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Abstract— Scenario-based verification and validation (V&V)
has emerged as the predominant approach for the perfor-
mance evaluation of automated driving systems (ADSs). Many
scenario-generation methods have been proposed to search for
critical scenarios, i.e. disengagement or traffic rule violations.
However, the widely adopted binary (pass/fail) criterion suffers
from two main limitations, i.e., the difficulty of locating root
causes and the lack of statistical guarantee of testing sufficiency.
Recently, new scenario engineering approaches focusing on
the intelligence of ADSs enlightened a promising pathway
via dynamic driving task decomposition and function atom
constraints. However, none of the state-of-the-art scenario
description languages support such approaches. To fill this gap
and facilitate further research into this promising direction,
in this work, we propose a generic architecture to extend
the existing scenario description languages for the intelligence
testing of ADSs. The case study with WMG SDL demonstrates
the capability and flexibility of the proposed extension design
in defining intelligence function constraints.

I. INTRODUCTION
Background Scenario-based verification and validation

(V&V) has emerged as the predominant approach for the per-
formance evaluation of automated driving systems (ADSs)
[1]–[3]. Compared to the distance-based approach where
the ADSs are required to drive millions of miles [4], [5]
to cover sufficient diversity of driving situations due to the
long-tail effect, scenario-based methods aim to eliminate the
redundancy and distil critical scenarios of interest directly
from various data sources, e.g., domain expert knowledge
[6]–[12] or naturalist driving data [12]–[24] by diverse types
of scenario generation (aka, parameter sampling) algorithms.
The generated scenarios are commonly evaluated against two
metrics, i.e., criticality (e.g., distance-to-collision [22], [23]
and time-to-collision [10], [12], [21], [25]), and coverage
(e.g., parameter value combination [11], [12]).

However, existing metrics suffer from two main limita-
tions, i.e., the difficulty of locating root causes and the need
for explicit correspondence to the AV-under-test’s underlying
capabilities (aka intelligence). First, upon the occurrence of
critical events (e.g., disengagements or traffic rule violations
such as collisions), the existing binary-based (i.e., pass/fail)
or robustness-based (e.g., time-to-collision) criticality met-
rics do not clue how the critical events happened. Manual
fault localization in modularized AV systems (e.g., Apollo
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Fig. 1: An example U-turn scenario at signalized junction.
R1, R2 and R3 are three roads connected by the T-junction
J1 and Li are road lanes.
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Fig. 2: Constrained function atoms implied by the scenario
in Fig. 1.

[26], and Autoware [27])) is difficult primarily due to the
ripple effect (e.g., a frame of perception error may propagate
through the system and cause a collision half a minute later).
Meanwhile, it is even more challenging for end-to-end [28]
AV systems due to the lack of explainability of AI models.
Second, covering a complete set of scenario parameter value
combinations does not provide statistical correspondence on
the inner capabilities of the system-under-test, which should
be the actual purpose of scenario-based testing.

Recent discussions on intelligence-guided scenario-based
testing [29], [30] enlightened a promising pathway for ad-
dressing the abovementioned limitations by decomposing
the dynamic driving tasks into constrained function atoms.
Intuitively, to navigate a vehicle across public road networks
with other traffic participants, the AV systems, regardless of
the implemented architecture and Operational Design Do-
main (ODD) [31], must share a common set of intelligence
[30], [32], including but not limited to, self-localization and
navigation through different types of roads and intersec-
tions, detection and response to diverse objects and events,



identification and compliance with relevant traffic rules and
regulations. For example, from the U-turn scenario in Fig. 1,
we can derive the list of function atoms and constraints as
shown in Fig. 2. Hence, by validating the AV’s scenario
execution logs against the constrained function atoms, we
can easily track the root cause of critical events and collect
statistical evidence on the intelligence coverage [30].

Motivation Intuitively, when a concrete [33] scenario is
defined, the static road networks, the environmental condi-
tions, the dynamics of traffic objects and the list of possible
events are fixed. As a result, the scenario definition implies
the set of driving intelligence to pass the scenario, regardless
of the AV system. More importantly, the progression of
scenario dynamics implies the spatial and temporal con-
straints of the demanded intelligence function atoms. For
example, the AV-under-test needs to complete the detection
and recognition of the traffic signal status before driving too
close to the intersection so that the vehicle has sufficient time
to brake and stop before the stop line if necessary, as shown
in Fig. 2. When such constraints on the function atoms are
explicitly defined, the root cause for any critical event can
be easily tracked down, and the statistical coverage of the
tested intelligence can be easily estimated.

Contributions Despite the above benefits of intelligence-
guided testing, we notice that none of the existing state-of-
the-art scenario description languages (SDLs), e.g., WMG
SDL [34], Scenic [35], and ASAM OpenSCENARIO/Open-
DRIVE [36], [37], support the specification of such function
atom constraints. To fill the gap, in this work, we i) design
a generic extension architecture to existing SDLs to enable
intelligence testing; ii) implement the extension in our state-
of-the-art SDL, i.e., WMG-SDL [34] that is powering a
quarter million scenarios on the Safety PoolT M [38] scenario
database and discuss a case study in detail.

II. BACKGROUND

A. Scenario, Intelligence and Function Atoms

Authors in [30] provide a theoretical foundation for intelli-
gence testing, including the relationship between intelligence
and function atoms, as illustrated in Fig. 3. Specifically,
each scenario represents a dynamic driving task (DDT)
consisting of the start and destination of the AV-under-test.
The AV is expected to perform a series of Object and
Event Detection and Response (OEDR) sub-tasks (e.g., avoid
collision with another vehicle and stop before the stop line
when approaching the intersection under red light), which
can be further broken down into function atoms (e.g., detect
and recognize traffic signals, detect, recognize and predict the
other vehicle and decelerate). Intelligence-guided scenario-
based testing [30] denotes a scenario engineering approach
where scenarios are generated for evaluating intelligent tasks
and function atoms.

B. Signal Temporal Logic

We draw inspiration from the Signal Temporal Logic
(STL) language in designing the function atom constraints.
STL has been widely adopted in critical scenario generation
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Fig. 3: Relationship illustration among scenarios, tasks, func-
tion atoms and intelligence adapted from [30].

SCENERY ELEMENTS: 
Junctions : None Roads : R1 : speed limit of [ 10 ] Road Sign [ Speed Limit ] as [S1]…
Number of lanes [ 2 ] as [ R1.L1 , R1.L2 ] ...

DYNAMIC ELEMENTS : INITIAL : 
Vehicle [ Ego ] in [ R1.L1 ] at speed [ 15.0 to 15.0 ] AND 
Vehicle [ V1 ] in [ R1.L2 ] with a [ Longitudinal ] offset of [ 50 to 50 ] to [ Ego ]  AND 
Pedestrian [ V2 ] in [ R1 . L1 ] with a [ Longitudinal ] offset of [ 90 to 90 ] AND with 
a [ Lateral ] offset of [ -2 to -2 ] to [ Ego ] AND Global timer [ T1 ] = [ 0 ] 
WHEN : [ Ego ] is [ Going_Ahead ] DO : 
[ V1 ] 
    PHASE 1 : [ Drive_Away ] [ - , 8 to 8 , 0 to 0 ] 
    WHILE : [ V1 ] [ Longitudinal ] offset to [ Ego ] >= [ 30 ] 
    PHASE 2 : [ LaneChangeRight_CutIn ] [ - , 8 to 8 , 0 to 0 ] 
    WHILE : [ T1 ] <= [ 60 ] AND : 
[ V2 ] 
    PHASE 1 : [ Stopped ] [ - , 0 to 0 , 0 to 0 ] 
    WHILE : [ V1 ] [ Longitudinal ] offset to [ Ego ] >= [ 30 ] 
    PHASE 2 : [ Walk_Cross ] [ - , 5 to 5 , 0 to 0 ]
    WHILE : [ T1 ] <= [ 60 ] AND : 
 
ENVIRONMENT ELEMENTS : Rainfall [ None : N/A ] …

Fig. 4: An example of a (simplified) WMG SDL scenario
consisting of a cut-in vehicle (id: V 1) and a jaywalker
(id: V 2). The manoeuvre phases of the two actors are
synchronized, i.e., the transitions from Phase 1 to Phase 2
of both actors occur simultaneously.

methods as the robustness value provides valuable guidance
on the scenario parameter sampling directions towards de-
sired critical events [39]. STLs are commonly specified in
the following format:

φ ::= true | π | ¬φ | φ ∧φ | φ ∨φ

| φ U[a,b] φ | φ R[a,b] φ | F[a,b] φ | G[a,b] φ

π ::= f (x)> c | f (x)≥ c | f (x)< c | f (x)≤ c

where φ is an STL formula; true is a boolean constant; π

represents a predicate, defined over the signal (e.g., position
or velocity trace); ¬, ∧, and ∨ are the standard logical
negation, conjunction, and disjunction operators, respec-
tively; φ1U[a,b]φ2 (φ1R[a,b]φ2) is the Until (Release) operator
representing that φ1 (φ2) must hold until φ2 (φ1) becomes true
within time bounds a and b; F[a,b] and G[a,b] are the Finally
and Globally operators, representing that a formula φ must
hold at some point or at all points, respectively, within the
time interval.



C. Scenario Description Language

SDLs are domain-specific languages for the scenario-
based V&V of ADSs. The utility of SDLs lies in their
ability to provide a precise and unambiguous description of
the operation context for a dynamic driving task, commonly
encompassing scenario parameters for static road networks,
dynamic behaviours of diverse types of traffic participants,
environmental conditions, etc. Currently, three languages
are widely adopted and under active maintenance, i.e., the
WMG’s two-level SDL [34], Scenic [35], and ASAM OpenX
(OpenSCENARIO and OpenDRIVE) [36], [37]. The WMG
SDL language embeds the scenario parameters in natural
languages and aligns closely with industrial standards. On
the other hand, Scenic has a grammar analogous to that of the
Python programming language and focuses on probabilistic
scenario modelling. Lastly, the OpenSCENARIO XML is an
XML format and is widely supported by the esmini [40] and
Carla [41] simulators.

In this work, we take the WMG SDL as an example and
implement the extension following its grammar. Fig. 4 is
a simplified WMG SDL scenario consisting of three main
components, i.e., Scenery Elements representing the static
road networks, Dynamic Elements representing the dynamic
behaviours of the traffic and Environment Elements repre-
senting the environmental conditions. WMG SDL defines the
scenario dynamics at the manoeuvre instead of the trajectory
level. It is up to the scenario execution engine (e.g., a
simulator) to compute the actual actor trajectories at runtime.

III. THE INTELLIGENCE TESTING EXTENSION

We suggest an object-oriented design for the intelligence
testing extension, adaptable to any SDL. Fig. 5 presents the
class diagram in Unified Modeling Language (UML).

Function Constraint Logic contains a list of Function
Atoms, Constraint Formulas and Interval Boundaries. They
are separated into different classes for reusability.

Function Atom is the basic building block for the ex-
tension, which contains four main attributes, i.e., the id as a
unique identifier used in the constraint formulas, the function
name, which can be assigned to one of Function Name
enumeration options, the target which can be assigned to
the id of any static object or dynamic actor in the scenario,
and the detail is optional and enables additional specification
(e.g., a predicate) regarding the function atom instance. For
example, a function atom instance can be defined as (id: FA1,
name: Recognize, target: V2, detail: as class Pedestrian).
Note that we do not specify the grammar for the detail
attribute since it should be customized per individual scenario
execution (or evaluation) engines.

The Constraint Formula defined constraints with an
optional operator and interval. It allows the assignment of at
most two function atoms, i.e., antecedentFunction and conse-
quentFunction. To enable nested constraints, each constraint
formula also allows the assignment of at most two other
constraint formulas, i.e., antecedentFormula and consequent-
Formula. Note that the attribute antecedentFunction (resp.

consequentFunction) and antecedentFormula (resp. conse-
quentFormula) are mutually exclusive. The operator attribute
takes one of the Logic Operator enumeration options. The
constraint formula is evaluated only when the operator is not
None; otherwise, the constraint formula instance is treated as
a reference by another nested formula. The intervalStart and
intervalEnd specify the constraint interval boundaries. Since
the scenario progression is usually unpredictable due to the
asynchronous communication between the scenario execu-
tion engine and the AV-under-test, it is often impractical to
bound the constraints using scenario execution time only.
For example, the constraint “Detect the speed sign within 5
to 10 seconds after the start of the scenario” may not be
valid given a varying (and often unpredictable) initialization
time by the Ego vehicle before it starts to move. Hence, we
propose an abstract IntervalBoundary class consisting of five
flexible boundary types.

Interval Boundary The five boundary types are temporal,
function, spatial, phase, and event and are mutually exclusive
for individual IntervalBoundary instances.

Temporal Boundary supports absolute or relative con-
straints in the temporal domain. The value attribute specifies
the time offset in seconds, where a negative value represents
a time before, and a positive value indicates a time after-
wards. To specify a time w.r.t. a scenario engine timer (which
can be, e.g., a global timer throughout the scenario or a local
timer which resets with each manoeuvre phase as defined in
the WMG SDL language [34]), the corresponding timer’s ID
can be assigned to the timer attribute. For example, assume
G TIMER 1 is a global timer ID, then (timer: G TIMER 1,
value: 10) means 10 seconds after the scenario starts. Often,
scenario engineers are interested in the relative time con-
straint, e.g., “5 seconds before the vehicle reaches the stop
line” or “0.5 seconds after the frontal vehicle brakes”. To
achieve this, the boundary attribute can be utilized to specify
the time offsets w.r.t. another interval boundary.

Function Boundary marks the time when there is a
change in the evaluation of function atom predicates. For
example, the positive edge of the function “Detect the
human.” indicates the moment the human is detected; the
negative edge of the function “Recognize the human as
a police officer” indicates the moment when the human
is no longer recognized as a police officer. The function
boundaries are especially helpful in constraining function
atom dependencies, e.g., “recognize the human as a police
officer 0.1 seconds after the human is detected”.

Spatial Boundary pinpoints the moment when a scenario
object reaches a specific cartesian location on the map. The
position can be absolute, e.g., with x, y coordinates, or
relative position w.r.t. another object or road network element
of the scenario. We omit the detailed class definition for the
position attribute as it depends on the specific SDL.

Phase Boundary as used in manoeuvre-driven SDLs, such
as WMG SDL [34] or OpenSCENARIO [36] (as compared to
trajectory-type scenario descriptions), to describe multi-stage
actor behaviours using manoeuvre phases. For example, an
overtake scenario typically includes lane change, accelerate,
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Fig. 5: Class diagram of the proposed intelligence testing extension design for SDLs. The “XX ID” types are strings
commonly with a class prefix, e.g., the id of a function atom instance can be “FA1” where “FA” is the Function Atom class
prefix.

and cut-in phases for the Principal Other Actor. The Phase-
Boundary class is defined to pinpoint the moment relative to
the start or end (the cusp attribute) of a specific manoeuvre
phase (the phase attribute) of any scenario actor.

Event Boundary captures unscripted scenario events,
serving as a general constraint boundary for moments unsuit-
able for the other three boundary types, e.g., when the ego
vehicle fails to plan a drivable trajectory or exits its ODD.
Similarly, we leave the implementation of the detail attribute
to the specific SDLs and execution/evaluation engines.

Logic Operator is an enumeration class containing a list
of logic operators defined similarly to their counterparts of
the Signal Temporal Logic formulas. Hence, the interval
boundary definitions are optional for Negation, Disjunction
and Conjunction while they are compulsory for Globally,
Until, Release and Finally.

Function Name is an enumeration class listing intelli-
gence function names, focusing mainly on OEDR capabili-
ties as summarized in the report [42]. It includes common
functions such as Detect, Recognize, Predict, Accelerate, and
Signal. These functions may be interpreted or overridden by
implementations of the AV system, and the enumeration class
permits flexible extension.

IV. CASE STUDY

We implement the proposed intelligence testing extension
in the WMG SDL [34] language. WMG SDL is written using
the Eclipse Xtext framework [43]. The extension syntax
adheres to the same language design principles of WMG
SDL (Fig. 6). We discuss one case study in detail using the
example scenario in Fig. 4.

A. Intelligence Function Analysis

Usually, the type of intelligence under test should be
planned before generating scenarios, e.g., pairwise collision
avoidance, traffic light detection, etc. When only the scenario

description is available, it is also straightforward to derive
the relevant OEDR capabilities with the following empirical
procedures. First, we gather the list of objects in the scenario,
i.e., the cut-in vehicle V1, the jaywalking pedestrian V2
and a speed sign S1 (10 meters per second). Second, for
each object, we define the list of possible events that the
ego vehicle may encounter throughout the scenario, e.g.,
V1 starts to cut in, and V2 starts to walk across. Next,
based on the identified objects and events, we define the
logical intelligence functions that must be performed one
after another to respond to the detected object or event. For
example, in order to avoid collision with V1, the ego vehicle
should logically i) detect the existence of V1, ii) recognize
that V1 is a vehicle, iii) keep track of and predict V1’s
trajectory and iv) decelerate to yield to V1, with the latter
function depending on the former. Eventually, we can derive
the list of intelligence functions in Table. I.

TABLE I: OEDR behaviours derived from Fig. 4 Scenario,
where A → B means A enables B (or B depends on A).

Object Event Intelligence Function

Cut-in Vehicle V1 Cut-in Detect → Recognize → Predict →
Decelerate to yield

Jaywalker V2 Jaywalk Detect → Recognize → Predict →
Decelerate to yield

Speed Sign S1 - Detect → Recognize → Decelerate to
obey

B. Intelligence Constraint Specification

Intelligence function constraints can be derived from the
AV system’s functional design requirements for those sce-
narios generated particularly for the AV system, or domain
knowledge (e.g., traffic rules and common practices) for
generic scenarios. Assume we have the following constraints:
1) Detect V1 within 0.2 seconds after the scenario starts;



INTELLIGENCE CONSTRAINTS : 
Functions: 
[FA_ID] : [FA_NAME_ENUM] (object [OBJ_ID])? ([DETAIL_STR])? 
(AND FA_ID] : … )* END

Constraints:
[CF_ID] : ensure: [ (function FA_ID | formula CF_ID) (, OPERATOR_ENUM)? 
    (, (function FA_ID | formula CF_ID))? ] (from [IB_ID] to [IB_ID])? 
(AND [CF_ID] : … )*  END

Interval Boundaries:
[IB_ID] when 
    # temporal boundary
    ([TIME_VAL] sec relative to (timer [TIMER_ID] | boundary [IB_ID])  )  | 
 # function boundary
    (at (positive | negative) edge of function [FA_ID])  | 
    # spatial boundary
    (object [OBJ_ID] at (
        # absolute position in coordinates
        (coordinate [ABS_X_VAL, ABS_Y_VAL, ABS_Z_VAL]) |
        # absolute position in map
        ((road [ROAD_ID] | junction [JUNCTION_ID]) lane [LANE_ID] 
        (longitudinal offset of [LONG_OFFSET_VAL])? 
        (lateral offset of [LAT_OFFSET_VAL])?) |
        # relative position
        ((longitudinal offset of [LONG_OFFSET_VAL])? 
         (lateral offset of [LAT_OFFSET_VAL])? relative to [OBJ_ID])  )  )  | 
    # phase boundary
    (phase [PHASE_ID] (starts | ends) ) | 
    # event boundary
    (event [EVENT_ID] : (DETAIL_STR) occurs) 
(AND [IB_ID] …)* END

Fig. 6: The extension syntax implemented for WMG SDL
Level 2 uses parenthesis (), question mark ? and asterisk * for
enclosing, optional and zero or more instances, respectively.
The terms XX ID, XX ENUM, XX STR and XX VAL rep-
resent the ID of a scenario element category, an enumeration
option, a string and a numeric value, respectively. # com-
ments are for ease of reading, not part of the syntax.

2) Recognize V1 as a vehicle within 0.1 seconds after it is
detected;

3) Predict the lane following trajectory of V1 within 2
seconds after it is recognized;

4) Predict the lane changing trajectory of V1 within 0.5
seconds after manoeuvre phase 2 starts;

5) Detect S1 within 0.2 seconds when the relative distance
between the ego and the sign is less than 50 meters;

6) Recognize the speed limit value as 10 meters per second
within 0.1 seconds after S1 is detected;

7) Decide to decelerate down to the speed limit within 0.1
seconds after S1 is recognized;

8) Start to decelerate within 0.2 seconds after the decelera-
tion decision is made;

9) Decide to (further) decelerate within 0.1 seconds after the
lane-changing trajectory of V1 is predicted;

10) Start to decelerate within 0.2 seconds after the (further)
deceleration decision is made;

For brevity, the constraints for the pedestrian are omitted.
Based on the above specifications, the function atoms, in-
terval boundaries and constraints can be expressed in WMG
SDL as presented in Fig. 7, Fig. 8, and Fig. 9, respectively.

Constraints:
# these constraints ensures the first execution of the intelligence functions
[CF_1] : ensure [FA_1, Eventually] from [IB_T1_a] to [IB_T1_b] AND
[CF_2] : ensure [FA_2, Eventually] from [IB_V1_a] to [IB_V1_b] AND
[CF_3] : ensure [FA_3, Eventually] from [IB_V1_d] to [IB_V1_e] AND
[CF_4] : ensure [FA_4, Eventually] from [IB_PH_2_a] to [IB_PH_2_b] AND
[CF_5] : ensure [FA_5, Eventually] from [IB_S1_a] to [IB_S1_b] AND
[CF_6] : ensure [FA_6, Eventually] from [IB_S1_c] to [IB_S1_d] AND
[CF_7] : ensure [FA_7, Eventually] from [IB_S1_e] to [IB_S1_f] AND
[CF_8] : ensure [FA_8, Eventually] from [IB_S1_g] to [IB_S1_h] AND
[CF_9] : ensure [FA_9, Eventually] from [IB_V1_g] to [IB_V1_h] AND
[CF_10] : ensure [FA_10, Eventually] from [IB_V1_i] to [IB_V1_j] AND
# these constraints ensures continuous execution of the intelligence functions
[CF_11] : ensure [FA_1, Always] from [IB_V1_a] to [IB_PH_2_c] AND
[CF_12] : ensure [FA_2, Always] from [IB_V1_d] to [IB_V1_c] AND
[CF_13] : ensure [FA_3, Until, FA_4] from [IB_V1_k] to [IB_V1_g] AND
[CF_14] : ensure [FA_4, Always] from [IB_PH_2_a] to [IB_PH_2_b] AND
… END

Interval Boundaries:
# Global Timer T1-related boundary
[IB_T1_a] when [0.0] sec relative to timer [T1] AND 
[IB_T1_b] when [0.2] sec relative to timer [T1] AND
# FA_1: Detect V1
[IB_V1_a] when [0.0] sec relative to positive edge of function [FA_1] AND
[IB_V1_b] when [0.1] sec relative to positive edge of function [FA_1] AND
[IB_V1_c] when [0.0] sec relative to negative edge of function [FA_1] AND
# FA_2: Recognize V1
[IB_V1_d] when [0.0] sec relative to positive edge of function [FA_2] AND
[IB_V1_e] when [2.0] sec relative to positive edge of function [FA_2] AND
[IB_V1_f] when [0.0] sec relative to negative edge of function [FA_2] AND
# FA_4: Predict V1 “lane changing trajectory”
[IB_V1_g] when [0.0] sec relative to positive edge of function [FA_4] AND
[IB_V1_h] when [0.1] sec relative to positive edge of function [FA_4] AND
# FA_9: Decide to yield to V1
[IB_V1_i] when [0.0] sec relative to positive edge of function [FA_9] AND
[IB_V1_j] when [0.2] sec relative to positive edge of function [FA_9] AND
# FA_3: Predict V1 “lane following trajectory”
[IB_V1_k] when [0.0] sec relative to positive edge of function [FA_3] AND
# Manoeuvre phase 2-related boundary
[IB_PH_2_a] when phase [2] starts AND
[IB_PH_2_b] when [0.5] sec relative to boundary [IB_PH_2_a] AND
[IB_PH_2_c] when phase [2] ends AND
# Speed limit sign S1-related boundary
[IB_S1_a] when object [Ego] at longitudinal offset of [-50] relative to [S1] AND
[IB_S1_b] when [0.2] sec relative to boundary [IB_S1_a] AND
[IB_S1_c] when [0.0] sec relative to positive edge of function [FA_5] AND
[IB_S1_d] when [0.1] sec relative to positive edge of function [FA_5] AND
[IB_S1_e] when [0.0] sec relative to positive edge of function [FA_6] AND
[IB_S1_f] when [0.1] sec relative to positive edge of function [FA_6] AND
[IB_S1_g] when [0.0] sec relative to positive edge of function [FA_7] AND
[IB_S1_h] when [0.2] sec relative to positive edge of function [FA_7] AND
… END

Functions: 
[FA_1]   : [Detect] object [V1] AND
[FA_2]   : [Recognize] object [V1] “as vehicle” AND
[FA_3]   : [Predict] object [V1] “lane following trajectory” AND
[FA_4]   : [Predict] object [V1] “lane changing trajectory” AND
[FA_5]   : [Detect] object [S1] AND
[FA_6]   : [Recognize] object [S1] “speed limit at 10” AND
[FA_7]   : [Decide] “deceleration for speed limit” AND
[FA_8]   : [Decelerate] “for speed limit” AND
[FA_9]   : [Decide] “deceleration for object V1” AND
[FA_10] : [Decelerate] “for V1” … END

Fig. 7: Function specifications for Fig. 4 scenario.

Constraints:
# these constraints ensures the first execution of the intelligence functions
[CF_1] : ensure [FA_1, Eventually] from [IB_T1_a] to [IB_T1_b] AND
[CF_2] : ensure [FA_2, Eventually] from [IB_V1_a] to [IB_V1_b] AND
[CF_3] : ensure [FA_3, Eventually] from [IB_V1_d] to [IB_V1_e] AND
[CF_4] : ensure [FA_4, Eventually] from [IB_PH_2_a] to [IB_PH_2_b] AND
[CF_5] : ensure [FA_5, Eventually] from [IB_S1_a] to [IB_S1_b] AND
[CF_6] : ensure [FA_6, Eventually] from [IB_S1_c] to [IB_S1_d] AND
[CF_7] : ensure [FA_7, Eventually] from [IB_S1_e] to [IB_S1_f] AND
[CF_8] : ensure [FA_8, Eventually] from [IB_S1_g] to [IB_S1_h] AND
[CF_9] : ensure [FA_9, Eventually] from [IB_V1_g] to [IB_V1_h] AND
[CF_10] : ensure [FA_10, Eventually] from [IB_V1_i] to [IB_V1_j] AND
# these constraints ensures continuous execution of the intelligence functions
[CF_11] : ensure [FA_1, Always] from [IB_V1_a] to [IB_PH_2_c] AND
[CF_12] : ensure [FA_2, Always] from [IB_V1_d] to [IB_V1_c] AND
[CF_13] : ensure [FA_3, Until, FA_4] from [IB_V1_k] to [IB_V1_g] AND
[CF_14] : ensure [FA_4, Always] from [IB_PH_2_a] to [IB_PH_2_b] AND
… END

Interval Boundaries:
# Global Timer T1-related boundary
[IB_T1_a] when [0.0] sec relative to timer [T1] AND 
[IB_T1_b] when [0.2] sec relative to timer [T1] AND
# FA_1: Detect V1
[IB_V1_a] when [0.0] sec relative to positive edge of function [FA_1] AND
[IB_V1_b] when [0.1] sec relative to positive edge of function [FA_1] AND
[IB_V1_c] when [0.0] sec relative to negative edge of function [FA_1] AND
# FA_2: Recognize V1
[IB_V1_d] when [0.0] sec relative to positive edge of function [FA_2] AND
[IB_V1_e] when [2.0] sec relative to positive edge of function [FA_2] AND
[IB_V1_f] when [0.0] sec relative to negative edge of function [FA_2] AND
# FA_4: Predict V1 “lane changing trajectory”
[IB_V1_g] when [0.0] sec relative to positive edge of function [FA_4] AND
[IB_V1_h] when [0.1] sec relative to positive edge of function [FA_4] AND
# FA_9: Decide to yield to V1
[IB_V1_i] when [0.0] sec relative to positive edge of function [FA_9] AND
[IB_V1_j] when [0.2] sec relative to positive edge of function [FA_9] AND
# FA_3: Predict V1 “lane following trajectory”
[IB_V1_k] when [0.0] sec relative to positive edge of function [FA_3] AND
# Manoeuvre phase 2-related boundary
[IB_PH_2_a] when phase [2] starts AND
[IB_PH_2_b] when [0.5] sec relative to boundary [IB_PH_2_a] AND
[IB_PH_2_c] when phase [2] ends AND
# Speed limit sign S1-related boundary
[IB_S1_a] when object [Ego] at longitudinal offset of [-50] relative to [S1] AND
[IB_S1_b] when [0.2] sec relative to boundary [IB_S1_a] AND
[IB_S1_c] when [0.0] sec relative to positive edge of function [FA_5] AND
[IB_S1_d] when [0.1] sec relative to positive edge of function [FA_5] AND
[IB_S1_e] when [0.0] sec relative to positive edge of function [FA_6] AND
[IB_S1_f] when [0.1] sec relative to positive edge of function [FA_6] AND
[IB_S1_g] when [0.0] sec relative to positive edge of function [FA_7] AND
[IB_S1_h] when [0.2] sec relative to positive edge of function [FA_7] AND
… END

Functions: 
[FA_1]   : [Detect] object [V1] AND
[FA_2]   : [Recognize] object [V1] “as vehicle” AND
[FA_3]   : [Predict] object [V1] “lane following trajectory” AND
[FA_4]   : [Predict] object [V1] “lane changing trajectory” AND
[FA_5]   : [Detect] object [S1] AND
[FA_6]   : [Recognize] object [S1] “speed limit at 10” AND
[FA_7]   : [Decide] “deceleration for speed limit” AND
[FA_8]   : [Decelerate] “for speed limit” AND
[FA_9]   : [Decide] “deceleration for object V1” AND
[FA_10] : [Decelerate] “for V1” … END

Fig. 8: Interval boundaries for Fig. 4 scenario.

Constraints:
# these constraints ensures the first execution of the intelligence functions
[CF_1] : ensure [FA_1, Finally] from [IB_T1_a] to [IB_T1_b] AND
[CF_2] : ensure [FA_2, Finally] from [IB_V1_a] to [IB_V1_b] AND
[CF_3] : ensure [FA_3, Finally] from [IB_V1_d] to [IB_V1_e] AND
[CF_4] : ensure [FA_4, Finally] from [IB_PH_2_a] to [IB_PH_2_b] AND
[CF_5] : ensure [FA_5, Finally] from [IB_S1_a] to [IB_S1_b] AND
[CF_6] : ensure [FA_6, Finally] from [IB_S1_c] to [IB_S1_d] AND
[CF_7] : ensure [FA_7, Finally] from [IB_S1_e] to [IB_S1_f] AND
[CF_8] : ensure [FA_8, Finally] from [IB_S1_g] to [IB_S1_h] AND
[CF_9] : ensure [FA_9, Finally] from [IB_V1_g] to [IB_V1_h] AND
[CF_10] : ensure [FA_10, Finally] from [IB_V1_i] to [IB_V1_j] AND
# these constraints ensures continuous execution of the intelligence functions
[CF_11] : ensure [FA_1, Globally] from [IB_V1_a] to [IB_PH_2_c] AND
[CF_12] : ensure [FA_2, Globally] from [IB_V1_d] to [IB_V1_c] AND
[CF_13] : ensure [FA_3, Until, FA_4] from [IB_V1_k] to [IB_V1_g] AND
[CF_14] : ensure [FA_4, Globally] from [IB_PH_2_a] to [IB_PH_2_b] AND
… END

Interval Boundaries:
# Global Timer T1-related boundary
[IB_T1_a] when [0.0] sec relative to timer [T1] AND 
[IB_T1_b] when [0.2] sec relative to timer [T1] AND
# FA_1: Detect V1
[IB_V1_a] when [0.0] sec relative to positive edge of function [FA_1] AND
[IB_V1_b] when [0.1] sec relative to positive edge of function [FA_1] AND
[IB_V1_c] when [0.0] sec relative to negative edge of function [FA_1] AND
# FA_2: Recognize V1
[IB_V1_d] when [0.0] sec relative to positive edge of function [FA_2] AND
[IB_V1_e] when [2.0] sec relative to positive edge of function [FA_2] AND
[IB_V1_f] when [0.0] sec relative to negative edge of function [FA_2] AND
# FA_4: Predict V1 “lane changing trajectory”
[IB_V1_g] when [0.0] sec relative to positive edge of function [FA_4] AND
[IB_V1_h] when [0.1] sec relative to positive edge of function [FA_4] AND
# FA_9: Decide to yield to V1
[IB_V1_i] when [0.0] sec relative to positive edge of function [FA_9] AND
[IB_V1_j] when [0.2] sec relative to positive edge of function [FA_9] AND
# FA_3: Predict V1 “lane following trajectory”
[IB_V1_k] when [0.0] sec relative to positive edge of function [FA_3] AND
# Manoeuvre phase 2-related boundary
[IB_PH_2_a] when phase [2] starts AND
[IB_PH_2_b] when [0.5] sec relative to boundary [IB_PH_2_a] AND
[IB_PH_2_c] when phase [2] ends AND
# Speed limit sign S1-related boundary
[IB_S1_a] when object [Ego] at longitudinal offset of [-50] relative to [S1] AND
[IB_S1_b] when [0.2] sec relative to boundary [IB_S1_a] AND
[IB_S1_c] when [0.0] sec relative to positive edge of function [FA_5] AND
[IB_S1_d] when [0.1] sec relative to positive edge of function [FA_5] AND
[IB_S1_e] when [0.0] sec relative to positive edge of function [FA_6] AND
[IB_S1_f] when [0.1] sec relative to positive edge of function [FA_6] AND
[IB_S1_g] when [0.0] sec relative to positive edge of function [FA_7] AND
[IB_S1_h] when [0.2] sec relative to positive edge of function [FA_7] AND
… END

Functions: 
[FA_1]   : [Detect] object [V1] AND
[FA_2]   : [Recognize] object [V1] “as vehicle” AND
[FA_3]   : [Predict] object [V1] “lane following trajectory” AND
[FA_4]   : [Predict] object [V1] “lane changing trajectory” AND
[FA_5]   : [Detect] object [S1] AND
[FA_6]   : [Recognize] object [S1] “speed limit at 10” AND
[FA_7]   : [Decide] “deceleration for speed limit” AND
[FA_8]   : [Decelerate] “for speed limit” AND
[FA_9]   : [Decide] “deceleration for object V1” AND
[FA_10] : [Decelerate] “for V1” … END

Fig. 9: Constraint formulas for Fig. 4 scenario.



C. Key Observations

Observations on Functions Function atoms, like in Fig. 7,
are predicates evaluated at each scenario execution time
frame (assuming discrete time). For example, if vehicle V1
is detected at every time frame; then FA 1 is true for that
frame. In addition, function atoms should be distinguished
by the “name” and “detail” attributes, e.g., FA 3 and FA 4
are different.

Observations on Intervals Assume all scenarios, pro-
gressing as per scripted manoeuvre phases, can terminate
within a limited time. Then, each interval’s start and end
boundary can always be explicitly defined. Consequently, the
interval boundaries often come in pairs, as shown in Fig. 8,
especially when used to define the constraints w.r.t. function
dependencies, e.g., CF 2, CF 3, and CF (6-10). Note that
there may exist multiple ways to define the same interval
boundary, e.g., boundary IB V1 b is equivalent to “when
[0.1] sec relative to boundary [IB V1 a]”.

Observations on Constraints Constraints CF (1-10) cor-
respond to those defined in Section IV-B. The operator Fi-
nally is used to “ensure” the intelligence function succeeds as
specified. However, this is insufficient as, e.g., CF 1 could be
true if the vehicle V1 is detected only for a single time frame.
Hence, we define complementary constraints, i.e., CF (11-
14), to “ensure” continuous success of the intelligence func-
tions from the moment they become active to the appropriate
end boundaries, e.g., end of the scenario. For example, CF 1,
CF 2, CF 11 and CF 12 together “ensure” the vehicle V1 is
detected and recognized correctly throughout the scenario.

In summary, the case study showcases the feasibility
and flexibility of the proposed extension architecture. Note
that the extension design remains extensible and embraces
customization as new requirements arise.

V. DISCUSSION

Automatic Intelligence Constraint Specification We per-
formed manual analysis in the case study. However, as the
scenario description gets complex with more multi-phased
actors, it becomes impractical, if not infeasible, to perform
the manual analysis solely relying on the scenario description
(without scenario execution). For example, regardless of why
the scenario is generated, a scenario may contain 100 scripted
actors, among which only 5 are relevant to the ego’s DDT.
In addition, unscripted events may develop from the scripted
actor manoeuvres. For example, an unscripted collision event
between the two background actors occurred in the second
phase of the Fig. 4 scenario, as shown in Fig. 10. To handle
such cases and foster scalability, scenario execution with the
actual system-under-test or any surrogate models is inevitable
and based on which result, automatic constraint specification
techniques can be explored.

Customized Intelligence Constraint Interpretation Re-
gardless of how the constraints are specified, it is up to the
scenario engine for interpretation and evaluation. Since there
are no regulatory standards on the taxonomy of autonomous
driving intelligence, we can only rely on domain knowledge

EGO

V1

V2

(a) Phase 1

EGO

V1

V2

(b) Phase 2

EGO

V1

V2
Collision between

V1 and V2

(c) End

Fig. 10: Simulation of Fig. 4 scenario. The two background
actors V1 and V2 collide during the second manoeuvre phase.

during the language extension and scenario engine imple-
mentation. Hence, the extension architecture shall remain
extensible and embrace customization.

General vs Scenario-specific Constraint Selection Spec-
ifying the complete set of traffic rules in each scenario with
the extension is possible. However, it is undoubtedly prefer-
able to limit only to the scenario-specific OEDR behaviours
to foster readability, reusability, and maintainability.

Granularity of Intelligence Function Definition In this
work, we follow the same level of granularity as [29] when
defining the intelligence functions, e.g., “Detect the vehicle”,
as it is the lowest abstraction level that’s common to all AV
systems. However, the function “Detect the vehicle” may be
further decomposed into sub-functions, e.g., “LiDAR point
segmentation” → “LiDAR object detection” → “Image object
detection” → “Multi-sensor fusion”. The division of intel-
ligence functions into more granular components facilitates
the root cause analysis; however, this granularity complicates
the task of defining a comprehensive set of constraints for
these functions. Moreover, generalizability may also suffer,
e.g., not every AV uses the same LiDAR-Camera sensor
fusion-based object detection stack. The trade-off needs to
be balanced during the extension implementation.

VI. CONCLUSION

In this work, we propose a generic architecture to ex-
tend existing SDLs for the intelligence testing of ADSs.
We implement the extension to the WMG SDL Level 2
language and discuss a case study in detail with an example
scenario. The case study demonstrates the capability of the
proposed extension architecture in defining flexible types
of intelligence function constraints. Our key observations
based on the case study and promising future directions are
also discussed. We hope our work contributes as one of the
key steps towards the intelligence-based scenario engineering
researches.
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