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4.1 β-aspartyl L-alanine (β-AspAla), the model system used here. The

spins of interest are highlighted in their respective colours. (a) a

representation of the DFT (CASTEP) geometry-optimized structure,

centered on one of the carboxylic acid protons. (b) a 1H one-pulse

MAS NMR spectrum acquired at a spinning frequency of 55 kHz and

a 1H Larmor frequency of 600 MHz. These spins were chosen to best

illustrate various principles of this system: the Ala COOH (grey) is

the most isolated resonance in the spectrum, and so the easiest to

selectively invert/saturate experimentally without interfering with

other sites; the Ala NH (green) site is the closest in chemical shift to

Ala COOH; the Asp Hα (orange) is the closest in space to Ala COOH;

the Ala CH3 (purple) experiences ‘inverse sign spin diffusion’. . . . . 96

4.2 Effective pulse sequence used for simulations. In this, the first selec-

tive inversion pulse inverts one nuclear spin such that this is aligned

along −z. During the mixing period, τmix, this longitudinal spin-order

then diffuses between all spins involved in the simulation. After the

90◦ pulse, this magnetisation is then rotated along the transverse

plane such that any spin-order formerly along −z at the time of the

90◦ pulse would give a negative peak. . . . . . . . . . . . . . . . . . . 97
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4.3 Comparison of the magnetisation transfer, monitored according to the

ratio of the instantaneous calculated magnetisation to the equilibrium

magnetisation (Mz), for models run with 48 and 128 crystallites. The

rate at which spin diffusion from the inverted COOH to the respective

sites (coloured as in Figure 4.1) may be seen by the rate at which the

‘fully averaged’ magnetisation of 83.3 % is achieved; for instance,

it is apparent that there more rapid spin diffusion from the COOH

to the Ala NH (green, solid) than the Ala CH3 (purple, dotted) in

all cases. Models were run with CSA at 60 kHz and 600 MHz. 48

crystallite simulations were performed using a HPC resource with 48

cores per node (2 Intel Xeon Platinum 8268 24-core processors), while

128 crystallite simulations were performed using 128-core nodes (2

AMD EPYC 7742 (Rome) 64-core processors). . . . . . . . . . . . . . . 97

4.4 The pulse sequence used experimentally to probe spin diffusion in the

1.3 mm 1 GHz experiments. In this pulse sequence, the initial train

of selective inversion pulses causes the magnetisation at the selected

site (in this case, the Ala COOH) to tend to zero. During this period,

spin diffusion causes magnetisation to transfer from other spins to

the spin being saturated, and so the longitudinal magnetisation on

these interacting spins will decrease. This is then followed by a 90◦

excitation and spin-echo, such that the intensity of the peaks in the

resulting spectrum reflects the remaining longitudinal magnetisation

on each site. The phase cycle was as follows: gaussian pulse {+y},

90◦ {+x,−x}, 180◦ {+x,−x,+y,−y}, detect {+x,−x,−x,+x}. . . . . 99
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magnetisation into the transverse plane, followed by two phase cy-

cled 180◦ pulses for background suppression. Finally, the signal is
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magnetisation at the time of the 90◦ pulse. The phase cycle was
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detect {+x,−x,+x,−x,+y,−y,+y,−y}. . . . . . . . . . . . . . . . . . 99
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4.7 Simulations of the pulse sequence in Figure 4.2 applied to the β-

AspAla unit cell (n = 48) at νr = 60 kHz, ν0(1H) = 600 MHz, with

a variable basis set size (Navg, approximate number of neighbours

per spin). (a) The evolution of the z magnetisation, Mz , for one of

the Asp NH3 spins after inversion of the carboxylic acid proton. The

spread about the lines indicates twice the standard deviation for all

symmetry equivalents. (b) The computational time required to run

a model of each size, relative to the model with Navg = 2. The simu-

lated z-magnetisation evolution rapidly converges, with a basis set

consisting of on average 16 spin neighbours per spin approximating

well a system containing an average of 24 spin neighbours. Only

up to a spin system containing 24 spin neighbours per spin were

considered, as above this was not computationally feasible. . . . . . 107

4.8 Spin-pair interaction scores as calculated using equation 4.14 over a

representative simulation of the pulse sequence in Figure 4.2 includ-

ing all spin pairs at νr = 60 kHz, ν0(1H) = 600 MHz, beginning with

inversion of the carboxylic acid proton. LCL simulations without re-

striction are run for 1000 steps (0.2 ms), with the weighted population

of two, three, and four spin states plotted above. Spin pairs involving

the COOH and the Ala NH, Asp Hα, and Ala CH3 in β-AspAla are

shown in green (solid), orange (dashed), and purple (dotted), respec-

tively (see Figure 4.1 and Table 4.1). Beyond approximately 0.1 ms,

the contribution of the 2, 3, or 4 spin states no longer significantly

change such that the ordering of which spin interactions to include is

likely fixed at this point. . . . . . . . . . . . . . . . . . . . . . . . . . . 110
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4.9 Basis set selection according to the method outlined in Section 4.3.2

for the pulse sequence in Figure 4.2 starting with COOH resonance

inversion at the indicated spinning frequencies (ν0(1H) = 600 MHz),

as a function of their resonance offset and distance from spin-10,

a CH3 proton in molecule 1. The size of each point represents the

score as in equation 4.14, i.e., the sum of the weighted 2, 3, and 4

spin terms. Spins which were included as ‘neighbours’ to the spin of

interest by restricting the the average number of spin neighbours per

spin, Navg, to 16 are shown highlighted in blue, while spins which

were not included as neighbours are shown in black. The number of

‘neighbours’ included per spin are shown in Figure 4.11. The spatial

arrangement of the spin pairs included for the 20 kHz simulation are
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4.11 Number of neighbouring spin pairs selected for Navg = 16 as a func-

tion of the Spin ID of interest for three different spinning frequencies,

for simulations of the pulse sequence in Figure 4.2 at 600 MHz, begin-
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proton resonance for β-AspAla at 55 kHz MAS and a 1H Larmor
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KBr). There is a significant difference in the spin diffusion observed
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4.26 Plot showing the transfer of magnetisation from Ala20 N-H to Thr17

N-H under variable mixing times of saturation. An exponential decay

curve (equation 4.20) has been fit in blue. . . . . . . . . . . . . . . . . 133

4.27 Variation in the fit exponential decay parameters, ksat, A, and B (see

equation 4.20), as a function of resonance offset and distance for each

of the saturation points considered here. . . . . . . . . . . . . . . . . . 134

xx



5.1 (a) Depiction of the GB1:IgG complex studied here. The Fab and Fc do-

mains of the Immunoglobulin G (IgG) protein which were simulated

are shown in blue and red respectively. The GB1 is shown in yellow.

Representative models of the Gd3+ complex are shown in green. Note

that for molecular dynamics modelling, only the coloured parts of

the protein complex were simulated. (b,c) Example comparison of

calculated approximate experimental times (see Section 5.3.3) for the

measurement of a 15N R1 (b) (calculated using the average R1 mea-

sured at a 1H Larmor frequency of 600 MHz and a MAS frequency of

60 kHz, both with and without 3.5 mM [Gd3+]) or R1ρ (c) (calculated

using the average R1ρ measured at a 1H Larmor frequency of 700

MHz, a spin lock field of 10 kHz, and a MAS frequency of 60 kHz,

both with and without 3.5 mM [Gd3+]). These experimental times are

shown divided into contributions from the relaxation of 15N (e.g., the

relaxation delays), shown in dark colour, and the 1H (e.g., the recycle

delay), shown in a light colour. . . . . . . . . . . . . . . . . . . . . . . 140

5.2 Average χ2 values as a function of paramagnetic correlation time and

the number of included singular values for microcrystalline GB1. The

value of τpara giving the minimum average χ2 value is annotated for

k = 3− 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.3 Comparison of the resulting dynamical detectors produced for the

paramagnetically-doped microcrystalline GB1 dataset (noting that

this dataset contained some undoped data) and the diamagnetic

microcrystalline GB1 datasets. Very good agreement is found. . . . . 149

5.4 Average χ2 values over all residues as a function of paramagnetic

correlation time and the number of included singular values. The

value of τpara giving the minimum reduced χ2 value is annotated for

k = 3− 6. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
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5.5 Detector sensitivities and their responses. (a-d) Detectors and re-

sponses produced from GB1:IgG complex analysis. The leftmost

panel shows the detector sensitivity to local dynamics, where for

detectors with no paramagnetic response the timescale correspond-

ing to the maximum of the sensitivity is given. The middle panel

shows the detector sensitivities to the paramagnetic interaction. The

rightmost panel shows the resulting detector responses arising from

these detectors. In the rightmost panel, the horizontal bars refer to the

secondary structure of the protein; light grey indicating β-strand and

dark grey α-helix. Residues for which overlap prevented site-specific

relaxation rate measurement for more than 5 relaxation rates have

been omitted. (e) Depiction of the timescales of motion for residue 10.

Detectors are shown scaled by their integral normalized responses to

give an indication of the timescales over which motion is occurring.

Regions where the relaxation rate is insensitive are shaded out. . . . 155

5.6 The relative contributions of dynamic (ℜdyn) and paramagnetic

(ℜpara) relaxation to the overall relaxation rates are shown for 15N R1

relaxation rates measured at ν0(1H) = 600 MHz and a MAS frequency

of 60 kHz, using a range of concentrations of [Gd3+]. Note that ℜ

indicates that these relaxation rates have been normalized such that

the sensitivity of the rate is unitary, as in equation 2.187. . . . . . . . . 156

5.7 The relative contributions of dynamic (ℜdyn) and paramagnetic

(ℜpara) relaxation to the overall relaxation rates are shown for 15N

R1ρ relaxation rates (ν0(1H) = 700 MHz, ν1 = 10 kHz, νr = 60 kHz)

recorded at a range of [Gd3+]. Note that ℜ indicates that these

relaxation rates have been normalized such that the sensitivity of the

rate is unitary, as in equation 2.187. . . . . . . . . . . . . . . . . . . . . 156

5.8 Comparison of the dynamical profiles arising from analysis of doped

GB1:IgG (dark green) and undoped GB1:IgG (light green). . . . . . . 157
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5.9 Illustration of the distances used in the analysis of the MD. On the

left, GB1 is shown. Nitrogen atoms are shown as blue spheres. The

surface was calculated using a probe radius, rprobe, of 3.5 Å. On the

right, the Gd(DTPA-BMA) complex is shown. The outermost green

sphere represents the probe radius used in calculations. The inner

light green sphere represents the ionic radius of the Gd3+ ion. The

distance between the selected (highlighted in green) nitrogen atom

and the centre of the Gd3+ is represented as a blue line, rn-n. The

corresponding electron-nucleus distance is given as the pink line, re-n. 159

5.10 Comparison of the MD derived closest electron-nucleus distances

(re-n,closest) for a model of the complex and the inverse of the paramag-

netic detector response. Lines are plotted according to equation 5.17

for varying values of q. . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.11 Comparison of detector responses for GB1 in the complex (green)

with responses derived from 2× 500 ns-molecular dynamics simu-

lations (grey bars). The error bars on the MD responses have been

estimated at ±0.01. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

5.12 Comparison of detector responses for GB1 in the complex (green,

solid) with (doped) microcrystalline GB1 (orange, dashed). These

detectors have been matched to find the most optimal pairing (clos-

est corresponding time scale), as the different datasets give rise to

different sets of detectors. . . . . . . . . . . . . . . . . . . . . . . . . . 162
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5.13 (a,b) Fast (ns) motion detector responses for GB1 in the complex with

IgG (a) and microcrystalline GB1 (b) for β2. (c,d) Structure of the

interfaces at β2 in the complex (c) and in the microcrystalline form

(d). The hydrogen bonding interfaces to neighbouring proteins are

highlighted in (a) and (b), and are coloured in (c) and (d). (Note

that the interface for the complex is taken from a structure of the Fab

domain with GB3,297 and may not correctly reflect the interface with

the full-length construct49, 50). . . . . . . . . . . . . . . . . . . . . . . . 164

5.14 Resulting detectors from a reduced set of 5 relaxation rates for

GB1:IgG (see Figure 5.5 for figure details). . . . . . . . . . . . . . . . . 168

5.15 Resulting detectors from a reduced set of 11 relaxation rates for

GB1:IgG (see Figure 5.5 for figure details). . . . . . . . . . . . . . . . . 169

6.1 Tensor orientations for the dominant interactions for (a) 13C’ and (b)

15N relaxation. Positive values are shown in blue, negative values

in red. The size of the vectors is scaled to the eigenvalue of the

eigenvector. The CSA of the carbonyl in (a) was taken as having

principal components σ11 = −74.4 ppm, σ22 = −7.4 ppm, σ33 = 81.8

ppm, orientated −72◦ away from the 13C’ – 13Cα axis. This was then

converted to Hz assuming a 1H Larmor frequency of 700 MHz. For

the dipolar coupling in (b), a 15N – 1H distance of 1.02 Å was assumed.172
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6.2 Figure showing how the temperature dependence of relaxation was

considered in the modelling here. The temperature dependence is

modelled here with an activation energy of 40 kJ mol−1, with the

sensitivities calculated for a 15N R1 relaxation rate at 700 MHz and 60

kHz MAS. (a) The relaxation rate sensitivities are calculated accord-
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equation 6.1. (b) When the resulting sensitivities are plotted as a func-

tion of the timescale at 300 K this leads to a temperature-dependent

temporal shift in the sensitivity, which was exploited to enhance the

range of timescales which could be accessed. . . . . . . . . . . . . . . 178

6.3 Figure showing how the effect of timescale biasing150 may have con-

sequences for the model-free analysis of energetics. The effective
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activation energy (20 kJ mol−1) is then an underestimate of the ‘true’
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6.9 Calculated detector responses for 15N and 13C’. Left: Paired detector
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6.11 Scaled calculated detector responses for 15N and 13C’. Left: Detector

sensitivity profiles, with the times corresponding to the maximum

sensitivity of each detector shown. Right: Detector responses. . . . . 191

6.12 Comparison of calculated detector responses for 15N with molecular

dynamics. Comparison is shown for detectors covering timescales

for which the MD was sensitive to. The time corresponding to the

maximum sensitivity of the detector is indicated. MD response is

shown as a grey band, with percentiles at 5%, 50%, 95%. . . . . . . . 192
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6.13 Natural log of the ratio between the 13C’ response and the 15N re-

sponse for each pair of detectors. A negative (orange) value suggests

dominant motion parallel to the 15N – 1H bond axis, while a positive

(purple) number indicates motion perpendicular to this. The trans-

parency of each bar is related to the scale of the error, with an error

of 0 being fully opaque and an error of ≥ 1.5 being fully transparent.

The log-average maximum sensitivity time of the pair of detectors is

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.14 Visualisation of the anisotropic motions of detector ρ0 projected onto

the structure of GB1. Motions are shown as ellipsoids as described in

Figure 6.16, with the transparency set according to the error as in Fig-

ure 6.13. The backbone of the GB1 is shown in grey, with black bars

indicating the orientation of the N – H bond vector for each residue.

The colours are as in Figure 6.13, with orange suggesting dominant

motion parallel to the 15N – 1H bond axis, and purple indicating mo-

tion perpendicular to this. Sites for which there was insufficient data

to perform the analysis are highlighted with grey spheres. (a) Front

view of the β-sheet of GB1. (b) Same as (a), but the large response on

Gly41 has been hidden. (c) View of the α helix. (d) View of the loop

regions between β2 − α and β3 − β4. . . . . . . . . . . . . . . . . . . . 196

6.15 Visualisation of the anisotropic motions of detector ρ2 projected onto

the structure of GB1. Motions are shown as ellipsoids as described

in Figure 6.16, with the transparency set according to the error as in

Figure 6.13. Sites for which there was insufficient data to perform the

analysis are highlighted with grey spheres. The backbone of the GB1

is shown as in grey, with black bars indicating the orientation of the

N – H bond vector for each residue. (a) View of the β-sheet of GB1.

(b) View of the α-helix of GB1. Note that for clarity, the responses

have been scaled up 5× relative to those shown in Figure 6.14. . . . . 197
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6.16 Guide to the ellipsoids shown in Figures 6.14 and 6.15. A larger

axial length and corresponding larger circular arrow indicates more
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Abstract

Solid-state Nuclear Magnetic Resonance (NMR) can provide insight into the struc-
ture and dynamics of biological systems. Magic-Angle Spinning (MAS) can help to
increase the limited resolution and sensitivity of the technique. This thesis aims to
both investigate how fast MAS may affect spin diffusion and to develop methodol-
ogy to enable greater insight into the local molecular motions occurring in protein
systems.

Under fast MAS conditions, the coherent diffusion of spin order becomes strongly
dependent on resonance offset. In Chapter 4, a new basis set selection method is
introduced to enable the application of low-order Liouville space methods to the
simulation of spin diffusion under fast MAS conditions. Consideration is given to
the effects of spinning frequency, magnetic field, and dynamics. In Section 4.5, two
experimental case studies are introduced to explore the experimental impacts of this
truncation.

The measurement of relaxation rates to probe local molecular motions may be
prohibitively long, especially for sensitivity-limited samples. In Chapter 5, a new
method is introduced in which separating the dynamic and paramagnetic contribu-
tions to relaxation in paramagnetically doped samples can provide a picture of the
molecular motions with significant time savings. This method is applied to a very
large protein complex which is practically inaccessible to traditionally dynamical
analyses.

The reduction in spin diffusion at fast MAS enables the measurement of site-specific
relaxation on 13C’. In Chapter 6, it is found possible to gain insight into the local
anisotropy of motions by comparing the dynamics as observed through 13C’ and 15N
relaxation. Insight is gained into the types of motion affecting different secondary
structure elements, and how the motions occurring may be related to intermolecular
hydrogen-bonding interfaces, antibody recognition, and docking.
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Professor Bloch has told you how

one can detect the precession of the

magnetic nuclei in a drop of water.

Commonplace as such experiments

have become in our laboratories, I

have not yet lost a feeling of wonder,

and of delight, that this delicate

motion should reside in all the

ordinary things around us, revealing

itself only to him who looks for it.

Edward M. Purcell, Nobel Lecture
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Chapter 1

Introduction

The development of techniques to probe the structure and dynamics of biologically

relevant molecules since the early 20th century has led to a revolution in our view

of biology. The introduction and maturation of tools such as X-ray crystallography,

Nuclear Magnetic Resonance (NMR) spectroscopy, and cryo-electron microscopy

(CryoEM) have enabled us to peer ever deeper into the complex chemical and phys-

ical underpinnings of life. Relating structure to function has given greater insight

into the physical basis of disease, the complex biochemistry of life, and enabled

the intelligent design of drugs and pharmaceuticals. Figure 1.1 shows a timeline of

significant innovations in the structural and dynamic study of biology.

The invention of X-ray crystallography in the 1910s laid the foundations for the

structural view of biochemistry we have today.1–4 The pioneering work of the

Braggs enabled the first crystal structure, that of rock salt (NaCl), to be uncovered in

1913.5 The interpretation of the complex pattern of spots arising from the diffraction

of X-rays by the regular spacings of atoms in a rigid crystalline lattice enabled the

determination of structure on a scale never previously possible. Though initially

only applied to well-ordered simple salts, in 1922 the technique was first applied to

determine the crystal structure of an organic molecule, hexamethylene tetramine.6

The later development of new detectors to enable the quantitative measurement
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1936 Failure to Detect Nuclear Magnetic Resonance
Gorter, 1936

1938 Discovery of Nuclear Magnetic Resonance
Rabi, 1938

1946 Invention of NMR Spectroscopy
Bloch, 1946 / Purcell, 1946

1957 First NMR FID recorded
Lowe, 1957

1958 Invention of Magic-Angle Spinning
Andrew, 1958 / Lowe, 1959

1966 Invention of Fourier Transform-NMR
Ernst, 1966

1976 First Multidimensional NMR
Aue, 1976

1982 Introduction of Model Free
Szabo, 1982

1984 First de-novo protein structure by NMR
Williamson, 1984

1994 First paramagnetic metalloprotein structure by solution-state NMR
Banci, 1994

2002 First de-novo protein structure by solid-state NMR
Castellani, 2002

1912 Introduction of X-Ray Crystallography
Bragg, 1912

1922 First X-ray structure of an Organic Molecule
Dickinson, 1922

1934 Confirmation of defined protein structure
Bernal, 1934

1953 Structure of DNA discovered
Watson, 1953

1958 First protein structure by X-Ray Crystallography
Kendrew, 1958

1959 First MD simulation
Alber, 1959

1965 Invention of Fast Fourier Transform
Cooley, 1965

1969 First Protein Force Field
Levitt, 1969

1974 First Electron Diffraction of Protein Crystals
Taylor, 1974

1977 First MD simulation of a Protein
Karplus, 1977

1981 Vitrification of Water for CryoEM
Dubochet, 1981

1984 First CryoEM of a biological system (viruses)
Adrian, 1984

2021 Introduction of AlphaFold
Jumper, 2021

Figure 1.1: Non-exhaustive timeline of important discoveries and events in nuclear
magnetic resonance (left) and structural and dynamical biology more generally
(right).

of X-ray spot intensity, as well as the Fourier synthesis of X-ray crystallographic

analysis only enhanced its utility.7, 8

Though protein crystals had been known to exist since the early 19th century,9*

the confirmation that these contained ‘an arrangement of atoms inside the protein

molecule . . . of a perfectly definite kind’ did not come until the first successful X-ray

images of hydrated protein crystals by Bernal and Crowfoot in 1934.11 Despite this,

the difficulty in processing and interpreting the X-ray diffraction patterns meant that

it was another 24 years before the first protein crystal structure (of myoglobin) could

be determined in 1958.12 In the same decade came the determination of the structure

of deoxyribonucleic acid (DNA) by Watson and Crick13 using data obtained by

Franklin and coworkers.14, 15 The structure of DNA gave one of the most beautiful

indications of the relation between structure and function, with the structure im-

mediately indicating to Watson and Crick ‘a possible copying mechanism for the

*as referenced in ref 10.
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genetic material’.13 The ability of crystallography to provide useful structural in-

sight was also made evident by the determination of Vitamin B12 in 1956, which had

previously eluded other techniques for determining chemical structure.16 Several

historically relevant structures determined using X-ray techniques are shown in

Figure 1.2.

Contemporaneously with these developments in crystallographic techniques was

the discovery of ‘nuclear magnetic resonance’ in 1938 (NMR)19 and the later de-

velopment of NMR Spectroscopy in 1946.20–22 NMR relies on completely different

physical underpinnings to X-ray techniques; while X-ray crystallography relies on

long-range crystallographic order to diffract systematically incident X-rays, NMR

instead probes local magnetic interactions. The variation in electronic environment

experienced by distinct spin-active nuclei owing to the local structures around them

causes these to resonate at different frequencies in an applied magnetic field. As a

result, NMR can provide insight to the local structure and dynamics of samples with-

out long range crystallographic order. This is of relevance to interpreting structure,

as the conditions required for X-ray structure determination of proteins and other

biological molecules are generally completely different to those that these molecules

would exist in naturally; being both cryogenically cooled, and existing in a rigid

crystalline lattice. These structures may therefore sometimes be misrepresentative

of the true biologically relevant structure.23, 24 Furthermore, while X-ray diffraction

is dependent on the density of electrons and is therefore insensitive to lightweight

atoms such as protons, NMR is instead sensitive to the nuclear gyromagnetic ratio,

which is independent of the atomic weight. NMR can therefore provide a highly

complementary view of structure to X-rays, in particular with regard to the structure

of non-crystalline samples and the positioning of small atoms such as protons.

The invention of Fourier-Transform NMR,25 aided by the rapid increases in com-

putational power and development of faster Fourier transform algorithms in the

1960s26 drastically improved the sensitivity of the technique, and enabled the inven-

tion of two-dimensional NMR methods.27 These developments, among others,28, 29
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1913

NaCl

1922

hexamethylene tetramine

1953

DNA

1958

myoglobin

Figure 1.2: Notable structures determined by X-ray crystallographic methods in the
20th Century. Left to right: First X-ray crystal structure, NaCl from 1913.5 (Inorganic
Crystal Structure Database (ICSD): 538155); First X-ray crystal structure of an organic
molecule, hexamethylene tetramine from 1922.6 (Cambridge Crystallographic Data
Centre (CCDC): HXMTAM17); X-ray determination of the crystal structure of DNA,
1953.13 (Protein Data Bank (PDB): 2BNA18); First X-ray crystal structure of a protein,
myoglobin, from 1958.12 (PDB: 1MBN, note that this is a 1976 structure).

enabled the de-novo structural determination of BUSI IIA, a proteinase inhibitor, by

solution-state NMR in 1985.30 Figure 1.3 shows some historically relevant protein
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structures determined by NMR.

While the majority of early protein structures solved by X-ray crystallography were

metalloproteins, where structure determination is aided by the X-ray scattering of

the highly electron dense metal species,12, 31 these can pose particular problems for

the structural and dynamical analysis of proteins by NMR. In the case of diamag-

netic metals, this difficulty typically arises due to the metal centre representing a

discontinuity in the structure32 as it is not usually feasible to obtain 1H – M distances

owing to these metal centres typically having low gyromagnetic ratios and often

large quadrupolar couplings. This problem is particularly exacerbated in the case of

paramagnetic metal centres, as the presence of unpaired electrons within these leads

to additional paramagnetic effects resulting in a ‘blind sphere’, within which the

paramagnetic relaxation enhancement broadening or paramagnetic contact shift is

sufficiently large that these spins often cannot be readily observed.33 While a further

discussion of these paramagnetic effects will be given in Chapter 5, to continue the

current discussion it is interesting to note that the first solution-state structure of a

paramagnetic metalloprotein (the iron-sulfur protein iso-1 from Ectothiorhodospira

halophila) was determined in 1994.34 The investigation of the structure and dynamics

of such systems is of interest as many of these play key functional roles owing to

the useful properties of transition metal ions with regards to redox chemistry,35, 36

and their importance in cellular respiration may indicate that these were among

the first proteins to evolve and therefore may contain clues as to the origin of life

itself.37–40

Whilst the majority of structural studies of biological systems using NMR have

been performed in the solution state, this is not always possible as many systems of

interest may be insoluble, too large, or require supporting membranes. Anisotropic

interactions, such as dipolar couplings and chemical shift anisotropy may cause

significant peak broadening. In the solid state, these interactions make it almost

impossible to interpret static solid spectra in unoriented biological systems. A

benefit of performing NMR experiments in the solution state is that the overall
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1985

BUSI IIA

1994

iso-1

2002

SH3

Figure 1.3: Left-to-right: The first protein structure determined using solution-state
NMR (Williamson et al. (1985)30); The first structure of a paramagnetic metallo-
protein determined using solution-state NMR (Banci et al. (1994)34); and the first
protein structure determined using solid-state NMR (Castellani et al. (2002)41). The
structures are those from the original papers, being 1BUS, 1PIJ, and 1M8M in the
PDB, respectively.

tumbling of the molecules being studied averages out these strong anisotropic

interactions. This benefit, however, also gives rise to a key limitation of studies in
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the solution state: the larger the size of a biological macromolecule, the slower it

tumbles. A result of this slow tumbling is a significant incoherent peak broadening,

complicating the analysis of large biological systems by NMR in the solution state.

Additionally, very large biological complexes or other systems may be insoluble

in solution and therefore precipitate out, precluding their study by solution-state

NMR. Consequently, solution NMR faces an upper limit on the size of molecule

accessible.

Solid-state NMR, on the other hand, does not face this limitation. As a result, it

may be applied to structures which are both impossible to crystallise in their native

structures and too large to be studied by solution-state NMR. For example, solid-

state NMR has found particular utility in studying membrane proteins42–48 and

precipitated complexes.49–51 To allow for structural or dynamical information to be

extracted in a local manner, however, site-specific resonance assignments must be

made. The significant peak broadening arising from the unaveraged anisotropic

interactions typically makes this infeasible in unoriented static spectra. ‘Magic-angle

spinning’ (MAS), invented simultaneously by Andrew et al.52 and Lowe53 in the

late 1950s, relies on the mechanical rotation of the sample about the magic angle of

54.7◦ to introduce a time dependence to the Hamiltonian and systematically average

out the anisotropic interactions. While a more in-depth discussion of how MAS

works will be given in Chapter 2, for now it is enough to know that greater MAS

frequencies typically lead to greater averaging of anisotropic interactions and thus

enable an increase in resolution. The development of probes able to access faster

MAS frequencies, combined with developments in methodology such as site-specific

labelling techniques, enabled the first de-novo solid-state structural determination of

a protein, SH3, in 2002.41

In recent years, several significant developments have taken place in structural

biology. The ‘resolution revolution’ of CryoEM has enabled the determination of

high-resolution biological structures without the requirement of large crystals, as

needed for X-ray crystallography.54–59 New machine learning methods such as
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AlphaFold60 and RoseTTAFold61 have led to an exponential increase in the avail-

ability of structural information, with the creation of databases containing millions

of predicted protein structures62, 63 and the wide availability of software to predict

the full 3D structure of a protein from its amino acid sequence. These computational

tools may complement NMR, by allowing NMR to act as a structural validation

method to verify experimentally machine learning predictions without necessarily

requiring a full set of structural calculation experiments to be performed.64

The presence of strong anisotropic interactions which are not completely averaged

by MAS leads to significant line broadening in the solid state, making it very difficult

in many cases to isolate resonances. In recent years, developments in magnetic

field technology65, 66 and MAS67–70 have enabled access to even greater resolution

NMR spectra. Figure 1.4 shows how the maximum attainable MAS frequency has

changed since the original introduction of the technique. However, with the increase

in resolution obtained using these tools comes a few complications. Many structure

determination methods applied in solid-state NMR rely on the coherent diffusion

of spin order, ‘spin diffusion’, to transfer magnetisation through space between

nuclear spins.41, 71–74 While at low MAS frequencies such techniques are readily

applied, spin diffusion is known to be highly sensitive to resonance offset.75, 76 Un-

derstanding how spin diffusion is affected by fast MAS, however, is difficult. Spin

diffusion is inherently a many-body effect, and therefore requires simulations of

large numbers of spins.77–80 However, the exponential scaling of traditional Hilbert-

space density matrix simulations of NMR makes such simulations computationally

infeasible;77–79, 81, 82 such simulations are generally limited to ≤12 spins.83 It has

been found that by systematically reducing the space of interactions considered it

is possible to simulate significantly larger spin systems.77–79, 84, 85 Chapter 4 builds

upon these previous reduced space models to allow for simulations of spin diffusion

under fast MAS conditions, by introducing a new basis set selection methodology.

This is then used to simulate the effects of increasing MAS frequency and magnetic

field on spin diffusion, and how this is related to the spatial and spectral arrange-

8



ment of spins. This discussion will then be extended in Chapter 5, which focuses on

how these effects impact NMR experiments.
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Figure 1.4: Maximum achieved MAS frequency over time.52, 53, 67, 68, 86–90

While structure can give insight into function, biology is rarely at rest. Function

arises from the dynamical motions present within a system, and quantifying and

understanding these motions is also important for understanding how biological

systems function.91, 92 This was apparent even for the first protein to have a crystal

structure determined, myoglobin in 1958,12 for which the haem pocket is blocked by

a histidine sidechain. The transport of oxygen by both this protein and other globin

proteins relies on the mobility of this sidechain to control access to this pocket.36, 93

Several techniques can provide insight into these local dynamics.94–96 Perhaps the

most useful are molecular dynamics (MD) and NMR, as these can provide insight

into both the timescales and amplitudes of motions on a site-specific local basis in a

complementary manner.

MD relies on integration of the Newtonian equations of motion to propagate forward
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the atomic positions within a protein structure according to a given forcefield. These

empirical forcefields were originally introduced to study atomic interactions97–99

and to minimize X-ray crystal structures.100, 101 In 1959, Alder et al. ran the first

MD simulation of ‘several hundred interacting classical particles’.102 Later, in 1977,

McCammon et al. ran the first MD simulation of a full protein (bovine pancreatic

trypsin inhibitor, BPTI) for 8.8 picoseconds.103 Since then, developments in com-

putational power have enabled significantly longer, and significantly larger, MD

simulations to be performed.104–111 Of particular note is Anton, a custom-built

MD simulation supercomputer capable of running millisecond-scale MD simula-

tions.112

NMR can similarly provide insight into local dynamics. The modulation of

anisotropic interactions such as dipolar couplings and chemical shift anisotropy

(CSA) by local dynamics gives rise to a stochastic time-dependent Hamiltonian. The

evolution of the spin system under this Hamiltonian provides a pathway by which

the system may relax back to thermal equilibrium.113 By quantifying the rate at

which a given spin returns to thermal equilibrium it is therefore possible to quantify

the motions which gave rise to that relaxation.114–116 Such analysis is possible

both in the solution state and solid state. In the solution state it is not possible

to use relaxation rate analysis to probe motions occurring on timescales slower

than the overall tumbling (≈ nanoseconds), and analysis on such motions must

be performed using other methods, such as residual dipolar couplings.96, 117, 118 In

contrast, the lack of overall tumbling on the solid state means that slower (ns-µs)

motions may be observed in the same manner as faster motions.

Both NMR and MD have their advantages and disadvantages for the study of local

dynamics. As has been alluded to previously, MD simulations face a computational

barrier both in terms of the timescales which may be accessed, and the size of the

systems accessible.109, 110 As such, typical MD simulations (such as those presented

in this thesis) are usually limited to lengths of at most several microseconds. As

these present only a single trajectory of the motions occurring, they therefore only
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sufficiently sample motions occurring on the nanosecond timescale. To obtain

simulations on larger systems over longer timescales, techniques such as acceler-

ated MD107–111 or coarse graining119, 120 may be utilised, however these come with

their own respective challenges. In contrast, NMR relaxation is indicative of an

ensemble average of motions from many individual proteins. Relaxation rates may

additionally be sensitive to motions occurring on slower timescales; for instance,

spin-lattice relaxation in the rotating frame (R1ρ) is sensitive to motions occurring

on timescales as slow as milliseconds, which would be inaccessible to current MD

methodologies.121–123

A limitation of NMR is the spatial resolution of motions attainable. Only the

dynamics at spin-active nuclei may be observed, and at MAS frequencies currently

available spin diffusion causes many of these to be partially or wholly averaged

across the system. For example, it is not possible to obtain site-specific sidechain 13C

relaxation rates at the most commonly used MAS frequencies (≤ 111 kHz) without

expensive site-specific isotopic labelling schemes or the use of insensitive unlabelled

samples.124, 125 Furthermore, the requirement to record individual experiments for

each different isotope of interest (typically 15N and 13C’) adds additional complexity,

and as a result most studies of dynamics in NMR, especially in the solid-state,

have relied only on 15N relaxation. The relaxation measured on 15N amide sites is

dominated by the anisotropic motions of the 15N – 1H dipolar vector,126 which may

cause them to not fully sample the range of motions occurring within the protein.127

On the other hand, an MD trajectory provides exact coordinates for every atom

within the system.

Being a computational technique, MD requires experimental validation to ensure

that it is representative of the system of interest. In this manner, NMR and MD have

been found to be highly complementary; by using NMR to validate the MD trajec-

tory, and then using the MD to look at the specifics of the motions occurring.128–130

A related issue pertains to the use of MD to look at systems for which there is no

complete structure available as MD simulation requires the creation of a suitable
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model for the system being studied. In the case of a crystalline protein or an iso-

lated protein in solution with a known structure this is reasonably straight forward.

However, for studying interfaces without atomic scale structural information this

can lead to systematic deficiencies in the resulting trajectory.

A key issue of NMR dynamics analysis is the experimental time required. This is

particularly acute in the case of protein complexes made up of multiple components.

The effective dilution of the labelled protein of interest in this case may mean that

experimental times are substantially increased to the extent that it is no longer

feasible to record sufficient data to quantify the local motions. Chapter 5 introduces

a new method, Concerted Motion and Paramagnetic Dynamics Relaxation analysis

(CoMPaDReS), which is then applied to a paramagnetically doped complex of

GB1 with human Immunoglobulin G (GB1:IgG). It is found to be possible to make

use of data doped with paramagnetic agents to quantify local dynamics. The

paramagnetic relaxation enhancement resulting from the doping makes it feasible to

record sufficient relaxation rates to investigate the local dynamics, while additionally

providing insight into the paramagnetic interaction and consequences this has in

terms of the solvent accessibility.

In Chapter 6, a large dataset of 13C’ and 15NR1 andR1ρ relaxation rates are combined

to investigate the local motions occurring within the microcrystalline β − 1 domain

of Protein G, GB1. A combined analysis based on two nuclei provides a greater

resolution as to the dynamics occurring. The use of variable temperature relaxation

rates to increase the effective range of timescales observable is demonstrated. The

resulting dynamics are then compared to MD, where good agreement is found to

a 2.28 microsecond trajectory of a model of the microcrystalline protein. Finally,

differences between 13C’ and 15N motions are interpreted in terms of their possible

relation to anisotropic motions occurring within the protein.
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Chapter 2

Theory

2.0 Quantum Mechanics

This section aims to outline the basic quantum mechanics required for the later discussion of

NMR. In this thesis, the following notation style is used:

• matrices are typeset in bold with underlining,A, which if using Latin script will be

capitalised.

• vectors are typeset in bold and will generally be lower case, a.

• vector expansions in text will be given using commas if row vectors ([1, 0]), and with

semi-colons if column vectors ([1; 0]).

• operators will be denoted using a hat, Â, and capitalised if Latin.

• symbols which are a mixture of the above will have their notation combined; e.g., a

matrix operator, Â, will be bold, underlined, capitalized, and denoted using a hat.

A fundamental postulate of quantum mechanics (QM) is that any closed system

possesses a wavefunction which completely describes the quantum state of that

system. In Dirac notation, a wavefunction is given as a ket, |ψ⟩, with its complex

conjugate being given as a bra, ⟨ψ|. A wavefunction ket may be composed as

a linear superposition of (typically orthonormal) basis set vectors describing the
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system,

|ψ⟩ =
N∑

i

λi |ψi⟩ , (2.1)

where the sum is over all N components of the basis set, |ψi⟩. The combination of a

‘bra’ and ‘ket’ gives a ‘braket’, the scalar product

⟨ϕ|ψ⟩ ≡
∫
ϕ∗(x)ψ(x)dx, (2.2)

integrating over all space, where the asterisk denotes complex conjugate. Supposing

that the basis set vectors, |ψi⟩, have been chosen to be orthonormal, the following

relation holds

⟨ψi|ψj⟩ =





1 for i = j

0 otherwise
. (2.3)

We may then introduce the concept of an ‘operator’, which may be considered as

a function which maps one wavefunction onto another. An operator acting on an

eigenfunction of itself will give the product of the eigenvalue with the eigenfunc-

tion:

Â |ψ⟩ = a |ψ⟩ , (2.4)

where |ψ⟩ is an eigenfunction of the operator Â with eigenvalue a. Any physical

observable may be represented by an operator, which must necessarily be Hermitian

(self-adjoint) to ensure that the eigenvalues are real. The expectation value of an

operator can be defined as

⟨Â⟩ = ⟨ψ|Â|ψ⟩ . (2.5)

14



Possibly the most important operator is the Hamiltonian, Ĥ , for which the eigen-

value represents the total energy for a given eigenfunction. The time-dependent

Schrödinger equation,

ih̄
d

dt
|ψ(t)⟩ = Ĥ |ψ(t)⟩ (2.6)

describes how a given state evolves with time.

A convenient notation for describing these operators and wavefunctions, which is

particularly applicable to NMR, is to denote operators as matrices, Â, and wave-

functions as vectors, |ψ⟩. For instance, we may have a wavefunction composed as a

linear combination of basis set vectors

|ψ⟩ = cα



1

0


+ cβ



0

1


 =



cα

cβ


 (2.7)

⟨ψ| = c∗α

[
1 0

]
+ c∗β

[
0 1

]
=

[
c∗α c∗β

]
(2.8)

and an operator

Â =



Aαα Aαβ

Aβα Aββ


 , (2.9)

with corresponding expectation value
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⟨Â⟩ = ⟨ψ|Â|ψ⟩ (2.10)

=

[
c∗α c∗β

]


Aαα Aαβ

Aβα Aββ






cα

cβ


 (2.11)

= Aααc
∗
αcα +Aαβc

∗
αcβ +Aβαc

∗
βcα +Aββc

∗
βcβ. (2.12)

One operator which is of particular utility in NMR is the density matrix operator.

This operator is given as

σ̂ = |ϕ⟩ ⟨ϕ| , (2.13)

where |ϕ⟩ and ⟨ϕ| are implicitly linear combinations of the basis set vectors. In the

case of |ψ⟩ and ⟨ψ| as given in equations 2.7 and 2.8, this gives:

σ̂ = |ψ⟩ ⟨ψ| (2.14)

=



cα

cβ



[
c∗α c∗β

]
(2.15)

=



c∗αcα c∗βcα

c∗αcβ c∗βcβ


 . (2.16)

The diagonal elements relate to states composed of a single eigenstate, ‘populations’,

while the off-diagonal elements relate to mixed state ‘coherences’. The expectation

value of an operator may be calculated by taking the trace of the product of the

operator with this density matrix:
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⟨Â⟩ = Tr(Âσ̂) (2.17)

= Tr



Aααc

∗
αcα +Aαβc

∗
αcβ Aααc

∗
βcα +Aαβc

∗
βcβ

Aβαc
∗
αcα +Aββc

∗
αcβ Aβαc

∗
βcα +Aββc

∗
βcβ


 (2.18)

= Aααc
∗
αcα +Aαβc

∗
αcβ +Aβαc

∗
βcα +Aββc

∗
βcβ. (2.19)

In the following section, these fundamental concepts of quantum mechanics will be

applied more specifically to the phenomenon of Nuclear Magnetic Resonance.

2.1 NMR Theory

This section will introduce the underlying theory of the NMR experiment. The first

section of this is based primarily on reading ‘Understanding NMR Spectroscopy’ by

Keeler (2010),131 ‘Principles of Nuclear Magnetism’ by Abragam (1961),132 ‘Spin Dy-

namics’ by Levitt (2008),133 and ‘Lectures on Spin Dynamics: The Theoretical Minimum’

by Pileio (2022).134

One fundamental property of an atomic nucleus is that of spin. The spin angular

momentum of a nucleus is characterised by a spin angular momentum quantum

number, I . In the absence of magnetism, the nuclear spins possess 2I+1 degenerate

nuclear spin states. The magnetic moment of a spin, µ̂, is related to its gyromagnetic

ratio, γ and spin angular momentum operator, Î :

µ̂ = γÎ, (2.20)

where the spin angular momentum operator, Î , may be represented in vector nota-

tion as [Îx; Îy; Îz]. The gyromagnetic ratios of several nuclei of interest in this thesis

are given in Table 2.1. Under the application of a magnetic field, the 2I + 1 nuclear

spin states lose their degeneracy. These non-degenerate spin states are denoted
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using the magnetic quantum number, m = −I,−I + 1, . . . , I − 1, I . The interaction

giving rise to this loss of degeneracy is termed the Zeeman Hamiltonian

Table 2.1: Gyromagnetic ratios of several nuclei of interest.135

Species γ / MHz T−1

1H 42.58
13C 10.71
15N -4.32
155Gd -1.32
157Gd -1.73

ĤZ = µ̂ ·B0, (2.21)

whereB0 represents the applied external magnetic field. By convention, the strong

magnetic field applied is defined as being along the z-axis, such thatB0 = [0; 0;Bz].

In this case, the Zeeman Hamiltonian may then be written as

ĤZ = µ̂ ·B0 (2.22)

= γ




Îx

Îy

Îz



·




0

0

Bz




(2.23)

= γBz Îz = −ω0Îz, (2.24)

where ω0 represents the Larmor frequency,

ω0 = −γBz, (2.25)

namely the resonant frequency of the nuclei in the applied magnetic field.

The time-independent Schrödinger equation,
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Ĥ |ψ⟩ = E |ψ⟩ , (2.26)

allows us to determine the energy of a given wavefunction, |ψ⟩. As previously,

under the applied magnetic field, our 2I + 1 spin states are no longer degenerate.

These m states are the eigenstates of Îz , with eigenvalues Iz = mh̄

Îz |ψm⟩ = Iz |ψm⟩ (2.27)

= mh̄ |ψm⟩ . (2.28)

We may therefore apply the Schrödinger equation to determine the energy of a given

state with magnetic quantum number m, as

ĤZ |ψm⟩ = −ω0Îz |ψm⟩ (2.29)

= −ω0mh̄ |ψm⟩ , (2.30)

i.e.,

Em = −mh̄ω0. (2.31)

Conventionally in NMR, we express the energies in units of angular frequency

(rad s−1) by dividing by the reduced Planck’s constant, h̄

Em = −mω0. (2.32)

These energy levels are shown for various spin quantum numbers in Figure 2.1.

In the case of a spin I = 1/2 nucleus (a ‘spin-1/2’ nucleus), there are then two
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nuclear spin states with energies E1/2 = −1
2ω0 and E−1/2 =

1
2ω0, with a difference

of ω0.
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B0

Figure 2.1: (a) Energy level splittings in units of ω0 for spins with spin angular
momentum quantum numbers I = 0, 1/2, 1, 3/2. (b) Variation in energy level
splitting with increasing magnetic field, B0.

For simplicity, the remainder of this theory section will focus on the case of a spin-

1/2 nucleus. The treatment may be expanded to nuclei with different spin angular

momentum quantum numbers. For spin-1/2 nuclei, the two eigenstates may be

expressed in vector notation as:

|−1

2
⟩ =



0

1


 (2.33)

|1
2
⟩ =



1

0


 . (2.34)

It therefore follows from equation 2.27 that the matrix form of Îz can therefore be

given as:
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Îz =
1

2



1 0

0 −1


 , (2.35)

again omitting h̄. The forms of the remaining two angular momentum operators in

this Zeeman eigenbasis, Îx and Îy, are then

Îx =
1

2



0 1

1 0


 (2.36)

Îy =
1

2i




0 1

−1 0


 , (2.37)

which may alternatively be expressed as the raising and lowering operators, Î+ and

Î−

Î+ = Îx + iÎy =
1

2



0 1

0 0


 (2.38)

Î− = Îx − iÎy =
1

2



0 0

1 0


 . (2.39)

Additionally, we should include the so-called ‘unity’ operator, Ê:

Ê =



1 0

0 1


 . (2.40)

In an experiment, we are interacting with a large ensemble of interacting nuclear

spins. As a result, we must consider the formation of mixed states. Perhaps the

simplest way to model these mixed states for an NMR experiment is to use the
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density matrix formalism. The density operator was introduced in Section 2.0. As

described in that section, we may express the wavefunction of our closed system as

a linear combination of our eigenbasis wavefunctions:

|ϕ⟩ = c1/2 |
1

2
⟩+ c−1/2 |−

1

2
⟩ (2.41)

= c1/2



1

0


+ c−1/2



0

1


 (2.42)

=



c1/2

c−1/2


 . (2.43)

The corresponding density matrix (equation 2.14) is therefore:

σ̂ = |ϕ⟩ ⟨ϕ| (2.44)

=



c1/2c

∗
1/2 c1/2c

∗
−1/2

c−1/2c
∗
1/2 c−1/2c

∗
−1/2


 . (2.45)

Given that the coefficients, c1/2 and c−1/2, are complex numbers, it follows that

this can alternatively be expressed in polar notation with c±1/2 = r±1/2e
iθ±1/2 (and

equivalently, c∗±1/2 = r±1/2e
−iθ±1/2) such that

σ̂ =




r1/2r1/2 r1/2r−1/2e
i(θ1/2−θ−1/2)

r1/2r−1/2e
i(θ−1/2−θ1/2) r−1/2r−1/2


 . (2.46)

The diagonal elements, r21/2 and r2−1/2, are referred to as ‘populations’ and describe

the proportion of spins in an ensemble existing in the respective states. The off-

diagonal elements are termed ‘coherences’, and are non-zero only if there exists
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phase coherence; otherwise, the random distribution of phase leads to these terms

cancelling.

At thermal equilibrium, we may calculate this density matrix assuming the Boltz-

mann distribution. Given that the total number of spins, N = n1/2,eq + n−1/2,eq, we

can calculate the equilibrium populations as:

r2±1/2,eq = n±1/2,eq/N (2.47)

=
1

2
e
±

1
2 h̄γBz
kBT . (2.48)
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Figure 2.2: Population of the spin-up and spin-down states as a function of magnetic
field. Calculated assuming the gyromagnetic ratio of 1H (42.58 MHz/T−1) and a
temperature of 300 K.

Figure 2.1 illustrates how these populations vary as a function of magnetic field.

This demonstrates one limitation of NMR: as the difference in energy between

the spin-up and spin-down states is small (12 h̄γBz ≪ kBT ), there is very little

polarisation at magnetic fields available today (maximum commercially available

23



as of writing is 28.8 T65). We may decompose the resulting density matrix into a

basis set of our angular momentum operators by approximating the exponential as

a Taylor series:

σ̂ =
1

N




1
2Ne

1
2 h̄γBz
kBT 0

0 1
2Ne

−
1
2 h̄γBz
kBT


 (2.49)

≈ 1

2



1 0

0 1


+

γh̄Bz

4kBT



1 0

0 −1


 (2.50)

≈ 1

2
Ê +

γh̄Bz

4kBT
Îz, (2.51)

where it has been assumed that 1
2 h̄γBz ≪ kBT such that the expansion of the

exponential about 0 may be truncated to first order. The unity operator represents

spin order which we are unable to interact with. As such, we may ignore it going

forward, and will take the equilibrium density operator to be given by Îz :

σ̂eq ∝ Îz. (2.52)

For clarity, the proportionality symbol will be dropped in the following. Often

in NMR we wish to consider the interactions of multiple spins making up a spin

system. These interactions are expressed using product operators, such as the

double-quantum Î+Ŝ+ operator representing in-phase coherence on both spins I

and S. In density matrix notation, these product operators are calculated as the

Kronecker products of constituent operators,

Î+Ŝ+ = Î+ ⊗ Ŝ+, (2.53)

where ⊗ represents the Kronecker product. Note that single-spin operators in a

many-spin eigenbasis must be calculated using the identity operator to ensure that
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the matrix dimensionality is maintained. As a result of the Kronecker product,

density matrices representing systems of many coupled spins can rapidly scale

dramatically. For instance, ten interacting spin-1/2 nuclei, each with single-spin

operators of dimension 2× 2, will give rise to product operator states of dimension

210 × 210. Methods to reduce this computational complexity by way of approxima-

tions will be discussed in Chapter 4.

2.1.1 Time Evolution of the Density Matrix

In performing NMR experiments, we are interested in how the spin system evolves

with time. The spin system will evolve with time owing to internal interactions

within the sample itself, such as dipolar couplings and J-couplings, and external

interactions applied by the experimentalist, namely the Zeeman interaction with

an applied magnetic field, RF pulses, and MAS. These different interactions will be

discussed in Section 2.1.2.

The density matrix analogue of the time-dependent Schrödinger equation (equa-

tion 2.6) is the Liouville-von-Neumann equation,

dσ̂

dt
= −i

[
Ĥ, σ̂

]
, (2.54)

for which the general solution is given as:

σ̂(t) = e−iĤtσ̂(0)eiĤt. (2.55)

We are therefore able to model the evolution of any given initial density matrix, σ̂(0),

under the influence of any given Hamiltonian, Ĥ . Time-dependent Hamiltonians

may additionally be considered using Average Hamiltonian Theory136 or Floquet

Theory,137, 138 however these will not be discussed further here.

Hamiltonians of importance for NMR may in general be expressed by a Cartesian

tensor of varying rank. For instance, a dipolar coupling is represented by a 2nd rank
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tensor, Ã, such that

ĤD = IÃS =

[
Îx Îy Îz

]



Axx Axy Axz

Ayx Ayy Ayz

Azx Azy Azz







Ŝx

Ŝy

Ŝz




(2.56)

for a dipolar interaction between spins I and S. For any interaction, a ‘Principal Axes

System’ (PAS) may be defined such that the interaction tensor is diagonal:

Ã
PAS

=




Axx 0 0

0 Ayy 0

0 0 Azz



. (2.57)

Such a Hamiltonian may alternatively be expressed in spherical tensor notation as a

sum of products of spin (T̂ jm) and spatial (Ajm) terms:

Ĥ =
2∑

j=0

+j∑

m=−j

(−1)mAjmT̂ j−m. (2.58)

The subscripts, j and m, are integers which relate to the rank of the tensor and

the order of the tensor component (j ≥ m ≥ −j), respectively. Table 2.2 gives the

relation between these spherical tensors and the Cartesian tensors. Noting that, in

the PAS, all non-diagonal Cartesian tensor components are zero, it follows that the

Hamiltonian may be written

Ĥ
PAS

= APAS
00 T̂ 00 +APAS

20 T̂ 20 +APAS
22 T̂ 2−2 +APAS

2−2T̂ 22 (2.59)

since all other APAS
jm terms are equal to 0. This expression may be further simplified

for some interactions, as not all interactions possess all spatial components. Table 2.3

states the different spatial tensor components present for the different NMR interac-

tions in their respective PAS, and Section 2.1.2 will provide additional commentary
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on these interactions.

The Secular Approximation may be made to simplify the total Hamiltonian. In this

approximation, it is assumed that the Zeeman Hamiltonian (that of the interaction

between the nuclear spins and the bulk applied magnetic field) is sufficiently large

that all other Hamiltonians may be treated as first-order perturbations:

Ĥ total = ĤZ + Ĥ1, (2.60)

where Ĥ1 is composed of all other NMR interaction Hamiltonians. Only terms of

Ĥ1 which commute with the Zeeman interaction will contribute to first order:

[
ĤZ , T̂ jm

]
∝
[
Îz, T̂ jm

]
∝ mT̂ jm. (2.61)

This only holds for terms with tensor order m = 0. Therefore, terms with m ̸= 0

may be omitted to first order, assuming that the Zeeman Hamiltonian is sufficiently

dominant, i.e.,

Ĥ
PAS

= APAS
00 T̂ 00 +APAS

20 T̂ 20. (2.62)

Table 2.2: Correspondence between spherical and Cartesian tensors.

Spherical Cartesian

A00 − 1√
3
(Axx +Ayy +Azz)

A10 − i√
2
(Axy −Ayx)

A1±1 −1
2(Azx −Axz ± i(Azy −Ayz))

A20
1√
6
(3Azz − (Axx +Ayy +Azz))

A2±1 ∓1
2(Axz +Azx ± i(Azy +Ayz))

A2±2
1
2(Axx −Ayy ± i(Axy +Ayx))

A benefit of expressing Hamiltonians as spherical harmonics is that these are rank

invariant under rotation. As a result, they can easily be converted between different

*To first order.
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Table 2.3: Spatial components present in the PAS for different NMR interactions.

Interaction Components

Chemical shift APAS
00 , APAS

20 , APAS
2±2

J coupling APAS
00

Dipolar coupling APAS
20

Quadrupolar coupling APAS
20 , APAS

2±2
*

frames of reference. This is necessary because the PAS of different interactions which

must be considered in an NMR experiment are rarely coincident. Spherical harmon-

ics may be rotated between different frames given knowledge of the Euler angles (α,

β, and γ) connecting the different frames. These rotations are typically performed

in the ZYZ convention with right-handedness: the first rotation is anticlockwise α

about z, the second is anticlockwise β about y’, and the final rotation is anticlockwise

γ about z”, where the primes indicate that these axes are also rotated (e.g., an active

rotation). Such a rotation may be applied to a given spherical harmonic Ajm using a

Wigner D-matrix, as:

Ajm′ =

+j∑

m=−j

Dj
mm′(α, β, γ)Ajm, (2.63)

where the Wigner D-matrix element Dj
mm′ is given as:

Dj
mm′(α, β, γ) = e−imαdjmm′(β)e

−im′γ , (2.64)

with the small d-matrices djmm′ being well-defined trigonometric functions. In this

thesis, the following frames will be referred to:

PAS : Principal axes system, the frame of an interaction (e.g., aligned along the

internuclear axis for a dipolar coupling);

MOL : Molecular axes system, the frame of an individual molecule (e.g., a well

defined axis system with respect to a single molecule);

ROTOR : Rotor axes system, the frame of the rotor;
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LAB : Laboratory axes system, the frame of the applied external magnetic field, B0.

The set of angles (α, β, γ) denoting a transformation between any of these frames

will be given as ΩXY , where X and Y are the first letter of the respective frame.

These rotations are composed of the following angles:

ΩPM : θ, ϕ, ω, (2.65)

ΩMR : α, β, γ, (2.66)

ΩRL : −ωrt, βMAS , 0. (2.67)

2.1.1.1 Relation to Liouville Space Approaches

The density operator theory has been introduced here using the ‘Hilbert space’

formalism. In this, both Hamiltonians and density matrices are represented as n× n

matrices, where n is the product of the spin-state degeneracies for the interacting

spins (n =
∏

i(2Ii + 1)). However, this is not the only manner in which these

equations may be cast. By casting the density operator formalism into the adjoint

representation, we obtain an alternative representation, referred to as ‘Liouville

space’.139, 140 To convert to this formalism, the bra-flipper operator Υ̂ may be used

to obtain the Liouville-space density matrix, σ̂141

σ̂ = Υ̂(σ̂) (2.68)

= Υ̂(|ϕ⟩ ⟨ϕ|) (2.69)

= |ϕ⟩ ⊗ |ϕ∗⟩ . (2.70)

As a result, the Liouville space density matrix has dimensions n2 × 1; to distinguish

this from the Hilbert-space density matrix, here, the Liouville-space density matrix

will be denoted as a vector, σ̂, while the Hilbert-space density matrix will be given
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as a matrix, σ̂. Applying this bra-flipper operator to the Liouville-von-Neumann

equation, we obtain

Υ̂ (
dσ̂

dt
= −i

[
Ĥ, σ̂

]
) (2.71)

dσ̂

dt
= −i ˆ̂Lσ̂, (2.72)

where ˆ̂
L is termed a ‘Liouvillian’ or a ‘super-operator’, and may be calculated as

ˆ̂
L = Ĥ ⊗ Ê − Ê ⊗ ĤT

, with dimension n2 × n2. The solution to this equation in

the case of a time-independent Liouvillian is then

σ̂(t) = e−i
ˆ̂
Ltσ̂(0), (2.73)

with the implication that each term in ˆ̂
L represents the rate of exchange between

two coherences or population states within the density operator, σ̂. While, for

normal density matrix calculations, the two formalisms are equivalent, representing

the density operator theory in this manner has a number of benefits: for example,

relaxation and chemical exchange may be more readily represented in the Liouville

space formalism through the introduction of relaxation and chemical exchange

super-operators.140 Additionally, this representation aids the implementation of

reduce-space methods. In Chapter 4, a reduced-state-space method, Low-order

Correlations in Liouville space (LCL),77, 78, 85 will be applied to the study of spin

diffusion in large spin systems under fast MAS conditions.

2.1.2 Spin Interactions

2.1.2.1 Zeeman Interaction

Generally, in high-field NMR, the dominant interaction experienced is the Zeeman

interaction between the nuclear spin and the applied external magnetic field, B0.

This has the Hamiltonian
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ĤZ = −ω0Îz, (2.74)

where ω0 is the nuclear Larmor frequency as defined in equation 2.25. As this

interaction is typically orders of magnitude greater than other interactions (vide

infra), often it is found to be useful to transform the density matrix and other

Hamiltonians into the frame of the Zeeman interaction such that it no longer needs

to be explicitly accounted for. This is performed by considering a ‘rotating-frame’

density matrix, ˜̂σ, such that

˜̂σ = eiĤZtσ̂e−iĤZt. (2.75)

In the case of a single spin interacting with a bulk magnetic field, this has the effect

of cancelling out the Zeeman interaction. Substituting σ̂ for ˜̂σ in equation 2.55, and

assuming that the Zeeman interaction is the only interaction present, we have:

˜̂σ(t) = e−iĤZt ˜̂σ(0)eiĤZt (2.76)

˜̂σ(t) = e−iĤZteiĤZtσ̂(0)e−iĤZteiĤZt (2.77)

˜̂σ(t) = σ̂(0). (2.78)

While this is not very useful for a purely Zeeman interaction, the utility of this

approach will hopefully become more clear as we consider both chemical shielding

and radiofrequency (RF) pulses.

2.1.2.2 RF Pulses

The application of RF pulses is key to the utility of NMR. Nuclear Larmor frequen-

cies at currently available magnetic fields exist typically within the range of tens

to thousands of MHz, corresponding to the radio-frequency region of the electro-
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magnetic spectrum. Applying RF pulses therefore allows us to excite and convert

nuclear spin order. Thanks to the long coherence lifetimes of nuclear spins, it is

possible to apply sequences of RF pulses thereby allowing for a substantial array

of experiments to be performed, in order to probe different material and spectral

properties.

The Hamiltonian for a RF pulse may be written as:

ĤRF (t) = ω1(cos(−ωrf t+ ϕ)Îx + sin(−ωrf t+ ϕ)Îy), (2.79)

where

ω1 = −γB1 (2.80)

is the ‘nutation frequency’, ϕ is the pulse phase (ϕ = 0◦ corresponding to a pulse

along Îx, ϕ = 90◦ being a pulse about Îy), and ωrf is the frequency of the pulse

applied. This may alternatively be written as

ĤRF (t) = ω1(e
i(−ωrf t+ϕ)Îz Îxe

−i(−ωrf t+ϕ)Îz). (2.81)

The effect of this pulse is easier to interpret if we convert this into the rotating frame

of the Zeeman Hamiltonian. As in equation 2.75, we have

˜̂
HRF (t) = eiĤZtĤRF e

−iĤZt (2.82)

˜̂
HRF (t) = eiĤZtω1(e

i(−ωrf t+ϕ)Îz Îxe
−i(−ωrf t+ϕ)Îz)e−iĤZt (2.83)

˜̂
HRF (t) = ω1e

iω0Îzt(ei(−ωrf t+ϕ)Îz Îxe
−i(−ωrf t+ϕ)Îz)e−iω0Îzt (2.84)

˜̂
HRF (t) = ω1e

i(ω0t−ωrf t+ϕ)Îz Îxe
−i(ω0t−ωrf t+ϕ)Îz (2.85)

˜̂
HRF (t) = ω1e

i(Ωt+ϕ)Îz Îxe
−i(Ωt+ϕ)Îz , (2.86)
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where

Ω = ω0 − ωrf (2.87)

and is therefore the resonance offset between the applied pulse and the Larmor

frequency. Therefore, if a pulse is applied perfectly on resonance (ωrf = ω0, Ω = 0)

with a phase ϕ = 0◦, this simply becomes

˜̂
HRF = ω1Îx. (2.88)

That is to say, this represents a nutation of the magnetisation about the x-axis

with frequency ω1. This can be used to convert between different coherences. For

example, applying this RF Hamiltonian to equilibrium magnetisation (defined in

equation 2.52) gives:

˜̂σ(t) = e−iĤRF t ˜̂σeqe
iĤRF t (2.89)

= e−iω1tÎx Îze
iω1tÎx (2.90)

= cos(ω1t)Îz − sin(ω1t)Îy. (2.91)

Applying a pulse such that ω1t = π/2 will therefore have the effect of nutating

the magnetisation from along Îz to −Îy. In this manner, RF pulses can be used to

interact with the nuclear spin state populations; this will be discussed further in

Chapter 3.

2.1.2.3 Chemical Shift

Electrons within an applied magnetic field will generate an opposing local magnetic

field which effectively shields the nuclear spins from the external field. This induced

local magnetic field is both significantly smaller in magnitude than the applied

33



field (typically on the order of ×10−6 smaller), and highly dependent on local

chemical environment. The Hamiltonian for chemical shielding is written (in the

PAS, assuming the secular approximation — see pg. 27):

Ĥ
PAS
CS = γ

[
− 1√

3
(σxxBx + σyyBy + σzzBz)T̂00 +

1√
6
(2σzzBz − σxxBx − σyyBy)T̂20

]
,

(2.92)

where Bx, By, Bz are the components of the external magnetic field in the PAS

of the chemical shielding tensor, σ̃. A neater way to express this is to perform a

rotation from the PAS to the laboratory (LAB) frame, characterised by the Euler

angles ΩPL = (αPL, βPL, γPL):

Ĥ
LAB
CS = −ω0

[
σiso +

σaniso
2

(3 cos2(βPL)− 1 + η sin2(βPL) cos(2αPL))
]
Îz, (2.93)

where σiso, σaniso, and η are the isotropic chemical shielding, anisotropic chemical

shielding, and asymmetry parameter defined as:

σiso =
1

3
(σPAS

xx + σPAS
yy + σPAS

zz ) (2.94)

σaniso = σPAS
zz − σiso (2.95)

η =
σyy − σxx
σaniso

. (2.96)

Typically, the ‘chemical shift’ is reported instead of the values of the chemical

shielding tensor. This is measured using the frequency shift of the sample (νsample)

relative to a reference compound at frequency νref as:

δiso =
νsample − νref

νref
× 106. (2.97)
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2.1.2.4 Dipolar & Hyperfine Coupling

As discussed previously, spin-active nuclei possess a magnetic moment (see equa-

tion 2.20). They therefore generate a local magnetic dipole, which may interact

with the magnetic dipoles arising from other neighbouring nuclear spins. Unpaired

electrons, for example those within a paramagnetic species, also generate a local

magnetic dipole and may therefore additionally interact. In the case of a nuclear-

nuclear dipole-dipole interaction, this is termed a ‘dipolar coupling’, while for a

nuclear-electron dipole-dipole interaction, this is the dipole-dipole component of

the ‘hyperfine coupling’.

These magnetic dipolar interactions are mediated through space, and the interaction

strength decreases proportionally with the volume of a sphere, as r−3. As was noted

in Table 2.3, the dipolar coupling in the principal axes system of the interaction

(aligned along the internuclear vector) is an axially symmetric anisotropic tensor.

The dipolar Hamiltonian is therefore given as

Ĥ
PAS
D = APAS

20 T̂ 20, (2.98)

where the spatial component, APAS
20 , is

APAS
20 =

√
6RDD,I,S , (2.99)

with RDD,I,S being the dipolar coupling, given by

RDD,I,S = −
(µ0
4π

)(γIγSh
2π

)
⟨r−3

IS ⟩ (2.100)

in units of rad s−1, where the point dipole assumption has been made implicitly†.

The spin component, T̂ 20, is

†The point dipole assumption is valid in the case where the size of the dipole is small compared to
the distance between them.
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T̂ 20 =
1√
6

[
2ÎzŜz − ÎxŜx − ÎyŜy

]
. (2.101)

It should be noted that the effective form of this Hamiltonian differs in the case of

heteronuclear and homonuclear interactions. This arises due to the conversion of

the T̂ 20 tensor into the rotating frame of the Zeeman interaction:

˜̂
T 20 = eiĤZtT̂ 20e

−iĤZt (2.102)

= ei(ωI Îz+ωSŜz)tT̂ 20e
−i(ωI Îz+ωSŜz)t (2.103)

=
1√
6

[
2ÎzŜz − ei(ωI Îz+ωSŜz)t(ÎxŜx + ÎyŜy)e

−i(ωI Îz+ωSŜz)t
]
. (2.104)

In the homonuclear case, ωI ≈ ωS , and therefore both components transform

similarly (e.g., at all times the spin space components are aligned) such that:

˜̂
T 20 =

1√
6

[
2ÎzŜz − eiωI(Îz+Ŝz)t(ÎxŜx + ÎyŜy)e

−iωI(Îz+Ŝz)t
]
. (2.105)

On the other hand, in the heteronuclear case, ωI ̸= ωS , and the Îx/y and Ŝx/y

operators will rotate separately and, therefore, will effectively dephase and average

to zero,

˜̂
T 20 =

1√
6

[
2ÎzŜz − (eiωI ÎztÎxe

−iωI ÎzteiωSŜztŜxe
−iωSŜzt

+ eiωI ÎztÎye
−iωI ÎzteiωSŜztŜye

−iωSŜzt)
]
. (2.106)

As a result, the homonuclear and heteronuclear Hamiltonians have different

forms:
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Ĥ
PAS
D,homo = RDD,I,S

[
2ÎzŜz − ÎxŜx − ÎyŜy

]
(2.107)

Ĥ
PAS
D,hetero = RDD,I,S

[
2ÎzŜz

]
. (2.108)

More detail on dipolar couplings, and their evolution over time, will be given in

Chapter 4.

2.1.3 Magic-Angle Spinning

In the solid state, the presence of strong unaveraged interactions such as dipolar

couplings and chemical shift anisotropy gives rise to substantial line broadening.

Reducing this coherent broadening is typically necessary in order to obtain site-

specific information about the environments within a sample. A common way to

perform this averaging is to spin the sample at high frequency about the so-called

‘magic angle’.

We may express the conversion of a given component of any given Hamiltonian

from the rotor frame to the lab frame as

ALAB
j0 =

j∑

m=−j

Dj
m0(ΩRL)A

ROTOR
jm (2.109)

ALAB
j0 =

j∑

m=−j

Dj
m0(−ωrt, βMAS , 0)A

ROTOR
jm (2.110)

ALAB
j0 =

j∑

m=−j

e−imωrtdjm0(βMAS)A
ROTOR
jm , (2.111)

noting that we consider only ALAB
j0 as other terms will not commute with the Zee-

man Hamiltonian and so have been omitted under the secular approximation. For

terms in the ROTOR frame with m ̸= 0, there is a time dependence in the result-

ing terms in the LAB frame. From average Hamiltonian theory, a time dependent
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Hamiltonian may be approximated as:142

Ĥ(t) ≈ Ĥ(1)
+ Ĥ

(2)
+ . . . . (2.112)

Truncating this to first order, we have

Ĥ(t) ≈ Ĥ(1)
(2.113)

≈ 1

tb − ta

∫ tb

ta

Ĥ(t)dt. (2.114)

Under MAS rotation, the time-dependent component of the Hamiltonian will be

e−imωrt. Over a rotor period (length τr), ROTOR frame terms with m ̸= 0 will

therefore average out to 0:

Ĥ(t) ∝∼
1

τr

∫ τr

0
e−imωrtdt = 0,m = ±1,±2. (2.115)

On the hand, for terms in the ROTOR frame with m equal to 0, they will not average

out. For tensors with rank j equal to 0 it is not possible to average out these

interactions; they are isotropic, and so no rotation will remove them. For tensors of

rank 2, however, the component AROTOR
20 may be set to zero by selecting the axis of

rotation carefully. The small Wigner d-matrix, d200 is:

d200(βMAS) =
1

2
(3 cos2(βMAS)− 1). (2.116)

Therefore, if βMAS is selected such that d200(βMAS) = 0, these terms will be equal to

0. This gives the magic-angle,

βMAS = cos−1

(
1√
3

)
= 54.74◦. (2.117)
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The effect of magic-angle spinning on the line broadening differs depending on

whether the interactions giving rise to the broadening are ‘homogeneous’ or ‘in-

homogeneous’.143 This arises due to the second- and higher-order terms of the

expansion of the time dependent Hamiltonian in equation 2.112. For example, the

second-order term in the expansion is:

Ĥ
(2) ∝

∫ τr

0

∫ t′

0

[
Ĥ(t′′), Ĥ(t′)

]
dt′′dt′, (2.118)

where linear prefactor terms have been omitted. While an individual operator

will commute with itself, the Hamiltonian Ĥ(t) is a sum of multiple different in-

teractions each with different operator compositions, which will vary with time.

In the so-called ‘inhomogeneous’ case, where these interactions commute, i.e.,
[
Ĥ(t′′), Ĥ(t′)

]
= 0, the truncation of the expansion of the Hamiltonian to first

order is valid and, therefore, the broadening is completely removed by magic-angle

spinning and the spectrum appears isotropic in nature (noting that spinning side-

bands will still result). This is the case for chemical shift anisotropy or heteronuclear

interactions. This is why very narrow line widths are possible in natural abundance

13C spectra at slow MAS frequencies (≤ 12.5 kHz) with the application of RF-based

1H homonuclear decoupling (see Figure 2.3b)

On the other hand, interactions for which pairs do not commute are termed ‘ho-

mogeneous’. In this case, the commutator in equation 2.118 does not equal zero

and therefore these higher-order terms are not completely averaged by MAS and so

can still contribute to the line broadening. This is the case for homonuclear dipolar

couplings:
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Figure 2.3: (a) A 1H 1D spectrum of [13C,15N]-L-histidine HCl H2O recorded at
a MAS frequency of 150 kHz and a 1H Larmor frequency of 1 GHz using a 0.51
mm HCN probe. (b) A 13C 1D cross-polarisation (CP) MAS spectrum of natural
abundance L-alanine recorded at a MAS frequency of 12.5 kHz and a 1H Larmor
frequency of 500 MHz using a 4 mm HXY probe, with 1H heteronuclear decoupling.
Note that in both cases the spectral width is 25 kHz.

[
ÎxŜx, ŜyR̂y

]
= ÎxŜx × ŜyR̂y − ŜyR̂y × ÎxŜx (2.119)

̸= 0. (2.120)

As a result there is residual homonuclear dipolar line broadening in a 1H spectrum

even at the fastest possible MAS frequencies where the MAS frequency is well in

excess of any single 1H – 1H dipolar coupling in the system (see Figure 2.3a).144

2.2 Relaxation Theory

2.2.1 Semi-Classical Relaxation Theory

This section will introduce a semi-classical approach for the treatment of NMR relaxation.

The first section of this is based predominantly on reading ‘Protein NMR relaxation: theory,
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applications and outlook’ by Fischer et al. (1998),145 ‘Principles of Nuclear Magnetism’ by

Abragam (1961),132 and ‘Theory of Relaxation Processes’ by Redfield (1957).113

Relaxation is the incoherent process by which a spin ensemble returns to its equi-

librium magnetisation. In this thesis, we are primarily interested in three types of

relaxation: spin-lattice relaxation, R1, by which a nuclear spin returns to equilibrium

z magnetisation; spin-spin relaxation, R2, by which the spin coherence in the rotat-

ing frame decays; and spin-lattice relaxation in the rotating frame, R1ρ, whereby the

magnetisation decays during a spin-lock pulse. R1 and R2 relaxation are shown in

Figure 2.4.
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Figure 2.4: Model of how the magnetisation decays after excitation. Left: 3D plot
showing the magnetisation decaying back to the z axis after excitation along x.
Right: The components of the magnetisation along each of the cartesian axes. In this
model, R1 = 14.3 s−1 and R2 = 100 s−1.

Owing to coherent processes (such as coherent spin diffusion via unaveraged dipo-

lar couplings), R2 is typically practically inaccessible in the solid state. This is

depicted in Figure 2.5, where additional coherent interactions are introduced to a

spin when moving from top to bottom in the figure. Note that the underlying R2

in this model is unchanged; the rapid decay of the nuclear spin coherence in this

model, and the resulting increase in line broadening, occur due to the introduction

of coherent processes. Additionally, magnetic field inhomogeneities, where the ex-
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ternal magnetic field varies slightly across the sample, may lead to line broadening.

In the solid state, therefore, the spin-lattice in the rotating frame (R1ρ) relaxation

rates are more frequently used. In these, the magnetisation is spinlocked along one

axis, and decays under the action of this spin lock. How these relaxation rates are

experimentally measured will be discussed in more detail in Section 3.3; this section

will deal with the theory underpinning our interpretation of this relaxation.

incoherent limit

coherent broadening

0 20 40 60 80 100

time / ms

0.8 1.0 1.2

frequency / kHz

incoherent limit

coherent broadening

Figure 2.5: Linewidths in the solid state depend not only on the incoherent relax-
ation processes (e.g., the lifetime of magnetisation in the transverse plane), but also
on coherent interactions such as dipolar couplings. Here, the effect of coherent aver-
aging on the observed linewidth is shown. The amount of incoherent broadening is
increased from top to bottom, with the incoherent limit (i.e., the limit of no coherent
broadening) shown as a grey dashed line.

In Section 2.1.1, the time evolution of the density matrix under the action of a coher-

ent Hamiltonian was presented. The presence of molecular motions, and chemical

exchange can give rise to a stochastic, incoherent time-dependent Hamiltonian. This

Hamiltonian is responsible for the nuclear spin relaxation. We begin by treating our

42



incoherent, stochastic Hamiltonian as a time-dependent first-order perturbation to

the Hamiltonian, Ĥ :

Ĥ = Ĥ0 + Ĥ1(t). (2.121)

It should be noted that a time-dependent Hamiltonian is not necessarily incoherent;

under MAS, the sample rotation gives rise to a time-dependent coherent modulation

of the Hamiltonian, as discussed in Section 2.1.3. Previously in equation 2.58, the

decomposition of a Hamiltonian into spherical harmonics was shown. We may

apply the same technique here to our incoherent Hamiltonian:

Ĥ1(t) =
+2∑

m′=−2

+2∑

m=−2

(−1)mD2
mm′(Ω(t))A2mT̂ 2−m, (2.122)

where Ω(t) represents the stochastic reorientation of a given interaction. Under the

secular approximation, we only retain terms with m′ = 0:

Ĥ1(t) =
+2∑

m=−2

(−1)mD2
m0(Ω(t))A2mT̂ 2−m. (2.123)

The benefit of using spherical harmonics in this case is that their rank is invariant

under rotation and, therefore, motion. For ease of notation, we factorize this into

‘time-dependent’ (Fj(t)) and ‘time-independent’ parts (V̂ j):

Ĥ1(t) =

2∑

m=−2

Fm(t)V̂ m, (2.124)

with
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Fm(t) = D2
m0(Ω(t)) (2.125)

V̂ m = (−1)mA2mT̂ 2−m. (2.126)

As stated in equation 2.54, the Liouville-von-Neumann equation describes the

time-evolution of the density matrix under the action of a Hamiltonian:

dσ̂(t)

dt
= −i

[
Ĥ0 + Ĥ1(t), σ̂(t)

]
. (2.127)

To aid our analysis, it is best to perform a transformation into the interaction frame

of the unperturbed Hamiltonian, Ĥ0:

˜̂
Q = eiĤ0tQ̂e−iĤ0t. (2.128)

In this interaction frame, σ̂(t) → ˜̂σ(t), Ĥ1(t) → ˜̂
H1(t)− Ĥ0:

d˜̂σ(t)

dt
= −i

[
˜̂
H1(t),

˜̂σ(t)
]
. (2.129)

Integrating this differential equation gives:

˜̂σ(t) = ˜̂σ(0)− i

∫ t

0
⟨
[
˜̂
H1(t),

˜̂σ(t)
]
⟩dt, (2.130)

which is not generally analytically solvable. One approach is to apply perturbation

theory, giving:
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˜̂σ(t) ≈ ˜̂σ(0)︸︷︷︸
zero-order

− i

∫ t

0
⟨
[
˜̂
H1(t

′), ˜̂σ(0)
]
⟩dt′

︸ ︷︷ ︸
first-order

−
∫ t

0

∫ t′

0
⟨
[
˜̂
H1(t

′),
[
˜̂
H1(t

′′), ˜̂σ(0)
]]
⟩dt′′dt′

︸ ︷︷ ︸
second-order

+ . . . ,

(2.131)

which, assuming that the incoherent perturbing Hamiltonian is small compared to

the coherent Hamiltonian, may be truncated to second order. As the perturbing

Hamiltonian is incoherent and stationary, it is taken to have an average value of

zero (any non-zero average could be incorporated into the non-time-dependent

part) and, therefore, the first order correction disappears.

i

∫ t

0
⟨
[
˜̂
H1(t),

˜̂σ(0)
]
⟩dt = 0 (2.132)

˜̂σ(t) ≈ ˜̂σ(0)−
∫ t

0

∫ t′

0
⟨
[
˜̂
H1(t

′),
[
˜̂
H1(t

′′), ˜̂σ(0)
]]
⟩dt′′dt′. (2.133)

This expression, however, assumes that there is no bulk polarisation (i.e., this is the

infinite temperature limit). To correct for finite temperature, assuming we are in the

high temperature limit (that is, all energy level separations ≪ kBT ), it can be shown

that a correction factor may be applied:

˜̂σ(t) ≈ ˜̂σ(0)−
∫ t

0

∫ t′

0
⟨
[
˜̂
H1(t

′),
[
˜̂
H1(t

′′), ˜̂σ(0)− ˜̂σeq

]]
⟩dt′′dt′, (2.134)

where the equilibrium density matrix ˜̂σeq has been derived previously in equa-

tion 2.52. Then, we can substitute in equation 2.124, noting that the conversion

of the operator V̂ α into the interaction frame gives rise to a modulation with a

frequency ωα, such that ˜̂
V α = eiωαtV̂ α, where ωα depends on the specific operator

composition of ˜̂
V α:
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˜̂σ(t)− ˜̂σ(0) ≈ −
∫ t

0

∫ t′

0
⟨
[∑

α

Fα(t
′) ˜̂V α,

×


∑

β

Fβ(t
′′) ˜̂V β,

˜̂σ(0)− ˜̂σeq




⟩dt′′dt′

(2.135)

˜̂σ(t)− ˜̂σ(0) ≈ −
∫ t

0

∫ t′

0
⟨
[∑

α

Fα(t
′)eiωαt′V̂ α,

×


∑

β

Fβ(t
′′)eiωβt

′′
V̂ β,

˜̂σ(0)− ˜̂σeq




⟩dt′′dt′.

(2.136)

This may be rearranged to give:

˜̂σ(t)− ˜̂σ(0) ≈ −
∑

αβ

[
V̂ α,

[
V̂

∗
β,

˜̂σ(0)− ˜̂σeq

]]

×
∫ t

0

∫ t′

0
⟨Fα(t

′)F ∗
β (t

′′)⟩ei(ωαt′−ωβt
′′)dt′′dt′,

(2.137)

where the time-dependent and independent parts have been separated. Assuming

that the time-dependent functions Fα/β(t) are stationary and do not themselves

vary in time, we may express their product as a correlation function:

Cαβ(τ) = ⟨Fα(0)F
∗
β (τ)⟩, (2.138)

noting that the time invariance of the function Fα/β(t) implies that the product is

dependent only on the difference in time, τ , and not the absolute time itself. This

gives:

˜̂σ(t)− ˜̂σ(0) ≈ −
∑

αβ

[
V̂ α,

[
V̂

∗
β,

˜̂σ(0)− ˜̂σeq

]]

×
∫ t

0

∫ t′

0
Cαβ(|t′ − t′′|)ei(ωαt′−ωβt

′′)dt′′dt′.

(2.139)
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The correlation functions with α = β are termed ‘auto-correlation’ functions, while

those with α ̸= β are ‘cross-correlation’ functions. In the following analysis, we

consider only auto-correlation functions, however equivalent solutions may be

found for cross-correlation functions. For the auto-correlation function, we may

solve the integral using the change of variable t′′ → τ = t′ − t′′, giving:

∫ t

0

∫ t′

0
Cαα(|t′ − t′′|)eiωα(t′−t′′)dt′′dt′ =

∫ t

0

∫ t

τ
Cαα(τ)e

iωατdt′dτ (2.140)

=

∫ t

0
(t− τ)Cαα(τ)e

iωατdτ. (2.141)

Then, assuming t > τ :

∫ t

0
(t− τ)Cαα(τ)e

iωατdτ ≈ t

∫ ∞

0
Cαα(τ)e

iωατdτ (2.142)

≈ t

2

∫ ∞

−∞
Cαα(τ)e

iωατdτ (2.143)

≈ t

2
Jαα(ωα), (2.144)

where Jαα is termed a ‘spectral density’, and is the Fourier Transform (FT, F ) of the

correlation function Cαα:

Jαα(ω) =

∫ ∞

−∞
Cαα(τ)e

iωτdτ (2.145)

= F(Cαα(τ)). (2.146)

An analogous procedure can be performed for cross-correlation functions, giv-

ing:
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∫ t

0

∫ t′

0
Cαβ(|t′ − t′′|)ei(ωαt′−ωβt

′′)dt′′dt′

=
1

2i(ωα − ωβ)

{
ei(ωα−ωβ)tJαβ(ωβ)− Jαβ(ωα)

}
.

(2.147)

Typically for large frequency differences (such as heteronuclear dipolar couplings)

the ωα − ωβ term on the denominator means that cross-correlation is negligible.

However, for homonuclear processes this may be significant.

Returning to auto-correlation based relaxation, we can therefore write:

˜̂σ(t)− ˜̂σ(0) ≈ − t

2

∑

α

[
V̂ α,

[
V̂

∗
α,

˜̂σ(0)− ˜̂σeq

]]
Jαα(ωα), (2.148)

and so, assuming that t is small:

d˜̂σ(t)

dt
≈

˜̂σ(t)− ˜̂σ(0)

t
(2.149)

≈ −1

2

∑

α

[
V̂ α,

[
V̂

∗
α,

˜̂σ(0)− ˜̂σeq

]]
Jαα(ωα). (2.150)

This equation relates the time-evolution of the density matrix to the value of the

spectral density evaluated at a given frequency. In the case of physical motion

giving rise to relaxation, this value is interpreted as being related to the amount

of motion occurring at a given frequency. A final simplification is to drop the αα

from the spectral density Jαα and correlation functions Cαα, as it has been shown

that, for an isotropic powder sample, each of these (J00, J11, J22 / C00, C11, C22) are

functionally equivalent:146
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d˜̂σ(t)

dt
≈ −1

2

∑

α

[
V̂ α,

[
V̂

∗
α, σ̃(0)− σ̃eq

]]
J(ωα). (2.151)

We may then use this expression to generate equations for relaxation rates for

different spins, as:

d⟨Ŷ ⟩
dt

=
d

dt
Tr(Ŷ ˜̂σ(t)) (2.152)

= Tr

(
Ŷ
d˜̂σ(t)

dt

)
, (2.153)

where Ŷ is the state being considered. While these are not evaluated here, deriva-

tions may be found in several references including ‘Protein NMR relaxation: theory,

applications and outlook’ by Fischer et al. (1998),145 ‘The nuclear magnetic resonance

relaxation data analysis in solids: General R1/R1ρ equations and the model-free

approach’ by Kurbanov et al. (2011),146 and ‘Relaxation Processes in a System of

Two Spins’ by Solomon (1955).147 The resulting expressions are:

RII
1 =

3

4
ω2
D(J(ωobs) + 4J(2ωobs)) (2.154)

RIS
1 =

1

4
ω2
D(J(ωobs − ωneigh) + 3J(ωobs) + 6J(ωobs + ωneigh)) (2.155)

RII
1ρ =

3

8
ω2
D(3Q(ω1) + 5J(ωobs) + 2J(2ωobs)) (2.156)

RIS
1ρ =

1

8
ω2
D(4Q(ω1) + J(ωobs − ωneigh) + 3J(ωobs) + 6J(ωneigh) + 6J(ωobs + ωneigh))

(2.157)

RCSA
1 =

1

3
δ2CSA,obsJ(ωobs) (2.158)

RCSA
1ρ =

1

18
δ2CSA,obs(4Q(ω1) + 3J(ωobs)), (2.159)
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noting that Q(ω) is the spinning frequency corrected spectral density:

Q(ω) =
1

6
(J(ω1 + 2ωr) + 2J(ω1 + ωr) + 2J(ω1 − ωr) + J(ω1 − 2ωr)) , (2.160)

and δ2CSA,obs is given by:

δ2CSA,obs = (ωobs × 10−6)2(σ2xx + σ2yy + σ2zz − σxxσyy − σxxσzz − σyyσzz). (2.161)

where σxx,yy,zz are the CSA tensor components defined in Section 2.1.2.3.

2.2.2 Correlation Functions

Several methods have been developed for analysing NMR relaxation data in terms

of underlying motions. Here, three of these will be discussed; namely, spectral

density mapping,148 discrete approaches (e.g., model-free115 and IMPACT149), and

continuous approaches (e.g., detectors150).

Spectral density mapping based methods do not directly assume any form of the

underlying correlation function.148, 151, 152 Rather, they make use of sets of experi-

ments performed at the same magnetic field, such that the resulting relaxation rates

are different linear combinations of the same spectral density function evaluated at

the eigenfrequencies of the system. Performing such analysis at a range of different

fields can sample the spectral density at multiple different frequencies and allow

for quantitative analysis of the underlying form of the spectral density.153 However,

such an approach is limited in its application to solid-state NMR. In order for the

system of linear equations to be well-posed there must be at least as many relax-

ation rates measured as there are spectral density components to be determined.

In solution-state NMR, this is feasible: it is possible to measure spin-lattice relax-

ation (R1), spin-spin relaxation (R2), and the steady-state heteronuclear nuclear
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Overhauser effect (nOe), and therefore determine three components of the spectral

density (typically, for 15N – 1H analysis, these would be J(0), J(ωH), and J(ωN)).

In the solid state, however, it is not generally practical to determine steady-state

nOes owing to limited sensitivity154 and the influence of incoherent spin diffusion

(Chapter 4 investigates this in more detail), and, as such, performing a similar

analysis is typically infeasible.

Both discrete and continuous approaches rely on consideration of the correlation

function and spectral density more generally. By substituting equation 2.125 into

equation 2.138, we can write:

Cαβ(τ) = ⟨D2
α0(Ω(0))D

2,∗
β0 (Ω(τ))⟩. (2.162)

In the case of auto-correlated relaxtion, we have that α = β, that is,

Cαα(τ) = ⟨D2
α0(Ω(0))D

2,∗
α0 (Ω(τ))⟩. (2.163)

As noted previously for equation 2.151, these correlation functions do not depend

on the index α. Then, using the addition theorem of spherical harmonics,155 this can

then be written as:

C(τ) =
1

5
⟨P2(µ̄(0) · µ̄(τ))⟩, (2.164)

where µ̄ is a unit vector in a global frame.

To proceed with this correlation function, we firstly decompose it into two cor-

relation functions representing ‘overall motion’ (Coverall(t)) and ‘internal motion’

(Cinternal(t)):

C(t) =
1

5
Coverall(t)Cinternal(t). (2.165)
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Assuming that the overall motion may be represented by a stationary Markovian

process and is isotropic, its correlation function will have the form of an exponential

decay:

Coverall(t) = e
− t

τM , (2.166)

where τM is the correlation time for overall tumbling. In the solid-state, the restric-

tion of overall motion due to sample packing means that this tumbling is typically

negligible, and may be ignored (e.g., Coverall(t) = 1). The internal motion correlation

function may be expressed as

Cinternal(τ) = ⟨P2(µ̄i(0) · µ̄i(τ))⟩, (2.167)

where the subscript i indicates that these unit vectors, µ̄i, are rigidly attached to the

overall tumbling body. From this, we can find that

Cinternal(0) = ⟨P2(1)⟩ = 1, (2.168)

which is to say that the internal correlation function is unitary normalised. Further,

we can take C(∞) to be the square of the generalised order parameter, S, such that

C(∞) = S2. Next, we make the assumption that the internal motions are stationary

and Markovian, and continuous in their effective timescale. Then, we can express a

correlation function over a continuous distribution of timescales of motion using

the Laplace transform of θ(τ):

Cinternal(t) = S2 +

∫ ∞

−∞
θ(τ)e−

t
τ d log(τ), (2.169)

where θ(τ) is the ‘density of motions’ (i.e., how much motion occurs on any given

timescale) occurring, with
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Figure 2.6: Illustration of how the correlation function (C(t), a), spectral density
(J(ω), b), and distribution of motions (θ(t), c) are related. Note that owing to the
ill-posed nature of the inverse Laplace transform, here the θ(t) has been taken as the
ground truth from which the correlation function (via Laplace transform, L) and
spectral density (via subsequent Fourier transform, F) have been calculated.

∫ ∞

−∞
θ(τ)d log(τ) = 1− S2. (2.170)

Figure 2.6 shows how the correlation function, spectral density, and density of

motions are related. The aim of dynamical analysis is to characterise this density of

motions. Historically, the majority of methods for performing this in both solution-

and solid-state NMR has been to assume some discretised form of the density

of motions. More recently, an approach has been introduced which allows the

continuous nature of this to be maintained explicitly. Here, discrete models of this

will be introduced first, followed by the continuous approach.
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2.2.2.1 Discrete Density of Motion Methods

In discrete approximations of the density of motions, the integral in equation 2.169

is replaced with a summation:

Cinternal(t) ≈ S2 +
∑

i

Aie
− t

τi (2.171)

∑

i

Ai = 1− S2, (2.172)

where Ai is the amplitude of motion at a correlation time of τi. One common version

of this discrete approximation is the ‘model-free’ model (‘simple model-free’, SMF),

first introduced by Lipari and Szabo (1982).115, 116 In the original formulation of this

model, the internal correlation function was taken as:

CSMF, internal(t) = S2 + (1− S2)e−
t
τ , (2.173)

for which the corresponding spectral density function is

JSMF, internal(ω) =
(1− S2)τ

1 + (ωτ)2
. (2.174)

It was later found that for many systems, at least two timescales of motion are

required to adequately model the internal motions. This led to the introduction of

the ‘extended model-free’ model (EMF):156, 157

CEMF, internal(t) = S2 + (1− S2
f )e

− t
τf + S2

f (1− S2
s )e

− t
τs (2.175)

JEMF, internal(ω) =
(1− S2

f )τf

1 + (ωτf )2
+
S2
f (1− S2

s )τs

1 + (ωτs)2
(2.176)

S2 = S2
sS

2
f , (2.177)
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where τf and τs refer to fast and slow timescales, respectively, and S2
f and S2

s to the

fast and slow order parameters. A key limitation of extending these discrete models

to multiple timescales in the solid state is that the overall amplitude of motion

(
∑

iAi) must be constrained by an experimentally measured order parameter, the

accuracy of which can then have a large impact on the resulting amplitudes of

motion.158 As a result, the application of these methods is hindered for systems

with poor sensitivity, for which the accurate determination of good quality dipolar

order parameters is not feasible (see Chapter 5) or for nuclei where the relaxation is

dominated by non-dipolar mechanisms, such as carbonyls (see Chapter 6).

In both SMF and EMF (and derived model-free models), there exists the issue that

the models are trying to parameterise a likely complex and continuous density of

motions with a very small number of timescales. As a result, the interpretation

of the timescales of motion (τ for SMF, τs and τf for EMF) is complicated. It has

been found by Smith et al. (2017) that, when practically applied, these timescales

will fit to where the relaxation rates are most sensitive.150 One final discrete tech-

nique, Interpretation of Motions by Projection onto an Array of Correlation Times

(IMPACT),149 is less affected by this biasing.159 In IMPACT, the discrete correlation

function (equation 2.171) is used directly,

CIMPACT, internal(t) = S2 +
∑

i

Aie
− t

τi (2.178)

JIMPACT, internal(ω) =
∑

i

Aiτi
1 + (ωτi)2

, (2.179)

where the τi are a predetermined and logarithmically spaced array of correlation

times. By not including the timescales in the fitting process, this model is less biased

towards where the relaxation rates are sensitive. This model has been found to

be particularly useful in the study of intrinsically disordered regions (IDRs) and

intrinsically disordered proteins (IDPs), for which the assumption of distinctly
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Figure 2.7: Comparison of Model Free methods of parameterising the correlation
function. The effective modelled distribution of motions is shown on the left, with
the corresponding correlation function on the right. (a) Distribution of motions
and correlation function derived from 1 µs of MD of a supercell containing 108
GB1 monomers. (b) Result of fitting a single timescale ‘Simple Model Free’ model
of dynamics to the MD derived correlation function (shown as a dashed line). (c)
Result of fitting a two timescale ‘Extended Model Free’ model to the MD derived
correlation function. (d) Result of fitting a 5 timescale ‘Interpretation of Motion by
Projection onto an Array of Correlation Times’ model to the MD derived correlation
function.

separated timescales of motion is less justifiable than in rigid proteins.149 Figure 2.7

shows a comparison of different methods assuming a discrete density of motions.

Note, however, that, in this case, these have been fit to a known ‘true’ density of

motions, and the performance for experimental relaxation data will be poorer owing

to the limited sensitivity of these rates.

2.2.2.2 Continuous Density of Motion Methods

The issue of timescale biasing, which has been found to potentially lead to significant

misrepresentation of real motions,150 led to the development of methods which
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assume a continuous density of motions.160, 161 By taking the Fourier transform of

the continuous representation of the correlation function given in equation 2.169,

we get:

Jinternal(ω) = 2

∫ ∞

−∞

θ(τ)τ

1 + (ωτ)2
d log(τ). (2.180)

The corresponding overall spectral density function (c.f. equation 2.165) is

then:

J(ω) =
2

5

∫ ∞

−∞

θ(τ)τ

1 + (ωτ)2
d log(τ). (2.181)

Previously, it was shown that the evolution of the density matrix may be expressed

as a linear combination of spectral density function contributions (see Section 2.2.1).

Following from this, it should be noted that any relaxation rate may also be ex-

pressed as a linear combination of spectral density function contributions:

R =
∑

i

ciJ(ωi), (2.182)

where R represents any arbitrary relaxation rate composed of a sum of contribu-

tions from the spectral density probed at different frequencies (ωi), weighted by ci.

Substituting the continuous form of the spectral density given in equation 2.180 into

equation 2.182, we get

R =
∑

i

ci

∫ ∞

−∞

θ(τ)τ

1 + (ωiτ)2
d log(τ), (2.183)

which can be rearranged to give
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R =

∫ ∞

−∞
θ(τ)

∑

i

ci
τ

1 + (ωiτ)2
d log(τ) (2.184)

=

∫ ∞

−∞
θ(τ)s(τ)d log(τ). (2.185)

Following this rearrangement, it can be seen that the relaxation rate is now the

integral of the product of two functions: one unknown (θ(τ)), and one known (s(τ)).

This known function is referred to as the ‘sensitivity’ of the relaxation rate, and can

be easily calculated given knowledge of the coefficients ci for a given relaxation rate,

and the corresponding eigenfrequencies ωi of the system:

s(τ) =
∑

i

ci
τ

1 + (ωiτ)2
. (2.186)

Given a model of the relaxation at a given site, we can therefore calculate the sensitiv-

ity of a given relaxation rate to motions occurring on different timescales. Figure 2.8

illustrates this using a known MD-derived density of motions. Ideally, however,

we would like to gain greater insight into motions occurring on a specific range of

timescales. While the relaxation rate sensitivities are well-defined, they are typically

poorly resolved with significant areas of overlap. Smith et al. (2018) introduced a

method of forming linear combinations of relaxation rates, ‘detectors’, with well-

defined sensitivities optimized to obtain useful properties, such as sensitivity to a

specific timescale of motion.160 Later, they introduced a method using singular value

decompositions (SVD) to more readily optimise these linear combinations.161 This

SVD based method will be briefly introduced here, however this will be explored in

more detail in Chapters 5 and 6.

In this analysis, it should be noted that the relaxation rates and relaxation rate

sensitivities used have been normalised according to the maximum of the sensitivity.

That is to say,
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Figure 2.8: Illustration of how relaxation rates may be obtained from the density of
motions profile. Each relaxation rate has a ‘sensitivity’. The resulting relaxation rate
is the integral of the product of this sensitivity with the density of motions.

ℜi =
Ri

max(si(τ))
(2.187)

Si(τ) =
si(τ)

max(si(τ))
. (2.188)

This normalization is performed because the maximum of the unnormalized sensi-

tivities may vary significantly between relaxation rates which may cause problems

of numerical stability. It additionally allows for direct comparison between R1 and

R1ρ relaxation rates. We may express a detector, ρn, as a linear combination of N

relaxation rates

ρn =
N∑

c=1

yc,nℜc (2.189)
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where yc,n is a coefficient denoting how much ℜc contributes to the detector ρn. This

detector will then have an associated ‘detector sensitivity’, Pn(τ):

Pn(τ) =
N∑

c=1

yc,nSc(τ). (2.190)

The aim is then to optimise the coefficients yc,n such that the sensitivities Pn(τ) have

the desired properties. Typically, this will be that the detectors are well defined in

time, with narrow sensitivities such that each is maximally sensitive to a particular

timescale of motions.

To perform the optimization of these detectors, an N ×m matrixM describing the

sensitivities of our N relaxation rates may be composed by discretising Sc(τ) with a

certain number of points, m, to give the discretised sensitivity Sc with components

Sc,µ (µ being an index 1 . . .m). The number of points is effectively arbitrary; more

points lead to longer calculations, fewer points give reduced accuracy. The matrix

M is then:

M =




S1

...

SN




(2.191)

=




S1,1 · · · S1,m
...

. . .
...

SN,1 · · · SN,m



. (2.192)

Taking the SVD of this will give an orthogonal matrix U (dimension N × N ), a

rectangular diagonal matrix Σ (dimension N ×m), and an orthogonal transpose

matrix V
′

(dimension m×m)

M = UΣV ′. (2.193)
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The N diagonal elements of the Σ matrix are termed the singular values, σ. Much

like eigenvalues and eigenvectors of square matrices, each singular value in Σ will

have a corresponding singular vector, v, in V . The magnitude of a real σ value

relates to the extent to which the corresponding singular vector, v, contributes to

the matrix M . It has been found that taking the highest k singular values and

vectors enables the optimisation of ≈ k well-behaved detectors.129 As we do not

know a priori how many detectors we can form given our relaxation rate dataset, we

perform the optimisation for a range of k values and then determine which gives the

best fit to the experimental relaxation rate data. Firstly, the SVD is truncated

M̃ = UkΣkV
′
k. (2.194)

To find suitable detectors, linear programming algorithms are used to optimize

linear combinations of the orthogonal singular vectors in V ′
k to create detectors with

specific properties. This optimisation is performed to identify linear combinations

for which Pn,µ = 1 for µ = q, and Pµ = 0 otherwise, where q is iterated from 1 to

m. This optimization then defines a transformation matrix,Q, for which each row

defines a linear combination of the singular vectors in V ′
k yielding a well-defined

detector. The SVD may then be expanded as

M̃ = UkΣkQ
−1QV ′

k. (2.195)

The matrix productQV ′
k is thus composed of the optimized well-defined detectors.

The productUkΣkQ
−1 therefore defines the linear combination of these detectors to

obtain the original rates. The linear combination of detectors comprising a relaxation

rate is termed a ‘detection vector’, which are the columns of the matrix r calculated

as:129

r = UkΣkQ
−1. (2.196)
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Once detectors have been optimised, the detector responses may be calculated using

these detection vectors (rµ = [r0,µ, . . . , rk−1,µ], defining the detector make-up of

relaxation rate µ, 1 ≤ µ ≤ N ), relaxation rates (ℜ = [ℜ1, . . . ,ℜN ]), and relaxation

rate errors (ϵ = [ϵ1, . . . , ϵN ]). This is typically performed as a non-negative least

squares fit as

ρ =




r1
ϵ1
...

rN
ϵN




−1

(
ℜ
ϵ

)
, (2.197)

where the relaxation rates (and corresponding detector vectors) are divided by

the respective error to prioritize the fitting of good quality data. In the case that

a relaxation rate was missing from a given dataset (for example, due to overlap),

the relaxation rate ℜi was set to 0 and the respective error to ϵi = 105, effectively

removing that relaxation rate from the fit. Sites for which ≥ 5 relaxation rates were

missing were removed from fitting entirely. The non-negative least squares fit was

performed using the scipy162 NNLS function.

The error on the detector responses was estimated using a Monte-Carlo approach.

From the initial ρ, back-calculated relaxation rates (ℜbc) were obtained as

ℜbc =




r1
...

rN



ρ. (2.198)

To each of these back-calculated relaxation rates, normally distributed pseudo-

random noise was added according to their respective standard deviations. The

resulting set of relaxation rates was then used to obtain detector responses again

according to equation 2.197. This procedure was then repeated 200 times, with the

value of the detector response reported taken as the median of the repeats. Errors

were taken at the 5% and 95% percentiles. The median response was then used
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again to back-calculate the relaxation rates to ensure consistency.

This detector approach has found utility in studying the dynamics occurring within

a range of systems, including both proteins,129, 160 viral capsids,163 and lipid mem-

branes.128 As a new technique, however, a number of questions and challenges

remain. For example, the technique relies strongly on having a suitable model for

the relaxation rate of interest. While, for 15N relaxation, it is well known that the

15N – 1H interaction dominates, and for 13C’ that the CSA dominates, the application

of this to different nuclei may require investigation of the relative contributions

of different interactions. Further, the optimisation of these detectors may be chal-

lenging in the case that there is one interaction which dominates the sensitivity

but, owing to the underlying density of motions, does not dominate the relaxation.

Finally, the treatment of other factors such as temperature dependence and other

contributing relaxation effects is not obvious in the use of detectors.
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Chapter 3

Experimental Techniques

This chapter will introduce the NMR experiment: how do we generate and in-

terconvert nuclear spin coherence? Section 3.1 will introduce some simple NMR

experiments and considerations. Initially, the simplest FT-NMR experiment will

be shown in Section 3.1.1, with the concepts of Free-Induction Decay (FID) and

quadrature detection being introduced. This will be followed by the introduction of

Cross-Polarisation (CP) in Section 3.1.2, which is then used to introduce the concept

of Multidimensional NMR in Section 3.1.3. Following this, a brief introduction to

coherence order and phase cycling will be given in Section 3.1.4. Then, Section 3.2

will expand further into the nature of the RF pulses used and how the nature of a

pulse relates to its frequency response. Relaxation experiments will then be intro-

duced in Section 3.3; first as the underlying principles of relaxation measurement

in Section 3.3.1, and then with the actual experiments utilised in this thesis in Sec-

tion 3.3.2. Finally, Section 3.3.3 will discuss the different nuclei and relaxation rates

accessible at different MAS frequencies owing to the influence of coherent evolution

and spin diffusion.
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3.1 General Experimental Methodology

3.1.1 Free-Induction Decay

NMR experiments rely upon the generation, and subsequent detection, of the non-

equilibrium coherences generated in nuclear spin systems. The generation of such

states relies on the external manipulation of the spin system by the experimentalist.

In the early days of NMR, this manipulation was performed by measuring the

absorption of a continuously applied weak oscillating RF field.20–22 By sweeping

either the frequency of oscillation of this field, or the magnetic field strength it

was possible to identify resonance conditions in which the frequency of the RF

applied and the resonant frequency of a nuclear spin were equal, and so the RF was

absorbed. This form of NMR is termed ‘CW-NMR’, for Continuous-Wave NMR.

However, as this technique only excites a single frequency at a time it faces poor

sensitivity. Additionally, two-dimensional NMR spectroscopy is not practical using

CW-NMR.

The development of faster computers and better algorithms26 in the 1950s and 60s

led to the introduction of Fourier Transform (FT)-NMR by Ernst et al. in 1966.25 In

this, broadband pulses of RF are used to excite and interconvert magnetic coherence

states. As well as the gain in sensitivity from exciting all spin states simultaneously,

the use of short ‘hard’ pulses* to excite and interconvert coherences, combined

with the slow relaxation of coherences in NMR, later enabled the development of

multiple pulse methods and multi-dimensional techniques. The nature of the RF

pulses used to excite these will be discussed more in Section 3.2.

The simplest possible FT-NMR experiment is shown in Figure 3.1a. In this, a 90◦

hard pulse (shown as a rectangular box) is applied about the x-axis. This causes

the nuclear spin magnetisation to nutate around the x axis from equilibrium along

the z-axis until it reaches the transverse plane along the y axis. Following this, the

transverse plane magnetisation evolves, precessing at its Larmor frequency. The

*‘Hard’ pulses being where the nutation frequency is much greater than the resonance offset
(defined in equation 2.87).
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precessing magnetic moment induces a current in the RF coil. In the case of a single

isolated spin-1/2 nucleus with a Larmor frequency of ω0 and a spin-spin relaxation

time of T2, this induced current will be of the form:

S(t) ∝ cos (ω0t) exp
− t

T2 . (3.1)

The frequency of this response (e.g., ω0), however, is on the order of MHz and

therefore cannot be easily digitised directly. Instead, this resulting frequency is

‘mixed’ (multiplied) with a synthesised signal applied at the ‘receiver reference

frequency’, ωrref (note that this is typically, though not necessarily, the same as

the RF pulse frequency, ωrf ). The mixing of these two signals produces an output

signal containing the sum and difference of the detected signal and the reference

frequency:

Sreal
mix(t) = S(t)× cos (ωrref t) (3.2)

∝ cos (ω0t) exp
− t

T2 cos (ωrref t) (3.3)

∝ [cos ((ω0 + ωrref )t) + cos ((ω0 − ωrref )t)] exp
− t

T2 (3.4)

HP filter
=====⇒ [cos ((ω0 − ωrref )t)] exp

− t
T2 , (3.5)

with the high-frequency sum term (cos ((ω0 + ωrref )t)) being omitted using a high-

pass (HP) filter and the difference (cos ((ω0 − ωrref )t)) being a detectable signal,

typically on the order of kHz. However, owing to the symmetry of the cosine

function (cos(x) ≡ cos(−x)), we have no way of determining whether ω0−ωrref > 0

or < 0. In order to determine the sign of this resulting signal, we therefore need

to acquire the response along both the x− and y− axes; this is termed ‘quadrature

detection’. To do this, we additionally mix a receiver reference frequency 90◦ out of

phase:
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S
imag
mix (t) = S(t)× cos

(
ωrref t+

π

2

)
(3.6)

∝ cos (ω0t) exp
− t

T2 cos
(
ωrref t+

π

2

)
(3.7)

∝ − cos (ω0t) exp
− t

T2 sin (ωrref t) (3.8)

∝ [− sin ((ω0 + ωrref )t) + sin ((ω0 − ωrref )t)] exp
− t

T2 (3.9)

HP filter
=====⇒ [sin ((ω0 − ωrref )t)] exp

− t
T2 , (3.10)

where the resulting difference signal is now sine modulated. These resulting cosine

and sine modulated signals can then be digitised, and combined to give a complex

Free Induction Decay (FID):

FID(t) = Sreal
mix(t) + iS

imag
mix (t) (3.11)

∝ [cos ((ω0 − ωrref )t) + i sin ((ω0 − ωrref ))] exp
− t

T2 (3.12)

= expi(ω0−ωrref )t exp
− t

T2 . (3.13)

To obtain the frequency domain spectrum we then take the Fourier Transform of

this resulting signal. The result is the complex frequency domain signal:

S(ω) ∝ 1/T2
(1/T2)2 + (ω − ω0 + ωrref )2

− i
ω − ω0 + ωrref

(1/T2)2 + (ω − ω0 + ωrref )2
(3.14)

= A(ω)− iD(ω), (3.15)

where A(ω) and D(ω) are termed the absorptive and dispersive lineshapes (Fig-

ure 3.1b). The absorptive lineshape is narrower and gives better resolution, and so

to ensure that this is the lineshape displayed a phase correction is applied to the FID

to change the relative combinations of the real and imaginary parts to ensure pure
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absorptive lineshapes.

time / ms

0 50 100 150 200 250 300

a)

Real

Imaginary

0.7 0.8 0.9 1.0 1.1 1.2 1.3

frequency, ν / kHz

b)

Figure 3.1: (a) Transverse magnetisation generated by the application of an RF pulse
precesses and induces a current in the receiver coil. (b) Fourier transform of this
gives a spectrum with both a ‘real’ and ‘imaginary’ component, with absorptive and
dispersive lineshapes, as defined in equation 3.14.

3.1.2 Cross Polarisation

Hydrogen is ubiquitous in biological systems, composing ≈50% of all atoms in pro-

teins numerically. The most abundant isotope of hydrogen, 1H, making up 99.99%

of all hydrogen, is the nucleus with the second highest gyromagnetic ratio (exceeded

only by the unstable, rare, and radioactive tritium 3H). Additionally, 1H is generally

a reasonably fast relaxing nucleus (relative to other isotopes present in biological

systems, such as 13C and 15N). 1H is therefore the most sensitive NMR nucleus. This

abundance and high magnetic sensitivity, however, give rise to substantial homonu-

clear (and hence homogeneous) dipolar couplings (see equation 2.100). While MAS

can reduce the line-broadening resulting from these, it is still significant even at the

fastest MAS rates attainable today. This line-broadening, coupled with the small

chemical shift dispersion (≈10–20 ppm), typically gives rise to very crowded and
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poorly resolved 1H spectra with many overlapping peaks.

Other spin-active isotopes such as 13C and 15N are also present in biological systems.

These nuclei both have substantially lower gyromagnetic ratios, at approximately

25% and 10% of proton respectively. While these exhibit larger chemical shift

dispersion (typically on the order of 200 ppm for 13C) and narrower lines owing to

their weaker dipolar couplings, they face issues of sensitivity owing to their low

natural abundance and low gyromagnetic ratios, and also generally significantly

longer required recycle delays (typically on the order of tens of seconds for 13C, and

minutes for 15N). While the sensitivity may be aided by isotopic enrichment of the

sample, these issues substantially reduce the favourability of NMR spectroscopy to

these nuclei.

1H

90◦

CP

X

t1

CP

Figure 3.2: Depiction of a cross polarisation experiment. The CP spin lock applied
on 1H here is a ramp CP, shown by the slope in the block.

Ideally, we would like to combine the high sensitivity and fast relaxation of 1H with

the wider chemical shift dispersion and resolution of these other spin-active isotopes.

Cross Polarisation (CP)164, 165 is a method by which the simultaneous application of

RF to two channels enables the transfer of magnetisation between them. Figure 3.2

shows a simple CP experiment to transfer magnetisation from the 1H channel to the

X channel (where X may be any other spin-active nucleus§). Recoupling is achieved

by setting the nutation frequencies of the RF spin-lock pulses applied on the two

channels such that they meet the Hartmann-Hahn condition,164

§Typically spin-1/2. Cross-polarisation methods may also be used with quadrupolar nuclei (e.g.
ref 166), however generally other recoupling methods are more suitable in these cases (e.g. ref 167).
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ν1(
1H)± ν1(X) = nνr, (3.16)

where ν1(1H) and ν1(X) are the nutation frequencies on the 1H and X channels

respectively, n is an integer, and νr is the MAS frequency. It should be noted that

CP may either go via a Zero-Quantum (ZQ) or Double-Quantum (DQ) mechanism

depending on whether the sum or difference of nutation frequencies is used†; as

such, conditions where both of these are met should be avoided as they will give

no magnetisation transfer (for instance, at νr = 60 kHz spin lock pulses with

ν1(
1H) = 80 kHz and ν1(X) = 20 kHz (ZQ) or ν1(1H) = 40 kHz and ν1(X) = 20

kHz (DQ) may be used; however, ν1(1H) = 90 kHz and ν1(X) = 30 kHz will

not, as this would meet both a positive and negative condition). The difficulty in

exactly meeting these Hartmann-Hahn conditions led to the introduction of Ramped-

Amplitude CP,168 whereby the nutation frequency on one channel is linearly varied;

this enables slight imperfections in the exact setting of this condition to be accounted

for. It should be assumed that, unless specified otherwise, all experiments using

CP in this thesis were performed using a ramp. In pulse sequence figures in this

thesis, the ramp is represented by a change in the amplitude across the block (e.g.,

Figure 3.2).

3.1.3 Multidimensional NMR

Higher dimensionality techniques are useful for several purposes; for example, they

can enable correlations between nuclei to be observed which provide information

on bonding and connectivity (for J-based methods) or spatial arrangement (for

dipolar coupling-based methods). By spreading the peaks into multiple dimensions,

significantly greater resolution can be attained, allowing for site-specific resolution

of resonances within even large biological systems. The primary type of multidi-

mensional experiment used in the work underpinning much of this thesis is the

15N – 1H inverse CP experiment, shown in Figure 3.3a. This experiment is of partic-

†See Section 3.1.4 for detail on the difference between ZQ and DQ.
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ular utlity in studying protein systems, as these possess N – H amide groups along

their backbone. The chemical shift of these groups is sensitive to the local protein

secondary structure. Correlating these two nuclei gives a fingerprint spectrum

(Figure 3.3b), where cross peaks indicate directly bonded 15N – 1H (for short CP

contact times). The key facets of many higher dimensional experiments applied to

biological systems in the solid state are represented in this experiment.

Reading the two channels of the pulse program in Figure 3.3a from left to right,

we begin with the application of a 90◦ pulse applied to 1H. This nutates the bulk

1H magnetisation from along the longitudinal z-axis into the transverse plane.

This transverse magnetisation is then transferred to 15N via a ramped-CP, giving

transverse magnetisation on 15N. During the time t1, this magnetisation is allowed

to freely evolve and so encode the 15N Larmor frequency (with decoupling applied

to the 1H channel). This free evolution period is then followed by MISSISSIPPI,169 a

water suppression method. First, the 15N magnetisation is placed along the z-axis.

The 1H magnetisation is then completely saturated, to kill off any magnetisation

which may have recovered during the free evolution time (e.g., water). Once this

signal has been fully suppressed, the 15N magnetisation is recovered back into the

transverse plane and transferred via CP back to the 1H, where it is detected during

t2. This entire sequence is then repeated several times, with t1 being incremented

sequentially such that the signal detected during t2 has the free evolution during t1

encoded as a second ‘indirect’ dimension. The 2D FT of this resulting 2D FID then

gives the complete spectrum shown in the lower panel.

Previously, in Section 3.1.1, quadrature detection was introduced as a method for

sign discrimination in 1D spectra. Multidimensional spectra similarly face the issue

of sign discrimination. In the spectra presented in this thesis, sign discrimination in

the indirect dimension was achieved using the ‘States-TPPI’ method.170 This is a

combination of the ‘States’ method with Time-Proportional Phase Incrementation

(TPPI). In the States method, each indirect time point requires the acquisition of two

spectra, where the phase of the preparation pulse for the evolution in the indirect
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Figure 3.3: Depiction of an inverse cross-polarisation (CP) two-dimensional 15N – 1H
experiment. Top: pulse sequence. Magnetisation is generated by an excitation pulse
on 1H, transferred to 15N by cross-polarisation, and allowed to evolve on 15N during
t1. MISSISSIPPI water suppression is then used, followed by cross-polarisation back
to 1H and detection during t2. Bottom: An example of a resulting spectrum. The
resulting 2D FID is Fourier transformed in each direction. The spectrum shown
here is of U-[13C, 15N]-GB1 (uniformly 13C, 15N labelled) at 100 kHz magic-angle
spinning at a 1H Larmor frequency of 1 GHz. The outbound 1H→15N CP contact
time was 2 ms, while the return 15N→1H CP contact time was 800 µs.

dimension (in Figure 3.3, this is the outbound CP pulse on 15N) is adjusted relative

to the receiver such that one of the spectra is cosine modulated and the other sine

modulated with respect to the indirect evolution.171 These may then be combined

and transformed in the same manner as the quadrature detection, thereby enabling
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sign discrimination. One issue with this method is that artefactual signals which

do not get modulated may appear with zero-frequency; typically, the transmitter

offset is set such that these zero-frequency artefacts would appear undesirably in

the middle of the experimental spectrum. In TPPI, the phase of the preparation

pulse and receiver is inverted for every indirect time point such that these zero-

frequency artefacts are modulated at the sampling Nyquist frequency, and therefore

appear on the edge of the spectrum where there is less chance of this interfering

with the desired spectrum.172 The combination of these two methods in States-TPPI

therefore allows for indirect sign discrimination without significant interference

from artefacts.

3.1.4 Coherence Order and Phase Cycling

Different product operator states (e.g., Îz , Î+Ŝ−) may be classified according to how

they acquire phase under a rotation about the z axis. For example, taking the F̂ z

operator as one which rotates any given operator about the z axis, an Î+ state will

acquire phase as:

e−iϕF̂ z Î+e
iϕF̂ z = e−iϕÎ+, (3.17)

while an Î+Ŝ− state will acquire phase as:

e−iϕF̂ z Î+Ŝ−e
iϕF̂ z = e−iϕeiϕÎ+Ŝ− (3.18)

= ei0Î+Ŝ− (3.19)

= Î+Ŝ−. (3.20)

The response of an operator to this rotation is termed the ‘coherence order’. A state

with a coherence order of p will rotate as:
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e−iϕF̂ z σ̂(p)eiϕF̂ z = e−ipϕσ̂(p). (3.21)

Operators with p = 0 (e.g., Î+Ŝ−) are termed ‘zero-quantum’ operators, while

operators with p = ±1 (e.g., Î+) are ‘single-quantum’ operators. Higher order

coherence orders are possible.

NMR pulse sequences are designed to achieve certain coherence transfers. For exam-

ple, the aim of the CP pulses introduced in Section 3.1.2 is to transfer single-quantum

coherence on 1H to single-quantum coherence on X. However, the RF pulses applied

are indiscriminant with regards to the types of coherence transfer which will be

induced. They therefore generate other undesirable coherence states, which will

compete and interact with the desired coherence transfer pathway, resulting in

uninterpretable spectra.

Phase cycling is a technique which can enable the desired coherence transfer path-

way to be isolated from competing pathways.173, 174 Using phase cycling, the phase

of the pulses applied (see Section 2.1.2.2) and the detector (see Section 3.1.1) can

be systematically varied across several repeated experiments such that desired

coherence transfer pathways sum together while undesirable coherence transfer

pathways cancel out. The design of a phase cycle for a given experiment is aided by

the application of the following rules:

• Shifting the phase of a pulse by an amount ∆ϕ will lead to a change in phase

of a coherence order transfer ∆p by an amount −∆p∆ϕ.

• An N step phase cycle, involving a full rotation of the phase and selecting a

change in coherence order ∆p, will also select pathways giving a change in

coherence order ∆p± nN where n is a real integer.
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3.2 RF Pulses

The theoretical background of RF pulses was introduced in Section 2.1.2.2. Here,

experimental considerations of such pulses will be discussed. An RF pulse is defined

by a transmitter frequency (ωrf ), a phase (ϕ), and nutation frequency (ω1). On a

modern spectrometer any of these properties may be varied as a function of time,

enabling a range of shaped pulses which can be tuned to have different properties

and excitation bandwidths. The transmitter frequency determines which spins are

being interacted with; as in equation 2.86 (repeated here), the effective rotating

frame Hamiltonian for evolution of an Îx state under an applied pulse is:

˜̂
HRF (t) = ω1e

i(Ωt+ϕ)Îz Îxe
−i(Ωt+ϕ)Îz , (3.22)

where Ω = ω0 − ωrf and is the frequency offset between the applied pulse and the

Larmor frequency of the spin of interest. The application of this pulse ‘on-resonance’

to a nuclear spin causes the nuclear spin magnetisation to nutate about the axis of

the pulse (defined by the phase, ϕ) at the nutation frequency. As such, the length

of time for which an RF pulse must be applied for depends both on the nutation

frequency and the desired angle of rotation, β, as

β = ω1τ, (3.23)

where τ is the pulse length and ω1 is in angular frequency units (rad s−1). For

example, a pulse applied with a nutation frequency of 100 kHz (ω1 = 2π × 105

rad s−1) for 2.5 µs would cause the magnetisation to nutate π/2 rad from e.g., along

the z axis to the transverse plane. A lower powered pulse with a nutation frequency

of 1 kHz (ω1 = 2π × 103 rad s−1) would require 250 µs to nutate the same amount.

This longer nutation has consequences for the bandwidth of the applied pulse. The

effect may be considered by calculating the first-order average Hamiltonian,‡ with

‡Note explicitly that this is approximate to first-order, and higher-order terms do contribute
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τ = π
2ω1

and ϕ = 0:

˜̂
H

(1)
RF =

1

τ

∫ τ

0

˜̂
HRF (t)dt (3.24)

=
2ω2

1

π

∫ π
2ω1

0
eiΩtÎz Îxe

−iΩtÎzdt. (3.25)

The effective Hamiltonian along Îx is then given by the trace of the resulting first-

order average Hamiltonian with the Îx operator. Analytically, to first-order, this

gives an effective RF amplitude scaling as a function of offset of

ω′
1(Ω)

ω1
=

√
2ω1

πΩ
sin

(
Ωπ√
2ω1

)
, (3.26)

where ω′
1(Ω) is the offset-dependent effective nutation frequency, and all other terms

are as defined above. The effective RF amplitude therefore has a sinc dependence on

the frequency offset. From this, it can be seen that when the RF is applied perfectly

on resonance (Ω → 0), the RF amplitude is ω1. As the RF pulse moves off-resonance,

the effective nutation frequency decreases. As a result, for broadband excitation,

high nutation frequencies (ω1 ≫ Ω) are required to excite the spectrum evenly. The

offset dependence of these pulses is visualised in Figure 3.4, for nutation frequencies

of 10, 50, and 100 kHz. In general, the nutation frequency used for these hard pulses

is limited by the hardware; the power required scales as the square of the nutation

frequency, such that a 100 kHz pulse requires 4× the power (in watts) of a 50 kHz

pulse. Faster spinning probes, with their smaller rotor sizes and consequently

smaller RF coils, can achieve greater power density in the coil and therefore can

typically achieve higher nutation frequencies with lower power.

The offset dependence of the excitation of a pulse enables the use of these for

selective excitation. Often, it is useful to be able to interact specifically with either a

single resonance, or with a set of resonances in a specific range of chemical shifts.

significantly; this approximation is used here to illustrate the offset dependence.
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Figure 3.4: Pulses visualised in time domain (left) and frequency domain (right) for
different pulse lengths and nutation frequencies for broadband excitation pulses.
The frequency domain responses here have been calculated numerically, and as
such may differ from the first-order analytical expression in equation 3.26.

By using a low-powered excitation pulse, such as those shown on the left side of

Figure 3.5, it is possible to interact selectively with specific resonances. However, as

these are rectangular pulses, their corresponding frequency response is characterised

by a sinc wave, as shown on the right of Figure 3.5. While these sinc wobbles are

typically not a concern with hard broadband pulses (where we would aim to include

all resonances of interest within the broadband response), they can cause issues

for selective pulses by interacting with other spins. The ‘ideal’ pulse for selective

excitation would be to apply a sinc wave in the time domain; the corresponding

frequency response would then analogously be a rectangular spectral response.

However, to include sufficient sinc wobbles to have such a nicely well-defined

spectral response would require such a pulse to be unfeasibly long.
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Figure 3.5: Pulses visualised in time domain (left) and frequency domain (right) for
different pulse lengths and nutation frequencies for selective excitation pulses. The
frequency domain responses here have been calculated numerically, and as such
may differ from the first-order analytical expression in equation 3.26.

To account for this, a number of different selective pulses have been introduced,

such as Gaussian pulses175, 176 and DANTE pulses.177 In the case of a Gaussian

pulse, the amplitude of the RF is varied as a Gaussian. The FT of a Gaussian is a

Gaussian, and therefore the resulting spectral response is a well-defined Gaussian.

Gaussian pulses will be used in Section 4.5 to selectively saturate and invert specific

resonances in resolved spectra.

3.3 Relaxation Experiments

As discussed previously in Section 2.2, relaxation is the phenomenon by which

a perturbed spin-order will return to its equilibrium magnetisation. Quantifying

the rate at which nuclear spins recover to equilibrium can provide a wealth of
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information as to their local motions and environment. The general premise of a

relaxation experiment is to perturb or excite a spin away from its bulk equilibrium

magnetisation. This is then followed by a variable delay, during which the spin

is allowed to relax. The delay is then followed by excitation (if required for de-

tectable coherence) and, finally, detection of the resulting signal, where the intensity

of the signal reflects the extent to which the spin was able to relax back to equi-

librium. By varying the delay during which the spin is allowed to relax, a graph

can be plotted to show this recovery. Despite this rather simple basis, there are

several different approaches to measuring these rates. In Section 3.3.1, three such

approaches for measuring R1 relaxation will be introduced, with their respective

advantages and disadvantages discussed. For simplicity, R1ρ relaxation will not

be considered in this section. This will then be followed by a discussion of the

experiments specifically used in this thesis to measure 13C and 15N R1 and R1ρ

relaxation rates in Section 3.3.2. Finally, Section 3.3.3 will discuss factors which must

be considered when applying these relaxation experiments in order to allow for

adequate quantification of dynamics.

3.3.1 Principles of Relaxation Rate Measurement

Proteins undergo motions over several orders of magnitude of timescale. Simple

bond librations may occur with characteristic timescales on the order of picoseconds,

while larger domain motions may take microseconds to complete. As a result, a

range of experimental methodologies have been developed to study different types

of motion. Figure 3.6 outlines the different types of motion and the timescales

on which they occur, and different NMR experiments which can be performed to

study these varied motions. This thesis will focus entirely on solid-state relaxation

analysis.

Three of the most common methods of measuring spin-lattice (T1) relaxation are

shown in Figure 3.7. These are saturation recovery (a), inversion recovery (b), and

the Torchia method (c,d). Their resulting relaxation recovery graphs are shown in
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Figure 3.6: Depiction of the timescales of motion in proteins. From top to bottom:
types of NMR experiments which are sensitive to motion on the given timescales; A
depiction of a possible distribution of motions; Motions which are expected to occur
on this timescale; Sensitivities of 15N R1 rates to motion on these timescales over
different magnetic fields; Sensitivities of 15N R1ρ rates to motion on these timescales
at different spinning frequencies. The first and third panes were inspired by Figure
1 in ref 178.

Figure 3.8, and will be discussed here.

In a saturation recovery experiment (Figure 3.7a), the magnetisation on the spin of

interest (shown as X) is ‘saturated’ (dashed block). Saturation occurs when RF is

applied to equilibrate the spin-up and spin-down energy levels in such a manner

that there is no bulk magnetic moment, which is to say that a vector denoting the

bulk magnetic moment has no magnitude. As a result, at the end of this saturation

pulse the magnetisation along the z-axis is 0. This is then followed by a relaxation
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delay, τrelax, during which the magnetisation is allowed to recover to the equilibrium

polarisation. Following this, the z magnetisation is excited to the transverse plane

using a 90◦ pulse, and the resulting FID recorded. The amplitude of the resulting

signal is proportional to the amount of z magnetisation which is allowed to recover

during this τrelax period; by varying this, a profile of the relaxation may be built up,

as shown in Figure 3.8a.

The principle behind inversion recovery (Figure 3.7b) is very similar. In this, a

hard inversion pulse is applied, such that the bulk magnetic moment is placed

along −z. This out of equilibrium magnetisation then recovers during τrelax, before

being excited to the transverse plane by a 90◦ pulse. As in saturation recovery, the

amplitude of the resulting FID and therefore spectrum is dependent on the extent to

which the magnetisation has recovered along the z axis. The resulting relaxation

curve, Figure 3.8b, is very similar again.

While both inversion recovery and saturation recovery can be used to acquire good

quality relaxation data, they face several limitations. For reasons which will be

discussed in Section 3.3.3, we are normally interested in recording relaxation rates of

13C and 15N for proteins and other biological systems. As was discussed previously

in Section 3.1.2, these nuclei are characterised by low sensitivity and slow relaxation.

Both inversion recovery and saturation recovery rely purely on the magnetisation

recovered on these nuclei for their signal; as such, they cannot be performed using

CP to enhance their sensitivity. Furthermore, inversion recovery requires that the

magnetisation has adequately recovered along the +z axis after the FID has been

recorded; a consequence of this is then that the recycle delay between scans is

limited by the (often slow) relaxation of the nuclei being observed. While saturation

recovery does not require this, it typically requires high-powered saturation pulses

which owing to the duty cycle of the probe may reduce the scan rate which may be

used.

The Torchia method enables the use of CP to enhance the sensitivity of these relax-

ation experiments.179 This method involves the application of the pulse programs
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shown in Figures 3.7c,d, which are identical except that the phase of the first 90◦

pulse on the X channel has been shifted by 180◦. Firstly, the 1H magnetisation is

excited into the transverse plane; this magnetisation is then transferred via CP to the

X channel. The issue with then performing an experiment analogous to inversion

recovery at this point is that this magnetisation is hyper-polarised; after the relax-

ation period, the magnetisation would not recover back to this hyper-polarised state,

which means that the final equilibrium magnetisation to which the experiment will

recover is unknown. The Torchia method bypasses this by switching the phase of

the 90◦ pulse applied on the X channel to bring the magnetisation along the z axis;

as a result, in half of the scans the hyper-polarised magnetisation is placed along −z

and recovers to normal polarisation z, while in the other half the hyper-polarised

magnetisation is placed along z and recovers to normal polarisation z. As these

scans are accumulated, the difference is taken such that the normal polarisation

recovery cancels out. The resulting relaxation decay profile, shown in Figure 3.8c,

is then characterised by a decay from the hyper-polarised state to 0 magnetisation,

which can more readily be quantified.

The use of the Torchia method is then beneficial for several reasons. The use of 1H

magnetisation enables hyper-polarisation of the X spins, giving greater sensitivity.

The transfer of magnetisation from 1H additionally allows the recycle delay of the

1H to be used instead of that of the X channel nuclei, typically giving a faster repeat

time. A limitation of this method is that it requires the presence of 1H or another

abundant high sensitivity nuclei in the sample. For biological systems, however,

this is generally the case.

82



a)

X

φa φb

φdetect

saturation recovery b)

X

φaφb

φdetect

inversion recovery

τrelax

X

τrelax

X

τrelax

X

τrelax

X

c)

1H

φa φb d)

1H

X

φc φd φe

φdetect

Torchia method +ve

X

Torchia method -ve

τrelax

X

τrelax

X

τrelax

X

τrelax

X

Figure 3.7: Different types of experiment for measuring relaxation rates. (a) Satura-
tion recovery, (b) Inversion recovery, (c,d) Torchia method (positive and negative,
noting that it is the difference of the resulting decays which is used in this case.).
Saturation pulses are shown as a block with diagonal lines, 90◦ pulses and 180◦ are
shown as empty and full tall rectangles respectively, and CP pulses are shown as
longer shorter rectangles. Typically phase cycles are as follows: (a) ϕa: {+x}, ϕb :{+x,
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ϕdetect: {+x,−x,−x,+x,+y,−y,−y,+y} (note that for (c), the combined phase cy-
cle for +ve and −ve mode is shown). 83
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relaxation experiments.
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3.3.2 Relaxation Rate Experiments

In this thesis, four different types of relaxation rates have been recorded: 13C’ R1,

R1ρ; 15N R1, R1ρ. In each case, these have been measured using detection in a

15N – 1H 2D spectrum to allow for site-specific relaxation quantitation. For the R1

measurements, the Torchia method was used§.

Figure 3.9 shows the experiments used for R1 quantitation on 15N (a) and 13C’

(b). The 15N experiment is analogous to the 2D 15N – 1H CP experiment shown in

Section 3.1.3, with the exception that the transverse relaxation on 15N generated by

the CP is nutated to the z axis for a relaxation period, before being returned and

allowed to evolve as normal. The 13C’ experiment is different; in this case, the 1H

transverse magnetisation is instead transferred via CP to the 13C spins. Following

nutation to the z axis and relaxation, this magnetisation is then transferred from 13C

to 15N via CP to be allowed to evolve and be spin labelled on 15N. Spin labelling

on 15N enables the 13C relaxation rate to be measured through the same 15N-1H

spectrum.

R1ρ relaxation is measured in a similar manner. R1ρ relaxation relates to the decay

of signal which has been spin-locked in the transverse plane. Pulse programs for

measuring this are shown in Figure 3.10, where it may be seen that in both cases,

after the transverse magnetisation is transferred to the nuclei of interest, it is spin-

locked for a variable delay. During this period, the transverse magnetisation decays.

This is then followed by 15N evolution in the indirect dimension, and then finally

recovery and detection on 1H.

§For clarity, this is not shown explicitly in the pulse sequence.
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Figure 3.9: Experiments used in this thesis to measure (a) 15N and (b) 13C’ T1
relaxation rates with detection in a 15N – 1H 2D NMR experiment.
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3.3.3 Experimental Considerations for Measuring Relaxation Rates

As has been alluded to previously, the nuclei we typically use for dynamical quan-

titation are the amide 15N and the carbonyl 13C’. The question may then be asked

why we do not consider the 1H relaxation, the 13Cα, or the sidechain 13C sites. The

primary reason for this is the presence of significant spin diffusion between these

nuclei. For 15N, typically the nearest homonuclei will be the next amide 15N at a

distance of ≈ 3 − 4 Å; this, combined with the low gyromagnetic ratio and weak

dipolar couplings between these nuclei strongly limits the rate of spin diffusion

between these. This enables quantitation of 15N relaxation even in fully protonated

samples at ≈ 50 kHz. On the other hand, for 1H relaxation there are often very

dense strongly coupled networks of neighbouring protons; as a result, relaxation is

rapidly averaged between these sites and therefore cannot be interpreted in a site

specific manner. Table 3.1 illustrates the minimum MAS frequencies required for

quantitation of R1 and R1ρ rates for a range of possible nuclei of interest in both

perdeuterated and fully protonated systems; this has been adapted from LeMan-

chard et al. (2022).125 It should be noted that these are for fully 13C, 15N labelled

systems; samples which are not isotopically enriched in 15N and 13C will very rarely

have strongly coupled homonuclear interactions owing to the low density of these

spin active nuclei, therefore allowing their relaxation rates to be measured at lower

spinning rates.

Table 3.1: Approximate minimal MAS frequencies required for site-specific quantifi-
cation of incoherent relaxation. Adapted from ref 125.

Nuclei Rate Perdeuterated Min / kHz Protonated Min / kHz
15N R1 50 50
15N R1ρ 27 45
13C’ R1 ≈ 50 60
13C’ R1ρ ≈ 45 45

13Cα R1 unknown >80
13Cα R1ρ unknown >80

1H R1 >150 >150
1H R1ρ >150 >150
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For recording R1ρ relaxation rates, consideration must be given to the applied spin

lock field. It is necessary to apply a sufficiently high nutation frequency to ensure

that all sites of interest are spin locked. Additionally, at low spin lock frequencies,

Bloch-McConnell Relaxation Dispersion (BMRD) may lead to an increase in the

measured R1ρ owing to the presence of exchange interactions.51, 180, 181 Similarly,

the application of high nutation frequencies approaching the MAS frequency will

lead to NEar Rotary Resonance Dispersion (NERRD).180, 181 BMRD and NERRD

have found utility in the study of slow microsecond exchange and dynamical

processes.51, 121, 180, 181

Consideration must also be given to cross-correlation effects. For example, in the

case of 15N relaxation, both the 15N CSA and 15N – 1H dipolar interactions transform

with the same symmetry. As a result, there is the potential that cross-correlation

effects could arise between the two mechanisms for relaxation. A result of this would

be that the measured relaxation rate would be different depending on whether the

1H adjacent to the 15N was in the |+1
2⟩ or |−1

2⟩ state. However, in the solid state,

it has been found that the presence of strong dipolar couplings and rapid spin

diffusion causes these states to interconvert and so self-decouple, such that these

cross correlation effects are negligible.182, 183
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Chapter 4

Spin Diffusion

This chapter is based on work published in B. P. Tatman, W. T. Franks, S. P. Brown, J. R.

Lewandowski, Nuclear spin diffusion under fast magic-angle spinning in solid-state

NMR, J. Chem. Phys., 2023, 158, 184201.

4.1 Introduction

Spin diffusion is a reversible and coherent process through which spin order may be

transferred via dipolar couplings in the solid state. In 1H solid-state NMR at slow

magic-angle spinning (MAS) frequencies, spin diffusion occurs in a manner analo-

gous to macroscopic diffusion owing to the nucleus’s low chemical shift dispersion

and strong dipolar couplings. The spatial diffusional nature of this transfer has led

to it being applied to the study of systems from materials184 and biomaterials,185, 186

to small molecules73, 74, 187 and proteins.71, 188 Additionally, spin diffusion plays an

important role in dynamic nuclear polarisation NMR (DNP-NMR).189–194 Recently,

experimental methods relying on selective pulses to exploit the increased resolu-

tion at faster MAS and higher fields have been introduced. For example, selective

pulses have found use in reducing t1 noise,195 in increasing the rate of experimental

acquisition,196 and in selectively investigating pharmaceuticals in the presence of

excipients.197 In addition, low power pulses with narrow bandwidth were used for
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implementing chemical exchange saturation transfer (CEST) in the solid state45, 198

where spin diffusion may be an alternative mechanism to chemical exchange that

needs to be considered.124 Modelling spin diffusion transfer is of key importance to

understanding the results of such experiments.

The spin dynamics at slow spinning frequencies have been shown to be ade-

quately reconstructed using diffusion-based perturbation-theory simulation ap-

proaches.72–74, 80 In these studies, perturbation theory is used to derive rate ex-

pressions which are then used to model the system as a diffusive process.75, 76 It

has even been shown that such models are able to solve crystal structures from

known unit cell parameters to excellent precision.72 However, with the increase

in resolution obtained using higher MAS frequencies and higher magnetic fields,

the assumption that spin diffusion may be treated in an entirely spatial manner

begins to break down.75, 76, 199 As an energy conserving process, it follows that

spin diffusion between spins with dissimilar energy level separations (i.e., differ-

ent chemical shifts) is only possible if interacting with a spin energy bath, such

as that provided by a dense dipolar coupled proton spin network. The decrease

in spectral overlap with higher spinning frequencies arises because these dipolar

coupling networks are more effectively averaged, and this combined with the larger

energy level separations at higher magnetic fields means that spin diffusion becomes

strongly dependent on the resonance offset between two spins. The importance of

this resonance offset dependence was recently exemplified by Agarwal (2019),200

where it was shown that, in proton spin-diffusion spectra of L-histidine HCl H2O,

negative cross peaks may be observed which relate to the interaction of four spins

simultaneously, where the difference in differences between pairs of spins lead to a

n = 0 rotational resonance transfer with inverse sign.

This four spin interaction effect would not arise in perturbation theory-/diffusion-

based approaches, with the exception of qualitative models intended explicitly to

study the effect.201 Indeed, the majority of such models published to date either

include the resonance offset through an exponential or gaussian approximation of a
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zero-quantum lineshape,80 or exclude it entirely.72, 74 Computational calculations

in which the spin evolution of the density matrix is simulated under the spin

Hamiltonian would, in theory, accurately reconstruct the coherent spin dynamics.

Unfortunately, owing to their exponential scaling (the matrices scale ∝ 2n, where n

is the number of spins), such simulations are typically restricted to systems with

fewer than 12 spins.80, 202 As a result, they are unable to accurately model spin

diffusion for which interactions with many more spins must be considered.

One approach which has been used to remedy this scaling problem is the use of

restricted basis sets.77, 78, 82, 84, 85 In such approaches, the number of basis sets states

for which the evolution must be considered are drastically reduced by omitting those

which can be assumed to contribute negligibly to the evolution of the spin system.

Restricted basis set methods have been shown to enable accurate simulation of

spin systems containing thousands of interacting spins.190, 203 Dumez et al. (2010)78

introduced the Low-order Correlations in Liouville space (LCL) method, where

only zero-quantum operators are considered, and product states are limited to those

containing at most q interacting spins. Such an algorithm scales polynomially as nq,

and allows for the number of spins in simulations to be drastically increased. The

LCL method was further developed by Perras and Pruski (2019) who introduced

local restriction (LR-LCL),85 where only the N closest spins to each spin were

considered to be interacting resulting in a linear scaling algorithm (∝ n×N q−1). Such

an approach has been applied to modelling DNP in systems containing thousands

of atoms.190, 204 LR-LCL simulations are, however, considered to be accurate up to

only ≈ 40 kHz MAS frequencies. This limitation arises due to the aforementioned

increasing dependence on resonance offset and the chemical anisotropy. Though

resonance offset was included in the LR-LCL model introduced by Perras et al.

(2020),190 this was included solely as an isotropic chemical shift.

Here, a new method for basis set selection is introduced and the method developed

to include both isotropic and anisotropic chemical shift (chemical shift anisotropy,

CSA). The effects of the full chemical shift, MAS frequency, magnetic field, and
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dynamics on the evolution of the spin system are considered. Then, in Section 4.5,

the impact of these findings on experimental spin diffusion is studied through the

use of two case studies. Experimental results are shown for the dipeptide β-aspartyl

L-alanine (β-AspAla), for which agreement with the simulated trends is found, but

confounded by the presence of additional temperature-dependent behaviour, which

may be indicative of an incoherent 1H-1H homonuclear nuclear Overhauser effect.

Finally, it is shown that, in the case of a deuterated fully back-exchanged protein at

60 kHz MAS, the polarization transfer by spin diffusion is dominated by resonance

offset.

4.2 Methods

4.2.1 Density Functional Theory

The crystal structure of β-AspAla (CCDC: FUMTEM)205 was geometry optimized

by DFT using CASTEP 16.1.206–208 CASTEP implements density functional theory

using a plane-wave basis set. The default CASTEP 16.1 ultrasoft pseudopotentials

were used. The Perdew-Burke-Ernzerhof (PBE) implementation of the generalized

gradient approximation was used as the exchange-correlation functional.209 Plane

waves up to 700 eV were used. The same cut-off energies were then used to de-

termine magnetic resonance parameters using the GIPAW method210–214 under the

same DFT conditions to determine the CSA tensors, which were then extracted

using Magresview.215

4.2.2 Spin-Diffusion Simulations

The ‘Tourbillon’ software introduced by Dumez et al. (2010)77 was extended to

include the basis-set selection method which will be introduced in Section 4.3.2, and

to implement the use of an unordered map to store the density states as introduced

by Perras and Pruski (2019).85 Additionally, isotropic and anisotropic chemical

shift evolution was implemented, along with the ability to output zero-quantum
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lineshapes.

Spin diffusion simulations were performed using a complete unit cell of β-AspAla

(4 molecules in the unit cell and 12 1H per molecule, i.e., n = 4 × 12 = 48 spins)

using periodic boundary conditions. Unless otherwise stated, all simulations began

with the inversion of all carboxylic acid protons (the site with the most separated

1H NMR resonance), for which the interatomic distances and resonance offsets

are shown in Table 4.1. This system is illustrated in Figure 4.1, where the spins of

particular interest are color coded: Asp Hα (orange), the spatially closest proton

to COOH; Ala NH (green), the closest in chemical shift to COOH; and Ala CH3

(purple), for which there is particularly interesting spin evolution. In the case of the

alanine CH3, only one of the protons (labelled 12 in Table 4.1) was considered when

plotting the trajectories as the evolution differs slightly between non-symmetrically

equivalent sites. The spins are numbered 1–48, where the protons are numbered

sequentially for each individual β-AspAla molecule, i.e., molecule 1 is numbered

1–12, molecule 2 is numbered 13–24, etc. Experimental isotropic chemical shifts

were used,216 but the CSA tensors were calculated as described in Section 4.2.1.

The rotational motion of the NH3 and CH3 groups was considered by assuming

averaging of the chemical shift tensors in the molecular frame prior to conversion

into the interaction frame for both of these sites, though no explicit averaging of

dipolar couplings was considered unless indicated explicitly; the effect of dynamics

on spin diffusion will be considered in Section 4.4.3.

Simulations were performed for tmix = 100 ms (see Figure 4.2) using a REPULSION-

48 set of crystallite orientations217 and a timestep of 0.2 µs. Simulations were

performed using the University of Warwick Scientific Computing Research Technol-

ogy Platform (SCRTP) High Performance Computing clusters, on nodes consisting

of two Intel Xeon 24 core processors giving 48 cores per node. Parallelism was im-

plemented with each crystallite running in an individual thread using OpenMP. 192

GB of RAM was present per node, however in the case of some larger models, high

memory nodes were used with up to 1.5 TB of RAM. Additional simulations using
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Table 4.1: Nearest neighbour distances and resonance offsets between the carboxylic
acid proton (COOH) and the other sites in β-AspAla. Spins of particular interest are
in bold.

Environment Nearest distance Resonance Offset
to COOH / from COOH / ppm

1 Ala COOH 0.00 0.0
2 Asp NH3

+ 2.43 5.2
3 Asp NH3

+ 3.12 5.2
4 Asp NH3

+ 2.67 5.2
5 Ala NH 4.04 4.6
6 Asp Hα 2.44 8.6
7 Asp Hβ2 4.06 9.9
8 Asp Hβ3 3.45 10.6
9 Ala Hα 3.48 7.7
10 Ala CH3 2.88 11.7
11 Ala CH3 3.24 11.7
12 Ala CH3 3.96 11.7

a REPULSION-128 set of crystallite orientations were performed using the HPC

Midlands Tier 2 High Performance Computing cluster Sulis, on nodes containing

two AMD EPYC 7742 (Rome) 2.25 GHz 64 core processors, giving 128 cores and 512

GB of RAM per node. There was no additional benefit to using more crystallites

(see Figure 4.3).
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Figure 4.1: β-aspartyl L-alanine (β-AspAla), the model system used here. The spins
of interest are highlighted in their respective colours. (a) a representation of the DFT
(CASTEP) geometry-optimized structure, centered on one of the carboxylic acid
protons. (b) a 1H one-pulse MAS NMR spectrum acquired at a spinning frequency
of 55 kHz and a 1H Larmor frequency of 600 MHz. These spins were chosen to
best illustrate various principles of this system: the Ala COOH (grey) is the most
isolated resonance in the spectrum, and so the easiest to selectively invert/saturate
experimentally without interfering with other sites; the Ala NH (green) site is the
closest in chemical shift to Ala COOH; the Asp Hα (orange) is the closest in space
to Ala COOH; the Ala CH3 (purple) experiences ‘inverse sign spin diffusion’.
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Figure 4.2: Effective pulse sequence used for simulations. In this, the first selective
inversion pulse inverts one nuclear spin such that this is aligned along −z. During
the mixing period, τmix, this longitudinal spin-order then diffuses between all spins
involved in the simulation. After the 90◦ pulse, this magnetisation is then rotated
along the transverse plane such that any spin-order formerly along −z at the time
of the 90◦ pulse would give a negative peak.
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Figure 4.3: Comparison of the magnetisation transfer, monitored according to the
ratio of the instantaneous calculated magnetisation to the equilibrium magnetisation
(Mz), for models run with 48 and 128 crystallites. The rate at which spin diffusion
from the inverted COOH to the respective sites (coloured as in Figure 4.1) may be
seen by the rate at which the ‘fully averaged’ magnetisation of 83.3 % is achieved; for
instance, it is apparent that there more rapid spin diffusion from the COOH to the
Ala NH (green, solid) than the Ala CH3 (purple, dotted) in all cases. Models were
run with CSA at 60 kHz and 600 MHz. 48 crystallite simulations were performed
using a HPC resource with 48 cores per node (2 Intel Xeon Platinum 8268 24-core
processors), while 128 crystallite simulations were performed using 128-core nodes
(2 AMD EPYC 7742 (Rome) 64-core processors).
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4.2.3 Experimental Methods

4.2.3.1 Case Study 1: Incoherent Nuclear Overhauser Effect in β-aspartyl L-

alanine (β-AspAla)

β-AspAla was purchased from Bachem (Switzerland) and packed as received into

a 1.3 mm zirconia rotor. Spin diffusion experiments were performed using a 1.3

mm HXY probe operating in double resonance mode spinning at 55 kHz at a 1H

Larmor frequency of 599.5 MHz with a Bruker Avance Neo console. 1D proton

spin diffusion (PSD) experiments218 were performed in a manner analogous to

saturation transfer difference methods in the solution-state,219, 220 using variable

length ‘trains’ of gaussian inversion (180◦) pulses for the saturation of the highest

ppm resonance, the carboxylic acid resonance, at 13.1 ppm. Gaussian inversion

pulses were optimized for a pulse length of 1.1 ms. Hard pulses were applied to

1H with a nutation frequency of 100 kHz, corresponding to a 90◦ pulse length of 2.5

µs. The pulse sequence for this is shown in Figure 4.4. The number of inversion

pulses applied was varied linearly from 0 to 100, with 8 coadded transients acquired

per increment. A recycle delay of 2 seconds was used. The resulting data were

then analysed by taking the intensities of each peak. Spectra were referenced

according to the resonance offset for the methyl group used for simulations at 1.4

ppm.216 Temperatures were calibrated using the chemical shift dependence on

temperature of the 79Br resonance in KBr.221 2D proton spin diffusion experiments

were additionally performed at 60 kHz MAS at a 1H Larmor frequency of 1 GHz

with an Avance Neo console.

β-AspAla was also packed as received into a 1.6 mm zirconia rotor. Prior to inserting

the top cap, a small ‘plug’ of KBr was inserted for temperature reference. Spin diffu-

sion experiments were performed using a Phoenix 1.6 mm HXY probe operating in

double resonance (1H, 79Br) mode spinning at 55 kHz at a 1H Larmor frequency of

850 MHz with an Bruker Avance Neo console. Experiments were performed using

inversion of the COOH, followed by a delay and then a background-compensated

pulse sequence.222 A pulse sequence for this is shown in Figure 4.5. At lower
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temperatures the 1H relaxation rate decreased and therefore longer recycle delays

were required. A combination of this, the limited experimental time available, and

the requirement for a background compensated pulse sequence,* means that the

resulting data is significantly noisier than for the 600 MHz data also presented

here.

1H

n

90◦ 180◦
t1

sel. inv.

τ τ

Figure 4.4: The pulse sequence used experimentally to probe spin diffusion in the
1.3 mm 1 GHz experiments. In this pulse sequence, the initial train of selective
inversion pulses causes the magnetisation at the selected site (in this case, the Ala
COOH) to tend to zero. During this period, spin diffusion causes magnetisation
to transfer from other spins to the spin being saturated, and so the longitudinal
magnetisation on these interacting spins will decrease. This is then followed by a
90◦ excitation and spin-echo, such that the intensity of the peaks in the resulting
spectrum reflects the remaining longitudinal magnetisation on each site. The phase
cycle was as follows: gaussian pulse {+y}, 90◦ {+x,−x}, 180◦ {+x,−x,+y,−y},
detect {+x,−x,−x,+x}.

1H

τmix 90◦ 180◦ 180◦
t1

sel. inv.

Figure 4.5: The pulse sequence used experimentally to probe spin diffusion in the
1.6 mm Variable Temperature 850 MHz experiments. In this pulse sequence, the
selective inversion pulse inverts the longitudinal equilibrium magnetisation of a
single site such that the ensemble magnetisation is aligned along −z. During the
mixing period, τmix, spin diffusion causes spin order from interacting sites to transfer
to this inverted site, leading to a reduction in their longitudinal magnetisation, Mz .
Following this, a 90◦ pulse is applied to transfer this magnetisation into the trans-
verse plane, followed by two phase cycled 180◦ pulses for background suppression.
Finally, the signal is detected, where the intensity of each peak reflects the longitu-
dinal magnetisation at the time of the 90◦ pulse. The phase cycle was as follows:
gaussian pulse {+x}, 90◦ {4{+x}, 4{+y}, 4{−x}, 4{−y}}, 1st 180◦ {+x,+y,−x,−y},
2nd 180◦ {4{+x}, 4{−x}, 4{−y}, 4{+y}}, detect {+x,−x,+x,−x,+y,−y,+y,−y}.

Recorded experimental spectra were integrated using a python script using both

*The probe experienced a significant 1H background which could be removed by using a series of
phase-cycled 180◦ pulses.
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nmrglue223 and lmfit224 to fit a polynomial background and Lorentzian lineshapes

to each peak. Following the optimization of the offset on the first slice, the offsets

were fixed and only the peak height and width were allowed to vary.

4.2.3.2 Case Study 2: 600 MHz Spin Diffusion in U-[2H,13C,15N]-GB1 at 60

kHz

Perdeuterated U-[2H,13C,15N] GB1† with 100% back-exchanged amide 1Hs was

prepared as described in ref 225, and packed into a 1.3 mm zirconia rotor, sealed

with silicon glue. Experiments were performed using the 1.3 mm HXY probe

operating in triple resonance HCN mode spinning at 60 kHz. Cooling was applied

to achieve a sample temperature of ≈ 300 K, as calibrated using the difference in shift

between DSS and H2O.226 2D 15N-1H-detected 1H spin-diffusion experiments were

performed in a manner analogous to saturation transfer difference methods in the

solution-state219, 220 or CEST experiments.198 Low powered (≈100 Hz) bandwidth

saturation was applied for 500 ms, both on resonance with various N – H sites and off

resonance. The pulse sequence for this is shown in Figure 4.6. 32 coadded transients

were acquired for each of 128 t1 FIDs, using States-TPPI in F1 for sign discrimination

and a 2 s recycle delay. Except for the saturation pulse, the 1H transmitter was placed

at 2.46 ppm with a spectral width of 39.7 ppm. The 15N transmitter was placed at

120 ppm, with a spectral width of 54.9 ppm. Hard pulses were applied to 1H with a

nutation frequency of 100 kHz, corresponding to a 90◦ pulse length of 2.5 µs. On 15N,

hard pulses had a nutation frequency of 50 kHz, corresponding to a 90◦ pulse length

of 5 µs. Cross-polarisation (CP) was applied with a 70:100% linear ramp168 on 1H,

meeting the Hartmann-Hahn condition with 45 kHz on 1H and 15 kHz on 15N. This

was applied for 800 µs for the 1H – 15N CP, and for 600 µs for the 15N – 1H CP. 100

ms MISSISSIPPI water saturation using 10 kHz 1H irradiation was used.169 Spectra

were referenced according to DSS at 0 ppm, with 15N referenced indirectly to liquid

NH3 at 0 ppm using the IUPAC recommended frequency ratio.226, 227 Low-powered

(ν1 = 10 kHz) waltz-16 heteronuclear decoupling was applied to the 1H channel

†The β1 domain of Protein G, a 56 residue protein.
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during 15N evolution, and again to the 15N channel during 1H acquisition.89 Peaks

in 2D experimental spectra were integrated using CARA.228 Assignments were

taken from ref 169.

1H

90◦
t2

saturation

CP

MISSISSIPPI

CP

15N

t1
90◦ 90◦

CP CP

Figure 4.6: Pulse program used for experiments on protein samples where the
additional 15N dimension was necessary for resolution of different sites.

4.3 Theory

4.3.1 Low-Order Correlations in Liouville Space

A brief introduction to the LCL approach is given here, based on that presented by

Brüschweiler et al. (1997),229 Dumez et al. (2010),77 and Perras and Pruski (2019).85

For clarity, a full list of symbols and associated descriptions is given in Table 4.2. In

Liouville space, the density matrix for a set of n spin-1/2 nuclei may be represented

as a 4n vector, consisting of elements

B̂r = 2q−1
n∏

i=1

Îi,r, (4.1)

where Îi,r represent single spin operators Îi,r ∈
{
Êi, Îiz, Îi+/

√
2, Îi−/

√
2
}

, and

q represents the order of the product operator, that is, the number non-identity

operators in the product operator, corresponding to the number of interacting

spins.

The density matrix, σ̂ (tmix) after a mixing time tmix, is then a combination of these
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Table 4.2: List of symbols used in this chapter.

Symbol Meaning

q Order of product operator (i.e., number of non-identity operators in a
product operator), corresponding to the number of interacting spins

qmax Maximum value of q considered in a model
n Number of spins in a simulated system
N Number of neighbour spins
Nmax Maximum number of neighbour spins
Navg Average number of neighbour spins
ˆ̂
L Liouvillian superoperator
tmix Length of simulation, corresponding to PSD mixing time (see Fig-

ure 4.2)
∆t Length of an individual timestep
P Number of timesteps (i.e., tmix/∆t)
S Order parameter (e.g., the S in S2)
Mz Ratio of z-magnetisation to equilibrium z-magnetisation
Îi,r Single spin operator, e.g. one of Êi, Îiz, Îi+/

√
2, Îi−/

√
2

σ̂ Density matrix
B̂r Arbitrary product operator, defined as in equation 4.1

elements

σ̂(tmix) =
∑

r

br(tmix)B̂r, (4.2)

which may be propagated under the action of the Liouvillian superoperator, ˆ̂L

σ̂(tmix) = exp

(
−i
∫ t

0

ˆ̂
L(tmix)dt

)
σ̂(0). (4.3)

This propagation may be approximated by considering the Liouvillian to be piece-

wise time independent

σ̂(tmix) =

P−1∏

p=0

exp
(
−i∆t ˆ̂L(p∆t)

)
σ̂(0), (4.4)

where ∆t is a small step such that P ×∆t = tmix.

The low-order correlation in Liouville (LCL) method relies on basis set reduction
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by excluding certain terms.77–79, 230 For the simulation of spin diffusion the most

obvious terms to omit are those which are not zero-quantum since spin diffusion

is fundamentally a zero-quantum process.75, 76 Further basis set reduction can be

performed, as considered below in Section 4.3.2.

Owing to the very large size of the full Liouvillian, ˆ̂L, the first-order Suzuki-Trotter

algorithm231 was used, as utilized by both Dumez et al. (2010)77 and Perras and

Pruski (2019)85 This enables the density matrix evolution to be calculated piecewise,

without requiring storage of the full Liouvillian. Namely,

σ̂p+1(τ +∆t) =




n∏

i=1

neighbours,j>i∏

j=neighbour(i)

exp
(
i
ˆ̂
Li,j(p∆t)∆t

)

 σ̂(τ), (4.5)

where the inner product represents the product over all states considered to be

‘neighbours’ of spin i, noting that, in the case of the basis set methods used here,

these are not necessarily the most spatially proximate sites (see Section 4.3.2). Higher-

order Suzuki-Trotter algorithms were not applied since these double the computa-

tional time and were found not to change the results of the simulation.

The exp
(
i
ˆ̂
Li,j(p∆t)∆t

)
terms in equation 4.5 are evaluated sequentially using the

cog-wheel approach of Brüschweiler and Ernst (1997).229 Under a dipolar coupling,

ωD,i,j (t), subspaces of the form
{
ÎizB̂r, ÎjzB̂r, Îi+Îj−B̂r, Îi−Îj+B̂r

}
(where B̂r

does not include spins i or j, and must be such that the total product operator formed

is zero-quantum in nature) evolve under the effect of the following rotation

ˆ̂
R0,i,j =

1

2




1 + c 1− c −is is

1− c 1 + c is −is

−is is 1 + c 1− c

is −is 1− c 1 + c



, (4.6)

where c = cos(ωD,i,j(p∆t)∆t) and s = sin(ωD,i,j(p∆)t∆t). An example

subspace may be
{
Î1zÎ3z, Î2zÎ3z, Î1+Î2−Î3z, Î1−Î2+Î3z

}
, where B̂r = Î3z ,
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which would evolve under the rotation ˆ̂
R0,1,2. Subspaces of the form

{
Îi±B̂r, Îj±B̂r, Îi±ÎjzB̂r, ÎizÎj±B̂r

}
evolve under the rotation

ˆ̂
R±,i,j =




cch −ssh ∓isch ∓icsh

−ssh cch ∓icsh ∓isch

∓isch ∓icsh cch −ssh

∓icsh ∓isch −ssh cch



, (4.7)

where the additional trigonometric functions on ∆t/2 are distinguished by ‘h’

for half as ch = cos(ωD,i,j(p∆t)∆t/2), sh = sin(ωD,i,j(p∆t)∆t/2). For example,
{
Î1+Î3−, Î2+Î3−, Î1+Î2zÎ3−, Î1zÎ2+Î3−

}
, where B̂r = Î3−, would evolve under

the rotation ˆ̂
R+,1,2. It should be noted that this rotation would not be performed

were B̂r = Î3z , as this would form non-zero-quantum product operators. The

same operator may evolve under several rotations; it is the sequential application

of these rotations which gives rise to the variation in evolution for symmetrically

equivalent sites in the model here (which has been used as an estimate of numerical

uncertainty).

Under MAS, the dipolar coupling is calculated in a time dependent fashion as

ωD,i,j(t) = RDD,i,j

2∑

m=−2

2∑

m′=−2

D2
0,m(ΩPC)D

2
m,m′(ΩCR)D

2
m′,0(ΩRL(t)), (4.8)

where ΩPC is the change in orientation going from the principal axis system of

the dipolar interaction to the crystallite frame, and ΩCR relates this crystallite

frame to the rotor frame (that is, the powder crystallites). Finally, ΩRL(t) is the

time dependent (under rotation) conversion from the rotor frame to the laboratory

frame. The dipolar coupling constant, RDD,i,j , is given in equation 2.100, repeated

here:

RDD,i,j = −
(µ0
4π

)(γiγjh
2π

)
⟨r−3

i,j ⟩, (4.9)
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in units of rad s−1. The evolution under chemical shift (see Section 2.1.2.3) is treated

in an analogous manner. The time-dependent chemical shift is calculated as

δCS,i(t) = δiso +

√
2

3

2∑

l=−2

δ
(l)
CS,i

2∑

m=−2

2∑

m′=−2

D2
l,m(ΩPC)D

2
m,m′(ΩCR)D

2
m′,0(ΩRL(t)),

(4.10)

with

δ
(p)
CS,i =





−1
2ηδaniso if p = ±2

0 if p = ±1
√

3
2δaniso if p = 0

, (4.11)

where δiso is the isotropic chemical shift (in ppm), δaniso the anisotropic chemical

shift (in ppm), and η is the chemical shift anisotropy.81, 232 These are obtained from

the diagonalised chemical shift tensor δ components, δxx, δyy, and δzz as given in

equation 2.94 and discussed in Section 2.1.2.3.

The evolution under the chemical shift is then considered for any product operator

of the form Îi±B̂r, as

bi±,r(τ +∆t) = exp(±i2πδCS,i(τ)BHz/ppm∆t)bi±,r(τ), (4.12)

where BHz/ppm is the magnetic field strength in units of Hz ppm−1, e.g. 599.5 Hz

ppm−1 for a 1H Larmor frequency of 599.5 MHz, and bi±,r(t) is the contribution

of the product operator Îi±B̂r to the density matrix as defined in equation 4.2.

Computationally, these were implemented sequentially such that, for each timestep,

the dipolar evolution under equations 4.6 and 4.7 was applied first, followed by the

chemical shift evolution under equation 4.12.
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4.3.2 Basis Set Selection

Ideally, all spin interactions would be included within the basis-set. Such a simula-

tion, akin to a full density matrix treatment as implemented by SIMPSON81, 233, 234

and SpinEvolution,235 would scale exponentially (∝ 23n assuming Hilbert space

simulations).234 To reduce the complexity of the problem, the simulation can be

approximated using a reduced basis set. Edwards et al. (2014)203 introduced three

basis sets for the solution state which aim to reduce the number of terms which

must be included: IK-0, in which only product operator states consisting of a given

number of spins are considered; IK-2, in which only product operator states contain-

ing spins which are close in proximity are included; and IK-1, where both criteria

are applied. In the solid state, the analogous restricted basis sets used by Dumez et

al. (2010) correspond to an IK-0 basis set.77 The local restriction introduced by Perras

and Pruski (2019) further develops this into an IK-1 basis set.85 The computational

complexity of the locally restricted low-order correlations in Liouville space model

is approximately given by

complexity ∝ P × n×N q−1
max (4.13)

where P (= tmix/∆t) represents the number of time steps which must be calculated,

n is the number of spins in total, and Nmax is the number of spin neighbours

considered per spin. In the case of the original LCL algorithm (i.e., Nmax → n −

1), the complexity goes as nq, that is, it will scale polynomially. On the other

hand, introducing local restriction ensures that Nmax is independent of n. The

complexity then scales linearly in n. The choice of Nmax is important for such linear

scaling models because including too few spin pairs will lead to the simulation not

adequately recreating the dynamics of a larger model, while including too many

will not be an efficient use of computational time. In Figure 4.7a, it can be seen

that at least 16 spin pairs per spin are required to recreate the spin dynamics, while

in Figure 4.7b, increasing the average number of spin neighbours (note Navg; the
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difference between this and Nmax will be discussed below in the description of the

computational implementation) leads to a polynomially greater computational time.

Therefore, on average 16 spin pairs per spin have been included, in good agreement

to the 15 found to be optimal by Perras and Pruski (2019) who found that ≈15 spin

pairs per spin were able to recreate spin diffusion well in their system, a linear

alkane.85
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Figure 4.7: Simulations of the pulse sequence in Figure 4.2 applied to the β-AspAla
unit cell (n = 48) at νr = 60 kHz, ν0(1H) = 600 MHz, with a variable basis set size
(Navg, approximate number of neighbours per spin). (a) The evolution of the z
magnetisation, Mz , for one of the Asp NH3 spins after inversion of the carboxylic
acid proton. The spread about the lines indicates twice the standard deviation for all
symmetry equivalents. (b) The computational time required to run a model of each
size, relative to the model with Navg = 2. The simulated z-magnetisation evolution
rapidly converges, with a basis set consisting of on average 16 spin neighbours
per spin approximating well a system containing an average of 24 spin neighbours.
Only up to a spin system containing 24 spin neighbours per spin were considered,
as above this was not computationally feasible.

In the modelling here, product operator states were limited to those containing

at most q = 4 spins, an upper limit which has been shown to allow for accurate

simulation when compared to exact simulation at slower spinning.79 While a larger

value of qmax may model the spin evolution better,77, 78 such a larger basis set is

infeasible. The faster spinning frequencies modelled here mean that the rotor

cycle time is shorter and therefore more steps are required to sample the rotation

adequately for any given time, and additionally the slower rate of spin diffusion

means that longer times must be simulated. A significantly larger absolute number
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of steps, P , therefore needs to be calculated. As such, given the exponential scaling

nature of q (see equation 4.13) it is not feasible to simulate with larger product

operators included.

A method for selecting which spin pairs contribute significantly is necessary to

perform a basis set reduction in spin space. It has been shown that applying spatial

restrictions (i.e., selecting the Nmax closest spins) to the choice of spin states to

include is valid82, 85, 203 when the evolution of the spin dynamics are determined

predominantly by through-bond J-couplings (as in solution-state NMR) or dipolar

couplings in the presence of a strongly coupled spin bath (as at slow spinning

frequencies). However, this assumption begins to fail for solid-state NMR in the fast-

spinning regime. At attainable fast spinning frequencies, the dipolar couplings are

not averaged to zero as in the solution-state, but are averaged sufficiently to make

the transfer of magnetisation strongly truncated by resonance offset. To consider

this transition from slow to fast MAS, here a method is introduced in which a short

simulation is performed including all spin pairs, where the basis set is restricted to

product operators containing q ≤ 4 spins. A score is then calculated for each spin

pair, based on the population of all spin operators which include both spins

scorei,j =W2

∑
bi,j(t) +W3

∑

k

bi,j,k(t) +W4

∑

k,l

bi,j,k,l(t), (4.14)

where Wn is a weighting to ensure that all spin orders contribute equally, and bp(t)

refers to the population of spin states made up of the spins within the set p.‡ Weight-

ing is necessary, as there are n times as many four-spin states as there are three-spin

states, and n times as many three-spin states as two-spin states. While, in principle,

the relative contribution of these is also a function of the spinning frequency, this

is an emergent property of the simulation and so had not been considered in the

calculations here. Figure 4.8 shows that the contributions of these states no longer

significantly vary such that they would lead to different spin interactions giving a

‡Note that the summation is over all matching spin states. For example, the first term (
∑

bi,j) is
the sum over all i, j two-spin zero-quantum operators — Îiz Îjz , Îi+Îj−, Îi−Îj+.
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greater contribution after 0.1 ms; in the modelling performed here, these simulations

were performed for 0.2 ms. Our selection method corresponds to ordering the spin

pairs from the highest score to lowest score and selecting the n × Navg highest

scoring spin pairs to include in the basis set, thereby including only the states which

contribute the most to the spin evolution. These spin pairs which contribute the

most are not necessarily those closest in proximity; Figure 4.9 shows the magnitude

of the score in equation 4.14 as a function of distance and resonance offset for a

methyl group proton (spin-10 in Table 4.1), where there is no clear dependence

on either parameter. The spatial arrangement of these included spins are then

shown in Figure 4.10 for this methyl group proton at νr = 20 kHz and ν0(1H) = 600

MHz.

Note here that the average number of spin neighbours per spin (Navg) is used, as

opposed to a fixed number of spin neighbours per spin (Nmax). This is because,

when ordering the spin pairs by score, it is found that some spins are generally

more important to the evolution of other spins; for example, the carboxylic acid

protons are inverted at the start of the simulations and, as a result, have the greatest

magnetisation gradient with their neighbours and therefore tend to have a much

larger contribution to many other spins. This is seen in Figure 4.11, where generally

the carboxylic acid protons (grey) are found to contribute more to the spin evolution

of far more other spins than is the case for the CH3 protons (purple). This is also

evident in Figure 4.9 where the biggest circles (highest scores) are at the greatest

resonance offset. At faster magic-angle spinning frequencies, the relative spin pair

scores change, as shown in Figure 4.9, leading to a different basis set selection thereby

making different spin pairs contribute more or less as in Figure 4.11. For example,

two spins which are spatially proximate but well separate in resonance frequency

will contribute more at lower spinning frequencies, but with the truncation of

resonance offset at faster spinning frequencies will consequently contribute less,

and therefore be less likely to be included. This has important consequences for the

evolution of the spin system, as will be discussed in the following sections.
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Figure 4.8: Spin-pair interaction scores as calculated using equation 4.14 over a
representative simulation of the pulse sequence in Figure 4.2 including all spin pairs
at νr = 60 kHz, ν0(1H) = 600 MHz, beginning with inversion of the carboxylic acid
proton. LCL simulations without restriction are run for 1000 steps (0.2 ms), with
the weighted population of two, three, and four spin states plotted above. Spin
pairs involving the COOH and the Ala NH, Asp Hα, and Ala CH3 in β-AspAla
are shown in green (solid), orange (dashed), and purple (dotted), respectively (see
Figure 4.1 and Table 4.1). Beyond approximately 0.1 ms, the contribution of the 2, 3,
or 4 spin states no longer significantly change such that the ordering of which spin
interactions to include is likely fixed at this point.
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Figure 4.9: Basis set selection according to the method outlined in Section 4.3.2 for
the pulse sequence in Figure 4.2 starting with COOH resonance inversion at the
indicated spinning frequencies (ν0(1H) = 600 MHz), as a function of their resonance
offset and distance from spin-10, a CH3 proton in molecule 1. The size of each
point represents the score as in equation 4.14, i.e., the sum of the weighted 2, 3,
and 4 spin terms. Spins which were included as ‘neighbours’ to the spin of interest
by restricting the the average number of spin neighbours per spin, Navg, to 16 are
shown highlighted in blue, while spins which were not included as neighbours
are shown in black. The number of ‘neighbours’ included per spin are shown in
Figure 4.11. The spatial arrangement of the spin pairs included for the 20 kHz
simulation are shown in Figure 4.10.
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Figure 4.10: Spin interactions included in simulation involving spin-10, a CH3
proton in molecule 1 (see Table 4.1), at νr = 20 kHz and ν0(1H) = 600 MHz. These
correspond to spins highlighted in blue in panel 2 of Figure 4.9.
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Figure 4.11: Number of neighbouring spin pairs selected for Navg = 16 as a function
of the Spin ID of interest for three different spinning frequencies, for simulations
of the pulse sequence in Figure 4.2 at 600 MHz, beginning with inversion of the
carboxylic acid proton resonance (grey), with chemical shift anisotropy included
and no dipolar averaging. Colours are as in Figure 4.1, and sites with asterisks are
those which are used in the following plots. The spin IDs are as given in Table 4.1,
noting that the unit cell contains 4 symmetry equivalent molecules (1–12, 13–24,
25–36, 37–48).
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4.4 Results and Discussion

4.4.1 Effect of Resonance Offset on Spin Diffusion

The chemical shift of a spin relates to how the local environment changes the effective

magnetic field experienced by that spin, and therefore the change in the difference

in energy between the spin-up and spin-down states. Spin diffusion, being an

energy conserving diffusion of spin order between sites, is therefore truncated by

the offset between two resonances, corresponding to two chemically distinct sites

in the solid-state structure. Dipolar couplings to the large proton bath provide an

external reservoir of energy to allow for spin diffusion to occur, as apparent by

the broad overlapping peaks in 1H solid-state NMR spectra. In the limit of low

magnetic fields and low spinning frequencies, the contribution from this spin bath

is sufficient to ensure that the rapid magnetisation transfer between different spins

occurs in an approximately spatial manner (i.e. that the efficiency of the polarisation

transfer is approximately related to the distance between spins).72, 80

With faster magic-angle spinning and higher magnetic fields, however, the spatial

nature of this transfer begins to break down. Figure 4.12 shows the effect of including

both isotropic and anisotropic chemical shift in the spin diffusion model presented

here. It is notable that, in the absence of isotropic or anisotropic chemical shift

(red dashed lines), the reduction in the rate of spin diffusion is negligible as higher

spinning frequencies are attained, as seen by comparing with the blue dotted lines

for purely dipolar spin diffusion. This suggests that truncation by resonance offset

dominates the reduction in spin diffusion as opposed than the direct averaging of

the dipolar couplings.

Figure 4.12 further exemplifies the importance of including not only the isotropic

component of the chemical shift tensor, but also the anisotropic component. In the

absence of anisotropic chemical shift, it appears that the rate of spin diffusion is

further reduced as the anisotropic component of the chemical shift tensor commutes

with the homonuclear dipolar interactions and so aids the spin diffusion. The
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Figure 4.12: Simulated effect of adding both isotropic and anisotropic chemical
shift to the employed LCL model, as a function of spinning frequency, at ν0(1H) =
600 MHz, for a unit cell of β-AspAla (n = 48) with periodic boundary conditions.
The evolution of the ratio of the instantaneous magnetisation to the equilibrium
magnetisation, Mz , is shown for the Ala NH (spin 5 in Table 4.1), after inversion of
the COOH proton resonance (see pulse sequence in Figure 4.2).

increasing dependence of spin diffusion on resonance offset between sites may also

be seen in Figure 4.13. Here, the transfer of magnetisation for the Ala NH (4.6 ppm

offset from COOH), Asp Hα (8.6 ppm offset), and an Ala CH3 proton (11.7 ppm

offset) is shown as a function of spinning frequency (10 to 150 kHz) and magnetic

field (1H Larmor frequencies of 100 MHz, 600 MHz, and 1 GHz). At 100 MHz, it may

be seen that there is little truncation due to offset even for high spinning frequencies

(≈ 60 kHz) indicating little isotropic chemical shift resolution even at these higher

spinning frequencies. This is exemplified by comparison between 20 kHz MAS at 1

GHz and 60 kHz MAS at 100 MHz, where the rate of transfer appears qualitatively

similar. At 1 GHz, spinning frequencies greater than 100 kHz would be expected to

severely truncate coherent spin diffusion.

Coherent inverse-sign spin diffusion, as observed in L-histidine HCl H2O at 60 kHz

at 500 and 700 MHz,200 is also seen. In these simulations, such spin diffusion is
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Figure 4.13: Simulated effect of the spinning frequency and applied magnetic field
(given as 1H Larmor frequency) on the rate of spin diffusion after inversion of the
COOH proton (see pulse sequence in Figure 4.2). Simulations were performed for
a full unit cell of β-AspAla (n = 48), with periodic boundary conditions, in the
absence of dipolar averaging. Colours are matched with Figure 4.1, i.e., solid green
(Ala NH), dashed orange (Asp Hα), dotted purple (Ala CH3) (see also Table 4.1).
Left to right: ν0(1H) = 100 MHz, 600 MHz, 1 GHz. Top to bottom: νr = 10 kHz, 20
kHz, 40 kHz, 60 kHz, 100 kHz, 150 kHz. The spread around each line corresponds
to twice the standard deviation of all four equivalent spins in the system. This error
increases at higher spinning frequencies likely due to faster MAS giving shorter
rotor cycle times and therefore sparser sampling of the evolution of anisotropic
chemical shift and dipolar couplings under MAS (noting that a timestep of 0.2 µs
was used for all simulations).
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manifested by the magnetisation associated with a site increasing, e.g. Mz > 1, as

is evident for the inset axes on Figure 4.13 (l, n, o, q, and q). This is expected to

occur when four interacting spins, I, S, R, and P, meet a resonance condition of

(ωI − ωS)− (ωR − ωP ) = 0. In this system, it is likely that the Ala COOH (13.1 ppm),

Ala NH (8.5 ppm), Ala Hα (5.4 ppm), and Ala CH3 (1.4 ppm) protons meet this

four-spin resonance condition, as 8.5− 1.4 = 7.1 ≈ 13.1− 5.4 = 7.7. It is found to

be particularly relevant in this system for the methyl protons (purple) at spinning

frequencies >60 kHz at 1 GHz, and >100 kHz at 600 MHz; a more thorough analysis

will be discussed in Section 4.4.3 and Section 4.5.1.

4.4.2 Relation to Perturbation Approaches

Whilst the restricted basis set low-order correlation in Liouville space model used

here is orders of magnitude faster than simulating the complete evolution of the

full density matrix, it is still far slower than perturbation theory diffusion equation-

based approaches. As such, relating the resonance offset dependence here to these

methods is of interest to the broader applicability of such models at faster spinning

frequencies. Kubo and McDowell (1988) give an equation for the dependence of

the rate of spin diffusion on the dipolar couplings and the resonance offset (via

the ‘zero-quantum lineshape’) under MAS (their equation 25).76 Their equation is

reproduced here:

RD
SD =

1

TD
SD

(4.15)

=
R2

DD,i,j

15

{[
KRy(ωr) +KRy(−ωr)

]
+

1

2

[
KRy(2ωr) +KRy(−2ωr)

]}
, (4.16)

where KRy (ω) represents the zero-quantum lineshape function (note the similarity

with the form of equations 2.154–2.159, and especially equation 2.160) and RDD,i,j

is the dipolar coupling as defined in equation 4.9. This equation, or its equivalent

equations, form the basis of most diffusion-based simulations of spin diffusion. The
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zero-quantum lineshape function arises from the evolution of zero-quantum coher-

ence (e.g., ZQT = I+S−).236 In such models, the dependence of spin diffusion on

both spinning frequency and resonance offset arises via this lineshape function. As

such, understanding the nature of this function has been of interest.83, 237 Typically,

however, this has been done using convolutions of single-quantum lineshapes83 or

through master equation based modelling.237 By comparison, here, simulations are

presented in Figures 4.14, 4.15, and 4.16, in which the evolution of the I+S−, I+S−Rz ,

and I+S−RzQz states (respectively) is considered for different spinning frequencies

during the normal evolution of the system after inversion of the carboxylic acid

proton resonance.

νr = 10 kHz

νr = 15 kHz

νr = 20 kHz

(× 2) νr = 40 kHz

(× 2) νr = 60 kHz

(× 5) νr = 100 kHz

−4 −2 0 2 4

Offset from +νr / kHz

(× 10) νr = 150 kHz

Figure 4.14: Simulated zero-quantum lineshapes at the first spinning sideband as
obtained from evolution of the I+S− ZQT coherence after inversion of the carboxylic
acid proton resonance. Simulations were performed with ν0(1H) = 600 MHz and
variable νr, for a full unit cell of β-AspAla (n = 48) with periodic boundary condi-
tions. The interactions between spin-2 and spin-5 are shown where spin-2 is one of
the NH3

+ protons of molecule 1, and spin-5 is the Ala NH proton (see Table 4.1).

Specifically, the zero-quantum lineshapes of the first spinning sideband between

the carboxylic acid proton and Ala NH protons of molecule 1 extracted from the

model are shown in Figures 4.14, 4.15, and 4.16 for a range of spinning frequencies
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νr = 10 kHz

Recording I1+I5−Iiz

νr = 15 kHz

νr = 20 kHz

(× 2) νr = 40 kHz

(× 6) νr = 60 kHz

(× 20) νr = 100 kHz

−4 −2 0 2 4

Offset from +νr / kHz

(× 40) νr = 150 kHz

Figure 4.15: Simulated zero-quantum lineshapes at the first spinning sideband
as obtained from evolution of the I+S−Rz ZQT coherences after inversion of the
carboxylic acid proton resonance. Simulations were performed with ν0(1H) = 600
MHz and variable νr, for a full unit cell of β-AspAla (n = 48) with periodic boundary
conditions. In this, spin I is spin-2, spin S is spin-5 (see Table 4.1), and spin R was
summed over all spins which were neighbours of both I and S.

considering different zero-quantum coherences. At spinning frequencies νr = 15

kHz, the lineshapes are broadened such that it is not possible to identify a single

peak, which suggests that spin diffusion in this regime will have little dependence

on the exact form of this function. As the spinning frequency increases, however,

the lineshapes narrow significantly. It is also noted that the intensity of the spinning

sidebands is significantly reduced with higher MAS frequencies, reflecting the

reduction in spin diffusion rate with spinning frequency.

A result of this zero-quantum line narrowing is that spin diffusion would be ex-

pected to occur only within a well-defined range of resonance offsets, with relayed

transfer slightly broadening this by allowing magnetisation to transfer between

rather more separated spins. Modelling this line narrowing in the manner uti-

lized here may enable the development of perturbation theory approaches at faster
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νr = 15 kHz

νr = 20 kHz

(× 2) νr = 40 kHz

(× 6) νr = 60 kHz

(× 20) νr = 100 kHz

−4 −2 0 2 4

Offset from +νr / kHz

(× 40) νr = 150 kHz

Figure 4.16: Simulated zero-quantum lineshapes at the first spinning sideband
as obtained from evolution of the I+S−RzQz ZQT coherences after inversion of
the carboxylic acid proton resonance. Simulations were performed with ν0(1H) =
600 MHz and variable νr, for a full unit cell of β-AspAla (n = 48) with periodic
boundary conditions. In this, spin I is spin-2, spin S is spin-5 (see Table 4.1), and
spins R and Q were summed over all spins which were neighbours of both I and S

MAS frequencies by accounting more directly for the change in ZQT lineshape

rather than approximating this effect with a decaying exponential as is typically

performed.

4.4.3 Effect of Dynamics on Spin Diffusion

Many of the systems of interest for characterisation with spin-diffusion based tech-

niques exhibit dynamics.238, 239 Dynamic motions affect the coherent evolution in

spin space by leading to averaging of dipolar couplings and CSA tensors.115, 240

Even in crystalline solid samples, it is known that significant motions may be

present.240–245 Of particular importance are rotational motions of axially symmetric

groups such as methyl groups, primary amines, and phenyl groups, which are

typically fast on the NMR timescale and with limited energetic barriers.246, 247
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Motions occurring at frequencies coincident with various spin interactions can

give rise to relaxation. In the case of interacting proton spins, motion could lead

to incoherent cross relaxation and the nuclear Overhauser effect. Such an effect

would interfere with the coherent spin evolution. A relaxation super-operator based

treatment113 of such effects is beyond the scope of this chapter, where the interest

is solely in the coherent evolution of the system. In the model here, dynamics is

included through two parameters. Overall motion is reflected by an order parameter

S, which applies a linear scaling to all dipolar couplings between spins. C3 rotation

of the NH3
+ and CH3 groups was modelled by averaging the dipolar couplings

between protons within the same group by P2(cos θ) =
1
2(3 cos

2 θ − 1), where θ is

the angle between the rotational axis and the interaction of interest. The angle is

usually taken to be 90◦ so that the averaging factor is 0.5. As mentioned previously,

the CSA tensors were averaged between all protons within a given CH3 or NH3
+

group in the molecular frame prior to rotation into the interaction frame.83 The

spin evolution as shown in Figure 4.17 (60 kHz MAS, 600 MHz) appears relatively

insensitive to the overall motion order parameter. Under CH3 or NH3
+ rotation,

however, the dynamics significantly change. Given that six of the twelve protons

in each molecule of β-AspAla are within these axially symmetric groups, this is

unsurprising.

Of important note is the behaviour of the inverse-sign spin diffusion (Mz > 1)

apparent for the methyl (purple) group. As was noted by Agarwal (2019), this

inverse transfer is aided by scaling the couplings involved.200 For this effect to

occur, the four-spin third order Hamiltonian contribution must dominate over

the two- and three-spin Hamiltonians. While at such fast-spinning frequencies,

the two-spin terms are effectively completely averaged, relayed transfer may still

come to dominate over the four-spin interactions at long simulation times, hence

giving the short lifetime of the effect observed in Figure 4.17e in the absence of

methyl rotation. When these relaying interactions are further averaged by the

methyl rotation, however, the four-spin term can dominate for far longer as seen in
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Figure 4.17: Simulated variation in spin diffusion for the Ala NH, Asp Hα, and Ala
CH3 sites after inversion of the carboxylic acid resonance (see pulse sequence in
Figure 4.2) under different models of dynamical averaging. All dipolar couplings
within each system were scaled by the parameter S to reflect overall dynamical
motion. In (b,d,f), all dipolar interactions within a CH3 or NH3

+ group were addi-
tionally scaled by 0.5 to represent their axial rotation. Simulations were performed
with ν0(1H) = 600 MHz and νr = 60 kHz, for a full unit cell of β-AspAla (n = 48)
with periodic boundary conditions

Figure 4.17f.
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4.5 Experimental Case Studies

In the previous discussion, it was found, in agreement with prior work,75, 76 that spin

diffusion may become truncated by the resonance offset between spins. As a result,

the spatial nature of coherent spin diffusion breaks down. In this section, the experi-

mental impacts of this truncation will be discussed. First, experimental spin diffu-

sion in the dipeptide β-aspartyl L-alanine is shown, for which qualitative agreement

is found with the simulated trends. However, an additional temperature-dependent

behaviour is observed which may be indicative of an incoherent 1H-1H homonuclear

nuclear Overhauser effect. Second, the efficiency of polarisation transfer via 1H spin

diffusion in perdeuterated U-[2H,13C,15N] GB1 with 100% 1H back-exchange at 60

kHz is found to be dominated by resonance-offset truncation.

4.5.1 Case Study 1: Incoherent Nuclear Overhauser Effect in β-aspartyl

L-alanine (β-AspAla)

Experimental spin diffusion results obtained at 55 kHz MAS and 600 MHz are pre-

sented in Figure 4.18, with the six plots corresponding to the resolved 1H resonances

(see Figure 4.1b and Table 4.1). In these experiments, variable length trains of selec-

tive gaussian inversion pulses were applied selectively to the carboxylic acid proton

peak (see Figure 4.4), and the corresponding intensity of all other sites recorded in a

manner analogous to saturation transfer difference experiments conducted in the so-

lution state.219, 220, 248 Under these conditions, it is expected that the transfer of spin

order will occur via spin diffusion with the saturated site acting as a magnetisation

sink. A saturation type experiment was applied because experimentally influence

from incoherent relaxation processes would be expected, which would lead to a fast

recovery of the COOH spin making analysis of the behaviour in an inversion-type

experiment more complex. On the other hand, under saturation the system would

evolve towards a ‘steady-state’ and so the rate at which this occurs may be more

readily quantified. Additionally, mis-set inversion pulses may not completely invert

the site, meaning that the initial state would not be along −1, while saturation
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would cause this site to approach 0 even for imperfect inversion.

While a comparison with simulation is presented in Figure 4.18, it should be noted

that the presence of incoherent auto- and cross- relaxation means that this compar-

ison is not necessarily ideal. Experimentally the spin diffusion is a combination

of incoherent and coherent processes, while the computational modelling here is

purely coherent.

It is observed that, under saturation, there is a strong resonance offset dependence

with regards to the magnetisation change under saturation. Figure 4.18 is ordered

with the site highest in chemical shift (closest in resonance offset to the carboxylic

acid) at the top, with the chemical shift progressively getting lower (with greater

resonance offset) on moving down the figure. Interestingly, the Ala CH3 group

experiences significant inverse sign spin diffusion similar to that which has been

seen in other systems,200, 201, 249 with an enhancement of ≈20%. This is significantly

greater than any inverse-sign spin diffusion observed within the simulations (the

maximum seen being 1.82%, in Figure 4.17f with S = 0.94). Moreover, this effect

exhibits a significant temperature dependence, with an increase in the amount of

inverse sign spin diffusion at higher temperatures. This observation is in contrast to

the similar effect observed for L-histidine HCl H2O by Agarwal (2019), and suggests

that this effect may be dominated by an incoherent cross relaxation effect.200

In Figure 4.19, the calculated nuclear Overhauser effect (nOe) enhancement is shown

as a function of temperature for this system. The temperature dependence of the

timescale was approximated using an Arrhenius relation,250

τ(T ) = τ(300K) exp

(
Ea

R

[
1

T
− 1

300

])
, (4.17)

with the activation energy, Ea, assumed to be 17.4 kJ mol−1 and the timescale at 300

K, τ(300K) = 200 ps, though it should be noted that these values are approximated

from the solution state247 and are likely somewhat different in this system.246, 251

Approximating the spectral density as a single timescale Lorentzian function:
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Figure 4.18: Experimental spin diffusion curves under saturation of the COOH pro-
ton resonance for β-AspAla at 55 kHz MAS and a 1H Larmor frequency of 600 MHz,
at temperatures of 279–320 K (calibrated using KBr). There is a significant difference
in the spin diffusion observed under each temperature condition. Errors are shown
as twice the standard error from voigt lineshape fitting with lmfit. Simulated spin
diffusion curves under the same conditions are shown in red.

J(ω) =
1

1 + (ωτ)2
, (4.18)
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the nuclear Overhauser effect is then calculated as

η =
6J(2ω0)− 1

1 + 3J(ω0) + 6J(2ω0)
, (4.19)

with ω0 being the 1H Larmor frequency as defined in equation 2.25. Note that

the spectral density function in principle has an orientation dependence, however

here this prefactor is omitted as for the calculation of nOe it would cancel out. At

a 1H Larmor frequency ω0 = 600 MHz, it is expected that a positive nOe would

be observed and hence a positive enhancement in the resultant signal over this

temperature range.

200 240 280 320 360

Temperature / K

-1.0

-0.5

0.0

0.5

η

600 MHz

800 MHz
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Figure 4.19: Calculated nOe (see equations 4.17–4.19) as a function of temperature
at a range of magnetic field strengths. This was calculated assuming an Arrhenius
dependence of timescale on temperature, with an activation energy of 17.4 kJ mol−1,
and a correlation time of 200 ps, though these are approximate.246, 247, 251 Tempera-
tures of 279 K and 320 K are shown using vertical lines.

In order to further investigate this apparent nuclear Overhauser effect in Section 4.5.1

further variable temperature experiments were performed over a range of tempera-

tures. The 1.3 mm HXY probe, however, was limited in that it could only reach from

240–330 K. Using a Phoenix 1.6 mm probe it was possible to record a wider range of

temperatures from 170 K to 365 K. At each temperature, a series of 1D spectra was

recorded at different time delays after inversion of the COOH. The average intensity

of the CH3 resonance from 22–32 ms after inversion was recorded relative to the
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intensity immediately after inversion. Figure 4.20 shows the resulting intensity

achieved as a function of temperature (170.9–363.9 K). The trend in general agrees

with that expected of a nuclear Overhauser effect (c.f. Figure 4.19), with the coldest

temperature (170.9 K) having a reduction in the intensity. A model of the nuclear

Overhauser effect (equations 4.17–4.19) has been fit, identifying a correlation time

of 140± 30 ps and an activation energy of 1.9± 1.0 kJ mol−1. While the correlation

time is in good agreement with prior solution state studies,247 this activation energy

is significantly lower.
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Figure 4.20: Deconvoluted integral of the CH3 resonance measured as the average
for tmix between 22–32 ms after inversion of the COOH resonance in β-AspAla,
measured at a 1H Larmor frequency of 850 MHz spinning at 40 kHz in a 1.6 mm rotor.
Error bars are shown at two standard deviations. A model of the nOe enhancement
(see equations 4.17–4.19) was fit (red dashed line, data between 245–290 K were
omitted during the fit), with the correlation time of the methyl group being found
to be approximately 140± 30 ps with an activation energy of 1.9± 1.0 kJ mol−1.

Interestingly, the measurements around 260–270 K do not fit the general trend. In
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the variable temperature 1D 1H spectra (Figure 4.21), the NH3
+ resonance is not

observed below this temperature. This indicates that 260–270 K represents the

coalescence temperature for the rotation of the NH3
+. That the coalescence of the

NH3
+ occurs at a similar temperature to the divergence in Figure 4.20 suggests that

the two effects may be related, however more study into this effect is required.
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Figure 4.21: Variable temperature 1H 1D spectra of β-AspAla measured at a 1H
Larmor frequency of 850 MHz at 40 kHz MAS

As a final verification of this being an incoherent nuclear Overhauser effect, a

2D 1H – 1H proton spin diffusion spectrum with a MAS frequency of 60 kHz and
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a 1H Larmor frequency of 1 GHz was recorded. This is shown in Figure 4.22.

While the general pattern of resonance offset dependent spin diffusion is apparent,

the existence of negative cross peaks between the methyl group and three other

resonances (Ala NH, Ala Hα, Ala COOH) is observed. This indicates that this

effect is indeed dominated by an incoherent process; in the case of a four spin

inverse-sign coherent spin-diffusion effect, only a single negative cross peak would

be expected, as the other two spins involved (Ala NH, Ala Hα) would give positive

cross peaks.
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Figure 4.22: 2D PSD spectrum of β-AspAla recorded at 1 GHz 1H Larmor frequency
and 60 kHz MAS. The base contour level was set at 2.1%. A mixing time of 50
ms was used. 4 coadded transients were acquired for each of 512 t1 FIDs, using
States-TPPI in F1 for sign discrimination.
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While both homonuclear252 (11B) and heteronuclear nOes154, 253–255 (1H – 13C,

1H – 15N) have been observed before in the solid-state, few 1H – 1H solid-state nOes

have been reported. A solid-state nOe was observed in a study of hydrogen-π

interactions with trapped water molecules.256 Another such example is the

suggestion that a 1H – 1H homonuclear nOe is responsible for the difference

between 1H – 1H SD and 1H – 1H fp-RFDR spectra occurring in a study of bone at

110 kHz MAS.257 However, in light of the results of this study it is more likely that

what was observed in the bone study was not actually a nuclear Overhauser effect,

rather it was the result of resonance-offset truncation in spin diffusion.

The presence of this temperature-dependent incoherent effect may suggest that at

fast spinning frequencies and high magnetic fields, the spin terms responsible for

coherent spin evolution are sufficiently truncated by resonance offset such that there

may be a competing influence of incoherent effects.

4.5.2 Case Study 2: 600 MHz Spin Diffusion in U-[2H,13C,15N]-GB1 at 60

kHz

Following the observation of strong resonance-offset dependence for spin diffusion

in a protonated sample at fast MAS, the effect of this phenomenon on a system

with a more dilute proton network was studied. It has been found for several

crystalline protein systems that the combination of perdeuteration and fast MAS

leads to excellent resolution with narrow protein linewidths (< 50 Hz).125 This is the

case for the β1 domain of Protein G, GB1, a protein commonly used in solid-state

NMR. Selective saturation (≈100 Hz bandwidth, 500 ms) was applied to several

resolved sites in GB1, and the ratio of the intensities of all other resolved resonances

under saturation on resonance and off resonance was recorded as a function of

the resonance offset from the saturation transmitter. Specifically, Lys10 NH, Ala20

NH, Trp43 Hϵ1, and Asn37 Hδ21 were saturated. These sites are highlighted in a 2D

1H – 15N spectrum of perdeuterated GB1 in Figure 4.23. Note that not all of these

saturation sites are ‘perfect’, and so they may overlap with other sites which could
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influence the resulting saturation profile.
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Figure 4.23: A 2D 1H – 15N spectrum of perdeuterated U-[2H,13C,15N] GB1 recorded
at 60 kHz MAS, 600 MHz 1H Larmor frequency. The sites which were targeted
with saturation have been annotated (using selection algebra notation), with the
approximate bands of saturation shown (the frequency of saturation ±50 Hz).

For all sites under saturation, a strong dependence of magnetisation change on

resonance offset was observed, yet negligible to no dependence on distance. This

is illustrated in Figure 4.24. Thus, under these conditions considering the intensity

of peaks as even very rough indicator of spatial proximity may lead to wrong

conclusions without careful consideration of the chemical shift.

Figure 4.25 shows 1D spectra under 500 ms of saturation of the different labelled
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Figure 4.24: Saturation was applied for 500 ms to the resolved Lys10 NH resonance.
The resulting intensity of the other sites, relative to off-resonance saturation, is
shown as a function of (a) their resonance offset and (b) their spatial proximity.

points. On top of these, the ratio of the intensity with and without saturation is

shown, displaying a strong resonance-offset dependence.

An additional consideration is whether the rate at which the saturation transfer

occurs varies as a function of saturation site. For example, Trp43 Hϵ1 is only close in

resonance offset to a single site, Phe52 NH; as a result, very little transfer occurs to

the other sites. However, it is of interest whether the rate at which this magnetisation

transfer occurs is dependent on the site being saturated, or whether it is a property

of the system as a whole. In Figure 4.26, the transfer of saturation from Ala20 NH to

Thr17 NH under different saturation times is shown. This follows an exponential

decay:

Mz(tsat) = A+Be−ksattsat , (4.20)
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Figure 4.25: 1D projections of perdeuterated GB1 under saturation of different sites,
as recorded with νr = 60 kHz at ν0(1H) = 600 MHz are shown as coloured spectra.
The equivalent spectra with off-resonance saturation is shown in grey. 500 ms of
saturation with ν1 = 100 Hz was applied at the points indicated. Projections were
calculated by summing rows. Also shown is the saturation ratio, calculated as the
intensity under saturation divided by the intensity under off-resonance saturation.
This has been coloured according to the intensity of the off-resonance saturation, as
the ratio in the noise is not meaningful.

where A and B relate to the degree to which saturation is transferred, and ksat to

the rate at which this transfer occurs. Such curves have been fit to the transfer

of magnetisation between each pair of points, which is shown in Figure 4.27 as a

function of resonance offset and spatial proximity. While the values of A and B

are very dependent on the point of saturation, it is found that the rate of saturation

transfer, ksat, is independent of the saturation point and follows a strong dependence

on the shift offset. There is no discernible dependence of this on the spatial distance

between sites.

In conclusion, it has been found that in a perdeuterated U-[2H,13C,15N] GB1 with
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Figure 4.26: Plot showing the transfer of magnetisation from Ala20 N-H to Thr17
N-H under variable mixing times of saturation. An exponential decay curve (equa-
tion 4.20) has been fit in blue.

100% back-exchange at 60 kHz MAS, the spin diffusion is almost entirely dominated

by the resonance offset between sites. The rate at which this transfer occurs is

dependent principally on the resonance offset between sites, and this dependence is

consistent between saturation sites.
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Figure 4.27: Variation in the fit exponential decay parameters, ksat, A, and B (see
equation 4.20), as a function of resonance offset and distance for each of the satura-
tion points considered here.

4.6 Conclusions

As faster magic-angle spinning and higher magnetic fields become routine for

accessing higher resolution in 1H solid-state NMR, understanding the behaviour

of spin-diffusion becomes more important for designing experimental methods in

which spin diffusion is utilised or where it is a competing effect to, e.g., chemical

exchange like in CEST. Specifically, as 1H sites become better resolved, the transfer of
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spin order between them via spin diffusion becomes increasingly dependent on their

resonance offset. Here, it was shown that the inclusion of chemical shift evolution,

and specifically chemical shift anisotropy, is of key importance for simulating how

these systems evolve. The effect of dynamics was also investigated and found to

play an important role in the coherent evolution of the system.

In Section 4.5.1, it was found that for crystalline β-AspAla the resonance-offset

truncation is sufficient both to ensure almost entirely offset dependent transfer, and

to enable a possible incoherent nuclear Overhauser effect to become competitive.

The truncation was also studied in a sample of microcrystalline perdeuterated GB1

in Section 4.5.2, where the transfer becomes entirely resonance-offset dependent.

These suggest that under such conditions, experiments relying on coherent 1H–1H

spin diffusion should be avoided. However, it may also open up new avenues for

exploration. For example, the resonance-offset truncation has the effect that for

some sites, there is effectively negligible coherent 1H spin diffusion; for example, the

saturation of Trp43 Nϵ1 led to very little transfer to other sites (see Figure 4.25). In

this case, cross-relaxation incoherent processes likely become strongly competitive.

There exist solid-state systems which possess significant microsecond dynamics

(for select examples, see ref 163, ref 121, ref 258, and Chapter 5). In such systems,

a positive enhancement nuclear Overhauser effect would be expected which may

enable these well-resolved sites to be used as structural probes.

While here only direct proton to proton spin diffusion has been considered, it should

be noted that the consequences and features observed likely affect other experiments.

For example, CHHC80, 259 experiments as commonly applied at slower spinning

rates will suffer the same resonance offset dependence under fast MAS as the proton

spin bath relied upon for transfer becomes increasingly more resolved. This analysis

highlights the importance of application of active recoupling under fast magic angle

spinning conditions to collect spatial structural constraints.260–266 On the other hand,

better understanding of proton spin diffusion at fast MAS has implications for our

ability to measure site-specific 1H relaxation and quantification of 1H CEST in the
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solid state.
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Chapter 5

Investigating Protein Dynamics in

the Presence of Paramagnetic

Dopants

The relaxation rate dataset used in this chapter includes both previously published data (see

Table 5.1 and 5.3 for lists) and newly recorded data (Table 5.2). This new data was recorded

entirely by myself. The method used for the analysis of the relaxation data presented here

was performed and developed by myself.

5.1 Introduction

NMR has found an important role in experimentally quantifying and understanding

the local dynamics of proteins.128, 130, 149, 163, 225, 267–272 However, most of these studies

have only observed proteins in an single-component context, when it is known that

many of their biological roles arise through the interactions between proteins and

other molecules.273–278 While, in principle, solid-state NMR is a powerful tool to

access information on motions in multicomponent systems, it often faces issue of

limited sensitivity. Long experimental times are required due to the multiplicity

of experiments and necessary signal averaging, hindering direct relaxation-based
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dynamic analyses.

Most of the time in an NMR experiment is spent waiting for the nuclear spins to relax

to equilibrium.279–282 This is particularly the case when measuring relaxation rates,

for which the experiment is additionally lengthened by the requirement to wait

for the relaxation of the nuclei being studied. In the case of 15N T1 measurements,

this can lead to extremely long experimental times owing to the slow relaxation of

this nuclei (15N T1s are typically dozens of seconds long). This intrinsic T1 barrier

may be reduced through the addition of paramagnetic species which give rise to

a paramagnetic relaxation enhancement (PRE). PRE may be exploited by doping

samples with paramagnetic agents such as Gd(DTPA-BMA) or CuEDTA, and has

been shown to allow for rapid acquisition of structural information.50, 283–289 For

relaxation measurements, PRE helps to shorten the overall experimental time not

only by reducing the 1H T1, and thus the repetition rate of experiment, but also

by reducing the measured relaxation times and consequently the required variable

relaxation delays.279, 284, 288, 290

Though the PRE can aid structural studies, it does this by affecting the nuclear spin

relaxation. As such, it is no longer possible to directly interpret the measured nuclear

spin relaxation rates in terms of their underlying dynamics without quantifying

the additional PRE.51, 284 Recently, several models for this paramagnetic term for

structural analysis have been investigated.286, 291–293 In cases where the position

of the paramagnetic centre is well defined (e.g., in metalloproteins) these models

can be used to determine the paramagnetic contribution and subtract this from the

experimental relaxation rates to allow for dynamical analysis.294–296 However, there

are currently no general protocols to quantify local dynamics based on relaxation

data in the presence of PREs. While the paramagnetic contribution to the relaxation

is typically significant, it usually does not completely dwarf the dynamical contri-

bution in the applicable regime. Typically, when the paramagnetic contribution is

significantly greater than the dynamical contribution, the broadening due to excess

of paramagnetic dopant becomes too large to allow site-specific measurements.
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As such, if the paramagnetic contribution were adequately quantified it would be

possible to access the underlying dynamic contribution to relaxation, and thereby

investigate the local dynamics.

One such system in which dynamical analysis is limited owing to the poor sensi-

tivity of the sample is the complex formed by GB1 and Immunoglobulin G (IgG)

(GB1:IgG, shown in Figure 5.1a). The intermolecular interaces for this system have

been characterised both by considering fragments297–300 and the full-length anti-

body.49, 50, 258 The characterisation of the local dynamics and interactions within

this system is challenging because the labelled U-[2H, 13C, 15N]-GB1 makes up only

≈10% of the sample weight by volume,49 a result of which is that ≈ 100× as much

experimental time is required for the same quality data relative to the same datasets

measured on microcrystalline GB1.* As a result, experimental times required to

obtain the requisite set of relaxation rates for the analysis of dynamics can run

into several months (see Figure 5.1b, noting that several of each type of relaxation

rate would be required). Consequently, the analysis of the dynamics within the

GB1:IgG complex to date has been limited to qualitative comparison of relaxation

rates258 or the quantitative analysis of relaxation dispersion where the separation

of the paramagnetic and exchange contributions to relaxation is straightforward.51

The technique introduced here, COncerted Motion and PAramagnetic Dynamics

RElaxation analSis (CoMPaDReS), attempts to obtain separation of dynamic and

paramagnetic contributions to relaxation in samples which have been doped with

paramagnetic species. This separation enables the quantification of both the local

dynamics and the paramagnetic interaction. This approach improves the feasibility

and practicality of solid-state NMR relaxation analysis for sensitivity limited large

biomolecular complexes.

This chapter will begin by introducing the theory and methodology behind the tech-

nique. The CoMPaDReS method will then be applied to paramagnetically-doped

microcrystalline GB1, for which the resulting dynamical profile will be compared

*Owing to the square root dependence of signal to noise on the number of scans. 10× more signal
to noise requires 100× as many scans.
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to a more traditional analysis on undoped microcrystalline GB1. Following this,

the CoMPaDReS method will be applied to the paramagnetically-doped GB1:IgG

complex, where the resulting dynamics will be compared with those arising from

a limited undoped dataset, from molecular dynamics simulations, and from the

microcrystalline form of GB1. Finally, the size of the relaxation rate dataset required

for this analysis will be discussed, with a key focus on the potential for saving

experimental time.
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Figure 5.1: (a) Depiction of the GB1:IgG complex studied here. The Fab and Fc
domains of the Immunoglobulin G (IgG) protein which were simulated are shown
in blue and red respectively. The GB1 is shown in yellow. Representative models of
the Gd3+ complex are shown in green. Note that for molecular dynamics modelling,
only the coloured parts of the protein complex were simulated. (b,c) Example
comparison of calculated approximate experimental times (see Section 5.3.3) for
the measurement of a 15N R1 (b) (calculated using the average R1 measured at a
1H Larmor frequency of 600 MHz and a MAS frequency of 60 kHz, both with and
without 3.5 mM [Gd3+]) or R1ρ (c) (calculated using the average R1ρ measured at a
1H Larmor frequency of 700 MHz, a spin lock field of 10 kHz, and a MAS frequency
of 60 kHz, both with and without 3.5 mM [Gd3+]). These experimental times are
shown divided into contributions from the relaxation of 15N (e.g., the relaxation
delays), shown in dark colour, and the 1H (e.g., the recycle delay), shown in a light
colour.
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5.2 Methods

5.2.1 Solid-State NMR

Much of the relaxation data used in this study has been published previously.50, 51, 258

Table 5.1 outlines the datasets which have been obtained from prior studies for the

GB1:IgG complex, which include R1 and R1ρ rates at different concentrations of

Gd(DTPA-BMA)† obtained at 1H Larmor frequencies from 600 to 850 MHz. To

supplement this, and to better quantify the slow microsecond motions apparent

in this system,258 additional relaxation rates have been measured as outlined in

Table 5.2, which include R1 and R1ρ at 1 GHz 1H Larmor frequency in the presence

of 3.5 mM Gd(DTPA-BMA) and 15N NEar Rotary Resonance Dispersion (NERRD)

at 700 MHz 1H Larmor frequency. These additional rates were measured using the

same conditions as the previous studies, including using the same samples (For

sample preparation see ref 49). While experimental dipolar order parameters have

been previously published for this system,301 owing to the considerable error in

these they have not been included in this analysis. These could be included as in

previous detector-based analysis of dynamics.160 In all cases, a sample temperature

of ≈300 K was used as monitored with the difference in chemical shift between the

DSS peak and the water peak.227

Table 5.1: Previously published relaxation rates measured for the 100% back-
exchanged U-[2H,13C,15N]-GB1:natural abundance IgG complex.

Field / T Type [Gd3+] / mM ν1 / kHz νr / kHz Citation

14.1 R1 0.0‡, 3.5, 5.0, 7.5 — 60 ref 50
16.4 R1ρ 0.0, 1.0, 2.0, 3.5 10.0 60 ref 50
16.4 R1ρ 3.5 10.0 60 ref 51
20.0 R1 0.0 — 60 ref 258
20.0 R1ρ 5.0 10.2, 15.5, 20.4 60 ref 51
20.0 R1ρ 0.0 17.0 60 ref 258
20.0 R1ρ 0.0 13.1 45, 52 ref 258

In order to better verify the method on a system for which equivalently good data

†In the text, Gd(DTPA-BMA) will be used when reference is made to the full species while Gd3+

will be used to refer the paramagnetic centre.
‡All 0 mM data was only used for undoped detector calculations.
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Table 5.2: Additional data recorded for the 100% 1H back-exchanged U-[2H,13C,15N]-
GB1:natural abundance IgG complex. The same samples were used as for the data
recorded in previous studies.

Field / T Type [Gd3+] / mM ν1 / kHz νr / kHz

16.4 R1 2.0, 3.5 — 60
16.4 R1ρ 3.5 13.0, 18.0, 23.0, 32.0, 39.0 60
23.5 R1 3.5 — 60
23.5 R1ρ 3.5 11.0 60

could be obtained on both a diamagnetic and a paramagnetically doped sample,

previously recorded relaxation data for microcrystalline GB1 has been used. The

datasets used for this analysis are shown in Table 5.3.

Table 5.3: Previously published relaxation rates measured for microcrystalline GB1.

N Field Type [Gd3+] ν1 νr Citation
/ T / mM / kHz / kHz

1 14.1 R1 0.0 — 60 ref 225
2 14.1 R1 2.0 — 60 ref 50
3 14.1 R1ρ 0.0 17.0 60 ref 225
4 14.1 R1ρ 2.0 10.4 60 ref 51
5 16.4 R1 0.0 — 100§ ref 302
6 16.4 R1ρ 0.0 5.0 100¶ ref 302
7 16.4 R1ρ 2.0 10.0 60 ref 51
8 20.0 R1 0.0 — 60 ref 225
9 20.0 R1ρ 0.0 17.0 60 ref 225

For the analysis of diamagnetic microcrystalline GB1, datasets 1, 3, 5, 6, 8, and

9 were used (highlighted in blue); for the analysis of paramagnetically doped

microcrystalline GB1, datasets 2, 4, 5, 7, 8, and 9 were used (highlighted in magenta).

Datasets used for both are highlighted in teal.

While here Gd(DTPA-BMA) has been used as the paramagnetic dopant, this tech-

nique should be applicable to other paramagnetic species. Gd(DTPA-BMA), and

other Gd3+ complexes, however, are particularly suited to this kind of analysis.

Having an electron spin of 7/2, significantly lower concentrations are required com-

pared to some other dopants such as Cu2+.258, 303 The relatively long electron spin

§this was fully protonated microcrystalline GB1
¶this was fully protonated microcrystalline GB1
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relaxation time, T1e, of these complexes,284, 304 combined with the high magnetic

fields used in this study, means that the correlation time of the paramagnetic inter-

action (τpara) is dominated by the rotational diffusion of the agent, and is therefore

both field independent, and on a similar order of magnitude to the inverse of the

nuclear Larmor frequencies probed here (≈10–100 MHz, corresponding to ≈10–100

ns).305–307 As such, there is sufficient variation in the paramagnetic effect with field

that the paramagnetic interaction can be characterised both temporally and spatially.

This may not be as simple with faster relaxing species, which may still be field

dependent under these experimental conditions. Another benefit of using Gd3+

complexes is the isotropic g-tensor, meaning it does not produce a paramagnetic

contact shift (PCS).284 The presence of PCS may affect CSA relaxation pathways, or

relaxation dispersion. Finally, the Gd(DTPA-BMA) species used here does not specif-

ically bind to the protein,303 which means that this does not need to be accounted

for when interpreting the modelling results.

5.2.2 Relaxation Modelling

In the following analysis, it is assumed that the paramagnetic agent causes no

changes to the internal dynamics or to the coherent spin evolution. This assumption

is reasonable both because the local backbone dynamics are unlikely to interact with

the non-binding Gd(DTPA-BMA) complex,303 and because the correlation time of

the paramagnetic interaction is substantially faster than the rate of spin diffusion

(vide infra). A given relaxation rate may then be expressed as a linear combination

of terms considering the local dynamics, the paramagnetic interaction, and coherent

spin diffusion as

RX = Rdyn
X +Rpara

X + ρX , (5.1)

with Rdyn
X , Rpara

X , and ρX representing the dynamic, paramagnetic, and coherent

contributions respectively. As discussed in Section 3.3.3, it has been shown previ-
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ously that at spinning frequencies ≥ 50 kHz the coherent contribution (ρX ) to the

15N relaxation rates measured here is negligible.123, 308

Many models for the contribution of paramagnetic species to relaxation have been

proposed.50, 291, 292, 303, 309, 310 In this analysis, these interactions are modelled assum-

ing only point-dipole-dipole relaxation (Solomon-Bloembergen-Morgan relaxation)

as this is the primary cause of the PRE effect for an isotropic paramagnetic species

with a slow electron relaxation time (relative to other dopants), as in the Gd3+

species used here.304 Curie relaxation has been shown to be of minimal importance

in the solid-state.311 As all of the relaxation rates used here were measured in the

high-field limit, the paramagnetic contribution has been modelled using a simple

two parameter model291, 312

JP (ω) =
CN × 6.022× 10−7 × τpara

1 + (ωτpara)2
(5.2)

QP (ω) =
1

6

(
JP (ω1 + 2ωr) + 2JP (ω1 + ωr) + 2JP (ω1 − ωr) + JP (ω1 − 2ωr)

)

(5.3)

Rpara
1 (ωobs) =

2

15
ω2
PS(S + 1)

[
3JP (ωobs)

]
(5.4)

Rpara
1ρ (ωobs) =

1

15
ω2
PS(S + 1)

[
QP (0) + 3JP (ωobs)

]
, (5.5)

where CN is the concentration of the paramagnetic agent in mM, ωP is the hyperfine

coupling between 15N and e– at 1 Å in rad s−1, τpara is the paramagnetic interaction

correlation time, and S is the electron spin quantum number (for Gd3+, 7/2). The

factor 6.022 × 10−7 is a conversion from concentration in mM to number density

per Å3. The spectral density terms including the electron Larmor frequency have

been assumed negligible and omitted.286 It should be noted that the electron-spin

relaxation rate is field dependent,305–307 and therefore in theory so is the paramag-

netic correlation time τpara. However, as the relaxation measurements are all from

high field ((ωSτR)
2 ≫ 1, where τR is the rotational correlation time of the Gd(DTPA-
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BMA) complex and ωS the Larmor frequency of the electron) it is expected that the

effective electron spin relaxation time will be on the order of microseconds, and

therefore the correlation time for the paramagnetic interaction will be dominated by

the field-independent rotational diffusion of the paramagnetic dopant.

For the analysis, relaxation rate sensitivities were calculated with both dynamic and

paramagnetic components. Relaxation rates and their sensitivities were normalized

such that the maximum value of the dynamical region of the rate sensitivity was

unitary, as described in equation 2.187. The dynamic contribution was obtained

using the relaxation rate expressions given in equations 2.154–2.159. Computation-

ally, the sensitivities were defined by combining the dynamic sensitivity (discretised

using 100 time points from 10−13 to 10−3 seconds) and the paramagnetic sensitiv-

ity (a single point). Detectors were then formed from these sensitivities using the

SVD method outlined in Section 2.2.2.2, with the key modification of instructing

the linear programming algorithm to optimize linear combinations such that the

paramagnetic component of the sensitivity was equal to zero for non-paramagnetic

detectors.

To determine how many detectors should be used, the number of singular values

included was varied from 2 to 10. For each value of k the optimal paramagnetic

timescale, τpara, was determined by generating and fitting detectors over a logarith-

mically spaced range of 200 τpara from τpara = 100 picoseconds to 1 microsecond,

and then calculating the average χ2 value of the back-calculated relaxation rates

over all residues. The best fit value was taken as the value of τpara. Then, models

with different values of k were compared using the median reduced χ2 values. The

reduced χ2 was calculated for each value of k on a per-residue basis as

reducedχ2 =
1

Nrates −Ndetectors − 1

∑

i

(ℜi −ℜbc,i

σi

)2

, (5.6)

where Nrates is the number of relaxation rates, and Ndetectors is the number of detec-

tors generated. The model selection was then performed using the median value
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of the reduced χ2, χ̂2, across all of the residues for which models were fit for each

value of k.

5.2.3 Molecular Dynamics and Computational Methods

Molecular dynamics simulations of the GB1:IgG complex were performed using

AMBER 20.313, 314 A model of GB1:IgG was produced by combining PDB: 2GI9315

(GB1), 1FCC299 (GB1 + Fc domain of human-derived IgG), 1IGC298 (GB3 + Fab

domain of mouse-derived IgG), and 6P9I316 (Fab domain of human-derived IgG)

using ChimeraX.317 Note that only part of the complex shown in Figure 5.1a was

simulated, comprising a single Fab domain, a single Fc domain, and a single GB1.

The structure was protonated according to a pH of 5.5 using the PlayMolecule

ProteinPrepare webserver.318 The structure was then neutralised with Na+ and Cl– ,

with additional salt ions added up to a concentration of 50 mM. The ff19SB force

field319 was used, solvated with a 10 Å octahedral box of explicit OPC water.320

Following minimisation and heating to a temperature of 300 K, two repeats of 500 ns

of classical MD (cMD) were performed. For each step, a 2 fs timestep was used with

a cut-off of 11 Å for non-bonded interactions. Temperatures were maintained using

a Langevin thermostat, with the SHAKE algorithm321 applied to all bond lengths

involving a hydrogen atom. Anisotropic pressure scaling was used with periodic

boundary conditions.

The structure was then aligned to remove the overall tumbling. Correlation func-

tions were extracted using cpptraj.322 These were inverse Laplace transformed

according to a previously published method for detector analysis,161 using 199 de-

caying exponentials with correlation times ranging logarithmically from 1 ps to 250

ns, and an additional decaying exponential to represent the limit using a correlation

time of 1 ms. The MD detector responses were then calculated by integrating the

product of the detector sensitivity, and the ILT profile. To investigate the relationship

between the paramagnetic detector and the electron-nucleus distance, molecular

surfaces were then calculated for frames extracted every 200 ps using MSMS,323
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with a probe radius of 3.5 Å to represent the paramagnetic dopant.

5.3 Results and Discussion

5.3.1 Application to Microcrystalline GB1

In order to determine whether adequate separation of paramagnetic and dynamical

contributions to relaxation could be achieved using this method, the analysis was

firstly performed on microcrystalline GB1. Good quality experimental data can be

obtained in a reasonable experimental time for both diamagnetic (undoped) and

paramagnetically doped samples of microcrystalline GB1, for which the underly-

ing dynamical contributions should be equivalent. In the diamagnetic case, six

relaxation rates measured in the absence of Gd3+ were used. In the paramagnetic

case, three relaxation rates measured in the presence of Gd3+ were used in addition

to three relaxation rates measured in the absence of Gd3+. The datasets were cho-

sen such that the dynamical responses in the paramagnetic case would be reliant

on incorporating the doped relaxation data, and therefore the resulting dynamics

would be dependent on the quality of the separation of dynamic and paramagnetic

sensitivities.

Owing to the non-linear dependence of the relaxation rate on the paramagnetic

correlation time, this was treated as a global fitting parameter and was varied

logarithmically from 100 picoseconds to 1 microsecond in 200 steps. For each step,

detectors were formed from a truncated singular value decomposition using the

first k = 2 − 10 singular values. Figure 5.2 shows how the average χ2 varies as a

function of the paramagnetic correlation time, τpara, for the paramagnetic case. Only

k and τpara values for which detectors could be formed are shown.|| It is found for

k = 3 and k = 4 that the paramagnetic correlation time is ≈ 43 − 47 ns. Table 5.4

gives the reduced χ̂2 as a function of the number of included singular values, k,

||Noting that compared to typically detector optimization, the additional constraint that the
response of a dynamical detector to paramagnetic effects be zero causes this optimization to fail in
cases that this is not possible.
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for both the diamagnetic and paramagnetic cases. The value of χ̂2 lowest in the

paramagnetic case was k = 3, giving two dynamic detectors and one paramagnetic

detector. In the diamagnetic case, the lowest χ̂2 value was k = 2, composed of two

dynamical detectors.
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Figure 5.2: Average χ2 values as a function of paramagnetic correlation time and
the number of included singular values for microcrystalline GB1. The value of τpara
giving the minimum average χ2 value is annotated for k = 3− 5.

Table 5.4: Summary statistics for microcrystalline GB1 models.

k diamagnetic χ̂2** paramagnetic χ̂2 τpara / ns

2 135.6 17.5 547.9
3 150.5 14.6 43.0
4 315.9 26.1 47.1

The resulting dynamical responses for both the diamagnetic and paramagnetic cases

in microcrystalline GB1 are shown in Figure 5.3. There is overall very good agree-

ment between the dynamic responses for the diamagnetic and paramagnetic cases,

indicating that adequate separation of paramagnetic and diamagnetic contributions

to relaxation was achieved.
**Median reduced χ2
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Figure 5.3: Comparison of the resulting dynamical detectors produced for the
paramagnetically-doped microcrystalline GB1 dataset (noting that this dataset con-
tained some undoped data) and the diamagnetic microcrystalline GB1 datasets.
Very good agreement is found.

5.3.2 Application to GB1:IgG Complex

Following the analysis on microcrystalline GB1, the technique was applied to the

GB1:IgG complex. The analysis was performed using 19 relaxation rates, measured

Gd3+ concentrations ranging from 1.0–7.5 mM. As in the microcrystalline GB1 case,

the paramagnetic correlation time τpara was treated as a global fit parameter and

was varied logarithmically from 100 picoseconds to 1 microsecond in 200 steps.

Detectors were formed using the SVD method for each timestep using the first

k = 2− 10 singular values. Figure 5.4 shows how the average χ2 value varies as a

function of τpara for each value of k. Substantial discontinuities are observed for

k = 2, likely owing to there being only two detectors to consider three relatively

separate relaxation contributions (fast and slow motions, paramagnetic interaction);

depending on the value of τpara, the model may fit any two of these relatively well,

which will lead to sudden variation in the average χ2. For k = 3 to 5, well-defined

profiles of τpara are observed with minima of ≈ 25 − 27 ns. For k ≥ 6 the τpara

becomes overwhelmed by noise suggesting overfitting.

In order to determine how many k values should be included in the following

analysis, both average χ2 (χ2/n, where n is the total number of relaxation rates for

all residues) and median reduced χ2 (χ̂2) values were calculated for each value of k
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Figure 5.4: Average χ2 values over all residues as a function of paramagnetic
correlation time and the number of included singular values. The value of τpara
giving the minimum reduced χ2 value is annotated for k = 3− 6.

using the respective optimal values of τpara obtained from Figure 5.4. The reduced

χ2, denoted as χ̂2, was calculated on a per-residue basis with the median value taken

for each value of k. The resulting summary statistics are outlined in Table 5.5.

As in Figure 5.4, the fit quality (χ2/n) improves as k increases from 2 to 5, before

rapidly declining as k increases. For minimum value of χ̂2 indicates k = 4 as

the most parsimonious fit. The model with k = 4 was therefore used for further
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analysis, calculated using τpara = 27.0 ns. It should be noted, however, that the

dynamic and paramagnetic responses do not vary significantly for different values

of k; Appendix A shows the detectors and responses arising from analysis with

k = 3 and k = 5, which show very similar profiles of motions to those obtained with

k = 4 shown here.

Table 5.5: Summary statistics for GB1:IgG dynamic/paramagnetic model fitting.

k χ2/n†† χ̂2‡‡ τpara / ns

2 5.28 5.66 0.16
3 3.72 4.72 27.0
4 3.42 4.47 27.0
5 3.33 4.70 25.8
6 3.52 5.37 32.6
7 8.65 13.65 — §§

8 8.78 13.00 —
9 16.54 27.84 —
10 28.27 50.50 —

5.3.2.1 Paramagnetic Correlation Times

Before moving on to look at the detector responses, it is interesting to consider

the values of the paramagnetic correlation times obtained here. The paramagnetic

correlation times in theory contain contributions from electron spin relaxation (T1e),

chemical exchange (τM ), and molecular tumbling (τr):

1

τpara
=

1

T1e
+

1

τM
+

1

τr
. (5.7)

The electron spin relaxation time of the Gd3+ complex used here is highly dependent

on magnetic field. In the high-field limit, it has been shown to be proportional

to the square of the magnetic field.305 It would therefore be expected to be on

the order of microseconds under the experimental conditions used here. This

paramagnetic correlation therefore likely relates to molecular tumbling of the Gd3+

††Average χ2 over all residues, where n is the number of relaxation rates across all residues.
‡‡Median reduced χ2

§§k ≥ 7 were too noisy to determine τpara

151



complex, which would occur on a much faster timescale and therefore dominate the

correlation time.324 This molecular tumbling correlation time arises from rotational

diffusion115

τr =
1

6Dr
, (5.8)

where Dr is the rotational diffusion coefficient. Assuming that the Gd3+ can be

modelled as an isotropic sphere, this rotational diffusion coefficient may be approxi-

mated using the Stokes-Einstein-Debye equation325, 326

τr ≈
4πηr3

3kT
, (5.9)

where η represents the solvent viscosity, r the spherical radius of the Gd3+ (approxi-

mately 3.5 Å327), k the Boltzmann coefficient, and T temperature. In the microcrys-

talline GB1 case τpara was found to be ≈ 45 ns (Table 5.4), while in the complex it is

found to be ≈ 27 ns (Table 5.5). The same paramagnetic dopant and temperature

was used in both cases, suggesting that the difference in the resulting correlation

time arises due to a difference in viscosity between the two samples. Table 5.6 gives

approximate viscosities for the two samples assuming the above relations, with

comparison to liquid water at 293.15 K and atmospheric pressure.328, 329 It should be

noted, however, that the local water environment surrounding the proteins would

likely be highly heterogeneous.

Table 5.6: Viscosities calculated using the calculated paramagnetic correlation times.
Errors on the calculated viscosities are likely on the order of 100–200 mPa s.

sample τpara / ns η / mPa s

water328, 329 — 1.0016
GB1:IgG complex ≈ 27 ≈ 600
microcrystalline GB1 ≈ 45 ≈ 1000

The viscosity in the protein systems is significantly greater than that of the water,

likely due to the crowded environment and protein-protein interactions.326 The
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higher viscosity in the case of microcrystalline GB1 may indicate greater crowding

in this system compared to the complex.

5.3.2.2 Dynamic and Paramagnetic Detector Responses

The 4 detectors formed, and their responses, are shown in Figure 5.5. One is mostly

sensitive to picosecond-nanosecond dynamics: ρ0 (primarily composed of R1 rates

and with similar pattern of responses). Two are mostly sensitive to nanosecond-

microsecond motions: ρ1, ρ2. (primarily composed of R1ρ rates and again with a

similar pattern of responses). One is sensitive to the paramagnetic interaction: ρ3.

These responses are calculated simply as linear combinations of the contributing

relaxation rates, weighted according to the SVD optimized detector vectors (see

Section 2.2.2.2). For example, ρ0 is calculated as:

ρ0 = 0.185×ℜ1(600 MHz, 60.0 kHz, 0.0 kHz, 3.5 mM)

−0.020×ℜ1(600 MHz, 60.0 kHz, 0.0 kHz, 5.0 mM)

−0.362×ℜ1(600 MHz, 60.0 kHz, 0.0 kHz, 7.5 mM)

0.035×ℜ1ρ(700 MHz, 60.0 kHz, 10.0 kHz, 1.0 mM)

0.018×ℜ1ρ(700 MHz, 60.0 kHz, 10.0 kHz, 2.0 mM)

−0.009×ℜ1ρ(700 MHz, 60.0 kHz, 10.0 kHz, 3.5 mM)

0.018×ℜ1ρ(700 MHz, 60.0 kHz, 10.0 kHz, 2.0 mM)

−0.022×ℜ1ρ(850 MHz, 60.0 kHz, 15.5 kHz, 5.0 mM)

−0.020×ℜ1ρ(850 MHz, 60.0 kHz, 20.4 kHz, 5.0 mM)

−0.023×ℜ1ρ(850 MHz, 60.0 kHz, 10.2 kHz, 5.0 mM)

0.289×ℜ1(700 MHz, 60.0 kHz, 0.0 kHz, 3.5 mM)

0.013×ℜ1ρ(1000 MHz, 50.0 kHz, 11.2 kHz, 3.5 mM)

0.465×ℜ1(1000 MHz, 50.0 kHz, 0.0 kHz, 3.5 mM)

−0.008×ℜ1ρ(700 MHz, 60.0 kHz, 14.2 kHz, 3.5 mM)

153



−0.006×ℜ1ρ(700 MHz, 60.0 kHz, 19.8 kHz, 3.5 mM)

−0.003×ℜ1ρ(700 MHz, 60.0 kHz, 25.2 kHz, 3.5 mM)

0.001×ℜ1ρ(700 MHz, 60.0 kHz, 32.1 kHz, 3.5 mM)

0.006×ℜ1ρ(700 MHz, 60.0 kHz, 39.2 kHz, 3.5 mM)

0.450×ℜ1(700 MHz, 60.0 kHz, 0.0 kHz, 2.0 mM) (5.10)

where the parameters of each relaxation rate are 1H Larmor frequency (MHz), MAS

frequency (kHz), Spin Lock frequency (kHz), and [Gd3+] (mM). The dynamical

responses (ρ0, ρ1, ρ2) show no sensitivity to the paramagnetic interaction, indicating

that good separation has been achieved. The paramagnetic response shows very

slight sensitivity to slow motions, however this is expected to comprise only a very

small proportion of the total response.¶¶

As expected, larger amplitude ps-ns motions were observed for loops and edges of

β-strands. The responses for microsecond motions are much flatter but again mostly

elevated in the loops between β2−α and β3−β4. Note also that there is a correlation

between the paramagnetic response (ρ3) and the fast motion dynamics response

(ρ0), likely because greater solvent exposure enables greater mobility.330

Using these detector responses, the separated dynamic and paramagnetic relaxation

contributions were back-calculated for several relaxation rates by setting either the

paramagnetic or dynamic responses to 0 prior to calculation. Figure 5.6 and 5.7

show the relative contributions of the dynamic and paramagnetic relaxation to a

series of R1 and R1ρ (respectively) rates measured with varying concentrations of

[Gd3+]. These illustrate that for the concentrations of [Gd3+] used here, the dynamic

and paramagnetic contributions to relaxation are on a similar order of magnitude for

both R1 and R1ρ relaxation rates. It should be noted that the analysis presented here

for the paramagnetic terms is similar to previous solvent paramagnetic relaxation

enhancement (sPRE);50, 291, 293, 331 in both cases, it is effectively the difference in

¶¶Note that for k = 5, full separation is achieved.
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Figure 5.5: Detector sensitivities and their responses. (a-d) Detectors and responses
produced from GB1:IgG complex analysis. The leftmost panel shows the detector
sensitivity to local dynamics, where for detectors with no paramagnetic response
the timescale corresponding to the maximum of the sensitivity is given. The middle
panel shows the detector sensitivities to the paramagnetic interaction. The rightmost
panel shows the resulting detector responses arising from these detectors. In the
rightmost panel, the horizontal bars refer to the secondary structure of the protein;
light grey indicating β-strand and dark grey α-helix. Residues for which overlap
prevented site-specific relaxation rate measurement for more than 5 relaxation rates
have been omitted. (e) Depiction of the timescales of motion for residue 10. Detectors
are shown scaled by their integral normalized responses to give an indication of
the timescales over which motion is occurring. Regions where the relaxation rate is
insensitive are shaded out.

relaxation rate with different concentrations of paramagnetic dopant which allows

for the PRE to be quantified. One benefit of this method, among others, is that by

simultaneously quantifying the dynamics and dynamical sensitivity the variation in

several relaxation rates under different conditions with the paramagnetic dopant

concentration is used, thereby giving greater accuracy in the resulting paramagnetic

response.
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Figure 5.6: The relative contributions of dynamic (ℜdyn) and paramagnetic (ℜpara)
relaxation to the overall relaxation rates are shown for 15N R1 relaxation rates
measured at ν0(1H) = 600 MHz and a MAS frequency of 60 kHz, using a range of
concentrations of [Gd3+]. Note that ℜ indicates that these relaxation rates have been
normalized such that the sensitivity of the rate is unitary, as in equation 2.187.
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Figure 5.7: The relative contributions of dynamic (ℜdyn) and paramagnetic (ℜpara)
relaxation to the overall relaxation rates are shown for 15N R1ρ relaxation rates
(ν0(1H) = 700 MHz, ν1 = 10 kHz, νr = 60 kHz) recorded at a range of [Gd3+]. Note
that ℜ indicates that these relaxation rates have been normalized such that the
sensitivity of the rate is unitary, as in equation 2.187.
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5.3.2.3 Comparison with Undoped GB1:IgG complex

Previously, six relaxation rates have been recorded for the complex in the absence

of paramagnetic dopant. Due to the poor sensitivity of the complex, coupled with

the requirement for long relaxation delays, these are of significantly poorer quality

than those measured on the doped data. A comparison between the responses

obtained from the doped and undoped datasets is shown in Figure 5.8. Owing

to the smaller dataset obtained on the undoped dataset only two detectors were

able to be produced; a linear sum assignment algorithm was used to pair up the

detectors to optimize the pairing to give the greatest total integral overlap. In order

to account for the different sensitivities of the paired detectors, the responses in the

undoped sample were scaled by the ratio of the integrals. The responses between

the doped and undoped samples are similar for the majority of residues. While

some differences exist, it is likely these are related to the poor quality of the undoped

dataset.
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Figure 5.8: Comparison of the dynamical profiles arising from analysis of doped
GB1:IgG (dark green) and undoped GB1:IgG (light green).

5.3.2.4 Comparison with Molecular Dynamics

To further explore the dynamical profile obtained here, molecular dynamics sim-

ulations were performed. Since as it has previously been demonstrated that the

general interfaces defined by studies of GB1-like domains with fragments of IgG are

very similar to what is found in the full construct (with small differences),49, 258 a
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truncated complex reflecting those interactions was simulated by combining crystal

structures of subdomains of IgG with GB1(/GB3), which were aligned relative to a

crystal structure of GB1 (PDB:2GI9315) (the coloured protein in Fig. 5.1a).

Firstly, the response of the paramagnetic detector, ρ3 was examined by way of

comparison with MD. Frames were taken from each of the two 500 ns classical

MD sampled every 200 picoseconds, with a molecular surface calculated for each

frame assuming a probe radius, rprobe, of 3.5 Å (corresponding to the approximate

radius of the Gd3+ complex327). Using this surface, the distance, rn-n,closest, from

each backbone 15N to the closest possible Gd3+ site was calculated. The actual

closest distance between the 15N nucleus and the interacting electron, re-n,closest, is

calculated by subtracting the ionic radius of the Gd3+ ion, rGd,ionic, taken here to be

1.1 Å.332 Figure 5.9 illustrates the different distances which will be referred to in this

section. As shown in Figure 5.10a there is a good correlation (R2 = 0.76) between

the resulting closest distance, re-n,closest, and the inverse of the paramagnetic detector.

The nature of this relationship will be discussed further here.

In the parameterisation of the paramagnetic relaxation enhancement used here,

the paramagnetic response should be related to the distance scaling between the

15N nucleus and the unpaired electrons within the Gd3+ complex. Formally, the

hyperfine coupling is proportional to the cube of the distance between the electron

and the nucleus. As a result, the value of the paramagnetic response would be

expected to scale as the sixth power of this electron nucleus distance

ρ3 = r−6
e-n. (5.11)

However, as the paramagnetic species is in the solvent, it would not be expected

to adopt a fixed distance to a given 15N site. Instead, the PRE would reflect an

averaged ensemble of different potential distances, characterised by an effective

distance, re-n, eff
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rGd,ionic �� 1.1 Å�

rprobe �� 3.5 Å�

rn-n
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Figure 5.9: Illustration of the distances used in the analysis of the MD. On the
left, GB1 is shown. Nitrogen atoms are shown as blue spheres. The surface was
calculated using a probe radius, rprobe, of 3.5 Å. On the right, the Gd(DTPA-BMA)
complex is shown. The outermost green sphere represents the probe radius used
in calculations. The inner light green sphere represents the ionic radius of the Gd3+

ion. The distance between the selected (highlighted in green) nitrogen atom and the
centre of the Gd3+ is represented as a blue line, rn-n. The corresponding electron-
nucleus distance is given as the pink line, re-n.

ρ3 = r−6
e-n, eff. (5.12)

The ensemble averaged nature of this dependence has been studied in detail by

Linser et al. (2009).293 There, the effective distance was expressed by considering it to

be an average over a conical volume. Their equation 5 has been included here:

r−6
e-n, eff =

∫ ∞

0

∫ ϕlim

0

∫ θlim

0
r−6

e-nr
′2 sin θdθdϕdr′ (5.13)

re-n =
√
r2e-n, closest + r′2 + 2re-n, closestr′ cos θ, (5.14)

where the integral limits θlim and ϕlim relate to the concavity or convexity of the

surface at this point; for a planar surface, these would be θlim = π/2 and ϕlim = 2π.

re-n, closest represents the shortest possible distance between the electron and the
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Figure 5.10: Comparison of the MD derived closest electron-nucleus distances
(re-n,closest) for a model of the complex and the inverse of the paramagnetic detector
response. Lines are plotted according to equation 5.17 for varying values of q.

nucleus. This integral is approximated well by

r−6
e-n, eff =

q

r3e-n, closest
, (5.15)

where the value of the proportionality constant q is dependent on the specifics of

the protein surface at that point. For instance, a 15N site buried inside a protein

interface may only be accessible to the solvent, and hence the paramagnetic species,

from a very specific orientation. As a result, q for this site would be expected to be

lower, such that the effective distance is increased.

To relate this discussion to the paramagnetic analysis here, equation 5.15 may be

substituted into equation 5.12. The paramagnetic response is then expected to

be

ρ3 = qr−3
e-n, closest. (5.16)
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To aid visualisation, the inverse of the detector has been taken such that

1

ρ3
=

1

q
r3e-n, closest. (5.17)

This equation has been plotted on alongside the experimental and MD comparison

in Figure 5.10. The majority of sites fall along q = 1. Notable exceptions include

Gly14, which appears shifted to a higher value of q, possibly indicating lower angular

solvent accessibility, and Thr18, Ala26, Gly38, which appear shifted to a lower value

of q, which may indicate greater angular accessibility.
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Figure 5.11: Comparison of detector responses for GB1 in the complex (green) with
responses derived from 2× 500 ns-molecular dynamics simulations (grey bars). The
error bars on the MD responses have been estimated at ±0.01.

Figure 5.11 compares the detector responses for GB1 in the complex with those

calculated from an MD simulation of the complex fragment corresponding to the

blue, red and yellow parts in Fig. 5.1a. Reasonable agreement between responses

calculated from relaxation data and MD simulations is found for most of the polype-

tide chain except for the β3 − β4 loop, which is much more mobile on fast ps-ns

time scale based on the experimental data. While two repeats of the MD were

performed, note that it is unlikely these will have fully sampled the dynamics; for

comparison, consider the range of responses found in the 108 protein repeats in

Figure 6.12 (see Chapter 6), where the range of possible responses from the MD is

substantial. Interestingly, the ps-ns responses for the β3 − β4 loop calculated from

the model of the complex are similar to the experimental responses for that region in

microcrystalline GB1. Notably, the model of the complex uses conformation of GB1
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found in crystals for which the β3 − β4 loop is stabilised by a network of backbone

to backbone and side chain to backbone hydrogen bonds. The difference in the case

of the complex may indicate that this hydrogen bond network is disrupted owing

to interactions with the IgG.

5.3.2.5 Comparison with Microcrystalline GB1
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Figure 5.12: Comparison of detector responses for GB1 in the complex (green, solid)
with (doped) microcrystalline GB1 (orange, dashed). These detectors have been
matched to find the most optimal pairing (closest corresponding time scale), as the
different datasets give rise to different sets of detectors.

Structurally, the microcrystalline and complex forms of GB1 are expected to differ

only in their intermolecular interfaces, with the intramolecular fold of the GB1

protein being retained in both cases. As a result, a comparison of the local dynamics

in each case may provide insight as to the effect of intermolecular interactions on

the local protein dynamics.

Figure 5.12 compares detector responses from microcrystalline GB1 (the doped case

from Section 5.3.1) and those in the complex. Owing to the different sensitivities of

the rates used for these two analyses, these have been paired such that the timescales

best correspond to one another. The microcrystalline responses have been scaled

by the ratio of their respective sensitivity integrals to allow for direct comparison.

For the fast motion detectors, ρ0 (crystal) and ρ0 (complex), there exists reasonable

agreement from the N-terminus to the end of the α-helix. Poorer agreement for

the fast ps-ns motions between microcrystalline GB1 and GB1 in the complex with
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IgG is seen in the part of the polypeptide stretching from β3 − β4. A reduction in

motional amplitudes for Asp40 is observed in the complex relative to the crystal,

which is consistent with reduced solvent accessibility for this region in the complex.

A relative increase in fast ps-ns mobility in the β3 − β4 loop in the complex is also

noted. The reduced ps-ns mobility of the β3−β4 loop may be related to the presence

of a stabilising network of hydrogen bonds which may be disrupted in the complex

as discussed previously in Section 5.3.2.4.

The β2 strand is involved in an extended intermolecular β sheet in both the com-

plex297 and microcrystalline forms.333 Figure 5.13 compares the fast (ρ0, ps-ns)

motional profiles arising in β2 more closely for the two forms. A notable feature

in both microcrystalline GB1 and in the complex is a stretch of 3–4 amino acids for

which a reduction in detector response is observed (Glu15-Thr18 in the complex,

Lys13-Thr16 for the microcrystalline form). This reduction likely relates to the for-

mation of both inter- and intra-molecular β − β hydrogen bonds, which would

inhibit relaxation-active motion of the 15N – 1H dipole (see Chapter 6). However,

there exists an offset in which residues show this effect in the two forms, which may

indicate a difference in the intermolecular contact in the two forms of GB1.

Returning to Figure 5.12, greater microsecond detector responses (ρ1) are observed

for GB1 in the complex relative to the microcrystalline form. Previously, Krushelnit-

sky et al. (2018) presented a NERRD analysis of the microcrystalline form of GB1

averaged over the whole protein (i.e. using bulk rather than site-specific rates) and

found a very high effective order parameter (0.9995),121 indicating there is very little

overall microsecond motion. On the other hand, both relaxation dispersion studies51

and qualitativeR1ρ comparisons258 have suggested significant microsecond motions

in the GB1:IgG complex. The relatively uniformly elevated detector responses for

these microsecond motions shown here for the complex suggest that for GB1 in the

complex these microsecond motions may be predominantly composed of overall

whole-body rocking motions (as suggested previously in ref 258), whereas in the

crystal these may be more local domain microsecond motions.
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Figure 5.13: (a,b) Fast (ns) motion detector responses for GB1 in the complex with
IgG (a) and microcrystalline GB1 (b) for β2. (c,d) Structure of the interfaces at β2
in the complex (c) and in the microcrystalline form (d). The hydrogen bonding
interfaces to neighbouring proteins are highlighted in (a) and (b), and are coloured
in (c) and (d). (Note that the interface for the complex is taken from a structure of
the Fab domain with GB3,297 and may not correctly reflect the interface with the
full-length construct49, 50).

5.3.3 Reduced Datasets and Time Savings

Quantification of dynamics in the presence of paramagnetic dopants necessitates

recording more experiments compared to quantification of dynamics in their absence

because of the need to additionally characterise the paramagnetic contribution to

relaxation. The time savings due to shortening both recycle delay and relaxation

delays (due to the reduction of the relaxation times) can compensate for need to
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measure additional experiments (see Figure 5.1b,c). However, recording such a large

relaxation rate dataset still requires a substantial time investment. The use of smaller

datasets was therefore investigated, as these could provide insight into the dynamics

in the presence of paramagnetic dopant while saving additional experimental time.

In the case of these smaller datasets, a residue was omitted if any relaxation rates

were missing from the dataset.

The relaxation rates used in this analysis were recorded over several years under

different experimental conditions. To allow for comparison of the experimental time

of each, standardised experimental times were calculated for each of them assuming

a standard set of conditons;

• 364 coadded transients, for each of 64 indirect FIDs

• the recycle delay was taken as 2 s for undoped samples, 1 s for 0 < [Gd3+]

≤ 1.5 mM, 0.5 s for [Gd3+] > 1.5 mM

• 8 relaxation delays were used, placed at 1×, 1/2×, 1/4×, 1/8×, 1/16×, 1/32×,

1/64×, and 1/128× the mean experimentally determined T1 or T1ρ time.

Using these calculations, the 19 doped relaxation rates used for the bulk of the

analysis in this chapter would take a total of 52.9 days. In contrast, the 6 undoped

relaxation rates used in Figure 5.8 would require 48.3 days. While the information

content of the 19 doped relaxation rates is greater than the 6 undoped relaxation rates

(4 detectors were formed with the doped dataset, while 6 good quality undoped

rates would be expected to only give at most 3 detectors (c.f. Table 5.4)), 52.9 days of

experimental time is still a significant undertaking.

To determine which rates should be include in these reduced datasets, the 19 relax-

ation rates were ordered by their contributions to the detectors determined using

the full set. To do this, the Root-Sum of Squares of the Contributions (RSSC) of each

normalized relaxation rate to the resulting detectors was calculated:
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RSSCc =

√√√√
N∑

n=1

y2c,n, (5.18)

where yc,n is the contribution of relaxation rate c to detector n, as defined in equa-

tion 2.189. A reduced dataset of r relaxation rates is then obtained by taking the

first r relaxation rates in an ordered list of RSSCi. Note that this is not necessarily

the only way to produce reduced datasets; there are NCr possible ways of choosing

a subset of r relaxation rates from N relaxation rates, and it would not be feasible

to test all 524,287 possible combinations. This ordered list is shown in Table 5.7.

Interestingly, spin-lattice R1 relaxation rates are generally those which have the

greatest RSSC. This is likely because the paramagnetic contribution to R1 is domi-

nated by a spectral density term which probes the 15N Larmor frequency, which in

the case of the measurements used here is close to the inverse of the paramagnetic

correlation time; as a result, these R1 measurements are likely more influential in

the parameterisation of the paramagnetic response here, as well as being highly

sensitive to the fast motions occurring.

The results of these reduced datasets are summarised in Table 5.8, where Nrates

and Ndetectors refer to the number of relaxation rates included and the number of

detectors formed. A reduced dataset of 5 relaxation rates (25.8 days equiv.) is capable

of producing three detectors; this is shown in Figure 5.14. Increasing this set to 11

relaxation rates (43.8 days equiv.) generates four detectors, as in Figure 5.15.
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Table 5.7: Ordered list of relaxation rates by RSSCi for GB1:IgG complex.

N Type Field / T [Gd3+] / mM ν1 / kHz νr / kHz RSSC

1 15N R1 23.5 3.5 — 50.0 3.20
2 15N R1 14.1 3.5 — 60.0 1.87
3 15N R1 16.4 2.0 — 60.0 1.43
4 15N R1ρ 16.4 3.5 39.2 60.0 1.32
5 15N R1 14.1 7.5 — 60.0 1.24
6 15N R1 14.1 5.0 — 60.0 0.73
7 15N R1ρ 16.4 3.5 32.1 60.0 0.67
8 15N R1 16.4 3.5 — 60.0 0.54
9 15N R1ρ 16.4 1.0 10.0 60.0 0.39
10 15N R1ρ 20.0 5.0 10.2 60.0 0.35
11 15N R1ρ 16.4 2.0 10.0 60.0 0.35
12 15N R1ρ 16.4 2.0 10.0 60.0 0.35
13 15N R1ρ 16.4 3.5 10.0 60.0 0.34
14 15N R1ρ 16.4 3.5 14.2 60.0 0.26
15 15N R1ρ 20.0 5.0 15.5 60.0 0.25
16 15N R1ρ 16.4 3.5 25.2 60.0 0.21
17 15N R1ρ 20.0 5.0 20.4 60.0 0.13
18 15N R1ρ 23.5 3.5 11.2 50.0 0.12
19 15N R1ρ 16.4 3.5 19.8 60.0 0.11

Table 5.8: Number of detectors formed using reduced sets of data, where the reduced
sets were taken from Table 5.7 with N ≤ Nrates.

Nrates k Ndetectors Time / days

3 0 0 20.5
4 2 1 21.6
5 3 3 25.8
6 3 3 32.0
7 3 3 33.1
8 3 3 39.3
9 3 3 41.5
10 3 3 42.7
11 4 4 43.8
12 4 4 45.0
13 4 4 46.1
14 4 4 47.2
15 3 3 48.4
16 3 3 49.5
17 3 3 50.6
18 4 4 51.7
19 4 4 52.9
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Figure 5.14: Resulting detectors from a reduced set of 5 relaxation rates for GB1:IgG
(see Figure 5.5 for figure details).
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Figure 5.15: Resulting detectors from a reduced set of 11 relaxation rates for GB1:IgG
(see Figure 5.5 for figure details).
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5.4 Conclusion

In summary, it has been shown to be possible to adequately quantify the local

motions of a protein bound in a complex with an antibody in the presence of PRE

by simultaneously modelling both the paramagnetic enhancement and the local

dynamics. By quantifying the PRE, additional insight can be gained into the local

accessibility and tumbling of the paramagnetic dopant.

The CoMPaDReS approach introduced here is also generally applicable to discrete

density of motions methods, such as those discussed in Section 2.2.2.1. However,

the use of such discrete methods necessitates the recording of good quality dipolar

order parameters.158 Recording such datasets in sensitivity limited systems, such as

the GB1:IgG complex studied here, introduces additional difficulty and significant

experimental time.301 Further, such methods have been shown to introduce signifi-

cant biases into the analyses150 and as such are unlikely to provide any benefit over

the Detectors approach used here. As a result, such alternative methods have not

been presented here.

It is hoped that this approach will enable a route towards the investigation of local

dynamic of other large complex systems. It is possible that this approach will

also find applicability outside of biological NMR; for example, solid-state NMR has

found application to the study of local dynamics in pharmaceutical formulations and

small organic molecules244, 245, 334 and inorganic/material systems.335–338 In many of

these cases, owing to either the natural presence of paramagnetic species, the low

natural abundance of unlabelled samples, or the large complexity of the systems,

traditional diamagnetic relaxation based dynamical analysis is unfeasible. The

ability to combine the study of local motions and paramagnetism simultaneously is

likely directly applicable to such systems.
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Chapter 6

Developing a Multinuclear

Approach to Protein Dynamics

The majority of the large relaxation rate dataset used in this chapter was recorded by

previous PhD students and postdocs (specifically, Dr Trent Franks, Dr Jonathan Lamley,339

Dr Rebecca Stevens124). The resulting experimental data was then analysed by Dr Jacqueline

Tognetti to obtain relaxation rates. The method for analysis of these relaxation rates was

developed and performed by myself, with useful suggestions and insight from Dr Albert

Smith-Penzel and Dr Sarah Mann. The variable temperature MD simulations used in this

chapter have been previously published in a different context in W. T. Franks, B. P. Tatman,

J. Trenouth, J. R. Lewandowski, Dipolar Order Parameters in Large Systems with

Fast Spinning, Front. Mol. Biosci., 2021, 8, 1151.

6.1 Introduction

As NMR is a technique fundamentally sensitive to the local environment around

a nuclear spin, it follows that increasing the number of spins being probed can

provide a greater resolution as to the local motions. As discussed previously in

Section 2.2, for diamagnetic systems in the absence of chemical exchange, relaxation

arises due to the incoherent modulation of anisotropic interactions such as dipolar

171



couplings340 and chemical shift anisotropy.341 The relaxation experienced at a

specific site is then dependent not only on the timescale and amplitude of motion

occurring, but also on the orientation of the motion and how this relates to the

anisotropic interaction tensor. For instance, the relaxation of backbone carbonyl

sites (here referred to as 13C’) in the presence of fast (ps-ns) motions is significantly

dominated by the CSA tensor.126, 342, 343 On the other hand, backbone amide (15N)

relaxation is dominated by the modulation of the 15N – 1H dipolar coupling. The

tensors of these respective interactions are visualised in Figure 6.1. Despite the

nuclei being close in proximity, the two dominant relaxation active tensors have

distinct orientations and asymmetries and therefore probe different motions, and

as a result the relaxation experienced on these two sites could in principle provide

information as to the local anisotropy of the motions.127

Figure 6.1: Tensor orientations for the dominant interactions for (a) 13C’ and (b) 15N
relaxation. Positive values are shown in blue, negative values in red. The size of
the vectors is scaled to the eigenvalue of the eigenvector. The CSA of the carbonyl
in (a) was taken as having principal components σ11 = −74.4 ppm, σ22 = −7.4
ppm, σ33 = 81.8 ppm, orientated −72◦ away from the 13C’ – 13Cα axis. This was
then converted to Hz assuming a 1H Larmor frequency of 700 MHz. For the dipolar
coupling in (b), a 15N – 1H distance of 1.02 Å was assumed.

While several studies in solution state have utilized 15N and 13C’ as complemen-

tary probes of motion,126, 342–346 very few combined studies have been attempted

in the solid-state.225 This is likely in part due to site specific 13C’ relaxation rates

only becoming feasible at fast magic-angle spinning (MAS) (≥ 50 kHz)125, 225 (see

Section 3.3.3) without difficult specific carbonyl labelling schemes, coupled with the

difficulty in constraining the overall motion of the 13C’.158 While techniques such
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as COMFORD (CO-Modelfree Fitting Of Relaxation Data) have been introduced to

obtain effective order parameters in solution,342 such approaches are not easily ap-

plicable in solids owing to the practical difficulty in measuring spin-spin relaxation

rates* (R2) and nuclear Overhauser effects (nOes).

One approach which has been applied in the solid-state is to assume that the 13C’

and 15N rates from a single peptide plane may be evaluated together. Lamley et al.

(2015) have shown that 13C’ and 15N relaxation rates may be fit simultaneously to

probe a greater range of timescales of motion with higher sensitivity.225 Implicit in

this model is the assumption that the peptide plane containing both nuclear spins is

rigid and the motion isotropic, such that the motions at both sites are equivalent

and that the 15N dipolar order parameter can constrain both the 15N and the 13C’

sites. Such an approach could be extended along the lines of the 3D-Gaussian

Axial Fluctuation (GAF) model introduced in the solution state to look at the local

anisotropy of motion.126, 347–349 In such a model, dipolar order parameters could

be measured in the peptide plane to constrain the overall motion in the absence of

a 13C’ CSA order parameter. However, an approach based on the GAF formalism

would face several limitations which are particularly exacerbated in the solid state.

Highly accurate measurements of dipolar order parameters would be required to

properly constrain the anisotropic amplitudes of different timescales of motion,

and these would need to be measured under identical conditions to ensure there

is no systematic bias. Further, it is known that the ‘peptide plane’ is not perfectly

planar, with both dynamic350 and static deviations from planarity.351, 352 As such,

the assumption of planarity for dynamics analysis may be misleading, especially

in the case of separating the 15N – 1H bond motions from the rest of the plane,

considering the relative atomic masses of the involved nuclei. Finally, as discussed

in Section 2.2.2, it has recently been shown by Smith et al. (2017) that the limited

sampling of the spectral density function can significantly bias the resulting model-

free timescales obtained by such an analysis, which could lead to fitted correlation

*Though with additional approximations these could be substituted with R1ρ relaxation rates.
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times and amplitudes being physically misleading.150

Here, a new approach to investigate the local anisotropy of motions based on

detectors will be introduced. A benefit of detectors is that they do not require

dipolar order parameters to constrain the overall amplitude of motion; rather, they

need an adequate model for which interactions contribute to the relaxation of a

nuclear spin (though order parameters may be included in the analysis161). As such,

they may be readily applied equivalently to both 13C’ and 15N.

6.2 Methods

6.2.1 Experimental and Relaxation Rate Analysis

NMR experiments were performed on samples of microcrystalline U-[2H,13C,15N]-

GB1 (with 100% 1H back-exchange at exchangeable sites) packed into 1.3 mm

rotors at four magnetic fields: a Bruker Avance II spectrometer operating at 14.1 T

(ν0(1H)= 600 MHz) using a 1.3 mm HXY probe; a Bruker Avance III spectrometer

operating at 16.4 T (ν0(1H)= 700 MHz) using a 1.3 mm HXY probe; a Bruker Avance

III spectrometer operating at 20.0 T (ν0(1H)= 850 MHz) using a 1.3 mm HFXY probe;

and a Bruker Avance Neo spectrometer operating at 23.5 T (ν0(1H)= 1000 MHz)

using a 1.3 mm HCN probe. Experiments were performed at a MAS frequency

of 50 kHz. Internal temperatures were measured using the 1H chemical shift of

water relative to DSS. 15NR1 andR1ρ rates were recorded using the pulse sequences

outlined in Section 3.3.2. Tables 6.1 and 6.2 outline the different experimental

conditions for relaxation rate measurements.

For the 15N relaxation rate analysis it was assumed that the primary components

were the dipolar 15N – 1H coupling (1.02 Å), 15N CSA (parameterised using chem-

ical shift,353 assuming an isotropic chemical shift of 120 ppm), 15N – 13C (1.33 Å),

and 15N – 13Cα (1.46 Å). For 13C, a composition of 13C CSA (parameterised using

chemical shift,354 assuming an isotropic chemical shift of 170 ppm for detector

optimization and site-specific isotropic chemical shift for response calculation),
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Table 6.1: Conditions under which relaxation rates were measured for 15N.
Field Type Temp νr ν1
/ T / K / kHz / kHz

14.1 R1ρ 259.8 50 7.8
14.1 R1ρ 260.6 50 7.8
14.1 R1 262.4 50 -
14.1 R1ρ 270.1 50 7.8
14.1 R1 273.1 50 -
14.1 R1ρ 273.8 50 7.8
14.1 R1 275.6 50 -
14.1 R1ρ 278.1 50 7.8
14.1 R1ρ 280.4 50 7.8
14.1 R1 282.4 50 -
14.1 R1ρ 282.4 50 7.4
14.1 R1 290.1 50 -
16.4 R1ρ 278.0 50 10.0
16.4 R1ρ 290.0 50 10.0
16.4 R1ρ 294.0 50 10.0
16.4 R1 299.0 50 -
16.4 R1ρ 299.0 50 10.0
16.4 R1ρ 309.0 50 10.0
20.0 R1ρ 278.0 50 10.0
20.0 R1ρ 291.0 50 10.0
20.0 R1 298.0 50 -
20.0 R1ρ 299.0 50 10.0
23.5 R1 302.0 50 -
23.5 R1ρ 302.0 50 10.4
23.5 R1 306.0 50 -
23.5 R1ρ 306.0 50 10.4

13C – 13Cα (1.525 Å, 2.49 Å), 13C – 15N (1.33 Å), and 13C – 1H (2.04 Å) was used. Note

that as the experiments involved non-selective inversion of 13C the homonuclear

dipolar relaxation rate equations have been used for these. In the optimization of

detectors the same chemical shift anisotropy was used for all sites as this allowed

the same detectors to be used for each site, however owing to the dominance of

CSA for 13C’ relaxation, site-specific CSA was used for response calculation in this

case, parameterised from isotropic chemical shift as in ref 354. Residues for which

more than five relaxation rates for a given nuclei were missing were omitted from

the analysis of that nuclei.

Variable temperature NMR experiments were used to increase the range of effective
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Table 6.2: Conditions under which relaxation rates were measured for 13C’.
Field Type Temp νr ν1
/ T / K / kHz / kHz

14.1 R1ρ 266.1 50 7.8
14.1 R1 268.1 50 -
14.1 R1 270.8 50 -
14.1 R1ρ 271.1 50 7.8
14.1 R1 274.6 50 -
14.1 R1ρ 275.4 50 7.8
14.1 R1ρ 282.8 50 7.8
14.1 R1ρ 284.9 50 7.8
14.1 R1ρ 286.9 50 7.8
14.1 R1 287.6 50 -
14.1 R1ρ 290.2 50 7.8
16.4 R1ρ 291.0 50 11.0
16.4 R1ρ 293.0 50 11.0
16.4 R1ρ 299.0 50 11.2
16.4 R1 303.0 50 -
16.4 R1ρ 309.0 50 10.8
20.0 R1ρ 276.9 50 10.4
20.0 R1 282.2 50 -
20.0 R1ρ 285.8 50 10.2
20.0 R1ρ 289.4 50 10.3
20.0 R1 290.8 50 -
23.5 R1ρ 302.0 50 11.3
23.5 R1 302.0 50 -
23.5 R1ρ 306.0 50 11.3
23.5 R1 306.0 50 -

timescales accessible. The sensitivity of a given relaxation rate is independent of

the temperature; that is, a relaxation rate highly sensitive to motions occurring with

a characteristic timescale of 10 ns will be sensitive to those motions regardless of

whether it is recorded at 200 K or 400 K. However, the underlying motions are likely

to shift in timescale, with higher temperatures causing the motional kinetics to speed

up. To aid the analysis here, it is desirable for the temperature sensitivity of the

underlying kinetics to be shifted into the sensitivity, to give temperature-dependent

effective sensitivities with motions considered relative to a fixed temperature. In

this, there is the implicit assumption that the density of motions occurring is ap-

proximately the same at any given temperature, just temporally-shifted according to
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the temperature. Here, this temporal shift is considered using an Arrhenius factor,

calculated as:

τeff(T K) = τ300 Ke
Ea
R ( 300−T

300T ), (6.1)

where Ea is the activation energy (kJ mol−1), R is the gas constant (kJ mol−1 K−1),

and τ300 K the timescale at 300 K. The aim of this correction is to convert a timescale-

independent sensitivity over temperature-dependent kinetics into a temperature-

dependent sensitivity over temperature-independent kinetics. The ‘fixed’ timescale

(e.g., of the temperature-independent kinetics) is taken to be 300 K: (τ300 K). This

temperature correction to the timescale is illustrated in Figure 6.2. On the left,

the temperature-independent sensitivity is shown on a temperature-dependent

timescale. On the right, the Arrhenius shift is performed to give a temperature-

independent timescale (referenced to that at 300 K) with a temperature-dependent

sensitivity. This adjustment makes a number of assumptions; it assumes that all

motions are temperature dependent, with the same activation energy Ea, and

that this variation is effectively the same across all timescales. A more detailed

discussion of the use of temperature dependent timescales, with comparison to

previous VT studies of protein dynamics and VT molecular dynamics, is given in

Section 6.3.1.

Detectors were produced and responses calculated for each of 15N and 13C’ accord-

ing to the approach outlined in Section 2.2.2.2. The discretisation of the sensitivity

was performed with 200 time points ranging from 10−13 to 10−3 seconds, with the

exception of the variable activation energy models (see Section 6.3.1) for which 100

time points were used to speed up the calculations. Following this, the resulting

detectors were paired using a linear sum assignment method to find the combina-

tion giving the greatest total overlap integral. This procedure was repeated with

different numbers of singular values included ranging from k = 2− 10. In order to

determine how many k to include in the analysis here, reduced χ2 were calculated
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Figure 6.2: Figure showing how the temperature dependence of relaxation was
considered in the modelling here. The temperature dependence is modelled here
with an activation energy of 40 kJ mol−1, with the sensitivities calculated for a 15NR1

relaxation rate at 700 MHz and 60 kHz MAS. (a) The relaxation rate sensitivities are
calculated according to a temperature-dependent timescale, calculated according
to equation 6.1. (b) When the resulting sensitivities are plotted as a function of
the timescale at 300 K this leads to a temperature-dependent temporal shift in the
sensitivity, which was exploited to enhance the range of timescales which could be
accessed.

on a site-specific basis for each value of k. Model selection was then achieved by

calculating the median reduced χ2, χ̂2, for each value of k, and taking the value of k

giving the closest χ̂2 to 1.

6.2.2 Molecular Dynamics

Molecular dynamics simulations of microcrystalline GB1 were performed using

a 3 × 3 × 3 supercell of GB1 containing 108 monomers. These were simulated

using AMBER 20,313, 355 with the ff19SB protein force-field319 and OPC water.320 The
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starting conformation was taken from the structure 2GI9,315 from which a supercell

was produced using the UnitCell and PropPDB functionalities in AMBER 20, before

adding 108 PO4
3 – counter ions (simulated using a GAFF force-field355), solvating

with 12,852 explicit water molecules and charge balancing with Na+/Cl– using

TLeap. Following minimization, the system was replicated for each of the seven

separate MD simulations: six variable temperature MD simulations at internal

temperatures of 260, 270, 280, 290, 300, 310 K for 400 ns, and one longer MD

simulation at a temperature of 300 K for 2.28 µs. Following heating to the given

temperatures, the systems were simulated for their respective lengths. A 2 fs

timestep was used with a cut-off of 11 Å for non-bonded interactions. The SHAKE

algorithm was applied to all bond lengths involving a hydrogen atom,321 and a

Langevin thermostat was used to maintain the temperatures. Anisotropic pressure

scaling was used with periodic boundary conditions.

cpptraj was used to align Cα atoms between frames.322 Correlation functions

for each N – H or Cα· · ·Cα vector were calculated for each residue in each pro-

tein monomer for the 2.28 µs simulation using cpptraj, which were then inverse

Laplace transformed and processed using a previously published method for de-

tector analysis,160 using 199 decaying exponentials with correlation times ranging

logarithmically from 1 ps to 1000 ns, and an additional decaying exponential to rep-

resent the limit with a correlation time of 1 ms. These were then averaged between

each of the 108 protein monomers. The corresponding MD detector response was

then calculated by integrating over the product of the detector sensitivity (from the

NMR analysis) and this distribution of motion (see Section 2.2.2.2). Analysis of the

variable temperature MD simulations was performed equivalently, however the 199

decaying exponentials ranged logarithmically from 1 ps to 200 ns.
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6.3 Results and Discussion

6.3.1 Variable Temperature Detectors

Experimentally determined relaxation rates probe the spectral density at the eigen-

frequencies of the spin system, that is, specific linear combinations of Larmor

frequencies, spin lock frequencies, and magic-angle spinning frequencies. Therefore,

to increase the range of timescales probed by NMR experiments one may either

vary these eigenfrequencies or manipulate the underlying spectral density function

through the experimental conditions. The former may be performed by using a

range of magnetic field strengths, which is generally limited by how many spectrom-

eters are available; here, relaxation rates have been recorded at four fields ranging

from 600–1000 MHz. Shuttling methods, where the sample is quickly shuttled into

a different magnetic field to relax, have found important utility in such relaxome-

try measurements in solution.356–358 However, owing to the necessity to spin the

samples at fast magic-angle spinning frequencies and the issue of induced eddy

currents in a solid rapidly moving through a magnetic field, such an approach has

not yet been developed for the solid state.

An alternative method to increase the timescale range probed is to modify the under-

lying spectral density. Typically, this involves assuming an Arrhenius dependence of

motional kinetics on sample temperature, which may then be systematically varied

to gain insight into a greater range of timescales. In performing this sort of analysis,

however, care must be taken that varying the temperature does not also affect the

amplitudes of the motions occurring. Both MD and NMR studies of GB1 in the

solid state have demonstrated negligible variation in dipolar order parameters as a

function of temperature.250, 301 While a number of solution-state studies of proteins

have suggested a significant temperature dependence of amplitude,342, 344, 359, 360

this may be explained by the temperature dependence of overall tumbling motion

which may truncate the observable internal motions and so lead to variation in the

model-free order parameters. In this study, it was assumed that the amplitudes of
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motion are invariant with changing temperature, and that instead this is purely a

kinetic effect.

Previous studies have explored the energetics of the motions occurring in micro-

crystalline GB1.250, 361, 362 These have found the presence of two motional modes

with significantly different activation energies of approximately 5 kJ mol−1 and

25–35 kJ mol−1. A variable temperature study of Anabaena Sensory Rhodopsin

by Good et al. (2017) found that analogous motional modes with similar activation

energies appear to be associated with picosecond and nanosecond timescales re-

spectively.43 In the analysis here, it is assumed that the experiments are performed

above the ‘crossover’ temperature, such that the higher activation energy mode is

the dominant source of relaxation, and that the lower activation energy mode is

fully activated.250

One potential limitation of the prior variable temperature energetics studies is the

use of the model-free formalism. The activation energies are effectively extracted

by considering the temperature dependence of the model-free correlation times.

However, as discussed previously (see Section 2.2.2), it has been shown that these

correlation times may be substantially biased by the sensitivities of the relaxation

rates used in the analysis;150 in this case, such a bias would be expected to oppose the

change in correlation function with timescale, and therefore lead to underestimation

of the true activation energy for the motional modes. This effect is visualised in

Figure 6.3.

In this study, both molecular dynamics and fitting of the activation energy were

used to gain insight into the energetics of the protein dynamics. Firstly, using

MD, 400 ns simulations of a 3 × 3 × 3 supercell containing 108 GB1 monomers at

temperatures of 260, 270, 280, 290, 300, and 310 K were simulated. Results from

some of these simulations have previously been published in ref 301. These were

individually inverse Laplace transformed (ILT) to approximate the temporal density

of motion, θ(t). Following this, the cumulative density of motions, Θ(t) =
∫ t
0 θ(τ)dτ ,

was calculated. In Figure 6.4 it appears that there is significant variation in the
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Figure 6.3: Figure showing how the effect of timescale biasing150 may have conse-
quences for the model-free analysis of energetics. The effective model-free correla-
tion time (black) is biased from the true kinetic correlation time (green) by where
the relaxation data is most sensitive (purple). In this model, the effective correlation
time has been taken as the logarithmic average of the ‘true’ kinetic τc and the maxi-
mum sensitivity τc (This is unlikely to be the true relation between the two; here it
is used purely for illustrative purposes.) The resulting fit activation energy (20 kJ
mol−1) is then an underestimate of the ‘true’ activation energy (40 kJ mol−1).

amplitude of the motion as a function of temperature, with the order parameters

varying significantly across the temperature range. Experimentally, however, it has

been shown that there is no significant variation in order parameter as a function

of temperature.301 The discrepancy likely arises due to the short length of the MD

simulations here; experimental dipolar order parameters include all motions up

to the µs-ms timescale, whereas these simulations probe motions with correlation

times of at most 100s of ns. A temperature dependence in the timescale of motion

could give rise to the phenomenon seen here.

In order to investigate the energetics of the motions of the different modes in the

MD, the ILTs were split into components of timescales ranging from 1 ps to 40 ps,

and from 40 ps to 200 ns. For each, the effect of scaling the timescale according to an
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Figure 6.4: Figure showing (a) S2, the limit of the correlation function, (b) the density
of motions for residue 11, and (c) the cumulative density of motions for residue
11 in a 3 × 3 × 3 supercell of GB1 containing 108 GB1 monomers as a function of
temperature ranging from 260–310 K. The simulations were each run for 400 ns.

Arrhenius factor was considered:

τeff(300 K) = τMD(T K)e−
Ea
R ( 300−T

300T ), (6.2)

where τMD(T K) is the timescale extracted from the MD simulation performed at a

temperature of T K, and τeff(300 K) is the equivalent timescale at 300 K assuming an

activation energy Ea. The primary assumption underlying this analysis is that the

density of motions is only shifted temporally with variation in temperature, such

that undoing this shift (using the Arrhenius relation) would lead to essentially the

same density of motions at any given temperature. The resulting profiles are shown

in Figures 6.5 and 6.6 for the 1–40 ps and 40 ps–200 ns components respectively.† The

†The choice of this separation is effectively arbitrary; the primary constraint is that the split
timescale (here 40 ps) is past the change in gradient in the cumulative distribution of motions — in
Figure 6.4, this appears to be at around 3 ps.
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faster motion component does not appear to significantly vary with temperature;

this may arise either because this motional mode is fully activated at any of the

temperatures modelled here,250 or rather because the MD timestep used (10 ps)

is too long to probe the variation of these timescales. With the slower motion

component, on the other hand, adjusting the timescales with the inclusion of an

activation energy leads to significantly better agreement between the simulations.

An activation energy of ≈40 kJ mol−1 gives the best agreement for the majority of

residues. This figure is in good agreement with the lower bound of 25–35 kJ mol−1

found previously experimentally.250, 361, 362

To investigate the effect of varying the activation energy on the detector-based analy-

ses used here, the analysis was performed in which the activation energy was varied

linearly in 50 steps from 0 to 60 kJ mol−1. This analysis was performed separately

for each nuclei, as the number of included singular values, k, was increased from

k = 2− 10. Table 6.3 shows summary statistics for this analysis.

Table 6.3: Summary model statistics for models with different values of k for which
the activation energy was allowed to vary.

k No 13C’ No 15N χ2

n
13C’‡ χ2

n
15N χ̂2 13C’§ χ̂2 15N

2 2 2 10.28 54.73 11.45 32.68
3 3 3 8.66 29.08 9.61 18.44
4 4 5 8.33 26.33 9.74 18.24
5 5 5 7.25 22.61 8.54 15.34
6 6 7 6.16 20.57 7.95 17.08
7 7 7 6.07 19.52 7.98 15.47
8 8 9 5.99 19.00 8.44 17.15
9 9 9 5.78 18.67 8.89 16.94
10 10 10 6.10 18.30 10.29 17.39

Increasing the number of singular values (and hence number of detectors) leads

to an improvement in the fit (reduction in the average χ2). However, the median

reduced χ̂2 indicates that the most parsimonious model for 13C’ has k = 6, and for

15N has k = 5. On the basis of this, k = 5 was taken for further analysis. Figure 6.7

shows how the average χ2 value varies as a function of the activation energy for the
‡average χ2 value, calculated over all data
§median reduced χ2 value, calculated for each individual residue and then the median taken
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Figure 6.5: Figure showing how inclusion of an activation energy ranging from 0–6
kJ mol−1 affects the cumulative density of motions of fast (1–40 ps) motions for
residue 11 from variable temperature MD.

k = 5 models. In the case of 15N (top), the average χ2 shows a shallow well centred

around 44 kJ mol−1. For 13C’, there is a reduction in average χ2 which then plateaus

for Ea > 40 kJ mol−1. The shallow nature of these plots likely relates to the limited
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Figure 6.6: Figure showing how inclusion of an activation energy ranging from 0–60
kJ mol−1 affects the cumulative density of motions of slower (40 ps–200 ns) motions
for residue 11 from variable temperature MD.

range of temperature used in this analysis. The plateau in the case of 13C’ may

be rationalised as follows. Two relaxation rates, recorded equivalently but under

different temperatures, will possess the same analytical sensitivity but will differ
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in value owing to the changes in the underlying density of motions. Taking the

activation energy as 0 kJ mol−1 will poorly fit these, as the resulting back-calculated

relaxation rate for each will be the same and thus a compromise between the two.

Increasing the activation energy will lead to separation of the two rates, such that

they may be fit independently. However, there is little to penalise too high of an

activation energy, until the slowest fast motion detector begins to overlap with the

fastest slow motion detector; this is likely what causes the penalty in the case of 15N.

As a result, the most reasonable approximation for the activation energy is likely

the lowest activation energy for which the average χ2 has plateaued.
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Figure 6.7: Variation in the average χ2 value as a function of the activation energy
for k = 5 included singular values.

Following this discussion, the activation energy for the further modelling performed

here was taken as 40 kJ mol−1. This value is consistent with the previously published

lower bound of 25-35 kJ mol−1,250, 361, 362 and is in agreement with both molecular

dynamics and the detector-based activation energy fitting proposed here. While us-

ing a site-specific activation energy was considered, it is expected that the variation

in the activation energy with site is significantly lower than the error in the value of

this activation energy used here, and as such inclusion of a site-specific activation
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energy would lead to over-interpretation of the data. However, it should be noted

that the exact choice of activation energy does not lead to a significant change in the

profile of dynamics; Appendix B shows equivalent modelling for activation energies

of 30 kJ mol−1 and 50 kJ mol−1.

6.3.2 Variable Nuclei Responses

Taking the activation energy as 40 kJ mol−1, fitting was performed using truncated

sets of singular values with k ranging from 2 − 10. The resulting back-calculated

rates are shown as a function of k in Figure 6.8. Table 6.4 shows summary statistics

for the different models. The model with k = 5 was chosen for further analysis, as

this gave the lowest χ̂2 value for 15N indicating this was the most parsimonious.¶

It should be noted, however, that the dynamical profiles do not significantly vary

with k. The resulting five detectors for each nuclei were then paired using a linear

sum assignment.

Table 6.4: Summary model statistics for models with different values of k with the
activation energy fixed at 40 kJ mol−1.

k No 13C’ No 15N χ2

n
13C’|| χ2

n
15N χ̂2 13C’** χ̂2 15N

2 2 2 10.35 60.48 11.75 26.08
3 3 3 9.80 30.61 11.30 21.80
4 4 4 9.45 27.59 11.23 19.83
5 5 5 7.37 22.60 8.57 15.31
6 6 7 7.06 20.60 8.49 17.00
7 7 7 6.85 20.17 9.22 15.85
8 8 9 7.03 19.77 9.78 17.60
9 9 9 7.05 19.58 10.80 17.61

10 10 11 7.62 18.83 13.42 19.63

Figure 6.9 shows the resulting responses for the paired detectors. While there is

reasonable agreement between the paired detector responses for the detectors ρ2

and ρ3, there appears to be an scaling in the magnitude of the responses for detectors

ρ0, ρ1, and ρ4. This scaling likely arises due to the different interaction giving rise
¶While the χ̂2 is lowest for k = 6 in the case of 13C’, it was chosen to take k to be the same for both

to aid in the paired comparative analysis.
||average χ2 value, calculated over all data
**median reduced χ2 value, calculated for each individual residue and then the median taken
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Figure 6.8: Backcalculated goodness of fit plots as a function of number of detectors
included, k. 15N data is shown in blue, 13C’ data in red. Note that relaxation rates
for which the error was greater than the measured rate have been omitted.

to this relaxation. The relaxation of the amide is dominated by the 15N – 1H dipole;

this is invariant under rotation about the axis parallel to this bond, and invariant

under translational motion occurring at this site. On the other hand, the carbonyl

relaxation is dominated by the CSA tensor, which is both sensitive to all orientations

of axial motion but also to translational motion. As a result, the same effective

motion occurring at a site will likely modulate the CSA tensor to a greater extent,

and therefore give rise to a greater response.127 This is illustrated in Figure 6.10. To

account for this variation, here the responses have been normalized such that the

median of the responses for a given pair of detectors are equal. The scaling factors
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for these are given in Table 6.5.
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Figure 6.9: Calculated detector responses for 15N and 13C’. Left: Paired detector
sensitivities, with the times corresponding to the maximum sensitivity of each
detector shown. Right: Paired detector responses.
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Figure 6.10: Depiction of different rotational (a, b, c) and translational (d, e, f) motion
and the whether the dominant relaxation interactions for 15N and 13C’ are sensitive
to the different types of motion. The carbonyl and nitrogen are highlighted with red
and blue, respectively.
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Table 6.5: Scaling factors applied to carbonyl detector responses.

Detector Scaling Factor

ρ0 0.26
ρ1 0.55
ρ2 0.83
ρ3 1.55
ρ4 0.41
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Figure 6.11: Scaled calculated detector responses for 15N and 13C’. Left: Detector
sensitivity profiles, with the times corresponding to the maximum sensitivity of
each detector shown. Right: Detector responses.

In the scaled responses, Figure 6.11, the carbonyl and amide responses show similar

overall profiles of motion. For example, in the two detectors sensitive to faster

motions (ρ0, ρ1), it is apparent that the amplitude of the motion on both nuclei

appears to be reduced in the secondary structure elements relative to the loop

regions between them. This is particularly apparent for the β3 − β4 region. There

are a number of notable differences between the responses derived from the two

nuclei, however. For example, the response for ρ0 around β4 appears greater on

13C’ than on 15N. The origin of these discrepancies will be discussed further in

Section 6.3.4.
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6.3.3 Comparison with Molecular Dynamics

In Figure 6.12 the resulting detector responses are compared with molecular dynam-

ics. 2.28 µs of MD was performed for a 108 monomer containing 3× 3× 3 supercell

of GB1. In order to ensure adequate sampling of the dynamics, the comparison has

been restricted to detectors where the sensitivity (see Figure 6.11, left) has decayed

to approximately 0 at t = 1 µs; this leaves the ρ0 and ρ1 detector pairs. The MD

detector responses were calculated using the 15N – 1H bond vector individually for

each of the 108 GB1s, and are displayed on Figure 6.12 as a grey band showing the

5%, 50%, and 95% percentiles of these responses. In general, very good agreement

is seen between the relaxation analysis and the MD derived responses.
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Figure 6.12: Comparison of calculated detector responses for 15N with molecular
dynamics. Comparison is shown for detectors covering timescales for which the
MD was sensitive to. The time corresponding to the maximum sensitivity of the
detector is indicated. MD response is shown as a grey band, with percentiles at 5%,
50%, 95%.

In the case of the carbonyl 13C’, determining an MD derived response is significantly

harder. The relaxation of 13C’ is dominated by the CSA tensor. As discussed

above, this is sensitive not only to a greater range of axial fluctuations but also to

translational fluctuations. While CSA tensors may be calculated computationally
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to good accuracy210, 212 they are very computationally expensive and currently

unfeasible to perform on a protein sized system.363 While analytical models of

CSA tensors have been developed which could enable approximation of the CSA

tensor,364, 365 such analysis as not been attempted here.

6.3.4 Anisotropy of Motions

After scaling the detector responses from the carbonyl, it is still notable that there

are significant differences between the responses on 15N and 13C’ for the same

peptide plane. This is unsurprising; as discussed previously, relaxation originates

through the modulation of anisotropic tensors, and the tensors dominating the

relaxation of the 13C’ and 15N are different both in orientation and asymmetry. The

different responses between the two may therefore give us insight into the anisotropy

and asymmetry of the motions occurring at different sites within the protein. As

noted above (see Fig. 6.1 and Fig. 6.10), the 15N – 1H dipolar tensor dominating the

relaxation of the amide is most sensitive to axial rotations perpendicular to the bond

axis; that is, rotation about the 15N – 1H vector will not be relaxation active, nor

will translation of the pair of spins. On the other hand, while the 13C’ CSA tensor

is sensitive to rotational motions about all axes and likely also to translation, it is

most sensitive to rotational motions about an axis approximately parallel to the

15N – 1H.

To explore the motional anisotropy the natural log of the ratio between the 15N

response and the scaled 13C’ response has been calculated for each pair of detec-

tors:

ξi = log

(
ρamide
i

ρ
carbonyl
i

)
, (6.3)

which is displayed in Figure 6.13, where a negative number (orange) indicates that

the response on the carbonyl is relatively greater than the response on the amide,

therefore suggesting that the dominant motion is parallel to the 15N – 1H bond axis,
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while a positive number (purple) is a relatively greater response on the amide than

the carbonyl, suggesting a dominant motion about an axis perpendicular to the

15N – 1H bond axis.
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Figure 6.13: Natural log of the ratio between the 13C’ response and the 15N response
for each pair of detectors. A negative (orange) value suggests dominant motion
parallel to the 15N – 1H bond axis, while a positive (purple) number indicates motion
perpendicular to this. The transparency of each bar is related to the scale of the error,
with an error of 0 being fully opaque and an error of ≥ 1.5 being fully transparent.
The log-average maximum sensitivity time of the pair of detectors is shown.

To relate these dynamical motions to the structure of GB1, Figures 6.14 and 6.15

visualise the responses for detectors ρ0 and ρ2 respectively (representative of fast

and slow motions). Appendix C contains visualisations for the other three detectors.

In these, each residue (for which responses were calculated) is shown as an ellipsoid;

these have been aligned to the individual peptide planes and coloured according
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to the same scale as in Figure 6.13. As shown in Figure 6.16, a larger axis in one

direction indicates greater motion about this axis. As such, a ‘rugby ball’ shape

(Fig. 6.16a) indicates a greater amount of motion about the long axis. As it is not

possible to distinguish motion about the Cαi· · ·Cαi+1 axis and an axis perpendicular

to the peptide plane, a greater response on the 15N has been shown as increasing

motion about both perpendicular axes (Fig 6.16). As a result, the motions about

these axes are partially ambiguous.

The resulting ratios for the slower motion detectors (ξ2−4) show less variation than

the faster motion detectors. These slower motions are likely to be more whole body

and domain like in nature (see Figure 3.6), and so it is reasonable to expect that they

would have less local orientational variation. In the faster motion detectors, on the

other hand, there are indications of a substantial degree of anisotropy. In the α helix,

β3, and β4 there appears to be a dominant motion about the 15N – 1H dipole, which

is likely related to the significant degree of hydrogen bonding in these secondary

structure elements; on the other hand, the loop regions between these either observe

bias towards motion perpendicular to this dipole (for the loop between α and β3)

or motion which is not biased either way (β3 − β4). It should be noted that in the

crystal structure, the β3 − β4 loop is stabilised by a sidechain-backbone hydrogen

bond between Asp46 and Ala48, while there is no such stabilisation in the α − β3

loop. The observation of bias towards motion about the 15N – 1H in the β sheet

may be analogous to the slow correlated motions observed by Bouvignies et al.

(2005).118

The behaviour around β2 appears slightly more complicated, with less bias towards

motion about the 15N – 1H axis observed relative to the other β strands. As discussed

previously in Chapter 5, β2 is involved in the recognition of the Fab domain of

Immunoglobulin G..297 It has been identified both in the solution state118, 366, 367 and

solid state158, 225 as a particularly mobile region of GB1, which may be an evolved

characteristic of GB1 to enable it to identify the Fab domain.
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Figure 6.14: Visualisation of the anisotropic motions of detector ρ0 projected onto the
structure of GB1. Motions are shown as ellipsoids as described in Figure 6.16, with
the transparency set according to the error as in Figure 6.13. The backbone of the
GB1 is shown in grey, with black bars indicating the orientation of the N – H bond
vector for each residue. The colours are as in Figure 6.13, with orange suggesting
dominant motion parallel to the 15N – 1H bond axis, and purple indicating motion
perpendicular to this. Sites for which there was insufficient data to perform the
analysis are highlighted with grey spheres. (a) Front view of the β-sheet of GB1. (b)
Same as (a), but the large response on Gly41 has been hidden. (c) View of the α helix.
(d) View of the loop regions between β2 − α and β3 − β4.
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Figure 6.15: Visualisation of the anisotropic motions of detector ρ2 projected onto the
structure of GB1. Motions are shown as ellipsoids as described in Figure 6.16, with
the transparency set according to the error as in Figure 6.13. Sites for which there
was insufficient data to perform the analysis are highlighted with grey spheres. The
backbone of the GB1 is shown as in grey, with black bars indicating the orientation
of the N – H bond vector for each residue. (a) View of the β-sheet of GB1. (b) View
of the α-helix of GB1. Note that for clarity, the responses have been scaled up 5×
relative to those shown in Figure 6.14.

197



a) b)

Figure 6.16: Guide to the ellipsoids shown in Figures 6.14 and 6.15. A larger axial
length and corresponding larger circular arrow indicates more motion. (a) An
orange ‘rugby ball’ like shape (e.g. the response on 13C’ is greater than that on 15N,
indicating motions about the N – H bond vector). (b) A lilac ‘disc’ like shape (e.g. the
response on 15N is greater than that on 13C’, indicating motions perpendicular to
the N – H bond vector).
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6.4 Conclusion

It has been found possible to form complementary detectors on both 13C’ and 15N

to study the dynamics of proteins with greater resolution. The applicability of

detectors to studying variable temperature motions has been discussed, though

more work is required. It has been found that the combination of 15N and 13C’

detectors can enable insight into the anisotropic nature of local motions within a

microcrystalline protein over a range of timescales.

The approach presented here to study the energetics and anisotropies of local protein

motion may appear to be less expansive and ‘precise’ compared to the Model-

Free250, 361, 362 and GAF based methods43, 126, 368 presented previously, in the sense

that it does not intend to provide a model for the angular rotation, axes orientation,

or to give a precise numerical value for the activation energy of the motion occurring.

However, this relates to the underlying imprecision in the information provided

by the relaxation rates themselves: NMR-based analyses of protein dynamics seek

to characterise a distribution of motions which is unknown, unknowable (with

current methodology), and for which we do not currently have a good generalisable

model. The method introduced in this Chapter seeks to investigate what information

these relaxation rates can provide us regarding protein motions, in a manner which

acknowledges and accepts this inherent imprecision. In doing so, it makes trade-offs

with regards to the complexity of the model being used, with the hope that this will

provide more accurate insight into these local motions.

It is hoped that future work will further build on such detector-based analyses of

different facets of protein motions beyond amplitude and timescale of motion. For

instance, the model of energetics utilised here is necessarily simplified relative to

reality. Future work may enable this to be expanded to provide more clarity as to

the energetics of these motions.
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Chapter 7

Summary and Outlook

The development of techniques in the 20th century to study both the structure and

dynamics of biomolecular systems has led to a revolution in our atomic-scale view

of the natural world. This revolution has been enabled by the development of new

techniques and methods: the discovery of X-ray radiation and later use of this in

X-ray crystallography provided our first atom-scale view of molecular structure; the

invention and rapid proliferation of computers enabled, among many other things,

the development of molecular dynamics to allow for insight into local mobility; and

the discovery of the Fourier Transform and later development of the Fast Fourier

Transform algorithm permitted the use of FT-NMR and hence multidimensional

NMR.

Despite these major gains in scientific understanding, we are still limited in many

ways. Crystallographic techniques face limitations in their ability to study systems

for which there is no long range order, such as in precipitates, biomembranes, and

fibrils (though these issues are being at least partially alleviated by the CryoEM

revolution). Molecular dynamics is a computational method, and therefore requires

experimental verification. As such, further method development is necessary to

allow deeper exploration of the physical underpinnings of the natural world.

Solid-state NMR could, in principle, be a very useful tool to answer many of these
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outstanding challenges. Nuclear magnetic resonance is a phenomenon exquisitely

sensitive to the local environment surrounding a nuclear spin, both in terms of

its structural and dynamical properties. Therefore, solid-state NMR spectroscopy

may provide great insight into both the local structure of systems inaccessible to

other methods, and the local dynamics occurring within a whole range of systems.

However, it faces significant limitations in terms of sensitivity, resolution, and long

experimental times. As a result, to date, it has been a relatively under applied

technique compared to other methods such as X-ray crystallography, with only

164 (0.080%) published solid-state NMR structures in the PDB as of writing (see

Figure 7.1). Indeed, solution- and solid-state NMR combined make up only 6.8% of

the PDB combined, a percentage which does not look to be massively increasing

over time (see Figure 7.2).
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Figure 7.1: Pie chart showing the composition of the RCSB PDB369, 370 by experimen-
tal methodology. (a) The breakdown of all structures by experimental methodology.
(b) Breakdown of structures determined by NMR methods into solid and solution
state. It should be noted that many structures are composed of data from several
techniques, in this figure these will be counted separately for each constituent tech-
nique. Values are correct as of 9th June 2023.

Recent advances and developments in solid-state NMR, however, may enable its

broader appeal. The maximum attainable MAS frequency has been rising approxi-
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Figure 7.2: How the composition of the RCSB PDB369, 370 by experimental methodol-
ogy has changed over time since its inception in 1971. Values are correct as of 9th

June 2023.

mately exponentially (see Figure 7.3), with commensurate gains in sensitivity and

resolution. The development of new optical spinning methods and spherical ro-

tors371–374 look set to keep this trend continuing into the future. The introduction

of higher magnetic fields will also further enable greater applicability of the tech-

nique.65, 375

The advent of these faster MAS probes and higher fields present both opportunities

and challenges. This thesis has explored several different aspects of solid-state NMR.

Chapter 4 focused on the impact that higher MAS frequencies and higher magnetic

fields will have on spin diffusion. As an important tool for the characterisation

of structure in solid-state NMR, understanding how spin diffusion is affected as

we reach yet faster MAS frequencies will be important for the interpretation of

experimental results. A new method of basis-set selection was introduced to enable

the simulation of spin diffusion within larger spin systems at fast MAS frequencies.

This was followed by an investigation of how such a model would predict spin

diffusion to behave under these different experimental conditions, where it was

found that, in moderate to high magnetic fields (14 T and above, corresponding
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Figure 7.3: Maximum achieved MAS frequency over time as a log scale (for refer-
ences, see Figure 1.4).

to 1H Larmor frequencies in excess of 600 MHz), spinning frequencies ≥ 40 kHz

MAS lead to significant resonance-offset truncation of spin diffusion. This effect was

further investigated experimentally in Section 4.5. It was additionally found that,

under these fast MAS conditions, incoherent cross-relaxation phenomena may come

to dominate over the coherent spin dynamics; as a result, it may be the case that, at

faster MAS frequencies, the truncation will be sufficient to enable solution-state-like

nOe experiments to be performed on solids. This is likely to especially be the case

in systems with significant µs dynamics, where the J(0) spectral density term will

come to dominate in the nuclear Overhauser effect (see equation 4.19).

In Chapters 5 and 6, different aspects relating to the use of solid-state NMR to study

protein dynamics were discussed. The limited sensitivity of solid-state NMR leads

to often very long experimental times. This is particularly the case for measuring

relaxation rates, for which the slow relaxation of the nuclei of interest leads to a

substantial increase in the time required to measure each coadded transient. While

sensitivity and resolution may both be aided by technological and instrument devel-
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opments, this limit of experimental time is unlikely to be as improved. Potentially a

better way around this is to make use of either paramagnetic species279, 283 or selec-

tive excitation196 to enhance the speed of experiments; however, such techniques

necessarily affect the resulting measured quantities. The development of methods to

enable analysis of the perturbed relaxation rates may therefore aid such experiments.

In Chapter 5, the local dynamics occurring within a protein bound to an antibody

(a >300 kDa protein complex, with ≈ 10% labelling) were studied in the presence

of paramagnetic dopant. By combining analysis of the paramagnetic interaction

with the dynamics, it was found to be possible to obtain a greater insight into the

structure of the bound complex than would be possible by either individually. The

advantages of this methodology could be extended to other systems and scenarios;

for example, it might be possible to use well-placed paramagnetic tags and relax-

ation filters to enable spatial deconvolution of relaxation rates, thereby enabling yet

faster experimental times and greater site resolution. Further, while the system used

here was relatively well-suited (isotropic g-tensor, slow electron spin relaxation),

it is possible that such a method could be extended to significantly more complex

paramagnetic species to enable the dynamics within active sites of metalloproteins

to be elucidated. The presence of anisotropic paramagnetic relaxation and interac-

tions376 may further enable this to be applied to gain insight into the asymmetry of

motions.377

With recent advances in fast MAS probes, it has become possible to obtain site-

specific 13C’ relaxation rates. These, in concert with 15N relaxation and variable

temperature measurements, were shown in Chapter 6 to enable the study of the

local dynamics in a microcrystalline protein both in higher spatial and temporal

resolution than previously possible, while additionally enabling the observation

of anisotropic variation in the dynamics across the protein. While this technique

requires a large amount of relaxation data, it is possible that the combination of

this method with the separation of paramagnetic and dynamic contributions to

relaxation introduced in Chapter 5 may enable this to be readily applied to a wide
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range of systems of interest.

Overall, this thesis has investigated the utility of high MAS frequencies and high

magnetic fields to enable the study of structure and dynamics of biological systems.

Methods have been developed to investigate how spin diffusion is affected, and

how these changes may affect experimental results. Some of the benefits of fast MAS

for dynamical analysis have been studied in terms of how it can allow a wealth of

dynamical information to be extracted from experimental data. Finally, methods

to enhance the rate at which such dynamical analysis can be performed have been

developed.
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Appendix A

Dynamical profiles arising from

including 3 or 5 singular values for

paramagnetic analysis.
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Figure A.1: Equivalent of Figure 5.5 using k = 3.
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Figure A.2: Equivalent of Figure 5.5 using k = 5.
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Appendix B

Effect of Activation Energy on

Dynamical Profiles

B.1 Calculations assuming 30 kJ mol−1

The analysis was performed as previously. The reduced χ̂2 criterion selected k = 5

for 15N and k = 5 for 13C’. k = 5 was therefore used for the combined analysis.

Table B.1: (30 kJ mol−1 equivalent of Table 6.4) Summary model statistics for models
with different values of k.

k No 13C’ No 15N χ2

n
13C’* χ2

n
15N χ̂2 13C’† χ̂2 15N

2 2 2 10.66 56.94 12.16 36.96
3 3 3 10.00 34.26 11.64 27.89
4 4 4 9.62 31.36 11.23 26.03
5 5 5 7.90 24.00 9.05 17.08
6 6 7 7.99 22.78 9.94 19.48
7 7 7 7.55 23.45 10.03 19.30
8 8 9 8.15 22.93 11.71 20.59
9 9 10 8.04 23.76 12.72 21.90
10 11 9 8.40 24.04 16.33 21.82

*average χ2 value, calculated over all data
†median reduced χ2 value, calculated for each individual residue and then the median taken
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Figure B.1: (30 kJ mol−1 equivalent of Figure 6.9) Calculated detector responses for
15N and 13C’. Left: Paired detector sensitivities. Right: Paired detector responses.

Table B.2: (30 kJ mol−1 equivalent of Table 6.5) Scaling factors applied to carbonyl
detector responses.

Detector Scaling Factor

ρ0 0.24
ρ1 0.69
ρ2 0.91
ρ3 1.34
ρ4 0.43
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Figure B.2: (30 kJ mol−1 equivalent of Figure 6.11) Calculated (scaled) detector
responses for 15N and 13C’. Left: Detector sensitivity profiles. Right: Detector
responses.
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Figure B.3: (30 kJ mol−1 equivalent of Figure 6.12) Comparison of calculated detector
responses for 15N (left) and (scaled) 13C’ (right) with molecular dynamics. Compari-
son is shown for detectors covering timescales for which the MD was sensitive to.
MD response is shown as a grey band, with percentiles at 5%, 50%, 95%.
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Figure B.4: (30 kJ mol−1 equivalent of Figure 6.13) Natural log of the ratio between
the 13C’ response and the 15N response for each pair of detectors. A negative (orange)
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(purple) number indicates motion perpendicular to this. The transparency has been
set according to the error, with an error of 0 being fully opaque and an error of 1.5
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B.2 Calculations assuming 50 kJ mol−1

The analysis was performed as previously. With 50 kJ mol−1 the reduced χ̂2 criterion

selected k = 7 for 15N and k = 7 for 13C’. k = 7 was therefore used for the combined

analysis.

Table B.3: (50 kJ mol−1 equivalent of Table 6.4) Summary model statistics for models
with different values of k.

k No 13C’ No 15N χ2

n
13C’‡ χ2

n
15N χ̂2 13C’§ χ̂2 15N

2 2 2 10.38 71.77 11.09 30.39
3 3 3 9.35 29.38 10.62 19.84
4 4 4 9.00 26.58 10.72 17.19
5 5 5 7.30 22.74 8.55 16.13
6 7 8 6.31 20.75 8.51 18.92
7 7 7 6.35 19.80 8.32 15.45
8 8 9 6.33 19.19 8.79 17.39
9 9 9 6.26 19.06 9.39 17.20

10 10 12 6.68 19.27 11.63 22.36
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Figure B.5: (50 kJ mol−1 equivalent of Figure 6.9) Calculated detector responses for
15N and 13C’. Left: Paired detector sensitivities. Right: Paired detector responses.

‡average χ2 value, calculated over all data
§median reduced χ2 value, calculated for each individual residue and then the median taken
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Table B.4: (50 kJ mol−1 equivalent of Table 6.5) Scaling factors applied to carbonyl
detector responses.

Detector Scaling Factor

ρ0 0.16
ρ1 0.73
ρ2 0.39
ρ3 0.65
ρ4 2.32
ρ5 0.30
ρ6 0.56
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Figure B.6: (50 kJ mol−1 equivalent of Figure 6.11) Calculated (scaled) detector
responses for 15N and 13C’. Left: Detector sensitivity profiles. Right: Detector
responses.
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Figure B.7: (50 kJ mol−1 equivalent of Figure 6.12) Comparison of calculated detector
responses for 15N (left) and (scaled) 13C’ (right) with molecular dynamics. Compari-
son is shown for detectors covering timescales for which the MD was sensitive to.
MD response is shown as a grey band, with percentiles at 5%, 50%, 95%.
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Figure B.8: (50 kJ mol−1 equivalent of Figure 6.13) Natural log of the ratio between
the 13C’ response and the 15N response for each pair of detectors. A negative (orange)
value suggests dominant motion parallel to the 15N – 1H bond axis, while a positive
(purple) number indicates motion perpendicular to this. The transparency has been
set according to the error, with an error of 0 being fully opaque and an error of 1.5
being fully transparent.
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Appendix C

More Visualisations of Anisotropic

Motion

a) b)

β2 β2β1 β4 β3

β3

Figure C.1: Visualisation of the anisotropic motions of detector ρ1 projected onto
the structure of GB1. Motions are shown as ellipsoids as described in Figure 6.16,
with the transparency set according to the error as in Figure 6.13. The backbone of
the GB1 is shown as in grey, with black bars indicating the orientation of the N – H
bond vector for each residue. (a) View of the β-sheet of GB1. (b) View of the α-helix
of GB1.
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a) b)

β2 β2β1 β4 β3

β3

Figure C.2: Visualisation of the anisotropic motions of detector ρ3 projected onto
the structure of GB1. Motions are shown as ellipsoids as described in Figure 6.16,
with the transparency set according to the error as in Figure 6.13. The backbone of
the GB1 is shown as in grey, with black bars indicating the orientation of the N – H
bond vector for each residue. (a) View of the β-sheet of GB1. (b) View of the α-helix
of GB1. Note that for clarity, the responses have been scaled up 10× relative to those
shown in Figure 6.14.
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a) b)

β2 β2β1 β4 β3

β3

Figure C.3: Visualisation of the anisotropic motions of detector ρ4 projected onto
the structure of GB1. Motions are shown as ellipsoids as described in Figure 6.16,
with the transparency set according to the error as in Figure 6.13. The backbone of
the GB1 is shown as in grey, with black bars indicating the orientation of the N – H
bond vector for each residue. (a) View of the β-sheet of GB1. (b) View of the α-helix
of GB1. Note that for clarity, the responses have been scaled up 20× relative to those
shown in Figure 6.14.
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