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A B S T R A C T

Solving Fredholm equations of the first kind is crucial in many areas of the applied sciences.
In this work we consider integral equations featuring kernels which may be expressed as
scalar multiples of conservative (i.e. Markov) kernels and we adopt a variational point of
view by considering a minimization problem in the space of probability measures with an
entropic regularization. Contrary to classical approaches which discretize the domain of the
solutions, we introduce an algorithm to asymptotically sample from the unique solution of
the regularized minimization problem. As a result our estimators do not depend on any
underlying grid and have better scalability properties than most existing methods. Our algorithm
is based on a particle approximation of the solution of a McKean–Vlasov stochastic differential
equation associated with the Wasserstein gradient flow of our variational formulation. We
prove the convergence towards a minimizer and provide practical guidelines for its numerical
implementation. Finally, our method is compared with other approaches on several examples
including density deconvolution and epidemiology.

1. Introduction

Fredholm integral equations of the first kind are ubiquitous in applied sciences and engineering, they model density deconvolu-
tion [31,61,77,95], image reconstruction [7,23,85,96], inverse boundary problems for partial differential equations [24,88] and find
applications in epidemiology [39,40,63] and statistics [45,68]. Fredholm integral equations of the first kind are typically defined
by

𝑔(𝑦) = ∫R𝑑
𝑓 (𝑥)k(𝑥, 𝑦)d𝑥

where the kernel k ∶ R𝑑 × R𝑝 → R is known, and 𝑔 ∶ R𝑝 → R is known but indirectly observed, and the objective is to identify the
unknown function 𝑓 ∶ R𝑑 → R. If we interpret this as a Lebesgue integral with d𝑥 denoting the Lebesgue measure then we may
identify the functions with measures 𝜇(d𝑦) ∶= 𝑔(𝑦)d𝑦, 𝜋(d𝑥) ∶= 𝑓 (𝑥)d𝑥 and k with an integral operator K(𝑥, d𝑦) ∶= k(𝑥, 𝑦)d𝑦 which
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leads to the representation that we will consider throughout this paper:

𝜇(𝖠) = 𝜋K(𝖠) ∶= ∫R𝑑
K(𝑥,𝖠)d𝜋(𝑥), (1)

for any Borel set 𝖠 ∈ (R𝑝), with 𝜋 an unknown measure on (R𝑑 ), 𝜇 an observed measure on (R𝑝) and K ∶ R𝑑 × (R𝑝) → R an
ntegral operator. These equations model the task of reconstructing the signal 𝜋 from a distorted observed version 𝜇. Since many
pplications of Fredholm integral equations are concerned with the reconstruction of signals that are a priori known to be non-
egative [23], we consider the case in which both 𝜋 ∈ P(R𝑑 ) and 𝜇 ∈ P(R𝑝) are probability measures on R𝑑 and R𝑝, respectively,
nd K is a Markov kernel. A great many Fredholm integral equations, particularly those for which the kernel is conservative up to a
calar multiplier in the sense that ∫R𝑝 K(𝑥, d𝑦) = ∫R𝑝 K(𝑥′, d𝑦) for every 𝑥, 𝑥′ ∈ R𝑑 , can be recast in this framework with appropriate
ranslation and normalization [20, Section 6].

In a probabilistic and variational approach, we seek a solution of (1) by minimizing the Kullback–Leibler divergence between 𝜇
nd 𝜋K [73]:

𝜋⋆ = arg min{KL (𝜇|𝜋K) ∶ 𝜋 ∈ P(R𝑑 )}, (2)

here KL (𝜇|𝜋K) = ∫R𝑝 log((d𝜇∕d𝜋K)(𝑦))d𝜇(𝑦) if 𝜇 admits a density w.r.t. 𝜋K and +∞ otherwise. The probability measure 𝜋⋆

orresponds to the maximum likelihood estimator (MLE) for 𝜋. Using this formulation, it is possible to define approximate solutions
f Fredholm integral equations of the first kind as solutions of a minimization problem on the space of measures. However, in most
nteresting cases, the integral equation (1) is ill-posed, i.e. there might exists more than one solution 𝜋 to (1), and, even when the
olution is unique, it is unstable with respect to changes in 𝜇. This lack of stability is the primary concern when attempting to solve
redholm integral equations of the first kind: in practical applications we often only have access to (noisy) observations from 𝜇 and
ot to its analytic form, and the instability of (1) means that small errors in 𝜇 do not necessarily correspond to small errors in the
ecovered solution 𝜋 [57, Chapter 15]. This issue reflects onto the minimization problem (2), which often does not admit a unique
inimizer [58].

In order to circumvent this issue, a regularization term is often added to the variational formulation (2) [17,42]. In a similar
ashion to the Tikhonov regularization [43], we consider a regularized version of (2) in which a cross-entropic penalty with respect
o a reference measure 𝜋0 ∈ P(R𝑑 ) is introduced as in [37,50,80]

𝜋⋆ = arg min{F𝛼(𝜋) ∶ 𝜋 ∈ P(R𝑑 )}, F𝛼(𝜋) = KL (𝜇|𝜋K) + 𝛼KL
(

𝜋|𝜋0
)

, (3)

or a given regularization parameter 𝛼 > 0. In practice, (3) becomes easier to solve for large values of 𝛼 but the agreement between
⋆K and 𝜇 is weak and in the limiting case 𝛼 → +∞, 𝜋⋆ = 𝜋0. For small values of 𝛼, 𝜋⋆K ≈ 𝜇 but the minimization problem is
arder to solve and in the limit 𝛼 → 0, it collapses onto (2), becoming ill-posed. The parameter 𝛼 should therefore be chosen to
chieve a trade-off between minimizing KL (𝜇|𝜋K) (i.e. 𝛼 should be small enough), ensuring that (3) can be solved and that the
esulting solution is sufficiently regular (i.e. 𝛼 should not be zero); this is usually achieved by selecting 𝛼 through cross-validation,
ee [1,91].

The use of cross-entropy regularization is not new in the literature on Fredholm integral equations [37,50,80]. In particular, [37]
onsiders a cross-entropy regularization in a least-square setting, [50] studies (3) in the discrete setting, i.e. when 𝜋 and 𝜇 are vectors
n the simplex of R𝑑 ,R𝑝 respectively, and [80] studies (3) when 𝜋 and 𝜇 are integrable densities. In the discrete setting, [50]
stablishes uniqueness of the minimizers of a discrete version of (3) and studies the behaviour of the minimizers as 𝛼 → 0; in the
ontinuous setting, [80] shows existence and uniqueness of a minimizer of (3) under the assumption that (1) admits a maximum
ntropy solution.

In related works, functionals involving the Kullback–Leibler divergence KL (𝜇|𝜋K) are minimized iteratively by discretizing
he domain of 𝜋, 𝜇 [15,20,42,85,95], while maximum entropy estimators are usually obtained approximating 𝜋 through a set of
asis functions [49,52,56,65]. However, when 𝜋, 𝜇 are probability measures it is natural to consider Monte Carlo strategies, and
pproximate 𝜋 using particles [26]. This is particularly convenient when the only information on 𝜇 is given by a sample drawn
rom it, as it is the case in most applications [31,39,40,45,61,63,68,77,95]. Recently, [26] introduced a sequential Monte Carlo
ethod (SMC-EMS) to approximately solve (1), this algorithm provides an adaptive stochastic discretization of the expectation
aximization smoothing algorithm first studied in [84], which aims at obtaining solutions of (1) which achieve a good trade-off

etween solving (2) and having enough smoothness.
The functional (3) can be seen as a probabilistic counterpart of the classic Tikhonov regularization setting (e.g [43]); [38] propose

n interacting particle system based on a Wasserstein gradient flow construction to approximately solve the Tikhonov-regularized
roblem for a wide class of (nonlinear) inverse problems. While the particle system introduced in [38] is similar in spirit to the
pproach taken here, the former requires an a priori discretization of the support of 𝜋, which makes it impractical when we deal with
redholm integral equations, since the object of interest (i.e. 𝜋) is infinite dimensional. By focussing on the case of linear integral
quations, we can avoid the discretization step required by the particle system of [38], and work directly with the measures 𝜋, 𝜇.

In this work, we adopt a probabilistic approach and present a novel particle algorithm to solve Fredholm integral equations of
he first kind. More precisely, we derive a particle approximation to the Stochastic Differential Equation (SDE) associated with the

asserstein gradient flow [2,81] minimizing surrogates of (3). Wasserstein gradient flows have been widely used to solve a variety
f optimization problems in the space of probability measures [5,35,53,59], including finding solutions to finite dimensional inverse
roblems [38], but, to the best of our knowledge, not for infinite dimensional inverse problems like the integral equation (1). The
2

DE associated with this gradient flow is non-linear in the sense that it depends not only upon the position of the solution but also
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on its marginal distribution. Such SDEs are called McKean–Vlasov SDEs (MKVSDE), and have been actively studied during the past
decades [18,41,64,66,67,75,86,87]. In this work, we derive a particular MKVSDE whose solution converges towards a minimizer
of (3). However, this MKVSDE cannot be solved analytically, and we introduce a numerical approximation using an Euler–Maruyama
discretization and a particle system.

We perform an extensive simulation study in which we compare our method with SMC-EMS and problem-specific algorithms
nd show that it achieves comparable performances. The results obtained with our method and SMC-EMS are particularly similar,
ince both methods aim at minimizing a regularized Kullback–Leibler divergence. However, while in this work we explicitly have
minimization problem for the regularized functional (3), the SMC-EMS algorithm does not minimize a particular functional but

orresponds to a smoothed version of the EM algorithm minimizing the Kullback–Leibler divergence (2). When 𝛼 and the smoothness
parameter controlling the amount of regularization in SMC-EMS are both small, the two algorithms will therefore give very similar
reconstructions. Nevertheless, the method proposed in this work comes with a number of additional theoretical guarantees and
practical improvements. From the theoretical point of view, we show that (3) admits a unique minimizer for any 𝛼 and that this
minimizer can be seen as the probabilistic counterpart of the classical solution to the Tikhonov regularized least-squares problem.
On the other hand, uniqueness of the fixed point of the EMS recursion approximated by SMC-EMS has not been established. From
the practical point of view, minimizing (3) allows us to introduce additional information about the solution through 𝜋0, this proves
articularly beneficial when the kernel K leads to model misspecification (see Section 5.2). When compared on higher dimensional
roblems, the proposed method outperforms both standard discretization-based methods and SMC-EMS (Section 5.4), opening the
oor to solving Fredholm integral equations for high-dimensional problems.

In addition, the value of the regularization parameter 𝛼 can be chosen through common approaches for selecting the regular-
zation parameter in Tikhonov regularization settings (e.g. cross–validation [1,91]), while in the case of SMC-EMS the link between
he particle system and the functional which is minimized is less clear, and cannot be exploited as straightforwardly.

To summarize, our main contributions are as follows:

(a) First, we establish that the functional in (3) is continuous and admits a unique minimizer under mild conditions on 𝜇,K. In
addition, we show that a modification of (3) is stable with respect to perturbations of the observation 𝜇 and study the limit
behaviour of 𝜋⋆ as 𝛼 → 0.

(b) Second, we derive the Wasserstein gradient flow used to minimize a surrogate of (3) and show that the associated MKVSDE
converges towards a unique minimizer using recent results from optimal transport [46].

(c) Third, we present and study a discrete-time particle approximation of this MKVSDE. In particular, we establish geometric
ergodicity of the particle system under regularity conditions.

(d) Finally, we illustrate the efficiency of our method to approximately solve Fredholm integral equations of the first kind on a
range of different numerical examples and show that it achieves superior or comparable performances to those of problem-
specific algorithms and SMC-EMS, outperforming the latter for high dimensional problems. In addition, we show on a task
from epidemiology that, when the kernel K does not correctly model the problem at hand, the presence of a reference measure
𝜋0 allows us to outperform even problem-specific estimators.

The rest of the manuscript is organized as follows. In Section 2 we establish that the functional in (3) is well-founded and study
ts key properties. The link between gradient flows and MKVSDE in the context of Fredholm integral equations of the first kind
s studied in Section 3. In Section 4 we describe a numerical scheme which approximates the continuous time dynamics of the
article system and provide error bounds. Finally, in Section 5, we test the algorithm on a number of applications of Fredholm
ntegral equations from statistics, epidemiology and image processing, and explore the scaling properties of our method through a
omparison with the SMC-EMS algorithm recently proposed in [26].

otation

We endow R𝑑 with the Borel 𝜎-field (R𝑑 ) with respect to the Euclidean norm ‖⋅‖. For a matrix 𝐴 we denote ‖𝐴‖ = (
∑

𝑖𝑗 𝑎
2
𝑖𝑗 )

1∕2

he Hilbert–Schmidt norm. We denote by C(R𝑑 ) the set of continuous functions defined over R𝑑 and by C𝑛(R𝑑 ) the set of 𝑛-times
ifferentiable functions defined over R𝑑 for any 𝑛 ∈ N⋆, where N⋆ denotes the non-zero natural numbers. For all 𝑓 ∈ C1(R𝑑 ),
e denote by ∇𝑓 its gradient. Furthermore, if 𝑓 ∈ C2(R𝑑 ) we denote by ∇2𝑓 its Hessian and by 𝛥𝑓 its Laplacian. For all
∈ C1(R𝑑1 × ⋯ × R𝑑𝑚 ) with 𝑚 ∈ N⋆, we denote by ∇𝑖𝑓 its gradient w.r.t. component 𝑖. We say that a function 𝑓 ∶ 𝖷 → R

(where 𝖷 is a metric space) is coercive if for any 𝑡 ∈ R, 𝑓−1((−∞, 𝑡]) is relatively compact. This definition can be extended to the
ase where 𝖷 is only a topological space, see [28, Definition 1.12]. A family of functions {𝑓𝛼 ∶ 𝛼 ∈ 𝖠} such that for any 𝛼 ∈ 𝖠,
𝑓𝛼 ∶ 𝖷 → R, is said to be equicoercive if there exists 𝑔 ∶ 𝖷 → R such that for any 𝛼 ∈ 𝖠, 𝑓𝛼 ≥ 𝑔 and 𝑔 is coercive. For any 𝑝 ∈ N we
denote by P𝑝(R𝑑 ) = {𝜋 ∈ P(R𝑑 ) ∶ ∫R𝑑 ‖𝑥‖𝑝𝑝 d𝜋(𝑥) < +∞} the set of probability measures over (R𝑑 ) with finite 𝑝th moment. For
ease of notation, we define P(R𝑑 ) = P0(R𝑑 ) the set of probability measures over (R𝑑 ) and endow this space with the topology of
weak convergence. For any 𝜇, 𝜈 ∈ P𝑝(R𝑑 ) we define the 𝑝-Wasserstein distance 𝐖𝑝(𝜇, 𝜈) between 𝜇 and 𝜈 by

𝐖𝑝(𝜇, 𝜈) =
(

inf
𝛾∈𝐓(𝜇,𝜈)∫R𝑑×R𝑑

‖𝑥 − 𝑦‖𝑝𝑝 d𝛾(𝑥, 𝑦)
)1∕𝑝

where 𝐓(𝜇, 𝜈) = {𝛾 ∈ P(R𝑑 × R𝑑 ) ∶ 𝛾(𝖠 × R𝑑 ) = 𝜇(𝖠), 𝛾(R𝑑 × 𝖠) = 𝜈(𝖠) ∀𝖠 ∈ (R𝑑 )} denotes the set of all transport plans between
𝜇 and 𝜈. In the following, we metrize P (R𝑑 ) with 𝐖 . Assume that 𝜇 ≪ 𝜈 and denote by d𝜇 its Radon–Nikodym derivative. The
3
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Kullback–Leibler divergence, KL (𝜇|𝜈), between 𝜇 and 𝜈 is defined by

KL (𝜇|𝜈) = ∫𝖷
log

(

d𝜇
d𝜈

(𝑥)
)

d𝜇(𝑥).

We say that K ∶ R𝑑 ×(R𝑝) → [0,+∞) is a Markov kernel if for any 𝑥 ∈ R𝑑 , K(𝑥, ⋅) is a probability measure over (R𝑝) and for any
𝖠 ∈ (R𝑝), K(⋅,𝖠) is a Borel-measurable function over R𝑑 .

2. A minimization problem for Fredholm integral equations

In this section, we study the properties of the regularized functional F𝛼 ∶ P(R𝑑 ) → R∪+∞ given for any 𝛼 ≥ 0 and 𝜋 ∈ P(R𝑑 )
by

F𝛼(𝜋) = KL (𝜇|𝜋K) + 𝛼KL
(

𝜋|𝜋0
)

,

where we recall that 𝜇 ∈ P(R𝑝), 𝜋0 ∈ P(R𝑑 ) and the Markov kernel K ∶ R𝑑 × (R𝑝) → [0, 1] are given. For ease of notation we
denote F = F0.

In Section 2.1 we introduce a surrogate functional which enjoys better stability properties than F𝛼 . We prove that under mild
ssumption on 𝜇 and K, a minimizer of the surrogate exists, is unique and continuous w.r.t the parameters of the functional. In
ection 2.2, we investigate the links between our approach and other regularization methods for Fredholm integration equations of
he first kind.

.1. A surrogate functional: stability and regularization

First, we introduce a surrogate functional G𝛼 whose minimizers are the same as F𝛼 if 𝜇 is absolutely continuous w.r.t the
ebesgue measure but which is also easier to study when 𝜇 is approximated by an empirical distribution. Assume that there exists
∶ R𝑑 × R𝑝 → [0,+∞) such that for any 𝑥 ∈ R𝑑 and 𝖠 ∈ (R𝑝), K(𝑥,𝖠) = ∫𝖠 k(𝑥, 𝑦)d𝑦. Then, using the Fubini–Tonelli theorem we
ave that for any 𝖠 ∈ (R𝑝) and 𝜋 ∈ P(R𝑑 ),

𝜋K(𝖠) = ∫R𝑑
K(𝑥,𝖠)d𝜋(𝑥) = ∫𝖠

(

∫R𝑑
k(𝑥, 𝑦)d𝜋(𝑥)

)

d𝑦.

Therefore 𝜋K admits a density w.r.t. the Lebesgue measure given by 𝑦 ↦ 𝜋[k(⋅, 𝑦)]. In addition, assume that 𝜇 admits a density w.r.t.
the Lebesgue measure d𝜇(𝑦) = 𝜇(𝑦)d𝑦 such that ∫R𝑝 | log(𝜇(𝑦))|d𝜇(𝑦) < +∞. Then for any 𝜋 ∈ P(R𝑑 )

KL (𝜇|𝜋K) = −H(𝜇) − ∫R𝑝
log(𝜋[k(⋅, 𝑦)])d𝜇(𝑦),

where H(𝜇) ∶= − ∫R𝑝 log(𝜇(𝑦))d𝜇(𝑦) is the entropy of 𝜇.
Since ∫R𝑝 |log(𝜋[k(⋅, 𝑦)])| d𝜇(𝑦) < +∞ if KL (𝜇|𝜋K) < +∞, minimizing F𝛼 on the set {𝜋 ∈ P(R𝑑 ) ∶ KL (𝜇|𝜋K) < +∞} for any 𝛼 ≥ 0

is equivalent to minimizing G𝛼 on the same set, where for any 𝜋 ∈ P(R𝑑 )

G𝛼(𝜋) = −∫R𝑝
log(𝜋[k(⋅, 𝑦)])d𝜇(𝑦) + 𝛼KL

(

𝜋|𝜋0
)

, (4)

with G = G0 for ease of notation.
The functional (4) is not defined if ∫R𝑝 log(𝜋[k(⋅, 𝑦)])d𝜇(𝑦) = +∞ or KL

(

𝜋|𝜋0
)

= +∞. We consider the following assumption on
he kernel K so that the functional is well-defined for any 𝜋 ∈ P(R𝑑 ) and regular enough, see Proposition 1.

1. There exists k ∈ C∞(R𝑑 ×R𝑝, [0,+∞)) such that for any 𝑥 ∈ R𝑑 and 𝖠 ∈ (R𝑝), K(𝑥,𝖠) = ∫𝖠 k(𝑥, 𝑦)d𝑦 and − ∫R𝑝 log(k(0, 𝑦))d𝜇(𝑦) <
+∞. In addition, there exists 𝙼 ≥ 0 such that for any (𝑥, 𝑦) ∈ R𝑑 × R𝑝 we have k(𝑥, 𝑦) + ‖∇k(𝑥, 𝑦)‖ + ‖∇2k(𝑥, 𝑦)‖ ≤ 𝙼. In addition,
𝜕31,𝑖𝑗𝑙k(𝑥, 𝑦)‖ ≤ 𝙼, where 𝜕𝑖 denotes the derivative w.r.t. the 𝑖th variable.

In this section, we could restrict ourselves to bounded second derivatives. The condition ‖𝜕31,𝑖𝑗𝑙k(𝑥, 𝑦)‖ ≤ 𝙼 is used only in
roposition 10, in which we establish a convergence result for the time discretization of the MKVSDE. Under A1, the density k
f the Markov kernel K is Lipschitz continuous for every 𝑦 ∈ R𝑝.

To address stability issues we also consider the following regularized functional: for any 𝛼, 𝜂 ≥ 0 and 𝜋 ∈ P(R𝑑 )

G 𝜂
𝛼 (𝜋) = −∫R𝑝

log(𝜋[k(⋅, 𝑦)] + 𝜂)d𝜇(𝑦) + 𝛼KL
(

𝜋|𝜋0
)

, (5)

here 𝜂 ≥ 0 is a hyperparameter. Using G 𝜂
𝛼 with 𝜂 > 0 will be crucial in order to establish the Lipschitz continuity of the drift of

he MKVSDE in Section 3, and hence the stability of the proposed procedure. For clarity, we write G𝛼 = G 0
𝛼 , G 𝜂 = G 𝜂

0 and G = G 0
0 .

In the following proposition, we derive regularity properties for the family of functionals {G 𝜂 ∶ 𝜂 ≥ 0}.

Proposition 1. Assume A1, then the following hold:

(a) For any 𝜂 ≥ 0, G 𝜂 is lower bounded, lower-semi continuous, convex and is not coercive.
𝜂 𝜂 𝑑
4

(b) For any 𝜂 > 0, G is proper and G ∈ C(P(R ),R).
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Proof. See Appendix A.2. □

Proposition 1 shows that G 𝜂 enjoys better regularity properties for 𝜂 > 0. In Proposition 3, we will also show that if 𝜂, 𝛼 > 0 then
he minimizers of G 𝜂

𝛼 are stable w.r.t 𝜇. In addition, note that for any 𝜂 ≥ 0, G 𝜂 is not coercive. As a result, the uniqueness of the
minimizer of G 𝜂 is difficult to establish. In what follows we study the function G 𝜂

𝛼 for 𝛼, 𝜂 > 0 and show that G 𝜂
𝛼 is coercive in this

ase. Hence, G 𝜂
𝛼 admits a unique minimizer 𝜋⋆

𝛼,𝜂 , and we show that the family of minimizers {𝜋⋆
𝛼,𝜂 ∶ 𝛼, 𝜂 > 0} is smooth with respect

o the parameters 𝛼 and 𝜂. In Proposition 4 we will characterize the limit of 𝜋⋆
𝛼,𝜂 when both 𝛼, 𝜂 → 0.

roposition 2. Assume A1. Then the following hold:

(a) For any 𝛼, 𝜂 > 0, G 𝜂
𝛼 is proper, strictly convex, coercive and lower semi-continuous. In particular, G 𝜂

𝛼 admits a unique minimizer
𝜋⋆
𝛼,𝜂 ∈ P(R𝑑 ).

(b) 𝚖 ∶ (𝛼, 𝜂) ↦ 𝜋⋆
𝛼,𝜂 ∈ C((0,+∞)2 ,P(R𝑑 )) and 𝚍 ∶ (𝛼, 𝜂) ↦ infP(R𝑑 ) G

𝜂
𝛼 ∈ C((0,+∞)2 ,R).

roof. See Appendix A.3. □

In most applications, 𝜇 is unknown but we have access to samples 𝑦1∶𝑀 = {𝑦𝑘,𝑀}𝑀𝑘=1 ∈ (R𝑝)𝑀 drawn from 𝜇, see [31,45,61,63,
8,77,95]. The following stability result guarantees that if we substitute 𝜇 with the empirical measure 𝜇𝑀 = (1∕𝑀)

∑𝑀
𝑘=1 δ𝑦𝑘,𝑀 in

𝜂
𝛼 we obtain a minimization problem whose solution converges to the minimizer we would obtain if we had full knowledge of 𝜇
s the number of samples 𝑀 increases.

roposition 3. Assume A1. Let 𝛼, 𝜂 > 0 and for any 𝜈 ∈ P(R𝑝) denote 𝜋𝜈,⋆
𝛼,𝜂 the unique minimizer of (5) with 𝜇 ← 𝜈. Let

𝜇𝑛)𝑛∈N ∈ (P1(R𝑑 ))N such that lim𝑛→+∞ 𝐖1(𝜇𝑛, 𝜇) = 0 with 𝜇 ∈ P1(R𝑑 ). Then, we have lim𝑛→+∞ 𝐖1(𝜋
𝜇𝑛 ,⋆
𝛼,𝜂 , 𝜋𝜇,⋆

𝛼,𝜂 ) = 0.

roof. See Appendix A.4. □

We emphasize that in the proof of Proposition 3, the fact that 𝜂 > 0 plays a crucial role. Indeed, if 𝜂 > 0 and A1 holds we can
xploit the fact that 𝑦 ↦ log(𝜋[k(⋅, 𝑦)] + 𝜂) is Lipschitz continuous.

.2. Variants and connections with other methods

.2.1. Maximum entropy methods
The functional F𝛼 can be seen as the Lagrangian associated with the following primal problem

arg min{KL
(

𝜋|𝜋0
)

∶ 𝜋 ∈ P(R𝑑 ), KL (𝜇|𝜋K) = 0}.

he latter problem is a maximum entropy problem in the sense of [27] (where the entropy functional is replaced by the
ullback–Leibler divergence). Closely related to (3) is the functional F̃𝛼 given (when it is defined) by

F̃𝛼(𝜋) = KL (𝜇|𝜋K) − 𝛼H(𝜋). (6)

he choice of an entropic penalty does not require specifying a reference measure 𝜋0 and connects (3) with the classical maximum
ntropy methods [51]. Indeed, (6) is the Lagrangian associated with the following primal problem

arg max{H(𝜋) ∶ 𝜋 ∈ PH(R𝑑 ), KL (𝜇|𝜋K) = 0},

here PH(R𝑑 ) is the set of probability distributions with finite entropy. However, the functional F̃𝛼 is not lower bounded and the
orresponding minimization problem is not well-defined and therefore is not considered here. On the contrary, F𝛼 is always non-
egative making the optimization problem well-defined. A number of maximum entropy approximations of solutions of Fredholm
ntegral equations have been proposed in the literature, most of which maximize the entropy subject to moment constraints obtained
y integrating 𝜇 and 𝜋K w.r.t. a (possibly infinite) set of basis functions [49,52,56,65]. These approaches work particularly well
n the one-dimensional case, as in this case the maximum entropy solution can be written analytically (see, e.g., [49, Proposition
.1]). For higher dimensional problems, the maximum entropy solution is usually approximated by discretizing the support of 𝜋
see, e.g., [70]).

.2.2. Generalized Bayesian inference
As mentioned in the introduction, minimizing F results in the maximum likelihood estimator (2). Given a set of observations

1,… , 𝑦𝑀 from 𝜇, the log-likelihood for the infinite-dimensional parameter 𝜋 is [19]

(1∕𝑀)
𝑀
∑

𝑗=1
log𝜋[k(⋅, 𝑦𝑗 )] = ∫R𝑝

log𝜋[k(⋅, 𝑦)]d𝜇𝑀 (𝑦), (7)

ith 𝜇𝑀 = (1∕𝑀)
∑𝑀

𝑗=1 δ𝑦𝑗 . For any 𝛼 > 0, minimizing the functional G𝛼 in (4) is equivalent to minimizing

− 1 log(𝜋[k(⋅, 𝑦)])d𝜇(𝑦) + KL
(

𝜋|𝜋0
)

,

5

𝛼 ∫R𝑝
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which can be interpreted as generalized Bayesian inference in the sense of adjusting the weight (or learning rate) of the likelihood (7)
w.r.t. the prior 𝜋0 (see, e.g., [11, Section 3] and [44]). In particular, if we assume that the target measure 𝜋 is a discrete distribution
with a fixed and finite number of components (a straightforward case which is not considered here), i.e.𝜋 =

∑𝑁
𝑖=1 δ𝑥𝑖𝑝𝑖, with

∑𝑁
𝑖=1 𝑝𝑖 = 1 and {𝑥𝑖}𝑁𝑖=1 ∈ (R𝑑 )𝑁 , then (1) is a finite mixture model and minimizing (4) corresponds to posterior inference for

the locations {𝑥𝑖}𝑁𝑖=1 and the weights {𝑝𝑖}𝑁𝑖=1 with prior 𝜋0 and learning rate 𝛼−1.
Choosing the appropriate 𝛼 then amounts to the calibration problem in generalized Bayesian inference with standard Bayesian

inference obtained when 𝛼 = 1 [11,44]. Contrary to the standard setting, in which values of 0 < 𝛼−1 < 1 are preferred since the
model is believed to be misspecified, we are in the setting in which we want to reduce the influence of the prior 𝜋0 which is used
as a regularizer in (4) and favour values of 𝛼−1 > 1.

2.2.3. Tikhonov regularization
We now move onto considering the link between G𝛼 and Tikhonov regularization. In fact, minimizing G𝛼 can be seen as the

probabilistic counterpart to the classical Tikhonov regularization setting [43] which we recall briefly.
Let A ∈ R𝑝×𝑑 and 𝑦 ∈ R𝑝 (note that this discussion is still valid in more general Hilbert spaces but we restrict ourselves to the

inite-dimensional case for the sake of clarity). Define 𝑔 ∶ R𝑑 → [0,+∞) for any 𝑥 ∈ R𝑑 by 𝑔(𝑥) = ‖A𝑥 − 𝑦‖2. Denote by A† the
Moore–Penrose inverse of A, see [72] for a definition. A†𝑦 ∈ arg minR𝑑 𝑔 and moreover A†𝑦 ∈ arg min{𝑥 ↦ ‖𝑥‖ ∶ 𝑥 ∈ arg minR𝑑 𝑔},
.e. A†𝑦 is the solution of the minimization of 𝑔 with least norm. For any 𝛼 ≥ 0, the Tikhonov regularization with level 𝛼 of 𝑔 is given
by 𝑔𝛼 ∶ R𝑑 → [0,+∞) such that 𝑔𝛼(𝑥) = 𝑔(𝑥) + 𝛼 ‖𝑥‖2 for any 𝑥 ∈ R𝑑 . There exists a unique 𝑥𝛼 ∈ R𝑑 such that 𝑥𝛼 ∈ arg minR𝑑 𝑔𝛼 .
t is known that lim𝛼→0 𝑥𝛼 = A†𝑦, i.e. the solution of the Tikhonov regularization converges towards the solution of 𝑔 with minimal
orm [43].

In Proposition 4, we show a similar property in the probabilistic setting. In this case the norm function is replaced by the
ullback–Leibler divergence with respect to some reference measure 𝜋 ↦ KL

(

𝜋|𝜋0
)

. Given the functional G ∶ P(R𝑑 ) → (−∞,∞]
n (5), we obtain for any 𝛼, 𝜂 ≥ 0 a regularized functional G 𝜂

𝛼 (𝜋) = G 𝜂(𝜋)+𝛼KL
(

𝜋|𝜋0
)

. Similarly to the Tikhonov regularization, there
xists a unique minimizer to G 𝜂

𝛼 , 𝜋⋆
𝛼,𝜂 ,∈ P(R𝑑 ), see Proposition 2. In Proposition 4, we show that any limiting point of the sequences

𝜋⋆
𝛼𝑛 ,𝜂𝑛

)𝑛∈N with lim𝑛→+∞ 𝛼𝑛 = 0 and lim𝑛→+∞ 𝜂𝑛 = 0, is a minimizer of G with least Kullback–Leibler divergence with respect to 𝜋0.
To control the behaviour of the family of minima {inf𝜋∈P(R𝑑 ) G

𝜂
𝛼 (𝜋) ∶ 𝛼, 𝜂 > 0} when 𝛼 is close to 0, we make use of the following

ssumption which controls the tail behaviour of 𝜋0 and the tail behaviour of the density k.

2. The following hold:

a) 𝜋0 admits a density w.r.t. the Lebesgue measure, d𝜋0(𝑥) = 𝜋0(𝑥)d𝑥, with 𝜋0(𝑥) ∝ exp [−𝑈 (𝑥)], where, 𝑈 ∶ R𝑑 → R is such that
here exist 𝜏, 𝐶1 > 0 satisfying for any 𝑥 ∈ R𝑑

−𝐶1 − 𝜏 ‖𝑥‖2 ≤ 𝑈 (𝑥) ≤ 𝐶1 + 𝜏 ‖𝑥‖2 .

b) 𝜇 ∈ P2(R𝑝) and there exists 𝐶2 ≥ 0 such that for any 𝑥 ∈ R𝑑 and 𝑦 ∈ R𝑝

k(𝑥, 𝑦) ≥ 𝐶−1
2 exp[−𝐶2(1 + ‖𝑥‖2 + ‖𝑦‖2)].

Under this assumption we have the following result.

roposition 4. Assume A1 and A2. Then, for any 𝛼 > 0, 𝜂 ≥ 0, 𝜋⋆
𝛼,𝜂 ∈ P2(R𝑑 ) admits a density w.r.t the Lebesgue measure. If there exist

⋆ ∈ P2(R𝑑 ), (𝛼𝑛)𝑛∈N (0,+∞)N, (𝜂𝑛)𝑛∈N ∈ [0,+∞)N such that lim𝑛→+∞ 𝛼𝑛 = 0, lim𝑛→+∞ 𝜂𝑛 = 0 and lim𝑛→+∞ 𝐖2(𝜋⋆
𝛼𝑛 ,𝜂𝑛

, 𝜋⋆) = 0, then

𝜋⋆ ∈ arg min{KL
(

𝜋|𝜋0
)

∶ 𝜋 ∈ arg min
P2(R𝑑 )

G }.

roof. See Appendix A.5. □

. McKean–Vlasov stochastic differential equation and minimization of functionals

In most interesting cases the direct minimization of (5) is not tractable. In this work, we propose to follow a Wasserstein gradient
low approach in order to approximate these minimizers. Our methodology stems from the connection between minimization of
unctionals in the space of probability measures and partial differential equations (PDEs) pointed out in [53,76]. In particular, we
raw links between the minimization of G 𝜂

𝛼 and a SDE whose invariant measure is the minimizer of G 𝜂
𝛼 . An informal presentation of

he bridges between Wasserstein gradient flows and a certain class of SDEs, namely McKean–Vlasov SDEs (MKVSDEs), is presented
n Section 3.1. We investigate the long-time behaviour of these MKVSDEs in the context of the minimization of G 𝜂

𝛼 in Section 3.2.
6

inally, we show that there exists a system of interacting SDEs which approximates the obtained MKVSDE in Section 3.3.
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3.1. Minimization and gradient flows

In this section, we set 𝛼, 𝜂 > 0 and informally derive the continuous-time dynamics we study in the rest of this paper by drawing
a link with gradient flows; formal results are given in Appendix B.1. We assume that all the probability measures we consider admit
densities w.r.t the Lebesgue measure and do not distinguish between the distribution and its density. Let (𝜋𝑡)𝑡≥0 be a family of
robability measures satisfying (in a weak sense)

𝜕𝑡𝜋𝑡 = −div(𝜋𝑡𝐯𝑡), (8)

here 𝐯𝑡 belongs to the Wasserstein subdifferential of a functional F ∶ P2(R𝑑 ) → [0,+∞], see [2, Definition 10.1.1] for a definition.
hen (𝜋𝑡)𝑡≥0 is called a Wasserstein gradient flow associated with F [2, Definition 11.1.1] and it has been shown in numerous settings
hat such gradient flows converge towards the minimizers of F when they exist [2,81]. In Proposition 19 in Appendix B.1 we show
hat

𝑥 ↦ −∫R𝑝
(𝜂 + 𝜋[k(𝑥, 𝑦)])−1∇1k(𝑥, 𝑦)d𝜇(𝑦) + 𝛼{∇𝑈 (𝑥) + ∇ log𝜋(𝑥)},

elongs to the subdifferential of G 𝜂
𝛼 at 𝜋 under mild conditions and assuming that 𝜋0(𝑥) ∝ exp[−𝑈 (𝑥)]. We also derive the

orresponding gradient flow equation

𝜕𝑡𝜋𝑡 = −div
(

𝜋𝑡

[

∫R𝑝
(𝜋𝑡[k(⋅, 𝑦)] + 𝜂)−1∇1k(𝑥, 𝑦)d𝜇(𝑦) − 𝛼∇𝑈 (𝑥)

])

+ 𝛼𝛥𝜋𝑡. (9)

or strongly geodesically convex (i.e. convex along geodesics) functionals the gradient flow (8) converges geometrically towards
he unique minimizer. However, in our setting G 𝜂

𝛼 is not geodesically convex but only convex. Using recent results from [46] we
stablish the convergence of the Wasserstein gradient flow in Section 3.2 but without quantitative convergence rates.

We use the gradient flow equation (9) to draw a link between the minimization of G 𝜂
𝛼 and MKVSDEs [64], a class of SDEs in

hich the drift and diffusion coefficients depend not only on the current position of the solution but also on its distribution. Since (9)
s a Fokker–Planck equation, we informally derive the corresponding SDE

d𝐗⋆
𝑡 = {∫R𝑝

𝑏̃𝜂(𝐗⋆
𝑡 ,𝝀

⋆
𝑡 , 𝑦)d𝜇(𝑦) − 𝛼∇𝑈 (𝐗⋆

𝑡 )}d𝑡 +
√

2𝛼d𝐁𝑡 𝐗⋆
0 ∈ R𝑑 , (10)

where (𝐁𝑡)𝑡≥0 is a 𝑑-dimensional Brownian motion, 𝝀⋆𝑡 is the distribution of (𝐗⋆
𝑡 )𝑡≥0 and for any 𝜈 ∈ P(R𝑑 ) and (𝑥, 𝑦) ∈ R𝑑 × R𝑝

𝑏̃𝜂(𝑥, 𝜈, 𝑦) = ∇1k(𝑥, 𝑦)∕(𝜈[k(⋅, 𝑦)] + 𝜂). (11)

In particular, note that 𝑏̃𝜂 is always defined since 𝜂 > 0. In the following section, we establish various theoretical properties of (10):
we show that its solution exists, is unique and converges towards the minimizer of G 𝜂

𝛼 .

3.2. Existence, uniqueness and long-time behaviour

We are now concerned with the theoretical properties of (10). In particular, we show that under A1 the MKVSDE in (10) admits
a unique strong solution and is ergodic provided that the gradient of the potential 𝑈 is Lipschitz continuous. We present here several
assumptions on the regularity of 𝑈 which we use throughout the remainder of this paper. However, the results presented in this
section only rely on A3-(a) and A3-(b).

A3. The following hold:

(a) There exists 𝙻 ≥ 0 such that ‖
‖

∇𝑈 (𝑥1) − ∇𝑈 (𝑥2)‖‖ ≤ 𝙻 ‖
‖

𝑥1 − 𝑥2‖‖, for any 𝑥1, 𝑥2 ∈ R𝑑 .
(b) There exist 𝚖, 𝚌 > 0 such that for any 𝑥1, 𝑥2 ∈ R𝑑 , ⟨∇𝑈 (𝑥1) − ∇𝑈 (𝑥2), 𝑥1 − 𝑥2⟩ ≥ 𝚖‖𝑥1 − 𝑥2‖2 − 𝚌.
(c) There exists 𝙻2 ≥ 0 such that for any 𝑥1, 𝑥2 ∈ R𝑑 , ‖‖

‖

∇2𝑈 (𝑥1) − ∇2𝑈 (𝑥2)
‖

‖

‖

≤ 𝙻2
‖

‖

𝑥1 − 𝑥2‖‖.

Under these conditions, if 𝜂 > 0 the drift given in (11) is Lipschitz continuous and we can use standard tools for McKean–Vlasov
processes to establish existence and uniqueness.

Proposition 5. Assume A1 and A3-(a). Then for any 𝛼, 𝜂 > 0 there exists a unique strong solution to (10) for any initial condition
𝐗⋆
0 ∈ P1(R𝑑 ).

Proof. See Appendix B.2. □

The previous proposition is limited to the case where 𝜂 > 0. Indeed, if 𝜂 = 0 the drift is not Lipschitz continuous and the SDE (10)
might be unstable, with solutions existing up to a (possibly small) explosion time. Having shown that (10) admits a unique strong
solution when 𝜂 > 0, we verify that the distribution 𝝀⋆𝑡 converges to the unique minimizer 𝜋⋆

𝛼,𝜂 of G 𝜂
𝛼 when 𝑡 → +∞.

Proposition 6. Assume A1, A3-(a) and A3-(b). Then for any 𝛼, 𝜂 > 0, we have lim 𝐖 (𝝀⋆, 𝜋⋆ ) = 0.
7

𝑡→+∞ 2 𝑡 𝛼,𝜂
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Proof. See Appendix B.3. □

There exists a rich literature on the exponential ergodicity of MKVSDE, see [12,16,36,62] for instance. However, these results
require the interaction term 𝑏̃𝜂 to be small when compared to 𝛼∇𝑈 . This is not the case in our applications where we study the
behaviour of the McKean–Vlasov process for small values of 𝛼 > 0. The original approach of [46] differs from these previous works
nd relies on the fact the MKVSDE under consideration stems from a Wasserstein gradient flow. However, [46, Theorem 2.11] does
ot establish quantitative bounds contrary to [12,16,36,62] which derive explicit convergence rates. Under additional assumptions
n the kernel k (e.g. strong convexity), the result above can be strengthened to show that, if 𝛼𝑡 → 0 at the appropriate rate, then

G 𝜂(𝝀⋆𝑡 ) converges towards the minimum of the unregularized functional [22, Theorem 4.1].

.3. Particle system

The MKVSDE (10) has several shortcomings from a methodological point of view. First, since the drift of the SDE depends not
nly on the current position of the solution but also on its distribution, it is not possible to sample from (10) even in simplistic
ettings. Second, as is the case for classical SDEs, it is usually difficult to sample from continuous-time processes. We circumvent
he first issue by introducing a particle system [13,64] (𝐗1∶𝑁

𝑡 )𝑡≥0 = {(𝐗𝑘,𝑁
𝑡 )𝑡≥0}𝑁𝑘=1 for any 𝑁 ∈ N⋆ which satisfies a classical SDE.

n the limit 𝑁 → +∞ we have that (𝐗1,𝑁
𝑡 )𝑡≥0 approximates (𝐗⋆

𝑡 )𝑡≥0. In Section 4 we will investigate a time discretization scheme for
this particle system SDE in order to obtain a particle system Markov chain which can be implemented.

We introduce the particle system (𝐗1∶𝑁
𝑡 )𝑡≥0 which satisfies the following SDE: for any 𝑘 ∈ {1,… , 𝑁}, 𝐗𝑘,𝑁

0 ∈ R𝑑 and

𝐗𝑘,𝑁
𝑡 = 𝐗𝑘,𝑁

0 + ∫

𝑡

0
𝑏(𝐗𝑘,𝑁

𝑠 ,𝝀𝑁𝑠 (𝐗1∶𝑁
0 ))d𝑠 +

√

2𝛼𝐁𝑘
𝑡 , (12)

where for any 𝑥 ∈ R𝑑 and 𝜈 ∈ P(R𝑑 ) we have

𝑏(𝑥, 𝜈) = ∫R𝑝
𝑏̃𝜂(𝑥, 𝜈, 𝑦)d𝜇(𝑦) − 𝛼∇𝑈 (𝑥), (13)

{(𝐁𝑘
𝑡 )𝑡≥0 ∶ 𝑘 ∈ N} is a family of independent Brownian motions and 𝝀𝑁𝑡 (𝐗1∶𝑁

0 ) is the empirical measure associated with {(𝐗𝑘,𝑁
𝑡 )𝑡≥0}𝑁𝑘=1

with starting point 𝐗1∶𝑁
0 , i.e. we have for any 𝑁 ∈ N⋆

𝝀𝑁𝑡 (𝐗1∶𝑁
0 ) = (1∕𝑁)

𝑁
∑

𝑘=1
δ(𝐗𝑘,𝑁

𝑡 ).

In the following proposition we show using classical propagation of chaos tools that there exists a unique strong solution to (12)
and that this solution approximates (10) for any finite time horizon.

Proposition 7. Assume A1 and A3-(a). Then, for any 𝛼, 𝜂 > 0 and 𝑁 ∈ N⋆ there exists a unique strong solution to (12) for any initial
condition 𝐗1∶𝑁

0 such that (𝐗1∶𝑁
0 ) ∈ P1((R𝑑 )𝑁 ) and {𝐗𝑘,𝑁

0 }𝑁𝑘=1 is exchangeable. In addition, if 𝐗𝓁,𝑁
0 = 𝐗⋆

0 , for any 𝑇 ≥ 0 there exists
𝐶𝑇 ≥ 0 such that for any 𝑁 ∈ N⋆ and 𝓁 ∈ {1,… , 𝑁}

E1∕2[ sup
𝑡∈[0,𝑇 ]

‖𝐗⋆
𝑡 − 𝐗𝓁,𝑁

𝑡 ‖

2] ≤ 𝐶𝑇𝑁
−1∕2.

Proof. See Appendix B.4. □

We now turn to the exponential ergodicity of the particle system. Using recent advances in the theory of convergence of Markov
chains [30] we derive quantitative bounds. However, these bounds are not uniform w.r.t to the number of particles and therefore
we cannot use this result to conclude that the McKean–Vlasov process itself is exponentially ergodic by letting 𝑁 → +∞.

Proposition 8. Assume A1, A3-(a) and A3-(b). Then, for any 𝛼, 𝜂 > 0 and 𝑁 ∈ N⋆ there exist 𝐶𝑁 ≥ 0 and 𝜌𝑁 ∈ [0, 1) such that for
any 𝑥1∶𝑁1 , 𝑥1∶𝑁2 ∈ (R𝑑 )𝑁 and 𝑡 ≥ 0

𝐖1(𝝀𝑁𝑡 (𝑥1∶𝑁1 ),𝝀𝑁𝑡 (𝑥1∶𝑁2 )) ≤ 𝐶𝑁𝜌𝑡𝑁‖𝑥1∶𝑁1 − 𝑥1∶𝑁2 ‖,

where for any 𝑥1∶𝑁 ∈ (R𝑑 )𝑁 , 𝝀𝑁𝑡 (𝑥1∶𝑁 ) is the distribution of (𝐗1∶𝑁
𝑡 )𝑡≥0 with initial condition 𝑥1∶𝑁 . In particular, (12) admits a unique

invariant probability measure denoted 𝜋𝑁 ∈ P𝑝((R𝑑 )𝑁 ) and for any 𝑥1∶𝑁 ∈ (R𝑑 )𝑁 and 𝑡 ≥ 0

𝐖1(𝝀𝑁𝑡 (𝑥1∶𝑁 ), 𝜋𝑁 ) ≤ 𝐶𝑁𝜌𝑡𝑁

(

‖𝑥1∶𝑁‖ + ∫R𝑑
‖𝑥̃‖d𝜋𝑁 (𝑥̃)

)

.

Proof. See Appendix B.5 □

In the two previous propositions, the exponential ergodicity and the approximation between the particle system and the McKean–
Vlasov process are only valid for a finite number of particles or a finite time-horizon, respectively. In particular, we cannot directly
conclude that the projection of the invariant distribution of the particle system onto its first component on P(R𝑑 ), denoted by 𝜋1,𝑁 ,
is close to 𝜋⋆ . This is the topic of the next proposition.
8

𝛼,𝜂
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Proposition 9. Assume A1, A3-(a) and A3-(b). Then, for any 𝛼, 𝜂 > 0, lim𝑁→+∞ 𝐖1(𝜋1,𝑁 , 𝜋⋆
𝛼,𝜂) = 0. In addition, 𝜋⋆

𝛼,𝜂 is the unique
nvariant probability measure of (10).

roof. See Appendix B.6. □

. Numerical implementation

In the previous section, we introduced a continuous time Markov process (𝐗1∶𝑁
𝑡 )𝑡≥0 such that the distribution 𝐗1,𝑁

𝑡 approximates
⋆
𝛼,𝜂 for large values of 𝑡 ≥ 0 and 𝑁 ∈ N. In this section, we derive an algorithm approximating this particle system.

In order to obtain a numerical approximation of (12) we need two consider two factors: first, as in the case of classical SDEs,
he continuous time process (12) cannot be simulated directly, and we need to introduce time discretization, secondly, in practice
he integral w.r.t. 𝜇 in (13) is intractable.

First, in Section 4.1 we consider an Euler–Maruyama discretization of the particle system. For stability issues we consider a
amed version of the classical Euler–Maruyama discretization. To address the second issue, given that in applications we will
ften be in the situation in which 𝜇 is only known through a sample, we approximate the integral w.r.t. 𝜇 in (13) with a sample
verage In Section 4.2, we introduce a second discrete-time particle system, obtained by approximating 𝜇 with its empirical average
1∕𝑀)

∑𝑀
𝑘=1 δ𝑦𝑘,𝑀 where 𝑦1∶𝑀 = {𝑦𝑘,𝑀}𝑀𝑘=1 is a sample from 𝜇⊗𝑀 . We show that the two particle systems are close for large values

f 𝑀 . In particular, Proposition 11 ensures the quantitative stability of the particle system. Finally, in Section 4.3 we discuss the
hoice of parameters for the algorithm.

.1. Tamed Euler–Maruyama discretization

In order to obtain a Markov chain which can be implemented, we consider a time discretization of (12). More precisely, for
ny 𝑁 ∈ N, we consider the following tamed Euler–Maruyama discretization given by 𝑋1∶𝑁

0 ∈ (R𝑑 )𝑁 and for any 𝑛 ∈ N and
∈ {1,… , 𝑁}

𝑋𝑘,𝑁
𝑛+1 = 𝑋𝑘,𝑁

𝑛 + 𝛾𝑏(𝑋𝑘,𝑁
𝑛 , 𝜆𝑁𝑛 )∕(1 + 𝛾‖𝑏(𝑋𝑘,𝑁

𝑛 , 𝜆𝑁𝑛 )‖) +
√

2𝛼𝑍𝑘
𝑛+1, (14)

here {𝑍𝑘
𝑛 }𝑘,𝑛∈N is a family of independent Gaussian random variables, 𝛾 > 0 is a stepsize, 𝑏 is given by (13) and for any 𝑛 ∈ N, we

have that 𝜆𝑁𝑛 = (1∕𝑁)
∑𝑁

𝑘=1 δ𝑋𝑘,𝑁
𝑛

. The choice of a tamed scheme is motivated by the behaviour of the drift (13). As shown in the
Appendix, 𝑏 is Lipschitz continuous for any 𝜂 > 0, however, for small values of 𝜂 the Lipschitz constant can be large. In practice,
we observe that the use of a tamed Euler–Maruyama discretization scheme prevents some numerical stability issues appearing for
small values of 𝜂 > 0.

The tamed Euler–Maruyama discretization (and its extension to the Milstein scheme) for classical SDEs has been investigated in
[14,47,48,92]. More recently, strong approximation results have been established for McKean–Vlasov SDEs in [8]. In the following
proposition, we use the results of [8, Theorem 2.5] to derive strong approximation results between (𝑋𝑘,𝑁

𝑛 )𝑛∈N and (𝐗𝑘,𝑁
𝑡 )𝑡≥0 for any

∈ {1,… , 𝑁}; since the diffusion coefficient of (12) is constant, the tamed scheme (14) coincides with a Milstein scheme, allowing
s to show strong convergence of order 1.

roposition 10. Assume A1 and A3. Then for any 𝜂, 𝛼 > 0 and any 𝑇 ≥ 0 there exists 𝐶𝑇 ≥ 0 such that for any 𝑁 ∈ N⋆, 𝓁 ∈ {1,… , 𝑁}
nd 𝛾 > 0

E[ sup
𝑛∈{0,…,𝑛𝑇 }

‖𝐗𝓁,𝑁
𝑛𝛾 −𝑋𝓁,𝑁

𝑛 ‖] ≤ 𝐶𝑇 𝛾

here 𝑛𝑇 = ⌊𝑇 ∕𝛾⌋.

roof. See Appendix C.2. □

A similar result holds for a continuous-time interpolation of (𝑋𝓁,𝑁
𝑛 )𝑛∈N, see [8, Theorem 2.5] for more details. For small values

f 𝛾 > 0 and large values of 𝑛𝛾 and 𝑁 ∈ N we get that (1∕𝑁)
∑𝑁

𝑘=1 δ𝑋𝑘,𝑁
𝑛

is an approximation of 𝜋⋆
𝛼,𝜂 .

.2. Stability of the particle system w.r.t the observed measure

Proposition 3 shows that if 𝜇 is approximated by the empirical measure 𝜇𝑀 obtained from a sample 𝑦1∶𝑀 = {𝑦𝑘,𝑀}𝑀𝑘=1 then the
inimizer of G 𝜂

𝛼 obtained using 𝜇𝑀 instead of 𝜇 converges to the minimizer of G 𝜂
𝛼 obtained using 𝜇 as 𝑀 → +∞. We now consider

he discrete-time alternative particle system {(𝑋𝑘,𝑁,𝑀
𝑛 )𝑛∈N}𝑁𝑘=1 which evolves according to (14) with 𝑏 replaced by its empirical

pproximation obtained by approximating 𝜇 with the empirical measure of the 𝑀 samples 𝑦1,… , 𝑦𝑀 :

𝑋𝑘,𝑁,𝑀
𝑛+1 = 𝑋𝑘,𝑁,𝑀

𝑛 + 𝛾𝑏𝑀 (𝑋𝑘,𝑁,𝑀
𝑛 , 𝜆𝑁,𝑀

𝑛 )∕(1 + 𝛾‖𝑏𝑀 (𝑋𝑘,𝑁,𝑀
𝑛 , 𝜆𝑁,𝑀

𝑛 )‖) +
√

2𝛼𝑍𝑘
𝑛+1 (15)

here {𝑍𝑘
𝑛 }𝑘,𝑛∈N is a family of independent Gaussian random variables, 𝛾 > 0 is a stepsize, 𝜆𝑁,𝑀

𝑛 = (1∕𝑁)
∑𝑁

𝑘=1 δ𝑋𝑘,𝑁,𝑀
𝑛

for any 𝑛 ∈ N
nd for any 𝑥 ∈ R𝑑 and 𝜈 ∈ P(R𝑑 ) we have

𝑏𝑀 (𝑥, 𝜈) = ∫ 𝑝
𝑏̃𝜂(𝑥, 𝜈, 𝑦)d𝜇𝑀 (𝑦) − 𝛼∇𝑈 (𝑥) = (1∕𝑀)

𝑀
∑

𝑏̃𝜂(𝑥, 𝜈, 𝑦𝑗 ) − 𝛼∇𝑈 (𝑥). (16)
9

R 𝑗=1
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In the next proposition, we show that the two particle systems (14) and (15) are close when 𝑀 is large.

Proposition 11. Assume A1, A3-(a) and A3-(b). Let 𝜂, 𝛼 > 0. For any 𝑁,𝑀 ∈ N⋆, let (𝑋1,𝑁
𝑛 )𝑡≥0 and (𝑋1,𝑁,𝑀

𝑛 )𝑡≥0 be obtained with (14)
nd (15) respectively, driven by the same underlying family of independent Gaussian random variables {𝑍𝑘

𝑛 }𝑘,𝑛∈N, with initial condition
1∶𝑁
0 such that (𝑋1∶𝑁

0 ) ∈ P1((R𝑑 )𝑁 ), {𝑋𝑘,𝑁
0 }𝑁𝑘=1 is exchangeable and {𝑋𝑘,𝑁

0 }𝑁𝑘=1 = {𝑋𝑘,𝑁,𝑀
0 }𝑁𝑘=1. Then, for any 𝑇 ≥ 0 there exists

𝑇 ≥ 0 such that for any 𝓁 ∈ {1,… , 𝑁} and 𝛾 > 0

E[ sup
𝑛∈{0,…,𝑛𝑇 }

‖𝑋𝓁,𝑁
𝑛 −𝑋𝓁,𝑁,𝑀

𝑛 ‖] ≤ 𝐶𝑇 𝛾𝑀
−1∕2.

roof. See Appendix C.3. □

An equivalent result showing convergence of the continuous process

𝐗𝑘,𝑁
𝑡 = 𝐗𝑘,𝑁

0 + ∫

𝑡

0
𝑏𝑀 (𝐗𝑘,𝑁

𝑠 ,𝝀𝑁𝑠 (𝐗1∶𝑁
0 ))d𝑠 +

√

2𝛼𝐁𝑘
𝑡 ,

ith 𝑏𝑀 as in (16), to (12) could also be obtained. The argument follows the same line of that used to prove Proposition 7 and
xploits the convergence of 𝑏𝑀 to 𝑏 established in the proof of Proposition 11. The resulting rate is 𝑀−1∕2 (see Appendix C.5).

As we discuss in the next section, in some cases it might be beneficial to resample from the empirical measure 𝜇𝑀 at each
ime step 𝑛. In the following proposition we show that this resampling operation does not change the error bound obtained in
roposition 11.

roposition 12. Assume A1, A3-(a) and A3-(b). Let 𝜂, 𝛼 > 0. For any 𝑁,𝑀 ∈ N⋆, let (𝑋1,𝑁
𝑛 )𝑡≥0 be obtained with (14) and (𝑋1,𝑁,𝑚

𝑛 )𝑡≥0
ith (15) where at each time 𝑛 an i.i.d. sample of size 𝑚 is drawn from 𝜇𝑀 . Assume that (𝑋1,𝑁

𝑛 )𝑡≥0 and (𝑋1,𝑁,𝑚
𝑛 )𝑡≥0 are driven by the same

nderlying family of independent Gaussian random variables {𝑍𝑘
𝑛 }𝑘,𝑛∈N, with initial condition 𝑋1∶𝑁

0 such that (𝑋1∶𝑁
0 ) ∈ P1((R𝑑 )𝑁 ),

𝑋𝑘,𝑁
0 }𝑁𝑘=1 is exchangeable and {𝑋𝑘,𝑁

0 }𝑁𝑘=1 = {𝑋𝑘,𝑁,𝑚
0 }𝑁𝑘=1. Then, for any 𝑇 ≥ 0 there exists 𝐶𝑇 ≥ 0 such that for any 𝓁 ∈ {1,… , 𝑁} and

> 0

E[ sup
𝑛∈{0,…,𝑛𝑇 }

‖𝑋𝓁,𝑁
𝑛 −𝑋𝓁,𝑁,𝑚

𝑛 ‖] ≤ 𝐶𝛾𝑚−1∕2.

roof. See Appendix C.4. □

The empirical measure 𝜆𝑁,𝑀
𝑛 provides an approximation of 𝜋⋆

𝛼,𝜂 . In low dimensional settings, for the purpose of visualization we
erive a smooth approximation of 𝜋⋆

𝛼,𝜂 using standard kernel density estimation tools and define 𝜋̂𝑁,𝑀
𝑛 ∶ R𝑑 → R such that for any

∈ R𝑑

𝜋̂𝑁,𝑀
𝑛 (𝑥) = (1∕𝑁)

𝑁
∑

𝑘=1
det(H)−1∕2φ(H−1∕2(𝑥 −𝑋𝑘,𝑁,𝑀

𝑛 )), (17)

here φ is the density of a 𝑑-dimensional Gaussian distribution with zero mean and identity covariance matrix and H is a positive
efinite bandwidth matrix, see, e.g., [83]. Combining the results in Propositions 7 and 10 with standard arguments from the kernel
ensity estimation literature, the estimator (17) can be shown to converge to 𝜋⋆

𝛼,𝜂 as 𝑁 → ∞ and 𝛾 → 0 (e.g., [4, Theorem 3.1]
nd [13, Theorem 2.2]). Our final algorithm is summarized in Algorithm 1.

Algorithm 1 Solving Fredholm integral equations with Wasserstein gradient flows (FE-WGF)

Require: 𝑁,𝑀, 𝑛𝑇 ∈ N, 𝛼, 𝜂, 𝛾 > 0, H ∈ R𝑑×𝑑 , 𝜇, 𝜋0, 𝜋init ∈ P(R𝑑 ).
Draw {𝑋𝑘,𝑁,𝑀

0 }𝑁𝑘=1 from 𝜋⊗𝑁
init

for 𝑛 = 0 ∶ 𝑛𝑇 do
Draw {𝑦𝑘,𝑀}𝑀𝑘=1 from 𝜇⊗𝑀

Compute 𝑏𝑀 (𝑋𝑘,𝑁,𝑀
𝑛 , 𝜆𝑁,𝑀

𝑛 ) as in (16)
Update 𝑋𝑘,𝑁,𝑀

𝑛+1 = 𝑋𝑘,𝑁,𝑀
𝑛 + 𝛾𝑏𝑀 (𝑋𝑘,𝑁,𝑀

𝑛 , 𝜆𝑁,𝑀
𝑛 )∕(1 + 𝛾‖𝑏𝑀 (𝑋𝑘,𝑁,𝑀

𝑛 , 𝜆𝑁,𝑀
𝑛 )‖) +

√

2𝛼𝑍𝑛+1 as in (14)
end for
return 𝜋̂𝑁,𝑀

𝑛 (𝑥) as in (17)

4.3. Implementation guidelines

Obtaining the estimator (17) of the minimizer of G 𝜂
𝛼 requires specification of a number of parameters: the reference measure

0 and the regularization parameter 𝛼 control the properties of the measure 𝜋 we want to reconstruct (e.g. its smoothness), while
the parameter 𝜂, the number of particles 𝑁,𝑀 and the time discretization step 𝛾 control accuracy and stability of the numerical
implementation.
10
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Choice of 𝜋0. There are of course, many possible choices for the reference measure 𝜋0 to which we want the regularized solution
to be close depending on the constraints we want to impose on the reconstructed solution. The choice of an improper reference
measure 𝜋0 ∝ 𝐶 with 𝐶 > 0 results in a McKean–Vlasov SDE in which there is no dependence on 𝜋0

d𝐗⋆
𝑡 = {∫R𝑝

𝑏̃𝜂(𝐗⋆
𝑡 ,𝝀

⋆
𝑡 , 𝑦)d𝜇(𝑦)}d𝑡 +

√

2𝛼d𝐁𝑡, 𝐗⋆
0 ∈ R𝑑 ,

where (𝐁𝑡)𝑡≥0 is a 𝑑-dimensional Brownian motion and 𝝀⋆𝑡 is the distribution of (𝐗⋆
𝑡 )𝑡≥0. This scheme corresponds to what we would

obtain by applying the gradient flow procedure to the functional (6). Under additional assumptions on the tail behaviour of the
kernel k, it is possible to show that this functional is proper, lower semi-continuous and coercive in an appropriate sense; [25,
Chapter 7] shows empirically that the corresponding particle system is stable. Nevertheless, in many scenarios some knowledge of
the target will be embedded in the problem at hand. In deconvolution problems, 𝜇 is the distribution of noisy samples from the
target distribution 𝜋; in this case it is sensible to expect that 𝜋 itself will be close to 𝜇 and therefore choose 𝜋0 to be reasonably close
to 𝜇. More generally, for problems in which k(𝑥, 𝑦) = k(𝑦−𝑥) is a deconvolution kernel, the distribution 𝜇 will be the convolution of
𝜋 and k and therefore encapsulates information on 𝜋. In these problems we choose 𝜋0 to be a Gaussian distribution with mean and
variance given by the empirical mean and variance of the sample from 𝜇. For the epidemiology examples in Section 5.2, we set 𝜋0
o be 𝜇 shifted back by a number of days equal to the mean [39] or the mode [93] of the infection-to-confirmed delay distribution k.
or image reconstruction, 𝜋0 could be selected to enforce particular characteristics in the reconstructed image, e.g. smoothness [71]
r sparsity [60,97]. Alternatively, if a large data set of previously reconstructed images is available one could use score matching
riors [54] to obtain a reference measure 𝜋0 encapsulating all the relevant features of the image to reconstruct. We study the
nfluence of the reference measure 𝜋0 on a toy example in Appendix D.1 and find that 𝜋0 influences the shape of the minimizer of
G 𝜂
𝛼 and its minimum but not the speed at which convergence to the minimum occurs.

Choice of 𝛼. As the parameter 𝛼 > 0 controls the amount of regularization introduced by the cross-entropy penalty, its value should
be chosen to give a good trade-off between the distance from the data distribution 𝜇, KL (𝜇|𝜋K), and that from 𝜋0, KL

(

𝜋|𝜋0
)

. A
ommon approach for selecting the regularization parameter in Tikhonov regularization is cross-validation [1,91]. Since the case in
hich 𝜇 is not known but a sample drawn from it is available is the most likely in applications, we propose the following approach

o cross-validation: to estimate the value of 𝛼 we divide the sample from 𝜇 into 𝐿 subsets and find the value of 𝛼 which minimizes

CV(𝛼) = (1∕𝐿)
𝐿
∑

𝑗=1
Ĝ 𝜂
𝛼 (𝜋̂

𝑗 ),

here 𝜋̂𝑗 is obtained using Algorithm 1 with the samples from 𝜇 which are not in group 𝑗 ∈ {1,… , 𝐿} and Ĝ 𝜂
𝛼 is an approximation

f G 𝜂
𝛼

Ĝ 𝜂
𝛼 (𝜋̂

𝑗 ) ∶= − 1
𝑀

𝑀
∑

𝓁=1
log

(

1
𝑁

𝑁
∑

𝑘=1
k(𝑋𝑘,𝑁,𝑀

𝑛 , 𝑦𝑗 )

)

+ 𝛼
𝑁

𝑁
∑

𝑘=1
log

(

𝜋̂𝑗 (𝑋𝑘,𝑁,𝑀
𝑛 )

𝜋0(𝑋
𝑘,𝑁,𝑀
𝑛 )

)

. (18)

f some prior information on the smoothness of the solution 𝜋 is known (e.g. its variance), one could chose 𝛼 so that the smoothness
f (17), matches the expected smoothness of 𝜋. We show how the value of 𝛼 influences the reconstructions of 𝜋 on simple problems

in Appendix D.2.

Choice of 𝜂. The parameter 𝜂 has been introduced in (5) to deal with the possible instability of the functional G 𝜂
𝛼 ; we did not

find performances to be significantly influenced by this parameter as long as its value is sufficiently small. In practice, in the
experiments in Section 5 we set 𝜂 ≡ 0. This choice might seem counter-intuitive, since most of our theoretical results are obtained
with 𝜂 > 0, On one hand, this suggests that for regular enough k, the functional G𝛼 is well-behaved; on the other hand, we observe
that the introduction of the tamed Euler–Maruyama scheme (14) prevents most of the numerical instability issues arising when
discretizing (12).

Choice of 𝑁, 𝛾 and 𝑚. The values of the number of particles 𝑁 , the time discretization step 𝛾 and the number of samples 𝑚 from
𝜇 to use at each iteration control the quality of the numerical approximation of (10), their choice is therefore largely application
dependent. However, the results in Propositions 7, 10 and 12 give the following global error estimate: for any 𝑇 ≥ 0 we have

E[ sup
𝑛∈{0,…,𝑛𝑇 }

‖𝐗⋆
𝑛𝛾 −𝑋𝓁,𝑁,𝑚

𝑛 ‖] ≤ 𝐶𝑇 (𝑁−1∕2 + 𝛾 + 𝛾𝑚−1∕2). (19)

Choosing 𝑁 amounts to the classical task of selecting an appropriate sample size for Monte Carlo approximations, while the
choice of 𝛾 corresponds to the specification of a timescale on which to discretize a continuous time (stochastic) process; hence, one
can exploit the vast literature on Monte Carlo methods and discrete time approximations of SDEs to select these values [55]. In
practice, we found that the choice of 𝑁 largely depends on the dimensionality of the problem; for one-dimensional examples values
between 𝑁 = 200 and 𝑁 = 1000 achieve high enough accuracy to compete with specialized algorithms (see Sections 5.1, 5.2); as the
dimension 𝑑 increases larger values of 𝑁 should be considered (see Section 5.3). Similar considerations apply to the choice of the
time discretization step 𝛾. In particular, this parameter should be chosen taking into account the order of magnitude of the gradient,
to give a good trade-off between the Monte Carlo error and the time discretization error. In practice, we observed good results with
𝛾 between 10−1 and 10−3.

The number of samples 𝑚 from 𝜇 to employ at each iteration is again problem dependent. In many cases, we are given a number
11

𝑀 of observations from 𝜇, if 𝑀 is very large, the resulting algorithm might become computationally too expensive. In this setting,
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we propose the following batch strategy to approximate 𝜇: fix 𝑁 and at each time step approximate the integral with respect to
𝜇 using 𝑚 samples where 𝑚 is the smallest between the number of particles 𝑁 chosen for the particle system (12) and the total
number of samples available from 𝜇; if 𝑁 is larger than the total number of observed samples from 𝜇 then the whole sample is used
t each iteration, if 𝑁 is smaller we resample without replacement 𝑚 times from the empirical measure of the sample. This amounts
o a maximum cost of (𝑁2) per time step.

In cases in which we have access to a sampling mechanism from 𝜇, and we can therefore draw 𝑚 samples at each iteration, we
simply set 𝑚 = 𝑁 .

Choice of 𝑛𝑇 . It is straightforward to choose the number of time steps 𝑛𝑇 , adaptively. The number of steps necessary to give
convergence of (12) to its stationary distribution is estimated by approximating the value of G 𝜂

𝛼 through numerical integration
as in (18) and once the value of G 𝜂

𝛼 stops decreasing, a minimizer has apparently been reached and the iteration in Algorithm 1 can
be stopped.

5. Experiments

We test FE-WGF on a number of examples of Fredholm integral equations (1) and compare our density estimator (17) with the
reconstructions given by state-of-the-art methods for each experiment.

First, in Section 5.1 we consider a classical problem in statistics, density deconvolution. In this case, k(𝑥, 𝑦) = k(𝑦 − 𝑥) and (1)
odels the task of reconstructing the density of a random variable 𝑋 from noisy measurements 𝑌 . In Section 5.2 we test FE-WGF on
problem drawn from epidemiology. More precisely, we aim at reconstructing the incidence profile of a disease from the observed
umber of cases. This is a particular instance of the deconvolution problem in which a smoothness constraint on the solution 𝜋 of (1)
s necessary to make the estimator robust to noise in the observations 𝑌 [69]. In Section 5.3, we consider an application to computed
omography (CT), in which a cross-sectional image of the lungs needs to be recovered from the radial measurements provided by
he CT scanner. Finally, in Section 5.4, we study how the performances of the proposed method scale with the dimensionality of
he support of 𝜋 on a toy model.

In most examples, 𝜇 is known through a sample and at each iteration we resample 𝑚 times from its empirical distribution. For
mage restoration problems we consider the observed distorted image as the empirical distribution of a sample from 𝜇 and use it to
raw 𝑚 samples at each iteration in Algorithm 1. In order to implement FE-WGF we follow the guidelines provided in Section 4.3.
ulia code to reproduce all examples is available online at https://github.com/FrancescaCrucinio/FE_WGF.

.1. Density deconvolution

The focus of this section is on deconvolution problems, i.e. those in which 𝜇 and 𝜋 satisfy (1) with k(𝑥, 𝑦) = k(𝑦−𝑥). In particular,
e consider the case in which we want to recover the density of a random variable 𝑋 from observations of 𝑌 = 𝑋 +𝑍 where 𝑍 is
zero mean error variable independent of 𝑋. The deconvolution problem is widely studied, and recently a number of approaches

ased on normalizing flows [34], deep learning [3], and generative adversarial networks [29] have been explored.
We consider the Gaussian mixture model of [61] (see also [26]) where, with a slight abuse of notation, we denote both a measure

nd its density w.r.t. the Lebesgue measure with the same symbol:

𝜋(𝑥) = (1∕3) (𝑥; 0.3, 0.0152) + (2∕3) (𝑥; 0.5, 0.0432),

k(𝑥, 𝑦) =  (𝑦; 𝑥, 0.0452),

𝜇(𝑦) = (1∕3) (𝑦; 0.3, 0.0452 + 0.0152) + (2∕3) (𝑦; 0.5, 0.0452 + 0.0432),

nd compare our method with the deconvolution kernel density estimators with plug-in bandwidth (DKDEpi) [32], a class of
stimators for deconvolution problems which given a sample from 𝜇 produce a kernel density estimator for 𝜋, and SMC-EMS, a
article method to solve (1) which achieves state-of-the-art performance.

We check the accuracy of the reconstructions through the integrated square error

ISE(𝜋̂) = ∫R
{𝜋(𝑥) − 𝜋̂(𝑥)}2d𝑥, (20)

ith 𝜋̂ an estimator of 𝜋. Even if the analytic form of 𝜇 is known, for SMC-EMS and (17) we draw a sample of size 𝑀 = 103 and
raw without replacement 𝑚 = min(𝑁,𝑀) samples at each iteration; for DKDE we draw a sample of size 𝑁 for each 𝑁 .

Both SMC-EMS and the estimator (17) require specification of a number of parameters: we fix the number of time steps for both
lgorithms to 𝑛𝑇 = 100 as we observed that convergence occurs in less than 100 iterations, the initial distribution is that of the
amples from 𝑌 , since we expect the distribution of 𝑌 to be close to that of 𝑋. The regularization parameter 𝛼 for FE-WGF and
he smoothing parameter for SMC-EMS are chosen through cross validation, using (5) as target functional for the former and the
ullback–Leibler divergence (2) for the latter. To implement FE-WGF we also need to specify the reference measure 𝜋0, a Gaussian
ith mean and variance given by the empirical mean and variance of 𝑌 , and the time step 𝛾 = 10−3.

We consider different particle sizes (from 102 to 104) and compare reconstruction accuracy and total runtime of SMC-EMS, FE-
GF and DKDE (Fig. 1). In particular, we compare the cost per iteration since we run both algorithms for a fixed number of steps,

owever, we found that SMC-EMS and FE-WGF converge in a similar number of steps for this example. The computational cost could
e reduced by considering stopping criteria using approximations of the functional G 𝜂 . The performances of FE-WGF and SMC-EMS
12

𝛼

https://github.com/FrancescaCrucinio/FE_WGF
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Fig. 1. Average accuracy and runtime for FE-WGF, SMC-EMS and DKDE with number of particles 𝑁 ranging between 102 and 104. The shaded regions represent
a interval of two standard deviations over 100 repetitions centred at the average ISE.

are similar both in terms of runtime and in terms of accuracy, with FE-WGF generally giving more accurate reconstructions for the
same computational cost.

The DKDE-pi estimator has runtime comparable to that of SMC-EMS and FE-WGF, but poorer accuracy. Despite being better than
SMC-EMS on average, the accuracy of FE-WGF has a slightly higher variance (about twice that of SMC-EMS), while DKDE-pi has
still higher variance (about three times that of SMC-EMS).

As both SMC-EMS and FE-WGF are regularized versions of the inconsistent maximum likelihood estimator for 𝜋, it is natural
to compare the smoothness of the reconstructions. To characterize smoothness, we take 100 points 𝑥𝑐 in the support of 𝜋 and
approximate (with 100 replicates) the mean squared error

MSE(𝑥𝑐 ) = E
[

(

𝜋(𝑥𝑐 ) − 𝜋̂(𝑥𝑐 )
)2
]

.

The MSE measures locally the fit of the reconstructions to the solution 𝜋, which is known to be smooth, providing information on
the (relative) smoothness of the reconstructions.

The distribution of the MSE over the 100 points (Fig. 2) shows that SMC-EMS and FE-WGF can achieve considerably lower MSE
than DKDE-pi, and therefore that the smoothness of the reconstructions provided by these two methods is closer to that of the true
density 𝜋.

5.2. Epidemiology

In epidemiology, Fredholm integral equations link the unknown infection incidence curve 𝜋 to the number of reported cases,
deaths or hospitalizations. This is a particular instance of the deconvolution problem, in which the kernel k(𝑥, 𝑦) = k(𝑦−𝑥) describes
the delay distribution between time of infection and time of death or hospitalization. Deconvolution techniques have been used
to infer 𝜋 in the case of HIV [9] and influenza [39] and have been recently applied to estimate the incidence curve of COVID-19
[21,63,69,93].

As an example, we take the spread of the pandemic influenza in the city of Philadelphia between the end of September and the
beginning of October 1918 [39]. The count of daily deaths and the distribution of delay between infection and death are available
through the R package incidental [69].

To obtain a parametric form for k we fit a mixture of Gaussians to the delay data using the expectation maximization algorithm
(normalmixEM function in R; [10])

k(𝑥, 𝑦) = 0.595 (𝑦 − 𝑥; 8.63, 2.562) + 0.405 (𝑦 − 𝑥; 15.24, 5.392).

Although this choice assigns ≈10−3 mass to the negative reals, we found that a mixture of Gaussians fits the observed delay
distribution better than other commonly used distributions (e.g. Gamma, log-normal, see [74]) and also benefits from a bounded
derivative and therefore satisfies A1 and A2.

We compare the reconstructions obtained using FE-WGF with the robust incidence deconvolution estimator (RIDE) of [69], the
Richardson–Lucy (RL) deconvolution described in [39], an iterative algorithm popular in the image processing literature which aims
at minimizing the Kullback–Leibler divergence (2), and SMC-EMS. To benchmark the performances of the four methods we consider
synthetic data obtained simulating from the slow decay incidence curve in [69]

𝜋(𝑥) ∝
{

exp(−0.05(8 − 𝑥)2) 0 ≤ 𝑥 ≤ 8,
2 , (21)
13

exp(−0.001(𝑥 − 8) ) 8 ≤ 𝑥 ≤ 100
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Fig. 2. Distribution of MSE as a function of runtime (in log seconds) for FE-WGF, SMC-EMS and DKDE. The number of particles 𝑁 ranges between 100 and
10,000.

Fig. 3. Example fit of the reconstructions of the synthetic incidence curve (21) and of the corresponding reconstruction of the number of cases.

Table 1
Comparison of reconstructions of the synthetic incidence curve (21), the average reconstruction accuracy and fit
to data over 100 repetitions are reported.
Method Well-specified Misspecified

ISE (𝜋̂) ISE (𝜇𝑟𝑒𝑐 ) runtime (s) ISE (𝜋̂) ISE (𝜇𝑟𝑒𝑐 ) runtime (s)

RL 7.7 ⋅ 10−3 𝟏.𝟓 ⋅ 𝟏𝟎−𝟒 <𝟏 7.9 ⋅ 10−3 𝟏.𝟓 ⋅ 𝟏𝟎−𝟒 <𝟏
RIDE 9.0 ⋅ 10−4 3.4 ⋅ 10−4 58 1.0 ⋅ 10−3 3.4 ⋅ 10−4 58
SMC-EMS 3.3 ⋅ 10−4 2.5 ⋅ 10−4 3 3.7 ⋅ 10−4 2.5 ⋅ 10−4 3
FE-WGF 𝟐.𝟕 ⋅ 𝟏𝟎−𝟒 2.5 ⋅ 10−4 96 𝟑.𝟏 ⋅ 𝟏𝟎−𝟒 2.5 ⋅ 10−4 95

whose shape is similar to that of the incidence of the 1918 pandemic influenza, rescaled to have 5000 infections distributed over
100 time steps.

We consider both the case in which the model is well-specified, and each case on the incidence curve is randomly propagated
orward 𝑠 days according to k, and the case in which data are noisy and the delay model is misspecified: every sixth and seventh
ay a uniform random number between 0.3 and 0.5 is drawn and that proportion of cases are recorded two days later (e.g. cases
rom day six move to day eight). This approximates reporting delays for testing and death records [69].

Since the average delay between infection and death is 9 days [39], we set the reference measure 𝜋0 to be a Gaussian distribution
ith mean equal to the mean of 𝜇 (≈34.6 days) shifted backwards by 9 and variance equal to the variance of 𝜇 (≈228 days). Estimates
14

f the unknown delay distribution are usually obtained by previous studies or from similar diseases (see, e.g. [9,21] and references
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Fig. 4. Reconstruction of a lung CT scan via FE-WGF and FBP. FBP provides reconstructions which preserve sharp edges but present speckle noise, while the
reconstructions obtained with FE-WGF are smooth but with blurry edges.

therein), in this case, influenza-like infections. Following similar considerations, we set the initial distribution to be the death curve
shifted back by 9 days for both the RL algorithm, SMC-EMS and FE-WGF. For FE-WGF we take 𝑁 = 500, 𝛾 = 10−1 and iterate for
3000 time steps (necessary to achieve convergence).

As discussed in Section 4.3 we set 𝜂 = 0 precision, we pick 𝛼 = 1 × 10−3 and the parameter 𝜀 = 2 × 10−4 for SMC-EMS by
cross-validation over 𝐿 = 5 dataset for which the delay distribution k is misspecified and use this value for both the well-specified
and the misspecified case. To approximate 𝜇 we draw 𝑚 = 𝑁 = 500 samples without repetition from the 𝑀 = 5000 observed cases
at each iteration in Algorithm 1. The RIDE estimator does not require specification of any parameter while for RL and SMC-EMS
we set the maximum number of iterations to 100.

The estimators’ quality is evaluated using the integrated squared error (20) and the fit to the observed number of cases measured
through the ISE between the observed cases and the reconstructed cases given by reconvolution of the estimates of 𝜋 with k

𝜇𝑟𝑒𝑐 (𝑦) = ∫R
k(𝑦 − 𝑥)d𝜋̂(𝑥).

The RL algorithm gives the best fit the observed death counts and has the lowest runtime (<1 second), however, the reconstruction
of the incidence curve is not smooth and sensitive to noise [69]. RIDE, SMC-EMS and FE-WGF address the lack of smoothness
introducing regularization and provide smoother reconstructions (Fig. 3) which are considerably closer to the incidence curve both
in the well-specified and in the misspecified setting (Table 1) with FE-WGF achieving the best fit to 𝜋. The runtime of RIDE and
FE-WGF are comparable, while SMC-EMS is cheaper as convergence is achieved in only 100 steps, and the reconstructions do
not change considerably after that. This is not unexpected, as the reconstructions provided by RIDE, SMC-EMS and FE-WGF are a
regularized version of the measure 𝜋 minimizing the Kullback–Leibler divergence (2), while that given by RL minimizes (2) with no
regularization and inherits the well-known inconsistency of the maximum likelihood estimator in the infinite dimensional setting
[58].

Comparing SMC-EMS and FE-WGF, we find that the latter always achieves better accuracy, but the increase in accuracy is more
pronounced for the misspecified model. In fact, even if SMC-EMS and FE-WGF both aim at minimizing a regularized Kullback–Leibler
divergence (2), the latter minimizes (3) which allows us to impose that the reconstructions are close (in the Kullback–Leibler sense)
to the reference measure 𝜋0, which for this example is particularly informative, since the corresponding term in the drift (13) pushes
the particles towards the mode of the distribution of the number of cases shifted back by 9 days. On the contrary, SMC-EMS does
not allow us to exploit this information, and 𝜋0 is only used to initialize the particle system for SMC-EMS.

5.3. Computed tomography

Fredholm integral equations of the first kind find wide application in medical imaging [94]; in this context they model
the reconstruction of cross-section images of the organ of interest from the noisy measurements provided by positron emission
tomography (PET) and CT scanners. CT scanners provide noisy measurements by mapping each point of the organ’s cross-section
𝜋 onto its radial projection 𝜇 defined for angles 𝜙 between 0 and 2π and depths 𝜉 ∈ R with 0 corresponding to the centre of the
scanner. The distribution of the radial projections 𝜇 is linked to the cross-section image of the organ of interest 𝜋 through the Radon
transform [78], i.e. for any 𝜙 ∈ [0, 2π] and 𝜉 ∈ R

𝜇(𝜙, 𝜉) = ∫R
𝜋(𝜉 cos𝜙 − 𝑡 sin𝜙, 𝜉 sin𝜙 + 𝑡 cos𝜙)d𝑡, (22)

(with a slight abuse of notation we denote both a measure and its density w.r.t. the Lebesgue measure with the same symbol) where
the right hand side is the line integral along the line with equation 𝑥 cos𝜙 + 𝑦 sin𝜙 = 𝜉. We model the alignment between the
15
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Fig. 5. Distribution of ISE ratios (ISE of OSL-EM divided by ISE of FE-WGF) over 100 repetitions. The runtime of FE-WGF is 1.3 times that of OSL-EM on
verage, while the average gain ranges from 1.3 for 𝑑 = 1 to ≈30 for 𝑑 = 3, 4.

rojections onto (𝜙, 𝜉) and the corresponding location (𝑥, 𝑦) in the reference image in (22) using a Gaussian distribution with small
ariance, renormalized to integrate to 1 for fixed (𝑥, 𝑦) ∈ R2 and obtain the following Fredholm integral equation (1)

𝜇(𝜙, 𝜉) = ∫R2
(2π𝜎2)−1 exp[(𝑥 cos𝜙 + 𝑦 sin𝜙 − 𝜉)2∕(2𝜎2)]𝜋(𝑥, 𝑦)d𝑥d𝑦,

We test FE-WGF on a 512 × 512 pixels lung CT scan from the LIDC-IDRI database [6] (in particular, scan LIDC_IDRI_0683_1_048).
The data image is obtained using the ASTRA toolbox [90] by projecting the CT scan at 512 equally spaced angles 𝜙 in [0, 2π] and
at 729 depths, and then corrupting the obtained projections with Poisson noise. We compare the reconstructions given by FE-WGF
with those obtained by filtered back projection (FBP), one of the most common methods for analytic image reconstruction [89],
available in the ASTRA toolbox [90].

The reference measure is a Gaussian distribution with mean corresponding to the centre of the image and variance 𝑠2 Id with
𝑠 > 0 large enough to approach a uniform distribution over the image (in our case 𝑠2 = 0.352), this guarantees that A3 is satisfied.
The number of particles 𝑁 = 104 and the time step 𝛾 = 10−3 are chosen to achieve high enough resolution, the regularization
parameter 𝛼 = 7×10−3 is selected by cross validation over 𝐿 = 5 replicates. Convergence is measured by numerically approximating
G 𝜂
𝛼 and occurs in 200 steps.

The reconstructions provided by FBP are less robust to noise in the data, which reflects in a higher ISE, on the contrary FE-WGF
s more robust to noise and achieves lower ISE (see Fig. 4). However, the reconstructions obtained with FE-WGF rarely result in
harp edges due to the inherent features of the estimator (17) (i.e. the diffusive behaviour of (12) and the kernel density estimator).

.4. Scaling with dimension

To explore the scaling with the dimension 𝑑 of the support of 𝜋 we take the generalization of the Gaussian mixture model in
ection 5.1 described in [26] (with a slight abuse of notation we denote both a measure and its density with the same symbol)

𝜋(𝑥) = (1∕3) (𝑥; 0.3 ⋅ 𝟏𝑑 , 0.072 Id𝑑 ) + (2∕3) (𝑥; 0.7 ⋅ 𝟏𝑑 , 0.12 Id𝑑 ), (23)
k(𝑥, 𝑦) =  (𝑦; 𝑥, 0.152 Id𝑑 ),

𝜇(𝑦) = (1∕3) (𝑦; 0.3 ⋅ 𝟏𝑝, (0.072 + 0.152) Id𝑝)

+ (2∕3) (𝑦; 0.7 ⋅ 𝟏𝑝, (0.12 + 0.152) Id𝑝),

where 𝑝 = 𝑑 and 𝟏𝑑 , Id𝑑 denote the unit function in R𝑑 and the 𝑑 × 𝑑 identity matrix, respectively.
We compare the reconstructions given by FE-WGF with those obtained with the one-step-late expectation maximization (OSL-

EM) algorithm [42], an iterative algorithm for maximum penalized likelihood estimation, and SMC-EMS [26]. First, we focus on the
comparison with OSL-EM since this algorithm can be implemented to minimize G 𝜂

𝛼 in (5) as does FE-WGF. In particular, FE-WGF is
a stochastic approach to the problem of minimizing (3), while OSL-EM relies on a deterministic discretization of 𝜋. Secondly, we
compare the proposed approach with SMC-EMS [26].

5.4.1. Comparison with OSL-EM
As briefly discussed in Section 2.2, the first term in the definition of the functional G𝛼 in (4) (with 𝜇 replaced by 𝜇𝑀 ) is the

likelihood associated with the incomplete-data {𝑦𝑘,𝑀}𝑀 . Minimizing G is equivalent to maximizing a penalized likelihood with
16
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Fig. 6. Reconstruction accuracy over 100 of SMC-EMS and FE-WGF for the Gaussian mixture model in (23). The left panel shows the distribution of the
Wasserstein-1 distance between the first marginal of 𝜋 and its particle approximations for 𝑑 = 2,… , 10, the solid lines highlight the average accuracy. The right
panel reports average runtime.

penalty KL
(

𝜋|𝜋0
)

. The one-step-late expectation maximization (OSL-EM) algorithm [42] is a variant of the well-known EM algorithm
[33] to maximize any penalized likelihood.

In order to implement OSL-EM we need to discretize the support of 𝜋, which essentially requires 𝜋 to have known compact
support. This is not the case for the measure 𝜋 considered in this example, however, | ∫[0,1]𝑑 𝜋(𝑥)d𝑥 − 1| < 10−2 for 𝑑 ≤ 10; therefore
we define a discretization grid for OSL-EM over the 𝑑-dimensional hypercube [0, 1]𝑑 (similar considerations apply to 𝜇). We consider
𝐵 ∈ N equally spaced bins for each dimension and obtain the discretizations of 𝜋 and 𝜇, {𝜋𝑏}𝐵

𝑑

𝑏=1, {𝜇𝑏}
𝐵𝑑

𝑏=1, setting 𝜋𝑏 = 𝜋(𝑥𝑏), where
𝑥𝑏 is the centre of the 𝑏th bin. The same discretization mechanism is used for k to obtain {k𝑏,𝑐}𝐵

𝑑

𝑏,𝑐=1, where k𝑏,𝑐 = k(𝑥𝑏, 𝑥𝑐 ). The
one-dimensional OSL-EM iteration is given for any 𝑛 ∈ N by

𝜋(𝑛+1)
𝑏 = 𝜋(𝑛)

𝑏 ∕(1 + 𝛼(1 + log𝜋(𝑛)
𝑏 − log𝜋0,𝑏))

𝐵
∑

𝑐=1
{𝜇𝑐k𝑏,𝑐∕

𝐵
∑

𝑑=1
𝜋(𝑛)
𝑑 k𝑑,𝑐},

where 𝜋0,𝑏 = 𝜋0(𝑥𝑏), for 𝑏 ∈ {1,… , 𝐵𝑑}. Contrary to the estimator provided by FE-WGF, the reconstructions provided by OSL-EM
are deterministic and might not converge to the unique minimizer of G 𝜂

𝛼 . For the mixture model in (23), we observe empirical
convergence to a unique fixed point for reasonable values of 𝛼, e.g. 𝛼 < 1.

To compare OSL-EM and FE-WGF we fix 𝛼 = 0.01 (as both algorithms aim at minimizing G 𝜂
𝛼 the value of 𝛼 = 0.01 is chosen to

compare them in a regime of practical interest, with the aim of obtaining good approximations of 𝜋), set the reference measure 𝜋0
to be a Gaussian distribution with mean (0.5,… , 0.5) and covariance matrix 𝜎20 Id𝑑 with 𝜎20 = 0.252 and use 𝜋0 as initial condition
or FE-WGF. With this choice of parameters, convergence (assessed empirically by approximating the value of G 𝜂

𝛼 ) occurs within
0 steps for both algorithms and 𝑑 ∈ {1,… , 4}. The number of particles is set to 𝑁 = 104, and we obtain the number of bins

per dimension, 𝐵, so that 𝐵𝑑 ≈ 𝑁 , and the two algorithms have similar runtime. This corresponds to coarser discretizations as 𝑑
increases which give low resolution reconstructions, for instance, for 𝑑 = 4 each dimension is discretized into 𝐵 = 10 bins while for
𝑑 = 1 we have 𝐵 = 𝑁 = 104 bins; however, such fine discretization schemes are impractical for 𝑑 ≫ 1 since the number of points at
which 𝜋 needs to be approximated grows exponentially with 𝑑.

To assess the quality of the reconstructions we use the integrated squared error (20) of the first marginal, ISE(𝜋̂1), where 𝜋̂ is
the estimated density. Since OSL-EM is a deterministic algorithm we take its ISE as reference and investigate the gains obtained by
using FE-WGF for dimension 𝑑 = 1, 2, 3, 4, see Fig. 5. For 𝑑 = 1, 2 the gain with respect to OSL-EM is moderate, but for 𝑑 = 3, 4 the
reconstructions obtained with FE-WGF are at least 10 times more accurate that those obtained by OSL-EM with an average runtime
which is only 1.3 times that of OSL-EM.

5.4.2. Comparison with SMC-EMS
We now turn to comparing the reconstructions obtained with FE-WGF with those given by SMC-EMS [26]. Both methods

approximate 𝜋 through a family of interacting particles from which smooth estimates can be obtained via standard kernel density
estimation as in (17). Since typical applications of Fredholm integral equations are low-dimensional, mostly one to three dimensional
with some notable exceptions [82], we focus on 𝑑 up to 10.

To compare the two algorithms we consider 𝑁 = 103 and we assume that 𝜇 is not known but a sample of size 𝑀 = 106 is
available and resample without replacement 𝑚 = 𝑁 = 103 times from it at each iteration of both SMC-EMS and FE-WGF. SMC-EMS
converges quickly to an approximation of 𝜋 [26], for the model in (23) we observe convergence in less than 50 steps (measured
by numerically approximating the Kullback–Leibler divergence (2) using the samples from 𝜇 and 𝜋̂, the estimated distribution). For
FE-WGF we set 𝛾 = 10−2 and select the reference measure 𝜋0 to be a Gaussian distribution with mean (0.5,… , 0.5) and covariance
matrix 𝜎20 Id𝑑 with 𝜎20 = 0.252; with this choice of parameters convergence occurs in less than 50 iterations also for FE-WGF. To
specify the smoothing parameter for SMC-EMS and 𝛼 for FE-WGF we use the cross-validation approach in Section 4.3 with 𝐿 = 10.

Since kernel density estimators do not perform well for 𝑑 ≫ 1 [83], we do not build the kernel density estimator (17) and compare
the reconstructions obtained by SMC-EMS and FE-WGF using the particle population given by each method as an approximation for
17
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𝜋 (as justified by Proposition 9), and compute the Wasserstein-1 distance between the first marginal 𝜋1 and its particle approximation
(Fig. 6).

SMC-EMS and FE-WGF give similar results for all 𝑑, with the average runtime of SMC-EMS being slightly lower than that of
FE-WGF for 𝑑 = 2, 3, 4 and about 15% lower for 𝑑 ≥ 5. The increase in runtime for 𝑑 ≥ 5 is caused by the computation of the norm
of the drift for the tamed Euler scheme (15) and is likely due to the increased algebraic complexity of this operation with dimension.
In terms of accuracy, FE-WGF performs slightly better than SMC-EMS with 𝐖1 distance 5% smaller on average for FE-WGF.

6. Discussion

We consider a probabilistic approach to the solution of Fredholm integral equations of the first kind (1) by introducing the
minimization problem (3) and its surrogate (5). Under mild smoothness assumptions on the kernel K and the reference measure 𝜋0,
we show that the surrogate functional admits a unique minimizer which is stable w.r.t. 𝜇. Leveraging a Wasserstein gradient flow
construction, we introduce an interacting particle system (12) which approximates the minimizer of the surrogate functional and
is ergodic for any finite 𝑁 . Combining standard propagation of chaos results and strong convergence of tamed Euler–Maruyama
schemes we obtain the bound (19) which provides a practical guideline for the selection of the time discretization step 𝛾, the number
of particles 𝑁 and the number of samples 𝑚 from 𝜇 to use at each iteration.

In Section 5 we compare FE-WGF with both problem specific and state-of-the-art methods to solve (1); specifically, we compare
our algorithm with SMC-EMS, a particle method to solve (1) which also aims at minimizing a regularized Kullback–Leibler
divergence. This particle method has been shown to achieve state-of-the-art performances in a number of settings and to scale with
the dimension of the state space 𝑑 better than standard discretization based algorithms [26]. Our results show that FE-WGF has
always comparable or superior performances to problem specific algorithms and outperforms SMC-EMS in high dimensional setting.
Moreover, FE-WGF allows the introduction of a reference measure 𝜋0, which can be particularly beneficial when some features of
the measure 𝜋 to be reconstructed are known (as, for instance, in epidemiology applications as that in Section 5.2).

From a theoretical perspective, Proposition 2 and the convergence properties in Section 3 guarantee that the particle system (12)
approximates the unique minimizer of (5); an equivalent uniqueness property has not yet been established for SMC-EMS. However,
the results presented in Section 5 also provide some additional confidence in the use of SMC-EMS, demonstrating empirically that
it recovers comparable solutions to the provably convergent method developed in this paper in a range of settings.

Moreover, while both algorithms minimize a regularized Kullback–Leibler divergence, and for small values of the regularization
parameters the reconstruction they provide are similar, the methods through which they approximate the minimizer present some
notable differences. FE-WGF is based on a numerical approximation of the MKVSDE (10) and therefore the associated particle
system has a diffusive behaviour, while SMC-EMS uses a resampling mechanism to eliminate the particles which are not in
the support of 𝜋 and replicate those close to high-probability regions. The effect of this different algorithmic approach can be
observed by considering different initial distributions for {𝐗𝑘,𝑁

0 }𝑁𝑘=1: SMC-EMS benefits from overly diffused initial distributions,
ince the resampling mechanism allows to quickly move the particles towards high probability regions, for concentrated distributions
e.g. Dirac delta) convergence still occurs but in a larger number of iterations [26, Appendix E.1]. The convergence speed of FE-WGF
s less influenced by the initial state {𝐗𝑘,𝑁

0 }𝑁𝑘=1 as shown in Appendix D. In contrast with SMC-EMS, FE-WGF requires specification of a
reference measure 𝜋0. While this might seem a limitation of our method, we found that in practice we often have sufficient knowledge
about the problem at hand to build 𝜋0. For instance, in image processing applications usually a large number of images needs to be
processed and it is possible to build reference measures using previously processed images (e.g. [54]), while in epidemiology, one
can exploit previous studies on similar diseases, since they often present incidence curves with the same characteristics (e.g. [39]).
In fact, it is in this latter setting that we find that FE-WGF outperforms SMC-EMS in terms of accuracy (Section 5.2).

FE-WGF describes one possible numerical approximation of the particle system (12), however, we anticipate that more
sophisticated time discretization schemes will prove beneficial in some settings. For instance, in our experiments we observed that
in the first few iterations the drift component in (12) has larger values, and pushes the particles towards high 𝜋-probability regions;
after the first iterations, the magnitude of the drift component decreases and the shape of the approximated solution is refined.
In terms of the functional G 𝜂

𝛼 , the first few iterations correspond to a steepest decrease in G 𝜂
𝛼 , which then stabilizes around the

minimum (see e.g., Appendix D). To speed up convergence to the minimizer, one could consider having a larger time step 𝛾 for
earlier iterations, and then gradually reduce 𝛾 to refine the approximation. More sophisticated adaptive strategies for MKVSDE have
been recently studied in [79].

In conclusion, FE-WGF offers a general recipe to obtain regularized solutions to Fredholm integral equations of the first kind,
which can be refined exploiting specific knowledge of the problem at hand; for example, choosing informative reference measures
𝜋0 or adapting the time discretization step 𝛥𝑡 to the magnitude of the drift (13).
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