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Abstract

We derive key results from dimension theory in dynamical systems and thermodynamic for-
malism at a level of generality suitable for the study of systems which are beyond the scope of the
standard uniformly hyperbolic theory. Let (X, d) be a compact metric space, f : X 7→ X be a
continuous map and ϕ : X 7→ R be a continuous function.

The subject of chapters 4 and 5 is the multifractal analysis of Birkhoff averages for ϕ when
topological pressure (in the sense of Pesin and Pitskel) is the dimension characteristic and f has the
specification property. In chapter 4, we consider the set of points for which the Birkhoff average of
ϕ does not exist (which we call the irregular set for ϕ) and show that this set is either empty or has
full topological pressure. We formulate various equivalent natural conditions on ϕ that completely
describe when the latter situation holds. In chapter 5, we prove a conditional variational principle
for topological pressure for non-compact sets of the form

{
x ∈ X : lim

n→∞

1

n

n−1∑

i=0

ϕ(f i(x)) = α

}
,

generalising a previously known result for topological entropy. As one application, we prove multi-
fractal analysis results for the entropy spectrum of a suspension flow over a continuous map with
specification.

In chapter 6, we assume that f : X 7→ X is a continuous map satisfying a property we call
almost specification (which is weaker than specification). We show that the set of points for which
the Birkhoff average of ϕ does not exist is either empty or has full topological entropy. Every β-shift
satisfies almost specification and we show that the irregular set for any β-shift or β-transformation
is either empty or has full topological entropy and Hausdorff dimension.

In chapter 7, we introduce an alternative definition of topological pressure for arbitrary (non-
compact, non-invariant) Borel subsets of metric spaces. This new quantity is defined via a suitable
conditional variational principle, leading to an alternative definition of an equilibrium state. We study
the properties of this new quantity and compare it with existing notions of topological pressure. We
apply our new definition to some interesting examples, including the level sets of the pointwise
Lyapunov exponent for the Manneville-Pomeau family of maps.

vi



Chapter 1

Introduction

The results of this thesis fall within the category of dimension theory in dynamical systems and ther-

modynamic formalism. We give a summary of the main results here and give detailed introductions

at the beginning of each chapter, where we motivate each topic and explain carefully the history of

our results. We give full reference to previously known results which arise as special cases of our

theorems.

The work is focused on deriving key results from dimension theory and thermodynamic for-

malism at a level of generality suitable for the study of systems which are beyond the scope of the

standard uniformly hyperbolic theory. Our focus is mainly on the development of abstract results

rather than on applications. That said, we emphasise that our theory applies to interesting examples

(many of which are inaccessible by other methods) and we take care to point these out. In particular,

we give a detailed application to the β-transformation.

Much of the work focuses on the class of maps with the specification property. The spec-

ification property was introduced by Bowen [Bow2]. He showed that uniformly hyperbolic systems

satisfy specification (a stronger version than the one we use) and gave important results about the

abundance of periodic orbits in a hyperbolic set. Among the many dynamical properties which can

be derived from the specification property, there are results on large deviations [Rue1], dimension

theory [TV1], thermodynamic formalism [Bow5] and distributional chaos [OS].

The class of maps with the specification property includes the usual array of uniformly hy-

perbolic examples as well as interesting non-uniformly and partially hyperbolic examples such as the

Manneville-Pomeau map and quasi-hyperbolic toral automorphisms. In chapter 6, we study the class

of maps with a property which we call almost specification and prove results which are applicable to

every β-transformation.
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Key results of the thesis

Topological pressure in multifractal analysis

Topological pressure is a well understood topological invariant of dynamical systems in the compact

setting [Wal], [PP1]. It is a tool that is used to prove, for example, results on multifractal analysis,

statistical properties of dynamical systems and ergodic optimisation. We study topological pressure

for non-compact sets, which is less well understood and was defined by Pesin and Pitskel [PP2]

analogously to Hausdorff dimension, an idea that Bowen introduced for entropy [Bow4]. For a

compact metric space (X, d), a continuous map f : X 7→ X and continuous functions ψ,ϕ : X 7→ R,

we undertake a programme to understand the topological pressure of the multifractal decomposition

X =
⋃
α∈RX(ϕ, α) ∪ X̂(ϕ), where X(ϕ, α) denotes the level sets of the Birkhoff average, i.e.

X(ϕ, α) =

{
x ∈ X : lim

n→∞

1

n

n−1∑

i=0

ϕ(f i(x)) = α

}
(1.1)

and X̂(ϕ) denotes the set of points for which the Birkhoff average does not exist. The motivation

for proving multifractal analysis results where pressure is the dimension characteristic is twofold.

Firstly, topological pressure is a non-trivial and natural generalisation of topological entropy, which is

the standard dynamically defined dimension characteristic. Secondly, understanding the topological

pressure of the multifractal decomposition allows us to prove results about the topological entropy

of systems related to the original system, for example, suspension flows (see §4.3).

In chapters 4 and 5 respectively, we show for maps f with specification that the following

holds.

Theorem. X̂(ϕ) is either empty or has full topological pressure.

Theorem. Let PX(ϕ,α)(ψ) denote the topological pressure of ψ on X(ϕ, α) and hµ be the measure-

theoretic entropy of an f -invariant probability measure µ. Then

PX(ϕ,α)(ψ) = sup

{
hµ +

∫
ψdµ : µ ∈ Mf (X) and

∫
ϕdµ = α

}
. (1.2)

Our results generalise and unify various previously known results. We mention some of these

here and give a fuller description in the introductions of chapters 4 and 5.

It is an increasingly well known phenomenon that the irregular set can be large from the point

of view of dimension theory (despite being a null set with respect to any invariant measure). Symbolic

dynamics methods have confirmed this in the uniformly hyperbolic setting [BS5], for certain non-

uniformly hyperbolic examples [PW] and for a large class of multimodal maps [Tod]. The irregular

set has also been the focus of a great deal of work by Olsen and collaborators [BOS].

2



Formulae similar to (1.2) have a key role in multifractal analysis and the theorem generalises

and unifies results by Takens and Verbitskiy [TV2], Luzia [Luz], Barreira and Schmeling [BS2].

Barreira has used the phrase ‘conditional variational principle’ to describe formulae similar to (1.2)

and we follow suit. We recommend Barreira’s book [Bar] as reference for the symbolic dynamics

approach to the study of both irregular sets and conditional variational principles.

Our results apply to some interesting examples which are not covered by the standard uni-

formly hyperbolic theory. For example, the class of maps satisfying the specification property includes

the time-1 map of the geodesic flow of compact connected negative curvature manifolds and certain

quasi-hyperbolic toral automorphisms as well as any system which can be modelled by a topologically

mixing shift of finite type. We discuss these examples and others in §2.4.

Suspension flows

We apply our results to suspension flows, proving in §4.3 that

Theorem. The irregular set for a suspension flow over a map with specification is either empty or

has full topological entropy.

We only assume continuity of the roof function and along the way we derive some basic prop-

erties of suspension flows which, to the best of our knowledge, have previously only been investigated

when the roof function is Hölder continuous. We also prove a conditional variational principle for

entropy for the suspension flow in §5.2.

The almost specification property

A recent weakening of the specification property provides new tools to study interesting systems

beyond the scope of uniformly hyperbolic dynamics such as the β-transformation. This property was

introduced by Pfister and Sullivan [PS2] as the g-almost product property. The version we study

is a priori slightly weaker and we rename it the almost specification property. The main results of

chapter 6 are

Theorem. When f satisfies the almost specification property, the irregular set is either empty or has

full topological entropy.

Theorem. The irregular set for an arbitrary β-transformation (or β-shift) is either empty or has full

entropy log β and Hausdorff dimension 1.

The proof relies on a generalisation of the techniques of chapters 4-5. We are required to

develop a theory of ‘strongly separated’ and ‘almost spanning’ sets and a modified version of the

Katok formula for measure-theoretic entropy. These should be of independent interest.

3



Thermodynamic formalism in non-compact spaces

The non-compact definition of topological pressure of Pesin and Pitskel has an important role in

dimension theory. In chapter 7, we contribute an alternative definition of topological entropy and

pressure. The definition is made via a suitable ‘conditional variational principle’ and leads to a new

definition of equilibrium state. The advantage of the new definition is that it is more tractable than

the Pesin and Pitskel definition and is well adapted to certain problems in thermodynamic formalism.

We study the properties of this new quantity and compare it with existing notions of topological

pressure, clarifying the literature on this topic [PP1], [HKR], [HNP], [Sar]. We note that the new

definition agrees with the old in the classical compact setting. We motivate the naturality of this

definition by applying it to some important examples. In particular, we calculate the equilibrium

states for the level sets of log f ′ (defined as in (1.1)) when f is the Manneville-Pomeau map of the

interval (ie. f(x) = x+ x1+s(mod1), where s ∈ (0, 1) is a fixed parameter value). The Manneville-

Pomeau map is an important example of a map which displays non-uniform expansion. The result

fits in naturally with work of Takens and Verbitskiy [TV2] as well as that of Pollicott, Sharp & Yuri

[PSY].
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Chapter 2

Preliminaries

We collect the definitions and fix notation for objects which we consider repeatedly through the

thesis. Theorems, definitions, lemmas and remarks are numbered in seperate sequences by section.

For example, lemma 4.2.3 is the third lemma in §4.2.

2.1 Notation for some standard definitions

Let (X, d) be a compact metric space and f : X 7→ X a continuous map. We call such a pair (X, f)

a (topological) dynamical system. Let C(X) denote the space of continuous functions from X to

R, and ϕ,ψ ∈ C(X). Let

Snϕ(x) :=
n−1∑

i=0

ϕ(f i(x)),

and for c > 0, let

Var(ϕ, c) := sup{|ϕ(x) − ϕ(y)| : d(x, y) < c}.

For Z ⊂ X, let Diam(Z) = sup{d(x, y) : x, y ∈ Z}. For a collection of subsets ξ, let Diam(ξ) =

sup{Diam(Z) : Z ∈ ξ}. Let Mf (X) denote the space of f -invariant probability measures and

Me
f (X) denote those which are ergodic. If X ′ ⊆ X is an f -invariant subset, let Mf (X

′) denote

the subset of Mf (X) for which the measures µ satisfy µ(X ′) = 1.

Definition 2.1.1. We define probability measures δx,n (sometimes called the empirical measures) as

δx,n :=
1

n

n−1∑

k=0

δfk(x),

where δx is the Dirac measure at x.

Definition 2.1.2 (Bowen balls). Given ε > 0, n ∈ N and a point x ∈ X, define the open (n, ε)-ball

at x by

Bn(x, ε) = {y ∈ X : d(f i(x), f i(y)) < ε for all i = 0, . . . , n− 1}.

5



Alternatively, let us define a new metric

dn(x, y) = max{d(f i(x), f i(y)) : i = 0, 1, . . . , n− 1}.

It is clear that Bn(x, ε) is the open ball of radius ε around x in the dn metric, and that if n ≤ m we

have dn(x, y) ≤ dm(x, y) and Bm(x, ε) ⊆ Bn(x, ε).

Definition 2.1.3. Let Z ⊂ X. We say a set S ⊂ Z is an (n, ε) spanning set for Z if for every

z ∈ Z, there exists x ∈ S with dn(x, z) ≤ ε. We say a set R ⊂ Z is an (n, ε) separated set for Z if

for every x, y ∈ R, dn(x, y) > ε.

See [Wal] for the basic properties of spanning sets and separated sets.

2.1.1 Definition of the topological pressure

Let Z ⊂ X be an arbitrary Borel set, not necessarily compact or invariant. We use the definition

of topological pressure as a characteristic of dimension type, due to Pesin and Pitskel [PP2]. The

definition generalises Bowen’s definition of topological entropy for non-compact sets [Bow4]. We

consider finite and countable collections of the form Γ = {Bni
(xi, ε)}i. For s ∈ R, we define the

following quantities:

Q(Z, s,Γ, ψ) =
∑

Bni
(xi,ε)∈Γ

exp

(
−sni + sup

x∈Bni
(xi,ε)

ni−1∑

k=0

ψ(fk(x))

)
,

M(Z, s, ε,N, ψ) = inf
Γ
Q(Z, s,Γ, ψ),

where the infimum is taken over all finite or countable collections of the form Γ = {Bni
(xi, ε)}i with

xi ∈ X such that Γ covers Z and ni ≥ N for all i = 1, 2, . . .. Define

m(Z, s, ε, ψ) = lim
N→∞

M(Z, s, ε,N, ψ).

The existence of the limit is guaranteed since the function M(Z, s, ε,N) does not decrease with N .

By standard techniques, we can show the existence of

PZ(ψ, ε) := inf{s : m(Z, s, ε, ψ) = 0} = sup{s : m(Z, s, ε, ψ) = ∞}.

Definition 2.1.4. The topological pressure of ψ on Z is given by

PZ(ψ) = lim
ε→0

PZ(ψ, ε).

See [Pes] for verification that the quantities PZ(ψ, ε) and PZ(ψ) are well defined. If Z is

compact and invariant, our definition agrees with the usual topological pressure as defined in [Wal].

We denote the topological pressure of the whole space by P classicX (ψ), to emphasise that we are

dealing with the familiar compact, invariant definition.

6



Remark 2.1.1. It is sometimes convenient to use an equivalent definition of topological pressure

where, in place of covers by Bowen balls, we consider covers by strings of open sets taken from

an arbitrary open cover. We use this in §7.3.1, so we save a formal definition until then. We also

implicitly use the alternative definition in §4.3.3.

2.1.2 Topological entropy for maps with discontinuities

When ψ = 0, we write htop(Z) := PZ(0). Pesin and Pitskel [PP2] gave a definition of pressure (and

hence entropy) which is suitable for maps f which admit discontinuities. We state the topological

entropy version of this definition, which we use in chapter 6, where we consider the β-transformation.

Suppose X is a compact metric space, Y is a (generally non-compact) subset of X and

f : Y 7→ Y is continuous. We do not assume that f extends continuously to X. When f : X 7→ X

is continuous, we set Y = X. In chapter 6, when we consider the β-transformation fβ , we set

Y = X \ {β−i : i ∈ N} = X \
⋃

i

f−iβ (0).

Let Z ⊂ Y be an arbitrary Borel set, not necessarily compact or invariant. We consider finite and

countable collections of the form Γ = {Bni
(xi, ε)}i. For s ∈ R, we define the following quantities:

Q(Z, s,Γ) =
∑

Bni
(xi,ε)∈Γ

exp−sni,

M(Z, s, ε,N) = inf
Γ
Q(Z, s,Γ),

where the infimum is taken over all finite or countable collections of the form Γ = {Bni
(xi, ε)}i with

xi ∈ X such that Γ covers Z and ni ≥ N for all i = 1, 2, . . .. Define

m(Z, s, ε) = lim
N→∞

M(Z, s, ε,N).

The existence of the limit is guaranteed since the function M(Z, s, ε,N) does not decrease with N .

By standard techniques, we can show the existence of

htop(Z, ε) := inf{s : m(Z, s, ε) = 0} = sup{s : m(Z, s, ε) = ∞}.

Definition 2.1.5. The topological entropy of Z is given by

htop(Z) = lim
ε→0

htop(Z, ε).

When X = Y , we denote the topological entropy of the dynamical system (X, f) by htop(f)

and we note that htop(X) = htop(f). We sometimes write htop(Z, f) in place of htop(Z) when we

wish to emphasise the dependence on f .

7



2.1.3 Topological entropy for shift spaces

Let Σ be a closed subset of
∏∞
i=1{0, . . . , n− 1} and σ be the shift map σ((xi)

∞
i=1) = (xi)

∞
i=2. If Σ

is σ-invariant, then the pair (Σ, σ) defines a dynamical system. We call such a dynamical system a

(one-sided) shift space.

For shift spaces, which we consider in chapter 6, the definition of topological entropy can be

simplified and we introduce notation that reflects this. For x = (xi)
∞
i=1, let Cn(x) = {y ∈ Σ : xi =

yi for i = 1, . . . , n}.

Let Z ⊂ Σ be an arbitrary Borel set, not necessarily compact or invariant. We consider finite

and countable collections of the form Γ = {Cni
(xi)}i. For s ∈ R, we define the following quantities:

Q(Z, s,Γ) =
∑

Cni
(xi)∈Γ

exp−sni,

M(Z, s,N) = inf
Γ
Q(Z, s,Γ),

where the infimum is taken over all finite or countable collections of the form Γ = {Cni
(xi)}i with

xi ∈ Σ such that Γ covers Z and ni ≥ N for all i = 1, 2, . . .. Define

m(Z, s) = lim
N→∞

M(Z, s,N).

The existence of the limit is guaranteed since the function M(Z, s,N) does not decrease with N .

Lemma 2.1.1. The topological entropy of Z ⊂ Σ is given by

htop(Z) := inf{s : m(Z, s) = 0} = sup{s : m(Z, s) = ∞}.

The proof, which we omit, follows from the fact that every open ball B(x, ε) in Σ is a set of

the form Cn(x), where the value of n depends on ε and the metric on Σ.

2.1.4 Topological entropy for flows

Let Z ⊂ X be an arbitrary Borel set, not necessarily compact or invariant. Let Ψ = {ψt}t≥0 be

a semi-flow on X (i.e. a continuous family of continuous maps ψt : X 7→ X such that ψ0 = Id

and ψs ◦ ψt = ψs+t for all s, t ≥ 0). We consider finite and countable collections of the form

Γ = {Bti(xi, ε)}i, where ti ∈ (0,∞), xi ∈ X and

Bt(x, ε) = {y ∈ X : d(ψτ (x), ψτ (y)) < ε for all τ ∈ [0, t)}.

For s ∈ R, we define the following quantities:

Q(Z, s,Γ) =
∑

Bti
(xi,ε)∈Γ

exp (−sti) ,
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M(Z, s, ε, T ) = inf
Γ
Q(Z, s,Γ),

where the infimum is taken over all finite or countable collections of the form Γ = {Bti(xi, ε)}i with

xi ∈ X such that Γ covers Z and ti ≥ T for all i = 1, 2, . . .. Define

m(Z, s, ε) = lim
T→∞

M(Z, s, ε, T ).

The existence of the limit is guaranteed since the function M(Z, s, ε, T ) does not decrease with T .

By standard techniques, we can show the existence of

htop(Z, ε) := inf{s : m(Z, s, ε) = 0} = sup{s : m(Z, s, ε) = ∞}.

Definition 2.1.6. The topological entropy of Z with respect to Ψ is given by

htop(Z,Ψ) = lim
n→∞

htop(Z, ε).

2.1.5 Upper and lower capacity pressure

The usual definition of P
classic
X (ψ) in terms of spanning sets generalises to non-compact and non-

invariant subsets of a compact metric space. Let

Qn(Z,ψ, ε) = inf{
∑

x∈S

expSnψ(x) : S is an (n, ε) spanning set for Z }.

CPZ(ψ) is defined to be limε→0 lim supn→∞
1
n

logQn(Z,ψ, ε) and called in [Pes] the upper capacity

topological pressure. The lower capacity topological pressure CPZ(ψ) is given by repacing the

lim sup with lim inf. In chapter 11 of [Pes], Pesin shows that these quantities can be formulated as

characteristics of dimension type and example 11.1 of [Pes] shows that they do not always coincide

with PZ(ϕ), even for compact non-invariant sets. It is proved in [Pes] that PZ(ψ) ≤ CPZ(ψ). For

Z ⊂ X, let

Pn(Z,ψ, ε) = sup

{
∑

x∈S

exp

{
n−1∑

k=0

ψ(fkx)

}
: S is an (n, ε) separated set for Z

}
.

We have Qn(Z,ψ, ε) ≤ Pn(Z,ψ, ε) and Qn(Z,ψ, ε) may be replaced with Pn(Z,ψ, ε) in the defini-

tions of lower and upper capacity pressure. We consider the capacity topological pressure in §5.1.1

and chapter 7.

2.1.6 Measure-theoretic entropy

For µ ∈ Mf (X) and a partition ξ of X into finitely many measurable sets, we define

Hµ(ξ) = −
∑

A∈ξ

µ(A) log µ(A),
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hµ(f, ξ) = lim
n→∞

1

n
Hµ(

n∨

i=1

f−iξ).

In the above, 0 log 0 is set to be 0 and log denotes the natural logorithm. We define the measure-

theoretic entropy of (X, f) with respect to µ to be

hµ := sup{hµ(f, ξ) : ξ is a finite partition of X}.

We refer the reader to [Wal] for details. We could write hµ(f) in place of hµ to emphasise the

dependence of hµ on f , but we choose not to.

2.1.7 The variational principle

The variational principle states that

P classicX (ψ) = sup{hµ +

∫
ψdµ : µ ∈ Mf (X)}.

We sometimes call this formula the classical variational principle to differentiate it from the conditional

variational principles which are the subject of chapters 5 and 7.

2.1.8 Hausdorff dimension

For Hausdorff dimension, we fix the notation

H(Z, s, δ) = inf{
∑

i

δsi : Z ⊆
⋃

i

B(xi, δi), δi ≤ δ},

H(Z, s) = limδ→0H(Z, s, δ) and DimH(Z) = inf{s : H(Z, s) = 0}. We sometimes write

DimH(Z, d) in place of DimH(Z) when we wish to emphasise the dependence on the metric d.

For more information on Hausdorff dimension, we refer the reader to [Pes] or [Fal].

2.2 Specification properties

In chapters 4 and 5, we study transformations f of the following type:

Definition 2.2.1. A continuous map f : X 7→ X satisfies the specification property if for all ε > 0,

there exists an integer m = m(ε) such that for any collection {Ij = [aj , bj ] ⊂ N : j = 1, . . . , k} of

finite intervals with aj+1 − bj ≥ m(ε) for j = 1, . . . , k − 1 and any x1, . . . , xk in X, there exists a

point x ∈ X such that

d(fp+ajx, fpxj) < ε for all p = 0, . . . , bj − aj and every j = 1, . . . , k. (2.1)

The original definition of specification, due to Bowen, was stronger.
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Definition 2.2.2. We say f : X 7→ X satisfies Bowen specification if under the assumptions of

definition 2.2.1 and for every p ≥ bk − a1 +m(ε), there exists a periodic point x ∈ X of period p

satisfying (2.1).

One can describe a map f with specification intuititively as follows. For any set of points

x1, . . . , xk in X, there is an x ∈ X whose orbit follows the orbits of all the points x1, . . . , xk. In

this way, one can connect together arbitrary pieces of orbit. If f has Bowen specification, x can be

chosen to be a periodic point of any sufficiently large period. A good reference for results about the

specification property (particularly Bowen specification) is [DGS].

One can verify that a map with the specification property is topologically mixing. The

following converse result holds [Blo], a recent proof of which is available in [Buz].

Theorem 2.2.1 (Blokh Theorem). A continuous topologically mixing map of the interval has Bowen

specification.

A factor of a system with specification has specification. We give a survey of many interesting

examples of maps with the specification property in §2.4.

In chapter 4, we study a weakening of the definition of specification as follows. Let X ′ ⊆ X

be an f -invariant (but not necessarily compact) Borel set.

Definition 2.2.3. A continuous map f : X 7→ X satisfies specification on X ′ if for all ε > 0, there

exists an integer m = m(ε) such that for any collection {Ij = [aj , bj ] ⊂ N : j = 1, . . . , k} of finite

intervals with aj+1 − bj ≥ m(ε) for j = 1, . . . , k − 1 and any x1, . . . , xk in X ′, there exists a point

x ∈ X such that

d(fp+ajx, fpxj) < ε for all p = 0, . . . , bj − aj and every j = 1, . . . , k.

The main theorem of chapter 4 generalises to this setting naturaly with little extra difficulty

in the proofs. Although we do not offer an application of this extra generality, we think that there

may be examples of non-uniformly hyperbolic systems where definition 2.2.3 holds on an interesting

(non-compact) subset but where definition 2.2.1 is not verifiable.

2.2.1 Almost specification

In chapter 6, we consider a weak version of the specification property, which was introduced by Pfis-

ter and Sullivan as the g-almost product property, and which we rename as the almost specification

property. We define this property and study it in chapter 6. We mention here that the specification

property implies the almost specification property. Thus the class of maps with the almost specifi-

cation property is strictly larger than the class of maps with specification. Motivating examples of
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maps with almost specification but not specification are provided by a large class of β-shifts (see

§6.5.1).

2.3 Cohomology

2.3.1 The multifractal spectrum of Birkhoff averages

For α ∈ R, we define

X(ϕ, α) =

{
x ∈ X : lim

n→∞

1

n

n−1∑

i=0

ϕ(f i(x)) = α

}
.

We define the multifractal spectrum for ϕ to be

Lϕ := {α ∈ R : X(ϕ, α) 6= ∅}.

Some authors reserve the terminology ‘multifractal spectrum’ for the pair (Lϕ,F), where F is a

dimension characteristic (eg. Hausdorff dimension or topological entropy). Our terminology agrees

with Takens and Verbitskiy [TV2]. The following lemma (whose proof is included for completeness)

is essentially contained in [TV2].

Lemma 2.3.1. When f has the specification property, Lϕ is a non-empty bounded interval. Fur-

thermore, Lϕ = {
∫
ϕdµ : µ ∈ Mf (X)}.

Proof. We first show that Lϕ = Iϕ where Iϕ = {
∫
ϕdµ : µ ∈ Mf (X)}. By Proposition 21.14

of [DGS], when f has the Bowen specification property, every f−invariant (not necessarily ergodic)

measure has a generic point (i.e. a point x which satisfies 1
n
Snϕ(x) →

∫
ϕdµ for all continuous

functions ϕ). One can verify that this remains true under the specification property. Thus, given

µ ∈ Mf (X), any choice x of generic point for µ lies in X(ϕ,
∫
ϕdµ) and so Iϕ ⊆ Lϕ. Now take

α ∈ Lϕ and any x ∈ X(ϕ, α). Let µ be any weak∗ limit of the sequence δx,n. It is a standard result

that µ is invariant, and easy to verify that
∫
ϕdµ = α. Thus Iϕ = Lϕ.

It is clear that Iϕ ⊆ [infx∈X ϕ(x), supx∈X ϕ(x)] and is non-empty. To show Iϕ is an interval

we use the convexity of Mf (X). Assume Iϕ is not a single point. Let α1, α2 ∈ Iϕ. Let β ∈ (α1, α2).

Let µi satisfy
∫
ϕdµi = αi for i = 1, 2. Let t ∈ (0, 1) satisfy β = tα1 + (1 − t)α2. One can easily

see that m := tµ1 + (1 − t)µ2 satisfies
∫
ϕdm = β, and we are done.

Let φ1, φ2 ∈ C(X). We say φ1 is cohomologous to φ2 if they differ by a coboundary, i.e.

there exists h ∈ C(X) such that

φ1 = φ2 + h− h ◦ f.

If φ1 and φ2 are cohomologous, then Lϕ1 equals Lϕ2 .
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For a constant c, let Cob(X, f, c) denote the space of functions cohomologous to c and

Cob(X, f, c) be the closure of Cob(X, f, c) in the sup norm.

2.3.2 Cohomology and the irregular set

We recall that X̂(ϕ, f) is the irregular set for ϕ, defined as

X̂(ϕ, f) =

{
x ∈ X : lim

n→∞

1

n

n−1∑

i=0

ϕ(f i(x)) does not exist

}
.

By Birkhoff’s ergodic theorem, µ(X̂(ϕ, f)) = 0 for all µ ∈ Mf (X). The following lemma

describes conditions equivalent to X̂(ϕ, f) being non-empty.

Lemma 2.3.2. When f has specification (or almost specification), the following are equivalent for

ϕ ∈ C(X):

(a) X̂(ϕ, f) is non-empty;

(b) 1
n
Snϕ does not converge pointwise to a constant;

(c) infµ∈Mf (X)

∫
ϕdµ < supµ∈Mf (X)

∫
ϕdµ;

(d) infµ∈Me
f
(X)

∫
ϕdµ < supµ∈Me

f
(X)

∫
ϕdµ;

(e) ϕ /∈
⋃
c∈R Cob(X, f, c);

(f) 1
n
Snϕ does not converge uniformly to a constant;

(g) Lϕ is not equal to a single point.

The argument for (c) ⇐⇒ (e) ⇐⇒ (f) was given to the author by Peter Walters and is

sketched here. In fact, no assumption on f other than continuity is required except to prove that

(a) is implied by the other properties. We note that (c) ⇒ (a) is a corollary of theorem 4.1.2 for

maps f with specification (and of theorem 6.4.1 for maps f with almost specification), so we omit

it for now. For expository reasons, we give a direct proof of (c) ⇒ (a) when f has specification as

lemma 3.0.2.

Proof. Statement (g) is just a different way of saying (b). We show the contrapositive of (e) ⇒ (f).

Suppose 1
n
Snϕ converges uniformly to c. Define for n ∈ N

hn(x) =
1

n

n−1∑

i=1

(n− i)ϕ(f i−1x).

We can verify that ϕ− 1
n
Snϕ = hn−hn ◦f and it follows that ϕ ∈ Cob(X, f, c). The contrapositive

of (c) ⇒ (e) is straight forward. Now we prove (f) ⇒ (c). Let µ1 ∈ Mf (X) and let c :=
∫
ϕdµ1.

From (f), there exists ε > 0 and sequences nk → ∞ and xk ∈ X such that

|
1

nk
Snk

ϕ(xk) − c| > ε.
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Let νk = δxk,nk
and let µ2 be a limit point of the sequence νk. Then µ2 ∈ Mf (X) and

∫
ϕdµ2 6= c,

so we are done.

The contrapositive of (a) ⇒ (f) is clearly true and (b) ⇒ (f) is trivial. We use an ergodic

decomposition argument for (c) ⇒ (d). For (d) ⇒ (b), we take µ1, µ2 ∈ Me
f (X) such that

∫
ϕdµ1 <

∫
ϕdµ2. We can find xi such that 1

n
Snϕ(xi) →

∫
ϕdµi for i = 1, 2 and we are done.

2.4 Examples

We now describe some examples of systems with the specification property. The main results of

chapters 4 and 5 thus apply to all of these examples.

2.4.1 Standard examples

We recall that any factor of a topologically mixing shift of finite type has the specification property.

Bowen’s specification theorem tells us that a compact locally maximal hyperbolic set of a topologically

mixing diffeomorphism f has the Bowen specification property [Bow3]. In particular, the class

of topologically mixing Anosov diffeomorphisms (which includes any Anosov diffeomorphism of a

compact connected manifold whose wandering set is empty) has specification.

2.4.2 The Manneville-Pomeau family of maps

Let I = [0, 1]. The Manneville-Pomeau family of maps, parametrised by α ∈ (0, 1) are given by

fα : I 7→ I, fα(x) = x+ x1+α mod 1.

Considered as a map of S1, fα is continuous. Since f ′α(0) = 1, the system is not uniformly hyperbolic.

However, since the Manneville-Pomeau maps are all topologically conjugate to a full shift on two

symbols, they satisfy the specification property.

2.4.3 Beyond symbolic dynamics

As remarked in §2.2, by the Blokh theorem, any continuous topologically mixing interval map satisfies

specification. For example, Jakobson [Jak] showed that there exists a set of parameter values Λ ⊂

[0, 4] of positive Lebesgue measure such that if λ ∈ Λ, then the logistic map fλ(x) = λx(1 − x) is

topologically mixing.

Lind [Lin] showed that a quasi-hyperbolic toral automorphism satisfies specification but not

Bowen specification if and only if the matrix representation of the automorphism in Jordan normal
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form admits no 1’s off the diagonal in the central direction. Such maps cannot be factors of

topologically mixing shifts of finite type or they would inherit the Bowen specification property.

Theorems 17.6.2 and 18.3.6 of [KH] (originally due to Anosov) ensure that the geodesic

flow of any compact connected Riemannian manifold of negative sectional curvature is topologically

mixing and Anosov. The specification theorem for flows (proved in [Bow3]) ensures that such a flow

has the specification property 18.3.13 of [KH]. It is easy to see that the time-t map of a flow with the

specification property satisfies our specification property 2.2.1. We conclude that our results apply

to the time-t map of the geodesic flow of any compact connected Riemannian manifold of negative

sectional curvature.
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Chapter 3

Techniques

We introduce some of the techniques which underpin our results. The technique for proving the main

results of chapters 4-6 was inspired by the proof of the conditional variational principle of Takens

and Verbitskiy [TV2] and we describe it here (although we note that §5.1.1 contains what we believe

to be a necessary correction to their proof). The Takens and Verbitskiy proof was in turn inspired

by large deviations arguments of Young [You]. In chapter 6, we were inspired by ideas of Pfister

and Sullivan [PS1], [PS2]. We have also used ideas from the proof of Pesin and Pitskel’s variational

principle [PP2] on two occasions (theorem 6.3.1 and theorem 7.3.2).

3.0.4 Constructing points in X̂(ϕ, f)

Proofs which use the specification property are typically constructive, and ours are no exception. The

general strategy is to choose sets of points which have a dynamical property that we are interested

in, and to use the specification property to construct new points which shadow the orbits of the

original points.

We show how to construct a single irregular point for a continuous function ϕ which satisfies

one of the equivalent conditions of lemma 2.3.2. The method for constructing points in X(ϕ, α) is

similar.

In the case of topologically mixing shifts of finite type, the specification property is equivalent

to the much simpler operation of concatenation of finite words. This example offers insight into our

technique. We show how to construct an irregular point for a full one-sided shift as a warm-up, then

we show how to construct irregular points for maps with specification.

Lemma 3.0.1. Let (Σ, σ) be a full (one-sided) shift on finitely many symbols. Let ϕ ∈ C(Σ) satisfy

infµ∈Me
f
(Σ)

∫
ϕdµ < supµ∈Me

f
(Σ)

∫
ϕdµ. Then Σ̂(ϕ, f) 6= ∅.
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Proof. Let µ1, µ2 ∈ Me
f (Σ) with

∫
ϕdµ1 <

∫
ϕdµ2. Let δ > 0 be such that

∣∣∣∣
∫
ϕdµ1 −

∫
ϕdµ2

∣∣∣∣ > 9δ.

Let x = (xi)
∞
i=1 satisfy 1

n
Snϕ(x) →

∫
ϕdµ1 and y = (yi)

∞
i=1 satisfy 1

n
Snϕ(y) →

∫
ϕdµ2. Let

Nk → ∞ sufficiently rapidly that Nk+1 > exp(N1 + . . . + Nk). Concatenation of a countable

sequence of finite words defines a point in Σ. For i ≥ 1, we define the finite words

w2i−1 = (x1, . . . , xN2i−1),

w2i = (y1, . . . , yN2i
),

and define p = w1w2w3 . . . ∈ Σ. Let tk = N1 + . . .+Nk. Let

Var(ϕ, n) := sup{|ϕ(w) − ϕ(v)| : w, v ∈ Σ, wi = vi for i = 1, . . . , n},

and choose M such that Var(ϕ,M) < δ. Assume without loss of generality that N1 was chosen so

that N1 > M . For k ≥ 1, let pk = σtk−1p. For k odd, we have

|SNk
ϕ(pk) − SNk

ϕ(x)| ≤ (Nk −M)Var(ϕ,M) + 2M‖ϕ‖.

Thus, for sufficiently large odd k, we have

∣∣∣∣
1

Nk
SNk

ϕ(pk) −
∫
ϕdµ1

∣∣∣∣ < 3δ.

Similarly, for sufficiently large even k, we have

∣∣∣∣
1

Nk
SNk

ϕ(pk) −
∫
ϕdµ2

∣∣∣∣ < 3δ.

Note that tk−1/tk → 0 and Nk/tk → 1. We have

|Stkϕ(p) − SNk
ϕ(pk)| ≤ tk−1‖ϕ‖,

and it is thus easily verified that

∣∣∣∣
1

tk
Stkϕ(p) −

1

Nk
SNk

ϕ(pk)

∣∣∣∣→ 0.

It follows that for all sufficiently large k

∣∣∣∣
1

tk
Stkϕ(p) −

∫
ϕdµρ(k)

∣∣∣∣ < 4δ,

where ρ(k) = (k + 1)(mod2) + 1. Hence, p ∈ Σ̂(ϕ, f).

Lemma 3.0.2. Let (X, f) be a dynamical system with the specification property. Let ϕ ∈ C(X)

satisfy infµ∈Me
f
(X)

∫
ϕdµ < supµ∈Me

f
(X)

∫
ϕdµ. Then X̂(ϕ, f) 6= ∅.
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Proof. Let µ1, µ2 be ergodic measures with
∫
ϕdµ1 <

∫
ϕdµ2. Let xi satisfy 1

n
Snϕ(xi) →

∫
ϕdµi for

i = 1, 2. Let mk := m(ε/2k) be as in the definition of specification and Nk → ∞ sufficiently rapidly

that Nk+1 > exp{
∑k
i=1(Ni + mi)} and Nk > expmk. We define zi ∈ X inductively using the

specification property. Let t1 = N1, tk = tk−1 +mk +Nk for k ≥ 2 and ρ(k) := (k+1)(mod2)+1.

Let z1 = x1. Let z2 satisfy

dN1(z2, z1) < ε/4 and dN2(f
N1+m2z2, x2) < ε/4.

Let zk satisfy

dtk−1
(zk−1, zk) < ε/2k and dNk

(f tk−1+mkzk, xρ(k)) < ε/2k.

Note that if q ∈ Btk(zk, ε/2
k−1), then

dtk−1
(q, zk−1) ≤ dtk−1

(q, zk) + dtk−1
(zk, zk−1)

<
ε

2k−1
+

ε

2k
<

ε

2k−2
,

and thus Btk(zk, ε/2
k−1) ⊂ Btk−1

(zk−1, ε/2
k−2). Hence, we can define a point by

p :=
⋂

k≥1

Btk(zk, ε/2
k−1).

For k ≥ 2, let pk := f tk−1+mkp. Since

dNk
(pk, f

tk−1+mkzk) ≤ ε/2k−1 and dNk
(f tk−1+mkzk, xρ(k)) < ε/2k,

it follows that dNk
(pk, xρ(k)) < ε/2k−2 and hence

|SNk
ϕ(pk) − SNk

ϕ(xρ(k))| < NkVar(ϕ, ε/2k−2).

Since limk→∞ Var(ϕ, ε/2k−2) = 0, we have

∣∣∣∣
1

Nk
SNk

ϕ(pk) −
∫
ϕdµρ(k)

∣∣∣∣→ 0.

We also have

|SNk
ϕ(pk) − Stkϕ(p)| ≤ (tk−1 +mk)‖ϕ‖,

so we can use the fact that Nk

tk
→ 1 and

tk−1+mk

tk
→ 0 to prove that

∣∣∣∣
1

Nk
SNk

ϕ(pk) −
1

tk
Stkϕ(p)

∣∣∣∣→ 0.

It follows that ∣∣∣∣
1

tk
Stkϕ(p) −

∫
ϕdµρ(k)

∣∣∣∣→ 0,

and hence p ∈ X̂(ϕ, f).
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3.0.5 Lower bounds on topological entropy and pressure

We have shown how to construct one irregular point using the specification property. Now we

describe our strategy to construct sufficiently many irregular points that the irregular set has full

topological entropy. The result that the irregular set has full topological entropy (if it is non-empty)

for maps with the specification property is due to [EKL]. The author gave an independent proof of

this before he was aware of this paper. We sketch the ideas behind the proof of the ‘full entropy’

result. This will be useful for understanding the more general ‘full pressure’ result of chapter 4. The

same technique is also used in chapter 5 and chapter 6.

We require two key technical ingredients - the Entropy Distribution Principle (proof included

for completeness [TV2]) and the Katok formula for measure-theoretic entropy [Kat].

Proposition 3.0.1 (Entropy Distribution Principle). Let f : X 7→ X be a continuous transformation.

Let Z ⊆ X be an arbitrary Borel set. Suppose there exists a constant s ≥ 0 such that for sufficiently

small ε > 0 one can find a Borel probability measure µ = µε (which is not assumed to be invariant),

a constant C(ε) > 0 and an integer N(ε) satisfying µε(Z) > 0 and µε(Bn(x, ε)) ≤ C(ε)e−ns for

every ball Bn(x, ε) with Bn(x, ε) ∩ Z 6= ∅ and n ≥ N(ε). Then htop(Z) ≥ s.

Proof. Choose ε > 0 and µε satisfying the conditions of the theorem. Let Γ = {Bni
(xi, ε)}i cover

Z with all ni ≥ N for some N ≥ N(ε). We may assume that Bni
(xi, ε) ∩ Z 6= ∅ for every i. Then

Q(Z, s,Γ) =
∑

i

exp(−sni)

≥ C(ε)−1
∑

i

µε(Bn(x, ε))

≥ C(ε)−1µε(Z) > 0.

So M(Z, s, ε,N) ≥ C(ε)−1µε(Z) > 0 for all N ≥ N(ε). Thus m(Z, s, ε) > 0 and htop(Z, ε) ≥ s.

The result follows.

Proposition 3.0.2 (Katok’s formula for measure-theoretic entropy). Let (X, d) be a compact metric

space, f : X 7→ X be a continuous map and µ be an ergodic invariant measure. For ε > 0 and

γ ∈ (0, 1), denote by Nµ(γ, ε, n) the smallest cardinality of any set which (n, ε)-spans a set with

µ-measure greater than 1 − γ. We have

hµ = lim
ε→0

lim sup
n→∞

1

n
logNµ(γ, ε, n) = lim

ε→0
lim inf
n→∞

1

n
logNµ(γ, ε, n).

Loosely, our strategy is as follows. Let ε > 0 be arbitrary.

• Take two ergodic measures µ1, µ2 with
∫
ϕdµ1 6=

∫
ϕdµ2 and hµi

> htop(f) − ε for i = 1, 2

(that we can do this is a slightly subtle point).

19



• Use Katok’s formula to find a sequence Sk of (nk, 2ε) separated sets with nk → ∞ so that

#Sk ∼ exp(nkhµρ(k)
) and if x ∈ Sk, then Snk

ϕ(x) ∼ nk
∫
ϕdµρ(k).

• By the method of lemma 3.0.2, use the specification property to construct points which shadow

points taken from S1, . . . ,Sk, . . . respectively. The set of all such points is a fractal F ⊂

X̂(ϕ, f).

• Construct a measure on F suitable for an application of the Entropy Distribution Principle.

The idea is as follows. Let µk = 1
#Sk

∑
x∈Sk

δx. Since Sk is (nk, ε) separated, then

µk(Bnk
(q, ε)) ≤ #S−1

k ∼ exp{−nk(htop(f) − ε)}.

We define µ to be the weak∗ limit of measures defined similarly to µk.
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Chapter 4

The irregular set for maps with the

specification property has full

topological pressure

For a compact metric space (X, d), a continuous map f : X 7→ X and a continuous potential

ϕ : X 7→ R, we recall that the irregular set for ϕ is defined to be

X̂(ϕ, f) =

{
x ∈ X : lim

n→∞

1

n

n−1∑

i=0

ϕ(f i(x)) does not exist

}
.

The irregular set arises naturally in the context of multifractal analysis, where one decomposes a

space X into the disjoint union

X =
⋃

α∈R

X(ϕ, α) ∪ X̂(ϕ, f),

where X(ϕ, α) is the set of points for which the Birkhoff average of ϕ is equal to α. In this chapter,

we begin a program to understand the topological pressure of the multifractal decomposition by

focusing on the irregular set X̂(ϕ, f). We consider the topological pressure of the sets X(ϕ, α) in

chapter 5.

As a consequence of Birkhoff’s ergodic theorem, the irregular set is not detectable from the

point of view of an invariant measure. However, it is an increasingly well known phenomenon that

the irregular set can be large from the point of view of dimension theory [Bar]. Symbolic dynamics

methods have confirmed this in the uniformly hyperbolic setting [BS5], for certain non-uniformly

hyperbolic examples [PW] and for a large class of multimodal maps [Tod]. The irregular set has also

been the focus of a great deal of work by Olsen and collaborators [BOS].

The irregular set could also have a special role in physical applications. Ruelle uses the

terminology ‘set of points with historic behaviour’ to describe the irregular set [Rue2]. The idea is
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that points for which the Birkhoff average does not exist are capturing the ‘history’ of the system,

whereas points whose Birkhoff average converge only see average behaviour. For example, in the

dynamics of the weather, the irregular points are the ones that have observed epochs of climate

change. In [Tak], Takens asks for which smooth dynamical systems the irregular set has positive

Lebesgue measure. We take a topological point of view and prove that the irregular set is as large

as it can be with respect to the topological pressure, which is a family of dimension characteristics

parametrised by the continuous functions.

Main result of chapter 4. When f has the specification property, X̂(ϕ, f) has full topological

pressure or is the empty set. We give conditions on ϕ which completely describe which of the two

cases hold.

This result is stated formally as theorem 4.1.2. The first to notice the phenomenon of the

irregular set carrying full entropy were Pesin and Pitskel [PP2] in the case of the Bernoulli shift on 2

symbols. Barreira and Schmeling [BS5] studied the irregular set for a variety of uniformly hyperbolic

systems using symbolic dynamics. They showed that, for example, the irregular set of a generic

Hölder continuous function on a conformal repeller has full entropy (and Hausdorff dimension). These

arguments can be found in Barreira’s book [Bar] in which the result is also proved for subshifts with

the specification property. We note that these arguments do not extend to the more general class

of maps with the specification property. Furthermore, we consider irregular sets for any continuous

functions, whereas Barreira considers only funcions ϕ for which tϕ has a unique equilibrium state for

every t ∈ R.

Takens and Verbitskiy have obtained multifractal analysis results for the class of maps with

specification, using topological entropy as the dimension characteristic [TV2], [TV1]. However, they

do not consider the irregular set. Ercai, Kupper and Lin [EKL] proved that the irregular set is either

empty or carries full entropy for maps with the specification property. Our results were derived

independently and include the result of [EKL] as a special case. Our methods are largely inspired by

those of Takens and Verbitskiy [TV2], and we follow the strategy that we sketched in chapter 3.

We apply our main result to show that the irregular set for a suspension flow over a map

with specification has full topological entropy. By considering the ‘u-dimension’ of the irregular set

in the base, Barreira and Saussol [BS1] proved analogous results which apply when the suspension

is over a shift of finite type. They assume Hölder continuity of ϕ and the roof function, whereas we

require only continuity.

We expect that an analogue of our main theorem 4.1.2 holds for flows with the specification

property, and that our current method of proof can be adapted to this setting (although we do not

pursue this here). Such an approach would not cover every suspension flow to which our current
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results apply. In particular, a special flow (i.e. a suspension flow with constant roof function) over a

map with specification never has the specification property itself, but is in the class of flows treated

in §4.3.

In §4.1, we state the main results of the chapter and key ideas of the proof. In §4.2, we prove

the main theorem of the chapter. In §4.3, we apply our main result to suspension flows.

4.1 Results

We state our results and introduce the key technical tools of the proof.

Theorem 4.1.1. Let (X, d) be a compact metric space and f : X 7→ X be a continuous map with

the specification property. Assume that ϕ ∈ C(X) satisfies infµ∈Mf (X)

∫
ϕdµ < supµ∈Mf (X)

∫
ϕdµ.

Let X̂(ϕ, f) be the irregular set for ϕ, then P
X̂(ϕ,f)

(ψ) = P classicX (ψ) for all ψ ∈ C(X).

We remark that lemma 2.3.2 provides us with other natural interpretations of the assumption

infµ∈Mf (X)

∫
ϕdµ < supµ∈Mf (X)

∫
ϕdµ. We state the assumption in this way because it is natural

for the method of proof. If our assumption fails, then X̂(ϕ, f) = ∅. In fact, we prove a slightly

stronger version of the theorem.

Theorem 4.1.2. Let (X, d) be a compact metric space, f : X 7→ X be a continuous map and

X ′ ⊆ X be an f -invariant Borel set. Assume f satisfies the specification property on X ′. Assume

that ϕ ∈ C(X) satisfies infµ∈Mf (X′)

∫
ϕdµ < supµ∈Mf (X′)

∫
ϕdµ. Let X̂(ϕ, f) be the irregular set

for ϕ, then for all ψ ∈ C(X),

P
X̂(ϕ,f)

(ψ) ≥ sup

{
hµ +

∫
ψdµ : µ ∈ Mf (X

′)

}
.

If sup {hµ +
∫
ψdµ : µ ∈ Mf (X

′)} = P classicX (ψ), then we have P
X̂(ϕ,f)

(ψ) = P classicX (ψ).

If Mf (X
′) is dense in Mf (X), we need only assume infµ∈Mf (X)

∫
ϕdµ < supµ∈Mf (X)

∫
ϕdµ.

As described in chapter 3, we follow the method of Takens and Verbitskiy [TV2]. The key ingredients

for the Takens and Verbitskiy proof are an application of the Entropy Distribution Principle [TV2]

and Katok’s formula for measure-theoretic entropy [Kat]. We are required to generalise both. We

offer two generalisations of the Entropy Distribution Principle. While the first offers a more straight

forward generalisation, we will use the second as it offers us a short cut in the proof later on. We

offer a proof of only the second version, since it is more general than the first.

Proposition 4.1.3 (Pressure Distribution Principle). Let f : X 7→ X be a continuous transformation.

Let Z ⊆ X be an arbitrary Borel set. Suppose there exists a constant s ≥ 0 such that for sufficiently

small ε > 0 one can find a Borel probability measure µε, an integer N(ε) and a constant K(ε) > 0
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satisfying µε(Z) > 0 and µε(Bn(x, ε)) ≤ K(ε) exp{−ns +
∑n−1
i=0 ψ(f ix)} for every ball Bn(x, ε)

such that Bn(x, ε) ∩ Z 6= ∅ and n ≥ N(ε). Then PZ(ψ) ≥ s.

Proposition 4.1.4 (Generalised Pressure Distribution Principle). Let f : X 7→ X be a continuous

transformation. Let Z ⊆ X be an arbitrary Borel set. Suppose there exists ε > 0 and s ≥ 0 such

that one can find a sequence of Borel probability measures µk, a constant K > 0 and an integer N

satisfying

lim sup
k→∞

µk(Bn(x, ε)) ≤ K exp{−ns+
n−1∑

i=0

ψ(f ix)}

for every ball Bn(x, ε) such that Bn(x, ε) ∩ Z 6= ∅ and n ≥ N . Furthermore, assume that at least

one limit measure ν of the sequence µk satisfies ν(Z) > 0. Then PZ(ψ, ε) ≥ s.

Proof. Choose ε > 0 and ν satisfying the conditions of the theorem. Let µkj
denote a subsequence

of measures which converges to ν. Let Γ = {Bni
(xi, ε)}i cover Z with all ni ≥ N ′ for some N ′ ≥ N .

We may assume that Bni
(xi, ε) ∩ Z 6= ∅ for every i. Then

Q(Z, s,Γ, ψ) =
∑

i

exp

{
−sni + sup

y∈Bni
(xi,ε)

ni−1∑

k=0

ψ(fk(y))

}

≥
∑

i

exp

{
−sni +

ni−1∑

k=0

ψ(fk(xi))

}

≥ K−1
∑

i

lim sup
k→∞

µk(Bn(xi, ε))

≥ K−1
∑

i

lim inf
j→∞

µkj
(Bn(xi, ε))

≥ K−1
∑

i

ν(Bn(xi, ε)) ≥ K−1ν(Z) > 0.

Our arrival at the last line is because for any open set U , if νk converges to ν in the weak∗ topol-

ogy, then lim infk→∞ νk(U) ≥ ν(U) (see [Wal], p.149). We conclude that M(Z, s, ε,N ′, ψ) ≥

K−1ν(Z) > 0 for all N ′ ≥ N . Thus m(Z, s, ε, ψ) > 0 and PZ(ψ, ε) ≥ s.

The following result generalises Katok’s formula for measure-theoretic entropy. In [Men],

Mendoza gave a proof based on ideas from the Misiurewicz proof of the variational principle. Al-

though he states the result under the assumption that f is a homeomorphism, his proof works for f

continuous.

Proposition 4.1.5. Let (X, d) be a compact metric space, f : X 7→ X be a continuous map and µ

be an ergodic invariant measure. For ε > 0, γ ∈ (0, 1) and ψ ∈ C(X), define

Nµ(ψ, γ, ε, n) = inf

{
∑

x∈S

exp

{
n−1∑

i=0

ψ(f ix)

}}
,
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where the infimum is taken over all sets S which (n, ε) span some set Z with µ(Z) ≥ 1 − γ. We

have

hµ +

∫
ψdµ = lim

ε→0
lim inf
n→∞

1

n
logNµ(ψ, γ, ε, n).

The formula remains true if we replace the lim inf by lim sup.

We prove a modified version of proposition 4.1.5 (for entropy) as theorem 6.3.1. The tech-

nique used there is also suitable for a proof of proposition 4.1.5.

We now begin the proof of theorem 4.1.2. For the sake of clarity, it will be convenient to

give the proof under a certain additional hypothesis, which we will later explain how to remove.

Theorem 4.1.6. Let us assume the hypotheses of theorem 4.1.2 and fix ψ ∈ C(X). Let

C := sup

{
hµ +

∫
ψdµ : µ ∈ Mf (X

′)

}
.

Let us assume further that P classicX (ψ) is finite and for all γ > 0, there exist ergodic measures

µ1, µ2 ∈ Mf (X
′) which satisfy

(1) hµi
+
∫
ψdµi > C − γ for i = 1, 2,

(2)
∫
ϕdµ1 6=

∫
ϕdµ2.

Then P
X̂(ϕ,f)

(ψ) ≥ C. If C = P classicX (ψ), for example when X ′ = X, then P
X̂(ϕ,f)

(ψ) =

P classicX (ψ).

The assumption that P classicX (ψ) is finite is trivial to remove and is included only for notational

convenience. Given a result from [PS1], we give a short proof that the hypotheses of theorem 4.1.1

imply those of theorem 4.1.6. We explain how to modify the proof of theorem 4.1.6 to obtain a self

contained proof of theorem 4.1.2 in §4.2.2.

Proof of theorem 4.1.1. Let µ1 be ergodic and satisfy hµ1 +
∫
ψdµ1 > C − γ/3, Let ν ∈ Mf (X)

satisfy
∫
ϕdµ1 6=

∫
ϕdν. Let ν ′ = tµ1 + (1 − t)ν where t ∈ (0, 1) is chosen sufficiently close to 1

so that hν′ +
∫
ψdν ′ > C − 2γ/3. By [PS1], when f has a property called the g-almost product

property (see chapter 6), which is weaker than specification, we can find a sequence of ergodic

measures νn ∈ Mf (X) such that hνn → hν′ and νn → ν ′ in the weak-∗ topology (this also follows

from theorem B of [EKW] when f has specification and the map µ→ hµ is upper semi-continuous).

Therefore, we can choose a measure belonging to this sequence which we call µ2 which satisfies

hµ2 +
∫
ψdµ2 > C − γ and

∫
ϕdµ1 6=

∫
ϕdµ2.
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4.2 Proof of the main theorem 4.1.6

Let us fix a small γ > 0, and take the measures µ1 and µ2 provided by our hypothesis. Choose δ > 0

sufficiently small so ∣∣∣∣
∫
ϕdµ1 −

∫
ϕdµ2

∣∣∣∣ > 4δ.

Let ρ : N 7→ {1, 2} be given by ρ(k) = (k + 1)(mod2) + 1. Choose a strictly decreasing sequence

δk → 0 with δ1 < δ and a strictly increasing sequence lk → ∞ so the set

Yk :=

{
x ∈ X ′ :

∣∣∣∣
1

n
Snϕ(x) −

∫
ϕdµρ(k)

∣∣∣∣ < δk for all n ≥ lk

}
(4.1)

satisfies µρ(k)(Yk) > 1 − γ for every k. This is possible by Birkhoff’s ergodic theorem.

The following lemma follows readily from proposition 4.1.5.

Lemma 4.2.1. For any sufficiently small ε > 0, we can find a sequence nk → ∞ and a count-

able collection of finite sets Sk so that each Sk is an (nk, 4ε) separated set for Yk and Mk :=
∑
x∈Sk

exp
{∑nk−1

i=0 ψ(f ix)
}

satisfies

Mk ≥ exp(nk(C − 4γ)).

Furthermore, the sequence nk can be chosen so that nk ≥ lk and nk ≥ 2mk , where mk = m(ε/2k)

is as in definition 2.2.3 of the specification property.

Proof. By proposition 4.1.5, let us choose ε sufficiently small so

lim inf
n→∞

1

n
logNµi(ψ, γ, 4ε, n) ≥ hµi

+

∫
ψdµi − γ ≥ C − 2γ for i = 1, 2.

For A ⊂ X, recall that

Qn(A,ψ, ε) = inf

{
∑

x∈S

exp

{
n−1∑

k=0

ψ(fkx)

}
: S is (n, ε) spanning set for A

}
,

Pn(A,ψ, ε) = sup

{
∑

x∈S

exp

{
n−1∑

k=0

ψ(fkx)

}
: S is (n, ε) separated set for A

}
.

We have Qn(A,ψ, ε) ≤ Pn(A,ψ, ε) and since µρ(k)(Yk) > 1 − γ for every k, it is immediate that

Qn(Yk, ψ, 4ε) ≥ Nµρ(k)(ψ, γ, ε, n).

Let M(k, n) = Pn(Yk, ψ, 4ε). For each k, we obtain

lim inf
n→∞

1

n
logM(k, n) ≥ lim inf

n→∞

1

n
logNµρ(k)(ψ, γ, 4ε, n) ≥ C − 2γ.

We may now choose a sequence nk → ∞ satisfying the hypotheses of the lemma so

1

nk
logM(k, nk) ≥ C − 3γ.
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Now for eack k, let Sk be a choice of (nk, 4ε) separated set for Yk which satisfies

1

nk
log





∑

x∈Sk

exp

{
n−1∑

i=0

ψ(f ix)

}

 ≥
1

nk
logM(k, nk) − γ.

Let Mk :=
∑
x∈Sk

exp
{∑n−1

i=0 ψ(f ix)
}
, then

1

nk
logMk ≥

1

nk
logM(k, nk) − γ ≥ C − 4γ.

We rearrange to obtain the desired result.

We choose ε sufficiently small so that Var(ψ, 2ε) < γ and Var(ϕ, 2ε) < δ, and fix all the

ingredients provided by lemma 4.2.1.

Our strategy is to construct a certain fractal F ⊂ X̂(ϕ, f), on which we can define a sequence

of measures suitable for an application of the generalised Pressure Distribution Principle.

4.2.1 Construction of the fractal F

We begin by constructing two intermediate families of finite sets. The first such family we denote

by {Ck}k∈N and consists of points which shadow a very large number Nk of points from Sk. The

second family we denote by {Tk}k∈N and consist of points which shadow points (taken in order)

from C1, C2, . . . , Ck. We choose Nk to grow to infinity very quickly, so the ergodic average of a point

in Tk is close to the corresponding point in Ck.

Construction of the intermediate sets {Ck}k∈N

Let us choose a sequence Nk which increases to ∞ sufficiently quickly so that

lim
k→∞

nk+1 +mk+1

Nk
= 0, lim

k→∞

N1(n1 +m1) + . . .+Nk(nk +mk)

Nk+1
= 0. (4.2)

We enumerate the points in the sets Sk provided by lemma 4.2.1 and write them as follows

Sk = {xki : i = 1, 2, . . . ,#Sk}.

We make a choice of k and consider the set of words of length Nk with entries in {1, 2, . . . ,#Sk}.

Each such word i = (i1, . . . , iNk
) represents a point in SNk

k . Using the specification property, we can

choose a point y := y(i1, . . . , iNk
) which satisfies

dnk
(xkij , f

ajy) <
ε

2k

for all j ∈ {1, . . . , Nk}, where aj = (j − 1)(nk +mk). In other words, y shadows each of the points

xkij in order for length nk and gap mk. We define

Ck =
{
y(i1, . . . , iNk

) ∈ X : (i1, . . . , iNk
) ∈ {1, . . . ,#Sk}

Nk

}
.
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Let ck = Nknk +(Nk− 1)mk. Then ck is the amount of time for which the orbit of points in Ck has

been prescribed. It is a corollary of the following lemma that distinct sequences (i1, . . . , iNk
) give

rise to distinct points in Ck. Thus the cardinality of Ck, which we shall denote by #Ck, is #SNk

k .

Lemma 4.2.2. Let i and j be distinct words in {1, 2, . . . ,#Sk}
Nk . Then y1 := y(i) and y2 := y(j)

are (ck, 3ε) separated points (i.e. dck(y1, y2) > 3ε).

Proof. Since i 6= j, there exists l so il 6= jl. We have

dnk
(xkil , f

aly1) <
ε

2k
, dnk

(xkjl , f
aly2) <

ε

2k
and dnk

(xkil , x
k
jl
) > 4ε.

Combining these inequalities, we have

dck(y1, y2) ≥ dnk
(faly1, f

aly2)

≥ dnk
(xkil , x

k
jl
) − dnk

(xkil , f
aly1) − dnk

(xkjl , f
aly2)

> 4ε− ε/2 − ε/2 = 3ε.

Construction of the intermediate sets {Tk}k∈N

We use the specification property to construct points whose orbits shadow points (taken in order)

from C1, C2, . . . , Ck. Formally, we define Tk inductively. Let T1 = C1. We construct Tk+1 from Tk as

follows. Let x ∈ Tk and y ∈ Ck+1. Let t1 = c1 and tk+1 = tk +mk+1 + ck+1. Using specification,

we can find a point z := z(x, y) which satisfies

dtk(x, z) <
ε

2k+1
and dck+1

(y, f tk+mk+1z) <
ε

2k+1
.

Define Tk+1 = {z(x, y) : x ∈ Tk, y ∈ Ck+1}. Note that tk is the amount of time for which the orbit

of points in Tk has been prescribed. Once again, points constructed in this way are distinct. So we

have

#Tk = #C1 . . .#Ck = #SN1
1 . . .#SNk

k .

This fact is a corollary of the following straightforward lemma:

Lemma 4.2.3. For every x ∈ Tk and distinct y1, y2 ∈ Ck+1

dtk(z(x, y1), z(x, y2)) <
ε

2k
and dtk+1

(z(x, y1), z(x, y2)) > 2ε.

Thus Tk is a (tk, 2ε) separated set. In particular, if z, z′ ∈ Tk, then

Btk(z,
ε

2k
) ∩Btk(z′,

ε

2k
) = ∅.
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Proof. Let p := z(x, y1) and q := z(x, y2). The first inequality is trivial since by construction,

dtk(x, zi) < ε/2k+1 for i = 1, 2.

Using lemma 4.2.2, we obtain the second inequality as follows:

dtk+1
(p, q) ≥ dck+1

(f tk+mk+1p, f tk+mk+1q)

≥ dck+1
(y1, y2) − dck+1

(y1, f
tk+mk+1p) − dck+1

(y2, f
tk+mk+1q)

> 3ε− ε/2 − ε/2 = 2ε.

The third statement is a straightforward consequence of the second.

Following the terminology of Takens and Verbitskiy, we say z ∈ Tk+1 descends from x ∈ Tk

if z = z(x, y) for some y ∈ Ck+1.

Lemma 4.2.4. If z ∈ Tk+1 descends from x ∈ Tk then

Btk+1
(z,

ε

2k
) ⊂ Btk(x,

ε

2k−1
).

Proof. Let z′ ∈ Btk+1
(z, ε

2k ). Then

dtk(z′, x) ≤ dtk+1
(z′, z) + dtk(z, x)

≤ ε/2k + ε/2k+1 ≤ ε/2k−1.

Construction of the fractal F and a special sequence of measures µk

Let Fk =
⋃
x∈Tk

Btk(x, ε
2k−1 ). By lemma 4.2.4, Fk+1 ⊂ Fk. Since we have a decreasing sequence of

compact sets, the intersection F =
⋂
k Fk is non-empty. Further, every point p ∈ F can be uniquely

represented by a sequence p = (p
1
, p

2
, p

3
, . . . .) where each p

i
= (pi1, . . . , p

i
Ni

) ∈ {1, 2, . . . ,#Si}
Ni .

Each point in Tk can be uniquely represented by a finite word (p
1
, . . . p

k
). We introduce some useful

notation to help us see this. Let y(p
i
) ∈ Ci be defined as in 4.2.1. Let z1(p) = y(p

1
) and proceeding

inductively, let zi+1(p) = z(zi(p), y(pi+1
)) ∈ Ti+1 be defined as in 4.2.1. We can also write zi(p) as

z(p
1
, . . . , p

i
). Then define p := πp by

p =
⋂

i∈N

Bti(zi(p),
ε

2i−1
).

It is clear from our construction that we can uniquely represent every point in F in this way.

Lemma 4.2.5. Given z = z(p
1
, . . . , p

k
) ∈ Tk, we have for all i ∈ {1, . . . , k} and all l ∈ {1, . . . , Ni},

dni
(xi
pi

l
, f ti−1+mi−1+(l−1)(mi+ni)z) < 2ε.
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Proof. We fix i ∈ {1, . . . , k} and l ∈ {1, . . . , Ni}. For m ∈ {1, . . . , k−1}, let zm = z(p
1
, . . . , p

m
) ∈

Tm. Let a = ti−1 +mi−1 and b = (l − 1)(mi + ni). Then

dni
(xi
pi

l
, fa+bz) < dni

(xi
pi

l
, f by(p

i
)) + dni

(f by(p
i
), fa+bzi) + dni

(fa+bzi, f
a+bz).

We have, by construction,

dni
(xi
pi

l
, f by(p

i
)) <

ε

2i
.

We have, by construction,

dni
(f by(p

i
), fa+bzi) ≤ dci(y(pi), f

az) <
ε

2i+1
.

We have

dni
(fa+bzi, f

a+bz) < dti(zi, z) < dti(zi, zi+1) + . . .+ dti(zk−1, z)

<
ε

2i+1
+

ε

2i+2
+ . . .+

ε

2k
.

Combining the inequalities, we obtain dni
(fa+bz, xi

pi
l

) <
∑k
m=i

ε
2m + ε

2i+1 < 2ε, as required.

We now define the measures on F which yield the required estimates for the Pressure Distri-

bution Principle. For each z ∈ Tk, we associate a number L(z) ∈ (0,∞). Using these numbers as

weights, we define, for each k, an atomic measure centred on Tk. Precisely, if z = z(p
1
, . . . p

k
), we

define

L(z) := L(p
1
) . . .L(p

k
),

where if p
i
= (pi1, . . . , p

i
Ni

) ∈ {1, . . . ,#Si}
Ni , then

L(p
i
) :=

Ni∏

l=1

expSni
ψ(xi

pi
l
).

We define

νk :=
∑

z∈Tk

δzL(z).

We normalise νk to obtain a sequence of probability measures µk. More precisely, we let µk := 1
κk
νk,

where κk is the normalising constant

κk :=
∑

z∈Tk

Lk(z).

Lemma 4.2.6. κk = MN1
1 . . .MNk

k .

Proof. We note that

∑

p
i
∈{1,...,#Si}Ni

L(p
i
) =

#Si∑

pi
1=1

expSni
ψ(xip1

l
) . . .

#Si∑

pi
Ni

=1

expSni
ψ(xi

pi
Ni

)

= MNi
i
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By the definition and since each z ∈ Tk corresponds uniquely to a sequence (p
1
, . . . , p

k
), we have

∑

z∈Tk

Lk(z) =
∑

p
1
∈{1,...,#S1}N1

. . .
∑

p
k
∈{1,...,#Sk}

Nk

L(p
1
) . . .L(p

k
).

The result follows.

Lemma 4.2.7. Suppose ν is a limit measure of the sequence of probability measures µk. Then

ν(F ) = 1.

Proof. Suppose ν is a limit measure of the sequence of probability measures µk. Then ν =

limk→∞ µlk for some lk → ∞. For any fixed l and all p ≥ 0, µl+p(Fl) = 1 since µl+p(Fl+p) = 1 and

Fl+p ⊆ Fl. Therefore, ν(Fl) ≥ lim supk→∞ µlk(Fl) = 1. It follows that ν(F ) = liml→∞ ν(Fl) =

1.

In fact, the measures µk converge. However, by using the generalised Pressure Distribution

Principle, we do not need to use this fact and so we omit the proof (which goes like lemma 5.4 of

[TV2]).

We verify that F ⊂ X̂(ϕ, f).

Lemma 4.2.8. For any p ∈ F , the sequence 1
tk

∑tk−1
i=0 ϕ(f i(p)) diverges.

Proof. Let us choose a point p ∈ F . Using the notation of 4.2.1, let yk := y(p
k
) and zk = zk(p).

We first show that ∣∣∣∣
1

ck
Sckϕ(yk) −

∫
ϕdµρ(k)

∣∣∣∣→ 0. (4.3)

We rely on the fact that Var(ϕ, c) → 0 as c→ 0 and that

lim
k→∞

nkNk

ck
= 1, lim

k→∞

mk(Nk − 1)

ck
= 0 and lim

k→∞
δk = 0. (4.4)

The first two limits follow from the assumption that nk ≥ 2mk . Let aj = (j − 1)(nk + mk). We

have

∣∣∣∣Sckϕ(yk) − ck

∫
ϕdµρ(k)

∣∣∣∣ ≤

∣∣∣∣∣∣

Nk∑

j=1

Snk
ϕ(fajyk) − ck

∫
ϕdµρ(k)

∣∣∣∣∣∣

+ mk(Nk − 1)‖ϕ‖

≤

∣∣∣∣∣∣

Nk∑

j=1

Snk
ϕ(fajyk) −

Nk∑

j=1

Snk
ϕ(xkij )

∣∣∣∣∣∣
+

∣∣∣∣∣∣

Nk∑

j=1

Snk
ϕ(xkij ) − ck

∫
ϕdµρ(k)

∣∣∣∣∣∣

+ mk(Nk − 1)‖ϕ‖

≤
Nk∑

j=1

∣∣∣Snk
ϕ(fajyk) − Snk

ϕ(xkij )
∣∣∣ +

Nk∑

j=1

∣∣∣∣Snk
ϕ(xkij ) − nk

∫
ϕdµρ(k)

∣∣∣∣

+ mk(Nk − 1){‖ϕ‖ +

∫
ϕdµρ(k)}
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≤ nkNk{Var(ϕ, ε/2k) + δk} +mk(Nk − 1){‖ϕ‖ +

∫
ϕdµρ(k)}.

We have used the fact dnk
(xkij , f

ajyk) < ε/2k in the last line. The statement of (4.3) follows from

this and (4.4).

Let p′ = f tk−ckp and z′k = f tk−ckzk. Using dtk(p, zk) ≤ ε/2k−1, we have

dck(p′, yk) ≤ dck(p′, z′k) + dck(z′k, yk)

≤ ε/2k−1 + ε/2k ≤ ε/2k−2.

Using this and (4.3), we obtain
∣∣∣∣
1

ck
Sckϕ(p′) −

∫
ϕdµρ(k)

∣∣∣∣ ≤ Var(ϕ, ε/2k−2). (4.5)

The final ingredient we require is to show that
∣∣∣∣
1

tk
Stkϕ(p) −

1

ck
Sckϕ(p′)

∣∣∣∣→ 0. (4.6)

From the assumptions of (4.2), we can verify that ck/tk → 1. Thus for arbitrary γ > 0 and

sufficiently large k, we have |ck/tk − 1| < γ. We have
∣∣∣∣
1

tk
Stkϕ(p) −

1

ck
Sckϕ(p′)

∣∣∣∣ =

∣∣∣∣
1

tk
Stk−ckϕ(p) +

1

ck
Sckϕ(p′)

(
ck
tk

− 1

)∣∣∣∣

≤

∣∣∣∣
tk − ck
tk

‖ϕ‖ + γ
1

ck
Sckϕ(p′)

∣∣∣∣

≤ 2γ‖ϕ‖

Since γ was arbitrary, we have verified (4.6). Using (4.5) and (4.6), it follows that
∣∣∣∣
1

tk
Stkϕ(p) −

∫
ϕdµρ(k)

∣∣∣∣→ 0.

In order to prove theorem 4.1.6, we give a sequence of lemmas which will allow us to apply the

generalised Pressure Distribution Principle. Let B := Bn(q, ε/2) be an arbitrary ball which intersects

F . Let k be the unique number which satisfies tk ≤ n < tk+1. Let j ∈ {0, . . . , Nk+1 − 1} be the

unique number so

tk + (nk+1 +mk+1)j ≤ n < tk + (nk+1 +mk+1)(j + 1).

We assume that j ≥ 1 and leave the details of the simpler case j = 0 to the reader.

Lemma 4.2.9. Suppose µk+1(B) > 0, then there exists (a unique choice of) x ∈ Tk and i1, . . . , ij ∈

{1, . . . ,#Sk+1} satisfying

νk+1(B) ≤ L(x)
j∏

l=1

expSnk+1
ψ(xk+1

il
)M

Nk+1−j
k+1 .
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Proof. If µk+1(B) > 0, then Tk+1 ∩ B 6= ∅. Let z = z(x, y) ∈ Tk+1 ∩ B where x ∈ Tk and

y = y(i1, . . . , iNk+1
) ∈ Ck+1. Let

Ax;i1,...,ij = {z(x, y(l1, . . . , lNk+1
)) ∈ Tk+1 : l1 = i1, . . . , lj = ij}.

Suppose that z(x′, y(l)) ∈ B. Since Tk is (tk, 2ε) separated and n ≥ tk, x = x′. For l ∈ {1, 2, . . . , j},

we have

dnk+1
(f tk+(l−1)(nk+1+mk+1)q, xk+1

il
) < 2ε.

Since xk+1
il

∈ Sk+1 and Sk+1 is (nk+1, 4ε) separated, it follows that l1 = i1, . . . , lj = ij . Thus, if

z ∈ Tk+1 ∩ B, then z ∈ Ax;i1,...,ij . Hence,

νk+1(B) ≤
∑

z∈Ax;i1,...,ij

L(z) = L(x)
∑

p
k+1

:pk+1
1 =i1,...,p

k+1
j

=ij

L(p
k+1

)

= L(x)
j∏

l=1

expSnk+1
ψ(xk+1

il
)

Nk+1∏

p=j+1

#Sk+1∑

lp=1

expSnk+1
ψ(xk+1

lp
),

whence the required result.

Lemma 4.2.10. Let x ∈ Tk and i1, . . . , ij be as before. Then

L(x)
j∏

l=1

expSnk+1
ψ(xk+1

il
) ≤ exp{Snψ(q) + 2nVar(ψ, 2ε)

+ ‖ψ‖(
k∑

i=1

Nimi + jmk+1)}.

Proof. We write x = x(p
1
, . . . p

k
). Lemma 4.2.5 tells us that

dni
(f ti−1+mi−1+(l−1)(mi+ni)x, xi

pi
l
) < 2ε

for all i ∈ {1, . . . , k} and all l ∈ {1, . . . , Ni} and it follows that

L(x) ≤ exp{Stkψ(x) + tkV ar(ψ, 2ε) +
k∑

i=1

‖ψ‖Nimi}.

Similarly,

j∏

l=1

expSnk+1
ψ(xk+1

il
) ≤ exp{Sn−tkψ(z) + (n− tk)V ar(ψ,

ε

2k+1
) + ‖ψ‖jmk+1}.

We obtain the result from these two inequalities and that dn(z, q) < 2ε and dtk(x, q) < 2ε.

The proof of the following lemma is similar to that of lemma 4.2.9.

Lemma 4.2.11. For any p ≥ 1, suppose µk+p(B) > 0. Let x ∈ Tk and i1, . . . , ij be as before. Then

every z ∈ Tk+p ∩ B descends from some point in Ax;i1,...,ij . We have

νk+p(B) ≤ L(x)
j∏

l=1

expSnk+1
ψ(xk+1

il
)M

Nk+1−j
k+1 M

Nk+2

k+2 . . .M
Nk+p

k+p .
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Lemma 4.2.12.

µk+p(B) ≤
1

κkM
j
k+1

exp

{
Snψ(q) + 2nV ar(ψ, 2ε) + ‖ψ‖(

k∑

i=1

Nimi + jmk+1)

}
.

Proof. Using lemma 4.2.10, it follows from lemma 4.2.11 that

νk+p(B) ≤M
Nk+1−j
k+1 . . .M

Nk+p

k+p exp{Snψ(q) + 2nV ar(ψ, 2ε)

+ ‖ψ‖(
k∑

i=1

Nimi + jmk+1)}.

Since µk+p = 1
κk+p

νk+p and κk+p = κkM
Nk+1

k+1 . . .M
Nk+p

k+p , the result follows.

Lemma 4.2.13. For sufficiently large n, κkM
j
k+1 ≥ exp((C − 5γ)n)

Proof. Recall that by construction Mk ≥ exp((C − 4γ)nk). We have

κkM
j
k+1 = MN1

1 . . .MNk

k M j
k+1

≥ exp{(C − 4γ)(N1n1 +N2n2 + . . .+Nknk + jnk+1)}

≥ exp{(C − 5γ)(N1(n1 +m1) +N2(n2 +m2) + . . .

+Nk(nk +mk) + j(nk+1 +mk+1)}

= exp{(C − 5γ)(tk +m1 + j(nk+1 +mk+1)} ≥ exp{(C − 5γ)n}.

Our arrival at the third line may require some explanation. Morally, we are able to add in the extra

terms with an arbitrarily small change to the constant s because nk is much larger than mk. The

reader may wish to verify this.

Lemma 4.2.14. For sufficiently large n,

lim sup
k→∞

µk(Bn(q,
ε

2
)) ≤ exp{−n(C − 2V ar(ψ, 2ε) − 6γ) +

n−1∑

i=0

ψ(f iq)}.

Proof. By lemmas 4.2.12 and 4.2.13, for sufficiently large n and any p ≥ 1,

µk+p(B) ≤
1

κkM
j
k+1

exp

{
Snψ(q) + 2nV + ‖ψ‖(

k∑

i=1

Nimi + jmk+1)

}

≤
1

κkM
j
k+1

exp {Snψ(q) + n (2V + γ))}

≤ exp{−n(C − 6γ − 2V )) + Snψ(q)},

where V = Var(ψ, 2ε). Our arrival at the second line is because nk is much larger than mk.

Applying the Generalised Pressure Distribution Principle, we have

PF (ψ, ε) ≥ C − 2Var(ψ, 2ε) − 6γ.
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Recall that ε was chosen sufficiently small so Var(ψ, 2ε) < γ. It follows that

P
X̂(ϕ,f)

(ψ, ε) ≥ PF (ψ, ε) ≥ C − 8γ.

Since γ and ε were arbitrary, the proof of theorem 4.1.6 is complete.

4.2.2 Modification of the construction to obtain theorem 4.1.2

Let us fix a small γ > 0. Let µ1 be ergodic and satisfy hµ1 +
∫
ψdµ1 > C − γ/2. Let ν ∈ Me

f (X
′)

satisfy
∫
ϕdµ1 6=

∫
ϕdν. Let µ2 = t1µ1 + t2ν where t1 + t2 = 1 and t1 ∈ (0, 1) is chosen sufficiently

close to 1 so that hµ2 +
∫
ψdµ2 > C − γ. Choose δ > 0 sufficiently small so

∣∣∣∣
∫
ϕdµ1 −

∫
ϕdµ2

∣∣∣∣ > 8δ.

Choose a strictly decreasing sequence δk → 0 with δ1 < δ. For k odd, we proceed as before, choosing

a strictly increasing sequence lk → ∞ so the set

Yk :=

{
x ∈ X ′ :

∣∣∣∣
1

n
Snϕ(x) −

∫
ϕdµ1

∣∣∣∣ < δk for all n ≥ lk

}

satisfies µ1(Yk) > 1 − γ for every k. For k even, we define Yk,1 := Yk−1 and find lk > lk−1 so that

each of the sets

Yk,2 :=

{
x ∈ X ′ :

∣∣∣∣
1

n
Snϕ(x) −

∫
ϕdν

∣∣∣∣ < δk for all n ≥ lk

}

satisfies ν(Yk,2) > 1 − γ. The proof of the following lemma is similar to that of lemma 4.2.1.

Lemma 4.2.15. For any sufficiently small ε > 0 and k even, we can find a sequence n̂k → ∞

so [tin̂k] ≥ lk for i = 1, 2 and sets Sik so that Sik is a ([tin̂k], 4ε) separated set for Yk,i with

M i
k :=

∑
x∈Si

k
exp

{∑nk−1
j=0 ψ(f jx)

}
satisfying

M1
k ≥ exp([t1n̂k](hµ1 +

∫
ψdµ1 − 4γ)),

M2
k ≥ exp([t2n̂k](hν +

∫
ψdν − 4γ)).

Furthermore, the sequence n̂k can be chosen so that n̂k ≥ 2mk where mk = m(ε/2k) is as in the

definition of specification.

We now use the specification property to define the set Sk as follows. For i = 1, 2, let yi ∈ Sik

and define x = x(y1, y2) to be a choice of point which satisfies

d[t1n̂k](y1, x) <
ε

2k
and d[t2n̂k](y2, f

[t1n̂k]+mkx) <
ε

2k
.

Let Sk be the set of all points constructed in this way. Let nk = [t1n̂k] + [t2n̂k] +mk. Then nk is

the amount of time for which the orbit of points in Sk has been prescribed and we have nk/n̂k → 1.

We note that Sk is (nk, 4ε) separated and so #Sk = #S1
k#S

2
k . Let Mk = M1

kM
2
k . Given our new

construction of Sk, the rest of our constuction goes through unchanged.
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4.2.3 Modification to the proof

For every x ∈ Sk,

|Snk
ϕ(x) − nk

∫
ϕdµ2| ≤ |S[t1n̂k]ϕ(x) − [t1n̂k]

∫
ϕdµ1| +mk‖ϕ‖

+ |S[t2n̂k]ϕ(f [t1nk]+mkx) − [t2n̂k]

∫
ϕdν|

It follows that | 1
nk
Snk

ϕ(x)−
∫
ϕdµ2| → 0. This observation allows us to modify the proof of lemma

4.2.8 and ensures that our construction still gives rise to points in X̂(ϕ, f). We have for sufficiently

large nk,

Mk ≥ exp{[t1n̂k](hµ1 +

∫
ψdµ1 − 4γ) + [t2n̂k](hν +

∫
ψdν − 4γ)}

≥ exp{(1 − γ)n̂k(t1(hµ1 +

∫
ψdµ1) + t2(hν +

∫
ψdν) − 4γ)}

≥ exp(1 − γ)2nk(hµ2 +

∫
ψdµ2 − 4γ) ≥ exp(1 − γ)2nk(C − 5γ).

Since γ was arbitrary, this observation allows us to modify the estimates in lemma 4.2.13 to cover

this more general construction.

4.3 Application to suspension flows

We apply theorem 4.1.2 to suspension flows. Let f : X 7→ X be a homeomorphism of a compact

metric space (X, d). We consider a continuous roof function ρ : X 7→ (0,∞). We define the

suspension space to be

Xρ = {(x, s) ∈ X × R : 0 ≤ s ≤ ρ(x)},

where (x, ρ(x)) is identified with (f(x), 0) for all x. Alternatively, we can define Xρ to be X×[0,∞),

quotiented by the equivalence relation (x, t) ∼ (y, s) iff (x, t) = (y, s) or there exists n ∈ N so

(fnx, t −
∑n−1
i=0 ρ(f

ix)) = (y, s) or (f−nx, t +
∑n
i=1 ρ(f

−ix)) = (y, s). Let π denote the quotient

map from X × [0,∞) to Xρ. We extend the domain of definition of π to X × (− inf ρ,∞) by

identifying points of the form (y,−t) with (f−1y, ρ(y)− t) for t ∈ (0, inf ρ). We write (x, s) in place

of π(x, s) when inf ρ < s < ρ(x).We define the flow Ψ = {gt} on Xρ by

gt(x, s) = π(x, s+ t).

To a function Φ : Xρ 7→ R, we associate the function ϕ : X 7→ R by ϕ(x) =
∫ ρ(x)
0 Φ(x, t)dt. Since

the roof function is continuous, when Φ is continuous, so is ϕ. For µ ∈ Mf (X), we define the

measure µρ by ∫

Xρ

Φdµρ =

∫

X
ϕdµ/

∫
ρdµ
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for all Φ ∈ C(Xρ), where ϕ is defined as above. We have Ψ-invariance of µρ (ie. µ(g−1
t A) = µ(A)

for all t ≥ 0 and measurable sets A). The map R : Mf (X) 7→ MΨ(Xρ) given by µ 7→ µρ is a

bijection. Abramov’s theorem [Abr], [PP1] states that hµρ = hµ/
∫
ρdµ and hence,

htop(Ψ) = sup{hµ : µ ∈ MΨ(Xρ)} = sup

{
hµ∫
ρdµ

: µ ∈ Mf (X)

}
,

where htop(Ψ) is the topological entropy of the flow. Proposition 6.1 of [PP1] states that htop(Ψ)

is the unique solution to the equation P classicX (−sρ) = 0. We use the notation htop(Z,Ψ) for

topological entropy of a non-compact subset Z ⊂ Xρ with respect to Ψ (defined below). We define

X̂ρ = {(x, s) ∈ Xρ : lim
T→∞

1

T

∫ T

0
Φ(gt(x, s))dt does not exist }.

By the ergodic theorem for flows, µ(X̂ρ) = 0 for any µ ∈ MΨ(Xρ). Our main result on suspension

flows is the following (the proof is at the end of the section).

Theorem 4.3.1. Let (X, d) be a compact metric space and f : X 7→ X be a homeomorphism with

the specification property. Let ρ : X 7→ (0,∞) be continuous. Let (Xρ,Ψ) be the corresponding

suspension flow over X. Assume that Φ : Xρ 7→ R is continuous and satisfies infµ∈MΨ(Xρ)

∫
Φdµ <

supµ∈MΨ(Xρ)

∫
Φdµ. Then htop(X̂ρ,Ψ) = htop(Ψ).

We remark that the flow Φ may not satisfy specification itself. For example, when ρ is a

constant function, Φ is not even topologically mixing.

4.3.1 Properties of suspension flows

The following lemma is similar to one given in [BS4].

Lemma 4.3.1. Let (X, d) be a compact metric space and f : X 7→ X be a homeomorphism. Let

ρ : X 7→ (0,∞) be continuous. Let (Xρ,Ψ) be the corresponding suspension flow over X. Let

Φ : Xρ 7→ R be continuous and ϕ : X 7→ R be given by ϕ(x) =
∫ ρ(x)
0 Φ(x, t)dt. We have

lim inf
T→∞

1

T

∫ T

0
Φ(gt(x, s))dt = lim inf

n→∞

Snϕ(x)

Snρ(x)
,

lim sup
T→∞

1

T

∫ t

0
Φ(gt(x, s))dt = lim sup

n→∞

Snϕ(x)

Snρ(x)
,

X̂ρ = {(x, s) : lim
n→∞

Snϕ(x)

Snρ(x)
does not exist, 0 ≤ s < ρ(x)}.

Proof. Fix γ > 0. Given T > 0, let n satisfy Snρ(x) ≤ T < Sn+1ρ(x). It follows that 1 − ‖ρ‖
T

≤

Snρ(x)
T

≤ 1. Assume T is sufficiently large that 2T−1‖ρ‖‖Φ‖ < γ. We note that

∫ T

0
Φ(gt(x, s))dt ≤

n−1∑

i=0

∫ ρ(f ix)

0
Φ(f ix, t)dt+ 2‖ρ‖‖Φ‖

= Snϕ(x) + 2‖ρ‖‖Φ‖,
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and so

1

T

∫ T

0
Φ(gt(x, s))dt ≤

Snρ(x)

T

Snϕ(x)

Snρ(x)
+

2

T
‖ρ‖‖Φ‖

≤
Snϕ(x)

Snρ(x)
+ γ.

The result follows from this and a similar calculation for the opposite inequality.

As the lemma suggests, our result on X̂ρ will follow from a corresponding result about the

set

X̂(ϕ, ρ) :=

{
x ∈ X : lim

n→∞

Snϕ(x)

Snρ(x)
does not exist

}
. (4.7)

Lemma 4.3.2. Under our assumptions, the following are equivalent:

(a) X̂ρ 6= ∅; (b) X̂(ϕ, ρ) 6= ∅;

(c) infµ∈MΨ(Xρ)

∫
Φdµ < supµ∈MΨ(Xρ)

∫
Φdµ;

(d) infµ∈Mf (X)

∫
ϕdµ/

∫
ρdµ < supµ∈Mf (X)

∫
ϕdµ/

∫
ρdµ;

(e) infµ∈Me
f
(X)

∫
ϕdµ/

∫
ρdµ < supµ∈Me

f
(X)

∫
ϕdµ/

∫
ρdµ;

(f) Snϕ/Snρ does not converge (uniformly or pointwise) to a constant;

(g) 1
T

∫ T
0 Φ(gt)dt does not converge (uniformly or pointwise) to a constant;

Let ϕT (x) :=
∫ T
0 Φ(gtx)dt.

(h) There exists T > 0 such that ϕT /∈
⋃
c∈RCob(Xρ, gT , c), i.e ϕT is not in the closure of

the coboundaries for the time-T map of the flow;

(i) For all T > 0, ϕT /∈
⋃
c∈RCob(Xρ, gT , c).

Proof. First we note that (d) ⇐⇒ (e) ⇐⇒ (f) is similar to the proof of the analogous statements in

lemma 2.3.2. For (c) ⇒ (d), let µ1, µ2 ∈ MΨ(Xρ) satisfy
∫

Φdµ1 <
∫

Φdµ2. Let vi = R−1µi for i =

1, 2. By definition,
∫
ϕdvi/

∫
ρdvi =

∫
Φdµi for i = 1, 2 and so

∫
ϕdv1/

∫
ρdv1 <

∫
ϕdv2/

∫
ρdv2.

(d) ⇒ (c) is similar. (f) ⇐⇒ (g) follows from lemma 4.3.1.

We show (g) ⇐⇒ (h) ⇐⇒ (i). It is clear that 1
T

∫ T
0 Φ(gt)dt does not converge to a

constant iff 1
n
Snϕτ does not converge to a constant for any fixed τ > 0. An appliction of lemma

2.3.2 gives the desired results.

(a) ⇒ (g), (b) ⇒ (f), (b) ⇒ (a) are trivial. (d) ⇒ (b) is a consequence of theorem 4.3.2,

so we omit the proof.

We remark that if ϕ ∈ Cob(X, f, 0) or ϕ − ρ ∈ Cob(X, f, 0), then Snϕ/Snρ converges

uniformly to a constant and so X̂ρ = ∅.
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4.3.2 A generalisation of the main theorem

To prove theorem 4.3.1, we require the following generalisation of theorem 4.1.1.

Theorem 4.3.2. Let (X, d) be a compact metric space and f : X 7→ X be a continuous map with

specification. Let ϕ,ψ ∈ C(X) and ρ : X 7→ (0,∞) be continuous with

inf
µ∈Mf (X)

∫
ϕdµ/

∫
ρdµ < sup

µ∈Mf (X)

∫
ϕdµ/

∫
ρdµ.

Let X̂(ϕ, ρ) be defined as in (4.7). We have P
X̂(ϕ,ρ)

(ψ) = P classicX (ψ).

Proof. We require only a small modification to the proof of theorem 4.1.2. We replace the family

of sets defined at (4.1) by the following:

Yk :=

{
x ∈ X :

∣∣∣∣∣
Snϕ(x)

Snρ(x)
−

∫
ϕdµρ(k)∫
ρdµρ(k)

∣∣∣∣∣ < δk for all n ≥ lk

}

chosen to satisfy µρ(k)(Yk) > 1 − γ for every k. This is possible by the ratio ergodic theorem. The

rest of the proof requires only superficial modifications.

4.3.3 The relationship between entropy of a suspension flow and pressure in the

base

The natural metric on Xρ is the Bowen-Walters metric [BW], [BS4]. The appendix of [BS4] contains

a study of dynamical balls taken with respect to this metric when the roof function is Hölder. We

assume only continuity of ρ. When ρ is non-constant, computations involving this metric are rather

unwieldy, particularly when no regularity of the roof function is assumed. We sidestep this problem

by making the following definitions. Let (x, s) ∈ Xρ with 0 ≤ s < ρ(x). We define the horizontal

segment of (x, s) to be {(y, t) : y ∈ X, 0 ≤ t < ρ(y), t = ρ(y)sρ(x)−1} and the horizontal ball of

radius ε at (x, s) to be

BH((x, s), ε) := {(y,
s

ρ(x)
ρ(y)) : (1 −

s

ρ(x)
)d(x, y) +

s

ρ(x)
d(fx, fy) < ε}.

We define

B((x, s), ε) =
⋃

t:|s−t|<ε

BH((x, t), ε),

BT ((x, s), ε) =
T⋂

t=0

g−tB(gt(x, s), ε).

We are abusing notation, since B((x, s), ε) is not a ball in the Bowen-Walters metric. We can

consider covers by sets of the form BT ((x, s), ε) in the definition of topological pressure in place of

covers consisting of dynamical balls (see remark 2.1.1 and §7.3.1). This is because one can verify
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that there exists constants C1, C2 > 0 such that the metric ball of radius C1ε at (x, s) is a subset

of B((x, s), ε), that a set of diameter ε is contained in some set B((x, s), C2ε) for sufficiently small

ε, that B((x, s), ε) is open and as ε → 0, Diam({B((x, s), ε) : (x, s) ∈ Xρ}) → 0. Diameter and

topology are taken with respect to the Bowen-Walters metric.

Lemma 4.3.3. Let (y, s) ∈ X × (− inf ρ,∞) and suppose π(y, s) ∈ B((x, δ), ε), where |δ| ≤ ε <

inf ρ/4. Then for ε sufficiently small there exists n ∈ N such that

(y, s) ∼ (fny, s− Snρ(y)), |s− Snϕ(y)| < Kε and d(x, fny) < Kε,

where K = 4‖ρ‖/ inf ρ and Kε < inf ρ.

Proof. Suppose (y, s) ∈ BH((x, γ), ε) for some γ with 0 ≤ |γ| < 2ε. Then s = γρ(y)ρ(x)−1.

Therefore, s < 2ε‖ρ‖/ inf ρ. We have

(1 −
γ

ρ(x)
)d(x, y) +

γ

ρ(x)
d(fx, fy) < ε.

Thus (1 − γ
ρ(x))d(x, y) < ε. Rearranging, we have d(x, y) < ερ(x)(ρ(x) − γ)−1 < Kε. For

−ε < γ < 0, we apply a similar argument. Now assume π(y, s) ∈ B((x, δ), ε). Then π(y, s) has

a unique representation (y′, s′) with |s′| < 2ε and y′ = fny. We apply the previous argument to

(y′, s′).

Lemma 4.3.4. Suppose |s| < ε and Snρ(x) ≤ T < Sn+1ρ(x), then

BT ((x, s), ε) ⊂ Bn(x,Kε) × (−Kε,Kε).

Proof. Let (y, t) ∈ BT ((x, s), ε), with |t| < Kε. Then d(x, y) < Kε. Let ti satisfy s + ti =

Siρ(x) for i = 1, . . . n. Then gti(y, t) ∈ B((f i−1x, 0), ε). Applying the previous lemma, we have

d(fny, f i−1x) < Kε for some n ∈ N. Furthermore, we must have n = i − 1. Suppose not, then

for some time τ ∈ [0, Siρ(x)), gτ (y, t) /∈ B(gτ (x, s), ε), which is a contradiction. This implies that

y ∈ Bn(x,Kε).

Theorem 4.3.3. Let (X, d) be a compact metric space and f : X 7→ X be a homeomorphism. Let

ρ : X 7→ (0,∞) be continuous. Let (Xρ,Ψ) be the corresponding suspension flow over X. For an

arbitrary Borel set Z ⊂ X, define Zρ := {(z, s) : z ∈ Z, 0 ≤ s < ρ(s)}. Let β be the unique solution

to the equation PZ(−tρ) = 0. Then htop(Zρ,Ψ) ≥ β.

Proof. The function t → PZ(−tρ) is continuous and decreasing. Since PZ(0) ≥ 0, it follows

that there exists a unique solution to the equation PZ(−tρ) = 0. We assume PZ(−βϕ) > 0 and

show htop(Zρ,Ψ) ≥ β. Let ε > 0 be arbitrary and sufficiently small so lemma 4.3.4 applies and
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PZ(−βϕ, ε) > 0. Choose Γ = {Bti((xi, si), ε)} covering Zρ with ti ≥ T . Take the subcover Γ′

of Γ which covers Z × {0}, and assume without loss of generality that |si| < ε. Let mi be the

unique number so Smi
ρ(x) ≤ ti < Smi+1ρ(x). Let m(Γ′) = infmi obtained in this way. Then

m(Γ′) ≥ ‖ρ‖−1(T − ‖ρ‖) and thus as T tends to infinity so does m(Γ′). Let Γ′′ = {Bmi
(xi,Kε)} :

Bti((xi, si), ε) ∈ Γ′}. By lemma 4.3.4, Bmi
(xi,Kε)× (−Kε,Kε) covers Z ×{0} and if we assume

ε was chosen sufficiently small, then Γ′′ is a cover for Z.

Q(Z × {0}, β,Γ′) ≥
∑

Bi∈Γ′

exp−β(Smi
ρ(xi) + ‖ρ‖)

≥
∑

Bi∈Γ′′

exp−β( sup
y∈Bi

Smi
ρ(y) + ‖ρ‖ + Var(ρ,Kε))

= exp{−β(Var(ρ,Kε) + ‖ρ‖)}Q(Z, 0,Γ′′,−βρ)

≥ exp{−β(Var(ρ,Kε) + ‖ρ‖)}M(Z, 0,m(Γ′),−βρ)

≥ 1,

if T and hence m(Γ′) are chosen to be sufficiently large. We have

Q(Zρ, β,Γ) ≥ Q(Z × {0}, β,Γ′)

and since Γ was arbitrary, we have M(Zρ, β, T − ‖ρ‖, ε) ≥ 1 and hence htop(Zρ,Ψ, ε) ≥ β.

4.3.4 Proof of theorem 4.3.1

Given the results we have proved so far, theorem 4.3.1 follows easily. By lemma 4.3.1, X̂ρ = Zρ,

where Z = X̂(ϕ, ρ). We recall that htop(Ψ) is the unique number satisfing P classicX (−tρ) = 0. By

theorem 4.3.2, PZ(−tρ) = P classicX (−tρ) for all t ∈ R, and so htop(Ψ) is the unique number such

that PZ(−tρ) = 0. Applying theorem 4.3.3, our result follows.
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Chapter 5

A conditional variational principle for

topological pressure

We continue the programme started in chapter 4 to understand the topological pressure of the

multifractal decomposition

X =
⋃

α∈R

X(ϕ, α) ∪ X̂(ϕ, f).

In chapter 4, we showed that X̂(ϕ) is either empty or has full topological pressure. In this chapter,

we turn our attention to the sets X(ϕ, α), which we recall are defined as

X(ϕ, α) =

{
x ∈ X : lim

n→∞

1

n

n−1∑

i=0

ϕ(f i(x)) = α

}
.

Main result of chapter 5. Suppose f has specification. For any continuous functions ϕ,ψ : X 7→ R,

PX(ϕ,α)(ψ) = sup

{
hµ +

∫
ψdµ : µ ∈ Mf (X) and

∫
ϕdµ = α

}
. (5.1)

Formulae similar to (5.1) have a key role in multifractal analysis (see [Bar], [Pes] for a

broad and unified introduction). Following Barreira, we use the terminology ‘conditional variational

principle’ to describe formulae such as (5.1). For hyperbolic maps and Hölder continous ϕ, Barriera

and Saussol established our main result for the case ψ = 0, i.e. for the topological entropy of

X(ϕ, α) and used it to give a new proof of the multifractal analysis in this setting [BS2]. The

study of multifractal analysis for arbitrary (ie. non-Hölder) continuous functions was initiated in the

symbolic dynamics setting by Fan and Feng [FF] and Olivier [Oli]. Takens and Verbitskiy proved

(5.1) in the case of topological entropy for maps with the specification property [TV2].

Luzia proved our main result for topological pressure when the system is a topologically mixing

subshift of finite type and ϕ,ψ are Hölder, and used it to analyse fibred systems [Luz]. Our current

result generalises and unifies the above mentioned results.
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Pfister and Sullivan generalised the result of Takens and Verbitskiy still further to the class

of maps with the almost specification property [PS2]. We strongly expect that a synthesis of the

method in this chapter and the method in chapter 6 can be used to prove (5.1) when f has almost

specification. Fan et al. [FLP] proved a version of (1.2) for ψ = 0 which holds when ϕ takes values

in a Banach space.

Barreira and Saussol proved an analogue of (5.1) for hyperbolic flows when ψ = 0 and ϕ is

Hölder [BS3]. While we expect (5.1) can be established for flows with specification using our current

methods, we consider here the class of suspension flows over maps with specification, and show that

(5.1) holds true in this setting.

A large part of our argument is the same as that used in chapter 4, which was inspired by

Takens and Verbitskiy [TV2]. We do not give a self-contained proof of this part of the argument

but state the key ideas and refer the reader to chapter 4 for the details. We remark that we believe

the argument in §5.1.1 (also inspired by [TV2]) to be a necessary correction to the corresponding

argument of Takens and Verbitskiy.

An interesting application of our main result is a ‘Bowen formula’ for the Hausdorff dimension

of the level sets of the Birkhoff average for a class of non-uniformly expanding maps of the interval,

which includes the Manneville-Pomeau family of maps.

In §5.1, we state and prove our main results. In §5.2, we apply our main result to suspension

flows. In §5.3, we use our main result to derive a certain Bowen formula for interval maps.

5.1 Results

Theorem 5.1.1. Suppose f has specification, ϕ,ψ ∈ C(X,R) and α ∈ Lϕ, then

PX(ϕ,α)(ψ) = sup

{
hµ +

∫
ψdµ : µ ∈ Mf (X) and

∫
ϕdµ = α

}
.

As a simple corollary, we note that if α =
∫
ϕdmψ, where mψ is an equilibrium measure for

ψ (in the usual sense), then PX(ϕ,α)(ψ) = PX(ψ).

5.1.1 Upper bound on PX(ϕ,α)(ψ)

We clarify the method of Takens and Verbitskiy. Our proof relies on analysis of the lower capacity

pressure of X(ϕ, α). We recall the notation we set up in §2.1.5. For Z ⊂ X, let

Qn(Z,ψ, ε) = inf

{
∑

x∈S

exp

{
n−1∑

k=0

ψ(fkx)

}
: S is (n, ε) spanning set for Z

}
,

Pn(Z,ψ, ε) = sup

{
∑

x∈S

exp

{
n−1∑

k=0

ψ(fkx)

}
: S is (n, ε) separated set for Z

}
.
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We have Qn(Z,ψ, ε) ≤ Pn(Z,ψ, ε). The lower capacity pressure is

CPZ(ψ, ε) = lim inf
n→∞

1

n
logQn(Z,ψ, ε),

CPZ(ψ) = lim
ε→0

CPZ(ψ, ε).

It is proved in [Pes] that PZ(ψ) ≤ CPZ(ψ). We use the specification property to construct

a set Z ⊂ X(ϕ, α) which is almost as large as X(ϕ, α) (from the point of view of lower capacity

pressure) and satisfies a certain uniform convergence condition.

Lemma 5.1.1. When f has the specification property, given γ > 0, there exists Z ⊂ X(ϕ, α),

tk → ∞ and εk → 0 such that if p ∈ Z then

∣∣∣∣
1

m
Smϕ(p) − α

∣∣∣∣ ≤ εk for all m ≥ tk (5.2)

and CPZ(ψ) ≥ CPX(ϕ,α)(ψ) − 4γ.

Proof. Choose ε > 0 such that CPX(ϕ,α)(ψ, 2ε) ≥ CPX(ϕ,α)(ψ) − γ. For δ > 0, let

X(α, n, δ) = {x ∈ X(ϕ, α) :

∣∣∣∣
1

m
Smϕ(x) − α

∣∣∣∣ ≤ δ for all m ≥ n}.

We have X(ϕ, α) =
⋃
nX(α, n, δ) and X(α, n, δ) ⊂ X(α, n + 1, δ), thus CPX(ϕ,α)(ψ, 2ε) =

limn→∞CPX(α,n,δ)(ψ, 2ε). Fix an arbitrary sequence δk → 0 and for each δk pick Mk ∈ N so that

CPX(α,Mk,δk)(ψ, 2ε) ≥ CPX(ϕ,α)(ψ, 2ε) − γ.

Write Xk := X(α,Mk, δk). Let mk = m(ε/2k) be as in the definition of specification. Now pick a

sequence of natural numbers Nk → ∞ increasing sufficiently rapidly so that

Nk+1 > max

{
exp

k∑

i=1

(Ni +mi), expMk+1, expmk+1

}
, (5.3)

QNk
(Xk, ψ, 2ε) > expNk(CPX(ϕ,α)(ψ) − 3γ). (5.4)

Let t1 = N1 and tk = tk−1 +mk +Nk for k ≥ 2. By (5.3), we have tk/Nk → 1 and tk−1/tk → 0.

Fix x1 ∈ X1, x2 ∈ X2, . . . , xk ∈ Xk, . . .. We use the specification property to choose points

z1, z2, . . . , zk, . . . as follows. Let z1 = x1 and choose z2 to satisfy

dN1(z2, z1) < ε/4 and dN2(f
N1+m2z2, x2) < ε/4

and zk to satisfy

dtk−1
(zk−1, zk) < ε/2k and dNk

(f tk−1+mkzk, xk) < ε/2k.
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We can verify that Btk+1
(zk+1, ε/2

k) ⊂ Btk(zk, ε/2
k−1) and so the point

p :=
∞⋂

k=1

Btk(zk, ε/2
k−1)

is well defined. We define Z to be the set of all points p constructed in this way.

Let p ∈ Z. There exists xk ∈ Xk such that dNk
(f tk−1+mk−1p, xk) < ε/2k−2. We have

Stkϕ(p) ≤ SNk
ϕ(xk) +NkVar(ϕ, ε/2k−2) + tk−1 +mk−1‖ϕ‖.

Therefore, we can find a sequence ε′k → 0 such that for any p ∈ Z,

|
1

tk
Stkϕ(p) − α| < ε′k.

Now let tk < n < tk+1. There are two cases to consider. First, suppose that n− tk +mk ≥Mk+1.

There exists x ∈ Xk+1 such that dNk+1
(f tk+mkp, x) < ε/2k−1 and thus

Snϕ(p) ≤ tk(α+ ε′k) + (n− tk)(α+ δk+1 + Var(ϕ, ε/2k−1)) +mk+1‖ϕ‖.

Now suppose n− tk ≤Mk+1. Then

1

n
Snϕ(p) ≤

tk
n

(α+ ε′k) +
n− tk
n

‖ϕ‖ ≤ α+ ε′k +
Mk+1

Nk
‖ϕ‖.

Let εk = max{ε′k, δk+1+Var(ϕ, ε/2k+1)}+max{Mk+1/Nk,mk+1/Nk}‖ϕ‖ and we have shown that

(5.2) holds.

Take a (tk, ε) spanning set Sk satisfying
∑
x∈Sk

expStkψ(x) = Qtk(Z,ψ, ε). It follows

that f tk−1+mkSk is a (Nk, ε) spanning set for f tk−1+mkZ. Since sup{dNk
(x, z) : x ∈ Xk, z ∈

f tk−1+mkZ} < ε/2k, then f tk−1+mkSk is a (Nk, 2ε) spanning set for Xk. Thus

∑

x∈Sk

expSNk
ψ(f tk−1+mkx) ≥ QNk

(Xk, ψ, 2ε) > expNk(CPX(ϕ,α)(ψ) − 3γ),

and for sufficiently large k,

∑

x∈Sk

expStkψ(x) ≥ exp{Nk(CPX(ϕ,α)(ψ) − 3γ) + (tk−1 +mk) inf ψ}

≥ exp{tk(CPX(ϕ,α)(ψ) − 4γ)}.

Taking the lim inf of the sequence t−1
k logQtk(Z,ψ, ε), it follows that

CPZ(ψ, ε) > CPX(ϕ,α)(ψ) − 4γ.

Since ε was arbitrary, we are done.
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We follow the second half of the proof of the variational principle (Theorem 9.10 of [Wal]).

We construct a measure out of (n, ε) separated sets for Z (with a suitable fixed choice of ε). In

contrast, Takens and Verbitskiy construct a measure from (n, εn) separated sets with εn → 0. We

believe it is not clear in this case how to use the proof of the variational principle to give the desired

result. The uniform convergence provided by lemma 5.1.1 is designed to avoid this. We fix γ > 0

and find ε > 0 such that CPZ(ψ, ε) > CPZ(ψ) − γ.

Let Sn be a (n, ε) separated set for Z with

∑

x∈Sn

expSnψ(x) = Pn(Z,ψ, ε),

and write Pn := Pn(Z,ψ, ε). Let σn ∈ M(X) be given by

σn =
1

Pn

∑

x∈Sk

expSnψ(x)δx

and let

µn =
1

n

n−1∑

i=0

σn ◦ f
−i.

Let nj be a sequence of numbers so that µnj
converges, and let µ be the limit measure. We

have µ ∈ Mf (X) and we verify that
∫
ϕdµ = α. Let n ∈ N and k be the unique number so

tk ≤ n < tk+1. Using lemma 5.1.1, we have

∫
ϕdµn =

1

Pn

1

n

∑

x∈Sk

Snϕ(x)eSnψ(x)

≤
1

Pn

1

n

∑

x∈Sk

n(α+ εk)e
Snψ(x)

= α+ εk,

and it follows that
∫
ϕdµ = α.

To show that hµ+
∫
ψdµ ≥ lim infj→∞

1
nj

logPnj
, we recall some key ingredients of the proof

of the variational principle. Notation for the measure-theoretic entropy is given in §2.1.6 (following

[Wal]). See [Wal] for additional details of the proof. Let ξ be a partition of X with diameter less

than ε and µ(∂ξ) = 0.

Hσn(
n∨

i=1

f−iξ) +

∫
Snψdσn = logPn.

Since µ(∂ξ) = 0, we have for any k, q ∈ N,

lim
j→∞

Hµnj
(
q−1∨

i=0

f−iξ) = Hµ(
q−1∨

i=0

f−iξ).

For a fixed n and 1 < q < n and 0 ≤ j ≤ q − 1, we have

q

n
logPn ≤ Hµn(

q−1∨

i=0

f−iξ) + q

∫
ψdµn + 2

q2

n
log #ξ.
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Replacing n by nj and taking j → ∞, we obtain

q lim inf
j→∞

1

nj
logPnj

≤ Hµ(
q−1∨

i=0

f−iξ) + q

∫
ψdµ.

Dividing by q and letting q → ∞, we obtain

CPZ(ψ, ε) ≤ lim inf
n→∞

1

n
logPn ≤ hµ(f, ξ) +

∫
ψdµ ≤ hµ +

∫
ψdµ.

It follows that

PX(ϕ,α)(ψ) − 5γ ≤ CPX(ϕ,α)(ψ) − 5γ ≤ CPZ(ψ) − γ ≤ CPZ(ψ, ε) ≤ hµ +

∫
ψdµ.

Since γ was arbitrary, we are done.

5.1.2 Lower bound on PX(ϕ,α)(ψ)

This inequality is harder and the proof is similar to the main theorem of chapter 4, which we follow

closely. As in chapter 4, the key ingredients are the Pressure Distribution Principle (proposition

4.1.4) and a Katok formula for measure-theoretic pressure (proposition 4.1.5).

Our strategy is to define a specially chosen family of finite sets Sk using the Katok formula

for mearure-theoretic pressure, which will form the building blocks for the construction of a certain

fractal F ⊂ X(ϕ, α), on which we can define a sequence of measures suitable for an application of

the Pressure Distribution Principle.

The first stage of the construction is where our current argument differs from chapter 4.

After this modification, the rest of the construction goes through largely verbatim.

5.1.3 Construction of the special sets Sk

Choose a strictly decreasing sequence δk → 0 and fix an arbitrary γ > 0. Let us fix µ satisfying
∫
ϕdµ = α and

hµ +

∫
ψdµ ≥ sup

{
hν +

∫
ψdν : ν ∈ Mf (X) and

∫
ϕdν = α

}
− γ.

We cannot assume that µ is ergodic, so we use the following lemma [You], p.535, to approximate µ

arbitrarily well by convex combinations of ergodic measures.

Lemma 5.1.2. For each δk > 0, there exists ηk ∈ Mf (X) such that ηk =
∑j(k)
i=1 λiη

k
i , where

∑j(k)
i=1 λi = 1 and ηki ∈ Me

f (X), satisfying |
∫
ϕdµ−

∫
ϕdηk| < δk and hηk

> hµ − δk.

Choose a strictly increasing sequence lk → ∞ so that each of the sets

Yk,i :=

{
x ∈ X :

∣∣∣∣
1

n
Snϕ(x) −

∫
ϕdηki

∣∣∣∣ < δk for all n ≥ lk

}
(5.5)
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satisfies ηki (Yk,i) > 1 − γ for every k ∈ N, i ∈ {1, . . . , j(k)}. This is possible by Birkhoff’s ergodic

theorem. Using proposition 4.1.5, we can establish the following lemma (see the corresponding

lemma in chapter 4 for details of the proof). Let γ′ > 0.

Lemma 5.1.3. For any sufficiently small ε > 0, we can find a sequence n̂k → ∞ with [λin̂k] ≥ lk

and finite sets Sk,i so that each Sk,i is a ([λin̂k], 5ε) separated set for Yk,i and

Mk,i :=
∑

x∈Sk,i

exp






nk−1∑

i=0

ψ(f ix)






satisfies

Mk,i ≥ exp

{
[λin̂k]

(
hηk

i
+

∫
ψdηki −

4

j(k)
γ′
)}

.

Furthermore, the sequence n̂k can be chosen so that n̂k ≥ 2mk where mk = m(ε/2k) is as in the

definition of specification.

We choose ε sufficiently small so that the lemma applies and Var(ψ, 2ε) < γ. We fix all the

ingredients provided by the lemma. We now use the specification property to define the set Sk as

follows. Let yi ∈ Sk,i and define x = x(y1, . . . , yj(k)) to be a choice of point which satisfies

d[λin̂k](yl, f
alx) <

ε

2k

for all l ∈ {1, . . . , j(k)} where a1 = 0 and al =
∑l−1
i=1[λin̂k] + (l − 1)mk for l ∈ {2, . . . , j(k)}.

Let Sk be the set of all points constructed in this way. Let nk =
∑j(k)
i=1 [λin̂k] + (j(k) − 1)mk.

Then nk is the amount of time for which the orbit of points in Sk has been prescribed and we have

nk/n̂k → 1. We can verify that Sk is (nk, 4ε) separated and so #Sk = #Sk,1 . . .#Sk,j(k). Let

Mk := Mk,1 . . .Mk,j(k).

We assume that γ′ was chosen to be sufficiently small so the following lemma holds.

Lemma 5.1.4. We have

(1) for sufficiently large k, Mk ≥ expnk(hµ +
∫
ψdµ− γ);

(2) if x ∈ Sk, |
1
nk
Snk

ϕ(x) − α| < δk + Var(ϕ, ε/2k) + 1/k.

Proof. We have for sufficiently large k,

Mk ≥ exp

j(k)∑

i=1

{[λin̂k](hηk
i

+

∫
ψdηki − 4j(k)−1γ′)}

≥ exp{(1 − γ′)n̂k

j(k)∑

i=1

λi(hηk
i

+

∫
ψdηki ) − 4γ′}

≥ exp(1 − γ′)2nk(hηk
+

∫
ψdηk − 4γ′)

≥ exp(1 − γ′)2nk(hµ +

∫
ψdµ− 4γ′ − 2δk).
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Thus if γ′ is sufficiently small, we have (1).

Suppose x = x(y1, . . . , yj(k)) ∈ Sk, then

|Snk
ϕ(x) − nkα| ≤ |Snk

ϕ(x) − nk(

∫
ϕdηk − δk)|

≤
j(k)∑

i=1

|S[λin̂k]ϕ(faix) − nkλi

∫
ϕdηki |

+nkδk +mk(j(k) − 1)‖ϕ‖

≤
j(k)∑

i=1

|S[λin̂k]ϕ(yi) − [λin̂k]

∫
ϕdηki | +mkj(k)‖ϕ‖

+nkVar(ϕ, ε/2k) + nkδk

< δk

j(k)∑

i=1

[λin̂k] +mkj(k)‖ϕ‖ + nkVar(ϕ, ε/2k) + nkδk

The result follows on dividing through by nk.

We now construct two intermediate families of finite sets. We follow chapter 4, to which we

refer the reader for the full details. The first such family we denote by {Ck}k∈N and consists of points

which shadow a very large number Nk of points from Sk. The second family we denote by {Tk}k∈N

and consist of points which shadow points (taken in order) from C1, C2, . . . , Ck. We choose Nk to

grow to infinity very quickly, so the ergodic average of a point in Tk is close to the corresponding

point in Ck.

5.1.4 Construction of the intermediate sets {Ck}k∈N

Let us choose a sequence Nk which increases to ∞ sufficiently quickly so that

lim
k→∞

nk+1 +mk+1

Nk
= 0, lim

k→∞

N1(n1 +m1) + . . .+Nk(nk +mk)

Nk+1
= 0. (5.6)

We enumerate the points in the sets Sk provided by lemma 5.1.3 and write them as follows

Sk = {xki : i = 1, 2, . . . ,#Sk}.

We make a choice of k and consider the set of words of length Nk with entries in {1, 2, . . . ,#Sk}.

Each such word i = (i1, . . . , iNk
) represents a point in SNk

k . Using the specification property, we can

choose a point y := y(i1, . . . , iNk
) which satisfies

dnk
(xkij , f

ajy) <
ε

2k

for all j ∈ {1, . . . , Nk}, where aj = (j − 1)(nk +mk). In other words, y shadows each of the points

xkij in order for length nk and gap mk. We define

Ck =
{
y(i1, . . . , iNk

) ∈ X : (i1, . . . , iNk
) ∈ {1, . . . ,#Sk}

Nk

}
.

49



Let ck = Nknk +(Nk− 1)mk. Then ck is the amount of time for which the orbit of points in Ck has

been prescribed. It is a corollary of the following lemma that distinct sequences (i1, . . . , iNk
) give

rise to distinct points in Ck. Thus the cardinality of Ck, which we shall denote by #Ck, is #SNk

k .

Lemma 5.1.5. Let i and j be distinct words in {1, 2, . . . ,#Sk}
Nk . Then y1 := y(i) and y2 := y(j)

are (ck, 3ε) separated points (i.e. dck(y1, y2) > 3ε).

Construction of the intermediate sets {Tk}k∈N

We define Tk inductively. Let T1 = C1. We construct Tk+1 from Tk as follows. Let x ∈ Tk and

y ∈ Ck+1. Let t1 = c1 and tk+1 = tk + mk+1 + ck+1. Using specification, we can find a point

z := z(x, y) which satisfies

dtk(x, z) <
ε

2k+1
and dck+1

(y, f tk+mk+1z) <
ε

2k+1
.

Define Tk+1 = {z(x, y) : x ∈ Tk, y ∈ Ck+1}. Note that tk is the amount of time for which the orbit

of points in Tk has been prescribed. Once again, points constructed in this way are distinct. So we

have

#Tk = #C1 . . .#Ck = #SN1
1 . . .#SNk

k .

This fact is a corollary of the following straightforward lemma:

Lemma 5.1.6. For every x ∈ Tk and distinct y1, y2 ∈ Ck+1

dtk(z(x, y1), z(x, y2)) <
ε

2k
and dtk+1

(z(x, y1), z(x, y2)) > 2ε.

Thus Tk is a (tk, 2ε) separated set. In particular, if z, z′ ∈ Tk, then

Btk(z,
ε

2k
) ∩Btk(z′,

ε

2k
) = ∅.

Lemma 5.1.7. Let z = z(x, y) ∈ Tk+1, then

Btk+1
(z,

ε

2k
) ⊂ Btk(x,

ε

2k−1
).

Construction of the fractal F and a special sequence of measures µk

Let Fk =
⋃
x∈Tk

Btk(x, ε
2k−1 ). By lemma 5.1.7, Fk+1 ⊂ Fk. Since we have a decreasing sequence of

compact sets, the intersection F =
⋂
k Fk is non-empty. Further, every point p ∈ F can be uniquely

represented by a sequence p = (p
1
, p

2
, p

3
, . . . .) where each p

i
= (pi1, . . . , p

i
Ni

) ∈ {1, 2, . . .Mi}
Ni .

Each point in Tk can be uniquely represented by a finite word (p
1
, . . . p

k
). We introduce some useful

notation to help us see this. Let y(p
i
) ∈ Ci be defined as in 5.1.4. Let z1(p) = y(p

1
) and proceeding
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inductively, let zi+1(p) = z(zi(p), y(pi+1
)) ∈ Ti+1 be defined as in 5.1.4. We can also write zi(p) as

z(p
1
, . . . , p

i
). Then define p := πp by

p =
⋂

i∈N

Bti(zi(p),
ε

2i−1
).

It is clear from our construction that we can uniquely represent every point in F in this way.

Lemma 5.1.8. Given z = z(p
1
, . . . , p

k
) ∈ Tk, we have for all i ∈ {1, . . . , k} and all l ∈ {1, . . . , Ni},

dni
(xi
pi

l
, f ti−1+mi−1+(l−1)(mi+ni)z) < 2ε.

We now define the measures on F which yield the required estimates for the Pressure Distri-

bution Principle. For each z ∈ Tk, we associate a number L(z) ∈ (0,∞). Using these numbers as

weights, we define, for each k, an atomic measure centred on Tk. Precisely, if z = z(p
1
, . . . p

k
), we

define

L(z) := L(p
1
) . . .L(p

k
),

where if p
i
= (pi1, . . . , p

i
Ni

) ∈ {1, . . . ,#Si}Ni , then

L(p
i
) :=

Ni∏

l=1

expSni
ψ(xi

pi
l
).

We define

νk :=
∑

z∈Tk

δzL(z).

We normalise νk to obtain a sequence of probability measures µk. More precisely, we let µk := 1
κk
νk,

where κk is the normalising constant

κk :=
∑

z∈Tk

Lk(z).

Lemma 5.1.9. κk = MN1
1 . . .MNk

k .

Lemma 5.1.10. Suppose ν is a limit measure of the sequence of probability measures µk. Then

ν(F ) = 1.

In fact, the measures µk converge. However, by using the generalised Pressure Distribution

Principle, we do not need to use this fact and so we omit the proof (which goes like lemma 5.4 of

[TV2]). The proof of the following lemma is similar to lemma 5.3 of [TV2] or lemma 4.2.8, and

relies on (2) of lemma 5.1.4.

Lemma 5.1.11. For any p ∈ F , the sequence limk→∞
1
tk

∑tk−1
i=0 ϕ(f i(p)) = α. Thus F ⊂ X(ϕ, α).
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In order to prove theorem 5.1.1, we give a sequence of lemmas which will allow us to apply the

generalised Pressure Distribution Principle. The proofs are the same as the corresponding lemmas

from chapter 4, with minor modifications coming from the changed definition of Sk and lemma 5.1.4.

Let B := Bn(q, ε/2) be an arbitrary ball which intersects F . Let k be the unique number

which satisfies tk ≤ n < tk+1. Let j ∈ {0, . . . , Nk+1 − 1} be the unique number so

tk + (nk+1 +mk+1)j ≤ n < tk + (nk+1 +mk+1)(j + 1).

We assume that j ≥ 1 and leave the details of the simpler case j = 0 to the reader. The following

lemma reflects the fact that the number of points in B ∩ Tk+1 is restricted since Tk is (tk, 2ε)

separated and Sk+1 is (nk+1, 4ε) separated.

Lemma 5.1.12. Suppose µk+1(B) > 0, then there exists (a unique choice of) x ∈ Tk and i1, . . . , ij ∈

{1, . . . ,#Sk+1} satisfying

νk+1(B) ≤ L(x)
j∏

l=1

expSnk+1
ψ(xk+1

il
)M

Nk+1−j
k+1 .

The following lemma is a consequence of lemma 5.1.8.

Lemma 5.1.13. Let x ∈ Tk and i1, . . . , ij be as before. Then

L(x)
j∏

l=1

expSnk+1
ψ(xk+1

il
) ≤ exp{Snψ(q) + 2nVar(ψ, 2ε)

+ ‖ψ‖(
k∑

i=1

Nimi + jmk+1)}.

The following lemma reflects the restriction on the number of points that can be contained

in B ∩ Tk+p.

Lemma 5.1.14. For any p ≥ 1, suppose µk+p(B) > 0. Let x ∈ Tk and i1, . . . , ij be as before. We

have

νk+p(B) ≤ L(x)
j∏

l=1

expSnk+1
ψ(xk+1

il
)M

Nk+1−j
k+1 M

Nk+2

k+2 . . .M
Nk+p

k+p .

Lemma 5.1.15.

µk+p(B) ≤
1

κkM
j
k+1

exp

{
Snψ(q) + 2nV ar(ψ, 2ε) + ‖ψ‖(

k∑

i=1

Nimi + jmk+1)

}
.

Let C := hµ +
∫
ϕdµ. The following lemma is implied by lemma 5.1.4.

Lemma 5.1.16. For sufficiently large n, κkM
j
k+1 ≥ exp((C − 2γ)n)

Combining the previous two lemmas gives us
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Lemma 5.1.17. For sufficiently large n,

lim sup
l→∞

µl(Bn(q,
ε

2
)) ≤ exp{−n(C − 2V ar(ψ, 2ε) − 3γ) +

n−1∑

i=0

ψ(f iq)}.

Applying the Generalised Pressure Distribution Principle, we have

PF (ψ, ε) ≥ C − 2Var(ψ, 2ε) − 3γ.

Recall that ε was chosen sufficiently small so Var(ψ, 2ε) < γ. It follows that

PX(ϕ,α)(ψ, ε) ≥ PF (ψ, ε) ≥ C − 5γ.

Since γ and ε were arbitrary, the proof of theorem 5.1.1 is complete.

5.2 Application to suspension flows

We apply theorem 5.1.1 to suspension flows. Let f : X 7→ X be a homeomorphism of a compact

metric space (X, d). We consider a continuous roof function ρ : X 7→ (0,∞). We define the

suspension space to be

Xρ = {(x, s) ∈ X × R : 0 ≤ s ≤ ρ(x)},

where (x, ρ(x)) is identified with (f(x), 0) for all x. We define the flow Ψ = {gt} on Xρ locally

by gt(x, s) = (x, s + t). To a function Φ : Xρ 7→ R, we associate the function ϕ : X 7→ R by

ϕ(x) =
∫ ρ(x)
0 Φ(x, t)dt. Since the roof function is continuous, when Φ is continuous, so is ϕ. We

have (see lemma 4.3.1)

lim inf
T→∞

1

T

∫ T

0
Φ(gt(x, s))dt = lim inf

n→∞

Snϕ(x)

Snρ(x)
,

lim sup
T→∞

1

T

∫ T

0
Φ(gt(x, s))dt = lim sup

n→∞

Snϕ(x)

Snρ(x)
.

We consider

Xρ(Φ, α) := {(x, s) ∈ Xρ : lim
T→∞

1

T

∫ T

0
Φ(gt(x, s))dt = α}

= {(x, s) : lim
n→∞

Snϕ(x)

Snρ(x)
= α, 0 ≤ s < ρ(x)}.

For µ ∈ Mf (X), we define the measure µρ by
∫

Xρ

Φdµρ =

∫

X
ϕdµ/

∫
ρdµ

for all Φ ∈ C(Xρ), where ϕ is defined as above. We have Ψ-invariance of µρ (ie. µ(g−1
t A) = µ(A)

for all t ≥ 0 and measurable sets A). The map R : Mf (X) 7→ MΨ(Xρ) given by µ 7→ µρ is a

bijection. Abramov’s theorem [Abr], [PP1] states that hµρ = hµ/
∫
ρdµ and hence,

htop(Ψ) = sup{hµ : µ ∈ MΨ(Xρ)} = sup

{
hµ∫
ρdµ

: µ ∈ Mf (X)

}
,
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where htop(Ψ) is the topological entropy of the flow. We use the notation htop(Z,Ψ) for topological

entropy of a non-compact subset Z ⊂ Xρ with respect to Ψ (defined in 2.1.4).

Theorem 5.2.1. Let (X, d) be a compact metric space and f : X 7→ X be a continuous map

with specification. Let ϕ,ψ ∈ C(X) and ρ : X 7→ (0,∞) be continuous. Let X(ϕ, ρ, α) :=
{
x ∈ X : limn→∞

Snϕ(x)
Snρ(x)

= α
}
. For α such that X(ϕ, ρ, α) 6= ∅, we have

PX(ϕ,ρ,α)(ψ) = sup

{
hµ +

∫
ψdµ : µ ∈ Mf (X) and

∫
ϕdµ∫
ρdµ

= α

}
.

Proof. We require only a small modification to the proof of theorem 5.1.1. We modify lemma 5.1.2

so ηk satisfies |
∫
ϕdµ/

∫
ρdµ−

∫
ϕdηk/

∫
ρdηk| < δk and replace the family of sets defined at (5.5)

by the following:

Yk,i :=

{
x ∈ X :

∣∣∣∣∣
Snϕ(x)

Snρ(x)
−

∫
ϕdηki∫
ρdηki

∣∣∣∣∣ < δk for all n ≥ lk

}

chosen to satisfy ηki (Yk,i) > 1 − γ for every k. This is possible by the ratio ergodic theorem. The

rest of the proof requires only superficial modifications.

Theorem 5.2.2. Let (X, d) be a compact metric space and f : X 7→ X be a homeomorphism with

the specification property. Let ρ : X 7→ (0,∞) be continuous. Let (Xρ,Ψ) be the corresponding

suspension flow over X. Let Φ : Xρ 7→ R be continuous. We have

htop(Xρ(Φ, α),Ψ) = sup

{
hµ : µ ∈ MΨ(Xρ) and

∫
Φdµ = α

}
.

Proof. Let Z ⊂ X be arbitrary and Zρ := {(x, s) : x ∈ Z, 0 ≤ s < ρ(x)}. In theorem 4.3.3, we

proved that if β is the unique solution to the equation PZ(−tρ) = 0, then htop(Zρ,Ψ) ≥ β. Thus, if h

be the unique positive real number which satisfies PX(ϕ,ρ,α)(−hρ) = 0, then htop(Xρ(Φ, α),Ψ) ≥ h.

By theorem 5.2.1,

sup

{
hµ − h

∫
ρdµ : µ ∈ Mf (X) and

∫
ϕdµ∫
ρdµ

= α

}
= 0.

Thus, if µ ∈ Mf (X) satisfies

∫
ϕdµ∫
ρdµ

= α, then h ≥ hµ∫
ρdµ

and

h ≥ sup

{
hµ∫
ρdµ

: µ ∈ Mf (X),

∫
ϕdµ∫
ρdµ

= α

}

= sup

{
hµ : µ ∈ MΨ(Xρ) and

∫
Φdµ = α

}
.

For the opposite inequality, we note that htop(Z,Ψ) ≤ CPZ(0), where CPZ(0) is defined

with respect to the time-1 map of Ψ. Given γ > 0, we can adapt lemma 5.1.1 to find a set Z ⊂ Xρ,

tk → ∞ and εk → 0 such that for (x, s) ∈ Xρ, we have
∣∣∣∣∣
1

T

∫ T

0
Φ(gt(x, s))dt− α

∣∣∣∣∣ ≤ εk for all T ≥ tk
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and CPZ(0) ≥ CPX(Φ,α)(0) − 4γ. We repeat the argument of 5.1.1 to construct a suitable

probability measure ν out of (n, ε) spanning sets for the time-1 map of the flow which satisfies
∫ ∫ 1

0 Φ(gtx)dtdν = α and CPZ(0) − γ ≤ hν . We use ν to define a flow invariant measure µ by

∫

Xρ

ζdµ =

∫

Xρ

∫ 1

0
ζ(gtx)dtdν

for all ζ ∈ C(Xρ) and note that hµ = hν and
∫

Φdµ = α. We obtain

htop(Xρ(Φ, α),Ψ) ≤ sup

{
hµ : µ ∈ MΨ(Xρ) and

∫
Φdµ = α

}
.

As a simple corollary, we note that if α =
∫

Φdm, where m is a measure of maximal entropy

for the flow, then htop(Xρ(Φ, α),Ψ) = htop(Φ).

5.3 A Bowen formula for Hausdorff dimension of level sets of the

Birkhoff average for certain interval maps

The following application was described to the author by Thomas Jordan. If f is a C1+α, uniformly

expanding Markov map of the interval and ϕ : [0, 1] 7→ R, then it was shown by Olsen [Ols] that

dimH(X(ϕ, α)) = sup

{
hµ∫

log f ′dµ
:

∫
ϕdµ = α

}
. (5.7)

In [JJÖP], the authors consider piecewise C1 Markov maps of the interval with a finite number of

parabolic fixed points xi such that f(xi) = xi, f
′(xi) = 1 and f ′(x) > 1 for x ∈ [0, 1] \

⋃
i xi. They

show that (5.7) holds for α ∈ Lϕ \ [mini{ϕ(xi)},maxi{ϕ(xi)}]. Simple examples in this category

are provided by the Manneville-Pomeau family of maps ft(x) = xt + x1+t(mod1) (where t > 0 is

a fixed parameter), which have a single parabolic fixed point at 0. Henceforth, we let ψ = log f ′.

Note that since ψ is non-negative, s 7→ PX(ϕ,α)(−sψ) is decreasing (although possibly not strictly

decreasing).

Theorem 5.3.1. Suppose s 7→ PX(ϕ,α)(−sψ) has a unique zero d and (5.7) holds true. Then

d = dimH(X(ϕ, α)).

Proof. By (5.7), if µ ∈ Mf (X) and
∫
ϕdµ = α, then

hµ − dimH(X(ϕ, α))

∫
ψdµ ≤ 0.

By theorem 5.1.1, PX(ϕ,α)(−dimH(X(ϕ, α))ψ) ≤ 0. Thus dimH(X(ϕ, α)) ≥ d.

Now suppose dimH(X(ϕ, α)) < d. Since s 7→ PX(ϕ,α)(−sψ) is decreasing and has a unique

zero, PX(ϕ,α)(−dimH(X(ϕ, α))ψ) > 0. By theorem 5.1.1, there exists µ with
∫
ϕdµ = α and
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hµ − dimH(X(ϕ, α))
∫
ψdµ > 0. This implies that dimH(X(ϕ, α)) < hµ/

∫
ψdµ, which contradicts

(5.7).

We remark that by a slight modification to the proof, a more general statement is that if

(5.7) holds and d = inf{s : PX(ϕ,α)(−sψ) = 0}, then d = dimH(X(ϕ, α)).

We comment on the hypotheses of theorem 5.3.1. If there exists µ with
∫
ϕdµ = α and

∫
ψdµ > 0, then s 7→ PX(ϕ,α)(−sψ) is strictly decreasing. Now suppose ϕ = ψ = log f ′. In

the case of the Manneville-Pomeau family of maps, the only measure with
∫
ψdµ = 0 is the Dirac

measure supported at 0, and so s 7→ PX(ϕ,α)(−sψ) is decreasing for α ∈ Lϕ \ {0}. By [JJÖP], (5.7)

holds true for the same set of values and thus theorem 5.3.1 applies. We remark that for α = 0,

PX(log f ′,0)(−sψ) = 0 for all s ∈ R.

56



Chapter 6

Irregular sets for maps with the almost

specification property and for the

β-transformation

For a compact metric space (X, d), a continuous map f : X 7→ X and a continuous function

ϕ : X 7→ R, we return to our study of the irregular set for ϕ,

X̂(ϕ, f) :=

{
x ∈ X : lim

n→∞

1

n

n−1∑

i=0

ϕ(f i(x)) does not exist

}
.

As a special case of the main result of chapter 4, we showed that when f has the specification

property, X̂(ϕ, f) is either empty or has full topological entropy. Here, we extend this result to the

class of maps f which satisfies a property we call almost specification.

Pfister and Sullivan introduced the g-almost product property in [PS2], [PS1]. We have taken

the liberty of renaming this property as the almost specification property (in fact, our definition is a

priori slightly weaker). The most striking application of the almost specification property (to date)

is that it applies to every β-shift. In sharp contrast, the set of β for which the β-shift has the

specification property has zero Lebesgue measure [Buz], [Sch].

First main result of chapter 6. When f satisfies the almost specification property, the irregular

set is either empty or has full topological entropy.

Second main result of chapter 6 . The irregular set for an arbitrary β-transformation (or β-shift)

is either empty or has full entropy log β and Hausdorff dimension 1.

For a set of β of full Lebesgue measure, our second main result (stated formally as theorem

6.5.1 and theorem 6.5.2) is a corollary of our first main result (stated formally as theorem 6.4.1).
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Some further analysis is required to extend the Hausdorff dimension part of the statement to the

remaining null set of β (see theorem 6.5.3).

To undertake the proof of our first main result, we develop notions of almost spanning sets,

strongly separated sets and a generalised version of the Katok formula for entropy. This should be

of independent interest.

In chapter 4, we showed that when f has the specification property, the irregular set is either

empty or has full topological pressure. The method of this chapter can be used to show that this

more general result holds true in the almost specification setting. However, we restrict ourselves to

the special case of entropy for clarity and brevity.

Furthermore, Pfister and Sullivan proved that the conditional variational principle for entropy

of Takens and Verbitskiy holds for maps with the almost specification property (this corresponds to

the special case ψ = 0 of our theorem 5.1.1). A synthesis of the techniques of this chapter and

chapter 5 can be used to prove a full version of theorem 5.1.1 for maps with almost specification

(i.e. a conditional variational principle for pressure). We choose not to write out the proof as all the

necessary ideas are included in this chapter and chapter 5.

In §6.1, we define the almost specification property. In §6.3 we establish our general version of

the Katok formula for entropy. In §6.4, we prove our first main result. In §6.5, we consider arbitrary

β-shifts and β-transformations and establish our second main result.

6.1 The almost specification property

Pfister and Sullivan have introduced a property called the g-almost product property. We take the

liberty of renaming this property the almost specification property. The almost specification property

can be verified for every β-shift (see §6.5.1). The version we use here is a priori weaker than that in

[PS2]. First we need an auxiliary definition.

Definition 6.1.1. Let ε0 > 0. A function g : N × (0, ε0) 7→ N is called a mistake function if for all

ε ∈ (0, ε0) and all n ∈ N, g(n, ε) ≤ g(n+ 1, ε) and

lim
n→∞

g(n, ε)

n
= 0.

Given a mistake function g, if ε > ε0, we define g(n, ε) := g(n, ε0).

We note that for fixed k ∈ N and λ > 0, if g is a mistake function, then so is h defined by

h(n, ε) = kg(n, λε).

Definition 6.1.2. For n,m ∈ N,m < n, we define the set of (n,−m) index sets to be

I(n,−m) := {Λ ⊆ {0, . . . , n− 1},#Λ ≥ n−m}.
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Let g be a mistake function and ε > 0. For n sufficiently large so that g(n, ε) < n, we define the

set of (g, n, ε) index sets to be I(g;n, ε) := I(n,−g(n, ε)). Equivalently,

I(g;n, ε) := {Λ ⊆ {0, . . . , n− 1},#Λ ≥ n− g(n, ε)}.

For a finite set of indices Λ, we define

dΛ(x, y) = max{d(f jx, f jy) : j ∈ Λ} and BΛ(x, ε) = {y ∈ X : dΛ(x, y) < ε}.

Definition 6.1.3. When g(n, ε) < n, we define a ‘dynamical ball of radius ε and length n with

g(n, ε) mistakes’. Let

Bn(g;x, ε) := {y ∈ X : y ∈ BΛ(x, ε) for some Λ ∈ I(g;n, ε)}

=
⋃

Λ∈I(g;n,ε)

BΛ(x, ε)

Definition 6.1.4. A continuous map f : X 7→ X satisfies the almost specification property if there

exists a mistake function g such that for any ε1, . . . , εk > 0, there exist integersN(g, ε1), . . . , N(g, εk)

such that for any x1, . . . , xk in X and integers ni ≥ N(g, εi),

k⋂

j=1

f−
∑j−1

i=0
niBnj

(g;xj , εj) 6= ∅,

where n0 = 0.

Remark 6.1.1. The function g can be interpreted as follows. The integer g(n, ε) tells us how many

mistakes we are allowed to make when we use the almost specification property to ε shadow an orbit

of length n. Henceforth, we assume for convenience and without loss of generality that N(g, ε) is

chosen so that g(n, ε)/n < 0.1 for all n ≥ N(g, ε).

Remark 6.1.2. Pfister and Sullivan use a slightly different definition of mistake function (which

they call a blowup function). They do not allow g to depend on ε. An example of a function

which is a mistake function under our definition but is not considered by Pfister and Sullivan is

g(n, ε) = ε−1 log n. Since we allow a larger class of mistake functions, the almost specification

property defined here is slightly more general than the g-almost product property of Pfister and

Sullivan.

We compare specification with almost specification. We recall that f : X 7→ X satis-

fies specification if for all ε > 0, there exists an integer m = m(ε) such that for any collection

{Ij = [aj , bj ] ⊂ N : j = 1, . . . , k} of finite intervals with aj+1 − bj ≥ m(ε) for j = 1, . . . , k − 1 and

any x1, . . . , xk in X, there exists a point x ∈ X such that

d(fp+ajx, fpxj) < ε for all p = 0, . . . , bj − aj and every j = 1, . . . , k.

59



Pfister and Sullivan showed that the specification property implies the almost specification property

[PS2] using ANY blow-up function g. To see the relation between the two concepts, we note that if

f has specification and we set g(n, ε) = m(ε) for all n larger than m(ε) and set N(g, ε) = m(ε)+1,

then for any x1, . . . , xk in X and integers ni ≥ N(g, ε), we have

k⋂

j=1

f−
∑j−1

i=0
niBnj

(g;xj , ε) 6= ∅.

The trick required to replace ε by ε1, . . . , εk can be found in [PS2].

6.2 Technique

To prove our first main theorem of the chapter, we modify the strategy laid out in chapter 3. We

require a generalised version of the Katok entropy formula in order to successfully generalise the

method of proof described above. We briefly explain why.

The key basic fact required for the construction in chapter 4 which does not generalise is

lemma 4.2.2. We give an example to demonstrate why. First, we assume that f has specification.

Let S1 and S2 be (n, 4ε) separated sets. For each pair (x, y) ∈ S1 × S2, let us use the specification

property to define a point z := z(x, y) such that dn(z, x) < ε and dn(f
n+m(ε)z, y) < ε. Define

Y = {z(x, y) : x ∈ S1, y ∈ S2}.

Suppose that z1 = z(x1, y1), z2 = z(x2, y2) ∈ Y and (x1, y1) 6= (x2, y2). Either x1 6= x2, in which

case

dn(z1, z2) > dn(x1, x2) − dn(x1, z1) − dn(x1, z2) > 2ε,

or y1 6= y2, in which case dn(f
n+m(ε)z1, f

n+m(ε)z2) > 2ε. In particular, z1 6= z2. Thus #Y =

#S1#S2. This kind of argument is essential for our entropy estimates.

We now see what happens when we attempt the same construction only assuming that f has

the almost specification property. For each pair (x, y) ∈ S1 × S2, the almost specification property

guarantees the existence of a point z(x, y) such that

z(x, y) ∈ Bn(g;x, ε) ∩ f
−nBn(g; y, ε),

where g is a suitable mistake function and we assume that n was chosen to be sufficiently large.

Define

Y ′ = {z(x, y) : x ∈ S1, y ∈ S2},

where z(x, y) is a choice of point in Bn(g;x, ε)∩f
−nBn(g; y, ε). Let z1 = z(x1, y1), z2 = z(x2, y2) ∈

Y ′ with (x1, y1) 6= (x2, y2). We have no guarantee that z1 6= z2. This is because it is possible that
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d(f ix1, f
ix2) > 4ε at only one index i ∈ {0, . . . , n−1} and we cannot guarantee that d(f iz1, f

ix1) <

ε. Thus, a priori, we may have #Y ′ < #S1#S2.

To solve this problem, we develop a notion of a ‘strongly separated set’. The idea is that

S is (n,−m, 4ε) separated (where m < n) if for every set of indices Λ ⊂ {0, . . . , n − 1} such that

#Λ ≥ n−m we have

max{d(f ix, f iy) : i ∈ Λ} > 4ε.

In our example, if we replace S1 and S2 by (n,−m, 4ε) separated sets where m = 2g(n, ε) + 1, we

can guarantee that the set of points Y ′′ constucted as before using the almost specification property

satisfies #Y ′′ = #S1#S2.

Thus to adapt our strategy to the almost specification setting, we prove a modification of

the Katok entropy formula which uses ‘strongly separated sets’ in place of spanning sets.

6.3 A modified Katok entropy formula

The following definitions of ‘strongly separated’ and ‘almost spanning’ sets are inspired by Pfister

and Sullivan and designed for use in the setting of maps with the almost specification property.

Definition 6.3.1. Let Z ⊆ X. For m < n, a set S is (n,−m, ε) separated for Z if S ⊂ Z and for

every Λ ∈ I(n,−m), we have dΛ(x, y) > ε for every x, y ∈ S. We define a set S to be (g;n, ε)

separated if it is (n,−g(n, ε), ε) separated. Equivalently, S is (g;n, ε) separated if for every x, y ∈ S

#{j ∈ {0, . . . n− 1} : d(f jx, f jy) > ε} > g(n, ε).

We think of an (n,−m, ε) separated set to be ‘a set which remains (n, ε) separated when

you permit m mistakes’. In particular, a set S which is (g;n, ε) separated is (n, ε) separated in the

usual sense. We define the natural dual notion of a (g;n, ε) spanning set.

Definition 6.3.2. For m < n, a set S ⊂ Z is (n,−m, ε) spanning for Z if for all x ∈ Z, there exists

y ∈ S and Λ ∈ I(n,−m) such that dΛ(x, y) ≤ ε. Note that Λ depends on x and an (n, ε) spanning

set is always (n,−m, ε) spanning. We define a set S to be (g;n, ε) spanning if it is (n,−g(n, ε), ε)

spanning.

We think of an (n,−m, ε) spanning set to be ‘a set which requires up to m mistakes to be

(n, ε) spanning’. Let

sn(g;Z, ε) = sup{#S : S is (g;n, ε) separated for Z},

rn(g;Z, ε) = inf{#S : S is (g;n, ε) spanning for Z},
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sn(Z, ε) = sup{#S : S is (n, ε) separated for Z},

rn(Z, ε) = inf{#S : S is (n, ε) spanning for Z}.

Lemma 6.3.1. We have

(1) rn(g;Z, ε) ≤ sn(g;Z, ε) ≤ sn(Z, ε),

(2) sn(2g;Z, 2ε) ≤ rn(g;Z, ε) ≤ rn(Z, ε) ≤ sn(Z, ε).

Proof. Suppose that S is a (g;n, ε) separated set for Z of maximum cardinality such that S is not

(g;n, ε) spanning. We can find

z ∈ Z \
⋃

Λ∈I(g;n,ε)

⋃

x∈S

BΛ(x, ε) =
⋂

Λ∈I(g;n,ε)

(
Z \

⋃

x∈S

BΛ(x, ε)

)
.

Since dΛ(x, z) > ε for all x ∈ S and Λ ∈ I(g;n, ε), then S ∪ {z} is a (g;n, ε) separated set, which

contradicts the maximality of S. Thus, every (g;n, ε) separated set of maximal cardinality is (g;n, ε)

spanning.

For (2), suppose E is (2g;n, 2ε) separated and F is (g;n, ε) spanning for Z. Define φ : E 7→

F by choosing for each x ∈ E some φ(x) ∈ F and some Λx ∈ I(g;n, ε) such that dΛx(x, φ(x)) ≤ ε.

Suppose x 6= y. Let Λ = Λx ∩ Λy. Since Λ ∈ I(2g;n, ε), we have dΛ(φ(x), φ(y)) > 0 and thus

φ(x) 6= φ(y) . Thus φ is injective and hence |E| ≤ |F |.

Theorem 6.3.1 (Modified Katok entropy formula). Let (X, d) be a compact metric space, f : X 7→

X be a continuous map and µ be an ergodic invariant measure. For γ ∈ (0, 1) and any mistake

function g, we have

hµ = lim
ε→0

lim inf
n→∞

1

n
log(inf{rn(g;Z, ε) : Z ⊂ X,µ(Z) ≥ 1 − γ})

The formula remains true if we replace the lim inf by lim sup and/or rn(g;Z, ε) by sn(g;Z, ε). The

value taken by the lim inf (or lim sup) is independent of the choice of mistake function g.

Proof. Since rn(Z, ε) ≥ rn(g;Z, ε), it follows from the original Katok entropy formula that the

expression on the right hand side is less than or equal to hµ (this is the easier inequality to prove

directly any way). To prove the opposite inequality, we give a method inspired by the proof of

theorem A2.1 of [Pes].

For any η > 0, there exists δ, 0 < δ ≤ η, a finite Borel partition ξ = {C1, . . . , Cm} and a

finite open cover U = {U1, . . . , Uk} of X where k ≥ m with the following properties:

(1) Diam(Ui) ≤ η, Diam(Cj) ≤ η for all i = 1, . . . ,m, j = 1, . . . , k,

(2) U i ⊂ Ci for all i = 1, . . . ,m,

(3) µ(Ci \ Ui) ≤ δ for all i = 1, . . . ,m and µ(
⋃k
i=m+1 Ui) ≤ δ,
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(4) 2δ logm ≤ η.

This is a consequence of the regularity of the measure µ. Fix η so 1 − γ > η > 0 and take

the corresponding number δ, covering U and partition ξ. Fix Z ⊂ X with µ(Z) > 1 − γ. Let tn(x)

denote the number of l, 0 ≤ l ≤ n − 1 for which f l(x) ∈
⋃k
i=m+1 Ui. Let ξn =

∨n−1
i=0 f

−iξ and

Cξn(x) denote the member of the partition ξn to which x belongs.

Lemma 6.3.2. There exists a set A ⊂ Z and N > 0 with µ(A) ≥ µ(Z) − δ such that for every

x ∈ A and n ≥ N

(1) tn(x) ≤ 2δn

(2) µ(Cξn(x)) ≤ exp(−(hµ(f, ξ) − δ)n)

Proof. Let χ be the characteristic function of
⋃k
i=m+1 Ui. We can write tn(x) =

∑n−1
i=0 χ(f ix). By

Birkhoff’s ergodic theorem and Egorov’s theorem, we can find a set A1 ⊂ X with µ(A1) ≥ µ(Z)− δ
2

such that for x ∈ A1, we have uniform convergence

n−1tn(x) =
1

n

n−1∑

i=0

χ(f ix) →
∫
χdµ = µ(

k⋃

i=m+1

Ui) ≤ δ.

Choose N1 such that if n ≥ N1 and x ∈ A1, then tn(x) ≤ 2δn.

By Shannon-Mcmillan-Brieman theorem and Egorov’s theorem, we can find a set A2 ⊂ X

with µ(A2) ≥ µ(Z) − δ
2 such that for x ∈ A1, we have uniform convergence

−
1

n
logµ(Cξn(x)) → hµ(f, ξ)

There exists N2 such that if n ≥ N2 and x ∈ A2, then − 1
n

logµ(Cξn(x)) ≤ h(f, ξ) + δ. Set

A = A1 ∩A2 and N = max{N1, N2} and the lemma is proved.

Let ξ∗n be the collection of elements Cξn of the partition ξn for which Cξn ∩A 6= ∅. Then for

n ≥ N , using property (2) of A,

#ξ∗n ≥
∑

C∈ξ∗n

µ(C) exp{n(hµ(f, ξ) − δ)}

≥ µ(A) exp{n(hµ(f, ξ) − δ)}}.

Let 2ε be a Lebesgue number for U and let S be (g;n, ε) spanning for Z. We have Z ⊆
⋃
x∈S BΛx(x, ε) for suitably chosen Λx ∈ I(g;n, ε). Let us fix B = BΛx(x, ε). Let ξΛ be the

partition
∨
i∈Λ f

−iξ. We estimate the number p(B, ξΛx) of elements of the partition ξΛx which have

non-empty intersection with A ∩B.

Since 2ε is a Lebesgue number for U , then B(f jx, ε) ⊂ Uij for some Uij ∈ U . If ij ∈

{1, . . . ,m} then f−j(Uij ) ⊂ f−j(Cij ). If ij ∈ {m + 1, . . . , k}, then anything up to m sets of the
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form f−j(Cij ) may have non-empty intersection with f−j(Uij ). It follows, using property (1) of A,

that

p(B, ξΛx) ≤ m2δn = exp(2δn logm)

The number p(B, ξn) of elements of the partition ξn which have non-empty intersection with both

A and B satisfies

p(B, ξn) ≤ p(B, ξΛx)mg(n,ε) ≤ exp{(2δn+ g(n, ε)) logm}.

It follows that

#ξ∗n ≤
∑

x∈S

p(BΛx(x, ε), ξn) ≤ #S exp{(2δn+ g(n, ε)) logm}.

Rearranging, we have

1

n
log #S ≥ hµ(f, ξ) − δ −

(
2δ +

g(n, ε)

n

)
logm.

Since 2δ logm < η, Diam(ξ) < η, δ < η, g(n,ε)
n

→ 0, and η was arbitrary, we are done.

As a corollary, we have a version of theorem 6.3.1 for topological entropy (which we do not

use).

Theorem 6.3.2. Let (X, d) be a compact metric space and f : X 7→ X be a continuous map. We

have

htop(f) = lim
ε→0

lim inf
n→∞

1

n
log rn(g;X, ε)

The formula remains true if we replace the lim inf by lim sup and/or rn(g;X, ε) by sn(g;X, ε). The

value taken by the lim inf (or lim sup) is independent of the choice of mistake function g.

6.4 Main result

Theorem 6.4.1. Let (X, d) be a compact metric space and f : X 7→ X be a continuous map

with the almost specification property. Assume that ϕ ∈ C(X) satisfies infµ∈Mf (X)

∫
ϕdµ <

supµ∈Mf (X)

∫
ϕdµ. Let X̂(ϕ, f) be the irregular set for ϕ, then htop(X̂(ϕ, f)) = htop(f).

We remark that X̂(ϕ, f) 6= ∅ is a sufficient condition on ϕ for the theorem to apply (see

lemma 2.3.2).

Proof. Let us fix a small γ > 0, and take ergodic measures µ1 and µ2 such that

(1) hµi
> htop(f) − γ for i = 1, 2,

(2)
∫
ϕdµ1 6=

∫
ϕdµ2.
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That we are able to choose µi to be ergodic is a slightly subtle point. Let µ1 be ergodic and

satisfy hµ1 > htop(f)−γ/3. Let ν ∈ Mf (X) satisfy
∫
ϕdµ1 6=

∫
ϕdν. Let ν ′ = tµ1 +(1− t)ν where

t ∈ (0, 1) is chosen sufficiently close to 1 so that hν′ > htop(f) − 2γ/3. By [PS1], when f has the

almost specification property, we can find a sequence of ergodic measures νn ∈ Mf (X) such that

hνn → hν′ and νn → ν ′ in the weak-∗ topology. Therefore, we can choose a measure belonging to

this sequence which we call µ2 which satisfies hµ2 > htop(f) − γ and
∫
ϕdµ1 6=

∫
ϕdµ2. (We could

avoid the use of the result from [PS1] by giving a self-contained proof along the lines of the ‘modified

construction’ in §4.2.2. We do not do so in the interest of brevity.) Choose δ > 0 sufficiently small

so ∣∣∣∣
∫
ϕdµ1 −

∫
ϕdµ2

∣∣∣∣ > 4δ.

Let ρ : N 7→ {1, 2} be given by ρ(k) = (k + 1)(mod2) + 1. Choose a strictly decreasing sequence

δk → 0 with δ1 < δ and a strictly increasing sequence lk → ∞ so the set

Yk :=

{
x ∈ X ′ :

∣∣∣∣
1

n
Snϕ(x) −

∫
ϕdµρ(k)

∣∣∣∣ < δk for all n ≥ lk

}
(6.1)

satisfies µρ(k)(Yk) > 1 − γ for every k.

The following lemma follows readily from proposition 6.3.1. The proof is similar to that of

lemma 4.2.1.

Lemma 6.4.1. Define mistake functions hk(n, ε) := 2g(n, ε/2k). For any sufficiently small ε > 0,

we can find a sequence nk → ∞ and a countable collection of finite sets Sk so that each Sk is a

(hk;nk, 4ε) separated set for Yk and satisfies

#Sk ≥ exp(nk(htop(f) − 4γ)).

Furthermore, the sequence nk can be chosen so that nk ≥ lk, nk > N(hk, ε) and hk(nk, ε)/nk → 0.

We choose ε sufficiently small and fix all the ingredients provided by lemma 6.4.1. Our

strategy is to construct a certain fractal F ⊂ X̂(ϕ, f), on which we can define a sequence of

measures suitable for an application of the Entropy Distribution Principle (we use a version which is

a special case of theorem 4.1.4).

Theorem 6.4.2 (Entropy Distribution Principle). Let f : X 7→ X be a continuous transformation.

Let Z ⊆ X be an arbitrary Borel set. Suppose there exists ε > 0 and s ≥ 0 such that one can find

a sequence of Borel probability measures µk, a constant K > 0 and an integer N satisfying

lim sup
k→∞

µk(Bn(x, ε)) ≤ Ke−ns

for every ball Bn(x, ε) such that Bn(x, ε) ∩ Z 6= ∅ and n ≥ N . Furthermore, assume that at least

one limit measure ν of the sequence µk satisfies ν(Z) > 0. Then htop(Z, ε) ≥ s.
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6.4.1 Construction of the fractal F

Let us choose a sequence with N0 = 0 and Nk increasing to ∞ sufficiently quickly so that

lim
k→∞

nk+1

Nk
= 0, lim

k→∞

N1n1 + . . .+Nknk
Nk+1

= 0. (6.2)

Let xi = (xi1, . . . , x
i
Ni

) ∈ SNi
i . For any (x1, . . . , xk) ∈ SN1

1 × . . .× SNk

k , by the almost specification

property, we have

B(x1, . . . xk) :=
k⋂

i=1

Ni⋂

j=1

f−
∑i−1

l=0
Nlnl−(j−1)niBni

(g;xij ,
ε

2i
) 6= ∅.

We define Fk by

Fk = {B(x1, . . . , xk) : (x1, . . . xk) ∈ SN1
1 × . . .× SNk

k }.

Note that Fk is compact and Fk+1 ⊆ Fk. Define F =
⋂∞
k=1 Fk.

Lemma 6.4.2. For any p ∈ F , the sequence 1
tk

∑tk−1
i=0 ϕ(f i(p)) diverges, where tk =

∑k
i=0Nini.

Proof. Choose p ∈ F and let pk := f tk−1p. Then there exists (xk1, . . . , x
k
Nk

) ∈ SNk

k such that

pk ∈
Nk⋂

j=1

f−(j−1)nkBnk
(g;xkj , ε/2k).

For c > 0, let Var(ϕ, c) := sup{|ϕ(x) − ϕ(y)| : d(x, y) < c}. We have

SnkNk
ϕ(pk) ≤

Nk∑

j=1

Snk
ϕ(xkj ) + nkNkVar(ϕ, ε/2k) +Nkg(nk, ε/2

k)‖ϕ‖

and hence

1

nkNk
SnkNk

ϕ(pk) ≤
∫
ϕdµρ(k) + δk + Var(ϕ, ε/2k) +

1

nk
g(nk, ε/2

k).

It follows that ∣∣∣∣
1

nkNk
SnkNk

ϕ(pk) −
∫
ϕdµρ(k)

∣∣∣∣→ 0.

We can use the fact that nkNk

tk
→ 1 to prove that

∣∣∣∣
1

nkNk
SnkNk

ϕ(pk) −
1

tk
Stkϕ(p)

∣∣∣∣→ 0,

and the result follows.
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6.4.2 Construction of a special sequence of measures µk

We first undertake an intermediate construction. For each x = (x1, . . . , xk) ∈ SN1
1 × . . .× SNk

k , we

choose (one) point z = z(x) such that

z ∈ B(x1, . . . xk).

Let Tk be the set of all points constructed in this way. We show that points constructed in this way

are distinct and thus #Tk = #SN1
1 . . .#SNk

k .

Lemma 6.4.3. Let x and y be distinct members of SN1
1 ×. . .×SNk

k . Then z1 := z(x) and z2 := z(y)

are distinct points. Thus #Tk = #SN1
1 . . .#SNk

k .

Proof. Since x 6= y, there exists i, j so xij 6= yij . We have Λ1,Λ2 ∈ I(g;ni, ε/2
i) such that

dΛ1(x
i
j , f

az1) <
ε

2i
and dΛ2(y

i
j , f

az2) <
ε

2i
,

where a =
∑i−1
l=0 Nlnl+(j−1)ni. Let Λ = Λ1∩Λ2. Since Λ ∈ I(2g;ni, ε/2

i), we have dΛ(xij , y
i
j) >

4ε. Using these inequalities, we have dΛ(faz1, f
az2) > 3ε.

We now define the measures on F which yield the required estimates for the Entropy Distri-

bution Principle. We define, for each k, an atomic measure centred on Tk. Precisely, let

νk :=
∑

z∈Tk

δz

We normalise νk to obtain a sequence of probability measures µk, ie. we let µk := 1
#Tk

νk.

Lemma 6.4.4. Suppose µ is a limit measure of the sequence of probability measures µk. Then

µ(F ) = 1.

Proof. For any fixed l and all p ≥ 0, µl+p(Fl) = 1 since µl+p(Fl+p) = 1 and Fl+p ⊆ Fl. Suppose

µ = limk→∞ µlk for some lk → ∞, then µ(Fl) ≥ lim supk→∞ µlk(Fl) = 1. It follows that µ(F ) =

liml→∞ µ(Fl) = 1.

In fact, the measures µk converge. However, by using our version of the Entropy Distribution

Principle, we do not need to use this fact and so we omit the proof (which goes like lemma 5.4 of

[TV2]).

Let B := Bn(q, ε) be an arbitrary ball which intersects F . Let k be the unique number which

satisfies tk ≤ n < tk+1. Let j ∈ {0, . . . , Nk+1 − 1} be the unique number so

tk + nk+1j ≤ n < tk + nk+1(j + 1).

We assume that j ≥ 1 and leave the details of the simpler case j = 0 to the reader. The following

lemma reflects the restriction on the number of points that can be in B ∩ Tk+p.
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Lemma 6.4.5. For p ≥ 1, µk+p(B) ≤ (#Tk)
−1(#Sk+1)

−j

Proof. First we show that µk+1(B) ≤ (#Tk)
−1(#Sk+1)

−j . We require an upper bound for the

number of points in Tk+1 ∩ B. If µk+1(B) > 0, then Tk+1 ∩ B 6= ∅. Let z = z(x, xk+1) ∈ Tk+1 ∩ B

where x ∈ SN1
1 × . . .× SNk

k and xk+1 ∈ S
Nk+1

k+1 . Let

Ax;x1,...,xj
= {z(x, y1, . . . , yNk+1

) ∈ Tk+1 : x1 = y1, . . . , xj = yj}.

We suppose that z′ = z(y, y
k+1

) ∈ Tk+1 ∩B and show that z′ ∈ Ax;x1,...,xj
. We have dn(z, z

′) < 2ε

and we show that this implies xl = yl for l ∈ {1, 2, . . . , j} (the proof that x = y is similar). Suppose

that yl 6= xl and let al = tk + (l − 1)(nk+1). There exists Λ1,Λ2 ∈ I(g;nk+1, ε/2
k+1) such that

dΛ1(f
alz, xl) <

ε

2k+1
and dΛ2(f

alz′, yl) <
ε

2k+1
.

Let Λ = Λ1 ∩ Λ2. Since Λ ∈ I(2g;nk+1, ε/2
k+1), we have dΛ(xl, yl) > 4ε. We have

dn(z, z
′) ≥ dΛ(falz, falz′)

≥ dΛ(xl, yl) − dΛ(falz, xl) − dΛ(falz′, yl) ≥ 3ε,

which is a contradiction. Thus, we have

νk+1(B) ≤ #Ax;x1,...,xj
= (#Sk+1)

Nk+1−j ,

µk+1(B) ≤ (#Tk+1)
−1(#Sk+1)

Nk+1−j = (#Tk)
−1(#Sk+1)

−j

Now consider µk+p(B). Arguing similarly to above, we have

νk+p(B) ≤ #Ax;x1,...,xj
(#Sk+2)

Nk+1 . . . (#Sk+p)
Nk+p

The desired result follows from this inequality by dividing by #Tk+p.

By lemma 6.4.1, we have

#Tk(#Sk+1)
j ≥ exp{(htop(f) − 4γ)(N1n1 +N2n2 + . . .+Nknk + jnk+1)}

≥ exp{(htop(f) − 4γ)n}.

Combining this with the previous lemma gives us

lim sup
l→∞

µl(Bn(q, ε)) ≤ exp{−n(htop(f) − 4γ)}.

Applying the Entropy Distribution Principle, we have

htop(F, ε) ≥ htop(f) − 4γ.

Since γ and ε were arbitrary and F ⊂ X̂(ϕ, f), we have htop(X̂(ϕ, f)) = htop(f).
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6.5 The β-transformation

In this section, let X = [0, 1). For any fixed β > 1, we consider the β-transformation fβ : X 7→ X

given by

fβ(x) = βx (mod1).

As reference for the basic properties of the β-transformation, we recommend the introduction of the

thesis of Maia [Mai]. For β /∈ N, let b = [β] and for β ∈ N, let b = β − 1. We consider the partition

into b+ 1 intervals

J0 =

[
0,

1

β

)
, J1 =

[
1

β
,
2

β

)
, . . . , Jb =

[
b

β
, 1

)
.

For x ∈ [0, 1), let w(x) = (wj(x))
∞
j=1 be the sequence given by wj(x) = i when f j−1x ∈ Ji. We

call w(x) the greedy β-expansion of x and we have

x =
∞∑

j=1

wj(x)β
−j .

The β-shift (Σβ , σβ) is the subshift defined by the closure of all such sequences in
∏∞
i=1{0, . . . , b}.

Let w(β) = (wj(β))∞j=1 denote the sequence which is the lexicographic supremum of all β-expansions.

The sequence w(β) satisfies
∞∑

j=1

wj(β)β−j = 1,

so we call w(β) the β-expansion of 1. Parry showed that the set of sequences which belong to Σβ

can be characterised as

w ∈ Σβ ⇐⇒ σk(w) ≤ w(β) for all k ≥ 1,

where ≤ is taken in the lexicographic ordering [Par]. Parry also showed that any sequence w which

satisfies σk(w) ≤ w is the β-expansion of 1 for some β > 1. The β-shift contains every sequence

which arises as a greedy β-expansion and an additional point for every x whose β-expansion is finite

(i.e. when there exists j so wi(x) = 0 for all i ≥ j). Thus the map π : Σβ 7→ [0, 1] defined by

π(w) =
∞∑

j=1

wjβ
−j

is one to one except at the countably many points for which the β-expansion is finite.

Σβ is typically not a shift of finite type (nor even a shift with specification) and the set of all

β-shifts gives a natural and interesting class of subshifts. In the next section, we decribe in detail the

known results on specification properties for the β-shift. The key fact for our analysis is that every

β-shift has the almost specification property [PS1]. We have (p.179 of [Wal]) that htop(σβ) = log β.

Theorem 6.5.1. For β > 1, let fβ : X 7→ X be the β-transformation, fβ(x) = βx(mod1). Let

ϕ ∈ C([0, 1]) and assume that the irregular set for ϕ is non-empty (ie. X̂(ϕ, fβ) 6= ∅), then

htop(X̂(ϕ, fβ)) = log β.
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Proof. Let Σ′
β denote the set of sequences which arise as β-expansions. Recall that Σβ \ Σ′

β is a

countable set and the restriction of π to Σ′
β is a homeomorphism satisfying π ◦ σβ = fβ ◦ π. Thus,

if Z ∈ Σβ and Z ′ := Z ∩ Σ′
β , we have

htop(Z, σβ) = htop(Z
′, σβ) = htop(π(Z ′), fβ).

Suppose ϕ : [0, 1) 7→ R satisfies X̂(ϕ, fβ) 6= ∅. Let x ∈ X̂(ϕ, fβ) and let w(x) be its β-expansion.

We let ϕ ∈ C(Σβ) be the unique continuous function which satisfies ϕ = ϕ ◦ π on Σ′
β (this exists

because we assumed ϕ to be continuous on [0, 1]). It is clear that w(x) ∈ Σ̂β(ϕ, σβ). Since the

dynamical system (Σβ , σβ) satisfies the almost specification property, it follows from theorem 6.5.1

that htop(Σ̂β(ϕ, σβ)) = log β. Since π(Σ̂β(ϕ, σβ)∩Σ′
β) = X̂(ϕ, fβ), it follows that htop(X̂(ϕ), fβ) =

log β.

6.5.1 β-transformations and specification properties

There is a simple presentation of Σβ by a labelled graph Gβ . See [PS1] and [BH] for reference. We

describe the construction of Gβ when the β-expansion of 1 is not eventually periodic. We refer the

reader to [PS1] for the slightly different construction required when the β-expansion of 1 is eventually

periodic (in this case, Σβ is a sofic shift [BM] and therefore has specification).

Let v1, v2, . . . be a countable set of vertices. We draw a directed edge from vi to vi+1 and

label it with the value wi(β) for all i ≥ 1. If wi(β) ≥ 1, we draw a directed edge from vi to v1

labelled with the value 0. If b = 1, the construction is complete. If b > 1, then for all j ∈ {2, . . . , b}

and all wi(β) ≥ j, we draw a directed edge from vi to v1 labelled with the value j − 1. Note that

if wi(β) = 0, the only edge which starts at vi is the edge from vi to vi+1 labelled by 0, and if

wi(β) 6= 0 there is always an edge from vi to v1. We have w ∈ Σβ iff w labels an infinite path of

directed edges of Gβ which starts at the vertex v1. The following figure depicts part of the graph Gβ

for a value of β satisfying (wj(β))6j=1 = (2, 0, 1, 0, 0, 1).

v1 v2 v3 v4 v5 v6 v7
2 0 1 0 0 1

0

0

1

0

An arbitrary subshift Σ on b+ 1 symbols is a closed shift-invariant subset of
∏∞
i=1{0, . . . , b}.

We define v to be admissible word of length n ≥ 1 for Σ if there exists x ∈ Σ such that v =

(x1, . . . , xn). The specification property of definition 2.2.1 can easily be seen to be equivalent to the

following property in the case of an arbitrary subshift.
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Definition 6.5.1. A subshift Σ has the specification property if there exists M > 0 such that for

any two admissible words w1 and w2, there exists a word w of length less than M such that w1ww2

is an admissible word.

We now return to the β-shift Σβ . Define

zn(β) = min{i ≥ 0 : wn+i(β) 6= 0}.

Equivalently, zn(β) + 1 is the minimum number of edges required to travel from vn to v1. The

β-shift fails to have the specification property iff ‘blocks of consecutive zeroes in the β expansion

of 1 have unbounded length’, ie. if zn(β) is unbounded [BM]. Consider concatenations of the word

cn := (w1(β), . . . , wn(β)) with some other admissible word v. We can see from the graph Gβ that

the length of the shortest word w such that cnwv is an admissible word is zn(β) (the word w is a

block of zeroes of length zn(β)). Now for x ∈ Σβ , we define zn(x) to be the length of the shortest

word w required so that for any admissible word v, (x1, . . . , xn)wv is an admissible word. Note that

for all x ∈ Σβ , zn(x) ≤ zn(β). Thus Σβ has specification iff zn(β) is bounded. Buzzi shows that

the set of β for which this situation occurs has Lebesgue measure 0.

Pfister and Sullivan [PS1] used the graph Gβ to observe that every β-shift has the almost

specification property. Their strategy is to ‘jump ship’ on the last non-zero entry of an admissible

word. More precisely, every β-shift has the following property. Given any admissible word w, there is

a word w′ which differs from w only by one symbol, such that w′v is admissible for every admissible

word v. The modified word w′ is given by replacing the last non-zero entry of the word w by a 0.

This property is best seen from inspection of the graph Gβ and is the content of proposition 5.1 of

[PS1]. It can easily be seen that this property implies the almost specification property.

6.5.2 Hausdorff dimension of the irregular set for the β-shift

We give an elementary direct proof of the relationship between topological entropy and Hausdorff

dimension. We use the metric dβ(x, y) = 1
βn where n is the smallest integer such that xn+1 6= yn+1.

Let Cn(x) = {y ∈ Σβ : xi = yi for i = 0, . . . , n− 1}. We have

Diam(Cn(w(β))) =
1

βn+zn(β)
,

1

βn
≥ Diam(Cn(x)) ≥

1

βn+zn(β)
.

For Hausdorff dimension, we recall our notation

H(Z,α, δ) = inf{
∑

δαi : Z ⊆
⋃

i

B(xi, δi), δi ≤ δ},
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H(Z,α) = limδ→0H(Z,α, δ) and DimH(Z) = inf{α : H(Z,α) = 0}. We sometimes write

DimH(Z, d) in place of DimH(Z) when we wish to emphasise the dependence on the metric d.

We note that the map x 7→ w(x) is bi-Lipshitz with respect to the metric dβ and thus for Z ⊂ [0, 1),

DimH(Z) = DimH(π−1(Z), dβ).

Define

z(β) := lim sup
n→∞

zn(β)/n.

Remark 6.5.1. z(β) may be arbitrarily large or even ∞. To see this, let (an) be an increasing

sequence. Let (bn) be the sequence given by b1 = 1, followed by a block of consecutive zeroes of

length a1, followed by ba1+2 = 1, followed by a block of consecutive zeroes of length a2, followed

by ba1+a2+3 = 1, and so forth. Let β satisfy w(β) = (bn). We can choose an to grow as fast as we

like.

Lemma 6.5.1. For arbitrary Z ⊂ Σβ , we have log βDimH(Z) ≤ htop(Z), and when z(β) < 1,

1

1 + z(β)
htop(Z) ≤ log βDimH(Z).

Proof. Recall that for shift spaces, topological entropy admits a simplified definition, which was

described in §2.1.3. We use the notation from §2.1.3. That log βDimH(Z) ≤ htop(Z) is a standard

argument which follows from the fact that Diam(Cn(x)) ≤
1
βn . For the other inequality, we fix ε > 0

and choose N sufficiently large so that for n > N , zn(β)/n < z(β) + ε. For n > N , we have

Diam(Cn(x)) ≥
1

βn(1+z(β)+ε)

Let γn = β−n(1+z(β)+ε). Take a cover of Z by metric balls B(xi, δi) with δi < γN . Let ni be the

unique integer such that
1

β(ni−1)(1+z(β)+ε)
≥ δi >

1

βni(1+z(β)+ε)
.

Then Γ = {Cni
(xi)} covers Z and

∑
δαi >

∑
exp(−αni(1 + z(β) + ε) log β) = Q(Z,α(1 + z(β) + ε) log β,Γ).

Taking infimums, we have M(Z,α(1 + z(β) + ε) log β,N) ≤ H(Z,α, γn). It follows that

M(Z,α(1 + z(β)) log β) ≤ lim
n→∞

H(Z,α, γn) = H(Z,α)

and the inequality follows.

We will also use the following elementary lemma which can be proved similarly to the above.
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Lemma 6.5.2. For Z ⊂ Σβ , if zn(x) is bounded for x ∈ Z (ie. there exists C > 0 such that

supx∈Z supn zn(x) < C), then log βDimH(Z) = htop(Z).

In [PS1], Pfister and Sullivan sketch an argument which shows that the set of β for which

z(β) = 0 has full Lebesgue measure. Thus for these β, lemma 6.5.1 tells us that log βDimH(Z) =

htop(Z) for any set Z. In particular, it follows from theorem 6.5.1 that if ϕ ∈ C(X) and X̂(ϕ, fβ) 6= ∅,

then DimH(X̂(ϕ, fβ)) = 1. In conclusion, this discussion proves the following theorem.

Theorem 6.5.2. There is a set of β of full Lebesgue measure, such that

(1) If ϕ ∈ C(Σβ) and Σ̂β(ϕ, σβ) 6= ∅, then DimH(Σ̂β(ϕ, σβ)) = 1,

(2) If ϕ ∈ C([0, 1]) and X̂(ϕ, fβ) 6= ∅, then DimH(X̂(ϕ, fβ)) = 1.

6.5.3 An alternative approach which covers the case z(β) > 0

We describe a method of proof which shows that

Theorem 6.5.3. For every β > 1,

(1) If ϕ ∈ C(Σβ) and Σ̂β(ϕ, σβ) 6= ∅, then DimH(Σ̂β(ϕ, σβ)) = 1,

(2) If ϕ ∈ C([0, 1]) and X̂(ϕ, fβ) 6= ∅, then DimH(X̂(ϕ, fβ)) = 1.

The method described does not use the almost specification property, and provides an alter-

native proof of our main results in the case of the β-shift. The key quoted result in this method is

a version of theorem 6.5.1 in the special case of n-step Markov shifts. We note that the ‘almost

specification’ method of proof applies in far greater generality and a self-contained version of the

proof described below would be comparable in length.

Proof. We give the proof for the β-shift version of the statement (part of the proof of theorem 6.5.1

can be used to extend the result to the β-transformation). Recall that any sequence (an) on a finite

number of symbols which satisfies σk(an) ≤ (an) for all k ≥ 0 arises as w(β) for some β > 1. Fix

β > 1 and write wi := wi(β). Let β(n) be the simple β-number which corresponds to the sequence

(w1, w2, . . . , wn, 0, 0, 0, . . .). An elementary argument [Par] shows that β(n) → β. It is clear that

Σβ(n) can be considered to be a subsystem of Σβ (the subshift Σβ(n) corresponds to the set of labels

of edges of infinite paths that only visit the first n vertices of Gβ).

Now suppose ϕ ∈ C(Σβ) is a function for which the irregular set is non-empty. Then there

exists x, y ∈ Σβ such that

lim
n→∞

1

n
Snϕ(x) 6= lim

n→∞

1

n
Snϕ(y).

Let δ > 0 and N1 ∈ N be such that for n ≥ N1,

∣∣∣∣
1

n
Snϕ(x) −

1

n
Snϕ(y)

∣∣∣∣ > 4δ.
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Pick N2 sufficiently large that

sup{|ϕ(w) − ϕ(v)| : w, v ∈ Σβ , wi = vi for i = 1, . . . , N2} < δ.

For any n ≥ N = max{N1, N2}, let us choose x′ ∈ CN (x) ∩ Σβ(n) and y′ ∈ CN (y) ∩ Σβ(n). We

have for all m ≥ N , ∣∣∣∣
1

m
Smϕ(x′) −

1

m
Smϕ(y′)

∣∣∣∣ > 2δ.

Thus the restriction of ϕ to Σβ(n) does not have trivial spectrum of Birkhoff averages and by lemma

2.3.2, our main theorem gives us

htop(Σ̂β(n)(ϕ, σβ(n))) = htop(σβ(n)) = log β(n). (6.3)

We remark that Σβ(n) is an n-step Markov shift (and thus has specification), so formula (6.3) also

follows for Hölder continuous ϕ from theorem 9.3.2 of [Bar]. Note that Σ̂β(n)(ϕ, σβ(n)) ⊂ Σ̂β(ϕ, σβ).

By lemma 6.5.2, any subset Z ⊂ Σβ(n) satisfies DimH(Z, dβ) = htop(Z)/ log β. In particular,

DimH(Σβ(n), dβ) = log(β(n))/ log β. Thus

DimH(Σ̂β(ϕ, σβ), dβ) ≥ sup
{
DimH(Σ̂β(n)(ϕ, σβ(n)), dβ)

}
= sup

{
log β(n)

log β

}
= 1.

Remark 6.5.2. An almost sofic shift [LM] is defined to be a shift space Σ for which one can find a

sequence of subshifts of finite type Σn such that Σn ⊂ Σ and limn→∞ htop(Σn, σ) = htop(Σ, σ). By

our previous reasoning, every β-shift is almost sofic. We remark that the proof of theorem 6.5.3 shows

that if (Σ, σ) is an almost sofic shift, ϕ ∈ C(Σ) and Σ̂(ϕ, σ) 6= ∅, then htop(Σ̂(ϕ, σ)) = htop(σ).

Remark 6.5.3. Pfister and Sullivan [PS1] consider the relationship between topological entropy and

Billingsley dimension Dimν (with respect to a reference measure ν). We remark that when ν is

equivalent to Lebesgue measure, then Dimν = DimH . Every β-transformation has an invariant

measure νβ which is equivalent to Lebesgue (and is the measure of maximal entropy). It is thus a

corollary of theorem 6.5.3 that if ϕ ∈ C(X) and X̂(ϕ, fβ) 6= ∅, then Dimνβ
(X̂(ϕ, fβ)) = 1.
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Chapter 7

Defining pressure via a conditional

variational principle

We now give an alternative definition of topological pressure for arbitrary (non-compact, non-

invariant) Borel subsets of metric spaces. We focus our attention on the case when the ambient

metric space is compact. The current approach is to define pressure as a characteristic of dimension

type, as used in chapter 4 and chapter 5. This approach was introduced by Bowen [Bow4] and

generalised by Pesin and Pitskel [PP2]. The entropy version in particular is very well established in

the literature as a dimension characteristic and plays an important role in dimension theory. One can

also define the upper and lower capacity topological pressure (see §2.1.5). This definition involves

the minimum cardinality of spanning sets and resembles the usual definition of topological pressure

in the compact invariant setting. As we saw in §5.1.1, the capacity topological pressure has its uses

(see also remark 7.1.3).

It would be desirable if topological pressure for arbitrary sets satisfied a variational principle

analogous to the classical variational principle

P classicX (ϕ) = sup

{
hµ +

∫
ϕdµ : µ ∈ Mf (X)

}
.

A variational principle for the pressure of Pesin and Pitskel does exist but only applies to invariant

sets satisfying a certain condition which is very difficult to check (see theorem 7.1.1). No general

variational principle is known in the non-compact or non-invariant case for the upper or lower capacity

topological pressure (although the relativised variational principle of Ledrappier and Walters involves

the consideration of upper capacity topological pressure, see remark 7.1.3). We propose a new notion

of pressure, which by its very definition satisfies a suitable variational principle. We study the new

definition directly, deriving many desirable properties satisfied by the previous notions of pressure.

We study the relationship between the definitions and give interesting examples where the definitions
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differ or coincide. The new pressure has the advantage that its properties are significantly easier

to derive than that of the dimension-like version and we seem to pay no price in terms of desirable

properties. Since the new pressure is defined via a conditional variational principle, it is by its very

nature adapted to the study of thermodynamic properties.

In §7.1, we state our definition and set up our notation. In §7.2, we study the properties of

our new topological pressure when the ambient space is compact. In §7.3, we study the relationship

between the different definitions. In §7.4, we consider some interesting examples. In §7.5, we

study our new topological pressure when the ambient space is non-compact. In §7.6, we prove an

elementary result which we use in §7.2 (this should serve as a nice digestif to round off the thesis).

7.1 The new definition

Let (X, d) be a compact metric space and f : X 7→ X a continuous map. Let C(X) be the space

of continuous real-valued functions on X. Let Z ⊂ X be an arbitrary Borel set. Let Mf (X)

denote the space of f -invariant Borel probability measures on X and Me
f (X) denote those which

are ergodic. If Z is f -invariant, let Mf (Z) denote the subset of Mf (X) for which the measures

µ satisfy the additional property µ(Z) = 1. Let Me
f (Z) := Mf (Z) ∩ Me

f (X). We define the

(empirical) probability measures

δx,n =
1

n

n−1∑

k=0

δfk(x)

where δx denotes the Dirac δ-measure supported on x. We define V(x) to be the set of limit points

for δx,n, namely:

V(x) = {µ ∈ Mf (X) : δx,nk
→ µ for some nk → ∞}.

We state the new definition which will be the object of our study.

Definition 7.1.1. Let Z be an arbitrary non-empty Borel set and ϕ ∈ C(X). Define

P
∗
Z(ϕ) = sup

{
hµ +

∫

X
ϕdµ : µ ∈ V(x) for some x ∈ Z

}
.

We set P
∗
∅ (ϕ) = infx∈X ϕ(x). If ϕ ≡ 0, than we may denote P

∗
Z(0) by h∗top(Z).

Notation. As before, we denote the topological pressure of ϕ on Z defined as a dimension character-

istic using the definition of Pesin (see §2.1.1) by PZ(ϕ) and htop(Z) := PZ(0). The new topological

pressure of definition 7.1.1 and quantities associated with it will always carry an asterisk, eg. P
∗
Z(ϕ),

h∗top(Z).

Remark 7.1.1. An alternative natural definition to make is as follows:

P#
Z (ϕ) = sup

{
hµ +

∫

X
ϕdµ : µ = lim

n→∞
δx,n for some x ∈ Z

}
.
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If no such measures exist, then we set P#
Z (ϕ) = infx∈X ϕ(x). One obvious relationship is P

∗
Z(ϕ) ≥

P#
Z (ϕ). We take the point of view that P

∗
Z(ϕ) is the better quantity to study because it captures

more information about Z than P#
Z (ϕ). Furthermore, the relationship between P

∗
Z(ϕ) and PZ(ϕ)

is better than the relationship between P#
Z (ϕ) and PZ(ϕ) (see remark 7.3.3). Theorem 7.4.1 gives

an example of a set Z for which h∗top(Z) = htop(Z) = htop(f) but P#
Z (0) = 0.

Remark 7.1.2. When the ambient space X is non-compact, we can define h∗top(Z) as in definition

7.1.1, although we must insist that if
⋃
x∈Z V(x) = ∅, then h∗top(Z) = 0. The definition of P

∗
Z(ϕ)

requires a small modification in the non-compact setting and we study this situation further in §7.5.

Let us recall that the variational principle for PZ(ϕ) proved by Pesin and Pitskel.

Theorem 7.1.1 (Pesin and Pitskel). Let Z be f -invariant and L(Z) = {x ∈ Z : V(x)∩Mf (Z) 6= ∅}.

Then PL(Z)(ϕ) = sup {hµ +
∫
Z ϕdµ}, where the supremum is taken over either Mf (Z) or Me

f (Z).

Remark 7.1.3. We note that in the context of fibred systems (i.e. (X1, f1) and (X2, f2) are dynamical

systems and π : X1 7→ X2 continuous satisfies π(X1) = X2 and π ◦ f1 = f2 ◦ π), the relativized

variational principle of Ledrappier and Walters [LW] involves the pressure of compact non-invariant

sets (the fibres), and they use CPZ(ϕ) rather than PZ(ϕ). We state the entropy version of the

relativized variational principle: given ν ∈ Mf (X2),

sup
µ:µ◦π−1=ν

hµ = hν +

∫

X2

CP π−1(x)(0)dν(x).

7.1.1 The set of generic points

For an invariant measure µ, let Gµ denote its set of generic points

Gµ = {x ∈ X : δx,n → µ}.

We consider Gµ repeatedly in this chapter. If µ is ergodic, Gµ is non-empty and by Birkhoff’s

theorem µ(Gµ) = 1. Furthermore, if f satisfies definition 2.2.1 (specification), Gµ is non-empty for

any invariant measure. This is proved in [DGS] when f satisfies definition 2.2.2 (Bowen specification).

When hµ > 0, it is a corollary of the result htop(Gµ) = hµ for any invariant measure. This was

proved for maps with the g-almost product property in [PS2], and thus for maps with specification.

7.2 Properties of P
∗
Z(ϕ)

Theorem 7.2.1. The topological pressure of definition 7.1.1 satisfies:

(1) P
∗
Z1

(ϕ) ≤ P
∗
Z2

(ϕ) if Z1 ⊂ Z2 ⊂ X,
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(2) P
∗
Z(ϕ) = sup{P∗

Y (ϕ) : Y ∈ F} where Z =
⋃
Y ∈F Y and F is a collection (countable or

uncountable) of Borel subsets of X,

(3) P
∗
Z(ϕ ◦ f) = P

∗
Z(ϕ),

(4) If ψ is cohomologous to ϕ, then P
∗
Z(ϕ) = P

∗
Z(ψ),

(5) P
∗
Z(ϕ+ ψ) ≤ P

∗
Z(ϕ) + β(ψ), where β(ψ) = supµ∈Mf (X)

∫
X ψdµ,

(6) P
∗
Z((1 − t)ϕ+ tψ) ≤ (1 − t)P∗

Z(ϕ) + tP∗
Z(ψ).

(7) |P∗
Z(ϕ) − P

∗
Z(ψ)| ≤ ‖ψ − ϕ‖∞,

(8) P
∗
Z(ϕ) ≥ infx∈X ϕ(x),

(9) For every k ∈ Z, P
∗
fkZ

(ϕ) = P
∗
Z(ϕ),

(10) P
∗⋃

k∈Z
fkZ

(ϕ) = P
∗⋃

k∈N
f−kZ

(ϕ) = P
∗⋃

k∈N
fkZ

(ϕ) = P
∗
Z(ϕ).

Proof. Since
⋃
x∈Z1

V(x) ⊆
⋃
x∈Z2

V(x), the first statement is immediate. The second statement

is true because
⋃
x∈Z V(x) ⊆

⋃
Y ∈F

⋃
x∈Y V(x). It is a standard result that V(x) ⊆ Mf (X) (see

for example [Wal]) and thus
∫
X ϕdµ =

∫
X ϕ ◦ fdµ for µ ∈ V(x). The third statement follows. If

ψ is cohomologous to ϕ, then there exists a continuous function h so ψ = ϕ + h − h ◦ f and so
∫
X ϕdµ =

∫
X ψdµ. The fourth statement follows. We leave (5) and (6) as easy exercises. (7) follows

from the fact that for µ ∈ V(x),

hµ +

∫
ϕdµ ≤ hµ +

∫
ψdµ+ ‖ψ − ϕ‖∞.

(8) follows from the fact that hµ +
∫
ϕdµ ≥ infx∈X ϕ(x). (9) is true since V(x) =

⋃
{y:y=fkx} V(y)

for all x ∈ Z and we can apply (2). (10) follows from (9) and (2).

P
∗
Z(ϕ) is a topological invariant of dynamical systems in the following sense:

Theorem 7.2.2. Let (Xi, di) be compact metric spaces and fi : Xi 7→ Xi be continuous maps for

i = 1, 2. Let π : X1 7→ X2 be a homeomorphism satisfying π ◦ f1 = f2 ◦π. Then for any continuous

ϕ : X2 7→ R and Borel Z ⊂ X2, we have P
∗
Z(ϕ) = P

∗
π−1(Z)(ϕ ◦ π).

Proof. For ψ ∈ C(X2) and µ ∈ Mf2(X2), let ψ̃ := ψ ◦ π and µ̃ := µ ◦ π. Let µ ∈
⋃
x∈Z V(x).

Then µ = limnk→∞ δx,nk
for some x ∈ Z, nk → ∞. Let y ∈ X1 satisfy π(y) = x. For an arbitrary

function ψ ∈ C(X1),

∫
ψdµ̃ =

∫
ψ ◦ π−1dµ

= lim
nk→∞

1

nk
Snk

ψ ◦ π−1(x)

= lim
nk→∞

1

nk
Snk

ψ(y)

= lim
nk→∞

∫
ψdδnk,y.
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Since this is true for all ψ ∈ C(X1), we have µ̃ ∈ V(y). Thus µ ∈
⋃
x∈Z V(x) ⇒ µ̃ ∈

⋃
y∈π−1(Z) V(y).

Since hµ̃ +
∫
ϕ̃dµ̃ = hµ +

∫
ϕdµ, then P

∗
π−1(Z)(ϕ̃) ≥ P

∗
Z(ϕ). Reversing the previous argument gives

the desired equality.

The proof shows that if π were only assumed to be a continuous surjective map, we would

obtain the inequality P
∗
Z(ϕ) ≤ P

∗
π−1(Z)(ϕ ◦ π). We now verify that in the compact, invariant case

P
∗
Z(ϕ) agrees with the classical topological pressure.

Theorem 7.2.3. If Z is compact and f -invariant, then P
∗
Z(ϕ) = P

classic
Z (ϕ).

Proof. By compactness of Z, Mf (Z) is compact and thus
⋃
x∈Z V(x) ⊆ Mf (Z). The inequality

P
∗
Z(ϕ) ≤ P

classic
Z (ϕ) follows immediately. For the opposite inequality, let µ ∈ Mf (Z) be ergodic.

Taking any point x in Gµ, we have V(x) = µ. We conclude that Me
f (Z) ⊆

⋃
x∈Z V(x) and the

desired inequality follows from the classical variational principle.

The following result is clear from the definition.

Theorem 7.2.4. Suppose Z contains a periodic point x with period n. Then

P
∗
{x}(ϕ) =

1

n

n−1∑

i=0

ϕ(f ix) and P
∗
Z(ϕ) ≥

1

n

n−1∑

i=o

ϕ(f ix).

We now consider the set of generic points Gµ. Bowen (for entropy [Bow4]) and Pesin (for

pressure [PP2]) showed that PGµ(ϕ) = hµ +
∫
ϕdµ. In fact, it was this property that motivated

Bowen’s original dimensional definition of topological entropy. We see that similar properties holds

for the new topological pressure.

Theorem 7.2.5. For any invariant measure, P
∗
Gµ

(ϕ) = hµ +
∫
ϕdµ. Let Z be a Borel set with

Z ∩Gµ 6= ∅, then P
∗
Z(ϕ) ≥ hµ +

∫
ϕdµ. Now assume that µ is an equilibrium measure for ϕ, then

P
∗
Gµ

(ϕ) = P
classic
X (ϕ). In particular, let m be a measure of maximal entropy and Z∩Gm 6= ∅. Then

h∗top(Z) = htop(f).

The proof follows immediately from the definitions. Let us remark that if a measure of

maximal entropy is fully supported then h∗top(U) = htop(f) for every open set U .

It is informative to consider the pressure of a single point.

Theorem 7.2.6. Let x ∈ Gµ. Then P
∗
{x}(ϕ) = hµ+

∫
ϕdµ and P{x}(ϕ) =

∫
ϕdµ. Thus P

∗
{x}(ϕ) =

P{x}(ϕ) iff hµ = 0.

Proof. The first statement is clear. The second follows from the formula for pressure at a point

P{x}(ϕ) = lim infn→∞
1
n
Snϕ(x) (see §7.6). Since x ∈ Gµ,

1
n

∑n−1
i=0 ϕ(f i(x)) →

∫
ϕdµ for every

continuous ϕ.
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Theorem 7.2.7. Let x ∈ X. If hµ > 0 for some µ ∈ V(x), then P
∗
{x}(ϕ) > P{x}(ϕ).

Proof. Suppose µ ∈ V(x). Then for some mk → ∞, we have

∫
ϕdµ = lim

k→∞

1

mk
Smk

ϕ(x) ≥ lim inf
n→∞

1

n
Snϕ(x) = P{x}(ϕ).

Therefore, if hµ > 0, then P
∗
{x}(ϕ) ≥ hµ +

∫
ϕdµ > P{x}(ϕ).

Remark 7.2.1. Theorem 7.2.6 provides us with a simple example which shows that PZ(ϕ) and P
∗
Z(ϕ)

are not equal. In theorem 7.6.1, we verify that for x ∈ Gµ, CP {x}(ϕ) = CP {x}(ϕ) =
∫
ϕdµ. Hence,

theorem 7.2.6 shows that P
∗
Z(ϕ) cannot be equal to these quantities either.

Remark 7.2.2. We note that P
∗
Z(ϕ) is sensitive to the addition of a single point to the set Z. When

ϕ 6= 0, the same is true of PZ(ϕ). However, in the case of entropy, we have a contrast between

htop(Z), which remains the same under the addition of a countable set, and h∗top(Z), where a single

point can carry full entropy.

For ergodic measures, an inverse variational principal holds.

Theorem 7.2.8. Suppose µ is ergodic. Then

(1) hµ = inf{h∗top(Z) : µ(Z) = 1},

(2) hµ +
∫
ϕdµ = inf{P∗

Z(ϕ) : µ(Z) = 1}.

Proof. We prove (2), then (1) follows as a special case. Suppose Z is a Borel set with µ(Z) = 1.

Since µ is assumed to be ergodic, µ(Gµ) = 1 and thus Z ∩ Gµ 6= ∅. It follows that P
∗
Z(ϕ) ≥

hµ +
∫
ϕdµ and thus inf{P∗

Z(ϕ) : µ(Z) = 1} ≥ hµ +
∫
ϕdµ. Since P

∗
Gµ

(ϕ) = hµ +
∫
ϕdµ, we have

an equality.

The assumption that µ is ergodic is essential. For example, let µ = pµ1 + (1 − p)µ2 where

µ1, µ2 are ergodic with hµ1 6= hµ2 and p ∈ (0, 1). If µ(Z) = 1, then µ1(Z) = 1 and thus Z

contains generic points for µ1. Therefore, h∗top(Z) ≥ hµ1 . Repeating the argument for µ2, we obtain

inf{h∗topZ : µ(Z) = 1} ≥ max{hµ1 , hµ2} > hµ = phµ1 +(1−p)hµ2 . In fact, since µ(Gµ1 ∪Gµ2) = 1

and h∗top(Gµ1 ∪Gµ2) = max{hµ1 , hµ2}, we have inf{h∗topZ : µ(Z) = 1} = max{hµ1 , hµ2}.

We have a version of Bowen’s equation.

Theorem 7.2.9. Let ϕ be a strictly negative continuous function. Let ψ : R 7→ R be given by

ψ(t) := P
∗
Z(tϕ). Then the equation ψ(t) = 0 has a unique solution. The solution lies in [0,∞).

Proof. Let s > t. Let µ ∈
⋃
x∈Z V(x) and C = inf −ϕ(x) > 0. We have

hµ +

∫
sϕdµ = hµ +

∫
tϕdµ− (s− t)

∫
−ϕdµ
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and, since
∫
−ϕdµ ∈ [C, ‖ϕ‖∞],

hµ +

∫
sϕdµ ≤ hµ +

∫
tϕdµ− (s− t)C.

Therefore, ψ(s) − ψ(t) ≤ −(s − t)C and so ψ is strictly decreasing. (Similarly, ψ(s) − ψ(t) ≥

−(s− t)‖ϕ‖∞, so ψ is bi-Lipschitz.) Since ψ(0) ≥ 0, P
∗
Z(tϕ) = 0 has a unique root.

Remark 7.2.3. We compare the properties derived here with those satisfied by PZ(ϕ). In theorem

7.2.1, properties (1), (3), (4), (6) and (7) hold for PZ(ϕ). Property (2) holds for PZ(ϕ) only when

the union is at most countable. Properties (9) and (10) are known to hold for PZ(ϕ) when f is a

homeomorphism. Theorems 7.2.2, 7.2.3, 7.2.8 and 7.2.9 hold for PZ(ϕ).

7.2.1 Equilibrium states for P
∗
Z(ϕ)

Suppose a measure µ∗ satisfies P
∗
Z(ϕ) = hµ∗ +

∫
X ϕdµ

∗ and µ∗ ∈
⋃
x∈Z V(x) for a (not necessarily

invariant) Borel set Z. Then we call µ∗ a ∗-equilibrium state for ϕ on Z. If µ∗ satisfies h∗top(Z) = hµ∗ ,

we call µ∗ a measure of maximal ∗-entropy. If Z is invariant, we call a measure µ that satisfies both

PZ(ϕ) = hµ +
∫
X ϕdµ and µ(Z) = 1 simply an equilibrium state for ϕ on Z. The latter definition

coincides with that of Pesin [Pes]. It is clear from the definition that if µ∗ is a ∗-equilibrium state

and µ is an equilibrium state for ϕ on Z, then

hµ∗ +

∫

X
ϕdµ∗ ≥ hµ +

∫

X
ϕdµ.

Note that it is possible that µ∗(Z) = 0. There are situations where the new definition seems more

appropriate than the old. We describe a non-trivial example in 7.4.4 but first let us a consider a

periodic point x of period n > 1. Then, for any function, δx,n is a ∗-equilibrium state on {x}.

However, as {x} is not invariant, the notion of equilibrium state is not defined.

7.3 The relationship between PZ(ϕ) and P
∗
Z(ϕ)

In theorem 7.3.3, we show that the inequality PZ(ϕ) ≤ P
∗
Z(ϕ) holds. Theorem 7.2.6 provides

examples where PZ(ϕ) < P
∗
Z(ϕ) and non-trivial examples can be constructed. §7.4 contains concrete

examples where PZ(ϕ) = P
∗
Z(ϕ) and we have the following:

Theorem 7.3.1. For an f -invariant Borel set Z, let G(Z) =
⋃
µ∈Mf (Z)Gµ ∩ Z. Then PG(Z)(ϕ) =

P
∗
G(Z)(ϕ).

Proof. Note that L(G(Z)) = G(Z). Applying theorem 7.1.1, we have PG(Z)(ϕ) = sup{hµ+
∫
ϕdµ :

µ ∈ Mf (G(Z))} = P
∗
G(Z)(ϕ).
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Before embarking on a sketch proof that PZ(ϕ) ≤ P
∗
Z(ϕ), we give a less sharp result, whose

proof is straight forward given theorem 7.1.1.

Theorem 7.3.2. If Z is an f -invariant Borel set, we have

PL(Z)(ϕ) ≤ P
∗
Z(ϕ) ≤ P

classic
Z

(ϕ) and PL(Z)(ϕ) ≤ P
∗
L(Z)(ϕ).

Proof. We note that if µ ∈ Me
f (Z), then µ(Z ∩Gµ) = 1. Taking x ∈ Z ∩Gµ, we have V(x) = {µ}

and thus Me
f (Z) ⊆

⋃
x∈Z V(x). Note that x ∈ L(Z) and so Me

f (Z) ⊆
⋃
x∈L(Z) V(x). By theorem

7.1.1, the first and third inequalities follows. For the second inequality, we have P
∗
Z(ϕ) ≤ P

∗
Z
(ϕ) =

P
classic
Z

(ϕ).

Example 7.4.4 shows that the second inequality may be strict (the sets X(ϕ, α) are dense

but do not carry full entropy), and remark 7.4.3 shows that the third inequality may be strict. The

first inequality of the following theorem is the main result of this section. We do not assume that Z

is invariant.

Theorem 7.3.3. Let Z be an arbitrary Borel set and Y =
⋃
k∈N f

−kZ, then

PZ(ϕ) ≤ P
∗
Z(ϕ) ≤ P

classic
Y (ϕ).

§7.3.2 constitutes a sketch proof of the first inequality. This result, although never stated

before, follows from part of Pesin and Pitskel’s proof of theorem 7.1.1, with only minor changes

required. For a complete proof, we refer the reader to [PP2] or [Pes]. Here, we attempt to convey

the key technical ingredients. The second inequality is trivial as Y is a closed invariant set containing

Z.

7.3.1 Definition of Pesin and Pitskel’s topological pressure using open covers

For the proof on which we are about to embark, it is more convenient to work with an alternative

formulation of Pesin and Pitskel’s topological pressure which is equivalent to that stated in §2.1.1.

Let (X, d) be a compact metric space, f : X 7→ X be a continuous map and ϕ ∈ C(X). Let

Z ⊂ X be a Borel subset. We take a finite open cover U of X and denote by Sm(U) the set of all

strings U = {(Ui0 , . . . , Uim−1) : Uij ∈ U} of length m = m(U). We define S(U) =
⋃
m≥0 Sm(U),

where S0(U) consists of ∅. To a given string U = (Ui0 , . . . , Uim−1) ∈ S(U), we associate the set

X(U) = {x ∈ X : f j(x) ∈ Uij for all j = 0, . . . ,m(U) − 1} =
⋂m(U)−1
j=0 f−jUij . We say that a

collection of strings G ⊂ S(U) covers Z if Z ⊂
⋃

U∈G X(U). Let α ∈ R. We make the following

definitions:

Q(Z,α,U ,G, ϕ) =
∑

U∈G

exp



−αm(U) + sup
x∈X(U)

m(U)−1∑

k=0

ϕ(fk(x))



 , (7.1)
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M(Z,α,U , N, ϕ) = inf
G
Q(Z,α,U ,G, ϕ), (7.2)

where the infimum is taken over all finite or countable subcollections of strings G ⊂ S(U) such that

m(U) ≥ N for all U ∈ G and G covers Z. We set supx∈X(U)

∑m(U)−1
k=0 ϕ(fk(x)) = −∞ when

X(U) = ∅. Define

m(Z,α,U , ϕ) := lim
N→∞

M(Z,α,U , N, ϕ). (7.3)

There exists a critical value αc with −∞ ≤ αc ≤ +∞ such that m(Z,α,U , ϕ) = ∞ for α < αc and

m(Z,α,U , ϕ) = 0 for α > αc. Let |U| = max{Diam(Ui) : Ui ∈ U}.

Definition 7.3.1. We define

PZ(ϕ,U) := inf{α : m(Z,α,U , ϕ) = 0} = sup{α : m(Z,α,U , ϕ) = ∞} = αc,

Lemma 7.3.1.

PZ(ϕ) = lim
|U|→0

PZ(ϕ,U).

For the proof that PZ(ϕ) coincides with lim|U|→0 PZ(ϕ,U), we refer the reader to [PP2] or

[Pes].

7.3.2 Sketch proof of PZ(ϕ) ≤ P
∗
Z(ϕ)

Let U = {U1, . . . , Ur} be an open cover of X and ε > 0. Let

Var(ϕ,U) = sup{|ϕ(x) − ϕ(y)| : x, y ∈ U for some U ∈ U}.

Let E be a finite set of cardinality n, and a = (a0, . . . , ak−1) ∈ Ek. Define the probability vector

µa = (µa(e1), . . . , µa(en)) on E by

µa(ei) =
1

k
(the number of those j for which aj = ei).

Define

H(a) = −
n∑

i=1

µa(ei) logµa(ei).

In [Pes], the contents of the following lemma are proved under the assumption that µ ∈ V(x) ∩

Mf (Z). However, the property µ(Z) = 1 is not required. We omit the proof.

Lemma 7.3.2. Given x ∈ Z and µ ∈ V(x), there exists a number m > 0 such that for any n > 0

one can find N > n and a string U ∈ S(U) of length N satisfying:

(1) x ∈ X(U),

(2) supx∈X(U)

∑N−1
k=0 ϕ(fk(x)) ≤ N (

∫
ϕdµ+ Var(ϕ,U) + ε),
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(3) U = (U0, . . . , UN−1) contains a substring U
′ with the following properties: There exists

k ∈ N with N −m ≤ km ≤ N and 0 ≤ i0 ≤ . . . ≤ ik−1 so a0 = (Ui0 , . . . , Ui0+m), . . . , ak−1 =

(Uik−1
, . . . , Uik−1+m) and U

′ = (a0, . . . , ak−1). Note that the length of U
′ is km. Writing E =

{a0, . . . , ak−1} and a = (a0, . . . , ak−1), then

1

m
H(a) ≤ hµ + ε.

Given a number m > 0, denote by Zm the set of points x ∈ Z for which there exists a

measure µ ∈ V(x) so lemma 7.3.2 holds for this m. We have that Z =
⋃
m>0 Zm. Denote by Zm,u

the set of points x ∈ Zm for which there exists µ ∈ V(x) so lemma 7.3.2 holds for this m and
∫
ϕdµ ∈ [u− ε, u+ ε]. Set c = sup{hµ +

∫
ϕdµ : µ ∈

⋃
x∈Z V(x)}. Note that if x ∈ Zm,u, then the

corresponding measure µ satisfies

hµ ≤ c−
∫
ϕdµ ≤ c− u+ ε. (7.4)

Suppose a finite set {u1, . . . , us} forms an ε-net of the interval [−‖ϕ‖, ‖ϕ‖]. Then

Z =
∞⋃

m=1

s⋃

i=1

Zm,ui

and hence PZ(ϕ) ≥ supm,i PZm,ui
(ϕ). It will suffice to prove that for arbitrary m ∈ N and u ∈ R

that PZm,u(ϕ) ≤ c.

For each x ∈ Zm,u, we construct a string Ux and substring U
′
x satisfying the conditions of

lemma 7.3.2. Let Gm,u denote the collection of all such strings Ux and G∗
m,u denote the collection

of all such substrings U
′
x. Choose N0 so m(Ux) ≥ N0 for all Ux ∈ Gm,u. Let Gm,u,N denote

the subcollection of strings Ux ∈ Gm,u with m(U) = N and G∗
m,u,N denote the correponding

subcollection of substrings. Note that

Gm,u =
∞⋃

N=N0

Gm,u,N and #Gm,u,N ≤ #Um#G∗
m,u,N .

We use the following lemma of Bowen [Bow6].

Lemma 7.3.3. Fix h > 0. Let R(k, h,E) = {a ∈ Ek : H(a) ≤ h}. Then

lim sup
k→∞

1

k
log #(R(k, h,E)) ≤ h.

Set h = c−u+ε. It follows from (7.4) and the third statement of lemma 7.3.2 that if x ∈ Zm,u

has an associated string Ux of length N , then its substring U
′
x is contained in R(k,m(h+ ε),Um)

where k satisfies N > km ≥ N −m. Therefore, #G∗
m,u,N does not exceed #R(k,m(h + ε),Um),

and thus #Gm,u,N ≤ #Um#(R(k,m(h+ ε),Um)). Applying lemma 7.3.3, we obtain

lim sup
N→∞

1

N
log #Gm,u,N ≤ lim sup

k→∞

1

mk
log #Um#(R(k,m(h+ ε),Um))

≤ h+ ε.
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Since the collection of strings Gm,u covers the set Zm,u, we use property (2) of lemma 7.3.2 to get

Q(Zm,u, λ,U ,Gm,u, ϕ) =
∞∑

N=N0

∑

U∈Gm,u,N

exp

{
−λN + sup

x∈X(U)

N−1∑

k=0

ϕ(fk(x))

}

≤
∞∑

N=N0

#Gm,u,N exp

{
N

(
−λ+ Var(ϕ,U) +

∫
ϕdµ+ ε

)}
.

Choose N0 sufficiently large so for N ≥ N0, we have #Gm,u,N ≤ exp(N(h+ 2ε)) and thus

M(Zm,u, λ,U , N0, ϕ) ≤
∞∑

N=N0

exp

{
N

(
h− λ+ Var(ϕ,U) +

∫
ϕdµ+ 3ε

)}
.

Let β = exp (h− λ+ Var(ϕ,U) +
∫
ϕdµ+ 3ε). If λ > c+ Var(ϕ,U) + 5ε, then 0 < β < 1. Thus,

M(Zm,u, λ,U , N0, ϕ) ≤
βN0

1 − β
,

m(Zm,u, λ,U , ϕ) ≤ lim
N0→∞

βN0

1 − β
= 0.

It follows that λ ≥ PZm,u(ϕ,U). Since we can choose λ arbitrarily close to c + Var(ϕ,U) + 5ε, it

follows that

PZm,u(ϕ,U) ≤ c+ Var(ϕ,U) + 5ε.

We are free to choose ε arbitrarily small, so on taking the limit |U| → 0, we have PZm,u(ϕ) ≤ c, as

required. It follows that PZ(ϕ) ≤ c.

Remark 7.3.1. In [PP2], it is shown that if µ ∈ Mf (X) and µ(Z) = 1 then PZ(ϕ) ≥ hµ +
∫
ϕdµ.

Thus, if Z is a set satisfying µ(Z) = 1 for all µ ∈
⋃
x∈Z V(x), then PZ(ϕ) = P

∗
Z(ϕ).

Remark 7.3.2. If PZ(ϕ) < P
∗
Z(ϕ), then we see a phenomenon similar to example 7.4.4, where

probability measures µ with µ(Z) < 1 or even µ(Z) = 0 capture information about the set Z. This

may seem unusual but example 7.4.4 motivates the utility of this point of view.

Remark 7.3.3. We can adapt the proof to obtain the inequality PG(Z)(ϕ) ≤ P
#
Z (ϕ). The argument

would differ in the paragraph above lemma 7.3.3. We would construct strings Ux and U
′
x only for

those x ∈ G(Z) rather than every x ∈ Z.

Remark 7.3.4. We can view the result of this section as an inequality for PZ(ϕ). We state this

explicitly without reference to definition 7.1.1. Let Z be a Borel subset (not necessarily invariant) of

a compact metric space (X, d). Then

PZ(ϕ) ≤ sup{hµ +

∫
ϕdµ : µ = lim

nk→∞
δx,nk

for some x ∈ Z, nk → ∞}.

7.4 Examples

Here are some interesting examples for which PZ(ϕ) and P
∗
Z(ϕ) coincide.
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7.4.1 North-South map

The following example was suggested by Pesin. Let X = S1, f be the North-South map and

Z = S1 \ {S}. (By the North-South map, we mean the map f = g−1 ◦ h ◦ g where g is the

stereographic projection from a point N onto the tangent line at S, where S is the antipodal point

of N , and h : R 7→ R is h(x) = x/2.) One can verify that if x ∈ S1 \ {N,S}, then V(x) = δS and

it is clear that V({N}) = δN . Using this and the fact that hδS = hδN = 0, we have

P
∗
Z(ϕ) = max{

∫
ϕdδS ,

∫
ϕdδN} = max{ϕ(N), ϕ(S)}

To calculate PZ(ϕ), one can use PZ(ϕ) = max{P{N}(ϕ),PZ\{N}(ϕ)}. Using the formula for pres-

sure at a point or Pesin’s variational principle, P{N}(ϕ) = ϕ(N). One can verify that PZ\{N}(ϕ) =

ϕ(S). Thus, PZ(ϕ) and P
∗
Z(ϕ) coincide for all continuous ϕ.

Remark 7.4.1. Note that L(Z) = {N}. If we choose ϕ so that ϕ(S) > ϕ(N), we are furnished

with an example where PZ(ϕ) > PL(Z)(ϕ), showing that we could not replace PL(Z)(ϕ) by PZ(ϕ)

in Pesin’s variational principle (see theorem 7.1.1).

Remark 7.4.2. Our example shows that, in contrast to the compact case, the wandering set can

contribute to the pressure (whether we consider P
∗
Z(ϕ) or PZ(ϕ)). Let NW(X) be the non-

wandering set of (X, f) and W(X) := X \ NW(X). (Recall that x ∈ NW(X) if for any open set

U containing x there exists N so fN (U) ∩ U 6= ∅.) For an arbitrary set Y ⊂ X, let NW(Y ) =

Y ∩ NW(X) and W(Y ) = Y ∩W(X). For the set Z of our example, NW(Z) = N (see §5.3 of

[Wal]). Assuming that ϕ(S) > ϕ(N), we have

P ∗
NW(Z)(ϕ) = ϕ(N) < ϕ(S) = P

∗
Z(ϕ).

This contrasts with the compact case, where P classicNW(X)(ϕ) = P classicX (ϕ).

7.4.2 Irregular sets

Theorem 7.4.1. Let (Σ, σ) be a topologically mixing subshift of finite type and Σ̂ be the set

Σ̂ := Σ \
⋃

µ∈Mf (Σ)

Gµ.

Then h∗top(Σ̂) = htop(σ) and P
∗
Σ̂
(ψ) = P

classic
Σ (ψ) for all ψ ∈ C(X).

We remark that Barreira and Schmeling showed in [BS5] that htop(Σ̂) = htop(σ). It follows

that htop(Σ̂) = h∗top(Σ̂). After an application of the classical variational principle, the proof of

theorem 7.4.1 follows immediately from the next lemma in which, for simplicity, we assume Σ is a

full shift.
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Lemma 7.4.1. Me
f (Σ) ⊆

⋃
x∈Σ̂ V(x).

Proof. Let µ1 be some ergodic measure. Let µ2 be some other ergodic measure. Let x ∈ Gµ1 , y ∈

Gµ2 and Nk → ∞ sufficiently rapidly that Nk+1 > 2Nk . We can use the specification property of the

shift to construct a point p so δp,N2k
→ µ1 and δp,N2k+1

→ µ2. Namely, let w2i−1 = (x1, . . . , xN2i−1)

and w2i = (y1, . . . , yN2i
) for all i ≥ 1. Let p = w1w2w3 . . . ∈ Σ. Then p ∈ Σ̂ and µ1 ∈ V(p).

We establish a result analogous to the main result of chapter 4.

Theorem 7.4.2. Let (X, d) be a compact metric space and f : X 7→ X be a continuous map with

the specification property. Assume ϕ ∈ C(X) satisfies infµ∈Mf (X)

∫
ϕdµ < supµ∈Mf (X)

∫
ϕdµ. Let

X̂(ϕ, f) :=

{
x ∈ X : lim

n→∞

1

n

n−1∑

i=0

ϕ(f i(x)) does not exist

}
.

Then h∗top(X̂(ϕ, f)) = htop(f) and P ∗
X̂(ϕ,f)

(ψ) = P classicX (ψ) for all ψ ∈ C(X).

Combining this with the main result of chapter 4, we have P
X̂(ϕ,f)

(ψ) = P ∗
X̂(ϕ,f)

(ψ) when

f has specification. The proof of theorem 7.4.2 follows immediately from the next lemma by the

classical variational principle.

Lemma 7.4.2. Me
f (X) ⊆

⋃
x∈X̂ϕ

V(x).

Sketch proof. Let µ1, µ2 be ergodic measures with
∫
ϕdµ1 <

∫
ϕdµ2. Let xi satisfy 1

n
Snϕ(xi) →

∫
ϕdµi for i = 1, 2. Let mk := m(ε/2k) be as in the definition of specification and Nk → ∞

sufficiently rapidly that Nk+1 > exp{
∑k
i=1(Ni + mi)}. We define zi ∈ X inductively using the

specification property. Let t1 = N1, tk = tk−1 +mk +Nk for k ≥ 2 and ρ(k) := (k+1)(mod2)+1.

Let z1 = x1. Let z2 satisfy dN1(z2, z1) < ε/4 and dN2(f
N1+m2z2, x2) < ε/4. Let zk satisfy

dtk−1
(zk−1, zk) < ε/2k and dNk

(f tk−1+mkzk, xs(k)) < ε/2k. Let Bn(x, ε) = {y ∈ X : dn(x, y) < ε}.

We can verify that Btk+1
(zk+1, ε/2

k) ⊂ Btk(zk, ε/2
k−1). Define p :=

⋂
Btk(zk, ε/2

k−1). For any

ψ ∈ C(X), we can show 1
tk
Stkψ(p) →

∫
ψdµρ(k). Thus δp,t2k−1

→ µ1, δp,t2k
→ µ2 and so

µ1, µ2 ∈ V(p). In particular, p ∈ X̂(ϕ, f).

Remark 7.4.3. Using a similar construction to the proof of lemma 7.4.1, we can show that the

inequality PL(Z)(ϕ) ≤ P
∗
L(Z)(ϕ) may be strict. Let (Σ, σ) be a Bernoulli shift. Let µ1, µ2 be ergodic

measures with hµ1 > hµ2 . We can construct a point z so the sequence of measures δz,n does not

converge and V(z) = {µ1, µ2}. Let Z = Gµ2 ∪ {z}. We see that L(Z) = Z and, by theorem 7.1.1,

htop(Z) = hµ2 . However, h∗top(Z) = hµ1 .

Remark 7.4.4. The proof of lemma 7.4.2 generalises in the expected way to the setting of maps f

with the almost specification property. Thus, the statement of theorem 7.4.2 holds for continuous
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maps with the almost specification property. In particular, the statement of theorem 7.4.2 holds

when f is the β-shift.

7.4.3 Levels sets of the Birkhoff average

We establish a result analogous to the main result of chapter 5.

Theorem 7.4.3. Let (X, d) be a compact metric space, f : X 7→ X be a continuous map with the

specification property and ϕ,ψ ∈ C(X). For α ∈ R, let

X(ϕ, α) =

{
x ∈ X : lim

n→∞

1

n

n−1∑

i=0

ϕ(f i(x)) = α

}
.

Suppose X(ϕ, α) 6= ∅, then

(1) h∗top(X(ϕ, α)) = sup {hµ : µ ∈ Mf (X) and
∫
ϕdµ = α},

(2) P
∗
X(ϕ,α)(ψ) = sup {hµ +

∫
ψdµ : µ ∈ Mf (X) and

∫
ϕdµ = α}.

Combining this with the main result of chapter 5, we have PX(ϕ,α)(ψ) = P ∗
X(ϕ,α)(ψ) when

f has specification. The proof of theorem 7.4.3 follows from the next lemma.

Lemma 7.4.3. {µ ∈ Mf (X) :
∫
ϕdµ = α} = {µ ∈ V(x) : x ∈ X(ϕ, α)}.

Proof. Let µ ∈ Mf (X) and
∫
ϕdµ = α. Recall that Gµ 6= ∅ and let x ∈ Gµ. Then V(x) = µ,

and so {µ ∈ Mf (X) :
∫
ϕdµ = α} ⊆ {µ ∈ V(x) : x ∈ X(ϕ, α)}. Conversely, if µ ∈ V(x) for

x ∈ X(ϕ, α) then there exists nk → ∞ so
∫
ϕdµ = limnk→∞

∫
ϕdδx,nk

= limnk→∞
1
nk
Snk

ϕ(x) =

limn→∞
1
n
Snϕ(x) = α.

7.4.4 Manneville-Pomeau maps

Manneville-Pomeau maps are the family of maps on [0, 1] given by

fs(x) = x+ x1+s(mod1)

where s ∈ (0, 1) is a fixed parameter value. Each of these maps is a topological factor of a full

one-sided shift on 2 symbols and so satisfies the specification property. Takens and Verbitskiy have

performed a multifractal analysis for the function ϕ(x) = log f ′s(x) (i.e. the multifractal analysis of

pointwise Lyapunov exponents). We recall some results which can be found in [TV2]. One of the

key results used for their multifractal analysis, restated in our new language, is

Theorem 7.4.4. f : X 7→ X be a continuous map with the specification property, and ϕ : X 7→ R

a continuous function. Then

(1) h∗top(X(ϕ, α)) ≤ inf
q∈R

{P classic
X (qϕ) − qα}.
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Furthermore, if f has upper semi-continuous entropy map then

(2) h∗top(X(ϕ, α)) = inf
q∈R

{P classic
X (qϕ) − qα}.

Since fs is positively expansive, it has upper semi-continuous entropy map. There is an

interval of values I (which turns out to be (0, hµ) where µ is the absolutely continuous invariant

measure for fs) which has the following property. For α ∈ I, the infimum of theorem 7.4.4 (2)

is attained uniquely at q = −1 and P
classic
X (−ϕ) = 0 (using results from [Urb] and [PS3]). Thus,

h∗top(X(ϕ, α)) = α and if ν is an equilibrium measure for −ϕ with
∫
ϕdν = α, then h∗top(X(ϕ, α)) =

hν . The set A = {pδ0 + (1 − p)µ : p ∈ [0, 1]} consists of equilibrium measures for −ϕ and Takens

and Verbitsky show there is a unique measure satisfying µα ∈ A and
∫
ϕdµα = α. By lemma 7.4.3,

µα ∈ V(x) for some x ∈ X(ϕ, α), and so µα is a ∗-equilibrium measure (for 0 on X(ϕ, α)). However,

even though htop(X(ϕ, α)) = hµα , they show µα(X(ϕ, α)) = 0, so µα is not an equilibrium measure

(for 0 on X(ϕ, α)) under the definition of Pesin.

In fact, µα is the unique ∗-equilibrium measure. In Proposition 1 of [PSY], Pollicott, Sharp

and Yuri show that ν is an equilibrium state for −ϕ iff ν ∈ A (they also give a nice proof that

P
classic
X (−ϕ) = 0). It follows that if µ /∈ A and

∫
ϕdµ = α, then hµ < α. Combining this with the

above discussion shows that µα is unique.

7.5 Topological pressure in a non-compact ambient space

We define P
∗
Z(ϕ) for an arbitrary set Z ⊂ X and ϕ ∈ C(X) when the ambient space X is non-

compact. For the definition to make sense, we must exclude the consideration of measures µ such

that both hµ = ∞ and
∫
ϕdµ = −∞.

Definition 7.5.1. Let Z be an arbitrary Borel set and ϕ ∈ C(X). Define

P
∗
Z(ϕ) = sup

{
hµ +

∫

X
ϕdµ : µ ∈

⋃

x∈Z

V(x) and

∫

X
ϕdµ > −∞

}
.

If
⋃
x∈Z V(x) = ∅, let P

∗
Z(ϕ) = infx∈X ϕ(x). If

⋃
x∈Z V(x) 6= ∅ and {µ ∈

⋃
x∈Z V(x) :

∫
X ϕdµ >

−∞} = ∅, then P
∗
Z(ϕ) = −∞.

The reason we set P
∗
Z(ϕ) = infx∈X ϕ(x) when

⋃
x∈Z V(x) = ∅ is to ensure that the inequality

P ∗
Z1

(ϕ) ≤ P ∗
Z2

(ϕ) holds for all Z1 ⊆ Z2. We remark that if ϕ is bounded below, then we have
∫
X ϕdµ > −∞ for all µ ∈ Mf (X). Hence, if X is compact, definitions 7.5.1 and 7.1.1 agree.

Remark 7.5.1. Assume h∗top(Z) < ∞. Then we do not have to restrict ourselves to measures with
∫
X ϕdµ > −∞ in the definition of P

∗
Z(ϕ). Either P

∗
Z(ϕ) = −∞ or the extra measures considered

do not contribute to the supremum.
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Remark 7.5.2. In the non-compact setting, dimensional definitions of pressure have the disadvantage

that there are examples of metrizable spaces X (eg. countable state shifts) and metrics d1, d2 on X

where PZ,X1(ϕ) 6= PZ,X2(ϕ) (where X1 = (X, d1) and X2 = (X, d2)) but d1 and d2 give rise to the

same Borel structure on X and thus no variational principle can hold. However, P
∗
Z(ϕ) depends only

on the Borel structure of X and is thus invariant under a change of topologically equivalent metric.

Remark 7.5.3. In [DJ], Dai and Jiang study a definition of topological entropy for non-compact

spaces adapted to the problem of estimating the Hausdorff dimension of the space. Their definition

is not a topological invariant, so is not equivalent to ours. They give an interesting discussion of

the issues one faces when considering entropy as a measure of chaotic behaviour in the non-compact

setting.

We now study some properties of P
∗
Z(ϕ) in the non-compact setting.

Theorem 7.5.1. Let P
∗
Z,Y (ϕ) denote the pressure of ϕ on Z when Z ⊂ Y and Y is considered

as the ambient space in the definition. Let K ⊂ X be compact and invariant and Z ⊂ K. Then

P
∗
Z,X(ϕ) = P

∗
Z,K(ϕ).

Proof. It suffices to notice that if µ ∈
⋃
x∈Z V(x), then µ ∈ Mf (K) and hµ(f |K) = hµ(f).

Theorem 7.5.2. Let X be a separable metric space and ϕ ∈ C(X). Then

(1) P
∗
X(ϕ) = sup{P∗

K,X(ϕ) : K ⊂ X is compact},

(2) P
∗
X(ϕ) = sup{hµ +

∫
ϕdµ : µ ∈ Mf (X),

∫
ϕdµ > −∞}.

Proof. For (1), we note that if Kn is a countable collection of compact sets that cover X, then

P
∗
X(ϕ) = sup{P∗

Kn,X
(ϕ)} by basic properties of P

∗
X(ϕ). For (2), let c denote the value taken by

the supremum. That P
∗
X(ϕ) ≤ c is immediate. It suffices to consider only ergodic measures in the

supremum. We note that since X is a separable space, if µ is ergodic then µ(Gµ) = 1. Thus, there

exists x satisfying V(x) = µ, which shows that P
∗
X(ϕ) ≥ c.

In [GS], Gurevich and Savchenko study two definitions of topological pressure adapted to

non-compact spaces. We compare these with P
∗
Z(ϕ).

Definition 7.5.2. Set P
int(X,ϕ) = sup{P classic

K (ϕ)}, where the supremum is over all subsets

K ⊂ X which are compact and invariant. Suppose X can be continuously embedded in a compact

metric space X̂ and f can be extended continuously to X. We set P
ext(X,ϕ) = inf{P

X,X̂
(ϕ)},

where the infimum is over all such embeddings.

Theorem 7.5.3. For any X separable, f : X 7→ X and ϕ ∈ C(X), we have P
int(X,ϕ) ≤ P

∗
X(ϕ).

When P
ext(X,ϕ) is well defined, P

∗
X(ϕ) ≤ P

ext(X,ϕ).
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Proof. The first inequality follows from the classical variational principle and (2) of theorem 7.5.2.

Let X̂ be a compact metric space satisfying the requirements of the definition and ϕ̂ be the extension

by continuity of ϕ to X̂. By theorem 7.1.1 and (2) of theorem 7.5.2,

P
∗
X(ϕ) = PL(X),X̂(ϕ̂) ≤ P

X,X̂
(ϕ̂).

Since X̂ was arbitrary, we obtain the desired inequality.

Remark 7.5.4. Both inequalities of theorem 7.5.3 may be strict. As noted in [GS] and [HKR], let Y be

a compact metric space and f : Y 7→ Y be a minimal homeomorphism with htop(f) > 0. Let ϕ = 0.

Let X = Y \O(x), where O(x) is the orbit of an arbitrary x ∈ Y . There are no compact, invariant,

non-empty subsets of X, so P
int(X, 0) = 0. However, h∗top(X) = sup{hµ : µ ∈ Mf (Y )} = htop(f).

For the second inequality, we use an example similar to 7.4.1. Let X = S1 \{S} with induced metric

d from S1, f is the North-South map and ϕ(x) = d(x, {N}). We have P
∗
X(ϕ) = ϕ(N) = 0. We

can verify that given any continuous embedding into X̂ and any y ∈ X̂ \X, P
X,X̂

(ϕ) ≥ ϕ(y) > 0.

Remark 7.5.5. In [HNP], the authors compare various definitions of topological entropy for a non-

compact space X and a continuous map f : X 7→ X. One of these definitions is a natural

generalisation of Adler-Konheim-McAndrew’s original definition of entropy [AKM], which we denote

by hAKMtop (f). Proposition 5.1 of [HNP] provides an example of a homeomorphism f of the open

unit interval (equipped with a non-standard metric) for which hAKMtop (f) = ∞ but h∗top(f) = 0.

In [HKR], Handel, Kitchens and Rudolph give another definition of entropy for a non-compact

metric space (X, d) and continuous f : X 7→ X, which is invariant under a change of topologically

equivalent metric and is a generalisation of CPZ(0). Let S(K,n, ε, d) denote the smallest cardinality

of an (n, ε) spanning set for a compact set K ⊂ X in the metric d. Let

hdtop(X) := sup{lim
ε→0

lim sup
n→∞

1

n
logS(K,n, ε, d) : K ⊂ X is compact }.

In fact, this definition first appeared in [Bow1]. The innovation of [HKR] is to define

hHKRtop (X) := inf{hd
′

top(X) : d′ is a metric topologically equivalent to d}.

They show that hHKRtop (X) ≥ sup{hµ : µ ∈ Mf (X)} and construct an example where the inequality

is strict. Thus hHKRtop (X) ≥ h∗top(X) and it is possible that the two quantities may not coincide.

However, if X is locally compact, f : X 7→ X is uniformly continuous, Y is the one point

compactification ofX and g : Y 7→ Y is the extension by continuity of f , they show that hHKRtop (X) =

h∗top(X) = htop(g).
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7.5.1 Countable state shifts of finite type

We conclude by considering a topologically mixing countable state shift of finite type (Σ, σ). Follow-

ing Sarig [Sar], we equip Σ with the metric d(x, y) = rt(x,y) where t(x, y) = inf({k : xk 6= yk}∪∞)

and r ∈ (0, 1). Let P
G(ϕ) denote the Gurevic pressure as defined by Sarig [Sar] where ϕ is a locally

Hölder function and hG(σ) := P
G(0). In [GS], the authors allow Σ to be equipped with more general

metrics and study P
int(Σ, ϕ) and P

ext(Σ, ϕ) for ϕ ∈ C(Σ). To rephrase corollary 1 of [Sar], Sarig

showed that in his setting P
G(ϕ) = P

int(Σ, ϕ).

Theorem 7.5.4. h∗top(Σ) = hG(σ).

Proof. By corollary 1.7 of [GS], P
int(Σ, 0) = P

ext(Σ, 0) in the metric d. The result follows from

theorem 7.5.3.

Theorem 7.5.5. We have P
∗
Σ(ϕ) ≥ P

G(ϕ). With the extra assumption supx∈Σ |
∑
σy=x e

ϕ(y)| <∞,

we have P
∗
Σ(ϕ) = P

G(ϕ) <∞. If P
G(ϕ) = ∞, then P

∗
Σ(ϕ) = ∞.

Proof. The first inequality is a rephrasing of theorem 7.5.3. Under the extra assumption, Sarig

showed P
G(ϕ) = sup{hµ +

∫
ϕdµ : µ ∈ Mσ(Σ),

∫
ϕdµ < ∞} < ∞. The supremum is equal to

P
∗
Σ(ϕ) by theorem 7.5.2.

7.6 Pressure at a point

In theorems 7.2.6, 7.2.7 and the remark afterwards, we considered the topological pressure on a point

z. Here, we prove the formulae that we quoted for P{z}(ϕ), CP {z}(ϕ) and CP {z}(ϕ).

Theorem 7.6.1. Let X be a compact metric space, f : X 7→ X and z be an arbitrary point. Then

P{z}(ϕ) = CP {z}(ϕ) = lim inf
n→∞

1

n

n−1∑

i=0

ϕ(f i(z)),

CP {z}(ϕ) = lim sup
n→∞

1

n

n−1∑

i=0

ϕ(f i(z)).

Remark 7.6.1. It follows from theorem 7.6.1 and the ergodic theorem that for any invariant measure

µ, there is a set of full measure so that P{z}(ϕ) = CP {z}(ϕ) = CP {z}(ϕ). If µ is ergodic, this value

is
∫
ϕdµ.

Remark 7.6.2. If z is a point for which the Birkhoff average of ϕ does not exist, then P{z}(ϕ) =

CP {z}(ϕ) < CP {z}(ϕ).

The theorem is a consequence of the lemmas that follow and the relation PZ(ϕ) ≤ CPZ(ϕ) ≤

CPZ(ϕ) for any Borel set Z ⊂ X (formula (11.9) of [Pes]).
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Lemma 7.6.1. Let (X, d) be a compact metric space, ϕ : X 7→ R a continuous function, and

z ∈ X. Then

P{z}(ϕ) ≥ lim inf
n→∞

1

n

n−1∑

i=0

ϕ(f i(z)).

Proof. We work directly with our usual definition of Pesin and Pistskel topological pressure (see

§2.1.1). Without loss of generality, it suffices to consider covers of {z} by a single set Bn(x, ε). Fix

ε > 0, N ∈ N and 0 < δ < 1
2 . Choose α satisfying

α < lim inf
n→∞

1

n

n−1∑

i=0

ϕ(f i(z)) − Var(ϕ, ε) − δ. (7.5)

Assume N was chosen sufficiently large so that for m ≥ N ,

1

n

n−1∑

i=0

ϕ(f i(z)) ≥ lim inf
n→∞

1

n

n−1∑

i=0

ϕ(f i(z)) − δ. (7.6)

Choose Γ = {Bm(x, ε)} such that z ∈ Bm(x, ε), m ≥ N and

|Q({z}, α,Γ, ϕ) −M({z}, α, ε,N, ϕ)| ≤ δ.

We can prove that
∑m−1
k=0 ϕ(fk(z)) −mVar(ϕ, ε) −mα > 0, which follows from (7.5) and (7.6). It

follows that

M({z}, α, ε,N, ϕ) ≥ exp

{
−αm+ sup

y∈Bm(x,ε)

m−1∑

k=0

ϕ(fk(y))

}
− δ

≥ exp

{
−αm+

m−1∑

k=0

ϕ(fk(z)) −mVar(ϕ, ε)

}
− δ

≥ 1 − δ ≥
1

2
.

So M({z}, α, ε,N, ϕ) > 0 and hence P{z}(ϕ, ε) ≥ α. It follows that

P{z}(ϕ, ε) ≥ lim inf
n→∞

1

n

n−1∑

i=0

ϕ(f i(z)) − Var(ϕ, ε) − δ.

On taking the limit ε→ 0 and noting that δ was arbitrary, we obtain the desired result.

Lemma 7.6.2. CP {z}(ϕ) = lim infn→∞
1
n

∑n−1
i=0 ϕ(f i(z)).

Proof. It follows from the definition of CPZ(ϕ) that

CP {z}(ϕ) = lim
ε→0

lim inf
n→∞

1

n
log

(
inf

x:z∈Bn(x,ε)
exp

{
n−1∑

i=0

ϕ(f i(x))

})
.

For a fixed ε and Bn(x, ε) which contains z,

n−1∑

i=0

ϕ(f i(x)) ≤
n−1∑

i=0

ϕ(f i(z)) + nγ(ε).
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It follows that

CP {z}(ϕ) ≤ lim
ε→0

lim inf
n→∞

1

n
{
n−1∑

i=0

ϕ(f i(z)) + γ(ε)}.

We obtain CP {z}(ϕ) ≤ lim infn→∞
1
n

∑n−1
i=0 ϕ(f i(z)) and we can prove the reverse inequality in the

same way.

Lemma 7.6.3. CP {z}(ϕ) = lim supn→∞
1
n

∑n−1
i=0 ϕ(f i(z)).

Proof. It follows from the definition of CPZ(ϕ) that

CP {z}(ϕ) = lim
ε→0

lim sup
n→∞

1

n
log

(
inf

x:z∈Bn(x,ε)
exp

{
n−1∑

i=0

ϕ(f i(x))

})
.

The rest of the proof proceeds in the same way as that of lemma 7.6.2.
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Future directions

We mention some questions of further interest which relate to the contents of the thesis.

There are some very interesting questions surrounding the almost specification property (see

chapter 6). Many interesting results which are known for maps with the specification property should

generalise to the class of maps with almost specification. For example, Bowen’s results concerning

uniqueness of equilibrium states for maps with the specification property [Bow5] should carry over

to this more general setting.

Another obvious avenue of investigation is to see which other maps have almost specification.

We have some ideas about this problem in the context of piecewise monotonic interval maps and

for certain examples of shift spaces. However, this project has not come to fruition in time to be

included in the thesis.

In §6.5.3, we found subshifts of finite type within the β-shift with entropy arbitrarily close

to log β. This suggests the investigation of a ‘horseshoe’ method of proof for results about the

topological entropy of the irregular set. More precisely, we could study the class of systems (X, f)

which contain subsystems (Y, fn) which are topological factors of shifts of finite type, where Y ⊂ X

is compact and n ∈ N. We call (Y, fn) a horseshoe for (X, f). If the entropy of the horseshoe can

be chosen to approximate that of the whole space arbitrarily well, then it should suffice to study

the intersection of the irregular set with the horseshoe. We note that systems with specification

do not necessarily contain any horseshoes, so this approach would not recover our current results.

Also, theorems on the existence of horseshoes typically require smoothness of the system (see, for

example, theorem S.5.9 of [KH]), whereas our current approach is a topological approach to a

topological question. However, we do note that examples exist that do not have specification but

where a ‘horseshoe’ approach could yield results. For example, a continuous interval map which is

not mixing contains horseshoes but does not have specification (see corollary 15.2.10 of [KH]). Thus,

the ‘horseshoe’ approach certainly has merit.

An idea from the thesis which we hope will prove useful is to only ask for specification to

hold on an interesting invariant non-compact subset X ′ ⊂ X (see definition 2.2.3). The idea could

have applications for the study of non-uniformly hyperbolic systems. The interesting invariant set
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X ′ to which we allude is the set of points which return infinitely often to a set on which the map

is uniformly hyperbolic. We hope to pursue this in the future. A particular avenue of interest for

this is the Rauzy-Veech map and Teichmüller flow [Buf], which are related systems of great current

interest arising from geometry.

Finally, we hope to further investigate the properties of P ∗
Z(ψ) in some explicit examples.
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