are considered as mostly used transforms in the filed
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of compression. Here we discussed the advantage and disadvantages of those
transforms.

Thirdly, we elaborated our contribution on GBT for image and video coding.
We reviewed the literature on the following perspective. At first we explained
the modus operandi of GBT on residual blocks of an image. Additionally, we
discuss the way GBT works in the context of PTC. Here we reviewed recent
papers on the related work to provide an overview to the reader about the
work. Further, we discussed on the non-learning based prediction of graph
for GBT, followed by, learning based prediction. In Chapter 3 we introduced
idea of a non-learning based graph prediction which is based on prediction
inaccuracy modeling. In Chapter 4 the same trend of non-learning based graph
prediction has been continued. However, for this chapter we used template
based prediction strategy. In Chapter 5 and Chapter 6.1 we proposed the DL
based architectures for graph prediction. We noticed that there are several
works on learning graphs used for GBT by exploiting the ML, and DL ideas
which are offline, such as our works in Chapter 5 and Chapter 6.1 are offline
learning. At the end, we reviewed the contribution by other trasnforms for

learning graphs for GBTs.
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Chapter 3

Graph-Based Transforms
based on Prediction
Inaccuracy Modeling for

Pathology Image Coding

3.1 Introduction

Thanks to the introduction of high-throughput slide scanners, microscope glass
slides can now be digitized to produce color images, which are called WSIs.
This has fueled the emerging area of digital pathology imaging and resulted in
novel ways to share medical imaging data and collaborate remotely [117, 118].
WSIs are multi giga-pixel color images that usually require large amounts of
bandwidth to be transmitted and stored. Compression is therefore an attractive
solution for data access and transmission of these images [119-123]. Recent
proposals in this area include lossless compression methods based on the intra-
prediction mode of the HEVC standard [11, 120] , and lossy methods based on
the JPEG2000 standard [123, 124]. Although lossless compression guarantees
perfect reconstruction of the image, it fails to attain high compression ratios.
Lossy compression is then more advisable, especially since it has been shown
that compression ratios of up to 60:1 can be used on WSIs without negatively
affecting the diagnosis process [123].

In this chapter, we introduce a new framework that eliminates the need to
signal additional information to the decoder. This is achieved by computing
the GBT based on a predicted residual signal, which is computed using only
the reference samples used to predict a block. This framework is evaluated
on a wide range of pathology images depicting different tissue types. Results

are reported in terms of the energy compaction properties of the GBT and
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the MSE of the reconstructed images. The results are compared to those
attained by the KLT, DCT, GBT when information is needed the be signaled
to the decoder, and the DST), as implemented in the intra-prediction mode of
HEVC [125]. Evaluations show that the GBT attains better energy compaction
properties than the DST and the DCT for the evaluated pathology images,

with a very similar performance in terms of MSE.

3.2 Proposed GBT-PI

The prediction inaccuracy modeling for the residual blocks computed by em-
ploying any of the 33 angular modes depicted in Fig. 2.3(a) is based on the work
by X. Cai et al. in [126]. This modeling approach predicts a residual block
using the reference samples to the left and above the block, and the information
about the angular mode used by the encoder. The approach is based on the
argument that residual blocks computed after angular intra-prediction can
be approximated by using the gradient of reference samples and the distance
between the position of the reference samples used and the position of the
value to be approximated within a block. For horizontal modes, i.e. modes
2 — 17 in Fig. 2.3(a) the predicted residual signal, at position (z,y) within an

N x N block is approximated as follows:

P 5£(0,y)

res(z,y) ~ cosa Oy

ly 0, 9) (3.1)

where 6(x,y) is the angle between two consecutive reference samples to the left
and depends on the position being predicted, %ﬁ/’y) denotes a partial derivative
with respect to the reference samples to the left, P is the distance between the
reference sample f(0,y’) and the position to be predicted, which is calculated
as P2 = R? + Q?; and « is the angle between P and the horizontal. Fig. 3.1
graphically represents the variables used in Eq. 3.1. For the vertical modes,
e.g., modes 18 — 34 in Fig. 2.3(a), the same calculations can be applied by
appropriately rotating the block.

For the DC and PLANAR modes, we propose an extension to the model
proposed in [126]. In the case of the DC mode, we note that residual values tend
to increase in the horizontal, vertical and diagonal direction proportionally to
the distance from the reference samples, since the predicted value is computed
as the average of all reference samples located above and to the left of the
block. This is based on the observation that samples in the first row and first
column of the block are expected to have a more similar value to that of the
reference samples than those samples located far from them. Our proposed
modeling approach is based on this observation. Specifically, for the DC mode

we propose to average the prediction for the pure horizontal mode (10), pure
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Figure 3.1: Prediction Inaccuracy modeling for (a) Vertical mode, (b) Extended
DC mode (c¢) Extended Planar mode.
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102 | 113 | 131 | 211 | 200
132 | 128 | 131 | 165 | 189 155 | 155 | 155 | 155
169 | 155 | 156 | 168 | 203 155 | 155 | 155 | 155
183 | 160 | 163 | 172 | 205 155 | 155 | 155 | 155
154 | 172 | 178 | 184 | 212 155 | 155 | 155 | 155
(a) (b)
=27 | 24 | 10 34 -18 | 15 8 44
0 1 13 48 -5 -2 1 47
5 8 17 50 7 1 19 55
17 23 29 57 17 23 29 63

Figure 3.2: Hlustration of the proposed modeling approach for the DC mode.
The average of all reference samples is 155. (a) Original block, (b) predicted
block, (c) actual residual block and (d) predicted residual block.
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vertical mode (26), and diagonal mode (18), as follows:

resDC(z,y) = (resH(x,y) + resV(x,y) + 2.resD(z,y)) >> 2 (3.2)

resH(z,y) ~ Ry 6f55(;’ y) ly O1(z,y) (3.3)
resV(z,y) ~ Ra 6f55(;’ y) o O2(x,y) (3.4)
P 5f(0
resD(z,y) ~ e fgy’ ) |y O3(2,y) (3.5)
1

where resH (x,y), resV(x,y), resD(x,y) are the are the predicted residual
values in the horizontal, vertical and diagonal directions, respectively, >>
represents a bit shift to the right, R; and Ry are the distances between s
between the predicted position and the references samples to the left and above,
respectively. Note that the modeling approach in Eq. 3.5 is just a case of
Eq 3.1 when a = 7. The modeling approach for the DC mode is depicted
in Fig. 3.1 (b) and exemplified in Fig. 3.2 by using an example 4 x 4 block,
where the average of all reference samples is 155. From Fig. 3.2, it can be
observed that the residual signal indeed tends to increase for samples located
far from the reference samples. Our prediction inaccuracy modelling effectively
approximates the residual based on this observation.

In the case of the PLANAR mode, we follow a similar approach to the one
followed for the DC mode. Specifically, we propose to average the prediction

for the pure horizontal mode (10) and pure vertical mode (26), as follows:

resPlanar(x,y) =~ (resH(z,y) + resV(z,y)) >> 1 (3.6)

3.2.1 Proposed framework

Our framework is depicted in Fig. 3.3 and Fig. 3.4. At the encoder side 3.3,
we employ a prediction inaccuracy modelling to predict the residual block for
each N x N block by only using the prediction mode selected by the encoder
and the references samples of the block [127]. Each predicted residual block
is represented by a 4-connected weighted graph and the corresponding GBT
is computed by eigendecomposition, as detailed in Section 2.3. This GBT is
then used to transform the actual residual block. Coefficients may then be
quantized and subsequently entropy coded. At the decoder side, we re-compute
the predicted residual block as done by the encoder. Note that this is possible
without having to signal any additional information, as the reference samples
and prediction mode of each block are readily available at the decoder. Based
on the predicted residual block, the corresponding 4-connected weighted graph
and GBT is computed, which allow us to compute the inverse GBT to be
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Figure 3.3: Block diagram for proposed encoder framework with PI modeling.
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Figure 3.4: Block diagram for proposed decoder framework with PI modeling.
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applied to the decoded coefficients (after entropy decoding) and obtain the
reconstructed residual block. Finally, the predicted block and re-constructed

residual block are added to obtain the reconstructed block.

3.3 Performance evaluation

The proposed framework is tested on ten 1024 x 1024 sections of WSIs depicting
lymphatic, pancreatic, colon and brain tissue. The images are obtained from
the Center for Biomedical Informatics and Information Technology of the
US National Cancer Institute [128, 129] We employ intra-prediction using
all 35 modes depicted in Fig. 2.3 (a), with a block size of 8 x 8 on the G
component. We compare the performance of the GBT using our framework
(GBT_PI) against the GBT when the graphs are computed using the actual
residual blocks (GBT_A), the DCT and the DST, as implemented in HEVC.
The performance of all transforms is measured in terms of the energy preserved
by reconstructing the image using a sub-set of the largest coefficients and
the corresponding MSE. In other words, we evaluate the energy compaction
properties of the transforms and the quality of the reconstructed images. The
coefficients are selected by setting a threshold that indicates the minimum
absolute value that the coefficients in the sub-set must have (See Fig. 3.5). A
large threshold allows to include the largest coefficients in the sub-set, while a
threshold close to zero results in including most of the coefficients in the sub-set.
By gradually decreasing an initial large threshold, this approach gradually
includes in the sub-set the largest coefficients. Note that this approach differs
from one that selects the DC and low frequency AC coefficients first, and
gradually include the high frequency AC coefficients. The approach used in
this work allows selecting the largest coefficients, regardless of their frequency
type. This is advantageous for pathology images, as they usually depict strong
edges and non-smooth regions, resulting in several AC coefficients with large
values. Our evaluations also include the KLT, as the baseline transform. Table
3.1 tabulates the average energy preserved, in percentage, by the transforms
and the corresponding average MSE values, for all evaluated images, using a
small percentage of coefficients of 5% and 10%.

As expected, the KLT provides the best performance. Note that the GBT_A
outperforms the GBT_PI. This is also expected as the GBT_A is constructed
based on the graphs of the actual residual signals. However, it is important
to recall that the GBT_A requires signaling information about the graphs to
the decoder. The GBT_PI outperforms the DST in terms of preserved energy,
which is used in HEVC for intra-predicted residuals. For example, on average,
11.47% more energy can be preserved by the GBT_PI than the DST by using
only 1.0% of the coefficients. In terms of MSE values, the GBT_PI attains lower
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Figure 3.5: (a) A block of a pathology image. (b) Coefficients values of the
image in (a). (c) Sub-set of coefficients for threshold value 70. (d) Number
of coefficients in the sub-set increased for decreasing the threshold to 40 (e)
Majority of the coefficients are in the sub-set when the threshold value is
lowered to 10.

values than the DST for most of the cases tabulated in Table 3.1. Note that
in average the GBT_PI slightly outperforms the DCT in terms of preserved
energy, for all percentages of coefficients tabulated in Table 3.1. However, the
corresponding average MSE values are slightly higher than those attained by
DCT. Fig. 3.6 plots the percentage of preserved energy vs. the percentage of
coefficients used for four different images. The improvements of the GBT_PI
over the DCT/DST and the DCT can be visually appreciated in these plots.

3.4 Summary

WSIs are multigiga-pixel color images that usually require large amounts of
bandwidth to be transmitted and stored. To facilitate the widespread of
these images in clinical settings, compression is needed to reduce storage and
bandwidth requirements. Block-based PTC using intra-prediction has been
shown to be capable of efficiently compress these images. In this chapter, we
presented a framework that allows employing the GBT to transform intra-
predicted residual signals of these images without the need to signal information
about the graphs to the decoder. The framework is based on computing the
necessary graphs using predicted residual blocks, which can be re-computed

at the decoder using only the reference samples and information about the
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Figure 3.6: Energy compaction performance of different transforms for digital
pathology images depicting (a-b) pancreatic tissue, (c-d) colon tissue, (e-f)
lymphatic tissue, and (g-h) brain tissue.

prediction mode used. We evaluated the performance of the GBT computed in
this fashion in terms of the energy preserved and MSE when a small percentage
of the largest coefficients are used for reconstruction of several pathology images.
Evaluation results show that the GBT can outperform the DST, while slightly

outperforming the DCT, in terms of energy preserved, for the evaluated images.
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In this chapter, we have restricted ourselves to using the collection of
pathology images for the purpose of our research. We included other HEVC
sequences for the same method in the following chapter to assess the outcome
because we observed only modest improvement in our proposed method when
compared to DCT. Additionally, since the connection of our graphs in this
chapter is only available in a 4-connected form, we intend to put greater

emphasis on various graph connectivity in the next chapters.
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Chapter 4

Graph-Based Transform with
Weighted Self-loops based on
Template Matching

4.1 Introduction

In general, lossy compression is based on applying an orthogonal transform on
the signal to expand it into a set of orthogonal bases, with the expectation that
most of the signal’s information is captured by a few basis functions. This is
followed by quantization of the resulting coefficients. For any arbitrary signal
with a known covariance function, it is well known that the KLT is the linear
transform with the best energy compaction property. The KLT basis functions
of natural images are close to those of the DCT [125]. Hence, the DCT is
widely considered as the best transform for image compression. Unfortunately,
the DCT offers little adaptability to the characteristics of the data as a fixed
transform is usually applied to all images.

The GBT [14] is proposed as an attractive option to address some of
the issues of the DCT. Thanks to the fact that the GBT accounts for the
data correlation through the use of a graph structure, it has excellent data

de-correlation and energy compaction properties. Recently, Pavez et al. [130]

Normalised residual value

1 4 5 6
Position of residual value

(a) (b)

Figure 4.1: (a) Line graph with self-loops in the first and last vertices. (b) 1D
residual signal predicted by the horizontal mode. (c¢) First basis function of a
GBST designed for the horizontal mode. (d) 1D residual signal predicted by
the horizontal mode for a noisy signal.
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showed that several variants of the 1D DCT and 1D Discrete Sine Transform
(DST) can be computed as a GBT based on a line graph with unit edge weights
and self-loops in the first and last vertices (see Fig. 4.1(a)). Based on this
fact, the authors learn the self-loop weights that produce efficient GBST's for
block-based PTC of intra-predicted video frames. They show how the first
basis function of their learned transforms can accurately represent the residual
signal. This is exemplified in Fig. 4.1(b)-(c), where the first basis function of
their learned GBST for the horizontal prediction mode is plotted. One can
easily note that the function vanishes on the left side and increases on the
right side. This behavior resembles the shape of this ideal 1D residual signal,
in which the error is expected to be small in the leftmost pixel location (i.e.,
the one closest to the reference pixel) and increase with the distance from
the reference. In practice, however, the residual signals may not always have
an ideal behavior. For example, a row of residual values computed by the
horizontal prediction mode may have a relatively flat shape if the image is
smooth, or several peaks and valleys if the image is noisy (see Fig. 4.1(d)). A
GBT whose first basis accurately represents the residual signal, irrespective of
the prediction mode, has the potential to provide better data de-correlation
and energy compaction properties.

This chapter thus proposes the GBT-L, a novel class of GBT based on a
2D graph with unit edge weights and weighted self-loops in every vertex. The
GBT-L accurately captures the characteristics of a residual block by computing
the self-loop weights according to the residual values. Since the GBT-L is
based on a 2D graph, it accounts for the correlation among all values to be
transformed. To avoid signaling additional information required to compute
the inverse GBT-L within the context of block-based PTC, we also propose a
coding framework that uses a template-based strategy to predict the residual
blocks to be transformed. The GBT-L is evaluated on a wide range of video
frames and medical images. Our results show that the GBT-L attains better
energy compaction properties and a higher reconstruction quality than the
DST, DCT and the GBST.

The rest of this chapter is organized as follows. Section 4.2 describes the
proposed GBT-L. Section 4.2.1 explains the coding framework that integrates
the template-based strategies to predict residual blocks. Section 4.3 presents
and discusses the performance evaluation results and Section 4.4 concludes

this chapter.

4.2 Proposed GBT-L

Let us consider an image to be encoded using block-based PTC via angular

intra-prediction, which is a common prediction method used in many modern
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Figure 4.2: (a) Residual signal generated by intra-prediction for the Y com-

ponent of a video frame from the sequence BlowingBubbles. (b),(c) A sample

4 x 4 residual block and its actual values. (d) Normalized residual values. (e)

2D graph (4-connect) with unit edge weights and self-loops in each vertex.
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video codecs, including the High HEVC standard [11, 131]. For each block
in the imaging data, intra-prediction yields a residual block computed as the
difference between the predicted and the original block. Let us recall such
a (square) residual block as S € RYN*VN where N is the total number of
residual values. The block S can be represented as an undirected weighted
graph, G = (V, E, A), where V is the set of N nodes V = {v,}_,, F is the
set of all edges, and A € RV*V is the symmetric weighted adjacency matrix.
The entry A;; in A represents the weight of the edge e;; connecting vertices v;
and v;. The GBT-L assumes a 4-connected pattern with self-loops in every
vertex as shown in Fig. 4.2. Consequently, A;; =1 for i # j, i.e., the weight
of any edge connecting two adjacent nodes is always 1. The self-loop weights,
i.e., the diagonal entries of A, are computed based on the normalized residual

values. For node v;, A;; is given by:

A = v; —minV (4.1)

maxV —minV’

where v is the residual value of v; and min V', max V' are the minimum and
maximum residual value of the nodes in set V.

The GBT-L is constructed by the eigendecomposition of the generalized
Laplacian, L, computed as L = D — A, where D is the diagonal degree matrix,
whose nt* diagonal element is equal to the sum of the weights of all edges
incident onto node v,. The eigendecomposition of L is used as the orthogonal
transform for the residual block, since it has a complete set of eigen-vectors
with real, non-negative eigen-values. Fig. 4.2 shows a residual frame with 4 x 4
blocks and the 4-connected graph with self-loops in each vertex for a sample
block. Note that the self-loop weights are between 0 and 1.

In order to attain excellent data de-correlation and energy compaction
properties, the GBT-L is based on a 2D graph. Moreover, the first basis function
of the GBT-L should accurately resemble the behavior and overall-shape of
the residual signal. The work in [130] shows that the eigendecomposition of a
Laplacian of a line graph with unit edge weights and no self-loops corresponds
to the DCT. By setting the self-loop weight to 1 for the first vertex of such
line graph, the resulting transform is equivalent to the DST-7. That work also
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Figure 4.3: Normalized residual values of an 8 x 8 block computed by the
(a) DC, (b) vertical, and horizontal modes. (d-f) First basis function of the
corresponding GBT-L.
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shows that by varying the self-loop weights of the first and last vertices, one can
produce GBTs whose first basis function closely resembles the characteristics
of the residual data being transformed. This is the motivation behind adding
a self-loop weight to each node of the 2D graph used by the GBT-L. These
weights are computed based on the residual values, as specified by Eq. (4.1).
Fig. 4.3 shows the 2D plot of various 8 x 8 residual blocks and the 2D plot of
the first basis function of their corresponding GBT-L. One can note that the
first basis function indeed resembles the residual signal and follows its general
shape. This, as will be shown in Section 4, allows to preserve more of the

signal’s energy with only a few coefficients.

4.2.1 Proposed coding framework

As mentioned in previous section, each variant of GBT requires sending ad-
ditional information to the decoder to reconstruct the 2D graph needed to
compute the inverse GBT-L. To tackle this issue, we propose a coding frame-
work that does not require sending such additional information.

Our framework is depicted in Fig. 4.4. At the encoder side, we employ a
template-based strategy [95, 132] to predict each v/ N x v/N residual block by
only using the previously encoded and reconstructed blocks. Each predicted
residual block is represented as a 2D graph with self-loops in each vertex
and unit weight edges following a 4-connected pattern. The GBT-L is then
computed based on this graph and used to transform the actual residual block.
By following such a prediction strategy, it is possible to recover the residual
block at the decoder without signalling any additional information, as the
exact same prediction can be performed at the decoder [6] (see Fig. 4.4(b)).
Specifically, based on the residual block predicted by the encoder, the same
2D graph can be computed to obtain the inverse GBT-L.

We propose two different template-based strategies to predict residual

blocks as follows: template matching and weighted template pooling.

4.2.2 Template matching

Template matching searches for the most similar blocks to the target block
based on the similarity of their templates, where the template of a block is the
area surrounding the block to the left and above [96, 97]. Fig. 4.5 depicts a
sample target template, denoted by x, and the corresponding target block to be
predicted, denoted by P. The target template is estimated by using the kK =5
most similar candidate templates, tq,to,...tx. We use the sum of absolute
differences (SAD) between the target template and a candidate template as
the criterion to select these k templates. P is then predicted as a weighted

average of the candidate blocks Py, ...Py, one for each of the k-most similar
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candidate templates.

4.2.3 Weighted template pooling

Weighted template pooling uses a weighted average of all the previously encoded
and reconstructed blocks to predict the target block. The weights used to
average these blocks are computed based on the similarity of their templates
with the target template, in terms of the SAD. We use templates of 4 rows
and 4 columns, which results in 72 samples surrounding a block to the left and
above (see Fig. 4.5(b)). The higher the similarity among the target and the
candidate templates used for prediction, the higher the prediction accuracy of
the target block.

We perform the template-based strategies in two domains: the residual,

and the pixel domain.

4.2.4 Template-based prediction in the residual domain

The prediction of the target residual block is performed by using the residual
signals of previously encoded and reconstructed blocks. This is illustrated in
Fig. 4.6, where one can see that all candidate templates and blocks contain
residual signals. For the case of template matching, we first use optimization
by least square approximation to estimate, from the k-most similar candidate
templates, the target template:

mvinHX — Tw]|3 s.t. ;wk =1, (4.2)

where vector x contains the residual values of the target template, matrix T
contains the residual values of the k-most similar candidate templates, and

w = [wy, - ,wy] is a weight vector. The nth target residual block, Py, is then

predicted as as Py by using the k-most similar candidate blocks, as follows:

f’n =wiP1 +waPs + ... + wpPy. (4.3)
For the case of the weighted template pooling strategy, the residual signals
of the n — 1 previously encoded and reconstructed blocks are used to predict

the nth target residual block, as follows:

Py =wiP1+wPo+ ... +w, 1Pn_1, (44)
where the weight for the jth candidate block is:
llx—t113
wj=e ", (4.5)

where t; is the 4t candidate template and h is the average of standard deviation

of the samples of the j — 1 candidate templates.
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4.2.5 Template-based prediction in the pixel domain

The prediction of the target residual block is performed by using the previously
encoded and reconstructed blocks. In other words, the target block is first
predicted in the pixel domain. This predicted target block is then subtracted
from the corresponding predicted block computed by angular intra-prediction
to compute the predicted residual block. This is illustrated in Fig. 4.7. For
the case of template matching, we first compute I, the predicted block for

the nth target block in the pixel domain, denoted by I, as follows:

L, = wili + woly + ... + wil, (4.6)
where I1,Io,....I; are the k-most similar candidate blocks in the pixel domain,
and wi,wa,...,wy are the weights as computed by Eq. (4.2). Note that in
the pixel domain, Eq. (4.2) uses templates comprising pixel values instead of
residual values.

For the case of weighted template pooling, we predict I, using the n — 1

previously coded and reconstructed blocks, as follows:

I, = wli +wls+ ... + w,_ 11,1, (47)

where weights wy,ws,...,w,_1 are computed by Eq. (4.5) with candidate tem-
plates comprising pixel values. We subtract I, from the corresponding predicted
block computed by angular intra-prediction to produce the predicted residual
block, P,,.

4.3 Performance evaluation

The proposed GBT-L and our coding framework are evaluated on 30 different

YUYV frames of standard test video sequences of class A, B, C, D, E and screen
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content(SC). We also use pathology images in RGB format from the Center
for Biomedical Informatics and Information Technology of the US National
Cancer Institute in the evaluation. We use the 35 intra-predicton modes of
HEVC to compute the residual blocks. We use blocks of 8 x 8 pixels on the Y
and G components of the video frames and pathology images, respectively.

We compare the performance of the GBT-L using template matching in the
residual (GBT-L,,), and the pixel domain (GBT-Lr,,,), the GBT-L using
weighted template pooling in the residual (GBT-Lyy,,,), and the pixel domains
(GBT-Ly,,, ), the GBT-L using the PI modelling (GBT-Lp;), the DCT, and the
DST as implemented in HEVC. The performance of all transforms is measured
in terms of the percentage of preserved energy (PE) by reconstructing the
image using a sub-set of the largest coefficients, and the corresponding MSE.
No quantization is used to clearly understand the advantages of each transform
in terms of energy compaction and reconstruction error using the largest
coefficients. The sub-set of coefficients used for reconstruction is selected
by setting a threshold that indicates the minimum absolute value that the
coefficients in the sub-set should have. By gradually decreasing an initial
large threshold, this approach gradually includes in the sub-set the largest
coefficients. Consequently, we do not follow any conventional scanning pattern
as commonly done in modern codecs. This strategy allows selecting the largest
coefficients, regardless of their frequency type.

Our evaluations also include three baseline transforms: the KLT, the GBT-
L4 when the graphs are computed using the actual residual blocks (GBT-Ly),
and a GBST with self-loops in every vertex, whose weights are computed by Eq.
4.1 using actual residual values. Note that these baselines require the signaling
of additional information to compute the corresponding inverse transforms.
Evaluation of the GBT-L 4, however, allows confirming the advantages of using
2D graphs with self-loops in every vertex and unit edge weights. Evaluation of
the GBST allows confirming the advantages of using 2D graphs to design the
transform.

Table 4.1 presents the PE (%) and MSE values for the evaluated data
using a small percentage of coefficients of all the proposed transforms using
weighted self-loops. Table 4.2 consists of the the PE (%) and MSE values of
popular transforms we set as baseline of our experiments. We compare both
the tables to evaluate the performances. As expected, the KLT provides the
best performance. Compared to the GBST, the GBT-L 4 attains higher PE
and lower MSE values. This confirms the advantages of constructing GBTs
using 2D graphs. For example, by using only 5% of the largest coefficients ,
the GBT-L4 can preserve 4.87% more energy than the GBST. The GBT-L 4
also outperforms the DCT and DST. The GBT-L4 can preserve 19.83% and
17.47% more energy than the DST and DCT, respectively, by using only 5%
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of the largest coefficients. This confirms the advantages of using self-loops in
every vertex of the 2D graph.

On average, the GBT-Lyy,,, attains the best performance among the trans-
forms that require signaling no additional information to the decoder. The
GBT-Ly,,, preserves 3.11% and 1.08% more energy than the DST and DCT if
only 5% of the coefficients are used. Note that the GBT-L, when paired with
template-based prediction in the residual domain, tends to perform poorly
compared to using template-based prediction in the pixel domain. Predicting
residual values is more challenging than predicting pixel values, as residual
signals involve signed values [131]. Consequently, the template-based strategies
in the residual domain are expected to attain less accurate predictions, hinder-
ing the performance of the GBT-L. In other words, the performance of the
GBT-L is expected to improve as the prediction accuracy of the residual blocks
improves. We can see that for class A, B, and C frames and pathology images,
the GBT-Lyy,,, attains the best performance among those that require no extra
signalling information. For class D and E, the DCT is the best transform for
some cases. Frames of these two classes depict several smooth regions. The
DCT is then well-suited for this content, as it approximates the KLT basis
functions of natural images. We summarize the average results reported in
Table 4.1 and Table 4.2 in the Table 4.3 for easier analysis and a more simplified
as well as obvious point of view. Fig. 4.8 plots the PE (%) and MSE values vs.
the percentage of coefficients used for reconstruction of a video frame, where
the MSE values are normalized with respect to the maximum value attained
when no coefficients are used for reconstruction. Note that the GBT-L4 clearly
outperforms the DCT and DST. The GBT-Lyy,

pix

indeed outperforms all other

transforms that require no extra signalling information.

4.4 Summary

In this chapter, we proposed the GBT-L, a new class of GBT constructed
based on a 2D graph with unit edge weights and weighted self-loops in every
vertex. We showed that the first basis function of the GBT-L closely resembles
the residual block to be transformed, which allows to preserve more energy
by using a small percentage of the largest coefficients. We also presented a
coding framework that allows employing the GBT-L on intra-predicted residual
blocks without the need to signal information about the graphs to the decoder.
The framework uses template-based strategies to predict the residual blocks in
the residual or pixel domains. We evaluated the performance of the GBT-L
in terms of the PE (%) and MSE when a small percentage of the largest
coefficients are used for reconstruction. Evaluation results show that,as the

prediction accuracy of the residual blocks improves, the improvements of the
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reconstruction of a frame of sequence KristenAndSara.

GBT-L over the DCT, DST and the GBST also increase. When only 5% of
the largest coefficients are used, the GBT-L, when computed based on actual
residual blocks, can preserve up to 19.83% and 17.47% more energy than the
DST and DCT, respectively.

To summerize, in Chapter 3 and Chapter 4 we explored non-learning based
approach to predict the data. Now a days, we are quite aware, for any ML/DL
approach, it makes life easier among researchers to predict the data since
it can readily process enormous amounts of data and identify patterns and
relationships. Since the objective of this thesis is to predict the graph for
inverse GBT to perform at the decoder, we have explored the DL approach
in our following chapters. The revised strategy of using DL should produce

better outcomes, as anticipated.
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Table 4.3: Average PE (in %) and MSE using a small percentage of the largest
coeflicients.

Percentage of coefficients used

1% 5% 10%
PE MSE| PE MSE | PE MSE
KLT 55.51 44.49 | 89.73 12.22 | 93.43 10.43
GBST 18.56 81.92 | 58.71 42.24 | 74.54 26.49
GBT-L4 25.15 74.72|62.04 36.61|74.39 26.76
DCT 17.49 82.27 | 52.41 48.48 | 69.58 31.88

DCT/DST | 16.94 82.74 | 51.89 49.81 | 68.14 33.49
GBT-Ly,.. | 17.11 8258 | 51.78 49.32 | 69.01 32.56
GBT-Lr,,, |17.67 81.98 |52.69 48.34 | 69.46 32.33
GBT-Ly,., |17.20 8254 | 51.78 49.34 | 68.67 32.79
GBT-Lyy,,, |17.67 81.97 |52.88 48.04|69.68 31.74

GBT-Lp; 17.56 82.17 | 52.67 48.45 | 69.61 32.00
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Chapter 5

Graph-Based Transform
based on Neural Networks for

Intra-Prediction of Imaging
data

5.1 Introduction

This chapter introduces a novel class of Graph-Based Transform based on
neural networks (GBT-NN) within the context of block-based predictive trans-
form coding of imaging data. To reduce the signalling overhead required to
reconstruct the data after transformation, the proposed GBT-NN predicts the
graph information needed to compute the inverse transform via a neural net-
work. Evaluation results on several video frames and medical images, in terms
of the percentage of energy preserved by a sub-set of transform coefficients and
the mean squared error of the reconstructed data, show that the GBT-NN can
outperform the DCT and DST, which are widely used in modern video codecs.

When the GBT is used in block-based PTC, in order to reconstruct the
block at decoder, the same graph used to compute the GBT during compression
should be available at the reconstruction stage to compute the inverse GBT of
each block. This extra information should be then signaled into the bitstream,
hence increasing the overhead. To address this issue, this chapter proposes a
GBT based on a neural network approach (GBT-NN) to avoid sending such
extra information. Our proposed method uses an encoding-decoding neural
network (NN) to map a graph obtained from a set of similar blocks to the block
to be encoded, to the graph of the corresponding residual block. Specifically,
our method adopts a template-based strategy to first predict a residual block

from a set of similar blocks, from which a graph can be computed. The
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corresponding graph Laplacian of such a graph is then used by a NN to predict
the graph Laplacian associated with the current residual block, from which the
inverse transform can be computed. To avoid signalling extra information into
the bitstream, the template-based strategy is replicated during reconstruction
to compute the same graph Laplacian and hence the inverse GBT. To this
end, since templates are already available to the decoder this framework does
not require sending additional information to perform the inverse transform.
The novelty of this work states, it learns a graph Laplacian for various set of
intra-prediction modes in both encoder and decoder, where only need to send
information about prediction mode and quantization parameter as overhead.
To the best of our knowledge, no method has been proposed before to learn a
graph Laplacian by using deep learning and a template-based strategy within
the context of block-based PTC and GBTs.

5.2 Proposed GBT-NN

Let us denote a (square) residual block with zero mean as S € R‘/ﬁx‘m,
with a total of IV residual values. Recall that S is computed by subtracting
the predicted block from the original block [46]. S can be represented as an
undirected weighted graph, G = (V, E, A), where V is the set of N nodes
V = {v,}_,, E is the set of edges, and A € RV*¥ is the symmetric adjacency
matrix. The adjacency matrix of a weighted graph stores the weights of the
edges. The GBT for S can be computed by the eigen decomposition of the
graph Laplacian, L = D — A, where D is the diagonal degree matrix. The
eigendecomposition of L can be used as an orthogonal transform for S, since
it has a complete set of eigenvectors with real, non-negative eigenvalues [133].
The connectivity and the edge weights of the graph are generally inferred from
the data (see Fig. 2.8).

As the graph Laplacian requires the computation of the symmetric ad-
jacency matrix, our objective is to develop a one-to-one mapping between
symmetric adjacency matrices: one computed based on previously encoded
and reconstructed blocks within the same frame and the other one associated

with the current block: AP & f(AP), (5.1)

where AP is computed based on the graph of a residual block predicted for the
current residual block and A® is the symmetric adjacency matrix of the current
residual block, i.e., the block to be encoded. Our solution to learn the mapping
function in Eq. (5.1) is based on an encoding-decoding NN, as illustrated in
Fig. 5.1 for the case of 8 x 8 blocks with all-connected graphs. The encoder
consist of 4096 input neurons and 7 fully connected hidden layers, while the

decoder consists of 6 fully connected hidden layers and an output layer. For
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Figure 5.1: Architecture of the proposed GBT-NN for 8 x 8 blocks and a
normalized all-connected (All-C) symmetric adjacency matrix.
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Figure 5.2: Template-based prediction (TBP).

each hidden layer, we apply the ReLu activation function, while the Sigmoid
activation function is applied to the output layer. Note that the architecture
in Fig. 5.1 is also suitable for graphs with other topologies, e.g., 4-connected

with self-loops. Also note that the input is normalized to the range [0, 1].

5.2.1 Prediction strategy

The matrix used as input to the network is generated from a residual block
predicted by the template-based prediction strategy as in Chapter 4. Such a
strategy uses a weighted average of all the previously encoded and reconstructed
blocks within a specific region of the same frame to predict the current block (see
Fig. 4.5 (a)). The weight assigned as Eq. 4.5 in Chapter 4 to the reconstructed
block. We use the same templates of 4 rows and 4 columns, which results in 72
samples surrounding an 8 x 8 block to the left and above (see Fig. 4.5(b)). The
predicted current block is subtracted from the corresponding predicted block
computed by intra-prediction to compute a predicted residual block (see Fig.
5.2). From this predicted residual block, the normalized symmetric adjacency
matrix, AP, is computed, vectorized and normalized into aP. The encoder NN

transforms aP into a hidden representation, h as follows:
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h(e) = ReLU(WUeIn(le=1), (5.2)

where h(®) = a?, We) is a weight matrix and h) is the hidden representation
for the encoder layer (l.). Then, h is transformed back to a reconstructed
vector &° by the decoder NN over a number of hidden layers until the output
layer:

a’ = Sigmoid(W ) pla=1)y, (5.3)
where I; denotes the last layer of the decoder, W(d) is a weight matrix for
the decoder layer Iz, and h(a=1) is the hidden representation of decoder layer
(I3 — 1). Note that &° is an approximation of the vectorized and normalized
symmetric adjacency matrix of the current residual block. Also note that the
architecture in Fig. 5.1 differs from that of an autoencoder, as our NN does

not reconstruct the same input.

5.2.2 Optimization process

Optimization of the NN aims to find the parameters Wle) ...
we) wa) ... Wl that minimize following loss function:

L = Lyecon + aLsym + A H W() ”17 (54)

where || . || is the L1 matrix norm, W (:) represents the learnable parameters in
vector form, « is the weight of the second loss component, and A controls the
amount of L1 regularization on the learnable parameters. Here Ly ccon, Lsym
are the losses for reconstruction and symmetry, respectively. We use the MSE

for the reconstruction loss:
Lrecon :H éb - ab H% (55)

where a® is the vectorized ground truth for the normalized symmetric adjacency
matrix of the current residual block.
An essential property of an adjacency matrix is to be symmetric. We then

use the following loss to enforce symmetry:

” éb(anti) ||1

Lsym = (5.6)

|| ablsum) |y 4 || ablanti) |,
where a(¥m) = (ab 4 (a*)T)/2 and ablent) = (a0 — (a")7)/2, i.e., they measure
the symmetry and anti-symmetry of the predicted matrix. Ly, € [0,1],
which tends to the upper bound for a symmetric matrix and to the lower
bound for an asymmetric matrix. The graph used to compute the GBT for
the current residual block is then G = (V,E, Ab), after de-normalizing the

predicted symmetric adjacency matrix.

68



Region to be used to predict the current block [T

Reference [—| Target Best
Predicted Block
Samples | | Block | | Intra-prediction ®)
H © Mode i

Residual Signal
(s=0-

Graph Based
Transformation
Trained model for I

selected best
intra-prediction

i

Predicted
Residual Signal

Coefficients

Quantization

A
L= S" -/A\" > Entropy

H -

Bit Stream

»Z

dj Matrix Graph

Normalised Predicted All-cowected
All-connected Adj Matrix (‘A

Figure 5.3: Block diagram of the proposed framework for encoding.

5.2.3 Coding/decoding framework based on the proposed GBT-
NN

Our framework for coding/decoding is depicted in Fig. 5.3 and Fig. 5.4,
respectively. Our framework for coding/decoding avoids signalling overhead.
To reconstruct the current block, the same graph used to compute the GBT
should be used to compute the inverse GBT. To this end, the template-based
prediction strategy described in Section 2.1 is also used to predict the residual
block of the current block during reconstruction. The predicted residual
block is used to compute the symmetric adjacency matrix to be used as the
input to the trained GBT-NN after normalization, which produces a predicted
symmetric adjacency matrix for the current residual block (see Fig. 5.5). Our
method assumes that the trained GBT-NN is common knowledge between the
compression and reconstruction processes. Therefore, our method does not
require to signal any extra information. Based on the prediction mode used,
the reconstruction process uses a specific trained GBT-NN associated with that
mode. Fig. 5.6 explains this mechanism assuming an HEVC codec. Namely,
our framework relies on five trained GBT-NNs: one for horizontal (H) modes,
one for vertical (V) modes, one for diagonal (D) modes, one for the DC mode,

and one for the planar (P) mode.

5.3 Performance evaluation

5.3.1 Experimental setup

We train 5 different networks (H, V, D, DC, P) based on the 35 HEVC intra-
prediction modes. We use 8 x 8 blocks and graphs with an all-connected (All-C)
topology with no self loops with unit edge (UE) weights. Each training example
is represented by a tuple: {AP,S, A%}, where AP is the predicted symmetric
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Figure 5.5: GBT-NN used to produce a predicted symmetric adjacency matrix
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Figure 5.6: A specific trained network is selected based on the intra-prediction
mode used for each block. The figure shows a section of a frame predicted by
several prediction modes.

adjacency matrix for residual block S (as computed by the template-based
prediction strategy) and A is the ground truth symmetric adjacency matrix
for S. The networks are trained only with {AP} and {A’} with a = 0.5
and A = 0.002 (see Eq. 5.4). The hyper-parameters are selected based on
cross-validation. We train each network for 100 epochs using Adam optimizer
with a learning rate = 0.0001.

We use 40 different gray level YUV frames of Class A, B, C, D, E and
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Figure 5.7: (a,c) PE (%) and (b,d) MSE vs. percentage of coefficients used for
reconstruction of (1%¢ row) a frame of sequence PeopleOnStreet (Class A) and
(274 row) a frame of sequence BQTerrace (Class B).

Screen Content, which are video sequences widely used to test modern video
codecs [19]. We also use the green (G) component of 10 color pathology images
from the Center for Biomedical Informatics and Information Technology of
the US National Cancer Institute [128]. In total, for the five networks, we use
61,440 samples of symmetric adjacency matrices. We use 80% of the data for
training and 20% for testing. There is no overlap in the training and testing
sets.

Table 5.1 summarizes the characteristics of all the GBTs we use in the
evaluations. Namely, it tabulates the topology used to construct the graph, the
edge weights, and how the residual for the current block is computed. We also
evaluate the KLT, the DCT, and DCT/DST as used in the HEVC and VVC
standards, where the DCT/DST are used as separable transforms for rows and

columns of the residual block depending on the prediction mode used.
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Table 5.1: Types of graph used to construct the GBT.

Approach Explanation

All-Connected Topology

GBTA-AH Edge weights defined by a Gaussian kernel using the residual (no self-loops).
GBT-L4-All Unit edge weights and normalised self loop weights using the actual residual [130].
A
GBTWMI—AH Edge weights defined by a Gaussian kernel using the residual predicted by weighted template pooling.
GBT-NN Our proposed approach (unit edge weights but no self-loops).
GBT-LWpiz-AHUnit edge weights and normalised self loop weights using the residual predicted by weighted template pooling.

4-Connected Topology

GBT-LA Unit edge weights and normalised self loop weights using the actual residual [130].
GBT—LWpiZ Unit edge weights and normalised self loop weights using the residual predicted by weighted template pooling.

Table 5.2: Performance evaluation of the model on test data for all the

networks.

Horizontal Vertical Diagonal DC Planar
Metric | L Licon | L Lycon |L Licon |L Lrcon |L Lircon
MSE [165.94 271.10 [170.4 258.59 |169.65 234.98 | 184.28 284.16 | 156.52 258.5
MAE [4.66  5.29 435  6.43 544  6.91 8.40 15.4 5.21 6.99
) 099 094 0.97  0.93 0.92  0.82 0.95 0.88 0.98  0.93

5.3.2 Model evaluation

We use the MSE and Mean-absolute-error (MAE) to measure how well the
values of the symmetric adjacency matrix are predicted compared to the ground

truth. We measure the symmetrical property of the predicted matrices as

[1347 135}: ‘éb(sym) Hl o H éb(anti) Hl

= . e —1,1], 5.7
st J, e [, € 1 >0

where a value of 1 means perfect symmetry.

Table 5.2 tabulates the performance of the five trained GBT-NNs on the test
data. We perform an ablation study by removing the Ly, component of the
loss function. This table shows that Ly, is vital to enhance the performance
of the networks since the MSE and MAE values increase and ¥ values decrease

if Lgyn, is removed.

5.3.3 Results

Table 5.3 presents the average PE (%) and MSE values for all evaluated data
using a small percentage of coefficients. As expected, the KLT (Table. 4.2)
provides the best performance. The GBT-NN preserves 10.46%, 6.37%, and
5.42% more energy than the DCT/DST, the DCT, and the GBT-Lyypi, [7]
(Proposed in Chapter 4), respectively, if only 5% of the largest coefficients
are used. We observe that the GBT-L 4 outperforms our proposed GBT-NN,
however, as the GBT-L 4 requires information about the graph to compute
the inverse transform needed to reconstruct each block, this transform is not

practical as this entails greatly increasing the overhead. Fig. 5.8 plots the PE
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reconstruction of (1! row) a frame of sequence PeopleOnStreet (Class A) and
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Figure 5.10: (a) An original frame of sequence RaceHorse (Class D). (b) An
area reconstructed after using the KLT (PSNR = 28.45 dB), (c¢) the proposed
GBT-NN (PSNR = 23.92 dB), and (d) the DCT (PSNR = 22.67). In all cases,
QP=37.
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(%) and MSE values vs. the percentage of coefficients used for reconstruction of
a frame of sequence BQTerrace (Class B) and PeopleOnStreet (Class A). Table
5.4 tabulates the PSNR values for the evaluated frames/images when 4 different
QPs are applied to the transform coefficients for the popular transforms,
whereas; Table 5.5 tabulates the PSNR values for the evaluated frames/images
for the proposed transforms. Note that the proposed GBT-NN outperforms
both the DCT and DCT/DST. Table 5.6 and Table 5.7 provides a more
comprehensive summary of the findings for simpler interpretation and easier
analysis for PE-MSE and PSNR respectively. Fig. 5.9 plots the PSNR values
for a frame of the ChinaSpeed (Class Screen Content) and BlowingBubbles
(Class D) sequences. Fig. 5.10 shows a reconstructed frame of the sequence
RaceHorse (Class D) after transformation by the KLT, DCT and our proposed
GBT-NN, and quantization with QP= 37. As depicted, the GBT-NN achieves
a higher visual reconstruction quality than the DCT.

5.3.4 Computational complexity

Any GBT involves eigendecomposition of the graph Laplacian. Hence, the GBT
is as computationally complex as the KLT. However, the GBT-NN does not
need to signal any extra information for reconstruction thanks to the template-
based prediction strategy and the trained NNs. For any fully connected layer [,
the number of learnable parameters, i.e., the size of matrix W) is k x d, where
{d,k} are the number of input and output neurons, respectively. Once the
networks are trained offline, the learned weights are assumed to be common

knowledge between the transformation and reconstruction stages.

5.4 Summary

In this chapter, we proposed the GBT-NN, a new class of GBTs that performs
efficiently in block-based PTC with intra-prediction. The GBT-NN is based on
a deep encoding- decoding NN that learns a mapping function to approximate
a symmetric adjacency matrix associated with the graph of the residual block
to be encoded. Moreover, thanks to a template-based prediction strategy,
the GBT-NN does not require to explicitly compute the graph Laplacian for
each residual block during reconstruction. We evaluate the performance of the
GBT-NN in terms of the PE (%) and MSE when a small percentage of the
largest coefficients are used for re- construction, as well as in terms of the PSNR
when different quantization levels are applied to the transform coefficients.
Evaluation results show that the proposed GBT-NN outper- forms DCT and
DCT/DST, which are widely used by modern video codecs.

Since the architecture we have used here is a fully connected layer, the

number of parameters are are learning here are quite huge in number. Our
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objective is to improve the complexity by learning less number of parameters
and to adopt a more advanced architecture that is more effective at feature
extraction. In our next chapter we aim to use smarter architecture to predict

the graph.
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Table 5.4:

coefficients for popular transforms.

PSNR (dB) values when using quantization on the transform

Quantization parameters

Baseline SOTA Popular HEVC transforms
Sequence Resolution KLT GL-GBT DCT DCT/DST
%,22 27 32 37 22 27 32 37 22 27 32 37 22 27 32 37
Class A
Traffic 37.533.229.827.8 34.033.030.622.1 33.331.327.521.2 21.020.119.516.1

People_on_street
Nebuta_festival

2560x 1600

38.734.431.029.0
39.535.231.829.8

35.234.231.823.3
36.035.032.624.1

34.532.528.722.4
35.333.329.523.2

22.019.318.617.3
21.720.219.517.0

Class B

Kimono
Cactus
Park_scene
BQTerrace

19201080

37.435.430.929.4
38.136.131.730.0
36.034.029.528.0
38.836.732.330.7

34.532.628.424.5
35.133.329.225.3
33.131.227.023.1
35.833.429.825.9

32.830.928.121.5
32.931.128.322.1
31.429.927.120.1
32.931.128.422.8

19.216.916.215.4
20.317.916.916.5
20.119.718.615.5
21.620.920.417.7

Class C

Race_horse
BQMall
Party_scene
Basketball_drill

832x480

38.836.030.723.8
39.236.431.124.3
37.134.329.022.1
39.736.931.724.8

34.832.928.724.8
35.233.329.225.3
33.131.227.023.1
35.733.829.725.9

33.130.028.121.8
33.530.028.122.2
31.429.927.120.1
33.530.128.222.8

20.516.816.215.6
19.919.017.715.9
17.915.815.114.0
20.919.918.017.7

Class D

Race_horse_D
Blowing_bubble
BQ_square
Basketball_pass

416x240

40.538.434.127.0
41.940.035.428.4
39.137.032.725.6
42.240.335.728.7

39.737.932.629.7
41.139.234.031.1
38.336.531.228.3
41.439.534.331.3

34.531.628.024.4
35.923.629.025.7
33.131.227.023.0
36.032.929.326.0

22.221.420.119.3
23.622.421.120.6
20.820.019.017.9
23.722.721.320.9

Class E

Kristine_and_Sara
Four_people
Jhonny

1280x 720

40.639.335.530.7
39.037.733.929.1
41.840.536.731.9

36.733.731.326.7
35.132.129.725.1
38.034.932.528.0

36.334.031.226.3
34.733.029.624.7
37.535.032.227.5

24.022.321.221.1
22.421.820.919.6
24.021.320.217.7

Class F/SC

China_speed

1024x768

40.237.033.933.1

36.934.030.525.1

34.932.829.626.0

20.418.718.117.9

Slide_show
Sc_Map
Sc_Programming

1280x720

42.135.132.031.2
40.937.634.633.8
41.237.934.934.1

35.032.128.623.2
37.534.731.225.8
37.935.031.626.1

33.932.329.124.1
35.532.830.326.7
35.632.830.327.0

20.418.418.118.0
23.019.418.818.6
23.322.722.321.9

Overall average

39.636.832.728.8

36.434.330.525.8

34.231.928.823.7

20.619.018.217.0
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Table 5.6: Average PE (in %) and MSE using a small percentage of the largest
coefficients.

Percentage of coefficients used

1% 5% 10%

PE MSE| PE MSE | PE MSE
KLT 55.51 44.49 | 89.73 12.22 | 93.43 10.43
DCT 17.49 82.27 | 52.41 48.48 | 69.58 31.88
DCT/DST 16.94 82.74 | 51.89 49.81 | 68.14 33.49
GBT 4-All 12.47 87.23 | 37.14 63.57 | 52.66 49.04
GBT-L4-All 13.07 83.69 | 38.62 50.64 | 54.42 34.24
GBTWPM-AH 12.71 86.78 | 38.00 62.85 | 53.86 47.79
GBT-NN (ours) |[18.97 78.72|56.43 44.24|72.40 28.94
GBT-Ly,, -All 12.79 86.91 | 37.77 63.21 | 53.58 48.05
GBT-L g 24.71 75.17 | 60.47 40.21 | 74.28 26.47
GBT-LWW,T 17.01 82.82 | 52.58 47.93 | 69.18 31.86

Table 5.7: Average reconstruction PSNR values when using quantization on
the transform coefficients.

Quantization Parameters
QP=22] QP=27|QP=32] QP=37

KLT 40.22 | 36.05 | 32.71 | 29.62
DCT 35.21 | 31.02 | 28.29 | 23.07
DCT/DST 20.56 | 19.02 | 18.25 | 17.10
GBTA-All 8.62 7.65 6.55 6.96
GBT-La-All 16.38 | 15.47 | 14.73 | 12.73
GBTw,, -All 10.14 9.83 9.11 8.56

pix
GBT-NN (ours)| 35.86 | 31.69 | 29.18 | 23.93
GBT-Ly,,,-All 11.25 | 11.49 | 9.18 | 8.89

GBT-L4 36.69 | 33.84 | 30.31 | 25.73
GBT-Lw, 35.71 | 31.58 | 28.55 | 23.16

pix
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Chapter 6

Graph Based Transform
based on 3D Convolutional
Neural Network for

Intra-Prediction of Imaging
Data

6.1 Introduction

This chapter presents a novel class of Graph-based Transform based on 3D
convolutional neural networks (GBT-CNN) within the context of block-based
predictive transform coding of imaging data. The proposed GBT-CNN uses a
3D convolutional neural network (3D-CNN) to predict the graph information
needed to compute the transform and its inverse, thus reducing the signalling
cost to reconstruct the data after transformation. The GBT-CNN outperforms
the DCT and DCT/DST, which are commonly employed in current video
codecs, in terms of the percentage of energy preserved by a subset of transform
coefficients, the mean squared error of the reconstructed data, and the transform

coding gain according to evaluations on several video frames and medical images.

When the GBT is used in block-based PTC, the graph used to compute
the GBT of each block at the encoder should be available to compute the
inverse GBT during reconstruction at the decoder. This additional data should
then be signalled into the bitstream, increasing the overhead. Our previous
works in [8, 9] in Chapter 5 show an attractive solution for learning a mapping
function to design a GBT without requiring to signal additional information.

To make the same graph available to the decoder for reconstruction, a template-
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based prediction strategy is used to predict the residual followed by a neural
network (NN) that estimates the graph to perform the GBT. Specifically, this
approach involves two prediction methods: predicting the residuals and using
the predicted residuals as an input to the NN to predict the graph. This
approach, unfortunately, tends to degrade the quality of the reconstructed
residual at the decoder. To address this issue, this chapter introduces a novel
class of GBT based on a 3D CNN (GBT-CNN), which uses the 3 reconstructed
blocks surrounding the block to be encoded as input. We use a 3D CNN
because the 3D convolution allows exploiting the relationship between these
surrounding blocks, which are expected to be similar to the one to be encoded,
by treating them as a single volume. These features are used to predict the
adjacency matrix of the block to be encoded. More specifically, our proposed
method maps these 3 surrounding blocks in the pixel domain to the graph
representing the residual block to be encoded by using an encoding-decoding
architecture. These 3 surrounding blocks are used to compute the same graph
at the decoder, thus allowing to perform the inverse GBT. Our approach then
avoids signalling extra information into the bitstream. To the best of our
knowledge, no approach for learning a graph using 3D CNNs within the context
of block-based PTC and GBTs has been proposed before. In terms of PE,
MSE, PSNR, and the transform coding gain, our evaluations on several video
frames and medical images show that the proposed GBT-CNN outperforms
the DCT/DST, DCT, and other similar GBTs [6-9].

6.2 Proposed GBT-CNN

Let us denote a (square) residual block as S € RYN*VN - with a total of
N residual values. S can be represented as an undirected weighted graph,
G = (V,E,A), where V = {v,}_, is the set of N nodes, E is the set of edges,
and A € RV*V is the normalized symmetric adjacency matrix. The matrix A
of a weighted graph stores the edge weights. The GBT for S can be computed
by the eigendecomposition of the graph Laplacian, L = D — A, where D is
the diagonal degree matrix. The eigendecomposition of L can be used as an
orthogonal transform for S, since it has a complete set of eigenvectors with
real, non-negative eigenvalues [133].

As the graph Laplacian requires the computation of the matrix A, our ob-
jective is to develop a mapping between the 3 reconstructed blocks surrounding
the block to be encoded and the matrix A of the residual block to be encoded.

To this end, we aim to learn a mapping function of the form:

Ap~ f(Brix)) (6.1)

where By j k] represents a matrix with the 3 reconstructed gray scale blocks
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Reference Blocks
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Block Block
| J
(8x8) (8x8) Predicted s _ 5 _ 2
>| GBT-CNN all-connected [~ L=D —ds
Lt Block Biock Trained model for Adj Matrix
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intra-prediction
mode

Figure 6.1: GBT-CNN used to predict matrix A for the current residual block.
In this work, we use an all-connected topology for the graphs.

2080 x 1

§ FC+Sigmoid

1 FC+Rel
4 FC+Relu H

2080

Figure 6.2: Architecture of the proposed GBT-CNN for 8 x 8 blocks.

surrounding the block B to be encoded and Ap is the adjacency matrix of the
graph of its residual block (see Fig. 6.1). Our solution to learn the mapping
function in Eq. 7.2 is based on an encoding-decoding 3D CNN, as depicted
in Fig. 6.2 for the case of 8 x 8 blocks. In this architecture, the convolution
takes place over 3 layers of the encoder to extract feature maps Ze) where
z70) = Bi1,5 k) is the input and l. € [1,3] denotes the layer number. After
the convolutional layers, the feature maps are vectorized as an input to the
decoder part of the architecture. Specifically, Z(*=3) is transformed back to
a reconstructed vector &, g by the decoder over a number of fully-connected
(FC) layers:

a,B = h(Wldzlam1)) (6.2)
where &, B is the prediction of the vectorized upper triangular matrix of Ag,
h(-) denotes an activation function, W(4) is a weight matrix for the decoder
layer Iz, and Z(a—1) is the hidden representation produced by the decoder layer
(Ig — 1). For each FC layer, we apply the ReLu activation function, while the
Sigmoid activation function is applied to the last layer of the encoder. The
decoder consists of 6 FC layers. Note that the network only predicts the upper
triangular elements and the diagonal of matrix Ag. To obtain a complete
predicted matrix Ag, we mirror the elements of the upper diagonal to the
lower diagonal:

Ap=A,p+(A,p)" — Diag(A,p), (6.3)
where A%B is the matrix form of &, B, Diag(Au,B) is the diagonal elements
of AU,B and (AU,B)T — Diag(A%B) denotes the lower triangular matrix. We
optimize the GBT-CNN by minimizing the following loss function:

L=|ag—ags |3 +X | W() |2, (6.4)

where ap is the complete predicted matrix Au,B (see Eq. 6.3) in vectorized

83



+
Inverse Graph
Intra Reconstructed Reconstructed "
Prediction Block ° Residual [ Based De-quantization

Transform
- Residual Graph Based 5 .
Block Transform |

[ ——— [ Predicted
GBT-CNN Adjacency  —- RO~ = = = = = = —
1 Matrix

I J
(8x8) (8x8)
Current
K Block
(8x8) B
(8x8)

Inverse Graph
Based De-quantization
Transform

Reconstructed
Current Block
(8x8)

Reference
Blocks

Intra
Prediction

1 J
(8x38) (8x8) Predicted
GBT-CNN Adjacency
" Matrix Decoder
(8x8)

Figure 6.3: Block diagram of the proposed framework for block-based PTC.
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form, ap is the vectorized form of the ground truth matrix Ap, || . || is the Lo
norm, W (:) represents the learnable parameters in vector form, and A controls
the amount of Lo regularization on the learnable parameters. The graph used
to compute the GBT for the current residual block is then G = (V,E, Ag). To
reconstruct the current block, the same graph used to compute the GBT should
be used to compute the inverse GBT at the decoder. To this end, the same
reconstructed blocks used as input are available at the decoder to predict matrix
Ap by the trained GBT-CNN. Fig. 6.3 illustrates the complete compression
framework assuming the trained GBT-CNN is common knowledge between
encoder and decoder. As a result, our solution does not require signalling any

additional data in the compressed bit-stream.

Table 6.1: GBTs used in the evaluation.

Approach Explanation

All-C Topology

GBT-NN Train a NN to predict matrix Ag. The graph for GBT has UE weights but no self-loops.
GBT-CNN(ours) Train a 3D CNN to predict matrix Ag. The graph for GBT has UE weights but no self-loops.
GL-GBT Uses covariance matrices from several training examples to estimate the graph Laplacian.

4-Connected Topology
GBT—LA Use actual residual to compute a graph with UE weights and normalized self-loop weights.

84



Table i.2: Performance evaluation of the model on test data for all the
networks.

Networks
Metric H Vv D DC P
MSE [0.0076|0.0162|0.0134 | 0.0185 | 0.0384

6.3 Performance evaluation

6.3.1 Experimental setup

Based on the 35 HEVC intra-prediction modes, we train 5 distinct networks:
one for horizontal (H) modes (modes 3 - 17), one for vertical (V) modes (modes
9 - 13), one for diagonal (D) modes (modes 2, 18 and 34), one for the DC mode,
and one for the planar (P) mode (see Fig. 6.1 and Fig. 6.4). We use 8 x 8
blocks and graphs with unit edge (UE) weights and an all-connected (All-C)
topology with no self-loops. We use 40 distinct grey level YUV frames from
Class A, B, C, D, E, and Screen Content, which are popular video sequences
for testing video codecs [19]. We also employ the green (G) component of 10
colour pathology images from the US National Cancer Institute’s Center for
Biomedical Informatics and Information Technology [128, 129]. We use 64, 320
samples in total for the five networks. Each sample comprises the following
values: {By1 k), AB}, where Ag is the ground truth. 80% of the data is used
for training and 20% is used for testing. The training and testing sets do not
overlap. We use the Adam optimizer to train each network for 150 epochs
with a learning rate of 0.0001 and A = 0.001 (see Eq. 6.4). As mentioned
before, the surrounding reconstructed blocks I, J, and K, which are available
at the decoder, are used as inputs to a specific trained GBT-CNN according
to the mode used by the encoder (see Fig. 6.4). We use 10, 20, and 40 3D
filters respectively in each 3D-CNN layer. For each convolution operation, we
apply 1 stride, which leads to feature maps with dimensions of 6 x 6 x 10,
4 x 4 x 20, and 2 x 2 x 40, respectively. At the end of the convolutions, the
feature maps are flattened to a vector of dimensions of 160 x 1. The output
layer has 2080 neurons, which matches the upper triangular elements plus

those in the diagonal of the matrix Ag.

6.3.2 Evaluation of energy compaction for unquantized coeffi-
cients

We compare our proposed method with several GBTs as summarized in Table
6.1. Specifically, the table tabulates the topology of the graph, the edge weights,
and how the graph is obtained to compute the GBT. The KLT, DCT, and
DCT/DST as used in the HEVC and VVC standards are also evaluated, with

the DCT/DST being employed as separable transforms for rows and columns

85



GeE86Y 189619 61648 969V ¢S 890996 ¥¥L0C9 890L°L0 6'G6F<C6 <CO0Ec¥y 9TLV9S¢ 18966 C€L009 VOLTTL ¥'E6L68 a8elaae [[BI9AQ
9VC 60V €9LG965 T1CclL8 €8L0T9 9LI8T¢ €¢8C¢TL 990690 §°96006 T10cc1E €08199 T1'8TLEC €C8CTL L60VIT 1°C6¥ 88 A3oroyyed jo Say
LS 9Ty 6'9L1°09 6060966 06L8T9 PLLI0CE ¢e8F'IL S90T°L0 6'966¢°06 00C€E1e ¢08¢99 €8LOVE SV8ETL 901CCL 6C6168 1avon
0¥Cv' Oy 09LC65 ST1¢¢8 6LL909 08IT¢CC LC8GTL 6901°L0 196S°06 S0CCTE L08V99 ¥8ILIEYE 8C8V'IL ¢600° 1T L'160°88 CINGD
Ve eor 092669 8T¢€8 08L809 €LISTE 1TC86'0L €90990 196768 861606 008899 LLITEE 86L80L €60¢ 1T 616 1'88 0CION
€VCLOV C9L¥6S 0CC98C 1T8L609 ¥LILTC €E8TTL 990L90 ¢'G6L68 00CT'IE €18099 6LI¥EC 0C80TL 960% 1T 0°C6C88 TOIDN
abvwy fibojoyio g
L8E0°GS L€900S GLETVS €€9T9F LOE8CY 6L90CS 9¥06G0 S969C6 6FEEHY 8F9605 €TEGEY €99LPS ETITEL 616188 DS/ SSe[D Jo 8ay
G8ELVG ¢'c986Yy T'LELES T'€98GY G0eCsey LL97'GG  LP0090 L'966°C6 8FEL6Y LTVICTS €1€CEy 67997¢ T'TIL9CL ¢T6CLS8 Surwre1sord-og
G'8ERVVY L'C96°6Y €LEOTVS C€I6'GY  T'I€gCh €89L7G GP06'G60 ¥'965C6 CSE06V ¢'9990¢ CIEVEY T999TE  6°0L€CT 606648 dejyog
686069 6'¢90°08 LLECTTS TEITOY ¥O0ECCr 9L9LTVS €FP08G0 ¢96CC6 LFE06F 979908 60€0¢Cy 0¢9€¥7S  VILGETL 616E88 MOYsTIpPIS
06£€99 1T€91°08 6LV PSS 9€IVIY L IET'EY 6'89€GS 8¥0090 696LC6 69696V 849¢'1S 61€CHy 1'991°4G TCLOVI ¥'¢60°68 paadseury)
DS/ 551D
1°L0€€y 1°6L€8G 9°Gceeh €9L068 L'0c¥y 06 018669 L90LL0 €96¥'€6 6EC6LE €8LETVY CTCCcG€E €084969 CELOGT LT66°L8 | sse[D Jo Sav
€L LEY L'GLL8G TLCLTY 6'GLYV6S  GICY0E 818669 L906°L0 T'967'€6 L'1C99¢ T'9L0€9 81¢9€E T08¢69 9€CI8ST 616488 Auuoyr
6°9CT'eV 9VLI8G €'9C6'IV 6'GL88G 00cC0e €08L69 ¢90€L0 6'G61°C6 LPCGLE T'6L6€9 61¢1'6E 66L€69 O0CIVVL S169L8 o[doad-anog
0Lccey 0G6L28% ¥'4Gc0ch 09L68% 90090¢ 0TI8T0L 0L08L0 8966°€6 F'SCG6E 86L6G9 6¢cL€e 80800L T'EI8VI L'T168L8 BIBSTPULTOUISIIM
i SSDID)
LVE608 99967 T'€EL6V 8219905 <¢601°L6 SGTL609 190190 6°G660¢C6 0CEIFY S698FS 86058 10L08G ¥'800I ¥¥62L06 d sselD jo Sav
LyeV1S 1°99¢6V  VeeEV 6y 6L95°08 06CGLE GILET9 090090 9760C6 81€0°SY €69¢6¢ L6C€8E 00L8LE 9L0€60 076868 ssed-[reqieyseq
ITPET0S 099167 0€6€6V €LIT0S 966896 6'TL909 190190 6'960C¢6 VCEeVy 6694FS 66048 T°0L08G 180860 ¢'¥6¢06 arenbs g
€¥e805 ¢99467 <CEEI6Y V'.L9¢0S 68C89¢ CILI909 ¢90¢90 T'L61°¢6 L IEETY C69STS 0088 €0L¥'8F ¥'8000L §¥6L06 a[qqnq-3utmorg
9°6E€ 19 129908 L'6E¥ 08 L8IIISG T0E¥LE ¥'CLe'19 090090 896816 6CE6FF POLI'GS 96¢C8 6696LS 960911 0°96 0°C6 d-esioy eory
a s
G0V L99 609CTY 88EHGS V9T 8€60SGy §0L.TG 090190 T¥6.L€6 TLE0TS €9988Y ¥'G€S99y 1°0L9¢S ¥ L0160 796916 D sser) jo SAy
086 9°Lg TO9T'I¥ ¢€668€S VI9TEr LE€ECSr €0LT€G 660190 VP68€6 0LEECTS 1'99¢6V L'GELIY T°0L0°€G L L0L'8O 1'86S4T6 [HPTIreqIesed
007095 €09TFr ¢860°¢S 1TC90Gr CVeELTY 6°0L7¢S T90190 9€6¥F€6 SLELOS L99G8F T1T'GET9Y 8690¢s 690680 76606 au0s™£)re g
LTIy T6s 01914y 8'8€6'9S 8C909F 9€69TP ¢0L¥CS T90T90 6'€649°¢6 896905 09948 C'6E€9V 00L¢CS TL0L60 €€6868 eNOd
CCYC8G ¢T9€9y  16€0LG ¢€9€9Y 8¥ECSY ¥'IL0€ES 090190 S¥66€6 18EC TS CLIT'6Y 99€89Fy €0L6CG 6L0560 656076 o810y evey
D §SD]D
09y €¢9 €L5G0V ¥Sr07C9 18607 ¢OV8€S €996y L90 1I'8 666196 6CV169 L65CSY €1VCes €09.8F STIEET S96 L°C6 d sselD jo Say
8PV 619 €956°66 CTr6°69 V9SGIvy 00VCHS TC986F L90080 666096 L'E€Va6s 965LSY 017V0<¢S 109067 SO0L91T 796 0°€6 a0e1T,Og
6°GV L'T9 VLGVOV  T'Sv0C9 T'8GTOF 90Vees 9¢9¢6Fy ¥906L0 666866 €Fr18 1090 60V6¥S 009¢8F 60L%ET 8¥61°C6 QUROSTIIR]
09¥¥'¢9 TL5E0F 09797C9 T'8V0OF 66£4€S 0C9T6F <90080 666 96 9C€V88G G'650Gy <C'IV1'¢S ¢0998F <¢CLI'€l ¥'L697C6 snyoen
VLIV1'€9 ¢8GVIV  ¥9vL€9 00991V TIVIHS TE9L6F 690980 666596 8Fry69 L099GH 61V6'9S 01916V VI8V €862 E6 Oouowi>f
g $sv10)
C'6CG6E 08LET9 90ccLE T°'188€9 GGIPSGe ¥488%L 60L0€L Vo668 T 61L9E GC89F9 €8ICI9e 6'€8V'G9 G TICEL ¢'C6¥ 88 V sselD jo Savy
V'Ice6e 1°GLG85 T0C¥¥e G8LCE9 891 G9C L988GL GOIVIT C06V'L8 CLIVGE CTO8EEY G9T19€E 8C88EY 8O0I9EL 606CLS [BALISOFRINAON
7'€C0'6E 88LCCY9 €0CT8 VT'¢81'CY9 €GI¢dc T'98L VL POI8CL 166168 ¢CO0CV9E €€8ETI G8L69¢ 0¥8€99 TV ILICL 7'C6888 199135 U0 9[doa
67C 10V 0080€9 CICc68 €C8¢SG9 9VIEHe GP8LEL 8TII9VI 666106 60CE8 6€8¢99 6618L6 0G8T°L9 TCL6EL 166 ['68 ORAL
V_SP10
saouanbas ANKX 0:¢:F
%0T %SG %0T %S %01 %SG %O0T %S %01 %S %O0T %S %01 %S %O0T %S _%0T %S %01 %SG _%0T %S %01 %S _%0T %S %01 %S
TASN | dd TAISW 1 dd TasWw  1dd tasw  ldd TASW  Jdd TAISW  Ldd Tasw  ldd oouenbog
Lsd/Lod LOd V1-1dD LID-TO NN-LID NND-LdD LT
Sururer) surgo oN Sururea} ourggO ourjeseq
UO0UPINAISU0IAL LOf PISTL $IULIY[200 [0 2b6DIUILDJ
"SPUSIOP00 pmwm.ﬁﬂ 9y} jo agejuadtad Trews © wﬂﬁmﬂ HSIN pue An& QC Hd €9 9[9q%],

86



0°LTZ8T0619°0C

L'E€CR'BCOHIETTE

L'GCE0EVEE6'GE

8'GC e 0EETEY 9E

8'€C6'8C6'1ECTE

6'€C1'600CEETE

8'8CLCERIEI6E

aSeaoAe [[eI2AQ

6'T1CETCCLTTE €T

0°LC€0€8°CEIGE

0'9CV'IEETET LE

T°929'T€0°GE6°LE

V'4ece1eg e 10V

G'Gev1€99€ 10V

T'VE6VEG LET TV

Surmre13o1 o8

9'8TS'SIF610°EC L'9TE0ESTESGE L'GCOTEOTEGIE S'GCTTELTEGLE T'SCOLETTELIE TSTI'STETELIE SEEITEYLEG OV  0TLX0STI dejN-og
OSTTVIVVITO0C TTPCT'6CETEGEE T ECCTV'STCTICTTE CTETIVTI'CE0'SGE 9CCECCLTETTE L'CCSGCYTIECTE TIEOCETGET TV MOUsTopIS
6 LIT'STL'SIT0Z 092968 CE6FE 0°GTE0SEEEE e T'GCGOE0FEGIE CFCT LTI EE09E 9TFTTLTLEET O T'EE6'EL0LET OV 89LXFTOT poadseury)
08/ $501D
LL1T0CETC0VE S LTTTEOGEGLE S LTETETTEELE 0'8CCTE6TEOSE TOTOEELGEDLE €OZT'EERGEDLE 6 IEL9ECOFS TH Kuuoyr
9'616°028'TCH'CC LTI 6T0ECELTE 0°GTS6CTIEGTFE T'GCL6TTTETCE E€E€CTOE6TELTE TETE0E0EESTE T'6C6°ECLLEOGE  0TLXO0STT ordoad-1moyg
T'12C 1€ TCOFE €9TC TE0TEEIE T8O TE6TE09E L'ITETEL'EELIE 6VCLTEGTFEECIE 0'GTETEITETIE L 0SS GEE6E9OF 'IRG PUR OUIISLIY
m %w\cwb
6'0CE TCLCCL'CC 8'ETE6C6'CE09E CIETTETOET IV € IEECTEGO6ETIV 6FCGCELIE6LE 0'GTLTCERICH'LE L'BCLGCEEC OVC TV ssed-[[eqjexseq
6'L10°6T0°0280% TFCOLZCISTEE TSTOTETIC0'SE €8T TICGICESE 6 ICF ST TET'EE 0CTISTLIST'EE 9'GTLTEOLET 6E 0PEXOTT arenbs g
9°0ZT' 1TV T ET T'TTO6TIET6'SE O TESEL06E6'0V TTEOTET6ET IV 9FCTTEVGE6'LE LTTT TEICE6'LE F'STT GE0 0V 6 TV o[qqnq-Suimorg
S6IT0CV'ICCCC G'GC0'8CITECTE 96CVTCELLET6E L' 6CITEHLELGE € ECY/6C0ECECTE TECOO0ETECECTE OLCTVEV'SES OV  9s10y 9oy
a ssvD
L LTO'S8T6'616°0C VCCCVET'0EG'CE L'GTTV'6CG CEV'GE 6°GCL'6C]ECELGE G ECL8CLTIECSTVE G ECLS8TLTIEIOVE S8TCLTIE6°9CL6E [THMPTeq¥e¥seq
OPITGISSI6 LT T0TTLE6'6CT IE 0°€CLIT60S8CE T'E€COLTTIETEE L'OC6FC6920°68 S0C0SC0OLII 6 T'CCO6TETETLE 08P X268 oueos Kyreg
6°GTLLTO6T66T TTTT'STO0SSEE TGT6'STOECE6TE €GTT6TEEETCE 8TTTLTT6TLTIE 0T LTT6TTTE €FCTIET 9T 68 meINOgd
9'GTCITI8I9TSG0C S8 ICTI'YCO0ET'EES 9VCV'8CITCESTE S8 TVCL8CO6CESTVE €CCG 904G 8CI0E SG'CTLITIVEY0E 8'E€CL0E09EY]'8E 98I0y aovYy
wa\cﬁo
LLI7026°029°TC 8CCHSTTTE6CE 6°STO6TEEET'SE 6°GT86CTEES'GE V'ECTOSOTENCE G ECCOELTETGE L 0EE TEL OS] 'SE CREREEY Holel
GTOBIL6IT0C T0ZTL66CYIE 0'EC8'9CC0EVTE 1620 LETIETEE L'OT6FT6980'6C 80C0°CT0LE1'6C 0'SCG6LOVEDIE (o0 o auOsIR ]
COT6'9T6'L1E 00 1CCESCTTE6TE C'GC6'SCOTESTE €GCT6CEEETGE 8TCOLE6'STT IE 6°CC "LZ063C 1€ 00ELTIET9E T8 snjoe)
V'GICTIT69T1C 6T S ICI'8C60E8CE TPCI'8CH'TIEVEE S VTV 8CITCESTVE T'CCEITEVTCT0E TGV ITY'8CSE0E ¥'6C60EV GET LE ouowrryy
g ssvj0
0LIS6T20CLTIC TETG6TEEEECGE OTCVTELTEDGE TFCITE0CGENIE TLTVIETTEE GE TLIVIEECTEE GE 86T TETGES 6E [eAT3SO) RINGON
€LT9STE610CC VTTLSTSTESTE CECLTE6'CESTE €ECSTETTETGE V'IOCO0ECTESTE FOCO0ECTIESTE 06C0OTETTELSE 00910997  399xs uo-o[dos
T9TG6IT0C0TC TTICSLEETIEEEE 0TTTOSLTEYEE TTTO0E0EE0TE T'GCT 6CT0ETEE TGTT6TE0EEEE 8 LTS 6TTECTLE orgely,
d\%wswb
L€ T8 LC TC  LE ©E LT ©¢ L8 ©E LT ©  LE ©f Lt ©e L€ ©€ LT @@ L8 ©f Lo oo LE e Lt e
Isd/rod I0a VI-19D 1dD-TD NN-LED NNDO-LID IT uoTn{0sey souenbog
Jururer) suIgyo oN Jururer) surgyO aurpeseq

S4292WD4Dd UO0VDZUUDNY)

"SJUSIDIJO0D ULIOJSURIY oY) U0 uorjezijuwenb Sursn uoym sones (gp) YNSd 79 o1qeL

87



ST T0 ¥0 8T- 0T 60 80 9T- GL ¥9 €% ¢ GL L8 LL 8S TE€ 8T ¥Z 0T TE 6C 9C 6T 08 ¥8 LL 99 aSeasse [[eI9AQ
TT ¥1- 10 L%~ ¥0 €0 ¢0 ¥I- 19 29 ¥€ LT TL 6L €L €S ¥€2TT 6T S0 T€CSCFTET I8 8 69 8¢ Suruuwre15014708
71 ¢0- 90 G%- 60 80 L0 LTI- L9 09 ¢F I'C 08 ¢S LGS LT ¥T T 80 LE 6T 8T 9T 98 ¥'8 I'L 6S  0TLX0SCI dejN-og
TI 60- 70 €2 90 ¥0 €0 9T- ¥9 66 9¢ 8T 9L 08 ¥L ¢S 8T T'C 0T 90 ¥¢ 0¢ 6T I'T 6L 8L 89 G M0YS™OPIS
ST €0- S0 6% 0T 60 80 €T- 89 €9 6% ¥¢ 08 €8 6L 9¢ TI€ 9T €T 60 9€ 9¢ 9C 0C €8 T8 ¢L 09  8ILXFZ0T peadseury)
DS/ $sv1D
60 ¢0 T0 80- %0 20 IT0 6T- 9L 8G I% ¢ 9L 06 T'L GG T€TIE6CET T&TEO0E0C TLSLVLED Kuuoyr
80 €0 T0 90- %0 €020 S§T- ¥L 9G 7€ 8T TL S8 TL 9GS €€ 2¢ 8¢ 0T 0€ 6¢C7Fe T <L €8 6L 89  07LX08CT ordoad-1moyg
€T F0 €0 0T- L0 90 §0 0% 6L €9 ¢F € ¢L T6 9L 09 8T LT ¥T ¢l ST ¥e 0C 9T 0L 6L GL V9 ®'IRG PUR OUIISLIY
A $sv)0
LT 20- 20 & 60 80 L0 0% ¥L 89 T¥% ce TLE6T8CY LE€9C ST I'T ¥¢ €€ 8¢ Tt 8L 88 LLFO ssed-[reqjosseq
T ¢0- 10 ¥¢ €I T'T 0T 8T~ GL TL TF 0€ €L T16 FLS8S €€2¢¢ 1T e0 T¢O0€9C 8T ¢L I8 9L 19 0PEXOTT arenbs g
7T €0- €0 FI- 0T 60 80 9T- TL 0L 8€ 6T 0L 68 LLT9 9€ 0¢ 9T 60 L€ FE 0L FZ 8L S8 LTI o[qqnq-Suimorg
8T T1T0- 90 ¢1- €1 CT1T T'T ¢¢- 89 99 6¢€ €¢ ¥L ¢6 08 6¢ 0¢€ ¢¢C 0¢C L0 €¢ T1¢ ¥ec 0¢c G8 L8 0L ¢9  9s10y-eory
a ssvD
0¢ ¢1 ¢0 1T¢- €1 CT T'T €1- L8 69 ¢S ¢¢ 0L 98 cCL €S T¢€ 1€ 0¢ €1 6'¢ L'C CC L1 g8 ¥'8 T8 69 [THMPTIeq¥e¥seq
¢ VI €0 ¢I- 60 80 L0 SI- 78 S9 GF 0 69 08 0L 99 97 §¢ €¢ I'T V7€ 0€ 9C 61 8L 98 €8 TL 08P X268 oueos K1reg
6T T'T ¢0 80- TT 0T 60 T'T- €8 L9 CC LT €L €8 ¥L VS LT €C T¢ 0T ST T¢ 0T 9T ¥8 €8 08 T meINOgd
€¢ 91T ¢0 61T~ ST ¥I €T ¥VI- 6L €9 8V ¢¢C <L L8 9L T9 1€ 6C 9¢C V'l ¢t 6C Ve 0 18 08 6L 89 9sI0y aorYy
D ww\U@O
¢'T 90- 90 €T- F0 €0 ¢0 €% ¢L 6 8€ ST &L 68 6L 09 TI€0€ 6T 90 9€¢ €€ LT LT €828 T'8 0L CREAEY Hols|
T €0° V0 T2 L0 90 V0 0T VL Z9 eV €T €L 98 VL ES TE 6T T 80 €6 16 9T 1T T8 68 € YL o o auOsIR
80 L0- 60 8%- <1 I'T 80 8T- T, 09 6€ I't 6L 76 08 ¢T9 V€ €€ €T Tl T€ 0€ 6CETC VS €8 08 gL snjoe)
60 ¥0- G0 20 €T T 0T T0 9L €9 ¢% LT 68 €6 €8 19 G€ T ¥T 0T O0F ¥E 0 6T L8 98 ¥'8 L. ouowry]
m wm:UND
6T 80 ¥0 82 ¥I €T ¢T 0% €8 69 9% ¢€ LL S8 I8 T9 LE ¥E LTCTI C€TETIEFT €86 9L 99 [eAI}SOF RINGON
LT 0T 80 61- ST T €T 8T- 8L 0L SV LT 9L €8 ¢8 09 ¢€0€ ¢ I'T 8¢ LT 9C 0C T8 88 I'8 89 009I1X096¢ 199135 uo-o[dosg
T2 ¢T 90 9T- 6T 8T LT 0T- €8 69 06 I'E 78 06 98 ¢9 9€¢ € 8 9T €€ I'€ 0¢ ¢¢ 8L L8 08 02 orgeiy,
d\%wswb
L6 T8 LT ©e  LE ©E Lt T L ©E LG T LE €€ LT e L€ ©E LT ©o L ©f LG oo LE € Lt e
Isd/1oa I0d VI-1.dD LID-TD NN-LED NNDO-LID IT uoryn[0sey oouenbog
MEMEMﬁMu Oﬁﬂuﬂo OZ mgﬁﬁﬂmpu QCWEO @EE@mﬁm

S4292WD4Dd UO0VDZUUDNY)

"SHUSIOTFO0D WLIOJSURI) 97} UO uorjezijuenb Sursn usym ures Surpo)) :G'9 o[qe],

88



Table 6.6: Average PE (in %) and MSE using a small percentage of the largest
coefficients.

Percentage of coefficients used

1% 5% 10%

PE MSE| PE MSE | PE MSE
GL-GBT [136] 53.23 45.18 |92.37 07.66 | 95.92 06.81
KLT 55.51 44.49 | 89.73 12.22 | 93.43 10.43
DCT 17.49 8227 | 52.41 48.48 | 69.58 31.88
DCT/DST 16.94 82.74 | 51.89 49.81 | 68.14 33.49
GBT-NN |[9] 18.97 78.72 | 55.43 44.46 | 72.40 28.94
GBT-CNN (ours) |21.45 76.36 |59.92 39.12|73.16 27.9
GBT-L4 (8] 24.71 75.17 | 60.47 40.21 | 74.28 26.47
GBT-Ly [8] 17.01 82.82 | 52.58 47.93 | 69.18 31.86

Table 6.7: Average PSNR and coding gain when using quantization on the
transform coefficients.

Quantization Parameters

QP=22 QP=27 QP=32 QP=37
PSNR Gain | PSNR Gain | PSNR Gain | PSNR Gain
GL-GBT 39.63 5.80 | 36.92 7.68 |33.05 8.66 | 28.45 7.50
KLT 40.22 6.58 | 36.05 7.66 | 32.71 8.43 | 29.62 8.03
DCT 35.21 -1.63| 31.02 0.77 | 28.29 0.95 | 23.07 0.99
DCT/DST 20.56 -1.83| 19.02 0.45 | 18.28 0.13 | 17.10 1.48
GBT-NN 35.86 1.03 | 31.69 2.43 | 29.18 2.80 | 23.93 3.22
GBT-CNN (ours) | 36.13 1.95|32.73 2.65|29.90 2.91|25.02 3.25
GBT-L 4 36.69 2.46 | 33.84 4.32 | 30.31 6.42 | 25.73 7.58
GBT-Ly 35.71 -0.46| 31.58 -0.72| 28.55 0.16 | 23.16 1.54

of the residual block depending on the prediction mode used. Note that our
approach differs from GL-GBT since that method does not use any deep
learning. We use the MSE to assess how efficiently the normalized symmetric
adjacency matrix is predicted in comparison to the ground truth. Table 6.2
tabulates the performance of the five trained GBT-CNNs on the test data in
terms of the MSE.

We first compute the percentage of PE and the MSE of the reconstructed
frames/ images using only a few coefficients under the assumption that no
quantization is applied, since the efficiency of a transform is measured by its
de-correlating properties and the maximum energy it concentrates in only a
few transform coefficients. We set a threshold that indicates the minimum
absolute value of the coefficients to be used for the reconstruction. This strategy
gradually includes the largest coefficients in a subset by gradually lowering
an initial large threshold as discussed in Chapter 3 in Fig. 3.5 [8]. Table
6.3 presents the PE (%) and MSE values for all evaluated data using a small
percentage of the largest coefficients. The GBT-CNN preserves 19.41% and
14.98% more energy than the DCT/DST and the DCT, respectively, if only 5%
of the largest coeflicients are used. We find that the GBT-L 4 outperforms the
GBT-CNN; however, since the GBT-L 4 requires graph information to compute

the inverse transform, this transform is not practical as it significantly increases
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the overhead. Note that the GL-GBT outperforms all other transforms. Plots
in Fig. 6.5 (a, b) show the PE (%) and MSE values vs. the percentage

of coefficients used for reconstruction of several transforms for the sequence
BlowingBubble (Class D).

6.3.3 Objective quality evaluation

We also compute the reconstruction quality attained by the evaluated trans-
forms in terms of the PSNR when quantization is used. Specifically, we employ
four quantization parameters (QPs) used by the HEVC and VVC standards:
QP = {22,27,32,37}. Table 6.4 tabulates PSNR values for the evaluated
frames/ images when these QPs are applied to the transform coefficients. Note
that the proposed GBT-CNN outperforms both the DCT/DST and DCT
by 7.92 dB and 1.95 dB, respectively, when QP=37. Again, the GBT-L4
outperforms our method by 0.71 db since this method uses actual residuals
for reconstruction. Fig. 6.5 (c) plots the PSNR values for People_on_Street of
Class A.

6.3.4 Coding gain

To demonstrate the rate-distortion trade off among the evaluated transforms,
we also compute the transform coding gain in decibels (see Table 6.5), as the
ratio of the distortion incurred between the uncoded and the coded frames
137]:
o Gr(dB) = 10logio( 22), (6.5)
where Dy is the distortion caused by applying direct quantization to the
residuals and then dequantizing them to reconstruct the frames, while Dp
is the distortion caused by quantization of the transformed coefficients of
transform 7" and then reconstructing the frames after dequantization and
inverse transformation. The distortion is measured in terms of the MSE. Table
6.5 shows that the GBT-CNN outperforms the DST/DCT and the DCT by
3.78 dB and 3.58 dB respectively, when QP=22. Plots in Fig. 6.5 (d) show
the coding gain of several transforms for the sequence People_on_Street (Class
A) relative to the KLT, computed as G — Gxrr, where Gp, is obtained is
the coding gain for transform 7" and Gk is the coding gain for KLT . Fig.
6.6 shows a reconstructed frame of the sequence BlowingBubble (Class D)
after transformation by several transforms and quantization with QP= 37. As
depicted, the GBT-CNN achieves a higher visual reconstruction quality than
the DCT. The GL-GBT achieves a visual quality very close to that achieved
by the KLT.

For easier interpretation and analysis of the findings for PE-MSE, PSNR,

and Coding-gain, Tables 6.6 and Table 6.7 provide a more comprehensive

90



—— KLT — GL-GBT DCT/DST — DCT — GBT-L, GBT-CNN GBT-NN GBT-L,,

=4 o o =4
o N o ©
14 o o
o o N

I .
=

Mean Squared Error
°
kS

o
w

% of Preserved Energy
o
o

o
N
o
N

=3
i
=3
s

o
o

0 1 2 .3, 4 5 6 7 8 .9 10 0 1 2 .3 4 5 6 7 8 .9
% of coefficients used for reconstruction % of coefficients used for reconstruction

20

Relative Coding Gain(dB)
/
\

&

. . . . . . . . . . . . . .
22 24 26 28 30 32 34 36 38 22 24 26 28 30 32 34 36 38

QPs QPs

(c) (d)
Figure 6.5: (a) Preserved Energy (b) Mean-squared Error, when used up to
10% of largest coefficients for reconstruction, (¢) PSNR for the sequence, and
(d) Relative coding gain BlowingBubble of Class D.

overview of the results.

Any GBT requires eigendecomposition of the Laplacian graph. However, the
eigendecomposition used by the KLT tends to be more complex as it uses a dense
matrix. On the other hand, the sparsity in the graph Laplacian for the GBT can
be controlled by the graph topology, which can lead to a lower computational
complexity. Unfortunately, the GBT is just as computationally expensive as the
KLT for the case of the All-C topology. In terms of learnable parameters, the
network used by the GBT-CNN requires 4723510 parameters. The architecture
used by the GBT-NN [9] requires 22368256 learnable parameters.

6.4 Summary

In this chapter, we proposed the GBT-CNN, a new class of GBT's that performs
efficiently in block-based PTC with intra-prediction. The GBT-CNN is based

on a 3D-CNN that learns a mapping function to approximate a symmetric
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Figure 6.6: (a) An original frame of sequence BlowingBubble (Class D). (b) An
area reconstructed after using the KLT (c) the proposed GBT-CNN | (d) the
GBT-NN (e) the GL-GBT , and (f) the DCT . In all cases, QP=3T7.
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adjacency matrix associated with the graph of the residual block to be encoded.
We evaluated the performance of the GBT-CNN in terms of the PE (%)
and MSE when a small percentage of the largest coefficients are used for
reconstruction, as well as in terms of the PSNR when different quantization
levels are applied to the transform coefficients. We also compared the coding
gain of the evaluated transforms. The evaluation results show that the proposed
GBT-CNN outperforms the DCT and the DCT/DST, while the GL-GBT
achieves the best performance, surpassing the KLT.

In both Chapter 5 and Chapter 6, we propose a framework for learning
GBTs using DL, in which the encoder and decoder of a video codec that use
block-based PTC are considered to share knowledge of a trained NN. As a result
of this, our technique avoids the need to indicate any extra information in the
compressed bit-stream. However, it does necessitate training a NN offline using
the proper training data first. However, the volume, caliber, and relevance
of the training data are what determine how well these ML-based algorithms
perform. As a result, online optimization of the ML model has become a viable
alternative to the offline learning procedure. We proposed online training to
predict the graph in our next chapter, which relates to developing ML models

while observing data and avoiding the use of pre-trained models.
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Chapter 7

Online Graph-based

Transforms for

Intra-Predicted Imaging Data

7.1 Introduction

In this chapter, we leverage online training to learn GBTs without requiring
of any training data or offline training processes. We specifically propose an
online GBT, hereinafter called GBT-ONL, for block based PTC in the context
of intra-prediction. The GBT-ONL predicts the graph Laplacian needed to
compute the GBT of each block by using an over-fitted NN that is optimized
online. The GBT-ONL has two main contributions. First, it introduces an
online learning framework where the model is optimized as blocks are being
encoded. This allows the model to adapt to each block to accurately predict
the graph needed to compute the GBT. Second, since the training is performed
online, it can be replicated at the decoder, thus avoiding the need to signal

extra information to compute the inverse GBT for reconstruction.

7.2 Proposed GBT-ONL

Online optimization aims to learn a mapping function based on a sequence of
samples as the samples are observed by the model. Such a mapping function is
expected to perform a specific task based on the observed samples, for example,
classification or regression. In the case of online optimization of an FC-NN;
the mapping function is learned by defining the parameters of the network
as samples are being observed. Those parameters are expected to perform
the task very well for the current sample. Specifically, the parameters are
usually initialized to random values and are updated sequentially using only

the data being processed. To improve performance, the parameters learned for
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the current sample can be used as the initial set of parameters to be updated
for the next sample.

Our work concentrates on learning GBTs online within the context of
block-based PTC. We focus on intra-prediction as currently performed by the
HEVC and VVC standards; however, this work is codec-agnostic and can be
used with any video and image codec that uses block-based PTC with intra-
prediction. More specifically, our GBT-ONL framework relies on a shallow
FC-NN trained over several iterations of gradient descent (GD) to predict the
graph Laplacian required to compute the GBT for the current residual block.
Once the optimization of the current residual block is complete, the FC-NN
is optimized to predict the graph Laplacian of the subsequent residual block
using as the initial set of parameters those optimized for the previous block.
This process is repeated until all residual blocks are processed.

The process of defining the initial set of parameters to be used for the
current block can be expressed mathematically for any two consecutive blocks
with indices k and k + 1 as follows:

Wg—‘rl A Wka (71)

where Wg and W, denote the initial and final set of parameters for block
k + 1 and block k, respectively. For the first residual block of a frame, our
shallow FC-NN uses parameters initialized to known values, i.e., Wgzo is
known for block k = 0. Moreover, the FC-NN uses information obtained from
the blocks that have been already processed by block-based PTC as the input.
Consequently, no additional side information needs to be stored to repeat
the same training process during the reconstruction of the blocks since the
same input is available when blocks are reconstructed sequentially and in the
same order used to compute their GBTs. Let us recall that such sequential
encoding and decoding are common in modern video and image codecs that
use block-based PTC.

By using online optimization, our main objective is to learn a mapping
function, £(-), between an average residual block for the current block k, denoted

by Cg, and the graph Laplacian of such an average residual block:
L, ~ £(Cy), (7.2)

where Lj, is the predicted graph Laplacian of the average residual block and
Cy = %2321 M, is computed as the average residual of the three residual
blocks surrounding the current block, k. Here, M, represents the d*" surround-
ing residual block (see Fig. 7.1).

Note that the same three residual blocks, {My}, are available when re-
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Figure 7.1: Surrounding residual blocks of the current residual block to be
encoded.
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Figure 7.2: Architecture of the shallow FC-NN used by the proposed GBT-ONL
framework for 8 x 8 blocks.

constructing a frame block-by-block. Hence, they can be used as an input to
the same FC-NN for predicting the same graph Laplacian, which is needed
to compute the inverse GBT for block k. The rationale behind using these
three surrounding residual blocks is based on their similarities with the current
residual block. These three blocks are expected to have similar characteristics
to those of the residual block to be transformed. For residual blocks located
in the corner or along the edges of a frame, which may not be surrounded by
three residual blocks, we use a residual block with a constant value equal to
the DC value of the frame, e.g., for 8 bbp images, we use a value of 128.

Our solution to learn the mapping function in Eq. 7.2 is based on an
encoding-decoding shallow FC-NN, as depicted in Fig. 7.2 for the case of 8§ x 8
blocks. This shallow FC-NN has an input layer of 64 neurons and a 512-neuron
hidden layer, leading to the output layer of 4096 neurons. The average residual
block, Cy, in vector form, denoted by cj, is used as input to the FC-NN, which
is trained to predict the graph Laplacian of Cy, also in vector form and denoted
by l¢,. In other words, L, serves as the ground truth for the training process.
Under the assumption that the three surrounding residual blocks {My} are
similar to the residual block to be transformed, the graph Laplacian 1, is then
expected to be similar to that of the current residual block, denoted by 1g;

hence 1¢, ~ 1, .
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Figure 7.3: Sequential processing of blocks by the proposed GBT-ONL frame-
work. To estimate the graph Laplacian of the current block, k, the shallow
FC-NN uses the average residual block in vector form, denoted by cy.

Fig. 7.3 shows the overall functionality of the GBT-ONL framework to
predict the graph Laplacian for each residual block & under block-based PTC
using intra-prediction. Note that the shallow FC-NN is optimized for each
block k over several iterations of gradient descent (GD) to accurately predict
l¢,. This optimization process is stopped based on threshold &, i.e., when the
Mean Squared Error (MSE) between the predicted graph Laplacian, ick, and
the corresponding ground truth, l¢,, is less than £, or when enough iterations
of GD have been performed. In other words, the FC-NN is overfitted on the
input ci. Note that this overfitting process is appropriate for block-based PTC
as the prediction is based on a single input. The weights found after optimizing
the FC-NN on block k, i.e., V~Vk, are used as the initial weights for block k& + 1
(see Eq. 7.1). The process is repeated for all K residual blocks in the frame.

Algorithm 1 summarizes the online optimization process used by the GBT-
ONL framework, where P is the maximum number of GD iterations to be
performed for the current block, « is the learning rate, Arc(-) denotes the
architecture of the shallow FC-NN, { DC4i4 } is a reference block in vector form
with all values equal to the DC of the image, my is the d*" reference residual
block in vector form, and {r,c} denotes the row and column, respectively,
where a block is located in the image. Line 1 of the algorithm iterates over
all K residual blocks. Line 3 initializes all the parameters of the FC-NN for
the first block to a value of 0.5. Line 4 calculates the average residual block
for block £ = 0 as a block with DC values. Line 6 initializes the parameters
of the FC-NN to the parameters found for the previous block. Lines 7 -13
initialize the average residual block according to the position of the current
block k to account for any unavailable residual block my. Line 15 optimizes the
FC-NN for block k£ over a maximum of P iterations of GD. Line 16 computes

the predicted graph Laplacian and the optimized parameters of the FC-NN
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Algorithm 1: Online training of the GBT-ONL framework for an
image with K blocks.
Require: {{md}, lck} for each block k, Arch(-), P,a, &, {DChaiue}
1: fork=0— (K —1) do
2: if k=0 then

3: WY_, ={0.5}
4: ci < {DCratue}
5  else
6: W)« Wi
7 if r =0 AND ¢! =0 then
8: ck + 3(ms + {DCuatuc} + {DCluatuc})
9: elseif 7! =0 AND ¢ =0 then
10: Cp — %(1’1’12 + {DChaiue} + {DCoraiue})
11: else
12: cr 2305 my
13: end
14:  end
15: forp=1— P do
16: {ick,Wz} — Arch(cy, Le, , o, W})
17: if |[le, —lc, |3 > € then
18: W« WY
19: go to line 16
20: else
21: Wi+ WP
22: return ick
23: end
24:  end
25: end

for interation p of GD, denoted by W%. The optimization is based on the

following loss function:

L(le,1e,) =l e — 1o, (13 +A 1 WY 3, (7.3)

where || . ||2 is the L2 norm and \ is a hyperparameter to control the level of
L2-regularization on Wz. Line 17 computes the square of the error between the
ground truth and the predicted graph Laplacian and checks if this squared error
is above the threshold &. If this squared error is above &, the parameters found
after iteration p of GD are used as the initial set of parameters to be further
optimized in Line 16. Otherwise, Line 21 defines the final set of parameters as
those found at iteration p and Line 22 returns the predicted graph Laplacian,
which is to be used to compute the GBT for block k.

Fig. 7.4 shows how the proposed GBT-ONL framework can be incorporated

into an encoder-decoder pipeline that uses block-based PTC for compression
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Figure 7.4: The GBT-ONL framework incorporated into an encoder-decoder
system that uses block-based PTC for compression.

with intra-prediction. Our framework assumes that the initial parameters
WY _, of the shallow FC-NN for block k = 0 are common knowledge between
the encoder and decoder. Note that the residual blocks {M,} used to compute
the average residual block Cj are those available at the encoder after the
corresponding blocks are processed and reconstructed. This guarantees that
even after quantization of the corresponding transform coefficients, these

residual blocks are the same as those available at the decoder.

7.3 Performance evaluation

Our test dataset comprises several 4:2:0 YUV video sequences commonly used
to test the performance of the HEVC and VVC standards. These sequences
are organized into six classes: A, B, C, D, E, and F/SC listed in the CTC
of JCT-VC [138]. They cover a wide range of characteristics in terms of
length, smoothness, scene complexity, and type of content. Table 2.1 illustrates
the characteristics of the videos used for the experiments. We also use 10
pathology images in RGB format from the Center for Biomedical Informatics
and Information Technology of the US National Cancer Institute [128] in the
evaluation. To predict the test sequences using intra-prediction and compute
the residual blocks, we use blocks of 8 x 8 pixels and the 35 modes that are
common to the HEVC and VVC standards. We use the mode that provides
the lowest residual signal for block k. Note that modern video codecs usually
make intra-prediction decisions on the Y and G components of Y:U:V and
RGB data, respectively. For this reason, we use only these components of our
test data.

We compare our proposed method with several GBTs. Specifically, we

compare the GBTs, which vary in the nature of training, the topology of the
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graph, the edge weights, and how the graph is obtained to compute the GBT.
Apart from proposed GBT-ONL we compare other two GBTs constructed
differently from our proposed GBT-ONL. For the first kind, the GBT use
covariance matrices from several training examples to estimate the graph
Laplacian, hereinafter called GL-GBT [136]. This approach mainly focus on
offline training with traditional machine learning approach. For the second one,
called GBT-CNN [10], the graph has unit edge weights with no self-loop. This
method focuses on training a 3D-CNN model offline. Our experiments includes
other transforms, such as, the KLT, DCT, and DCT/DST as used in the
HEVC and VVC standards are also evaluated, with the DST being employed as
separable transforms for rows and columns of the residual block depending on
the prediction mode used. KLT is used as the baseline for optimality. Overall,
we categorize the evaluated transforms in two kind: i) transform requires offline
training, and ii) transform requires no offline training.

In the following subsections we summarize our evaluations and experiments
performed on several transforms. In subsection 7.3.1 we evaluate the proposed
model with appropriate metric. Further, subsection 7.3.2 shows the exper-
imental results for unquantized co-efficient. Additionally, we tabulate and
explain the compression and reconstruction quality, respectively, in subsections
7.3.3 and 7.3.4.

7.3.1 Model evaluation

To first evaluate the performance of the NN by using mean absolute error
(MAE) metric. The FC-NN has 2 hidden layers of 64 and 512 neurons in input
and 4096 neurons in output layer (see Fig. 7.2). In order to receive the same
performance at the encoder and decoder we initialize the weight of 0.5 which
works as a common knowledge. To overfit the network, we apply several steps of
gradient descent with the stopping criteria of € < 1e~8 or reach n cycles. Due to
the online approach each block of the frame is tested sequentially while passing
the updated parameter to the next block. We experienced loss minimization in
every block initially starting with a comparatively poor performance. However,
due to overfitting and passing the updated parameter from the previous block
makes the prediction more accurate with high regressor. As an instance, Table
7.1 shows the performance of Blowing_bubble. Since the frame is divided into
1560 non-overlapping blocks the loss gradually decreases for the later blocks.

For all experiments, we initialize the parameters of the FC-NN used by the
GBT-ONL framework to a value of 0.5 for the first block of each frame, i.e.,
WY_, = {0.5}. To optimize the FC-NN, we use up to P = 100 iterations of
GD with a threshold of ¢ = 1e~8. In other words, the optimization process
is stopped at block k after P = 100 iterations of GD steps or if the MSE
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between the predicted and ground truth graph Laplacians is less than or

equal to & = le~8.

As explained in Section 7.2, the blocks are processed
sequentially and the parameters optimized for block k are used as the initial

set of parameters for block k + 1.

7.3.2 Evaluation of energy compaction for unquantized coeffi-

cients

We first compute the percentage of PE and the MSE of the reconstructed
frames/ images using only a few coefficients under the assumption that no
quantization is applied, since the efficiency of a transform is measured by its
de-correlating properties and the maximum energy it concentrates in only a
few transform coefficients. We set a threshold that indicates the minimum
absolute value of the coefficients to be used for the reconstruction. This strategy
gradually includes the largest coefficients in a subset by gradually lowering
an initial large threshold. Fig. 3.5 shows a toy example of the mechanism
followed.

Table 7.2 presents the PE (%) and MSE values for all evaluated sequences
using a small percentage of the largest coefficients. The transforms are cat-
egorised based on the training approach. In our experiments GBT-CNN and
GL-GBT needs to train their model offline, where as, DCT, DCT/DST and our
proposed method GBT-ONL do not use any offline training. The GBT-ONL
preserves 3.13% more energy than the DCT for Class A whereas overall 3.65%
more energy than DCT for all the test sequence if only 5% of the largest
coefficients are used. For unquantized co-efficients GL-GBT outperforms KLT
in terms of PE and MSE for natural image of Class D (see Fig. 7.5). Recall,
GL-GBT uses an offline trained model whose performance completely depends
on amount and relevance of training data whereas our model adapts the new

pattern of data without any training sample.

7.3.3 Objective quality evaluation

We compute the reconstruction quality attained by the evaluated transforms
in terms of the PSNR when quantization is used. Specifically, we employ
four quantization parameters (QPs) used by the HEVC and VVC standards:
QP = {22,27,32,37}. Table 7.3 tabulates PSNR values for the evaluated
frames/ images when these QPs are applied to the transform coefficients.
Note that the proposed GBT-ONL outperforms DCT and DCT/DST by 2.1
dB and 7.2 dB respectively for Traffic Class A, when QP = 37 whereas for
the same class the PSNR of DCT outperforms GBT-ONL, when QP = 27.
For Class B, DCT outperforms GBT-ONL and GL-GBT by 0.7 dB and 0.1
dB respectively, for QP = 32. For Class B, GBT-ONL outperforms DCT
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by 0.47 dB for QP = 37. On the other hand, DCT for BQ@square Class
D sequence outperforms GBT-ONL for PSNR (see Fig. 7.5). The most
challenging sequence are the screen content where there are several edges. For
SC_Programming GBT-ONL outperforms DCT by 2.4 dB, 2.1 dB, 0.6 dB
respectively, for QP = 22, QP = 27, and QP = 32. The GL-GBT outperforms
our method by 1.8 dB for QP = 22 for all the test sequence since this method

uses offline training for predicting graph Laplacian.

7.3.4 Bjontegaard-based (BD) metric

We evaluate the compression quality of our proposed method in terms of
BD-PSNR and BD-BR (bit-rate). As a trade-off to any HM software used for
compression, we use the entropy [139] of the evaluated transforms as the lower
limit for the average coding length in bits per pixel for 4 different Q) Ps. We use
entropy of DCT as a reference average bit-rate to compare other transforms.
Then we use different PSNR for specified QP values to compare the other
transforms with respect to DCT. Table 7.4 tabulates the BD-PSNR and BD-BR
for the test sequences of different classes. Our table shows better compression
performance for proposed method with respect to DCT and DCT/DST.

For simplified evaluation and comprehension of the results for the PE-MSE,
PSNR, and BD metrics, Tables 7.5, Table 7.6, and Table 7.7 give an expanded
summary of the results respectively.

Fig. 7.6 shows a reconstructed frame of the sequence Basketball_drill after
transformation by several transforms and quantization with QP = 37. As
depicted, the GBT-ONL achieves a higher visual reconstruction quality than
the DCT. The GL-GBT achieves a visual quality very close to that achieved
by the KLT. Since our network is fully connected and performed for each block
the parameters we learned (n x 4096 x 512 x 4096) where n is the number of

blocks in the sequence.
Table 7.1: Performance evaluation of training networks for a sequences

(a) Blowing_bubble

Metric
MAE
Updated initial weight
Block 0 268.513
Block 50 151.194
Block 100 73.290
Block 300 28.671
Block 600 10.248
Block 1000 7.301
Block 1200 5.458
Block 1559 2.173
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7.4 Summary

In this chapter, we proposed the GBT-ONL, a new class of GBTs that per-
forms efficiently in block-based PTC with intra-prediction. The GBT-ONL
is based on online optimization of the block to be encoded. We also present
a coding/decoding framework that allows employing the GBT-ONL on resid-
ual blocks without the need to signal information about the graphs to the
decoder. The framework uses reference samples while decoding. We evaluated
the performance of the GBT-ONL in terms of the PE (%) and MSE when
a small percentage of the largest coefficients are used for reconstruction, as
well as in terms of the PSNR when different quantization levels are applied
to the transform coefficients. We also compared the compression efficiency
using BD-PSNR and BD-BR of the evaluated transforms. The evaluation
results show that the proposed GBT-ONL outperforms the DCT and the
DCT/DST, while the GL-GBT achieves the best performance among offline
trained methods, surpassing the KLT in some cases. Note that among any
non-trainable approach, GBT-ONL is outperforming others. GBT-ONL is
remarkably performing well in terms of computational complexity compared
to the other offline trained methods since we use a shallow network. This
method is advantageous in adapting new patterns in data without the use of
any training data or pre-trained model. The performance of this method on
unstructured graphs is still unclear, and its only drawback is that GBT-ONL
is only applied to structured graphs. The future direction leads to extract the
features of the video content online with convolution approach and learn the
parameters which is expected to response well for blocks with similar content

all over the sequences.
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Table 7.5: Average PE (in %) and MSE using a small percentage of the largest
coeflicients.

Percentage of coefficients used

1% 5% 10%

PE MSE| PE MSE| PE MSE
KLT 55.51 44.49 | 89.73 12.22| 93.43 10.43
GBT-CNN 21.45 76.36 | 59.92 39.12| 73.16 27.9
GL-GBT [136] 53.23 45.18 | 92.37 07.66 | 95.92 06.81
GBT-ONL(ours) | 18.56 78.78|54.33 46.6 | 71.23 30.3
DCT 17.49 82.27 | 52.41 48.48| 69.58 31.88
DCT/DST 16.94 82.74 | 51.89 49.81| 68.14 33.49

Table 7.6: Average reconstruction PSNR values when using quantization on
the transform coefficients.

Quantization Parameters

QP=22]QP=27[QP=32[QP=37
KLT 4022 | 36.05 | 32.71 | 29.62
GBT-CNN 36.13 | 32.73 | 29.90 | 25.02
GL-GBT [136] 39.63 | 36.92 | 33.05 | 28.45
GBT-ONL(ours) | 34.42 | 32.12 | 29.14 | 23.93
DCT 35.21 | 31.02 | 28.29 | 23.07
DCT/DST 20.56 | 19.02 | 18.25 | 17.10

Table 7.7: Average BD-PSNR, BD-BR values when using quantization on the
transform coefficients.

Compression Quality

BD-PSNR| BD-BR
KLT 7.97 -69.00
GBT-CNN 1.03 -11.87
GL-GBT [136] 3.82 44.22
GBT-ONL(ours) 0.89 -9.20
DCT/DST -10.00 27.24
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Figure 7.5: (a) Preserved Energy (b) Mean-squared Error, when used up to
10% of largest coefficients for reconstruction, and (c) PSNR for the sequence
BQsquare of Class D.
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Figure 7.6: (a) An original frame of sequence Basketball_pass (Class D). (b)
An area reconstructed after using the GL-GBT (PSNR = 31.3 dB), (c) the
DCT (PSNR = 26.0 dB), (d) the KLT (PSNR = 28.7 dB), (e) the GBT-CNN
(PSNR = 25.0 dB), and (f) the proposed GBT-ONL (PSNR = 25.6 dB). In all

cases, QP = 37.
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Chapter 8

Conclusions and Future Work

In this thesis, we have proposed a set of strategies for graph-based transforms
for image and video coding. In this chapter, we summarise our contributions,

discuss applications, limitations and consider future work.

8.1 Summary of Contributions

In Chapter 3 we have introduced the concept of reducing signaling overhead
by proposing a framework that allows employing the GBT to transform intra-
predicted residual signals of the multigiga-pixel WSI images images without
the need to signal information about graphs to the decoder. This framework
is only using reference samples to perform the IGBT for reconstruction. In
Chapter 4 we have introduced a framework which uses a 2D graph with unit
edge weights and weighted self-loops in every vertex while constructing the
graphs for GBT. Similar to previous chapter we took care of the fact to reduce
additional signaling overhead to the decoder. To accomplish this we have
used template-based prediction techniques to predict the same graph at the
decoder to perform IGBT. In Chapter 5 we have introduced NN architecture
to predict the graph by learning the adjacency matrix. Our method assumes
the trained GBT-NN is common knowledge between the compression and
reconstruction processes. Hence we avoided any overhead signaling. We used
the template-based prediction strategy from Chapter 4 to predict the residual
at the decoder as an input to the GBT-NN. In Chapter 6.1 we exploited 3D
CNN architecture to predict the graph at the decoder. Similar to Chapter 5
trained GBT-CNN is assumed to be the common knowledge between encoder
and decoder. However, the novelty in this chapter is, we overcome the issue
of applying two consecutive prediction techniques, (i) template matching for
predicting residuals, (ii) GBT-NN to predict the graph with the help of 3D-
CNN. In Chapter 7 we introduced online learning of graphs by using a shallow

over-fitted NN. For its online learning strategy this framework allows to adapt
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to each block to accurately predict the graph for GBT. The same online training

is performed for IGBT, thus, avoids the overhead extra signaling.

8.2 Application

The methods proposed in this thesis have a range of applications which are yet

to be applied in real life. We identify two main application domains.
e Medical Imaging:

— Internationally standard diagnosis:
International medical specialists make diagnoses based on how seri-
ous and critical a medical image is. An image can only lose a little
amount of information in order to retain consistency in diagnosis.
Our techniques keep the majority of the energy, thus the redundant

information in the images and films is only slightly lost.

— Preserve:
It is well acknowledged that the availability of earlier imaging studies
frequently has a significant impact on how a new study is interpreted
since it enables the detection of changes in the findings and an

estimation of the rate of any such change.

Furthermore, there is a chance that in the future, new methods will
allow for the use of data that has already been collected and stored
in ways that aren’t currently feasible. Unavoidably, new methods,
settings, and insights will emerge. Then, information that was not
immediately obvious during the initial examination may be deduced.
Since our approach relies on an exact reflection of pixel correla-
tion for graph structures, it is extremely adaptable to any new
approaches that emerge over time. Our methods demonstrate a
higher compression by evaluating the entropy encoding of the meth-
ods in maximising the utility of lossy compression and to limit the

chance of compression to become orphan data.

— Transmission:
Bandwidth issues hinder transmission of an uncompressed or lossless
compressed image. In these cases, the medical practitioners use of
appropriate levels of lossy image compression to speed the initial
arrival of the images, with the patient’s interests foremost in their
consideration. Our method allow more cost-effective utilization of

network bandwidth and storage capacity for medical images.

e Streaming Media:
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— Live Streaming:
Live streaming requires a form of source media (e.g. a video camera,
an audio interface, screen capture software), an encoder to digitize
the content, a media publisher, and a content delivery network to
distribute and deliver the content. For this application our method

can be adopted.

— Media Upload and Download: Compression of multimedia data
is quite necessary now a days for upload and download purpose.
In the era of COVID-19, the over-the-top (OTT) platforms that
provide television and film content over the internet at the request
and to suit the requirements of the individual consumer are quite

active. Our methods can be adapted to accomplish this purpose.

8.3 Limitation

In our thesis we found the limitation as stated below:

e The proposed frameworks are only applied to HEVC standard videos.
Unfortunately, due to some protocols of access issues by JCT-VC team

we had to limit our experiments in HEVC videos.

e The evaluation results show that our proposed methods outperforms the
most popular transforms DCT and the DCT/DST used in HEVC, while
the GL-GBT, the SOTA achieves the best performance among offline
trained methods, surpassing the KLT in some cases. Note that among
any non-trainable approach, GBT-ONL in Chapter 7 is outperforming

others to a great extent.

8.4 Future Work

Graph-based signal processing is a promising concept in the signal and image
processing field. The potential of the compression abilities of this techniques
provide solutions to problems of high definition videos. In this section, we

describe the future work of our proposed frameworks as follows:

e The future direction leads to extend our research ideas in Chapter 7. In
our existing framework 7.3 we use a shallow NN to predict the estimated
Laplacian where sample covariance matrix is the input to the network.
In future our plan is to extract the features of the video content online
with convolution approach by involving the surrounding blocks of the
block to be encoded. Instead of averaging the 3 surrounded blocks of

the block to be encoded, we could use 3D convolution neural network
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to extract the features to learn the parameters of those content. It is
expected to response well to estimate Laplacian for blocks with similar

content all over the sequences.

Another most SOTA future direction leads to extend our research ideas
in Chapter 5 and Chapter 6.1 is to introduce Graph Neural Network
(GNN) to predict the graphs for transforms. This could specifically help
to involve unstructured graph structures, such as, MRI images of brain
where the focus is on blood flow direction. The graph representation
could indeed encode the complex structure of the brain to indicate either
physical or functional connectivity across different brain regions, and

blood flow through veins are an example of a graph signal.
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