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Abstract

The turnip crinkle virus-based vector TCV–GFPDCP

had been devised previously to study cell-to-cell and

long-distance spread of virus-induced RNA silencing.

TCV–GFPDCP, which had been constructed by replac-

ing the coat protein (CP) gene with a green fluorescent

protein (GFP) coding sequence, was able to induce

RNA silencing in single epidermal cells, from which

RNA silencing spread from cell-to-cell. Using this

unique local silencing assay together with mutagene-

sis analysis, two TCV genes, p8 and p9, which were

involved in the intercellular spread of virus-induced

RNA silencing, were identified. TCV–GFPDCP and its

p8- or p9-mutated derivatives, TCVmp8–GFPDCP and

TCVmp9–GFPDCP, replicated efficiently but were re-

stricted to single Nicotiana benthamiana epidermal

cells. TCV–GFPDCP, TCVmp8–GFPDCP, or TCVmp9–

GFPDCP was able to initiate RNA silencing that

targeted and degraded recombinant viral RNAs in

inoculated leaves of the GFP-expressing N. benthami-

ana line 16c. However, cell-to-cell spread of silencing

to form silencing foci was triggered only by TCV–

GFPDCP. Non-replicating TCVmp88–GFPDCP and

TCVmp28mp88–GFPDCP with dysfunctional replicase

genes, and single-stranded gfp RNA did not induce

RNA silencing. Transient expression of the TCV p9

protein could effectively complement TCVmp9–

GFPDCP to facilitate intercellular spread of silencing.

These data suggest that the plant cellular trafficking

machinery could hijack functional viral proteins to

permit cell-to-cell movement of RNA silencing.

Key words: Cell-to-cell movement, Nicotiana benthamiana,

RNA silencing, TCV, viral movement proteins.

Introduction

RNA silencing involves structured or double-stranded
RNA (dsRNA) that is processed into small inter-

fering RNAs (siRNAs) of 21–24 nucleotides (nt) by

Dicer, a member of the RNase III family of dsRNA-

specific endonucleases (Hamilton and Baulcombe, 1999;

Bernstein et al., 2001; Hamilton et al., 2002; Meister and
Tuschl, 2004). One intriguing characteristic of RNA

silencing is that RNA silencing is non-cell-autonomous.

RNA silencing can be induced locally and spread to distal

parts in plants, fungi, and nematodes (Voinnet and

Baulcombe, 1997; Voinnet et al., 1998; Winston et al.,
2002; Himber et al., 2003; Mallory et al., 2003; Timmons

et al., 2003). In Caenorhabditis elegans, several genes

including sid-1 (systemic interference defective), rsd-2,

rsd-3, and rsd-6 (RNAi spreading defective) have been

identified in the signalling pathway for systemic RNA
silencing (Winston et al., 2002; Feinberg and Hunter,

2003; Tijsterman et al., 2004). In particular, sid-1 encodes

a transmembrane protein SID-1 that enables intercellular

transport of dsRNA, which is essential for systemic but
not cell-autonomous RNA silencing (Winston et al., 2002;

Feinberg and Hunter, 2003). rsd-2 encodes a large protein

RSD-2 which interacts with the rsd-6 gene product RSD-6

that may bind to RNA. rsd-3 encodes a protein (RSD-3)

with an epsin N-terminal domain and is homologous to
the human protein enthoprotin involved in vesicle traffick-

ing. These proteins may operate at various steps of

a pathway specific for systemic RNA silencing in C.
elegans (Tijsterman et al., 2004).

In plants, compelling evidence indicates that local
silencing signal(s) can move between cells via plasmodes-
mata, while the systemic silencing signal(s) spreads within

the vascular system, mimicking the cell-to-cell and long-

distance movement of plant viruses (Palauqui and
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Balzergue, 1997; Voinnet et al., 1998, 2000; Ueki and
Citovsky, 2001; Himber et al., 2003; Baulcombe, 2004).
Transgenes, high molecular weight RNAs and siRNAs
have also been reported to induce RNA silencing that can
systemically spread in plants (Braunstein et al., 2002;
Klahre et al., 2002; Van Houdt et al., 2003; Garcia-Perez
et al., 2004). However, the characteristics of mobile
silencing signals have not been definitely reported in
plants and C. elegans (Mallory et al., 2001, 2003; Parrish
and Fire, 2001). It has been proposed that the 21 nt
siRNAs represent the local silencing signal for limited
cell-to-cell movement of RNA silencing across only
10–15 cells (Hamilton et al., 2002; Himber et al., 2003).
Production of the 21 nt cell-to-cell silencing signal
requires DICER-LIKE 4, and at least three silencing
movement-deficient genes (SMD1, SMD2, and SMD3) are
essential for intercellular spread of 21 nt siRNA (Dunoyer
et al., 2005). SMD1 and SMD2 are found to be allelic to
RDR2 (RNA-dependent RNA polymerase 2) and NRPD1a
(RNA polymerase IVa), respectively (Dunoyer et al.,
2007). Interestingly, NRPD1a, RDR2, and DCL3
(DICER-like 3), as well as ago4 (argonaute4), are
required for reception of long-distance RNA silencing
(Brosnan et al., 2007). On the other hand, the 24 nt
siRNA is indispensable for long-range (extensive) cell-
to-cell and systemic spread of silencing by acting as
a phloem-specific silencing signal (Hamilton et al., 2002;
Himber et al., 2003). Extensive cell-to-cell movement of
RNA silencing also requires the combined activity of
SDE1, a putative RNA-dependent RNA polymerase, and
SDE3, a putative RNA helicase, although SDE1 and SDE3
may not directly participate in the movement of silencing
(Dalmay et al., 2000, 2001; Himber et al., 2003). An
RNA-dependent RNA polymerase (RDR6) was found to
be required for cells to respond to the long-distance
silencing signal, but not to produce or translocate the
signal in N. benthamiana (Schwach et al., 2005). More
recently, an SNF2 protein CLASSY1 was shown to act
together with RDR2 and an RNA polymerase IVa gene
product NRPRD1a in the production of siRNAs for the
intercellular spread of transgene silencing (Smith et al.,
2007). However, no protein has been reported to be
involved directly in cell-to-cell and long-distance traffick-
ing of RNA silencing signals in plants.

A virus-induced RNA silencing (VIRS) vector, based
on Turnip crinkle virus (TCV), was developed to discrim-
inate between cell-to-cell and long-distance systemic
spread of RNA silencing in plants (Ryabov et al., 2004).
TCV, a member of the Carmovirus genus, has a positive-
sense single-stranded RNA genome (4053 nt) and encodes
five proteins (Carrington et al., 1989). P28 and its read-
through (p88) proteins are required for viral RNA
replication. Two small overlapping genes, p8 and p9, are
essential for cell-to-cell movement and systemic spread of
the virus (Hacker et al., 1992; Li et al., 1998). The

3#-proximal gene codes for the 38 kDa coat protein (CP)
that is indispensable for cell-to-cell movement of TCV in
N. benthamiana (Cohen et al., 2000a) and for suppression
of RNA silencing (Qu et al., 2003; Thomas et al., 2003).
The VIRS assay vector TCV–GFPDCP lacks the CP gene,
which is replaced with a functional green fluorescent
protein (GFP) coding sequence. TCV–GFPDCP differs
from other previously described plant virus-based VIRS
vectors (Burch-Smith et al., 2004). First, the latter cannot
distinguish between cell-to-cell and systemic spread of
RNA silencing because these earlier viruses, with silenc-
ing trigger sequences, moved from cell-to-cell and long
distance. Secondly, the TCV–GFPDCP VIRS assay is
different from the graft-induced RNA silencing assay,
which is widely used to investigate the systemic spread of
RNA silencing. Moreover, TCV–GFPDCP infects only
one type of cells (i.e. epidermal cells) after mechanical
inoculation (Cohen et al., 2000a; Ryabov et al., 2004),
where silencing is initiated and then the silencing signal(s)
moves to other epidermal and mesophyll cells. By
contrast, the types of cells in which silencing is initiated
cannot be identified easily during agro-infiltration- or
bombardment-induced RNA silencing. Both agroinfiltra-
tion and biolistics can deliver inducers of silencing
simultaneously into various cell types, including epider-
mal, mesophyll, and vascular cells. The initiation and
subsequent spread of silencing in different cell types may
have different signalling requirements. Thus, the TCV-
based VIRS assay provides a unique tool to dissect the
trafficking of silencing, in particular, the cell-to-cell
movement of RNA silencing in plants. Using the TCV-
based VIRS assay, mutagenesis, and complementation
analysis, it was shown that only replicating, but not non-
replicating, TCV-based vectors could initiate VIRS, and
that host cellular silencing trafficking machinery could
make use of TCV gene functions for cell-to-cell spread of
RNA silencing.

Materials and methods

Plasmid construction

Diagrammatic representations of recombinant viruses and plasmids
used in this work are shown in Fig. 1. The full-length infectious
cDNA clone of the UK isolate (AY312063) of turnip crinkle virus
pT7.TCV and its derivative pT7.TCV–GFPDCP in which the CP
gene was replaced with a GFP-coding sequence were described
previously (Ryabov et al., 2004). Plasmid pT7.TCV–GFPDCP was
linearized at the unique AvrII or BbvCI sites at nucleotide positions
108 or 1802, respectively. Protruding 5# termini were filled in using
the Klenow fragment of DNA polymerase I and recircularized to
produce pT7.TCVmp28mp88–GFPDCP and pT7.TCVmp88–
GFPDCP (Fig. 1A). The mutation at the AvrII site reduced the
coding capacity of open reading frame p28 from 251 to 16 amino
acids, and no read-through (p88) protein can be produced by
TCVmp28mp88–GFPDCP. The mutation in TCVmp88–GFPDCP at
the BbvCI site introduced an Asp residue into the p88 protein
sequence between Ala and Glu at amino acid positions 580 and 581.
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pT7.TCV–GFPDCP contains a unique BglII site downstream of
the stop codon for the p9 movement protein and a single PacI site
downstream of the 3# end of the TCV genome. A fragment
containing the gfp-2a-cp gene coding for GFP–2A–CP and the 3#-
terminal untranslated region of TCV was generated by overlap
extension PCR (Higuchi et al., 1988). The self-cleaving 2A
oligopeptide coding sequence was originated from the Foot-and-
mouth disease virus (Santa Cruz et al., 1996). PCR amplifications
were performed using pTXS.GFP–CP, a derivative of potato virus
X (PVX) vector containing the gfp-2a fusion gene (Santa Cruz
et al., 1996) and pT7.TCV as templates, and a gfp-specific primer
5#-GGTTagatctATGAGTAAAGGAGAAG-3# with a BglII site
(shown in lower case, preceding the 5#-terminal sequence of gfp-
2a), a pair of self-complementary mutagenic primers 5#-CGAGTC-
CAACCCTGGGCCCGCGATGGAAAATGATCCTAG-3# and 5#-
CTAGGATCATTTTCCATCGCGGGCCCAGGGTTGGACTCG-
3# (regions corresponding to 5#-terminus of TCV cp gene are
shown in bold), and the M13 reverse primer as the flanking primer.
The amplified fragment was cloned into the BglII and PacI sites of
pTCV–GFPDCP to produce pTCV–GFP–2A–CP (Fig. 1A).

To construct p8-mutated TCV clones, DNA fragments were
generated by PCR using the mutagenic primer 5#-GATAGATGGAT-
CCTtAAtGAATTCCCTACAACTCTC-3# (corresponding to nucleo-
tides 2352–2387 of TCV), the M13 reverse primer, and pT7.TCV–
GFP–DCP or pT7.TCV–GFP–2A–CP as templates. Modified
nucleotides to substitute the fourth and fifth codons of the p8 gene
with the stop codons TAA and TGA are shown in lower case. The
resulting PCR products were digested with BamHI and cloned to
replace a BamHI fragment of pT7.TCV–GFP–DCP to produce
pT7.TCV–mp8GFP–DCP and pT7.TCV–mp8GFP–2A–CP (Fig. 1A).
To construct p9-mutated TCV clones, DNA fragments were gener-
ated by overlap extension PCR using the primer 5#- CCAAGAT-
GCTAGGTTCAG-3# (corresponding to nucleotides 2219–2236 of
TCV), the mutagenic primers 5#-AGAGAcGAAGGTTCTGtaAGC-
CACGGGGGTACTTG-3# and 5#- CCGTGGCTtaCAGAACCTT-
CgTCTCTTTTCTTGT-3#, the M13 reverse primer as the flanking
primer, and pT7.TCV–GFPDCP or pT7.TCV–GFP–2A–CP as
templates. Modified nucleotides to mutate the ATG start codon of
the p9 gene to ACG and to substitute the fifth codon with a stop
codon (TAA) are shown in lower case. The resulting PCR products
were then digested with BamHI and cloned to replace a BamHI
fragment of pT7.TCV–GFPDCP to produce pT7.TCV–mp9GFP–
DCP and pT7.TCV–mp9GFP–2A–CP (Fig. 1A).

The GFP-coding sequence was PCR amplified using a pair of
primers 5#-ATGAGTAAAGGAGAAGAA-3# and 5#-TTTGTA-
TAGTTCATCCATGCCA-3# with pTXS.GFP–CP (Santa Cruz et al.,
1996) as template. The gfp gene was cloned directly into pGEM-T
Easy vector (Promega) to produce pT7–GFP and pT7–antisenseGFP
(Fig. 1B). The TCV p8 and p9 genes were PCR amplified using
pfu DNA polymerase (Promega), pTCV DNA template, and a set of
gene-specific primers 5#-TTAGTGATcGATGGATCCTGAAC-
GAATTCCC-3# and 5#-CATGTCcGgccgGAAGTTGAAGTTGATT-
GAGAC-3# for p8, and 5#-AAGAAAAtcgATGAAGGTTCTGCTAG
TCACGGGGG-3# and 5#-ACTCTAcGgcCgTTTTCCGTTTCCAG-
TGTTGATG-3# for p9. Modified nucleotides are shown in lower case
and introduced ClaI and EagI sites are underlined. PCR products
corresponding to the two genes were digested with ClaI and EagI, and
cloned into ClaI/EagI-digested PVX-based vectors p45P46 and
p45P46–GFP (Van Wezel et al., 2001) to produce PVX-p8, PVX-p9,
PVX-p8–GFP, and PVX-p9–GFP (Fig. 1C). The integrity of all
recombinant clones and the presence of gene mutations were
confirmed by sequencing.

Virus infection and replication assays

RNA transcripts were produced by in vitro transcription from each
construct and mechanically inoculated onto N. benthamiana plants

Fig. 1. A schematic representation of recombinant viral constructs. (A)
Genomic organization of TCV and TCV-based local RNA silencing
vectors. Viral genes and GFP coding regions are presented as open
boxes. Mutated open reading frames have asterisks and are shaded. The
self-cleaving 2A oligopeptide of Foot-and-mouth disease virus is shown
as a dark box. (B) Gfp sense and anti-sense cassettes. The GFP gene
was cloned into pGEM-T Easy vector in opposite orientations under the
transcriptional control of the T7 RNA promoter. (C) Genomic
organization of PVX and PVX-based gene expression constructs.
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as described (Van Wezel et al., 2001). Plants were maintained in an
insect-free glasshouse at 25 �C. To measure the accumulation of
viral RNA and the level of gfp RNA, total RNA was extracted from
leaf tissues using the RNeasy plant mini kit (Qiagen) and assayed
by reverse transcriptase-polymerase chain reaction (RT-PCR) as
described (Ryabov et al., 2004).

Epifluorescence microscopy

Inoculated N. benthamiana leaves were collected, examined with
a Zeiss Axiophot microscope through a green filter and photo-
graphed with a Nikon Coolpix990 digital camera as previously
described (Dong et al., 2003).

Local RNA silencing assays

Seedlings of transgenic N. benthamiana line 16c that constitutively
express GFP (Brigneti et al., 1998) were mechanically inoculated
with RNA transcripts produced by in vitro transcription from Pac I-
linearized TCV- or SpeI-linearized PVX-based constructs. Induction
and cell-to-cell spread of RNA silencing of GFP expression were
routinely examined under long-wavelength UV light and recorded
photographically using a Nikon Digital Camera Coolpix990.
Regions of the leaf lamina where silencing of gfp RNA occurred
showed red chlorophyll fluorescence (red foci) while tissues
expressing GFP showed green fluorescence. Leaf samples were
taken for RNA extraction and RT-PCR assays as described (Ryabov
et al., 2004).

Results

VIGS constructs

The movement-deficient TCV–GFPDCP is able to trigger
efficient intercellular spread of RNA silencing (Ryabov
et al., 2004), suggesting that viral factors may be
exploited by plants to spread the RNA silencing signal
between cells. To test the potential involvement of TCV
genes in the cell-to-cell movement of RNA silencing,
a series of TCV–GFPDCP-based VIRS vectors was
constructed by introducing mutations into individual viral
genes (Fig. 1A), as well as recombinant plasmids for the
production of sense and anti-sense strands of gfp RNA
(Fig. 1B), and PVX-based vectors for expressing TCV p8
and p9, and p8– and p9–GFP fusion proteins (Fig. 1C).
TCVmp88–GFPDCP had the capacity to produce a mu-
tated p88, while TCVmp28mp88–GFPDCP could only
express a truncated p28 but no read-through p88. A stop
codon (TAA) was introduced into the 5# end of the p8 and
p9 genes in TCVmp8–GFPDCP and TCVmp9–GFPDCP,
respectively, in addition to separate mutations which
disrupted the initiation codons in the p8 and p9 genes.

Effects of viral gene mutations on the cell-to-cell
movement and replication of TCV

Total RNA was extracted from non-transgenic N. ben-
thamiana leaves inoculated with equal amounts of RNA
transcripts of TCV–GFPDCP or its mutant derivatives at
3, 12, and 24 d post-inoculation (dpi) and analysed by
RT-PCR (Fig. 2). TCV-specific RT-PCR products were

Fig. 2. Requirement of functional p8 and p9 for cell-to-cell movement,
but not for replication of TCV in single Nicotiana benthamiana
epidermal cells. (A–C) Effect of various gene mutations on TCV
replication. Detection of TCV (A), gfp RNA (B), and 18S rRNA (C)
were performed by RT-PCR (+) using DNase I-pretreated RNA samples
(10 ng). RT was excluded in RT-PCR control reactions (–) for each
detection. Total RNA samples were extracted from N. benthamiana
leaves mock-inoculated (2) or inoculated with TCV–GFPDCP (3),
TCVmp88–GFPDCP (4), TCVmp28mp88–GFPDCP (5), TCVmp8–
GFPDCP (6), TCVmp9–GFPDCP (7), sense (8) or anti-sense (9) gfp
ssRNA RNAs at 24 d post-inoculation (dpi). Similar results were
obtained using RNAs extracted from leaves collected at 3 and 12 dpi
(data not shown). The sizes (in base pairs, bp) and positions of a 1 kb
DNA ladder (Sigma) (lane 1) are indicated. (D–F) Fluorescent
microscopy of GFP expression in N. benthamiana leaves. TCV–
GFPDCP restricted to single epidermal cells showed green GFP
fluorescence (D). TCV–GFP–2A–CP trafficked from cell-to-cell in
a group of four or five epidermal cells started to show GFP expression
at 2 dpi (E) and multi-cellular GFP-fluorescent lesions appeared at 6 dpi
(F). Both TCVmp8–GFP–2A–CP (G) and TCVmp9–GFP–2A–CP (H)
were limited to single epidermal cells. Photographs were taken using
a Zeiss Axiophot fluorescent microscope through a green filter. Scale
bar¼100 lm.
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readily detected in TCV–GFPDCP, TCVmp8–GFPDCP,
or TCVmp9–GFPDCP infections (Fig. 2A). All three
recombinant viruses maintained their readily detectable
gfp sequence (Fig. 2B). However, no virus- or gfp-specific
sequences were detected in mock-inoculated leaves or in
leaves inoculated with TCVmp88–GFPDCP, TCVmp28mp88–
GFPDCP, or the sense or anti-sense strand of gfp RNA,
although an 180 bp 18S rRNA-specific RT-PCR product
was present in all samples (Fig. 2C). RT-PCR reactions
without AMV RT (negative controls) gave no positive
signal for any target sequences.

Next, the type of cells that could be infected by TCV–
GFPDCP and its mutant derivatives after mechanical
inoculation was investigated. Consistent with the inability
of TCVmp88–GFPDCP, TCVmp28mp88–GFPDCP, or
gfp sense and anti-sense strand RNA to replicate, no GFP
fluorescent cells were observed after intensive micro-
scopic scrutiny of N. benthamiana leaves mechanically
inoculated with those constructs. TCV–GFPDCP was
restricted to single epidermal cells showing the green
florescence of viral GFP transient expression (Fig. 2D).
To correlate effects of mutations in p8 or p9 with
intercellular movement of TCV, the mobility of TCV–
GFP–2A–CP, TCVmp8–GFP–2A–CP, and TCVmp9–
GFP–2A–CP in plants was assayed (Fig. 2). A group of
four to five epidermal cells appeared to show GFP
fluorescence on leaves inoculated with TCV–GFP–
2A–CP at 2 dpi (Fig. 2E). Up to 100 different cells were
infected and formed multi-cellular GFP-fluorescent spots
at 6 dpi (Fig. 2F). By contrast, p8- or p9-mutated
TCVmp8–GFP–2A–CP or TCVmp9–GFP–2A–CP was
limited in single epidermal cells. Not surprisingly, double-
mutant viruses TCVmp8–GFPDCP and TCVmp9–
GFPDCP, similar to TCVmp8–GFP–2A–CP and TCV
mp9–GFP–2A–CP, did not move and only unicellular

GFP fluorescence was observed in single epidermal cells
(Fig. 2G, H). The p8 or p9 mutant virus produced
unicellular GFP fluorescence that was visible at 2 dpi,
and remained within single cells at 24 dpi.

TCV p8 and p9 are associated with the intercellular
spread of RNA silencing

Mechanical inoculation of TCV–GFPDCP onto GFP
transgenic N. benthamiana line 16c plants initiated gfp
RNA silencing, which then spread effectively from cell-
to-cell to form gfp-silenced foci, which appeared as red
spots due to the chlorophyll fluorescence. Small red
silencing foci of gfp-silenced cells were seen at 3 dpi
under epifluorescence microscope (Fig. 3B). The gfp-
RNA silenced foci increased in size progressively (Fig.
3C). Such ‘silencing foci’ eventually became visible to the
naked eye under long-wavelength UV light and were
scattered throughout the whole lamina of each inoculated
line 16c plant leaf (Fig. 3D), indicating efficient cell-
to-cell movement of RNA silencing. As in mock-
inoculated leaves, non-replicating TCVmp88–GFPDCP,
TCVmp28mp88–GFPDCP, and sense or anti-sense gfp
mRNA failed to induce any visible phenotype of gfp RNA
silencing. No red silencing cells were observed on
inoculated leaves despite intensive scrutiny under an
epifluorescence microscope (Fig. 3A, E, F, I, J). In three
independent experiments, both TCVmp8–GFPDCP and
TCVmp9–GFPDCP rarely triggered local gfp-silencing,
observed as red foci, hallmark of the cell-to-cell spread of
RNA silencing (Figs 3G, H, 4A), although both recombi-
nant viruses, like their parental virus TCV–GFPDCP,
infected and replicated efficiently in single epidermal cell
(Figs 2, 4B, C). This was in contrast to the significantly
higher number of silencing foci triggered by TCV–
GFPDCP (Fig. 4A).

Fig. 3. Local induction and cell-to-cell spread of RNA silencing in GFP transgenic Nicotiana benthamiana line 16c plants. Plants were mock-
inoculated (A) or mechanically inoculated with RNA transcripts of TCV–GFPDCP (B–D), TCVmp88–GFPDCP (E), TCVmp28mp88–GFPDCP (F),
TCVmp8–GFPDCP (G), TCVmp9–GFPDCP (H), sense (I), or anti-sense (J) gfp ssRNA RNAs. Photographs of (A) and (C–J) were taken at 9 dpi and
that of (B) at 3 dpi with a Nikon Coolpix990 digital camera under long-wavelength UV illumination through a yellow filter. TCV–GFPDCP-
inoculated leaves (B, C) were examined by fluorescent microscopy through a red filter to show progressive enlargement of individual gfp RNA
silencing foci. Regions of gfp RNA silencing appeared red due to chlorophyll fluorescence, while GFP-expressing tissues showed green fluorescence.
Only one red focus of gfp RNA silencing (arrow) is seen on the leaf inoculated with TCV–mp9GFPDCP (H). Scale bar¼1 mm.
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Levels of gfp and viral RNAs in inoculated line 16c
leaves were further analysed by RT-PCR (Fig. 4).
Consistent with limited induction of local RNA silencing,
transgenically expressed and transient viral gfp RNAs
were readily detectable as a 120 bp RT-PCR product in all
samples taken at various stages (Fig. 4D). Using two
TCV-specific primers, a 410 bp RT-PCR fragment of
TCV RNA was detected at 3 dpi, and the level declined at
12 dpi and 24 dpi, but no TCV-specific RNA was found
in the mock-inoculated controls (Fig. 4B). Similar results
were obtained by RT-PCR using a 5# primer specific
to TCV and a 3# primer specific to the inserted gfp
sequence to detect a 530 bp RNA spanning both the 410
bp TCV- and 120 bp gfp-specific sequences (Fig. 4C). Due
to their inability to replicate, no TCVmp88–GFPDCP-,
TCVmp28mp88–GFPDCP-, or gfp-specific RNA was

detected, although an 18S rRNA-specific RT-PCR product
was seen in all samples (Fig. 4E).

Transient expression of the TCV p9 protein
complements TCVmp9–GFPDCP to facilitate the
intercellular trafficking of RNA silencing

To find out if transient expression of the TCV p8 or
p9 protein could complement TCVmp8GFPDCP or
TCVmp9–GFPDCP, respectively, to facilitate the cell-to-
cell spread of RNA silencing, the TCV p8 or p9 genes
were cloned into a modified PVX-based vector in which
transient expression of p8 or p9 was under the control of
a duplicated PVX CP sub-genomic promoter (Fig. 1C).
Co-inoculation of line 16c plants with wild-type PVX had
no effect on TCV–GFPDCP to induce and spread gfp
RNA silencing and ;100 of the characteristic silencing
red foci per co-inoculated leaf were observed (Fig. 5A).
Then line 16c plants were inoculated with mixtures of
RNA transcripts of TCVmp8–GFPDCP and PVX–p8, or
TCVmp9–GFPDCP and PVX–p9 in two separate experi-
ments. PVX–p8 did not complement TCVmp8–GFPDCP

Fig. 4. Effects of mutations in p8 and p9 on the ability of TCV–
GFPDCP to induce local RNA silencing. (A) Numbers of silencing foci
per inoculated leaf. Numbers were counted at 9 dpi in mock-inoculated
line 16c plants, and in plants inoculated with RNA transcripts of TCV–
GFPDCP and its derivatives. Data are represented as means 6standard
deviations per inoculated leaf by counting the numbers of silencing foci
on individual leaves on six plants in three independent experiments. (B–
E) Effect of local RNA silencing on viral RNA accumulation. RT-PCR
was performed to detect TCV- (B), TCV-gfp- (C), gfp- (D), or 18S
rRNA- (E) specific RNAs using 10 ng total RNA samples extracted
from line 16c plant leaves following mock inoculation (lane 2), or
inoculated with TCV–GFPDCP (lanes 3, 6, 9), TCVmp8–GFPDCP
(lanes 4, 7, 10), TCVmp9–GFPDCP (lanes 5, 8, 11), TCVmp88–
GFPDCP (lane 12), TCVmp28mp88–GFPDCP (lane 13), sense (lane
14), or antisense (lane 15) gfp RNA. Leaves were harvested at 3, 12,
and 24 dpi. The sizes of amplicons (in base pairs, bp) and the positions
of the 1 kb DNA ladder (Sigma) (lane 1) are indicated.

Fig. 5. Transient expression of TCV p9 protein complements
TCVmp9–GFPDCP to promote cell-to-cell spread of RNA silencing.
(A) Average numbers of silencing foci per inoculation are shown.
Numbers were counted at 18 dpi in line 16c plants co-inoculated with
TCV–GFPDCP+PVX, TCVmp8–GFPDCP+PVX-p8, or TCVmp9–
GFPDCP+PVX-p9. (B–D) Non-transformed N. benthamiana plants
were infected with PVX (B), PVX-p8–GFP (C), or PVX-p9–GFP (D).
Photographs of lesions which resulted from virus infection were taken
at 5 dpi using a Zeiss Axiophot fluorescent microscope through a green
filter. GFP-expressing cells showed green fluorescence predominately in
their nuclei (C) or throughout their cytoplasm (D). Scale bar¼100 lm.
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to promote cell-to-cell movement of gfp RNA silencing.
By contrast, the deficiency of TCVmp9–GFPDCP for
intercellular spread of RNA silencing was effectively
recovered by PVX–p9. Here, many typical gfp-silenced
red foci became visible on 16c plant leaves co-inoculated
with TCVmp9–GFPDCP and PVX–p9 (Fig. 5A). How-
ever, these silencing foci took longer to develop and were
visible under the fluorescent microscope only at 8–10 dpi
and later under long-wavelength UV light. Importantly, no
cell-to-cell movement of TCVmp8–GFPDCP or
TCVmp9–GFPDCP in plants co-inoculated with PVX,
PVX–p8, or PVX–p9 was observed (data not shown).

Expression of the TCV p8 and p9 proteins was
confirmed indirectly by examining the production of p8–
GFP and p9–GFP fusion proteins from PVX–p8–GFP and
PVX–p9–GFP, the gene expression vectors corresponding
to PVX–p8 and PVX–p9, respectively (Fig. 1C). Fluores-
cent microscopy showed that infection of N. benthamiana
with PVX–p8–GFP or PVX–p9–GFP resulted in multiple
cells with strong green fluorescence generated from the
p8–GFP and p9–GFP fusion proteins (Fig. 5C, D) in
contrast to the background fluorescence associated with
PVX control infection (Fig. 5B).

Discussion

In this paper, it is reported that TCV–GFPDCP, p8- or p9-
mutated TCV–GFPDCP possessed replication capacities
and was confined to single epidermal cells after mechan-
ical inoculation of N. benthamiana. Nonsense mutations
in p8 and p9 had no effect on viral RNA accumulation.
However, truncations of replicase proteins p28 or p88
inhibited replication of TCV–GFPDCP. The present data
also indicate that TCV–GFP–2A–CP expressed a func-
tional CP either in the fusion form or free CP via cleavage
of GFP–2A–CP fusion protein by the foot-and-mouth
disease virus 2A peptide (Santa Cruz et al., 1996), and
that this was required for cell-to-cell movement of TCV in
N. benthamiana. Moreover, due to their inability to spread
from cell-to-cell, the levels of TCV–GFPDCP, TCVmp8–
GFPDCP, and TCVmp9–GFPDCP RNAs detected in
inoculated leaves (Fig. 2) probably reflected equivalent
accumulation of recombinant viral RNAs in single
epidermal cells.

Mutations in individual genes of the VIRS vector TCV–
GFPDCP could generate mutant viruses (Fig. 1A) with
altered abilities to replicate. For example, mutant viruses
that carried the silencing inducer gfp sequences could
accumulate to different levels in individual epidermal
cells, and the dose of the inducer might be inappropriate
to initiate gfp RNA silencing for silencing to spread.
Consistent with this hypothesis, it was demonstrated that
viral RNA replication was a prerequisite for TCV–
GFPDCP to trigger local VIRS. Mutations in p28 and p88

were lethal in TCVmp88–GFPDCP and TCVmp28mp88–
GFPDCP. These two mutant viruses did not replicate and
their lack of dsRNA may have contributed to their failure
to induce RNA silencing (Figs 3, 4). This phenomenon
implies that endogenous RNA-dependent RNA poly-
merases identified as being necessary to convert ssRNA
into the dsRNA initiator of silencing in N. benthamiana
and Arabidopsis (Dalmay et al., 2000; Mourrain et al.,
2000; Schwach et al., 2005) may not be active in
epidermal cells. This idea is supported by the fact that
direct inoculation of 16c leaves with gfp sense or anti-
sense ssRNA failed to trigger RNA silencing (Fig. 3).

On the other hand, TCV CP is a potent suppressor of
RNA silencing and p8 or p9 is not involved in silencing
suppression (Qu et al., 2003; Thomas et al., 2003).
Expression of CP during TCV co-infection is able to
arrest TCV–GFPDCP-mediated local induction of RNA
silencing (Ryabov et al., 2004) and the effectiveness to
trigger RNA silencing by TCV–GFP–2A–CP was dramat-
ically reduced (data not shown). Deletion of the CP gene
from the viral genome enabled the three replicating but
intercellular movement-deficient viruses TCV–GFPDCP,
TCVmp8–GFPDCP, and TCVmp9–GFPDCP to initiate
and maintain silencing of both transgenic and transient gfp
RNAs in individual epidermal cells, which effectively
targeted and degraded recombinant viral RNAs during the
course of infection (Figs 2, 4B, C). However, the cell-to-
cell movement of silencing occurred only in association
with TCV–GFPDCP, and not with TCVmp8–GFPDCP or
TCVmp9–GFPDCP. Therefore, knocking-out the p8 or p9
gene resulted in a loss-of-function of TCV–GFPDCP for
promoting cell-to-cell movement of RNA silencing. This
is further evident by the fact that transient expression of
the p9 protein from PVX/p9 led to a gain-of-function of
TCVmp9–GFPDCP by facilitating the cell-to-cell spread
of silencing, although the p8 protein expressed in a similar
manner failed to complement the deficiency of TCVmp8–
GFPDCP (Fig. 5).

The precise mechanism for the different silencing
phenotypes, which were triggered by TCV–GFPDCP,
TCVmp8–GFPDCP, or TCVmp9–GFPDCP, remains to
be elucidated. One possibility is that the silencing foci
could be caused by limited cell-to-cell spread of TCV–
GFPDCP due to the activity of viral movement protein p9
and/or p8, which in turn caused gfp RNA silencing in the
adjacent cells. However, fluorescent microscopic exami-
nation of leaves inoculated with the three CP-less TCV
mutants clearly showed that they were restricted to single
epidermal cells. There was also no difference in the
florescence intensity in surrounding cells, indicating that
TCV–GFPDCP and its p8- or p9-mutated derivatives were
indeed incapable of cell-to-cell movement (Fig. 2).
Furthermore, it is unlikely that TCV–GFPDCP could
move across so many cells in which VIRS occurred in
the absence of silencing suppressor. In this scenario, any

Cell-to-cell movement of RNA silencing 2809



limitedly spread viral RNA would be immediately
silenced because the silencing suppressor was not
expressed and there would be no further spread of TCV–
GFPDCP. Thus, induction of local RNA silencing foci by
TCV–GFPDCP was unlikely to be caused by limited cell-
to-cell diffusion of this movement-deficient virus.

Alternatively, cell-to-cell spread of RNA silencing may
involve the transport of mobile silencing signals through
plasmodesmata. This process mimics the intercellular
spread of plant RNA viruses, which is facilitated by
virus-coded cell-to-cell movement proteins that frequently
interact with RNA in a non-sequence-specific manner.
Indeed, TCV proteins p8 and p9 are viral RNA cell-to-cell
movement proteins (Hacker et al., 1992; Li et al., 1998;
Cohen et al., 2000a). It is possible that p8 and p9 could
also promote the spread of RNA silencing signals between
cells. Interestingly, p8 is a non-specific RNA-binding
protein that is localized in plant cell nuclei and also
interacts specifically with the Arabidopsis transmembrane
Atp8 protein that possesses two RGD motifs (Wobbe
et al., 1998; Cohen et al., 2000b; Lin and Heaton, 2001).
RGD-containing proteins function in numerous cell-
signalling pathways through RGD-integrin recognition
and interactions with the actin-based cytoskeleton
(Ruoslahti, 1996). However, p9 is not confined to the cell
nucleus, but is found throughout the cytoplasma, and does
not interact with the Atp8 protein. Bioinformatics analysis
(Hirokawa et al., 1998) indicated that p9 consists of
85 amino acid residues and has two separate transmem-
brane helices of 17 and 23 residues that could direct this
protein into cell membranes (data not shown). Thus, the
biochemical, molecular, and cellular requirements for p8-
and p9-mediated transport of RNA silencing signals could
differ. On the other hand, the expression studies with the
GFP fusion proteins (Fig. 5C, D) suggest that far more
p9–GFP than p8–GFP accumulates in plants. These
factors may collectively account for the disparity that
transient expression of p9 restored the ability of
TCVmp9–GFPDCP to promote the cell-to-cell movement
of RNA silencing while p8 was unable to complement the
deficiency for intercellular spread of RNA silencing in
TCVmp8–GFPDCP.

As a general mechanism against silencing, virus
infections may have a detrimental effect on machinery for
spreading the host silencing, resulting in a shutdown of
intercellular communication for cellular RNA silencing
defence between the initially infected and neighbouring
cells. In this scenario, host cells would have to exploit
virus-encoded protein(s) that could facilitate the intercel-
lular trafficking of silencing signal to avoid further
infection. Based on this assumption, we propose a model
to explain why TCV–GFPDCP, TCVmp8–GFPDCP, or
TCVmp9–GFPDCP could induce RNA silencing, and
why only TCV–GFPDCP promoted the spread of silenc-
ing from single epidermal cells to adjacent cells to form

visible silencing foci (Fig. 6). TCV–GFPDCP, TCVmp8–
GFPDCP, or TCVmp9–GFPDCP infects but cannot
spread from initially invaded single epidermal cells (Fig.
6A, E). There they replicate to produce positive and
negative viral ssRNA strands. dsRNA structures could be
formed within or/and between these ssRNAs that trigger
unicellular RNA silencing (Fig. 6B, F). At this stage, the
primary mobile RNA silencing signal, presumably the 21
nt siRNA, is produced by a DICER-LIKE endonuclease
(Dunoyer et al., 2005). However, the primary mobile
silencing signal is unable to move out from the virus-
infected epidermal cell because the host cell transport
mechanism has been shut down by viral infection. Instead,
the host cell could hijack the p8 and p9 proteins expressed
by TCV–GFPDCP to promote the trafficking of the
primary silencing signal to adjacent cells. The primary
silencing signal could then induce secondary RNA
silencing in these uninfected cells, which leads to sub-
sequent production of a secondary mobile silencing signal
(Fig. 6C). Due to the absence of virus infection,
trafficking of the secondary silencing signal to further
cells is probably mediated by a host cell mechanism as
has been proposed by others (Himber et al., 2003;
Dunoyer et al., 2005), resulting in the progressive
development of an RNA silencing focus (Fig. 6D).
However, in the absence of p8 or p9, trafficking of the
primary silencing signal from the initially virus-infected
cell to neighbouring ‘recipient’ cells could not take place.
In this case, the cascade of the induction and movement of
RNA silencing is unlikely to continue. Thus, RNA
silencing triggered by TCVmp8–GFPDCP or TCVmp9–
GFPDCP stops spreading beyond the primary virus-
infected cell to form a visible red focus of gfp RNA
silencing (Fig. 6F). On the other hand, TCVmp88–
GFPDCP, TCVmp28mp88–GFPDCP, sense or anti-sense
gfp ssRNA induces no RNA silencing because these
ssRNAs could not be converted into dsRNA silencing
triggers in epidermal cells (Fig. 6G).

This model may also be applied to the intercellular
spread of RNA silencing that occurs in the absence of
virus infection. A mobile silencing signal generated in
individual cells, for example by agroinfiltration-, bom-
bardment-, or microinjection-induced RNA silencing, may
use host factors to promote its own cell-to-cell movement,
or diffuse passively between cells via plasmodesmata.
However, the latter process is unlikely to occur in plants.
Microinjection of 21 nt or 25 nt ssRNAs and dsRNAs into
single cells has shown that none of these small RNA
molecules is able to move out of the injected cell,
providing direct evidence that plasmodesmata do not
permit cell-to-cell diffusion of small RNA species (Yoo
et al., 2004). These data are also consistent with the idea
that intercellular trafficking of siRNA silencing signals
requires protein components. Indeed, a small RNA
binding protein (PSRP1) characterized from pumpkin
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(Cucurbita maxima) phloem sap selectively binds 25 nt
ssRNA and mediates cell-to-cell trafficking of 25 nt
ssRNA, but not dsRNA molecules, although the potential
role of PSRP1 in signalling silencing remains to be
elucidated (Yoo et al., 2004).

The present findings raise an interesting evolutionary
question about why a plant virus encodes proteins that may
promote the spread of silencing signal of an innate antiviral
defence. It is speculated that during the co-evolution of
plants and viruses, host plants may have adapted to viruses
that often take advantage of cellular machinery for viral
gene expression, replication, and movement. In return,
plants could also have evolved the ability to use viral
proteins to fend off viral pathogens. It is not surprising, for
example, that many plant viruses encode elicitor proteins
that are recognized by host plants to trigger a hypersensitive
response, another form of innate defence mechanism that
counteracts virus infection. Nevertheless, the specific viral
proteins together with the TCV–GFPDCP-based VIRS
assay could provide a novel route to dissect the bio-
chemical and molecular components directly involved in
the intercellular movement of RNA silencing in plants.
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