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Abstract

Orthogonal transforms are the key aspects of the encoding and decoding
process in many state-of-the-art compression systems. The transforms in block-
based predictive transform coding (PTC) is essential for improving coding
performance, as it allows decorrelating the signal in the form of transform
coefficients. Recently, the Graph-Based Transform (GBT), has been shown
to attain promising results for data decorrelation and energy compaction
especially for block-based PTC. However, in order to reconstruct a frame for
GBT using block-based PTC, extra-information is needed to be signalled into
the bitstream, which may lead to an increased overhead. Additionally, the
same graph should be available at the reconstruction stage to compute the
inverse GBT of each block.

In this thesis, we propose a set of a novel class of GBTs to enhance the
performance of transform. These GBTs adopt several methods to address the
issue of the availability of the same graph at the decoder while reconstructing
video frames. Our methods to predict the graph can be categorized in two types:
non-learning-based approaches and deep learning (DL) based prediction. For
the first type our method uses reference samples and template-based strategies
for reconstructing the same graph. For our next strategies we learn the graphs
so that the information needed to compute the inverse transform is common
knowledge between the compression and reconstruction processes. Finally,
we train our model online to avoid the amount, quality, and relevance of the
training data.

Our evaluation is based on all the possible classes of HEVC videos, consist of
class A to F/Screen content based on their varied resolution and characteristics.
Our experimental results show that the proposed transforms outperforms
the other non-trainable transforms, such as DCT and DCT/DST, which are
commonly employed in current video codecs in terms of compression and
reconstruction quality.
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Chapter 1

Introduction

Since early age tremendous effort has been rendered on improvement of imaging

technology and as a consequence in 90s revolutionary progress has been achieved

the way we capture our movement and activities, interact with each other

and represent our surroundings. Latest imaging technologies, however, require

acquiring large amounts of data, which impacts on storage and communication

infrastructures. Therefore, the improvement in compression techniques became

essential to cope up with the increasing data sizes.

Digital signal processing (DSP) has been a successful pillar for many

compression methodologies. In video and image compression standard of High

Efficiency Video Coding (HEVC) [11], intra prediction process shares several

high performance coding. A particularly important variation of the problem

of image compression is to achieve an optimal size of compressed images

without affecting the accuracy. HEVC has been used for lossless compression.

On the other hand, to achieve an optimal size of compressed images, lossy

compression is desirable. Lossy compression methods are based on the principle

of expanding a signal into orthonormal bases using an orthogonal transform,

with the expectation that most information is captured by a few basis functions.

For a random signal with a known covariance function, it is well known that

the Karhunen Loéve transform (KLT) [12] is the linear transform with the

best energy compaction property. The KLT basis functions of typical natural

images are close to the Discrete Cosine Transform (DCT), thus the DCT has

been championed as the best suited transform for compression applications.

Unfortunately, the DCT offers little adaptability to the characteristics of the

signal, as a fixed transform is usually applied to all signals.

The increasing data sizes associated with new imaging technologies have

encouraged new ways to improve compression methods. This has driven the

emerging field of DSP on graphs (DSPG), which aims at extending to the graph

domain the generalized operators and localized, multi-scale transforms defined

for discrete scalar functions on regular Euclidean spaces [13, 14]. Although
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Figure 1.1: Principle block diagram of the research.

images (and frames of videos) are 2D regular signals, they can be formulated

as graphs by connecting every pixel (node) with its neighboring pixels (nodes),

and by interpreting pixel values as the values of the graph signal at each node.

Representing signals as graph allows exploiting their underlying structure,

which is in general not possible following conventional DSP methods. The

Graph-Based Transforms (GBT) has been recently shown to attain promising

results for data de-correlation and energy compaction. This comes as an

intrinsic consequence of the underlying graph structure, which can accurately

reflect the correlation among pixels. In general, there are two variants of GBTs.

The first one is constructed based on the specific graph representing the signal

to be transformed. This variant accurately reflects the characteristics of the

signal, but may require signalling additional information so the decoder can

reconstruct the graph [15]. The second variant consists in using separable

transforms that can be applied to rows and columns of a matrix of signal values

(i.e. a block pixel) [16]. This may require understanding the characteristics

of the data from training data, but requires no additional information to be

signalled to the decoder.

In this research, a novel next generation of graph-based compression meth-

ods for the latest imaging data is proposed. This research contribute to the

realization of a predictive transform coding (PTC) framework based on DSPG,

as schematically summarized in Fig. 1.1, where imaging data are predicted

and coded, on a block-by-block basis, by using graph-based motion estimation,

graph-based transformation (i.e. using GBTs). This research aims at designing

effective and low-complexity GBTs by determining the most appropriate graph

construction for different imaging data. This research has the potential to

impact compression methods for both, new image formats, such as light-field

images, and new video formats, such as Ultra high definition (UHD), high

dynamic range (HDR), screen-content (SC) and free viewpoint videos.

1.1 Motivation behind this research

Making progress in representing an image as graphs became popular for dis-

crete and mathematically simple representation that lends itself well to the

development of efficient and provably correct methods. Graph is always a

minimalistic image representation. Also, graphs are flexibility in representing

2



Block 
Partition Residual Transform

Compressed 
Bit-stream

Input 
Frame

Intra
Prediction Quantization Entropy

Encoding

Inverse
Transform

Reconstructed 
Frame

Intra
Prediction

Dequantization Entropy
Decoding

Reconstructed
Residual

Intra-prediction at encoder side

Intra-prediction at decoder side

Figure 1.2: Video compression/decompression pipeline used by the HEVC and
VVC standards for block-based intra-prediction.

Figure 1.3: Partition of a frame into non-overlapping blocks.

different types of images. Further, a lot of work has been done on graph theory

in other applications. As a consequence, the probability of re-use of existing

algorithms and theorems developed for other fields in image analysis has been

increased. In literature since long time an image was proposed to represent as

a graph being a real-valued, non-negative function of two real variables and the

value of this function at a point will be called the gray-level of the image at the

point [17]. The advantages of adopting graph-based image representation are

enormous, even in the modern era. The real driving force behind this research

is to use GBT to circumvent the compression domain by utilising representing

an image as a graph concepts. Consequently, our research explored the existing

GBT for coding purpose since the GBT is quite adaptive to the signal since

for each residual block a unique graph is generated to accurately reflect the

correlation among residual values. In literature, block-based predictive PTC

[11, 18] is an integral part of modern video codecs such as the HEVC [19]

and the Versatile Video Coding (VVC) [20] standards. Intra-prediction is an
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important tool used by block-based PTC, where each video frame is divided

into several non-overlapping blocks and processed in a block-wise manner

(see Fig. 1.3). Specifically, each block is predicted based on the surrounding

pixel values located immediately above and to the left by using one of several

intra-prediction modes. These modes include several angular modes, a planar

mode, and a DC mode. Each angular mode predicts a block using a specific

direction to accurately model edges and directional patterns, while the planar

and DC modes predict gradually-changing and smooth textures, respectively .

A residual block is obtained for each block by computing the difference between

the original and predicted block. Each residual block is then transformed,

and the resulting transform coefficients are quantized and encoded to create a

compressed bit-stream. To reconstruct the frame, the bit-stream is decoded,

dequantized and inverse-transformed to recover the residual blocks. Each

decompressed residual block is then added to the predicted block to recover the

original block (with some losses due to the transformation and quantization -

see Fig. 1.2). However, in literature we found a gap where the reconstruction

at decoder side needs to have the same graph information to perform GBT.

More precisely, at the decoder extra-information is needed to be signaled into

the bitstream, which may lead to an increased overhead. This information

includes the prediction mode used for each block, the block sizes, details of the

inverse transform, and the level of quantization. In this research we focus to

address the gap to reduce this overhead with novel ideas so that the information

needed to compute the inverse transform can be used as a common knowledge

between the compression and reconstruction processes. As an instance, all of

our methods used reference samples to avoid sending the information of the

block to be encoded at the decoder.

Our research includes the luma component of modern video frames of

HEVC standard (see Fig. 1.4, Fig. 1.5). Apart from the HEVC test sequences

our research is applied on Whole Slide (WSI) Pathology images (see Fig. 1.6).

1.2 Research objective

In recent days GBTs shows promising results in terms of energy compaction and

reconstruction. However, still it can not reach the level of KLT which is well

known as an optimal transformation. Consequently, it is always encouraged to

develop transformations which avoid the complexity of calculating eigenvector

from covariance function for residual signal. Also, in both the cases of KLT and

GBT, it require additional signalling to the decoder to reconstruct the image

or video sequence which reduces the gain of compression. Thus the overall

objective of this research is to develop a high-end compression technique for

image and video sequences by exploiting the field of graph signal processing
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and machine learning algorithms.

1.2.1 Research questions and approaches

Our research question is two-fold:

• Our first question is how this research helps to avoid overheads of sending

additional information to the decoder to reconstruct the sequence? More

precisely, we want to find ways to use the GBT without having to send

extra information to the decoder to be able to reconstruct the transform

coefficients.

• Our second research question is how to develop an image transformation

in graph domain similar to KLT in terms of de-correlation and energy

compaction which reduces the computational cost and increase the gain

in compression?

As a solution to the 1st research question this work encourage to develop

improved graph structure and prediction methods which avoids signalling over-

head by exploiting the prediction models such as template based prediction in

several domains, prediction inaccuracy modeling and many more. Approaching

to the 2nd research question it involves machine learning algorithms. The ob-

jective is to exploit the optimization algorithm to minimise the gap in between

the graph Laplacian and covariance function. More precisely, this research

builds model with set of parameters which generates a signal with updated

parameters of the graph signal by learning to produce an estimate towards

minimizing the cost function with the covariance function of KLT.

1.3 Contribution

1.3.1 Overall contribution to the thesis: Non-learning and

learning based prediction

In this thesis we have addressed the issue of availability of the same graph

at the decoder. As a solution we have provided two potential prediction

strategy to predict the graph, each of which has advantages and disadvantages.

We have proposed non-learning based methods for predicting the graph in

Chapters 3 and Chapter 4. More precisely, these techniques heavily rely

on mathematical derivations, including template-based strategy or modeling

of prediction inaccuracy. The fundamental benefit of a non-learning based

technique is that the results are independent of the quantity, amount, and

applicability of training data. To infer any answer, however, requires a thorough

understanding of mathematics because these approaches are solely reliant on

mathematical optimizations. However, since ML/DL approaches have their
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Figure 1.4: Class A: Luma component of Traffic (cropped). Resolution 2560 ×
1600. Frame 30.
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Figure 1.5: Class Screen Content: Luma component of Map. Resolution 1280
× 720. Frame 60.
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(a) (b)

Figure 1.6: (a) G component of colon tissue. Resolution 1024 × 1024. (b) G
component of lymphatic tissue. Resolution 1024 × 1024.

foundation on the relevance of training data, it is quite straightforward and

more versatile to improve the accuracy of prediction for the graphs generated

by such methods compared to other non-learning based approaches. We do not

necessarily require mathematicians to implement any Ml/DL based prediction

methods. The proposed methods in the following chapters (Chapter 5, Chapter

6, and 7) are based on DL for predicting graphs. These DL based approaches

are able to automatically learn from data and make predictions without any

human intervention.

1.3.2 Chapter-wise contribution

The contribution of this thesis area as follows:

1. Methods for designing a framework to avoid signaling overhead

while reconstructing in decoder for pathology image (Chapter

3)

1.1 This chapter focuses on construction based on the specific graph

representing the signal to be transformed and its performance for

data de-correlation and energy compaction of images, within the

context of block-based PTC using intra-prediction. Specifically,

we introduce a new framework that eliminates the need to signal

additional information to the decoder. This is achieved by computing

the GBT based on a predicted residual signal, which is computed
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using only the reference samples used to predict a block. This

variant accurately reflects the characteristics of the signal.

1.2 This framework is evaluated on a wide range of pathology images;

specifically WSIs depicting different tissue types.

1.3 In this chapter, results are reported in terms of the energy compac-

tion properties of the GBT and the Mean Squared Error (MSE) of

the reconstructed images.

2. Designing a GBT with Weighted Self-Loops (GBT-L) for PTC

Based on Template Matching (Chapter 4)

2.1 Proposed a novel class of GBT within the context of block-based

PTC. The GBT-L is constructed using a 2D graph with unit edge

weights and weighted self-loops in every vertex. The weighted self-

loops are selected based on the residual values to be transformed.

2.2 To avoid signalling any additional information required to compute

the inverse GBT-L, we also introduce a coding framework that uses

a template-based strategy to predict residual blocks in the pixel and

residual domains.

2.3 Evaluation results on several video frames of natural and screen-

content video frames and medical images, in terms of the percentage

of preserved energy and mean square error, show that the GBT-L

can outperform the Discrete Sine Transform (DST), DCT and the

Graph-based Separable Transform (GBST).

3. Offline learning of graphs based on deep neural networks for

GBTs for Intra-Prediction of Imaging Data (Chapter 5 and

Chapter 6)

3.1 In Chapter 5 we introduces a novel class of Graph-based Transform

based on neural networks (GBT-NN) within the context of block-

based predictive transform coding of imaging data. To reduce the

signalling overhead required to reconstruct the data after transform-

ation, the proposed GBT-NN predicts the graph information needed

to compute the inverse transform via a neural network. To make the

same graph available to the decoder for reconstruction, a template-

based prediction strategy is used to predict the residual followed

by a neural network (NN) that estimates the graph to perform the

GBT. Specifically, this approach involves two prediction methods:

predicting the residuals and using the predicted residuals as an input

to the NN to predict the graph. This approach, unfortunately, tends

to degrade the quality of the reconstructed residual at the decoder.
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3.2 In Chapter 6 we attempted to address the issue of predicting twice

and present a novel class of GBT based on 3D convolutional neural

networks (GBT-CNN) within the context of block-based predictive

transform coding of imaging data which uses the 3 reconstructed

blocks surrounding the block to be encoded as input. The proposed

GBT-CNN uses a 3D convolutional neural network (3D-CNN) to

predict the graph information needed to compute the transform and

its inverse, thus reducing the signalling cost to reconstruct the data

after transformation.

3.3 In both Chapter 5 and Chapter 6 evaluation results on several

video frames and medical images, in terms of the percentage of

energy preserved by a sub-set of transform coefficients and the mean

squared error of the reconstructed data, and the transform coding

gain, show that the GBT-NN and GBT-CNN can outperform the

DCT and DST, which are widely used in modern video codecs.

GBT-CNN outperforms GBT-NN.

4. Online Learning of graphs for GBT(GBT-ONL) (Chapter 7)

4.1 In general, the idea of learning GBTs offline for compression by

using ML has gained increasing popularity recently as discussed

in Chapter 5 and Chapter 6.1. However, the performance of such

Machine Learning (ML) and Deep Learning (DL)-based methods

depends on the amount, quality, and relevance of the training data.

This Chapter 7 address the problem of offline training and leverage

online training to learn GBTs without requiring of any training data

or offline training processes. We specifically propose an online GBT,

hereinafter called GBT-ONL, for block based PTC in the context

of intra-prediction. The GBT-ONL predicts the graph Laplacian

needed to compute the GBT of each block by using an over-fitted

NN that is optimized online. This allows the model to adapt to each

block to accurately predict the graph needed to compute the GBT.

4.2 Since the training is performed online, it can be replicated at the

decoder, thus avoiding the need to signal extra information to

compute the inverse GBT for reconstruction.

1.4 Thesis outline

This thesis is organised as follows:

• Chapter 2: Literature Review

This chapter reviews the history and the current state-of-the-art in four
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key areas of image and video compression, predominant transforms for

image and video coding, Graph based Transforms for image and video

coding, and ML/DL for compression.

• Chapter 3: Graph-Based Transforms based on Prediction In-

accuracy Modelling

This chapter introduces the idea of graph prediction for GBTs to avoid

signaling overhead by proposing the idea of inaccuracy modeling for

prediction (GBT-PI). Additionally, a framework is proposed for encoding-

decoding based on proposed model.

• Chapter 4: Graph-Based Transforms with Weighted Self-loops

on Template based Prediction Strategy

This chapter introduces the idea of emphasizing on vertex weight of

the graph to perform more accurate signaling of the residual block by

proposing a GBT with self-loop (GBT-L). Additionally, this chapter

proposes a coding framework for template matching and template pooling

techniques in residual and pixel domain.

• Chapter 5: Graph-Based Transforms based on Neural Net-

works for Intra-Prediction of Imaging Data

This chapter elaborates the necessity of learning graphs for GBTs ex-

ploiting the deep neural network architecture of multi-layer perceptron

by proposing a class of GBTs based on Neural Networks (GBT-NN).

• Chapter 6: Graph-Based Transforms based on 3D Convolu-

tional Neural Network for Intra-Prediction of Imaging Data

This chapter introduces the idea of predicting graphs for GBTs by using

the surrounded blocks of the residual block based on 3D convolutional

neural network (GBT-CNN).

• Chapter 7: Online Graph-based Transforms for Intra-Predicted

Imaging Data

This chapter introduces the idea of online training of the graphs for GBTs

(GBT-ONL) which avoids any pre-trained model for prediction.

• Chapter 8: Conclusion and Future Work

In the final chapter, we summarise the contributions of this thesis. We

then discuss applications of our work and new research directions made

possible by the presented contributions.

1.5 Research Summary

In this research we have mainly focused on implementing novel ideas in the

areas of GBT for block-based PTC. Each chapter of this thesis is a novel idea to
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enhance the performance of GBT to enhance the compression framework. The

journey of the thesis initially started with various non-learning based methods

to predict the graph for GBT, followed by offline deep learning based ideas and

ended up to online learning of GBT. Additionally, apart from predicting the

graph we propose a complete framework of encoding-decoding process. While

building ideas we emphasized to avoid signaling overhead while reconstructing

the signal at the decoder. Evaluation results shows, each chapter provides us a

gradual improvement in predicting the graph. Our publication establishes the

novelty in this field of work.
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Chapter 2

Literature Review

In this chapter, we survey works related to the contributions of this thesis. The

chapter is organised as follows: Section 2.1 presents a overview of image and

video compression techniques. Section 2.2 explains the predominant transforms

for compression. Section 2.3 demonstrate the GBT in details related to our

research, and Section 2.4 elaborates learning for compression.

2.1 Lossy and lossless image/video compression

Recently, the use of large volumes of image data in many applications like

internet has been increasing rapidly. So, to make an effective use of storage

space and also bandwidth of the network, image compression [21, 22] is re-

quired (see Fig. 2.1). We have two kinds of image compression - one is lossy

and other is lossless image compression. With lossless compression, every bit

of data initially in a file remains once it is decompress, and every informa-

tion is restored. Further, lossless compression retains raster values during

compression. At the same time, it still manages to reduce file size. On the

other hand, lossy compression reduces a file by permanently removing specific

information, particularly redundant information. As an example, LZ77 is a

lossless compression file type and JPEG is a format that uses lossy compression.

Indeed, lossless compression algorithms allow the original data to be perfectly

Dequantization

QuantizationTransform

Inverse 
Transform

Entropy 
Decoding

Entropy 
Coding

Compression

Decompression
Channel

Original Image

Restored Image

Figure 2.1: A general compression scheme. [1]
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Figure 2.2: Lossy and lossless compression scheme. [2]

reconstructed from the compressed data. Basically, lossless compression more

efficiently rewrites the original file’s data [23]. The most likely application is

for acquisition. So, anywhere high bit depth precision is required for retaining

dynamic range, including with cameras and their proprietary RAW formats.

The resulting files, however, are often significantly larger than image and audio

files compressed with lossy compression because no quality is lost. On the other

hand, lossy image compression produces a compressed image where quality of

the image is maintained with some data loss. Lossy compression is widely used

compared to lossless compression. One of the major difficulties encountered in

lossy image compression is how to preserve image quality in such a way that

the compressed image is always identical to the authentic, as opposed to the

types of methods that exist in lossless image compression that can maintain

the quality of the images authenticity (see Fig. 2.2 ). There are numerous

methods for compressing images that can be used with various algorithms

such as Huffman code [24], Chaudhuri and Hocquengham (BCH) codes [25],

Multiple-Tables Arithmetic Code [26], Fractal Coding [27], Block Truncation

Coding [28], and many others. The image is transformed in the transform

domain to gain a rarely coefficient matrix using Discrete Wavelet Transform

(DWT), DCT, and Fast Fourier Transform (FFT). The DCT method is very

similar to the Discrete Fourier Transform (DFT), which converts a signal or

image from the spatial domain to the frequency domain. Because of the wide

range of images, including binary images, RGB images, and image intensities.

Then use image compression to reduce the size of the data or techniques to

reduce the number of bits required to reflect an image.

2.1.1 Related work on lossy image compression

There is a need for compression algorithms that are more adaptable than

current codecs due to new media formats, evolving hardware technologies, and
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a variety of requirements and content types. Now a days most of the image

and video compression techniques adopt machine learning or deep learning

concepts. In [29] the first conduct a comprehensive literature survey of learned

image compression methods. The literature is organized based on a number

of factors, such as network architecture, entropy model, and rate control, to

jointly improve the rate-distortion performance with a neural network. By

reviewing wide range of previous publications, the fundamental problems with

picture compression techniques are exposed in this survey, along with potential

solutions using cutting-edge advanced learning techniques. This study offers a

chance to further the development of more effective image compression. They

increase rate-distortion performance, particularly on high-resolution images,

by incorporating a coarse-to-fine hyper-prior model for entropy estimation and

signal reconstruction. In [30] authors propose a new approach to the problem of

optimizing autoencoders for lossy image compression. They show autoencoders

have the potential to fill this gap, but they are challenging to directly tune

because the compression loss is inherently non-differentiable. In [31] the authors

present a lossy image compression architecture, which utilizes the advantages

of convolutional autoencoder (CAE) to achieve a high coding efficiency. First,

they design a novel CAE architecture to replace the conventional transforms

and train this CAE using a rate-distortion loss function. Second, to generate

a more energy- compact representation, we utilize the principal components

analysis (PCA) to rotate the feature maps produced by the CAE, and then

apply the quantization and entropy coder to generate the codes. In [32] the

authors propose a method for lossy image compression based on recurrent,

convolutional neural networks that outperforms BPG (4:2:0), WebP, JPEG2000,

and JPEG as measured by MS-SSIM. They introduce three improvements over

previous research that lead to this state-of-the-art result using a single model.

First, they modify the recurrent architecture to improve spatial diffusion,

which allows the network to more effectively capture and propagate image

information through the network’s hidden state. Second, in addition to lossless

entropy coding, they use a spatially adaptive bit allocation algorithm to more

efficiently use the limited number of bits to encode visually complex image

regions. Finally, they show that training with a pixel-wise loss weighted by

SSIM increases reconstruction quality according to multiple metrics. In [33]

the authors introduce a novel wavelet difference reduction (WDR) and singular

value decomposition (SVD)-based lossy picture compression method (WDR).

The performance of the WDR compression is enhanced by the combination of

these two approaches. WDR compression delivers high compression whereas

SVD compression offers very high image quality but low compression ratios.

An input picture is first compressed using SVD in the Proposed approach, and

then it is compressed once more using WDR. The WDR method is also used to
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obtain the system’s required overall compression ratio. Several test photos were

used to evaluate the suggested image compression approach, and the outcomes

were compared to those of WDR and JPEG2000. In [34] authors propose a fast

solving method of fuzzy relational equation and applied to lossy compression and

reconstruction problem, where it is confirmed that the computation time of the

reconstructed image is decreased to 1/335.6 the compression rate being 0.0351,

and it achieves almost equivalent performance for the conventional lossy image

compression methods based on DCT and vector quantization. In [35], authors

propose a novel invertible framework called Invertible Lossy Compression (ILC)

to largely mitigate the information loss problem. Specifically, ILC introduces an

invertible encoding module to replace the encoder-decoder structure to produce

the low dimensional informative latent representation, meanwhile, transform

the lost information into an auxiliary latent variable that won’t be further coded

or stored. The latent representation is quantized and encoded into bit-stream,

and the latent variable is forced to follow a specified distribution, i.e. isotropic

Gaussian distribution. In this way, recovering the original image is made

tractable by easily drawing a surrogate latent variable and applying the inverse

pass of the module with the sampled variable and decoded latent features.

Experimental results demonstrate that with a new component replacing the

auto-encoder in image compression methods, ILC can significantly outperform

the baseline method on extensive benchmark datasets by combining with

the existing compression algorithms. In [36] three lossy image compression

techniques - Discrete DCT, Singular Value Decomposition (SVD) and DWT

are used to perform image compression. These techniques are compared

using some performance measures such as Peak Signal-to- Noise Ratio(PSNR),

Compression Ratio(CR), Structural Similarity Index Measure(SSIM) and Mean

Square Error(MSE). In [37] the authors aim to evaluate (1) storage needs,

(2) subjective image quality, and (3) accuracy of caries detection in digital

radiographs compressed to various levels by a lossy compression method. In

[38] authors present a study of image compression methods algorithm for

compare the best techniques on lossy image compression. Based on the findings

of this study, four alternative ways of measuring the percentage of picture

compression for each of the three methods—DCT, FFT, and DWT—starting

with compressing images with sizes of 10%, 30%, 50%, and 70% have been

developed. The optimal approach for compressing the image of the current

percentage size can be determined by comparing the three ways with four

distinct presentation measurement changes.

16



2.1.2 Modern image and video compression schemes

Digital video has grown pervasive in our daily lives; there are gadgets that can

show, capture, and send video everywhere we look. UHD resolution video may

now be recorded and displayed thanks to recent technological advancements.

The capacity of the current Internet and TV networks is insufficient to transport

vast amounts of HD video, let alone UHD, at this time [39]. In January 2010,

a formal request for proposals (CfPs) on video compression technologies was

made, and 27 proposals were submitted in response. These ideas were put forth

at the initial JCT-VC gathering in April 2010. According to the evaluations

that followed, some ideas may achieve the same visual quality as H.264/MPEG-

4 advanced video coding (AVC) high profile at just half the bit rate and at a

cost of a two- to tenfold increase in computational complexity. Compared to

the reference AVC high-profile encoder, some alternative ideas could achieve

good subjective quality and bit rates with less computational complexity. Since

then, JCT-VC has made a significant effort to establish the HEVC standard, a

new compression standard that aims to significantly outperform the current

H.264/AVC high profile standard in terms of compression efficiency. The JCT-

VC group’s initial goal was to combine the salient elements of the top seven

highly effective solutions into a single test model under consideration (TMuC),

which served as the foundation for the first HEVC software codec known as HM

[40]. JCT-VC has since hosted a number of meetings and assessed hundreds of

submissions from both industry and academia. The best of these submissions

underwent comprehensive evaluation and were incorporated into the HEVC

standard. The main structure of the HEVC similar to the H.264/AVC encoder.

Each picture in H.264/AVC is divided into 16 × 16 macroblocks, with the

ability for each macroblock to be further divided into smaller blocks (as tiny

as 4× 4) for prediction [41]. The development of larger block structures with

adaptable subpartitioning techniques is one of the key factors in HEVC’s

improved compression efficiency. Each picture in HEVC is partitioned into

square picture areas called largest coding unit (LCU)s, which can be as large

as 64 × 64. In general, the LCU concept in HEVC is similar to that of a

macroblock in previous coding standards. LCUs are further subdivided into

smaller units known as coding unit (CU)s, which serve as the basic unit for

intra- and intercoding. Depending on the picture content, CUs can be as large

as LCUs or recursively split into four equally sized CUs and become as small

as 8 × 8. In HEVC, a content-adaptive coding tree structure comprised of

CUs is created as a result of recursive quarter-size splitting [42, 43]. Each CU

can be further subdivided into smaller units, which serve as the foundation

for prediction. These are known as prediction unit (PU)s. Each CU can have

one or more PUs, and each PU can be as big as the root CU or as small as
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4× 4 in luma block sizes. While an LCU can be recursively split into smaller

and smaller CUs, a CU cannot be split into PUs (it can be done only once).

Asymmetric or symmetric PUs can exist. Symmetric PUs can be square or

rectangular (nonsquare) and are used in intraprediction (only square PUs are

used) as well as interprediction. HEVC, like other video-coding standards,

applies a discrete cosine transform (DCT)-like transformation to decorrelated

residuals. A transform unit (TU) is the fundamental unit for the transform and

quantization processes in HEVC. The size and shape of the TU are determined

by the size of the PU. The size of square-shaped TUs can range from 4 × 4

to 32× 32. Nonsquare TUs are available in 32× 8, 8× 32, 16× 4, and 4× 16

luma samples. Each CU can have one or more TUs, and each square CU can

be divided into smaller TUs using a quad-tree segmentation structure.

It is well-known that intra prediction is the technology to predict a block,

using what we already have decoded in the neighboring blocks of the same frame.

Our research framework assumes a block-based PTC method that employs

the set of intra-prediction modes currently used in the HEVC standard. This

set comprises 33 angular prediction modes that model 33 different directional

patterns; a DC mode and a PLANAR mode that generate smooth surfaces. For

our research frame it is useful to categorise the type of residual block sharing

some characteristics of interest, such as, the blocks predicted with same mode

might have edge structure with similar orientation. Fig. 2.3(a) illustrates the

prediction directions associated with the angular modes. The basic prediction

principle for all angular modes is exemplified in Fig. 2.3(b) . Application of

intra-prediction method to a 4×4 residual block is illustrated in Fig. 2.3(c) and

Fig. 2.3(d). The Versatile Video Coding (VVC) standard’s intra prediction and

mode coding are discussed in [44, 45]. The Joint Video Experts Team produced

this standard together (JVET). It adheres to the established hybrid block-

based codec architecture that served as the foundation for earlier standards.

Nearly all of the intra prediction aspects of VVC either have significant changes

compared to its forerunner H.265/HEVC or are brand-new. In VVC, there

are 65 intra directional prediction options as opposed to 33 in HEVC. Fig.

2.4 provides an example of the increasing directions. DC and planar modes

are still in use in addition. To eliminate division operations, only samples

from the longer side of the non-square block are used to calculate the average

DC value for the DC mode. Similar to HEVC, intra mode coding consists of

two components: 64 non-MPM modes using six-bit fixed length coding and

three MPM modes from spatial neighbours. For non-square blocks, some of

the traditional intra prediction modes are adaptively replaced by wide-angle

directions, keeping the total number of intra prediction modes unchanged (67)

[12]. The new prediction directions for non-square blocks are shown in Fig. 2.5,

where the block width is smaller than block height. In general, more modes
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Table 2.1: Characteristics of tested HEVC video sequences.

Sequence Resolution Frame Frame Bit Source
count rate(fps) depth

4:2:0 YUV sequence

Class A

Traffic (Fig. 1.4) 2560×1600 150 30 8 CTC 2D

People on street 2560×1600 150 30 8 CTC 2D

Nebuta festival 2560×1600 150 30 10 CTC 2D

Class B

Kimono 1920×1080 240 24 8 CTC 2D

Cactus 1920×1080 500 50 8 CTC 2D

Park scene 1920×1080 240 24 8 CTC 2D

BQTerrace 1920×1080 600 60 8 CTC 2D

Class C

Race horse 832×480 300 30 8 CTC 2D

BQMall 832×480 600 60 8 CTC 2D

Party scene 832×480 500 50 8 CTC 2D

Basketball drill 832×480 500 50 8 CTC 2D

Class D

Race horse D 416×240 300 30 8 CTC 2D

Blowing bubble 416×240 500 50 8 CTC 2D

BQ square 416×240 600 60 8 CTC 2D

Basketball pass 416×240 500 50 8 CTC 2D

Class E

Kristine and Sara 1280×720 600 60 8 CTC 2D

Four people 1280×720 600 60 8 CTC 2D

Jhonny 1280×720 600 60 8 CTC 2D

Class F/SC

China speed 1024×768 500 30 8 CTC 2D

Slide show 1280×720 500 20 8 CTC 2D

Map (Fig. 1.5) 1280×720 600 60 8 CTC 2D

Programming 1280×720 600 60 8 CTC 2D

will be coming from the longer side of the block. In the case in Fig. 2.4, some

modes near the top-right angular mode (mode 66 in Fig. 2.4) are replaced

by additional angular mode below the bottom-left angular mode (mode 2 in

Fig. 2.4). To support these prediction directions, the top reference with length

2W + 1, and the left reference with length 2H + 1, are defined as shown in

Fig. 2.5. Table 2.1 of HEVC test sequences are of several class based on the

resolution and characteristics which motivated us to test our experiments on

various types of contents i.e. natural images of different resolutions, and screen

content images.

2.1.3 Intra-prediction of HEVC and VVC standard

HEVC and VVC uses block-based intraprediction to take advantage of spatial

correlation within a picture. The Joint Collaborative Team on Video Coding’s

HEVC standard’s intra coding methods are described in [46] in general terms

(JCT-VC). The HEVC intra coding system is founded on spatial sample pre-

diction, transform coding, and postprocessing processes, similar to traditional

hybrid codecs. A quad tree-based variable block size coding structure, block-
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Figure 2.3: HEVC intra-prediction modes (a) Prediction direction, (b) Predic-
tion principle [3], (c) A sample residual block with left and above reference
samples, (d) Predicted block with ideal Horizontal prediction mode (Mode 10),
(e) Another sample residual block with left and above reference samples, (f)
Predicted block with ideal Vertical prediction mode (Mode 26).
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Figure 2.4: VVC modes. [4]

size agnostic angular and planar prediction, adaptive pre- and post filtering,

and prediction direction-based transform coefficient scanning are novel features

that help to boost compression efficiency. The work in [46] examines the design

concepts used in the creation of the new intra coding techniques and evaluates

how well each tool compresses data. Both operational cycle counts and bench

marking an optimised implementation are used to determine the computational

complexity of the newly introduced intra prediction methods. The bitrate

reduction offered by the HEVC intra coding over the H.264/advanced video

coding standard is reported using objective measurements. The Joint Explora-

tion Model (JEM) algorithm and a matching software implementation were

developed by the JVET, which was established following the development of

HEVC, as part of its exploration of video coding technologies with improved

coding efficiency. According to the Bjontegaard delta bit rate (BD-rate) metric,

the technology investigated in the most recent JEM version further improves

the compression capabilities of the hybrid video coding approach by introdu-

cing new tools, reaching up to 30% bit rate reduction compared to HEVC,

and going above and beyond that in terms of subjective visual quality. As

a result, a joint CfP for a new standardisation initiative known as VVC. All

of the technology that was suggested in the CfP responses was based on the

traditional block-based hybrid video coding design, but it was extended by

new components like partitioning, intra- and inter-picture prediction, predic-
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Figure 2.5: VVC angles. [4]

tion signal filtering, transforms, quantization/scaling, entropy coding, and

in-loop filtering. An overview of the technology that was suggested in the

CfP answers is given in [47], with an emphasis on methods that have not yet

been investigated in the context of JEM. A video sequence can effectively

use intra prediction to reduce the coded information included in an image or

intra frame. Today’s common procedure is to extrapolate the reconstructed

pixels surrounding the target block to be coded to build a sample predictor

block. The target block is subtracted from the sample predictor block, and the

residual data is then transformed, quantized, and encoded using entropy. In the

majority of sequences, this technique works well for creating sample predictor

blocks. However, sample prediction blocks with complex texture cannot be

represented using the extrapolation method. Additionally, pixels that are far

distant from the pixel location are typically inadequately predicted. In [48] an

innovative method for creating sample predictors by template matching in a

region of reconstructed pixels is provided. Real-time mobile video applications

have become challenging to create in recent times due to low latency and power

constraints. A fast decision method for intra-coding unit size based on a new

fuzzy support vector machine classifier is proposed in [49] in order to solve the

above problems.
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2.2 Predominant transformations for image com-

pression

Image compression technology is the basis of all kinds of media compression and

transmission, and its compression effect is directly related to the compression

effect of media. In image compression framework transformation is a near-

reversible process (due to finite precision arithmetic) that provides an image

representation that is more amenable to the efficient extraction and coding of

relevant information. The predominant transforms for image compression also

includes DWT along with mentioned KLT and DCT. If one can find a reversible

transformation that removes the redundancy by de-correlating the data, then

an image can be stored more efficiently. The KLT is the linear transformation

that accomplishes this. The basis vectors of the KLT are the eigen-vectors of

the image covariance matrix. Its effect is to diagonalize the covariance matrix,

removing the correlation of neighboring pixels. Another popular block-based

linear transformation is DCT. DCT coefficients can be viewed as weighting

functions that, when applied to the n2 cosine basis functions of various spatial

frequencies (n× n templates), will reconstruct the original block. DWT has

a number of applications for signal coding, to represent a discrete signal in

a more redundant form, often used to denoise two dimensional image signals.

Wavelet decompresses an image as a whole. On the contrary, as our research

framework adapts a block-based PTC there is no use of wavelet transform

in PTC. Among several commonly used image compression coding methods

Transform coding is one of the methods which is used to compress still images

[50]. In the following subsections we discuss the details of the predominant

transforms.

2.2.1 Karhunen-Loève Transform

Karhunen-Loève Transforms are has many names [51] cited in literature as

Karhunen-Loève Expansion [52], PCA [53], Principal (or Principle) Factor

Analysis (PFA) [54], SVD [55], Proper Orthogonal Decomposition (POD) [56].

Further KLT is also cited in literature as Galerkin Method [57] where this

variation is used to find solutions to certain types of Partial Differential Equa-

tions, specially in the field of Mechanical Engineering and electromechanically

coupled systems. Additionally, KLT is also cited as Hotelling Transform [58, 59]

and Collective Coordinates [60] in few literature. KLT has been widely used

in several sectors as studies of turbulence [61, 62], thermal/chemical reac-

tions [63, 64], feed-forward and feedback control design applications [65, 66]

where KLT is used to obtain a reduced order model for simulations or control

design, and data analysis or compression [67–72] mostly in characterization
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of human faces, map generation by robots and freight traffic prediction etc.

In [67] authors propose the use of natural symmetries (mirror images) in a

well-defined family of patterns (human faces) is discussed within the framework

of the Karhunen-Loeve expansion. This results in an extension of the data

and imposes even and odd symmetry on the eigenfunctions of the covariance

matrix, without increasing the complexity of the calculation. The resulting

approximation of faces projected from outside of the data set onto this optimal

basis is improved on average. In [68] authors study a method to query large

online database using image content as the basis of queries. They address the

problems of vectors with high dimensionality with KLT that helps to reduce

dimensionality without introducing the dismissals. In [69] the authors prove

the KLT for a class of signals to be a set of periodic sine functions and this

KL series expansion is obtained via an FFT algorithm. This fast algorithm

obtained is useful in data compression and other mean-square signal processing

application. In [70] the authors analyze a Karhunen-Loeve transform technique

for ECG data compression. This transform has been, applied in two different

ways: to the entire beat signal and to independent windows (P wave, QRS

complex and ST-T complex). The optimum number of coefficients and bits

for coding the signal is analyzed for the MIT-BIH Arrythmia database. The

data compression performance of both choices are: for the entire beat a mean

compression ratio of 12.1 with a mean MSE of 0.3% and for shorter windows

a mean compression ratio of 17.21 with a mean value of MSE of 0.44%. In

[71] the authors propose a neural model approach for performing adaptive

calculation of the principal components (eigen-vectors) of an input sequence’s

covariance matrix. The algorithm is based on applying Oja’s modified Hebbian

learning rule to each new covariance matrix that results from calculating the

previous eigen-vectors. It is demonstrated that the approach converges to

the next dominant component that is linearly independent of all previously

determined eigen-vectors. By minimising an error function of the learning rate

along the gradient descent direction, the optimal learning rate is calculated.

The method is used to adaptively encode grey-level images by calculating a

limited number of KLT coefficients that meet a specified performance criterion.

In [73] the authors provide the reasoning behind the found discrepancies of

spatial PCA for network-wide anomaly detection. The authors revisit PCA for

anomaly detection and evaluate its performance on their data. They develop

a slightly modified version of PCA that uses only data from a single router.

Instead of correlating data across different spatial measurement points, they

correlate the data across different metrics. With the help of the analyzed

data, they explain the pitfalls of PCA and underline our argumentation with

measurement results. They show that the main problem is that PCA fails

to capture temporal correlation. They propose a solution to deal with this
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problem by replacing PCA with the KLT. They find that when they consider

temporal correlation, anomaly detection results are significantly improved.

The concepts of KLT is based on eigen-values and eigen-vectors. If C is a

matrix of dimension n× n then the scalar λ is called eigen-value if C if there

is a non-zero vector e ∈ Rn such that:

Ce = λe (2.1)

where the vector e is the is called an eigen-vector of the matrix C corresponding

to the eigen-value λ. Lets consider a population of random vectors of the

following form:

x =


x1

x2

...

xm

 (2.2)

Here the quantity xi may represent the value ( grey level ) of the image i. Let

us consider the mean vector of the population as:

mx = E{x} =
[
m1 m2 · · · mn

]T
=
[
E{x1} E{x2} · · · E{xn}

]T
(2.3)

The covariance matrix of the population is defined as:

C = E{(x−mx)(x−mx)T } (2.4)

For M vectors of a random population, where M is large enough

mx =
1

M

M∑
k=1

xk (2.5)

Lets assume, R be a matrix whose rows are formed from the eigen-vectors of

the covariance matrix C of the population and they are ordered so that the

first row of R is the eigen-vector corresponding to the largest eigen-value, and

the last row the eigen-vector corresponding to the smallest eigen-value. Then

the transform we can define as

y = R(x−mx) (2.6)

is defined as KLT. For reconstruction the original vectors x from its corres-

ponding y we apply

x = RTy + mx (2.7)

We form a matrix Rp from the p eigen-vectors which correspond to the p
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Figure 2.6: DCT transform. [5]

largest eigen-values, yielding a transformation matrix of largest eigen-values,

yielding a transformation matrix of size p× n. The y vectors would then be p

dimensional. The reconstruction of the original vector x̂ is

x̂ = RT
p y + mx (2.8)

It can be proven that the mean square error between the perfect reconstruction

x and the approximate reconstruction x̂ is given by the expression

ems =‖ x− x̂ ‖2=
n∑
j=1

λj −
p∑
j=1

λj =

p∑
p+1

λj (2.9)

By using Rp instead of R for the KL transform we can achieve compression of

the available data.

The KLT is not implemented in practise despite its excellent theoretical

features for the following reasons:

• Since its basis functions depend on the image’s covariance matrix, they

must be recalculated and communicated for each image.

• Perfect de-correlation is not possible, since images can rarely be modelled

as realisations of ergodic fields.

• There are no fast computational algorithms for its implementation.

2.2.2 DCT

DCT has emerged as a image transformation in most visual system. DCT

has been widely developed by video coding standards, as, MPEG, JVET etc

and also been used for modern standards as HEVC, and VVC. It is a lossless

transform. However, due to it’s properties (de-correlation of an input and

concentration of most of the information in lower bins) it is being used in

lossy algorithms. DCT represents an image as a sum of sinusoids of varying

magnitudes and frequencies. The DCT2 function computes the two-dimensional

DCT of an image. DCT has several properties, such as, decorrelation, energy

compaction, separability, symmetry, orthogonality. The DCT helps separate the
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image into parts (or spectral sub-bands) of differing importance (with respect

to the image’s visual quality). The DCT is similar to the discrete Fourier

transform: it transforms a signal or image from the spatial domain to the

frequency domain (Fig 2.6). In [74] propose a new framework for digital image

processing; it relies on inexact computing to address some of the challenges

associated with the DCT compression. The proposed framework has three levels

of processing; the first level uses approximate DCT for image compressing

to eliminate all computational intensive floating-point multiplications and

executing the DCT processing by integer additions and in some cases logical

right/left shifts. The second level further reduces the amount of data (from the

first level) that need to be processed by filtering those frequencies that cannot

be detected by human senses. Finally, to reduce power consumption and delay,

the third level introduces circuit level inexact adders to compute the DCT. For

assessment, a set of standardized images are compressed using the proposed

three-level framework. Different figures of merits (such as energy consumption,

delay, power-signal-to-noise-ratio, average-difference, and absolute-maximum-

difference) are compared to existing compression methods; an error analysis is

also pursued confirming the simulation results. In [75] authors introduce a fast

JPEG image compression algorithm based on DCT. The algorithm introduces

the process of image coding and decoding for JPEG. The encoding part of

the image can process the BMP format image by JEPG, and compress it

into a binary file for real-time storage. The image can be decompressed by

the corresponding decoding program. In addition, in the process of image

transmission, taking advantage of the fact that human vision is not sensitive to

chroma, JPEG format can be used to encode static image, and the color RBG

of JPEG image can be changed into brightness y, chroma Cr and CB, which

can not only effectively reduce chroma data, but also achieve compression.

In [76] authors propose a hybrid Integer wavelet transform (IWT) and DCT

based compression technique to obtain increased quality of decompressed

image compared to DWT+ DCT based compression technique. The proposed

combined IWT + DCT based compression technique reduces the fractional loss

compared to DWT based compression so the proposed technique provides better

image quality of decompressed image on high compression ratio compared to

DWT based and hybrid DWT DCT based image compression techniques. In

[77] the authors propose a low-complexity 8-point orthogonal approximate DCT

. The proposed transform requires no multiplications or bit-shift operations.

The derived fast algorithm requires only 14 additions, less than any existing

DCT approximation. Moreover, in several image compression scenarios, the

proposed transform could outperform the well-known signed DCT, as well as

state-of-the-art algorithms. In [77] authors propose a block transform for image

compression, where the transform is inspired by DCT but achieved by training
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CNN models. Specifically, the authors adopt the combination of convolution,

nonlinear mapping, and linear transform to form a non-linear transform as well

as a non-linear inverse transform. The transform, quantization, and inverse

transform are jointly trained to achieve the overall rate-distortion optimization.

For the training purpose, the authors propose to estimate the rate by the

l1-norm of the quantized coefficients. They also explore different combinations

of linear/non-linear transform and inverse transform. Experimental results

show that our proposed CNN-based transform achieves higher compression

efficiency than fixed DCT, and also outperforms JPEG significantly at low bit

rates. In [78] authors propose a block transform for image compression, where

the transform is inspired by DCT but achieved by training convolutional neural

network (CNN) models. Specifically, they adopt the combination of convolution,

nonlinear mapping, and linear transform to form a non-linear transform as well

as a non-linear inverse transform. The transform, quantization, and inverse

transform are jointly trained to achieve the overall rate-distortion optimization.

For the training purpose, they propose to estimate the rate by the l1 norm

of the quantized coefficients. They also explore different combinations of

linear/non-linear transform and inverse transform. Experimental results show

that the proposed CNN-based transform achieves higher compression efficiency

than fixed DCT, and also outperforms JPEG significantly at low bit rates. In

[79] DCT based image compression using blocks of size 32x32 is considered. An

effective method of bit-plane coding of quantized DCT coefficients is proposed.

Parameters of post-filtering for removing of blocking artifacts in decoded images

are given. The efficiency of the proposed method for test images compression is

analyzed. It is shown that the proposed method is able to provide the quality of

decoding images higher than for JPEG2000 by up to 1.9 dB. In [80] a model is

developed to approximate visibility thresholds for DCT coefficient quantization

error based on the peak-to-peak luminance of the error image. Experimentally

measured visibility thresholds for R, G, and B DCT basis functions can be

predicted by a simple luminance-based detection model. This model allows

DCT coefficient quantization matrices to be designed for display conditions

other than those of the experimental measurements: other display luminances,

other veiling luminances, and other spatial frequencies (different pixel spacings,

viewing distances, and aspect ratios). In [81] authors attempt to implement

basic JPEG compression using only basic MATLAB functions. In this paper

the lossy compression techniques have been used, where data loss cannot affect

the image clarity in this area. Image compression addresses the problem of

reducing the amount of data required to represent a digital image. It is also

used for reducing the redundancy that is nothing but avoiding the duplicate

data. It also reduces the storage area to load an image. For this purpose

the authors are using JPEG. JPEG is a still frame compression standard,
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which is based on, the DCT and it is also adequate for most compression

applications. The DCT is a mathematical function that transforms digital

image data from the spatial domain to the frequency domain. In [82] authors

present an application of the DCT compression technique on medical images of

the IRM type. The arithmetic coding method is used to encode the coefficients.

The tests of this lossy compression/ decompression technique are performed on

two IRM images representing the brain, in axial and sagital views, of a patient

suffering from a cerebral hemorrhage. The obtained results on these images

show that the DCT technique permits to considerably improve the compression

rate while maintaining a good image quality when threshold varies in the

interval: 0 ≤ TH ≤ 20 for block sizes: 16× 16 and 32× 32. However, a severe

degradation of the quality of the reconstructed medical image is observed when

the threshold is greater than 30. In [83] the authors show DCT is a technique

for converting a signal into elementary frequency components. Here we develop

some simple functions to compute the DCT and to compress images. These

functions illustrate the power of mathematical in the prototyping of image

processing algorithms.

The most common DCT used for compression are of 2 types. The general

equation for a 1D (N data items) DCT is defined by the following equation:

F (u) =

(
2

N

) 1
2
N−1∑
i=0

Λ(i) cos
[ πu

2N
(2i+ 1)

]
f(i) (2.10)

where

Λ(i) =


1√
2

for ε = 0

1 otherwise

(2.11)

The general equation for a 2D (N by M image) DCT is defined by the

following equation:

F (u, v) =

(
2

N

) 1
2
(

2

M

) 1
2
N−1∑
i=0

M−1∑
j=0

Λ(i, j) cos
[ πu

2N
(2i+ 1)

]
cos
[ πv

2M
(2j + 1)

]
f(i, j)

(2.12)

where

Λ(i) =


1√
2

for ε = 0

1 otherwise

(2.13)
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Figure 2.7: A block (4× 4) of a residual signal represented as a 4-connected
graph.

2.2.3 DCT/DST

DCT/DST transform is one of the predominant transforms use for video and im-

age compression. The energy compaction of spatial domain data into frequency

domain data during video compression depends heavily on transformation. The

spatial residual signals in the HEVC intra prediction are concentrated into

low-frequency components using DCT and DST techniques. DCT has demon-

strated strong compression performance in both intra and inter residual coding,

although its coding effectiveness declines when the spatial residual signals are

not evenly distributed. The work in [84] that uses residual-rearranged DST or

DCT to boost HEVC intra coding’s coding effectiveness. For all block sizes,

the suggested technique chooses the DCT or residual-rearranged DST with

the highest coding efficiency. The experimental results show that, compared

with the HEVC intra coding, the proposed method reduces the luma BD

rates by 2.6%. Similarly, in [85], authors present a mode-dependent transform

scheme that applies either the conventional DCT or type-7 DST for all the

video-coding intra-prediction modes: vertical, horizontal or oblique. Their

approach is applicable to any block-based intra prediction scheme in a codec,

that employs transforms along the horizontal and vertical direction separably.

Here the authors prove that this is indeed the case for the other oblique modes.

The choice of using DCT/DST is based on intra-prediction modes, and requires

no additional signaling information or Rate-Distortion search. Simulations are

conducted for the DCT/DST algorithm in TMuC 0.9, the reference software

for the ongoing HEVC standardization. The authors show that the DCT/DST

scheme provides significant BD-Rate improvement over the DCT for intra

prediction in video sequences. In [86] a refined generalized signal flow graph for

the direct 2-D DCT and 2-D DST computation (the so-called 2-D DCT/DST

universal computational structure) is described.

30



 

10 14 21 2

12 17 28 16

11 12 24 19

7 2 9 8

(a)

 

0.31 0.46 0.73 0.00

0.38 0.58 1.00 0.54

0.35 0.38 0.85 0.65

0.19 0.00 0.27 0.23

(b)

 

0.31 0.46 0.73 0.00

0.54

1

1 1

1 1
1.000.580.38

0.650.850.380.35

0.230.270.000.19

1 11

111

1111

1111

1 1
1 1

1

(c) (d)
Figure 2.8: (a) Values of the example residual block. (b) Normalized residual
values to the range [0, 1]. (c) Corresponding graph with a 4-connected topology
with unit edge weights and self-loops in each vertex. (d) All-connected topology
with no self-loops (i.e., each node is connected to every node in the graph).

2.3 GBT for image and video coding

In this section, we first describe how GBTs are computed for blocks of residuals.

For example as shown in Fig. 2.7, a residual block is represented as a graph

by 4 connectivity pattern which lead to particular interpretations in graph

transform domain. The review is followed by a summary of how GBTs are

used the context of block-based PTC. We then review several works that

have attempted to learn GBTs offline, followed by relevant works that have

attempted to learn other transforms used for image and video compression.

2.3.1 GBTs for blocks of residuals

The GBT of a residual (square) block S ∈ R
√
N×
√
N with N residual values is

usually constructed by eigendecomposition of the graph Laplacian, L, of its

undirected graph G = (V,E,A), where V is the set of N nodes V = {vn}Nn=1, E

is the set of edges, and A ∈ RN×N is the symmetric weighted adjacency matrix.

The entry Aij in A represents the weight of the edge eij connecting vertices vi

and vj , with Aij = Aji. If there is no edge e = (i, j) connecting pixel locations
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i and j, Aij = 0. Large values in A usually represent a high similarity between

the connected nodes, according to a given criterion. The graph Laplacian L, is

computed as L = D−A, where D is the diagonal degree matrix, whose nth

diagonal element is equal to the sum of the weights of all edges incident onto

node vn. The eigendecomposition of L is used as the orthogonal transform for

the residual block, since it has a complete set of eigen-vectors with real, non-

negative eigen-values. Let us denote the eigendecompostion of L by {λq,uq}
where λq/uq is the qth eigen-value/eigen-vector pair and U is the set of eigen-

vectors. Analogous to the classical Fourier transform, one can define the GBT,

ŝ of signal s ∈ RN which resides on the nodes of G, as the expansion of s in

terms of the eigen-vectors of L:

ŝ(λq) = 〈s,uq〉 =

|N |−1∑
k=0

s(k)uq(k) = Fs (2.14)

where F = U−1 is the graph Fourier transform and the set of eigen-values of L,

denoted by σ(L) = (λ0, λ1, · · · , λN−1), is the entire corresponding spectrum.

The original signal can be reconstructed by the inverse GBT, which is given

by s = F−1ŝ = Uŝ. As a graph is defined by an adjacency matrix, A, it is

possible to generate different transforms for the same block by using different

graph connectives and weights of G [15]. In general, the graph connectivity

and the edge weights are inferred from the data (see Fig. 2.8). A Gaussian

kernel is usually used to define the edge weights of the graph, wij for vertices i

and j:

Wij =

e−
[dist(i,j)]2

2θ2 , if dist(i, j) ≤ a

0, otherwise

where W is the calculated weight of two connecting vertices, i and j, dist(i, j)

represents the Euclidean distance between the residual value associated with

nodes i and j, θ is the kernel width, and a is a hyper-parameter.

2.3.2 GBTs in the context of PTC

Within the context of block-based PTC, the GBT performs significantly well in

generating de-correlated coefficients that can compact the signal’s energy into a

few significant coefficients [87]. In [88], the authors show a theoretical analysis

of optimal PTC based on the Gaussian Markov Random Field (GMRF) model

to contruct GBTs. It is shown that PTC for graph-based models is optimal as

long as the image follows the GMRF model closely since the eigen-analysis of

the precision matrix of the GMRF model is optimal in de-correlating the signal.

Several works on the Graph Fourier Transform (GFT), which is also a GBT, has
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been conducted within the context of PTC [18, 89, 90]. As an instance in [91]

the authors propose an optimized transform for the prediction residual, based on

GFT by introducing a intra-prediction schemes exploiting the cluster differences

between neighboring pixel pairs and the cluster mean to predict the block. The

cluster indices are transmitted per block, allowing the decoder to mimic the

same intra-prediction which outperforms combinations of their previous intra-

prediction and ADST coding by 2.5 dB in PSNR on average. In our previous

work [7], we propose novel class of GBT in PTC which is constructed using a

2D graph with unit edge weights and weighted self-loops in every vertex. The

weighted self-loops are selected based on the residual values to be transformed.

We have shown the self-loop for each vertex of the graph for GBTs can accurately

represent the residual signal. To avoid signalling any additional information

required to compute the inverse GBT, we also introduce a coding framework

that uses a template-based strategy to predict residual blocks in the pixel and

residual domains. Our evaluation results on several video frames and medical

images show that this approach can outperform the DCT/DST, DCT and the

Graph-based Separable Transform (GBST). Our another work [6] for GBT in

PTC we introduce a novel framework that eliminates the need to signal graph

information to the decoder to recover the coefficients. This is accomplished by

computing the GBT using predicted residual blocks, which are predicted by a

modeling approach that employs only the reference samples and information

about the prediction mode. Evaluation results on several pathology images, in

terms of the energy preserved and MSE when a small percentage of the largest

coefficients are used for reconstruction, show that the GBT can outperform

the DCT/DST and DCT. GBTs for inter-prediction [15, 92] has also gained

popularity in video coding domain by significantly outperforming traditional

DCT and KLT in terms of rate-distortion performance. The authors propose

novel graph-based transforms (GBTs) for coding inter-predicted residual block

signals by developing edge adaptive GBTs (EA-GBTs) derived from graphs

estimated from residual blocks design template adaptive GBTs (TA-GBTs) by

introducing simplified graph templates generating different set of GBTs with

low transform signaling overhead. The experimental results show their methods

significantly outperform traditional DCT and KLT in terms of rate-distortion

performance. In a recent paper by S. Bagheri and et.al [93], authors we pursue

a hybrid model-based / data-driven approach, to encode an intra-prediction

residual block: the first few eigenvectors of a transform matrix are derived

from a statistical model, e.g., the asymmetric discrete sine transform (ADST),

for stability, while the remaining are computed from emirical covariance matrix

for data adaptivity. The transform computation is posed as a graph learning

problem, where we seek a graph Laplacian matrix minimizing a graphical lasso

objective inside a convex cone sharing the first K eigenvectors in a Hilbert
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Figure 2.9: Prediction inaccuracy modeling technique (explained in details in
Chapter 3 ).

space of real symmetric matrices. Authors efficiently solve the problem via

augmented Lagrangian relaxation and proximal gradient.

2.3.3 Non-learning based prediction in GBTs

Within the context of block-based PTC, to avoid the signalling overhead of

graph information to the decoder for reconstruction our research work [6, 7] ex-

ploits on several non-learning based prediction models which only use reference

samples and intra-prediction mode at the decoder side for reconstruction of

image and video sequences as those are always available to the decoder. As an

Region to be used to predict the current block

. . . . . . . . . . . .. . .. 

. . . . . . . . . . . .. . .. 

. . . . . . . . . . . .. . .. 

Target Template

8 x 8 
Target 
Block

Patch

(b)(a)

Reconstructed 
Template

Figure 2.10: Template based prediction strategy (explained in details in Chapter
4 ).
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instance in [94] the authors develop transforms for directional intra prediction

residuals (see Fig. 2.9). In particular, authors observe that the directional

intra prediction is most effective in smooth regions and edges with a particular

direction. In the ideal case, edges can be predicted fairly accurately with an

accurate prediction direction. In practice, an accurate prediction direction is

hard to obtain. Based on the inaccuracy of prediction direction that arises

in the design of many practical video coding systems, authors estimate the

residual covariance and propose a class of transforms based on the estimated

covariance function. Similarly, in [95–97] authors used template based strategy

where the surrounded residual values are considered as a reference for predicting

residuals instead of using the actual residual information (see Fig. 2.10).

2.3.4 Offline learning of GBTs

Recently, several works that attempt to learn optimal GBTs in the context

of block-based PTC have been proposed. In [98], the author proposes two

different techniques to design GBTs. In the first technique, they formulate

an optimization problem to learn graphs from data and provide solutions for

optimal separable and non-separable GBT designs, called GL-GBTs. The

optimality of the proposed GL-GBTs is also theoretically analyzed based on

GMRF models for intra and inter predicted block signals. The second technique

develops edge-adaptive GBTs (EA-GBTs) in order to flexibly adapt transforms

to block signals with image edges (discontinuities). The advantages of EA-

GBTs are both theoretically and empirically demonstrated. The experimental

results show that the proposed transforms can significantly outperform the

traditional KLT. To accomplish this task, they train a large model offline

with a large dataset collected by predicting blocks of several sizes with several

intra-prediction modes. In [99], the authors propose a new class of transform

named as graph template transforms (GTT) that approximates the KLT by

exploiting a priori information known about signals represented by a graph-

template. In order to construct a GTT (i) a design matrix leading to a class

of transforms is defined, then (ii) a constrained optimization framework is

employed to learn graphs based on given graph templates structuring a priori

known information. The experimental results show that some instances of the

proposed GTTs can closely achieve the rate-distortion performance of KLT

with significantly less complexity. The work in [100] proposes a new edge model

for edge adaptive graph-based transforms (EA-GBTs) in video compression.

More specifically, the authors consider step and ramp edge models to design

graphs used for defining transforms, and compare their performance on coding

intra and inter predicted residual blocks. In order to reduce the signaling

overhead of block-adaptive coding, a new edge coding method is introduced for
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the ramp model. The experimental results show that the proposed methods

outperform classical DCT-based encoding and that ramp edge models provide

better performance than step edge models for intra predicted residuals. In

[16], the authors introduce a novel class of transforms, called GBSTs, based on

two line graphs with optimized weights. For the optimal GBST construction,

the authors formulate a graph learning problem to design two separate line

graphs using row- wise and column-wise residual block statistics, respectively.

They analyze the optimality of resulting separable transforms for both intra

and inter predicted residual block models. The work shows that separable

DCT and ADST (DST-7) are special cases of the GBSTs. The experimental

results demonstrate that the proposed optimized transforms outperform 2-D

DCT/ADST and separable KLT. Our previous work [10] proposed a novel class

of GBT based on 3D convolutional neural networks (GBT-CNN) within the

context of block-based PTC of imaging data. The proposed GBT-CNN uses a

3D convolutional neural network (3D-CNN) to predict the graph information

needed to compute the transform and its inverse, thus reducing the signalling

cost to reconstruct the data after transformation. The GBT-CNN outperforms

the DCT and DCT/DST in terms of the percentage of energy preserved by a

subset of transform coefficients, the mean squared error of the reconstructed

data, and the transform coding gain according to evaluations on several video

frames and medical image. Further, in [101], a GBT is learned for predictive

light field compression. In [102], the authors address a problem of learning

graph Laplacians by adopting a factor analysis model for the graph signals

that enforces minimizing the variations of the signals on the learned graph. It

is important to note that the methods reviewed here require to train a model

offline with the appropriate training data.

2.4 Machine Learning/ Deep Learning for compres-

sion

Apart from GBTs, other methods to learn transforms for compression purposes

may be found in the literature [103, 104]. For example, in [105], the authors

propose a fully unsupervised deep-learning framework that is able to extract

a meaningful and sparse representation of raw high frequency signals by em-

bedding important properties of the fast discrete wavelet transform (FDWT)

in the architecture. With their framework, the denoising FDWT becomes a

fully learnable unsupervised tool that does not require any type of pre- or

postprocessing or any prior knowledge on wavelet transform. The application

of wavelet transform is broadly used on imaging data [106, 107]. In [106] the

authors learn the DNA structure using wavelet transform. In [107] an optimal
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wavelet transform is proposed for the detection of micro-aneurysms in retina

photographs by learning adapted wavelet filters. However, for block-based

PTC Wavelet is not very popular since wavelet transform decompresses an

image as a whole. On the contrary, as our research framework adapts a block-

based PTC there is no use of wavelet transform in PTC. Since the DCT is

widely used for block-based PTC, many works attempt to learn the mapping

relationship between JPEG images and original images to reduce compression

artifacts by using deep neural network [108–112]. Since the KLT is considered

as the optimal transform that generates the most de-correlated coefficients, a

huge volume of research groups works on learning the KLT offline [113]. For

example, in [114] the authors propose a novel signal-independent separable

transform based on the KLT to improve the efficiency of both intra and inter

residual coding. In the proposed method, the drawbacks of the traditional

KLT are addressed. A group of mode-independent intra transform matrices

is calculated from abundant intra residual samples of all intra modes, while

the inter separable KLT matrices are trained with the residuals that cannot be

efficiently processed by the discrete cosine transform type II (DCT-II). KLT

matrix are trained offline by combining all the residual blocks with different

intra modes to take sufficient residual characteristics into the covariance matrix.

In [115] the authors again propose a framework to design separable transforms

from prediction residual statistics. The work model the data as a 2D GMRF

and approximate its inverse covariance by a matrix with a separable structure,

thus explicitly constructing a separable orthonormal matrix that approximates

the KLT. The designed transforms can adapt to prediction residual statistics,

have low complexity (compared to non separable transforms), require selecting

few parameters and outperform hybrid DCT/ADST separable transform for

intra coding of AV1 residuals. In literature DL models are also exploited for

learning KLT [116].

2.5 Summary

This chapter presented an overview of existing research related to our con-

tributions in graph-based signal processing for image and video compression.

Firstly, we contextualised the importance of compression for images and videos.

We discussed the literature on recent compression schemes. We ave reviewed

several related works on the modern compression standard. At the end, we

discussed on the mostly used PTC, i.e., intra-prediction of modern video coding

standard.

Secondly, we discussed the importance of predominant transforms in the

field of compression. We reviewed the recent and relevant works on KLT, DCT,

and DCT/DST which are considered as mostly used transforms in the filed
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of compression. Here we discussed the advantage and disadvantages of those

transforms.

Thirdly, we elaborated our contribution on GBT for image and video coding.

We reviewed the literature on the following perspective. At first we explained

the modus operandi of GBT on residual blocks of an image. Additionally, we

discuss the way GBT works in the context of PTC. Here we reviewed recent

papers on the related work to provide an overview to the reader about the

work. Further, we discussed on the non-learning based prediction of graph

for GBT, followed by, learning based prediction. In Chapter 3 we introduced

idea of a non-learning based graph prediction which is based on prediction

inaccuracy modeling. In Chapter 4 the same trend of non-learning based graph

prediction has been continued. However, for this chapter we used template

based prediction strategy. In Chapter 5 and Chapter 6.1 we proposed the DL

based architectures for graph prediction. We noticed that there are several

works on learning graphs used for GBT by exploiting the ML and DL ideas

which are offline, such as our works in Chapter 5 and Chapter 6.1 are offline

learning. At the end, we reviewed the contribution by other trasnforms for

learning graphs for GBTs.
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Chapter 3

Graph-Based Transforms

based on Prediction

Inaccuracy Modeling for

Pathology Image Coding

3.1 Introduction

Thanks to the introduction of high-throughput slide scanners, microscope glass

slides can now be digitized to produce color images, which are called WSIs.

This has fueled the emerging area of digital pathology imaging and resulted in

novel ways to share medical imaging data and collaborate remotely [117, 118].

WSIs are multi giga-pixel color images that usually require large amounts of

bandwidth to be transmitted and stored. Compression is therefore an attractive

solution for data access and transmission of these images [119–123]. Recent

proposals in this area include lossless compression methods based on the intra-

prediction mode of the HEVC standard [11, 120] , and lossy methods based on

the JPEG2000 standard [123, 124]. Although lossless compression guarantees

perfect reconstruction of the image, it fails to attain high compression ratios.

Lossy compression is then more advisable, especially since it has been shown

that compression ratios of up to 60:1 can be used on WSIs without negatively

affecting the diagnosis process [123].

In this chapter, we introduce a new framework that eliminates the need to

signal additional information to the decoder. This is achieved by computing

the GBT based on a predicted residual signal, which is computed using only

the reference samples used to predict a block. This framework is evaluated

on a wide range of pathology images depicting different tissue types. Results

are reported in terms of the energy compaction properties of the GBT and
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the MSE of the reconstructed images. The results are compared to those

attained by the KLT, DCT, GBT when information is needed the be signaled

to the decoder, and the DST), as implemented in the intra-prediction mode of

HEVC [125]. Evaluations show that the GBT attains better energy compaction

properties than the DST and the DCT for the evaluated pathology images,

with a very similar performance in terms of MSE.

3.2 Proposed GBT-PI

The prediction inaccuracy modeling for the residual blocks computed by em-

ploying any of the 33 angular modes depicted in Fig. 2.3(a) is based on the work

by X. Cai et al. in [126]. This modeling approach predicts a residual block

using the reference samples to the left and above the block, and the information

about the angular mode used by the encoder. The approach is based on the

argument that residual blocks computed after angular intra-prediction can

be approximated by using the gradient of reference samples and the distance

between the position of the reference samples used and the position of the

value to be approximated within a block. For horizontal modes, i.e. modes

2− 17 in Fig. 2.3(a) the predicted residual signal, at position (x,y) within an

N ×N block is approximated as follows:

res(x, y) ≈ P

cosα

δf(0, y)

δy
|y′ θ(x, y) (3.1)

where θ(x, y) is the angle between two consecutive reference samples to the left

and depends on the position being predicted, δf(0,y)
δy denotes a partial derivative

with respect to the reference samples to the left, P is the distance between the

reference sample f(0, y′) and the position to be predicted, which is calculated

as P 2 = R2 +Q2; and α is the angle between P and the horizontal. Fig. 3.1

graphically represents the variables used in Eq. 3.1. For the vertical modes,

e.g., modes 18 − 34 in Fig. 2.3(a), the same calculations can be applied by

appropriately rotating the block.

For the DC and PLANAR modes, we propose an extension to the model

proposed in [126]. In the case of the DC mode, we note that residual values tend

to increase in the horizontal, vertical and diagonal direction proportionally to

the distance from the reference samples, since the predicted value is computed

as the average of all reference samples located above and to the left of the

block. This is based on the observation that samples in the first row and first

column of the block are expected to have a more similar value to that of the

reference samples than those samples located far from them. Our proposed

modeling approach is based on this observation. Specifically, for the DC mode

we propose to average the prediction for the pure horizontal mode (10), pure
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Figure 3.1: Prediction Inaccuracy modeling for (a) Vertical mode, (b) Extended
DC mode (c) Extended Planar mode.
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Figure 3.2: Illustration of the proposed modeling approach for the DC mode.
The average of all reference samples is 155. (a) Original block, (b) predicted
block, (c) actual residual block and (d) predicted residual block.
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vertical mode (26), and diagonal mode (18), as follows:

resDC(x, y) ≈ (resH(x, y) + resV (x, y) + 2.resD(x, y)) >> 2 (3.2)

resH(x, y) ≈ R1
δf(0, y)

δy
|y′ θ1(x, y) (3.3)

resV (x, y) ≈ R2
δf(0, y)

δx
|x′ θ2(x, y) (3.4)

resD(x, y) ≈ P

cos(π4 )

δf(0, y)

δy
|y′ θ3(x, y) (3.5)

where resH(x, y), resV (x, y), resD(x, y) are the are the predicted residual

values in the horizontal, vertical and diagonal directions, respectively, >>

represents a bit shift to the right, R1 and R2 are the distances between s

between the predicted position and the references samples to the left and above,

respectively. Note that the modeling approach in Eq. 3.5 is just a case of

Eq 3.1 when α = π
4 . The modeling approach for the DC mode is depicted

in Fig. 3.1 (b) and exemplified in Fig. 3.2 by using an example 4× 4 block,

where the average of all reference samples is 155. From Fig. 3.2, it can be

observed that the residual signal indeed tends to increase for samples located

far from the reference samples. Our prediction inaccuracy modelling effectively

approximates the residual based on this observation.

In the case of the PLANAR mode, we follow a similar approach to the one

followed for the DC mode. Specifically, we propose to average the prediction

for the pure horizontal mode (10) and pure vertical mode (26), as follows:

resP lanar(x, y) ≈ (resH(x, y) + resV (x, y)) >> 1 (3.6)

3.2.1 Proposed framework

Our framework is depicted in Fig. 3.3 and Fig. 3.4. At the encoder side 3.3,

we employ a prediction inaccuracy modelling to predict the residual block for

each N ×N block by only using the prediction mode selected by the encoder

and the references samples of the block [127]. Each predicted residual block

is represented by a 4-connected weighted graph and the corresponding GBT

is computed by eigendecomposition, as detailed in Section 2.3. This GBT is

then used to transform the actual residual block. Coefficients may then be

quantized and subsequently entropy coded. At the decoder side, we re-compute

the predicted residual block as done by the encoder. Note that this is possible

without having to signal any additional information, as the reference samples

and prediction mode of each block are readily available at the decoder. Based

on the predicted residual block, the corresponding 4-connected weighted graph

and GBT is computed, which allow us to compute the inverse GBT to be
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Figure 3.3: Block diagram for proposed encoder framework with PI modeling.
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Figure 3.4: Block diagram for proposed decoder framework with PI modeling.
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applied to the decoded coefficients (after entropy decoding) and obtain the

reconstructed residual block. Finally, the predicted block and re-constructed

residual block are added to obtain the reconstructed block.

3.3 Performance evaluation

The proposed framework is tested on ten 1024×1024 sections of WSIs depicting

lymphatic, pancreatic, colon and brain tissue. The images are obtained from

the Center for Biomedical Informatics and Information Technology of the

US National Cancer Institute [128, 129] We employ intra-prediction using

all 35 modes depicted in Fig. 2.3 (a), with a block size of 8 × 8 on the G

component. We compare the performance of the GBT using our framework

(GBT PI) against the GBT when the graphs are computed using the actual

residual blocks (GBT A), the DCT and the DST, as implemented in HEVC.

The performance of all transforms is measured in terms of the energy preserved

by reconstructing the image using a sub-set of the largest coefficients and

the corresponding MSE. In other words, we evaluate the energy compaction

properties of the transforms and the quality of the reconstructed images. The

coefficients are selected by setting a threshold that indicates the minimum

absolute value that the coefficients in the sub-set must have (See Fig. 3.5). A

large threshold allows to include the largest coefficients in the sub-set, while a

threshold close to zero results in including most of the coefficients in the sub-set.

By gradually decreasing an initial large threshold, this approach gradually

includes in the sub-set the largest coefficients. Note that this approach differs

from one that selects the DC and low frequency AC coefficients first, and

gradually include the high frequency AC coefficients. The approach used in

this work allows selecting the largest coefficients, regardless of their frequency

type. This is advantageous for pathology images, as they usually depict strong

edges and non-smooth regions, resulting in several AC coefficients with large

values. Our evaluations also include the KLT, as the baseline transform. Table

3.1 tabulates the average energy preserved, in percentage, by the transforms

and the corresponding average MSE values, for all evaluated images, using a

small percentage of coefficients of 5% and 10%.

As expected, the KLT provides the best performance. Note that the GBT A

outperforms the GBT PI. This is also expected as the GBT A is constructed

based on the graphs of the actual residual signals. However, it is important

to recall that the GBT A requires signaling information about the graphs to

the decoder. The GBT PI outperforms the DST in terms of preserved energy,

which is used in HEVC for intra-predicted residuals. For example, on average,

11.47% more energy can be preserved by the GBT PI than the DST by using

only 1.0% of the coefficients. In terms of MSE values, the GBT PI attains lower
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(a) (b) (c)

(d) (e)

Figure 3.5: (a) A block of a pathology image. (b) Coefficients values of the
image in (a). (c) Sub-set of coefficients for threshold value 70. (d) Number
of coefficients in the sub-set increased for decreasing the threshold to 40 (e)
Majority of the coefficients are in the sub-set when the threshold value is
lowered to 10.

values than the DST for most of the cases tabulated in Table 3.1. Note that

in average the GBT PI slightly outperforms the DCT in terms of preserved

energy, for all percentages of coefficients tabulated in Table 3.1. However, the

corresponding average MSE values are slightly higher than those attained by

DCT. Fig. 3.6 plots the percentage of preserved energy vs. the percentage of

coefficients used for four different images. The improvements of the GBT PI

over the DCT/DST and the DCT can be visually appreciated in these plots.

3.4 Summary

WSIs are multigiga-pixel color images that usually require large amounts of

bandwidth to be transmitted and stored. To facilitate the widespread of

these images in clinical settings, compression is needed to reduce storage and

bandwidth requirements. Block-based PTC using intra-prediction has been

shown to be capable of efficiently compress these images. In this chapter, we

presented a framework that allows employing the GBT to transform intra-

predicted residual signals of these images without the need to signal information

about the graphs to the decoder. The framework is based on computing the

necessary graphs using predicted residual blocks, which can be re-computed

at the decoder using only the reference samples and information about the
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(a) (b)

(c) (d)

(e) (f)
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Figure 3.6: Energy compaction performance of different transforms for digital
pathology images depicting (a-b) pancreatic tissue, (c-d) colon tissue, (e-f)
lymphatic tissue, and (g-h) brain tissue.

prediction mode used. We evaluated the performance of the GBT computed in

this fashion in terms of the energy preserved and MSE when a small percentage

of the largest coefficients are used for reconstruction of several pathology images.

Evaluation results show that the GBT can outperform the DST, while slightly

outperforming the DCT, in terms of energy preserved, for the evaluated images.
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In this chapter, we have restricted ourselves to using the collection of

pathology images for the purpose of our research. We included other HEVC

sequences for the same method in the following chapter to assess the outcome

because we observed only modest improvement in our proposed method when

compared to DCT. Additionally, since the connection of our graphs in this

chapter is only available in a 4-connected form, we intend to put greater

emphasis on various graph connectivity in the next chapters.
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Chapter 4

Graph-Based Transform with

Weighted Self-loops based on

Template Matching

4.1 Introduction

In general, lossy compression is based on applying an orthogonal transform on

the signal to expand it into a set of orthogonal bases, with the expectation that

most of the signal’s information is captured by a few basis functions. This is

followed by quantization of the resulting coefficients. For any arbitrary signal

with a known covariance function, it is well known that the KLT is the linear

transform with the best energy compaction property. The KLT basis functions

of natural images are close to those of the DCT [125]. Hence, the DCT is

widely considered as the best transform for image compression. Unfortunately,

the DCT offers little adaptability to the characteristics of the data as a fixed

transform is usually applied to all images.

The GBT [14] is proposed as an attractive option to address some of

the issues of the DCT. Thanks to the fact that the GBT accounts for the

data correlation through the use of a graph structure, it has excellent data

de-correlation and energy compaction properties. Recently, Pavez et al. [130]

(a) (b) (c) (d)

Figure 4.1: (a) Line graph with self-loops in the first and last vertices. (b) 1D
residual signal predicted by the horizontal mode. (c) First basis function of a
GBST designed for the horizontal mode. (d) 1D residual signal predicted by
the horizontal mode for a noisy signal.
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showed that several variants of the 1D DCT and 1D Discrete Sine Transform

(DST) can be computed as a GBT based on a line graph with unit edge weights

and self-loops in the first and last vertices (see Fig. 4.1(a)). Based on this

fact, the authors learn the self-loop weights that produce efficient GBSTs for

block-based PTC of intra-predicted video frames. They show how the first

basis function of their learned transforms can accurately represent the residual

signal. This is exemplified in Fig. 4.1(b)-(c), where the first basis function of

their learned GBST for the horizontal prediction mode is plotted. One can

easily note that the function vanishes on the left side and increases on the

right side. This behavior resembles the shape of this ideal 1D residual signal,

in which the error is expected to be small in the leftmost pixel location (i.e.,

the one closest to the reference pixel) and increase with the distance from

the reference. In practice, however, the residual signals may not always have

an ideal behavior. For example, a row of residual values computed by the

horizontal prediction mode may have a relatively flat shape if the image is

smooth, or several peaks and valleys if the image is noisy (see Fig. 4.1(d)). A

GBT whose first basis accurately represents the residual signal, irrespective of

the prediction mode, has the potential to provide better data de-correlation

and energy compaction properties.

This chapter thus proposes the GBT-L, a novel class of GBT based on a

2D graph with unit edge weights and weighted self-loops in every vertex. The

GBT-L accurately captures the characteristics of a residual block by computing

the self-loop weights according to the residual values. Since the GBT-L is

based on a 2D graph, it accounts for the correlation among all values to be

transformed. To avoid signaling additional information required to compute

the inverse GBT-L within the context of block-based PTC, we also propose a

coding framework that uses a template-based strategy to predict the residual

blocks to be transformed. The GBT-L is evaluated on a wide range of video

frames and medical images. Our results show that the GBT-L attains better

energy compaction properties and a higher reconstruction quality than the

DST, DCT and the GBST.

The rest of this chapter is organized as follows. Section 4.2 describes the

proposed GBT-L. Section 4.2.1 explains the coding framework that integrates

the template-based strategies to predict residual blocks. Section 4.3 presents

and discusses the performance evaluation results and Section 4.4 concludes

this chapter.

4.2 Proposed GBT-L

Let us consider an image to be encoded using block-based PTC via angular

intra-prediction, which is a common prediction method used in many modern
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Figure 4.2: (a) Residual signal generated by intra-prediction for the Y com-
ponent of a video frame from the sequence BlowingBubbles. (b),(c) A sample
4× 4 residual block and its actual values. (d) Normalized residual values. (e)
2D graph (4-connect) with unit edge weights and self-loops in each vertex.

video codecs, including the High HEVC standard [11, 131]. For each block

in the imaging data, intra-prediction yields a residual block computed as the

difference between the predicted and the original block. Let us recall such

a (square) residual block as S ∈ R
√
N×
√
N , where N is the total number of

residual values. The block S can be represented as an undirected weighted

graph, G = (V,E,A), where V is the set of N nodes V = {vn}Nn=1, E is the

set of all edges, and A ∈ RN×N is the symmetric weighted adjacency matrix.

The entry Aij in A represents the weight of the edge eij connecting vertices vi

and vj . The GBT-L assumes a 4-connected pattern with self-loops in every

vertex as shown in Fig. 4.2. Consequently, Aij = 1 for i 6= j, i.e., the weight

of any edge connecting two adjacent nodes is always 1. The self-loop weights,

i.e., the diagonal entries of A, are computed based on the normalized residual

values. For node vi, Aii is given by:

Aii =
vri −minV

maxV −minV
, (4.1)

where vri is the residual value of vi and minV , maxV are the minimum and

maximum residual value of the nodes in set V .

The GBT-L is constructed by the eigendecomposition of the generalized

Laplacian, L, computed as L = D−A, where D is the diagonal degree matrix,

whose nth diagonal element is equal to the sum of the weights of all edges

incident onto node vn. The eigendecomposition of L is used as the orthogonal

transform for the residual block, since it has a complete set of eigen-vectors

with real, non-negative eigen-values. Fig. 4.2 shows a residual frame with 4× 4

blocks and the 4-connected graph with self-loops in each vertex for a sample

block. Note that the self-loop weights are between 0 and 1.

In order to attain excellent data de-correlation and energy compaction

properties, the GBT-L is based on a 2D graph. Moreover, the first basis function

of the GBT-L should accurately resemble the behavior and overall-shape of

the residual signal. The work in [130] shows that the eigendecomposition of a

Laplacian of a line graph with unit edge weights and no self-loops corresponds

to the DCT. By setting the self-loop weight to 1 for the first vertex of such

line graph, the resulting transform is equivalent to the DST-7. That work also
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: Normalized residual values of an 8 × 8 block computed by the
(a) DC, (b) vertical, and horizontal modes. (d-f) First basis function of the
corresponding GBT-L.
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shows that by varying the self-loop weights of the first and last vertices, one can

produce GBTs whose first basis function closely resembles the characteristics

of the residual data being transformed. This is the motivation behind adding

a self-loop weight to each node of the 2D graph used by the GBT-L. These

weights are computed based on the residual values, as specified by Eq. (4.1).

Fig. 4.3 shows the 2D plot of various 8× 8 residual blocks and the 2D plot of

the first basis function of their corresponding GBT-L. One can note that the

first basis function indeed resembles the residual signal and follows its general

shape. This, as will be shown in Section 4, allows to preserve more of the

signal’s energy with only a few coefficients.

4.2.1 Proposed coding framework

As mentioned in previous section, each variant of GBT requires sending ad-

ditional information to the decoder to reconstruct the 2D graph needed to

compute the inverse GBT-L. To tackle this issue, we propose a coding frame-

work that does not require sending such additional information.

Our framework is depicted in Fig. 4.4. At the encoder side, we employ a

template-based strategy [95, 132] to predict each
√
N ×

√
N residual block by

only using the previously encoded and reconstructed blocks. Each predicted

residual block is represented as a 2D graph with self-loops in each vertex

and unit weight edges following a 4-connected pattern. The GBT-L is then

computed based on this graph and used to transform the actual residual block.

By following such a prediction strategy, it is possible to recover the residual

block at the decoder without signalling any additional information, as the

exact same prediction can be performed at the decoder [6] (see Fig. 4.4(b)).

Specifically, based on the residual block predicted by the encoder, the same

2D graph can be computed to obtain the inverse GBT-L.

We propose two different template-based strategies to predict residual

blocks as follows: template matching and weighted template pooling.

4.2.2 Template matching

Template matching searches for the most similar blocks to the target block

based on the similarity of their templates, where the template of a block is the

area surrounding the block to the left and above [96, 97]. Fig. 4.5 depicts a

sample target template, denoted by x, and the corresponding target block to be

predicted, denoted by P. The target template is estimated by using the k = 5

most similar candidate templates, t1, t2, ...tk. We use the sum of absolute

differences (SAD) between the target template and a candidate template as

the criterion to select these k templates. P is then predicted as a weighted

average of the candidate blocks P1, ...Pk, one for each of the k-most similar
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candidate templates.

4.2.3 Weighted template pooling

Weighted template pooling uses a weighted average of all the previously encoded

and reconstructed blocks to predict the target block. The weights used to

average these blocks are computed based on the similarity of their templates

with the target template, in terms of the SAD. We use templates of 4 rows

and 4 columns, which results in 72 samples surrounding a block to the left and

above (see Fig. 4.5(b)). The higher the similarity among the target and the

candidate templates used for prediction, the higher the prediction accuracy of

the target block.

We perform the template-based strategies in two domains: the residual,

and the pixel domain.

4.2.4 Template-based prediction in the residual domain

The prediction of the target residual block is performed by using the residual

signals of previously encoded and reconstructed blocks. This is illustrated in

Fig. 4.6, where one can see that all candidate templates and blocks contain

residual signals. For the case of template matching, we first use optimization

by least square approximation to estimate, from the k-most similar candidate

templates, the target template:

min
w
‖x−Tw‖22 s.t.

∑
k

wk = 1, (4.2)

where vector x contains the residual values of the target template, matrix T
contains the residual values of the k-most similar candidate templates, and

w = [w1, · · · , wk] is a weight vector. The nth target residual block, Pn, is then

predicted as as P̃n by using the k-most similar candidate blocks, as follows:

P̃n = w1P1 + w2P2 + ...+ wkPk. (4.3)

For the case of the weighted template pooling strategy, the residual signals

of the n− 1 previously encoded and reconstructed blocks are used to predict

the nth target residual block, as follows:

P̃n = w1P1 + w2P2 + ...+ wn−1Pn−1, (4.4)

where the weight for the jth candidate block is:

wj = e
‖x−tj‖

2
2

h2 , (4.5)

where tj is the jth candidate template and h is the average of standard deviation

of the samples of the j − 1 candidate templates.
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Figure 4.5: (a) Search window used to find blocks to predict the target block.
(b) Sample target template and target block.

4.2.5 Template-based prediction in the pixel domain

The prediction of the target residual block is performed by using the previously

encoded and reconstructed blocks. In other words, the target block is first

predicted in the pixel domain. This predicted target block is then subtracted

from the corresponding predicted block computed by angular intra-prediction

to compute the predicted residual block. This is illustrated in Fig. 4.7. For

the case of template matching, we first compute Ĩn, the predicted block for

the nth target block in the pixel domain, denoted by In, as follows:

Ĩn = w1I1 + w2I2 + ...+ wkIk, (4.6)

where I1,I2,...,Ik are the k-most similar candidate blocks in the pixel domain,

and w1,w2,...,wk are the weights as computed by Eq. (4.2). Note that in

the pixel domain, Eq. (4.2) uses templates comprising pixel values instead of

residual values.

For the case of weighted template pooling, we predict In using the n− 1

previously coded and reconstructed blocks, as follows:

Ĩn = w1I1 + w2I2 + ...+ wn−1In−1, (4.7)

where weights w1,w2,...,wn−1 are computed by Eq. (4.5) with candidate tem-

plates comprising pixel values. We subtract Ĩn from the corresponding predicted

block computed by angular intra-prediction to produce the predicted residual

block, P̃n.

4.3 Performance evaluation

The proposed GBT-L and our coding framework are evaluated on 30 different

YUV frames of standard test video sequences of class A, B, C, D, E and screen
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Figure 4.7: Template-based prediction in the pixel domain.
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content(SC). We also use pathology images in RGB format from the Center

for Biomedical Informatics and Information Technology of the US National

Cancer Institute in the evaluation. We use the 35 intra-predicton modes of

HEVC to compute the residual blocks. We use blocks of 8× 8 pixels on the Y

and G components of the video frames and pathology images, respectively.

We compare the performance of the GBT-L using template matching in the

residual (GBT-LTres), and the pixel domain (GBT-LTpix), the GBT-L using

weighted template pooling in the residual (GBT-LWres), and the pixel domains

(GBT-LWpix), the GBT-L using the PI modelling (GBT-LPI), the DCT, and the

DST as implemented in HEVC. The performance of all transforms is measured

in terms of the percentage of preserved energy (PE) by reconstructing the

image using a sub-set of the largest coefficients, and the corresponding MSE.

No quantization is used to clearly understand the advantages of each transform

in terms of energy compaction and reconstruction error using the largest

coefficients. The sub-set of coefficients used for reconstruction is selected

by setting a threshold that indicates the minimum absolute value that the

coefficients in the sub-set should have. By gradually decreasing an initial

large threshold, this approach gradually includes in the sub-set the largest

coefficients. Consequently, we do not follow any conventional scanning pattern

as commonly done in modern codecs. This strategy allows selecting the largest

coefficients, regardless of their frequency type.

Our evaluations also include three baseline transforms: the KLT, the GBT-

LA when the graphs are computed using the actual residual blocks (GBT-LA),

and a GBST with self-loops in every vertex, whose weights are computed by Eq.

4.1 using actual residual values. Note that these baselines require the signaling

of additional information to compute the corresponding inverse transforms.

Evaluation of the GBT-LA, however, allows confirming the advantages of using

2D graphs with self-loops in every vertex and unit edge weights. Evaluation of

the GBST allows confirming the advantages of using 2D graphs to design the

transform.

Table 4.1 presents the PE (%) and MSE values for the evaluated data

using a small percentage of coefficients of all the proposed transforms using

weighted self-loops. Table 4.2 consists of the the PE (%) and MSE values of

popular transforms we set as baseline of our experiments. We compare both

the tables to evaluate the performances. As expected, the KLT provides the

best performance. Compared to the GBST, the GBT-LA attains higher PE

and lower MSE values. This confirms the advantages of constructing GBTs

using 2D graphs. For example, by using only 5% of the largest coefficients ,

the GBT-LA can preserve 4.87% more energy than the GBST. The GBT-LA

also outperforms the DCT and DST. The GBT-LA can preserve 19.83% and

17.47% more energy than the DST and DCT, respectively, by using only 5%
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of the largest coefficients. This confirms the advantages of using self-loops in

every vertex of the 2D graph.

On average, the GBT-LWpix attains the best performance among the trans-

forms that require signaling no additional information to the decoder. The

GBT-LWpix preserves 3.11% and 1.08% more energy than the DST and DCT if

only 5% of the coefficients are used. Note that the GBT-L, when paired with

template-based prediction in the residual domain, tends to perform poorly

compared to using template-based prediction in the pixel domain. Predicting

residual values is more challenging than predicting pixel values, as residual

signals involve signed values [131]. Consequently, the template-based strategies

in the residual domain are expected to attain less accurate predictions, hinder-

ing the performance of the GBT-L. In other words, the performance of the

GBT-L is expected to improve as the prediction accuracy of the residual blocks

improves. We can see that for class A, B, and C frames and pathology images,

the GBT-LWpix attains the best performance among those that require no extra

signalling information. For class D and E, the DCT is the best transform for

some cases. Frames of these two classes depict several smooth regions. The

DCT is then well-suited for this content, as it approximates the KLT basis

functions of natural images. We summarize the average results reported in

Table 4.1 and Table 4.2 in the Table 4.3 for easier analysis and a more simplified

as well as obvious point of view. Fig. 4.8 plots the PE (%) and MSE values vs.

the percentage of coefficients used for reconstruction of a video frame, where

the MSE values are normalized with respect to the maximum value attained

when no coefficients are used for reconstruction. Note that the GBT-LA clearly

outperforms the DCT and DST. The GBT-LWpix indeed outperforms all other

transforms that require no extra signalling information.

4.4 Summary

In this chapter, we proposed the GBT-L, a new class of GBT constructed

based on a 2D graph with unit edge weights and weighted self-loops in every

vertex. We showed that the first basis function of the GBT-L closely resembles

the residual block to be transformed, which allows to preserve more energy

by using a small percentage of the largest coefficients. We also presented a

coding framework that allows employing the GBT-L on intra-predicted residual

blocks without the need to signal information about the graphs to the decoder.

The framework uses template-based strategies to predict the residual blocks in

the residual or pixel domains. We evaluated the performance of the GBT-L

in terms of the PE (%) and MSE when a small percentage of the largest

coefficients are used for reconstruction. Evaluation results show that,as the

prediction accuracy of the residual blocks improves, the improvements of the
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(a) (b)

(c) (d)

Figure 4.8: (a,b) PE (%) and (c,d) MSE vs. percentage of coefficient used for
reconstruction of a frame of sequence KristenAndSara.

GBT-L over the DCT, DST and the GBST also increase. When only 5% of

the largest coefficients are used, the GBT-L, when computed based on actual

residual blocks, can preserve up to 19.83% and 17.47% more energy than the

DST and DCT, respectively.

To summerize, in Chapter 3 and Chapter 4 we explored non-learning based

approach to predict the data. Now a days, we are quite aware, for any ML/DL

approach, it makes life easier among researchers to predict the data since

it can readily process enormous amounts of data and identify patterns and

relationships. Since the objective of this thesis is to predict the graph for

inverse GBT to perform at the decoder, we have explored the DL approach

in our following chapters. The revised strategy of using DL should produce

better outcomes, as anticipated.
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Table 4.3: Average PE (in %) and MSE using a small percentage of the largest
coefficients.

Percentage of coefficients used

1% 5% 10%

PE MSE PE MSE PE MSE

KLT 55.51 44.49 89.73 12.22 93.43 10.43

GBST 18.56 81.92 58.71 42.24 74.54 26.49

GBT-LA 25.15 74.72 62.04 36.61 74.39 26.76

DCT 17.49 82.27 52.41 48.48 69.58 31.88

DCT/DST 16.94 82.74 51.89 49.81 68.14 33.49

GBT-LTres 17.11 82.58 51.78 49.32 69.01 32.56

GBT-LTpix
17.67 81.98 52.69 48.34 69.46 32.33

GBT-LWres 17.20 82.54 51.78 49.34 68.67 32.79

GBT-LWpix
17.67 81.97 52.88 48.04 69.68 31.74

GBT-LPI 17.56 82.17 52.67 48.45 69.61 32.00
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Chapter 5

Graph-Based Transform

based on Neural Networks for

Intra-Prediction of Imaging

data

5.1 Introduction

This chapter introduces a novel class of Graph-Based Transform based on

neural networks (GBT-NN) within the context of block-based predictive trans-

form coding of imaging data. To reduce the signalling overhead required to

reconstruct the data after transformation, the proposed GBT-NN predicts the

graph information needed to compute the inverse transform via a neural net-

work. Evaluation results on several video frames and medical images, in terms

of the percentage of energy preserved by a sub-set of transform coefficients and

the mean squared error of the reconstructed data, show that the GBT-NN can

outperform the DCT and DST, which are widely used in modern video codecs.

When the GBT is used in block-based PTC, in order to reconstruct the

block at decoder, the same graph used to compute the GBT during compression

should be available at the reconstruction stage to compute the inverse GBT of

each block. This extra information should be then signaled into the bitstream,

hence increasing the overhead. To address this issue, this chapter proposes a

GBT based on a neural network approach (GBT-NN) to avoid sending such

extra information. Our proposed method uses an encoding-decoding neural

network (NN) to map a graph obtained from a set of similar blocks to the block

to be encoded, to the graph of the corresponding residual block. Specifically,

our method adopts a template-based strategy to first predict a residual block

from a set of similar blocks, from which a graph can be computed. The

65



corresponding graph Laplacian of such a graph is then used by a NN to predict

the graph Laplacian associated with the current residual block, from which the

inverse transform can be computed. To avoid signalling extra information into

the bitstream, the template-based strategy is replicated during reconstruction

to compute the same graph Laplacian and hence the inverse GBT. To this

end, since templates are already available to the decoder this framework does

not require sending additional information to perform the inverse transform.

The novelty of this work states, it learns a graph Laplacian for various set of

intra-prediction modes in both encoder and decoder, where only need to send

information about prediction mode and quantization parameter as overhead.

To the best of our knowledge, no method has been proposed before to learn a

graph Laplacian by using deep learning and a template-based strategy within

the context of block-based PTC and GBTs.

5.2 Proposed GBT-NN

Let us denote a (square) residual block with zero mean as S ∈ R
√
N×
√
N ,

with a total of N residual values. Recall that S is computed by subtracting

the predicted block from the original block [46]. S can be represented as an

undirected weighted graph, G = (V,E,A), where V is the set of N nodes

V = {vn}Nn=1, E is the set of edges, and A ∈ RN×N is the symmetric adjacency

matrix. The adjacency matrix of a weighted graph stores the weights of the

edges. The GBT for S can be computed by the eigen decomposition of the

graph Laplacian, L = D −A, where D is the diagonal degree matrix. The

eigendecomposition of L can be used as an orthogonal transform for S, since

it has a complete set of eigenvectors with real, non-negative eigenvalues [133].

The connectivity and the edge weights of the graph are generally inferred from

the data (see Fig. 2.8).

As the graph Laplacian requires the computation of the symmetric ad-

jacency matrix, our objective is to develop a one-to-one mapping between

symmetric adjacency matrices: one computed based on previously encoded

and reconstructed blocks within the same frame and the other one associated

with the current block:
Ab ≈ f(Ap), (5.1)

where Ap is computed based on the graph of a residual block predicted for the

current residual block and Ab is the symmetric adjacency matrix of the current

residual block, i.e., the block to be encoded. Our solution to learn the mapping

function in Eq. (5.1) is based on an encoding-decoding NN, as illustrated in

Fig. 5.1 for the case of 8× 8 blocks with all-connected graphs. The encoder

consist of 4096 input neurons and 7 fully connected hidden layers, while the

decoder consists of 6 fully connected hidden layers and an output layer. For
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Figure 5.1: Architecture of the proposed GBT-NN for 8 × 8 blocks and a
normalized all-connected (All-C) symmetric adjacency matrix.
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Figure 5.2: Template-based prediction (TBP).

each hidden layer, we apply the ReLu activation function, while the Sigmoid

activation function is applied to the output layer. Note that the architecture

in Fig. 5.1 is also suitable for graphs with other topologies, e.g., 4-connected

with self-loops. Also note that the input is normalized to the range [0, 1].

5.2.1 Prediction strategy

The matrix used as input to the network is generated from a residual block

predicted by the template-based prediction strategy as in Chapter 4. Such a

strategy uses a weighted average of all the previously encoded and reconstructed

blocks within a specific region of the same frame to predict the current block (see

Fig. 4.5 (a)). The weight assigned as Eq. 4.5 in Chapter 4 to the reconstructed

block. We use the same templates of 4 rows and 4 columns, which results in 72

samples surrounding an 8×8 block to the left and above (see Fig. 4.5(b)). The

predicted current block is subtracted from the corresponding predicted block

computed by intra-prediction to compute a predicted residual block (see Fig.

5.2). From this predicted residual block, the normalized symmetric adjacency

matrix, Ap, is computed, vectorized and normalized into ap. The encoder NN

transforms ap into a hidden representation, h as follows:
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h(le) = ReLU(W(le)h(le−1)), (5.2)

where h(0) = ap, W(le) is a weight matrix and h(le) is the hidden representation

for the encoder layer (le). Then, h is transformed back to a reconstructed

vector âb by the decoder NN over a number of hidden layers until the output

layer:
âb = Sigmoid(W(ld)h(ld−1)), (5.3)

where ld denotes the last layer of the decoder, W(ld) is a weight matrix for

the decoder layer ld, and h(ld−1) is the hidden representation of decoder layer

(ld − 1). Note that âb is an approximation of the vectorized and normalized

symmetric adjacency matrix of the current residual block. Also note that the

architecture in Fig. 5.1 differs from that of an autoencoder, as our NN does

not reconstruct the same input.

5.2.2 Optimization process

Optimization of the NN aims to find the parameters W(1e), · · · ,
W(le),W(1d), · · · ,W(ld) that minimize following loss function:

L = Lrecon + αLsym + λ ‖W(:) ‖1, (5.4)

where ‖ . ‖ is the L1 matrix norm, W(:) represents the learnable parameters in

vector form, α is the weight of the second loss component, and λ controls the

amount of L1 regularization on the learnable parameters. Here Lrecon, Lsym

are the losses for reconstruction and symmetry, respectively. We use the MSE

for the reconstruction loss:

Lrecon =‖ âb − ab ‖22, (5.5)

where ab is the vectorized ground truth for the normalized symmetric adjacency

matrix of the current residual block.

An essential property of an adjacency matrix is to be symmetric. We then

use the following loss to enforce symmetry:

Lsym =
‖ âb(anti) ‖1

‖ âb(sym) ‖1 + ‖ âb(anti) ‖1
, (5.6)

where âb(sym) = (âb + (âb)T )/2 and âb(anti) = (âb− (âb)T )/2, i.e., they measure

the symmetry and anti-symmetry of the predicted matrix. Lsym ∈ [0, 1],

which tends to the upper bound for a symmetric matrix and to the lower

bound for an asymmetric matrix. The graph used to compute the GBT for

the current residual block is then Ĝ = (V,E, Âb), after de-normalizing the

predicted symmetric adjacency matrix.
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Figure 5.3: Block diagram of the proposed framework for encoding.

5.2.3 Coding/decoding framework based on the proposed GBT-

NN

Our framework for coding/decoding is depicted in Fig. 5.3 and Fig. 5.4,

respectively. Our framework for coding/decoding avoids signalling overhead.

To reconstruct the current block, the same graph used to compute the GBT

should be used to compute the inverse GBT. To this end, the template-based

prediction strategy described in Section 2.1 is also used to predict the residual

block of the current block during reconstruction. The predicted residual

block is used to compute the symmetric adjacency matrix to be used as the

input to the trained GBT-NN after normalization, which produces a predicted

symmetric adjacency matrix for the current residual block (see Fig. 5.5). Our

method assumes that the trained GBT-NN is common knowledge between the

compression and reconstruction processes. Therefore, our method does not

require to signal any extra information. Based on the prediction mode used,

the reconstruction process uses a specific trained GBT-NN associated with that

mode. Fig. 5.6 explains this mechanism assuming an HEVC codec. Namely,

our framework relies on five trained GBT-NNs: one for horizontal (H) modes,

one for vertical (V) modes, one for diagonal (D) modes, one for the DC mode,

and one for the planar (P) mode.

5.3 Performance evaluation

5.3.1 Experimental setup

We train 5 different networks (H, V, D, DC, P) based on the 35 HEVC intra-

prediction modes. We use 8×8 blocks and graphs with an all-connected (All-C)

topology with no self loops with unit edge (UE) weights. Each training example

is represented by a tuple: {Ap,S,Ab}, where Ap is the predicted symmetric
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Figure 5.4: Block diagram of the proposed framework for decoding.
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Figure 5.6: A specific trained network is selected based on the intra-prediction
mode used for each block. The figure shows a section of a frame predicted by
several prediction modes.

adjacency matrix for residual block S (as computed by the template-based

prediction strategy) and Ab is the ground truth symmetric adjacency matrix

for S. The networks are trained only with {Ap} and {Ab} with α = 0.5

and λ = 0.002 (see Eq. 5.4). The hyper-parameters are selected based on

cross-validation. We train each network for 100 epochs using Adam optimizer

with a learning rate = 0.0001.

We use 40 different gray level YUV frames of Class A, B, C, D, E and
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Figure 5.7: (a,c) PE (%) and (b,d) MSE vs. percentage of coefficients used for
reconstruction of (1st row) a frame of sequence PeopleOnStreet (Class A) and
(2nd row) a frame of sequence BQTerrace (Class B).

Screen Content, which are video sequences widely used to test modern video

codecs [19]. We also use the green (G) component of 10 color pathology images

from the Center for Biomedical Informatics and Information Technology of

the US National Cancer Institute [128]. In total, for the five networks, we use

61, 440 samples of symmetric adjacency matrices. We use 80% of the data for

training and 20% for testing. There is no overlap in the training and testing

sets.

Table 5.1 summarizes the characteristics of all the GBTs we use in the

evaluations. Namely, it tabulates the topology used to construct the graph, the

edge weights, and how the residual for the current block is computed. We also

evaluate the KLT, the DCT, and DCT/DST as used in the HEVC and VVC

standards, where the DCT/DST are used as separable transforms for rows and

columns of the residual block depending on the prediction mode used.
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Table 5.1: Types of graph used to construct the GBT.

Approach Explanation
All-Connected Topology

GBTA-All Edge weights defined by a Gaussian kernel using the residual (no self-loops).

GBT-LA-All Unit edge weights and normalised self loop weights using the actual residual [130].

GBTWpix-All Edge weights defined by a Gaussian kernel using the residual predicted by weighted template pooling.

GBT-NN Our proposed approach (unit edge weights but no self-loops).

GBT-LWpix-AllUnit edge weights and normalised self loop weights using the residual predicted by weighted template pooling.

4-Connected Topology
GBT-LA Unit edge weights and normalised self loop weights using the actual residual [130].

GBT-LWpix Unit edge weights and normalised self loop weights using the residual predicted by weighted template pooling.

Table 5.2: Performance evaluation of the model on test data for all the

networks.

Horizontal Vertical Diagonal DC Planar

Metric L Lrcon L Lrcon L Lrcon L Lrcon L Lrcon

MSE 165.94 271.10 170.4 258.59 169.65 234.98 184.28 284.16 156.52 258.5

MAE 4.66 5.29 4.35 6.43 5.44 6.91 8.40 15.4 5.21 6.99

Ψ 0.99 0.94 0.97 0.93 0.92 0.82 0.95 0.88 0.98 0.93

5.3.2 Model evaluation

We use the MSE and Mean-absolute-error (MAE) to measure how well the

values of the symmetric adjacency matrix are predicted compared to the ground

truth. We measure the symmetrical property of the predicted matrices as

[134, 135]:

Ψ =
|âb(sym) ‖1 − ‖ âb(anti) ‖1
‖ âb(sym) ‖1 + ‖ âb(anti) ‖1

∈ [−1, 1], (5.7)

where a value of 1 means perfect symmetry.

Table 5.2 tabulates the performance of the five trained GBT-NNs on the test

data. We perform an ablation study by removing the Lsym component of the

loss function. This table shows that Lsym is vital to enhance the performance

of the networks since the MSE and MAE values increase and Ψ values decrease

if Lsym is removed.

5.3.3 Results

Table 5.3 presents the average PE (%) and MSE values for all evaluated data

using a small percentage of coefficients. As expected, the KLT (Table. 4.2)

provides the best performance. The GBT-NN preserves 10.46%, 6.37%, and

5.42% more energy than the DCT/DST, the DCT, and the GBT-LWpix [7]

(Proposed in Chapter 4), respectively, if only 5% of the largest coefficients

are used. We observe that the GBT-LA outperforms our proposed GBT-NN,

however, as the GBT-LA requires information about the graph to compute

the inverse transform needed to reconstruct each block, this transform is not

practical as this entails greatly increasing the overhead. Fig. 5.8 plots the PE
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Figure 5.8: (a,c) PE (%) and (b,d) MSE vs. percentage of coefficients used for
reconstruction of (1st row) a frame of sequence PeopleOnStreet (Class A) and
(2nd row) a frame of sequence BQTerrace (Class B).
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Figure 5.9: PSNR vs. QP for a frame of (a) sequence ChinaSpeed (Class SC)
and (b) sequence BlowingBubbles (Class D).
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(a) (b)

(c) (d)

Figure 5.10: (a) An original frame of sequence RaceHorse (Class D). (b) An
area reconstructed after using the KLT (PSNR = 28.45 dB), (c) the proposed
GBT-NN (PSNR = 23.92 dB), and (d) the DCT (PSNR = 22.67). In all cases,
QP=37.
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(%) and MSE values vs. the percentage of coefficients used for reconstruction of

a frame of sequence BQTerrace (Class B) and PeopleOnStreet (Class A). Table

5.4 tabulates the PSNR values for the evaluated frames/images when 4 different

QPs are applied to the transform coefficients for the popular transforms,

whereas; Table 5.5 tabulates the PSNR values for the evaluated frames/images

for the proposed transforms. Note that the proposed GBT-NN outperforms

both the DCT and DCT/DST. Table 5.6 and Table 5.7 provides a more

comprehensive summary of the findings for simpler interpretation and easier

analysis for PE-MSE and PSNR respectively. Fig. 5.9 plots the PSNR values

for a frame of the ChinaSpeed (Class Screen Content) and BlowingBubbles

(Class D) sequences. Fig. 5.10 shows a reconstructed frame of the sequence

RaceHorse (Class D) after transformation by the KLT, DCT and our proposed

GBT-NN, and quantization with QP= 37. As depicted, the GBT-NN achieves

a higher visual reconstruction quality than the DCT.

5.3.4 Computational complexity

Any GBT involves eigendecomposition of the graph Laplacian. Hence, the GBT

is as computationally complex as the KLT. However, the GBT-NN does not

need to signal any extra information for reconstruction thanks to the template-

based prediction strategy and the trained NNs. For any fully connected layer l,

the number of learnable parameters, i.e., the size of matrix W(l) is k×d, where

{d, k} are the number of input and output neurons, respectively. Once the

networks are trained offline, the learned weights are assumed to be common

knowledge between the transformation and reconstruction stages.

5.4 Summary

In this chapter, we proposed the GBT-NN, a new class of GBTs that performs

efficiently in block-based PTC with intra-prediction. The GBT-NN is based on

a deep encoding- decoding NN that learns a mapping function to approximate

a symmetric adjacency matrix associated with the graph of the residual block

to be encoded. Moreover, thanks to a template-based prediction strategy,

the GBT-NN does not require to explicitly compute the graph Laplacian for

each residual block during reconstruction. We evaluate the performance of the

GBT-NN in terms of the PE (%) and MSE when a small percentage of the

largest coefficients are used for re- construction, as well as in terms of the PSNR

when different quantization levels are applied to the transform coefficients.

Evaluation results show that the proposed GBT-NN outper- forms DCT and

DCT/DST, which are widely used by modern video codecs.

Since the architecture we have used here is a fully connected layer, the

number of parameters are are learning here are quite huge in number. Our
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objective is to improve the complexity by learning less number of parameters

and to adopt a more advanced architecture that is more effective at feature

extraction. In our next chapter we aim to use smarter architecture to predict

the graph.
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Table 5.4: PSNR (dB) values when using quantization on the transform
coefficients for popular transforms.

Quantization parameters

Sequence Resolution

Baseline SOTA Popular HEVC transforms

KLT GL-GBT DCT DCT/DST

Q
P 22 27 32 37 22 27 32 37 22 27 32 37 22 27 32 37

Class A

Traffic

2560×1600

37.533.229.827.8 34.033.030.622.1 33.331.327.521.2 21.020.119.516.1

People on street 38.734.431.029.0 35.234.231.823.3 34.532.528.722.4 22.019.318.617.3

Nebuta festival 39.535.231.829.8 36.035.032.624.1 35.333.329.523.2 21.720.219.517.0

Class B

Kimono

1920×1080

37.435.430.929.4 34.532.628.424.5 32.830.928.121.5 19.216.916.215.4

Cactus 38.136.131.730.0 35.133.329.225.3 32.931.128.322.1 20.317.916.916.5

Park scene 36.034.029.528.0 33.131.227.023.1 31.429.927.120.1 20.119.718.615.5

BQTerrace 38.836.732.330.7 35.833.429.825.9 32.931.128.422.8 21.620.920.417.7

Class C

Race horse

832×480

38.836.030.723.8 34.832.928.724.8 33.130.028.121.8 20.516.816.215.6

BQMall 39.236.431.124.3 35.233.329.225.3 33.530.028.122.2 19.919.017.715.9

Party scene 37.134.329.022.1 33.131.227.023.1 31.429.927.120.1 17.915.815.114.0

Basketball drill 39.736.931.724.8 35.733.829.725.9 33.530.128.222.8 20.919.918.017.7

Class D

Race horse D

416×240

40.538.434.127.0 39.737.932.629.7 34.531.628.024.4 22.221.420.119.3

Blowing bubble 41.940.035.428.4 41.139.234.031.1 35.923.629.025.7 23.622.421.120.6

BQ square 39.137.032.725.6 38.336.531.228.3 33.131.227.023.0 20.820.019.017.9

Basketball pass 42.240.335.728.7 41.439.534.331.3 36.032.929.326.0 23.722.721.320.9

Class E

Kristine and Sara

1280×720

40.639.335.530.7 36.733.731.326.7 36.334.031.226.3 24.022.321.221.1

Four people 39.037.733.929.1 35.132.129.725.1 34.733.029.624.7 22.421.820.919.6

Jhonny 41.840.536.731.9 38.034.932.528.0 37.535.032.227.5 24.021.320.217.7

Class F/SC

China speed 1024×768 40.237.033.933.1 36.934.030.525.1 34.932.829.626.0 20.418.718.117.9

Slide show

1280×720

42.135.132.031.2 35.032.128.623.2 33.932.329.124.1 20.418.418.118.0

Sc Map 40.937.634.633.8 37.534.731.225.8 35.532.830.326.7 23.019.418.818.6

Sc Programming 41.237.934.934.1 37.935.031.626.1 35.632.830.327.0 23.322.722.321.9

Overall average 39.636.832.728.8 36.434.330.525.8 34.231.928.823.7 20.619.018.217.0
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Table 5.6: Average PE (in %) and MSE using a small percentage of the largest
coefficients.

Percentage of coefficients used

1% 5% 10%

PE MSE PE MSE PE MSE

KLT 55.51 44.49 89.73 12.22 93.43 10.43

DCT 17.49 82.27 52.41 48.48 69.58 31.88

DCT/DST 16.94 82.74 51.89 49.81 68.14 33.49

GBTA-All 12.47 87.23 37.14 63.57 52.66 49.04

GBT-LA-All 13.07 83.69 38.62 50.64 54.42 34.24

GBTWpix
-All 12.71 86.78 38.00 62.85 53.86 47.79

GBT-NN (ours) 18.97 78.72 56.43 44.24 72.40 28.94

GBT-LWpix
-All 12.79 86.91 37.77 63.21 53.58 48.05

GBT-LA 24.71 75.17 60.47 40.21 74.28 26.47

GBT-LWpix
17.01 82.82 52.58 47.93 69.18 31.86

Table 5.7: Average reconstruction PSNR values when using quantization on
the transform coefficients.

Quantization Parameters

QP=22 QP=27 QP=32 QP=37

KLT 40.22 36.05 32.71 29.62

DCT 35.21 31.02 28.29 23.07

DCT/DST 20.56 19.02 18.25 17.10

GBTA-All 8.62 7.65 6.55 6.96

GBT-LA-All 16.38 15.47 14.73 12.73

GBTWpix -All 10.14 9.83 9.11 8.56

GBT-NN (ours) 35.86 31.69 29.18 23.93

GBT-LWpix -All 11.25 11.49 9.18 8.89

GBT-LA 36.69 33.84 30.31 25.73

GBT-LWpix 35.71 31.58 28.55 23.16
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Chapter 6

Graph Based Transform

based on 3D Convolutional

Neural Network for

Intra-Prediction of Imaging

Data

6.1 Introduction

This chapter presents a novel class of Graph-based Transform based on 3D

convolutional neural networks (GBT-CNN) within the context of block-based

predictive transform coding of imaging data. The proposed GBT-CNN uses a

3D convolutional neural network (3D-CNN) to predict the graph information

needed to compute the transform and its inverse, thus reducing the signalling

cost to reconstruct the data after transformation. The GBT-CNN outperforms

the DCT and DCT/DST, which are commonly employed in current video

codecs, in terms of the percentage of energy preserved by a subset of transform

coefficients, the mean squared error of the reconstructed data, and the transform

coding gain according to evaluations on several video frames and medical images.

When the GBT is used in block-based PTC, the graph used to compute

the GBT of each block at the encoder should be available to compute the

inverse GBT during reconstruction at the decoder. This additional data should

then be signalled into the bitstream, increasing the overhead. Our previous

works in [8, 9] in Chapter 5 show an attractive solution for learning a mapping

function to design a GBT without requiring to signal additional information.

To make the same graph available to the decoder for reconstruction, a template-
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based prediction strategy is used to predict the residual followed by a neural

network (NN) that estimates the graph to perform the GBT. Specifically, this

approach involves two prediction methods: predicting the residuals and using

the predicted residuals as an input to the NN to predict the graph. This

approach, unfortunately, tends to degrade the quality of the reconstructed

residual at the decoder. To address this issue, this chapter introduces a novel

class of GBT based on a 3D CNN (GBT-CNN), which uses the 3 reconstructed

blocks surrounding the block to be encoded as input. We use a 3D CNN

because the 3D convolution allows exploiting the relationship between these

surrounding blocks, which are expected to be similar to the one to be encoded,

by treating them as a single volume. These features are used to predict the

adjacency matrix of the block to be encoded. More specifically, our proposed

method maps these 3 surrounding blocks in the pixel domain to the graph

representing the residual block to be encoded by using an encoding-decoding

architecture. These 3 surrounding blocks are used to compute the same graph

at the decoder, thus allowing to perform the inverse GBT. Our approach then

avoids signalling extra information into the bitstream. To the best of our

knowledge, no approach for learning a graph using 3D CNNs within the context

of block-based PTC and GBTs has been proposed before. In terms of PE,

MSE, PSNR, and the transform coding gain, our evaluations on several video

frames and medical images show that the proposed GBT-CNN outperforms

the DCT/DST, DCT, and other similar GBTs [6–9].

6.2 Proposed GBT-CNN

Let us denote a (square) residual block as S ∈ R
√
N×
√
N , with a total of

N residual values. S can be represented as an undirected weighted graph,

G = (V,E,A), where V = {vn}Nn=1 is the set of N nodes, E is the set of edges,

and A ∈ RN×N is the normalized symmetric adjacency matrix. The matrix A

of a weighted graph stores the edge weights. The GBT for S can be computed

by the eigendecomposition of the graph Laplacian, L = D −A, where D is

the diagonal degree matrix. The eigendecomposition of L can be used as an

orthogonal transform for S, since it has a complete set of eigenvectors with

real, non-negative eigenvalues [133].

As the graph Laplacian requires the computation of the matrix A, our ob-

jective is to develop a mapping between the 3 reconstructed blocks surrounding

the block to be encoded and the matrix A of the residual block to be encoded.

To this end, we aim to learn a mapping function of the form:

AB ≈ f(B[I,J,K]), (6.1)

where B[I,J,K] represents a matrix with the 3 reconstructed gray scale blocks
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B

B

Figure 6.1: GBT-CNN used to predict matrix A for the current residual block.
In this work, we use an all-connected topology for the graphs.
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Figure 6.2: Architecture of the proposed GBT-CNN for 8× 8 blocks.

surrounding the block B to be encoded and AB is the adjacency matrix of the

graph of its residual block (see Fig. 6.1). Our solution to learn the mapping

function in Eq. 7.2 is based on an encoding-decoding 3D CNN, as depicted

in Fig. 6.2 for the case of 8× 8 blocks. In this architecture, the convolution

takes place over 3 layers of the encoder to extract feature maps Z(le) where

Z(0) = B[I,J,K] is the input and le ∈ [1, 3] denotes the layer number. After

the convolutional layers, the feature maps are vectorized as an input to the

decoder part of the architecture. Specifically, Z(le=3) is transformed back to

a reconstructed vector âu,B by the decoder over a number of fully-connected

(FC) layers:
âu,B = h(W(ld)Z(ld−1)), (6.2)

where âu,B is the prediction of the vectorized upper triangular matrix of AB,

h(·) denotes an activation function, W(ld) is a weight matrix for the decoder

layer ld, and Z(ld−1) is the hidden representation produced by the decoder layer

(ld − 1). For each FC layer, we apply the ReLu activation function, while the

Sigmoid activation function is applied to the last layer of the encoder. The

decoder consists of 6 FC layers. Note that the network only predicts the upper

triangular elements and the diagonal of matrix AB. To obtain a complete

predicted matrix ÂB, we mirror the elements of the upper diagonal to the

lower diagonal:

ÂB = Âu,B + (Âu,B)T −Diag(Âu,B), (6.3)

where Âu,B is the matrix form of âu,B, Diag(Âu,B) is the diagonal elements

of Âu,B and (Âu,B)T −Diag(Âu,B) denotes the lower triangular matrix. We

optimize the GBT-CNN by minimizing the following loss function:

L =‖ âB − aB ‖22 +λ ‖W(:) ‖2, (6.4)

where âB is the complete predicted matrix Âu,B (see Eq. 6.3) in vectorized
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Figure 6.3: Block diagram of the proposed framework for block-based PTC.
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Figure 6.4: The intra-prediction mode used for each block determines the
trained network to use. The figure depicts a section of a frame that has been
predicted using several prediction modes.

form, aB is the vectorized form of the ground truth matrix AB, ‖ . ‖ is the L2

norm, W(:) represents the learnable parameters in vector form, and λ controls

the amount of L2 regularization on the learnable parameters. The graph used

to compute the GBT for the current residual block is then Ĝ = (V,E, ÂB). To

reconstruct the current block, the same graph used to compute the GBT should

be used to compute the inverse GBT at the decoder. To this end, the same

reconstructed blocks used as input are available at the decoder to predict matrix

AB by the trained GBT-CNN. Fig. 6.3 illustrates the complete compression

framework assuming the trained GBT-CNN is common knowledge between

encoder and decoder. As a result, our solution does not require signalling any

additional data in the compressed bit-stream.

Table 6.1: GBTs used in the evaluation.

Approach Explanation
All-C Topology

GBT-NN Train a NN to predict matrix AB. The graph for GBT has UE weights but no self-loops.

GBT-CNN(ours) Train a 3D CNN to predict matrix AB. The graph for GBT has UE weights but no self-loops.

GL-GBT Uses covariance matrices from several training examples to estimate the graph Laplacian.

4-Connected Topology
GBT-LA Use actual residual to compute a graph with UE weights and normalized self-loop weights.
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Table 6.2: Performance evaluation of the model on test data for all the
networks.

Networks

Metric H V D DC P

MSE 0.0076 0.0162 0.0134 0.0185 0.0384

6.3 Performance evaluation

6.3.1 Experimental setup

Based on the 35 HEVC intra-prediction modes, we train 5 distinct networks:

one for horizontal (H) modes (modes 3 - 17), one for vertical (V) modes (modes

9 - 13), one for diagonal (D) modes (modes 2, 18 and 34), one for the DC mode,

and one for the planar (P) mode (see Fig. 6.1 and Fig. 6.4). We use 8 × 8

blocks and graphs with unit edge (UE) weights and an all-connected (All-C)

topology with no self-loops. We use 40 distinct grey level YUV frames from

Class A, B, C, D, E, and Screen Content, which are popular video sequences

for testing video codecs [19]. We also employ the green (G) component of 10

colour pathology images from the US National Cancer Institute’s Center for

Biomedical Informatics and Information Technology [128, 129]. We use 64, 320

samples in total for the five networks. Each sample comprises the following

values: {B[I,J,K],AB}, where AB is the ground truth. 80% of the data is used

for training and 20% is used for testing. The training and testing sets do not

overlap. We use the Adam optimizer to train each network for 150 epochs

with a learning rate of 0.0001 and λ = 0.001 (see Eq. 6.4). As mentioned

before, the surrounding reconstructed blocks I, J, and K, which are available

at the decoder, are used as inputs to a specific trained GBT-CNN according

to the mode used by the encoder (see Fig. 6.4). We use 10, 20, and 40 3D

filters respectively in each 3D-CNN layer. For each convolution operation, we

apply 1 stride, which leads to feature maps with dimensions of 6 × 6 × 10,

4× 4× 20, and 2× 2× 40, respectively. At the end of the convolutions, the

feature maps are flattened to a vector of dimensions of 160× 1. The output

layer has 2080 neurons, which matches the upper triangular elements plus

those in the diagonal of the matrix AB.

6.3.2 Evaluation of energy compaction for unquantized coeffi-

cients

We compare our proposed method with several GBTs as summarized in Table

6.1. Specifically, the table tabulates the topology of the graph, the edge weights,

and how the graph is obtained to compute the GBT. The KLT, DCT, and

DCT/DST as used in the HEVC and VVC standards are also evaluated, with

the DCT/DST being employed as separable transforms for rows and columns
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Table 6.6: Average PE (in %) and MSE using a small percentage of the largest
coefficients.

Percentage of coefficients used

1% 5% 10%

PE MSE PE MSE PE MSE

GL-GBT [136] 53.23 45.18 92.37 07.66 95.92 06.81

KLT 55.51 44.49 89.73 12.22 93.43 10.43

DCT 17.49 82.27 52.41 48.48 69.58 31.88

DCT/DST 16.94 82.74 51.89 49.81 68.14 33.49

GBT-NN [9] 18.97 78.72 55.43 44.46 72.40 28.94

GBT-CNN (ours) 21.45 76.36 59.92 39.12 73.16 27.9

GBT-LA [8] 24.71 75.17 60.47 40.21 74.28 26.47

GBT-LW [8] 17.01 82.82 52.58 47.93 69.18 31.86

Table 6.7: Average PSNR and coding gain when using quantization on the
transform coefficients.

Quantization Parameters

QP=22 QP=27 QP=32 QP=37

PSNR Gain PSNR Gain PSNR Gain PSNR Gain

GL-GBT 39.63 5.80 36.92 7.68 33.05 8.66 28.45 7.50

KLT 40.22 6.58 36.05 7.66 32.71 8.43 29.62 8.03

DCT 35.21 -1.63 31.02 0.77 28.29 0.95 23.07 0.99

DCT/DST 20.56 -1.83 19.02 0.45 18.28 0.13 17.10 1.48

GBT-NN 35.86 1.03 31.69 2.43 29.18 2.80 23.93 3.22

GBT-CNN (ours) 36.13 1.95 32.73 2.65 29.90 2.91 25.02 3.25

GBT-LA 36.69 2.46 33.84 4.32 30.31 6.42 25.73 7.58

GBT-LW 35.71 -0.46 31.58 -0.72 28.55 0.16 23.16 1.54

of the residual block depending on the prediction mode used. Note that our

approach differs from GL-GBT since that method does not use any deep

learning. We use the MSE to assess how efficiently the normalized symmetric

adjacency matrix is predicted in comparison to the ground truth. Table 6.2

tabulates the performance of the five trained GBT-CNNs on the test data in

terms of the MSE.

We first compute the percentage of PE and the MSE of the reconstructed

frames/ images using only a few coefficients under the assumption that no

quantization is applied, since the efficiency of a transform is measured by its

de-correlating properties and the maximum energy it concentrates in only a

few transform coefficients. We set a threshold that indicates the minimum

absolute value of the coefficients to be used for the reconstruction. This strategy

gradually includes the largest coefficients in a subset by gradually lowering

an initial large threshold as discussed in Chapter 3 in Fig. 3.5 [8]. Table

6.3 presents the PE (%) and MSE values for all evaluated data using a small

percentage of the largest coefficients. The GBT-CNN preserves 19.41% and

14.98% more energy than the DCT/DST and the DCT, respectively, if only 5%

of the largest coefficients are used. We find that the GBT-LA outperforms the

GBT-CNN; however, since the GBT-LA requires graph information to compute

the inverse transform, this transform is not practical as it significantly increases
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the overhead. Note that the GL-GBT outperforms all other transforms. Plots

in Fig. 6.5 (a, b) show the PE (%) and MSE values vs. the percentage

of coefficients used for reconstruction of several transforms for the sequence

BlowingBubble (Class D).

6.3.3 Objective quality evaluation

We also compute the reconstruction quality attained by the evaluated trans-

forms in terms of the PSNR when quantization is used. Specifically, we employ

four quantization parameters (QPs) used by the HEVC and VVC standards:

QP = {22, 27, 32, 37}. Table 6.4 tabulates PSNR values for the evaluated

frames/ images when these QPs are applied to the transform coefficients. Note

that the proposed GBT-CNN outperforms both the DCT/DST and DCT

by 7.92 dB and 1.95 dB, respectively, when QP=37. Again, the GBT-LA

outperforms our method by 0.71 db since this method uses actual residuals

for reconstruction. Fig. 6.5 (c) plots the PSNR values for People on Street of

Class A.

6.3.4 Coding gain

To demonstrate the rate-distortion trade off among the evaluated transforms,

we also compute the transform coding gain in decibels (see Table 6.5), as the

ratio of the distortion incurred between the uncoded and the coded frames

[137]:
GT (dB) = 10log10(

DU

DT
), (6.5)

where DU is the distortion caused by applying direct quantization to the

residuals and then dequantizing them to reconstruct the frames, while DT

is the distortion caused by quantization of the transformed coefficients of

transform T and then reconstructing the frames after dequantization and

inverse transformation. The distortion is measured in terms of the MSE. Table

6.5 shows that the GBT-CNN outperforms the DST/DCT and the DCT by

3.78 dB and 3.58 dB respectively, when QP=22. Plots in Fig. 6.5 (d) show

the coding gain of several transforms for the sequence People on Street (Class

A) relative to the KLT, computed as GT − GKLT , where GT , is obtained is

the coding gain for transform T and GKLT is the coding gain for KLT . Fig.

6.6 shows a reconstructed frame of the sequence BlowingBubble (Class D)

after transformation by several transforms and quantization with QP= 37. As

depicted, the GBT-CNN achieves a higher visual reconstruction quality than

the DCT. The GL-GBT achieves a visual quality very close to that achieved

by the KLT.

For easier interpretation and analysis of the findings for PE-MSE, PSNR,

and Coding-gain, Tables 6.6 and Table 6.7 provide a more comprehensive
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Figure 6.5: (a) Preserved Energy (b) Mean-squared Error, when used up to
10% of largest coefficients for reconstruction, (c) PSNR for the sequence, and
(d) Relative coding gain BlowingBubble of Class D.

overview of the results.

Any GBT requires eigendecomposition of the Laplacian graph. However, the

eigendecomposition used by the KLT tends to be more complex as it uses a dense

matrix. On the other hand, the sparsity in the graph Laplacian for the GBT can

be controlled by the graph topology, which can lead to a lower computational

complexity. Unfortunately, the GBT is just as computationally expensive as the

KLT for the case of the All-C topology. In terms of learnable parameters, the

network used by the GBT-CNN requires 4723510 parameters. The architecture

used by the GBT-NN [9] requires 22368256 learnable parameters.

6.4 Summary

In this chapter, we proposed the GBT-CNN, a new class of GBTs that performs

efficiently in block-based PTC with intra-prediction. The GBT-CNN is based

on a 3D-CNN that learns a mapping function to approximate a symmetric
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(a) (b)

(c) (d)

(e) (f)

Figure 6.6: (a) An original frame of sequence BlowingBubble (Class D). (b) An
area reconstructed after using the KLT (c) the proposed GBT-CNN , (d) the
GBT-NN (e) the GL-GBT , and (f) the DCT . In all cases, QP=37.
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adjacency matrix associated with the graph of the residual block to be encoded.

We evaluated the performance of the GBT-CNN in terms of the PE (%)

and MSE when a small percentage of the largest coefficients are used for

reconstruction, as well as in terms of the PSNR when different quantization

levels are applied to the transform coefficients. We also compared the coding

gain of the evaluated transforms. The evaluation results show that the proposed

GBT-CNN outperforms the DCT and the DCT/DST, while the GL-GBT

achieves the best performance, surpassing the KLT.

In both Chapter 5 and Chapter 6, we propose a framework for learning

GBTs using DL, in which the encoder and decoder of a video codec that use

block-based PTC are considered to share knowledge of a trained NN. As a result

of this, our technique avoids the need to indicate any extra information in the

compressed bit-stream. However, it does necessitate training a NN offline using

the proper training data first. However, the volume, caliber, and relevance

of the training data are what determine how well these ML-based algorithms

perform. As a result, online optimization of the ML model has become a viable

alternative to the offline learning procedure. We proposed online training to

predict the graph in our next chapter, which relates to developing ML models

while observing data and avoiding the use of pre-trained models.
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Chapter 7

Online Graph-based

Transforms for

Intra-Predicted Imaging Data

7.1 Introduction

In this chapter, we leverage online training to learn GBTs without requiring

of any training data or offline training processes. We specifically propose an

online GBT, hereinafter called GBT-ONL, for block based PTC in the context

of intra-prediction. The GBT-ONL predicts the graph Laplacian needed to

compute the GBT of each block by using an over-fitted NN that is optimized

online. The GBT-ONL has two main contributions. First, it introduces an

online learning framework where the model is optimized as blocks are being

encoded. This allows the model to adapt to each block to accurately predict

the graph needed to compute the GBT. Second, since the training is performed

online, it can be replicated at the decoder, thus avoiding the need to signal

extra information to compute the inverse GBT for reconstruction.

7.2 Proposed GBT-ONL

Online optimization aims to learn a mapping function based on a sequence of

samples as the samples are observed by the model. Such a mapping function is

expected to perform a specific task based on the observed samples, for example,

classification or regression. In the case of online optimization of an FC-NN,

the mapping function is learned by defining the parameters of the network

as samples are being observed. Those parameters are expected to perform

the task very well for the current sample. Specifically, the parameters are

usually initialized to random values and are updated sequentially using only

the data being processed. To improve performance, the parameters learned for
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the current sample can be used as the initial set of parameters to be updated

for the next sample.

Our work concentrates on learning GBTs online within the context of

block-based PTC. We focus on intra-prediction as currently performed by the

HEVC and VVC standards; however, this work is codec-agnostic and can be

used with any video and image codec that uses block-based PTC with intra-

prediction. More specifically, our GBT-ONL framework relies on a shallow

FC-NN trained over several iterations of gradient descent (GD) to predict the

graph Laplacian required to compute the GBT for the current residual block.

Once the optimization of the current residual block is complete, the FC-NN

is optimized to predict the graph Laplacian of the subsequent residual block

using as the initial set of parameters those optimized for the previous block.

This process is repeated until all residual blocks are processed.

The process of defining the initial set of parameters to be used for the

current block can be expressed mathematically for any two consecutive blocks

with indices k and k + 1 as follows:

W0
k+1 ← W̃k, (7.1)

where W0
k and W̃k denote the initial and final set of parameters for block

k + 1 and block k, respectively. For the first residual block of a frame, our

shallow FC-NN uses parameters initialized to known values, i.e., W0
k=0 is

known for block k = 0. Moreover, the FC-NN uses information obtained from

the blocks that have been already processed by block-based PTC as the input.

Consequently, no additional side information needs to be stored to repeat

the same training process during the reconstruction of the blocks since the

same input is available when blocks are reconstructed sequentially and in the

same order used to compute their GBTs. Let us recall that such sequential

encoding and decoding are common in modern video and image codecs that

use block-based PTC.

By using online optimization, our main objective is to learn a mapping

function, f(·), between an average residual block for the current block k, denoted

by Ck, and the graph Laplacian of such an average residual block:

L̂k ≈ f(Ck), (7.2)

where L̂k is the predicted graph Laplacian of the average residual block and

Ck = 1
3

∑3
d=1 Md is computed as the average residual of the three residual

blocks surrounding the current block, k. Here, Md represents the dth surround-

ing residual block (see Fig. 7.1).

Note that the same three residual blocks, {Md}, are available when re-
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Figure 7.2: Architecture of the shallow FC-NN used by the proposed GBT-ONL
framework for 8× 8 blocks.

constructing a frame block-by-block. Hence, they can be used as an input to

the same FC-NN for predicting the same graph Laplacian, which is needed

to compute the inverse GBT for block k. The rationale behind using these

three surrounding residual blocks is based on their similarities with the current

residual block. These three blocks are expected to have similar characteristics

to those of the residual block to be transformed. For residual blocks located

in the corner or along the edges of a frame, which may not be surrounded by

three residual blocks, we use a residual block with a constant value equal to

the DC value of the frame, e.g., for 8 bbp images, we use a value of 128.

Our solution to learn the mapping function in Eq. 7.2 is based on an

encoding-decoding shallow FC-NN, as depicted in Fig. 7.2 for the case of 8× 8

blocks. This shallow FC-NN has an input layer of 64 neurons and a 512-neuron

hidden layer, leading to the output layer of 4096 neurons. The average residual

block, Ck, in vector form, denoted by ck is used as input to the FC-NN, which

is trained to predict the graph Laplacian of Ck, also in vector form and denoted

by lck . In other words, lck serves as the ground truth for the training process.

Under the assumption that the three surrounding residual blocks {Md} are

similar to the residual block to be transformed, the graph Laplacian lck is then

expected to be similar to that of the current residual block, denoted by lk;

hence lck ≈ l
k
.
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Figure 7.3: Sequential processing of blocks by the proposed GBT-ONL frame-
work. To estimate the graph Laplacian of the current block, k, the shallow
FC-NN uses the average residual block in vector form, denoted by ck.

Fig. 7.3 shows the overall functionality of the GBT-ONL framework to

predict the graph Laplacian for each residual block k under block-based PTC

using intra-prediction. Note that the shallow FC-NN is optimized for each

block k over several iterations of gradient descent (GD) to accurately predict

lck . This optimization process is stopped based on threshold ξ, i.e., when the

Mean Squared Error (MSE) between the predicted graph Laplacian, l̂ck , and

the corresponding ground truth, lck , is less than ξ, or when enough iterations

of GD have been performed. In other words, the FC-NN is overfitted on the

input ck. Note that this overfitting process is appropriate for block-based PTC

as the prediction is based on a single input. The weights found after optimizing

the FC-NN on block k, i.e., W̃k, are used as the initial weights for block k + 1

(see Eq. 7.1). The process is repeated for all K residual blocks in the frame.

Algorithm 1 summarizes the online optimization process used by the GBT-

ONL framework, where P is the maximum number of GD iterations to be

performed for the current block, α is the learning rate, Arc(·) denotes the

architecture of the shallow FC-NN, {DCvalue} is a reference block in vector form

with all values equal to the DC of the image, md is the dth reference residual

block in vector form, and {r, c} denotes the row and column, respectively,

where a block is located in the image. Line 1 of the algorithm iterates over

all K residual blocks. Line 3 initializes all the parameters of the FC-NN for

the first block to a value of 0.5. Line 4 calculates the average residual block

for block k = 0 as a block with DC values. Line 6 initializes the parameters

of the FC-NN to the parameters found for the previous block. Lines 7 -13

initialize the average residual block according to the position of the current

block k to account for any unavailable residual block md. Line 15 optimizes the

FC-NN for block k over a maximum of P iterations of GD. Line 16 computes

the predicted graph Laplacian and the optimized parameters of the FC-NN
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Algorithm 1: Online training of the GBT-ONL framework for an
image with K blocks.

Require:
{
{md}, lck

}
for each block k, Arch(·), P, α, ξ, {DCvalue}

1: for k = 0→ (K − 1) do

2: if k = 0 then

3: W0
k=0 = {0.5}

4: ck ← {DCvalue}
5: else

6: W0
k ← W̃k−1

7: if r = 0 AND c! = 0 then

8: ck ← 1
3
(m3 + {DCvalue}+ {DCvalue})

9: elseif r! = 0 AND c = 0 then

10: ck ← 1
3
(m2 + {DCvalue}+ {DCvalue})

11: else

12: ck ← 1
3

∑3
d=1 md

13: end

14: end

15: for p = 1→ P do

16:
{̂
lck ,W

p
k

}
← Arch(ck, lck , α,W

0
k)

17: if ||̂lck − lck ||
2
2 > ξ then

18: W0
k ←Wp

k

19: go to line 16

20: else

21: W̃k ←Wp
k

22: return l̂ck

23: end

24: end

25: end

for interation p of GD, denoted by Wp
k. The optimization is based on the

following loss function:

L(̂lck , lck) =‖ l̂ck − lck ‖
2
2 +λ ‖Wp

k ‖
2
2, (7.3)

where ‖ . ‖2 is the L2 norm and λ is a hyperparameter to control the level of

L2-regularization on Wp
k. Line 17 computes the square of the error between the

ground truth and the predicted graph Laplacian and checks if this squared error

is above the threshold ξ. If this squared error is above ξ, the parameters found

after iteration p of GD are used as the initial set of parameters to be further

optimized in Line 16. Otherwise, Line 21 defines the final set of parameters as

those found at iteration p and Line 22 returns the predicted graph Laplacian,

which is to be used to compute the GBT for block k.

Fig. 7.4 shows how the proposed GBT-ONL framework can be incorporated

into an encoder-decoder pipeline that uses block-based PTC for compression
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Figure 7.4: The GBT-ONL framework incorporated into an encoder-decoder
system that uses block-based PTC for compression.

with intra-prediction. Our framework assumes that the initial parameters

W0
k=0 of the shallow FC-NN for block k = 0 are common knowledge between

the encoder and decoder. Note that the residual blocks {Md} used to compute

the average residual block Ck are those available at the encoder after the

corresponding blocks are processed and reconstructed. This guarantees that

even after quantization of the corresponding transform coefficients, these

residual blocks are the same as those available at the decoder.

7.3 Performance evaluation

Our test dataset comprises several 4:2:0 YUV video sequences commonly used

to test the performance of the HEVC and VVC standards. These sequences

are organized into six classes: A, B, C, D, E, and F/SC listed in the CTC

of JCT-VC [138]. They cover a wide range of characteristics in terms of

length, smoothness, scene complexity, and type of content. Table 2.1 illustrates

the characteristics of the videos used for the experiments. We also use 10

pathology images in RGB format from the Center for Biomedical Informatics

and Information Technology of the US National Cancer Institute [128] in the

evaluation. To predict the test sequences using intra-prediction and compute

the residual blocks, we use blocks of 8× 8 pixels and the 35 modes that are

common to the HEVC and VVC standards. We use the mode that provides

the lowest residual signal for block k. Note that modern video codecs usually

make intra-prediction decisions on the Y and G components of Y:U:V and

RGB data, respectively. For this reason, we use only these components of our

test data.

We compare our proposed method with several GBTs. Specifically, we

compare the GBTs, which vary in the nature of training, the topology of the
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graph, the edge weights, and how the graph is obtained to compute the GBT.

Apart from proposed GBT-ONL we compare other two GBTs constructed

differently from our proposed GBT-ONL. For the first kind, the GBT use

covariance matrices from several training examples to estimate the graph

Laplacian, hereinafter called GL-GBT [136]. This approach mainly focus on

offline training with traditional machine learning approach. For the second one,

called GBT-CNN [10], the graph has unit edge weights with no self-loop. This

method focuses on training a 3D-CNN model offline. Our experiments includes

other transforms, such as, the KLT, DCT, and DCT/DST as used in the

HEVC and VVC standards are also evaluated, with the DST being employed as

separable transforms for rows and columns of the residual block depending on

the prediction mode used. KLT is used as the baseline for optimality. Overall,

we categorize the evaluated transforms in two kind: i) transform requires offline

training, and ii) transform requires no offline training.

In the following subsections we summarize our evaluations and experiments

performed on several transforms. In subsection 7.3.1 we evaluate the proposed

model with appropriate metric. Further, subsection 7.3.2 shows the exper-

imental results for unquantized co-efficient. Additionally, we tabulate and

explain the compression and reconstruction quality, respectively, in subsections

7.3.3 and 7.3.4.

7.3.1 Model evaluation

To first evaluate the performance of the NN by using mean absolute error

(MAE) metric. The FC-NN has 2 hidden layers of 64 and 512 neurons in input

and 4096 neurons in output layer (see Fig. 7.2). In order to receive the same

performance at the encoder and decoder we initialize the weight of 0.5 which

works as a common knowledge. To overfit the network, we apply several steps of

gradient descent with the stopping criteria of ξ ≤ 1e−8 or reach n cycles. Due to

the online approach each block of the frame is tested sequentially while passing

the updated parameter to the next block. We experienced loss minimization in

every block initially starting with a comparatively poor performance. However,

due to overfitting and passing the updated parameter from the previous block

makes the prediction more accurate with high regressor. As an instance, Table

7.1 shows the performance of Blowing bubble. Since the frame is divided into

1560 non-overlapping blocks the loss gradually decreases for the later blocks.

For all experiments, we initialize the parameters of the FC-NN used by the

GBT-ONL framework to a value of 0.5 for the first block of each frame, i.e.,

W0
k=0 = {0.5}. To optimize the FC-NN, we use up to P = 100 iterations of

GD with a threshold of ξ = 1e−8. In other words, the optimization process

is stopped at block k after P = 100 iterations of GD steps or if the MSE
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between the predicted and ground truth graph Laplacians is less than or

equal to ξ = 1e−8. As explained in Section 7.2, the blocks are processed

sequentially and the parameters optimized for block k are used as the initial

set of parameters for block k + 1.

7.3.2 Evaluation of energy compaction for unquantized coeffi-

cients

We first compute the percentage of PE and the MSE of the reconstructed

frames/ images using only a few coefficients under the assumption that no

quantization is applied, since the efficiency of a transform is measured by its

de-correlating properties and the maximum energy it concentrates in only a

few transform coefficients. We set a threshold that indicates the minimum

absolute value of the coefficients to be used for the reconstruction. This strategy

gradually includes the largest coefficients in a subset by gradually lowering

an initial large threshold. Fig. 3.5 shows a toy example of the mechanism

followed.

Table 7.2 presents the PE (%) and MSE values for all evaluated sequences

using a small percentage of the largest coefficients. The transforms are cat-

egorised based on the training approach. In our experiments GBT-CNN and

GL-GBT needs to train their model offline, where as, DCT, DCT/DST and our

proposed method GBT-ONL do not use any offline training. The GBT-ONL

preserves 3.13% more energy than the DCT for Class A whereas overall 3.65%

more energy than DCT for all the test sequence if only 5% of the largest

coefficients are used. For unquantized co-efficients GL-GBT outperforms KLT

in terms of PE and MSE for natural image of Class D (see Fig. 7.5). Recall,

GL-GBT uses an offline trained model whose performance completely depends

on amount and relevance of training data whereas our model adapts the new

pattern of data without any training sample.

7.3.3 Objective quality evaluation

We compute the reconstruction quality attained by the evaluated transforms

in terms of the PSNR when quantization is used. Specifically, we employ

four quantization parameters (QPs) used by the HEVC and VVC standards:

QP = {22, 27, 32, 37}. Table 7.3 tabulates PSNR values for the evaluated

frames/ images when these QP s are applied to the transform coefficients.

Note that the proposed GBT-ONL outperforms DCT and DCT/DST by 2.1

dB and 7.2 dB respectively for Traffic Class A, when QP = 37 whereas for

the same class the PSNR of DCT outperforms GBT-ONL, when QP = 27.

For Class B, DCT outperforms GBT-ONL and GL-GBT by 0.7 dB and 0.1

dB respectively, for QP = 32. For Class B, GBT-ONL outperforms DCT
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by 0.47 dB for QP = 37. On the other hand, DCT for BQsquare Class

D sequence outperforms GBT-ONL for PSNR (see Fig. 7.5). The most

challenging sequence are the screen content where there are several edges. For

SC Programming GBT-ONL outperforms DCT by 2.4 dB, 2.1 dB, 0.6 dB

respectively, for QP = 22, QP = 27, and QP = 32. The GL-GBT outperforms

our method by 1.8 dB for QP = 22 for all the test sequence since this method

uses offline training for predicting graph Laplacian.

7.3.4 Bjontegaard-based (BD) metric

We evaluate the compression quality of our proposed method in terms of

BD-PSNR and BD-BR (bit-rate). As a trade-off to any HM software used for

compression, we use the entropy [139] of the evaluated transforms as the lower

limit for the average coding length in bits per pixel for 4 different QP s. We use

entropy of DCT as a reference average bit-rate to compare other transforms.

Then we use different PSNR for specified QP values to compare the other

transforms with respect to DCT. Table 7.4 tabulates the BD-PSNR and BD-BR

for the test sequences of different classes. Our table shows better compression

performance for proposed method with respect to DCT and DCT/DST.

For simplified evaluation and comprehension of the results for the PE-MSE,

PSNR, and BD metrics, Tables 7.5, Table 7.6, and Table 7.7 give an expanded

summary of the results respectively.

Fig. 7.6 shows a reconstructed frame of the sequence Basketball drill after

transformation by several transforms and quantization with QP = 37. As

depicted, the GBT-ONL achieves a higher visual reconstruction quality than

the DCT. The GL-GBT achieves a visual quality very close to that achieved

by the KLT. Since our network is fully connected and performed for each block

the parameters we learned (n× 4096× 512× 4096) where n is the number of

blocks in the sequence.

Table 7.1: Performance evaluation of training networks for a sequences

(a) Blowing bubble

Metric
MAE

Updated initial weight

Block 0 268.513
Block 50 151.194
Block 100 73.290
Block 300 28.671
Block 600 10.248
Block 1000 7.301
Block 1200 5.458
Block 1559 2.173
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7.4 Summary

In this chapter, we proposed the GBT-ONL, a new class of GBTs that per-

forms efficiently in block-based PTC with intra-prediction. The GBT-ONL

is based on online optimization of the block to be encoded. We also present

a coding/decoding framework that allows employing the GBT-ONL on resid-

ual blocks without the need to signal information about the graphs to the

decoder. The framework uses reference samples while decoding. We evaluated

the performance of the GBT-ONL in terms of the PE (%) and MSE when

a small percentage of the largest coefficients are used for reconstruction, as

well as in terms of the PSNR when different quantization levels are applied

to the transform coefficients. We also compared the compression efficiency

using BD-PSNR and BD-BR of the evaluated transforms. The evaluation

results show that the proposed GBT-ONL outperforms the DCT and the

DCT/DST, while the GL-GBT achieves the best performance among offline

trained methods, surpassing the KLT in some cases. Note that among any

non-trainable approach, GBT-ONL is outperforming others. GBT-ONL is

remarkably performing well in terms of computational complexity compared

to the other offline trained methods since we use a shallow network. This

method is advantageous in adapting new patterns in data without the use of

any training data or pre-trained model. The performance of this method on

unstructured graphs is still unclear, and its only drawback is that GBT-ONL

is only applied to structured graphs. The future direction leads to extract the

features of the video content online with convolution approach and learn the

parameters which is expected to response well for blocks with similar content

all over the sequences.
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Table 7.5: Average PE (in %) and MSE using a small percentage of the largest
coefficients.

Percentage of coefficients used

1% 5% 10%

PE MSE PE MSE PE MSE

KLT 55.51 44.49 89.73 12.22 93.43 10.43

GBT-CNN 21.45 76.36 59.92 39.12 73.16 27.9

GL-GBT [136] 53.23 45.18 92.37 07.66 95.92 06.81

GBT-ONL(ours) 18.56 78.78 54.33 46.6 71.23 30.3

DCT 17.49 82.27 52.41 48.48 69.58 31.88

DCT/DST 16.94 82.74 51.89 49.81 68.14 33.49

Table 7.6: Average reconstruction PSNR values when using quantization on
the transform coefficients.

Quantization Parameters

QP=22 QP=27 QP=32 QP=37

KLT 40.22 36.05 32.71 29.62

GBT-CNN 36.13 32.73 29.90 25.02

GL-GBT [136] 39.63 36.92 33.05 28.45

GBT-ONL(ours) 34.42 32.12 29.14 23.93

DCT 35.21 31.02 28.29 23.07

DCT/DST 20.56 19.02 18.25 17.10

Table 7.7: Average BD-PSNR, BD-BR values when using quantization on the
transform coefficients.

Compression Quality

BD-PSNR BD-BR

KLT 7.97 -69.00

GBT-CNN 1.03 -11.87

GL-GBT [136] 3.82 -44.22

GBT-ONL(ours) 0.89 -9.20

DCT/DST -10.00 27.24
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Figure 7.5: (a) Preserved Energy (b) Mean-squared Error, when used up to
10% of largest coefficients for reconstruction, and (c) PSNR for the sequence
BQsquare of Class D.
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(a) (b)

(c) (d)

(e) (f)

Figure 7.6: (a) An original frame of sequence Basketball pass (Class D). (b)
An area reconstructed after using the GL-GBT (PSNR = 31.3 dB), (c) the
DCT (PSNR = 26.0 dB), (d) the KLT (PSNR = 28.7 dB), (e) the GBT-CNN
(PSNR = 25.0 dB), and (f) the proposed GBT-ONL (PSNR = 25.6 dB). In all
cases, QP = 37.
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Chapter 8

Conclusions and Future Work

In this thesis, we have proposed a set of strategies for graph-based transforms

for image and video coding. In this chapter, we summarise our contributions,

discuss applications, limitations and consider future work.

8.1 Summary of Contributions

In Chapter 3 we have introduced the concept of reducing signaling overhead

by proposing a framework that allows employing the GBT to transform intra-

predicted residual signals of the multigiga-pixel WSI images images without

the need to signal information about graphs to the decoder. This framework

is only using reference samples to perform the IGBT for reconstruction. In

Chapter 4 we have introduced a framework which uses a 2D graph with unit

edge weights and weighted self-loops in every vertex while constructing the

graphs for GBT. Similar to previous chapter we took care of the fact to reduce

additional signaling overhead to the decoder. To accomplish this we have

used template-based prediction techniques to predict the same graph at the

decoder to perform IGBT. In Chapter 5 we have introduced NN architecture

to predict the graph by learning the adjacency matrix. Our method assumes

the trained GBT-NN is common knowledge between the compression and

reconstruction processes. Hence we avoided any overhead signaling. We used

the template-based prediction strategy from Chapter 4 to predict the residual

at the decoder as an input to the GBT-NN. In Chapter 6.1 we exploited 3D

CNN architecture to predict the graph at the decoder. Similar to Chapter 5

trained GBT-CNN is assumed to be the common knowledge between encoder

and decoder. However, the novelty in this chapter is, we overcome the issue

of applying two consecutive prediction techniques, (i) template matching for

predicting residuals, (ii) GBT-NN to predict the graph with the help of 3D-

CNN. In Chapter 7 we introduced online learning of graphs by using a shallow

over-fitted NN. For its online learning strategy this framework allows to adapt
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to each block to accurately predict the graph for GBT. The same online training

is performed for IGBT, thus, avoids the overhead extra signaling.

8.2 Application

The methods proposed in this thesis have a range of applications which are yet

to be applied in real life. We identify two main application domains.

• Medical Imaging:

– Internationally standard diagnosis:

International medical specialists make diagnoses based on how seri-

ous and critical a medical image is. An image can only lose a little

amount of information in order to retain consistency in diagnosis.

Our techniques keep the majority of the energy, thus the redundant

information in the images and films is only slightly lost.

– Preserve:

It is well acknowledged that the availability of earlier imaging studies

frequently has a significant impact on how a new study is interpreted

since it enables the detection of changes in the findings and an

estimation of the rate of any such change.

Furthermore, there is a chance that in the future, new methods will

allow for the use of data that has already been collected and stored

in ways that aren’t currently feasible. Unavoidably, new methods,

settings, and insights will emerge. Then, information that was not

immediately obvious during the initial examination may be deduced.

Since our approach relies on an exact reflection of pixel correla-

tion for graph structures, it is extremely adaptable to any new

approaches that emerge over time. Our methods demonstrate a

higher compression by evaluating the entropy encoding of the meth-

ods in maximising the utility of lossy compression and to limit the

chance of compression to become orphan data.

– Transmission:

Bandwidth issues hinder transmission of an uncompressed or lossless

compressed image. In these cases, the medical practitioners use of

appropriate levels of lossy image compression to speed the initial

arrival of the images, with the patient’s interests foremost in their

consideration. Our method allow more cost-effective utilization of

network bandwidth and storage capacity for medical images.

• Streaming Media:
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– Live Streaming:

Live streaming requires a form of source media (e.g. a video camera,

an audio interface, screen capture software), an encoder to digitize

the content, a media publisher, and a content delivery network to

distribute and deliver the content. For this application our method

can be adopted.

– Media Upload and Download: Compression of multimedia data

is quite necessary now a days for upload and download purpose.

In the era of COVID-19, the over-the-top (OTT) platforms that

provide television and film content over the internet at the request

and to suit the requirements of the individual consumer are quite

active. Our methods can be adapted to accomplish this purpose.

8.3 Limitation

In our thesis we found the limitation as stated below:

• The proposed frameworks are only applied to HEVC standard videos.

Unfortunately, due to some protocols of access issues by JCT-VC team

we had to limit our experiments in HEVC videos.

• The evaluation results show that our proposed methods outperforms the

most popular transforms DCT and the DCT/DST used in HEVC, while

the GL-GBT, the SOTA achieves the best performance among offline

trained methods, surpassing the KLT in some cases. Note that among

any non-trainable approach, GBT-ONL in Chapter 7 is outperforming

others to a great extent.

8.4 Future Work

Graph-based signal processing is a promising concept in the signal and image

processing field. The potential of the compression abilities of this techniques

provide solutions to problems of high definition videos. In this section, we

describe the future work of our proposed frameworks as follows:

• The future direction leads to extend our research ideas in Chapter 7. In

our existing framework 7.3 we use a shallow NN to predict the estimated

Laplacian where sample covariance matrix is the input to the network.

In future our plan is to extract the features of the video content online

with convolution approach by involving the surrounding blocks of the

block to be encoded. Instead of averaging the 3 surrounded blocks of

the block to be encoded, we could use 3D convolution neural network
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to extract the features to learn the parameters of those content. It is

expected to response well to estimate Laplacian for blocks with similar

content all over the sequences.

• Another most SOTA future direction leads to extend our research ideas

in Chapter 5 and Chapter 6.1 is to introduce Graph Neural Network

(GNN) to predict the graphs for transforms. This could specifically help

to involve unstructured graph structures, such as, MRI images of brain

where the focus is on blood flow direction. The graph representation

could indeed encode the complex structure of the brain to indicate either

physical or functional connectivity across different brain regions, and

blood flow through veins are an example of a graph signal.
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