
University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

A Thesis Submitted for the Degree of PhD at the University of Warwick

http://go.warwick.ac.uk/wrap/2126

This thesis is made available online and is protected by original copyright.

Please scroll down to view the document itself.

Please refer to the repository record for this item for information to help you to
cite it. Our policy information is available from the repository home page.



Interplay between Network Topology and

Synchrony-breaking Bifurcation: Homogeneous

Four-cell Coupled Cell Networks

by

Hiroko Kamei

Thesis

Submitted to the University of Warwick

for the degree of

Doctor of Philosophy

MOAC Doctoral Training Centre

July 2008



Contents

Declarations viii

Acknowledgments ix

Abstract x

Chapter 1 Introduction 1

1.1 Networks Everywhere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Social Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Networks in Microbiology . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 Food Webs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Network Formalism: Coupled Cell Systems . . . . . . . . . . . . . . . . . . . . . 3

1.3 Networks with Group Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Networks without Group Symmetry . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 From Network Topology to Network Dynamics . . . . . . . . . . . . . . . . . . . 7

1.6 Synchrony-Breaking Bifurcation in Coupled Cell Networks . . . . . . . . . . . . . 10

1.7 Ordered Structure of Balanced Colourings . . . . . . . . . . . . . . . . . . . . . . 12

1.8 Thesis overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Chapter 2 Enumeration of Inhomogeneous Coupled Cell Networks 15

2.1 Introduction to Coupled Cell Networks . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Enumeration of All Possible Adjacency Matrices . . . . . . . . . . . . . . . . . . 16

2.2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Regular Inhomogeneous Network Case . . . . . . . . . . . . . . . . . . . . 17

2.3 Isomorphic Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Orbit Counting Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

ii



2.5 Enumeration of Four-Cell Inhomogeneous Regular Networks . . . . . . . . . . . . 23

2.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Periodic Banded Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.6.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.7 Fixed-Point Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.7.2 Inhomogeneous Network Case . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8 Enumeration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.8.2 Regular Inhomogeneous Network Case . . . . . . . . . . . . . . . . . . . . 35

2.9 Manipulation of Network Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.9.1 Homogeneous Networks without Self-Coupling . . . . . . . . . . . . . . . 35

2.9.2 Regular Inhomogeneous Networks without Self-Coupling . . . . . . . . . . 37

2.9.3 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.9.4 Bijection Between Homogeneous and Inhomogeneous Networks . . . . . . 37

2.10 Connected Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.10.2 Regular Inhomogeneous Network Case . . . . . . . . . . . . . . . . . . . . 42

2.11 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.12 Regular Networks with Different Cell Types . . . . . . . . . . . . . . . . . . . . . 44

2.12.1 Vector Notation of Coloured Cells . . . . . . . . . . . . . . . . . . . . . . 45

2.12.2 Fixed-Point Set under a Group Action (P,Q) . . . . . . . . . . . . . . . . 46

2.12.3 Enumeration Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.12.4 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.13 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 3 Enumeration and Visualisation of Homogeneous Networks 57

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Connected Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Path-Connected Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Computer Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

iii



Chapter 4 Computation of All Balanced Equivalence Relations 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.1 Coupled cell network formalism . . . . . . . . . . . . . . . . . . . . . . . . 72

4.2.2 Definition of a coupled cell network . . . . . . . . . . . . . . . . . . . . . . 72

4.2.3 Input sets and Groupoid of a network . . . . . . . . . . . . . . . . . . . . 73

4.2.4 Admissible vector fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.5 Balanced Equivalence Relations . . . . . . . . . . . . . . . . . . . . . . . . 80

4.2.6 Quotient networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.2.7 Invariant Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2.8 Projection Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2.9 Lattice Theory: Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Computation of All Balanced Equivalence Relations . . . . . . . . . . . . . . . . 85

4.3.1 Balanced Polydiagonals are Invariant Subspaces of the Adjacency Matrix 85

4.3.2 Projection onto a Polysynchronous Subspace . . . . . . . . . . . . . . . . 86

4.3.3 Block Structure of an Adjacency Matrix . . . . . . . . . . . . . . . . . . . 88

4.3.4 Enumeration Algorithm using Adjacency Matrix Combinatorics . . . . . . 95

4.3.5 Lattice of Balanced Equivalence Relations . . . . . . . . . . . . . . . . . . 97

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Chapter 5 Codimension-one Bifurcation of Homogeneous Networks 101

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Bifurcation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.1 Flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.2 Stability of Steady States . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2.3 Hyperbolic Steady States . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2.4 Nonhyperbolic Steady States . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2.5 Codimension-one Steady-state Bifurcations . . . . . . . . . . . . . . . . . 105

5.2.6 Nondegeneracy Conditions for Saddle-Node Bifurcation . . . . . . . . . . 111

5.2.7 Nondegeneracy Conditions for Transcritical Bifurcation . . . . . . . . . . 113

5.2.8 Nondegeneracy Conditions for Pitchfork Bifurcation . . . . . . . . . . . . 113

5.3 Liapunov-Schmidt Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.4 Synchrony-Breaking Bifurcations . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.4.1 Generic Codimension-one Steady-state Bifurcations . . . . . . . . . . . . . 118

5.4.2 Symmetric coupling constrains the form of the Taylor Expansion . . . . . 121

iv



5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Chapter 6 Homogeneous Two-cell Networks: Steady-state Bifurcation 123

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.2 Network #1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.3 Network #2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.4 Network #3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.5 Network #4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.6 Network #5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

Chapter 7 Steady-state Bifurcation Analysis using the Lattice 141

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.2.1 Lattice Theory: Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

7.3 Three Lattices: ΛG , V P
G and UP

G . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.3.1 Lattice of Balanced Equivalence Relations and Polydiagonals . . . . . . . 144

7.3.2 Rank and Dimension of a Partition Lattice . . . . . . . . . . . . . . . . . 145

7.3.3 Lattice of Eigenvalues of Adjacency Matrices of Quotient Networks . . . . 145

7.4 Steady-state Bifurcation Analysis of Simple Eigenvalue Networks . . . . . . . . . 147

7.4.1 Simple Quotient Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.4.2 Polysynchronous subspaces and Eigenvectors of A . . . . . . . . . . . . . 148

7.4.3 Order-Isomorphism between V P
G and UP

G . . . . . . . . . . . . . . . . . . . 152

7.4.4 Lattice Generators of Simple Eigenvalue Networks . . . . . . . . . . . . . 154

7.4.5 Existence of Bifurcating Branches . . . . . . . . . . . . . . . . . . . . . . 158

7.4.6 Lattice Determination of 3 and 4-cell Networks with Simple Eigenvalues . 162

7.4.7 Example: Four-cell Simple Eigenvalue Network . . . . . . . . . . . . . . . 167

7.4.8 Bifurcation Diagrams of 3 and 4-cell Networks with Simple Eigenvalues . 182

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

Chapter 8 Steady-state Bifurcation Analysis: Non-Simple Eigenvalue Networks191

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.2.1 Minimal Polynomial of a Matrix . . . . . . . . . . . . . . . . . . . . . . . 194

8.2.2 Generalised Eigenspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8.2.3 Jordan Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

v



8.2.4 Lattice Theory: Part 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

8.2.5 n Repeated Eigenvalues of n-cell Networks . . . . . . . . . . . . . . . . . 201

8.3 Isomorphic Quotient Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

8.4 Reduction of Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

8.5 Three-cell Networks: Lattice Structures and Steady-state Bifurcations . . . . . . 208

8.5.1 S2: Double Eigenvalues and Two Eigenvectors . . . . . . . . . . . . . . . 208

8.5.2 S3: Double Eigenvalues and One Eigenvector . . . . . . . . . . . . . . . . 211

8.5.3 S4: Double Eigenvalues and One Eigenvector in 4 . . . . . . . . . . . . . 213

8.5.4 Bifurcation Diagrams of S2, S3, and S4 Networks . . . . . . . . . . . . . . 215

8.6 Four-cell Networks: Reduced Lattice Structures . . . . . . . . . . . . . . . . . . . 217

8.6.1 Double Eigenvalues and Two Eigenvectors . . . . . . . . . . . . . . . . . . 217

8.6.2 A Pair of Double Eigenvalues and One Eigenvector in 4 . . . . . . . . . . 220

8.6.3 Triple Eigenvalues and Three Eigenvectors . . . . . . . . . . . . . . . . . . 222

8.6.4 Triple Eigenvalues and Two Eigenvectors . . . . . . . . . . . . . . . . . . 224

8.7 Bifurcation Diagrams of Four-cell Networks . . . . . . . . . . . . . . . . . . . . . 225

8.7.1 Double Eigenvalues with Geometric Multiplicity 2 . . . . . . . . . . . . . 225

8.7.2 Double Eigenvalues with Geometric Multiplicity 1 . . . . . . . . . . . . . 232

8.7.3 A Pair of Double Eigenvalues and one eigenvector in 4 . . . . . . . . . . 235

8.7.4 Double Eigenvalues and one eigenvector in 4 . . . . . . . . . . . . . . . . 236

8.7.5 Triple Eigenvalues with Geometric Multiplicity 3 . . . . . . . . . . . . . . 238

8.7.6 Triple Eigenvalues with Geometric Multiplicity 2 . . . . . . . . . . . . . . 239

8.7.7 Triple Eigenvalues with Geometric Multiplicity 1 . . . . . . . . . . . . . . 242

8.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

Chapter 9 Conclusions and Future Work 245

9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

9.2 Discussion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

9.3 Towards Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

Appendix A Listing of Homogeneous Coupled Cell Network Lattices 253

Appendix B Tables of Quotient Networks for Four-cell valency two Networks 271

B.1 Simple Real Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

B.2 Simple Complex Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

B.3 Non-simple Double Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

B.4 Non-simple Triple Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

vi



Bibliography 285

vii



Declarations

The author declares that, to the best of her knowledge, the work contained within this thesis is

original and her own work under the supervision of her supervisor, Prof. Ian Stewart.

The material in this thesis is submitted for the degree of PhD. to the University of

Warwick only and has not been submitted to any other university.

viii



Acknowledgments

I want to express my sincere gratitude to my supervisor Prof. Ian Stewart. Without knowing

him, I might not be in the U.K. now. He made a big change in my life. I still remember how

exciting and impressive it was when I first met him, especially how he sees mathematics. I am

grateful to Dr. Dave Wood who arranged this first chance to talk with Ian. I also appreciate

Prof. Hugh Woodland, Dr. Robert Old and Prof. Nigel Burroughs for their advice.

I would like to thank Prof. Alison Rodger, director of MOAC, who is like a mother for

the MOAC students and gave me comfort. I also thank all my MOAC friends – my PhD life

would have been isolated without them.

I would like to acknowledge academic stimulation from all the researchers who I met in

conferences or workshops, especially Uri Alon whose network motifs idea is motivating.

I also thank all those students whom I met through my teaching experience in the Maths

Institute and Economics Department. I really felt teaching is learning. I appreciate both the

university which gave me such an opportunity and all the students who gave me encouragement

and joy.

I thank all those friends, from several parts of the world, I met since I came to the U.K.

Even though I was away from my home country, they made me feel at home. I wish them all

happiness wherever they are now in the world.

I am exceptionally grateful to Peter. He has provided assistance in numerous ways,

including computer problems, proof-reading and listening to me talk about my work. I appreciate

his unconditional support for always being on my side and I have a great respect for my best

friend.

Finally, I am deeply grateful to my parents who supported my study financially and

mentally. Since I was little, they have been open minded about whatever I wanted to do.

Studying abroad must have been my most selfish request ever, but they still let me go. When I

was struggling to justify my choice, I realised that to be happy is the only and best thing that

I can do for them. Thanks to all the people I mentioned, and of course many other people I

didn’t name here, I am happy now. I delicate my thesis to my parents.

ix



Abstract

Complex networks are studied across many fields of science. Much progress has been made on

static and statistical features of networks, such as small world and scale-free networks. How-

ever, general studies of network dynamics are comparatively rare. Synchrony is one commonly

observed dynamical behaviour in complex networks. Synchrony breaking is where a fully syn-

chronised network loses coherence, and breaks up into multiple clusters of self-synchronised

sub-networks. Mathematically this can be described as a bifurcation from a fully synchronous

state, and in this thesis we investigate the effect of network topology on synchrony-breaking

bifurcations.

Coupled cell networks represent a collection of individual dynamical systems (termed

cells) that interact with each other. Each cell is described by an ordinary differential equation

(ODE) or a system of ODEs. Schematically, the architecture of a coupled cell network can be

represented by a directed graph with a node for each cell, and edges indicating cell couplings.

Regular homogeneous networks are a special case where all the nodes/cells and edges are of the

same type, and every node has the same number of input edges, which we call the valency of the

network. Classes of homogeneous regular networks can be counted using an existing group the-

oretic enumeration formula, and this formula is extended here to enumerate networks with more

generalised structures. However, this does not generate the networks themselves. We therefore

develop a computer algorithm to display all connected regular homogeneous networks with less

than six cells and analysed synchrony-breaking bifurcations for four-cell regular homogeneous

networks.

Robust patterns of synchrony (invariant synchronised subspaces under all admissible vec-

tor fields) describe how cells are divided into multiple synchronised clusters, and their existence

is solely determined by the network topology. These robust patterns of synchrony have a hier-

archical relationship, and can be treated as a partially ordered set, and expressed as a lattice.

For each robust pattern of synchrony (or lattice point) we can reduce the original network to

a smaller network, called a quotient network, by representing each cluster as a single combined

node.

x



Therefore, the lattice for a given regular homogeneous network provides robust patterns

of synchrony and corresponding quotient networks. Some lattice structures allow a synchrony-

breaking bifurcation analysis based solely on the dynamics of the quotient networks, which are

lifted to the original network using the robust patterns of synchrony. However, in other cases

the lattice structure also tells us of the existence and location of additional synchrony-breaking

bifurcating branches not seen in the quotient networks.

In conclusion the work undertaken here shows that the invariant synchronised subspaces

that arise from a network topology facilitate the classification of synchrony-breaking bifurcations

of networks.
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Chapter 1

Introduction

1.1 Networks Everywhere

A network consists of a number of individual systems, which are coupled together, meaning that

they influence each other. The architecture or topology of the network is a diagram showing

these influences, with nodes representing the systems and edges representing couplings. The

following examples show networks from different areas of science. Nodes and edges carry different

meanings in each network. How networks are represented is different depending on what we want

to know from the networks and the nature of the problems under consideration. We discuss some

examples to set the thesis in context.

1.1.1 Social Networks

Newman (2006) analysed the structure of collaboration networks of scientists from biology and

medicine, various sub-disciplines of physics and computer science. They considered two scientists

(nodes) to be connected via an edge if they had coauthored a paper together, and constructed

explicit networks of such connections using the author attributions from papers or preprints

appearing in scientific areas over a five year period. They found that scientific communities

seemed to constitute a small world in which typically only about five or six steps are necessary

to get from one randomly chosen scientist in a community to another. They also found that

the networks are highly clustered. They speculated that this might indicate that the process

of scientists introducing their collaborators to one another was important in the development

of scientific communities. They highlighted a number of apparent differences in the patterns of

collaboration between the fields of science studied.

Small world networks were identified as a class of random graphs by Watts and Strogatz

(1998). A scale-free network, in which some nodes are more highly connected than other

nodes, and the degree distribution follows a power law regardless the system’s size, is another

common type of complex network defined by a statistical feature. A large number of studies

1



have looked at these static and statistical features of complex networks. For a review see Albert

and Barabási (2002).

1.1.2 Networks in Microbiology

A gene regulatory network can be described as a directed graph whose nodes are the genes. A

directed edge from node A to node B indicates that the transcription factor produced by gene

A regulates the activity of gene B. There is another representation for this gene regulatory

network as a bipartite graph with two sets of nodes. One set represents transcription factors

and the other represents genes. Each edge represents binding of a transcription factor to a gene;

however, there are no edges between nodes in the same set (either the set of transcription factors

or the set of genes). Methods for analysing complex cellular networks using the characteristics of

network topology, such as bipartite graphs, are reviewed in Aittokallio and Schwikowski (2006).

Graph-theoretic methods for the analysis of chemical reactions is also discussed in Mincheva

and Roussel (2007).

Even in the simplest bacteria, few complete network structures are known. Reverse

engineering methods aim to infer gene regulatory network topology using the growing sets of

gene (protein and metabolite) expression data. In the opposite direction, starting with a known

partial network, its theoretical behaviour can be compared to known data, and the model can be

adjusted to match the desired outcome – for example by postulating additional nodes or edges.

One example of this is from the cyanobacterial circadian clock, which under transcription-

less conditions can be controlled by the protein KaiC. This protein exists in a number of states

of phosphorylation, in isolation or in complex with other proteins (represented as protein in-

teraction network with the states as nodes, and state-transitions as edges). The postulation of

a further state (insertion of a new node) was required for the model to generate the in vivo

observed oscillations (Takigawa-Imamura and Mochizuki, 2006).

1.1.3 Food Webs

Food webs show the flow of energy through an ecosystem, in which individual systems correspond

to species and couplings describe which species eat which. For example, consider the predation

links between the prey animals rabbits and pheasants, and their predators, foxes and hawks.

Both foxes and hawks eat rabbits and pheasants (but not each other). The rabbits and pheasants

do not eat other animals. Prey-predator models were initially studied by Lotka (1920), Lotka

(1925) and Volterra (1926).

Mathematically, this food web is described using a directed graph. An arrow from,
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say, rabbits to foxes means that foxes eat rabbits. Foxes also eat pheasants, giving rise to

another arrow from pheasants to foxes, but pheasants do not eat rabbits and rabbits do not eat

pheasants, so no arrows connect these two species. The second predator hawks also eat rabbits

and pheasants, but not foxes.

Furthermore, we can distinguish prey (rabbits and pheasants) and predators (foxes and

hawks) using two different node shapes: squares and ellipses, respectively. Figure 1.1 shows this

food web as a directed graph.

Figure 1.1: Two different node shapes represent prey and predators.

We can associate a dynamical system to the graph, which tells us how populations of

species change over time as a result of predation. The equations reflect which species eat

which, and of course the species’ own dynamics. The representation in Figure 1.1 would help

in simplifying the four species network into a more general associated dynamical system of just

prey and predators (square and ellipse nodes).

1.2 Network Formalism: Coupled Cell Systems

Networks varying from small scale to large scale appear in nature and society, including the

brain, the immune system, biological cells, metabolic networks, ant colonies, flocking behaviour

in birds and fish, the Internet and World Wide Web, economic markets, and human social

networks (Strogatz, 2001). So the above examples in Section 1.1 are just a few of the current

research areas.

We consider a very general network formalism which can be applied to any branch of

science. What we can observe first about complex networks is their linkage; which node is

connected to which. However, what we are interested in is the network dynamics, which is

constrained by the network architecture, rather than statistical features of the network.

We use the term “cell” to indicate an autonomous system of ODEs. A coupled cell

system is a collection of individual, but interacting, dynamical systems (reviewed in Golubitsky

and Stewart (2006)). A coupled cell system inherits the structure of the associated coupled cell

network and the output of each cell in a coupled cell system is determined by the controlling
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cells and itself.

Coupled cell systems take the view that the output from each cell is important – not

just the dynamics considered as a whole. In these systems the signals from two or more cells

can be compared, and this observation leads to various notions of “synchrony”. A solution

(x1(t), x2(t), . . . , xn(t)) for an n-cell coupled system has synchrony if there are (at least) two

cells i and j that have identical outputs, that is xi(t) = xj(t) for all t. The time evolution of each

state can be of any form, such as steady states or oscillations. We are particularly interested in

coupled cell systems that exhibit robust synchrony – whenever a solution has synchronous initial

conditions, it exhibits synchrony for all time. Note that the term ’robust’ does not directly imply

any dynamical stability.

In complex networks, it is difficult to determine a specific dynamical law which describes

how individuals behave and how they interact with each other. For example, in gene regu-

latory networks it is quite hard to determine regulatory functions fully. However, it is more

approachable to determine links between individuals. We ask how much of the qualitative dy-

namics, especially robust synchrony, observed in coupled cell systems, is the product of network

architecture.

One of the characteristic properties of a network architecture is symmetry. Networks with

symmetry have been well studied, and the common qualitative dynamical behaviours among

many different systems with the same symmetry have been categorised. See Golubitsky et al.

(1998), Golubitsky and Stewart. (2002). However, it is beginning to appear that the global

symmetry of a network, which is described in Section 1.3, is not the only property to generate

robust synchrony.

In this thesis, we firstly aim to answer how robust patterns of synchrony are determined

just by the network architecture. Secondly, we aim to answer how the synchrony pattern of a

solution changes if a parameter of the system is varied and how this is related to robust patterns

of synchrony of the network. Finally, we classify synchrony-breaking bifurcation behaviour of

four-cell networks using robust patterns of synchrony.

1.3 Networks with Group Symmetry

A symmetry of a network is a permutation of its cell (node) labels that preserves directions

(which labelled cell has arrows from which labelled cell) and the network topology. These

permutations form a group: the permutations can be inverted; and if any two are performed in

turn, the result is equivalent to performing another permutation that is a member of the group.

For example, consider the following unidirectional ring G1:
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G1

In G1, cell 1 has one input arrow from cell 3, cell 2 has one input arrow from cell 1 and

cell 3 has one input arrow from cell 2. These directions are preserved by all cyclic permutations

of cell labels; namely (123) and (132). For each cyclic permutation, the network topology is

preserved. These permutations form a group. Hence this network has Z3 symmetry.

Suppose each cell in a network determines a system of differential equation. For a given

network there is a class of differential equations compatible with the network topology, describing

the behaviour of each cell over time. The differential equations for each cell include dependence

on other cells only if these cells are coupled in the network.

The symmetries of a network induce symmetry on any corresponding compatible dynam-

ical system, and this has a very strong influence on the dynamical behaviour. The symmetries

of a system can be used to work out a catalogue of typical forms of behaviour, which is largely

independent of the specific differential equation’s functional form.

Much can be deduced by knowing only the symmetries of the model. In a sense, all

models with a given symmetry explore the same range of dynamical behaviour, and that range

of behaviour can be studied in its own right without reference to many details of the model.

However, Stewart et al. (2003) found that there exist networks which although not symmetric in

the group-theoretic sense, behave in a similar manner to symmetric networks. This behaviour

appears to be a consequence of hidden local symmetries among special subsets of the network.

1.4 Networks without Group Symmetry

Local symmetries can be identified from input sets – the set of all arrows that point to a given

cell. For example, consider the following network which has two different cell types (described

by circles and diamonds) and four different arrow types (black, red, green, and blue):
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For each cell, we can list all its input arrows (and their head cells):

There is an arrow-type preserving bijection β between input sets of cell 1 and cell 3:

β(
−→
21) =

−→
43, β(

−→
31) =

−→
13, β(

−→
41) =

−→
43

Such a bijection β is called an input isomorphism from cell 1 to cell 3, and this shows

there is a local symmetry between cell 1 and cell 3.

The above network has two different cell types and four different arrow types. In contrast,

let us consider a network which has only one type of cell and one type of arrow.

This network is a 7 cell chain with feedback from cell 3 to cell 1: A motivating biological

Figure 1.2: Seven cell chain with a feedback loop.

example for this network was given in Stewart (2004).

Compatible differential equations for this network topology can be constructed such that

the state of any cell i is determined by the state of itself, xi, and the states xj of all cells j which

have input arrow(s) to the cell i. Therefore, the equations compatible with the chain network

(Figure 1.2) can be defined using some function f as follows:

ẋ1 = f(x1, x3)

ẋ2 = f(x2, x1)

ẋ3 = f(x3, x2)

ẋ4 = f(x4, x3)

ẋ5 = f(x5, x4)

ẋ6 = f(x6, x5)

ẋ7 = f(x7, x6)

The same function f is used for all the cells because we are assuming all the cells and arrows

are equivalent.
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This network has no group-theoretic symmetry and neither do its associated equations.

However, it supports periodic oscillations which are commonly seen in symmetric networks.

Actually this seven cell chain network with feedback has hidden local symmetries.

In this network, every cell receives an input arrow from exactly one other cell. All cells

are identical and all arrows are identical, so the input sets are all isomorphic.

Even if there is only one type of cells, we can consider a grouping of cells (equivalence

relation) by colouring cells. Now consider the following colouring of the cells:

The input sets for all seven cells are shown below:

A network colouring is called balanced if any two cells with the same colour have input

sets which are isomorphic via a permutation that keeps all colours of head cells fixed. The above

colouring is balanced since every red cell has one input from a pink cell, every yellow cell has

one input from a red cell, and every pink cell has one input from a yellow cell (no permutation

is needed).

Note that the balanced colouring is solely determined by the network topology. However,

this balanced colouring has a striking link to the network dynamics.

1.5 From Network Topology to Network Dynamics

Given a balanced colouring for the network, we define a quotient network where cells with

the same colour in the original network are identified as one single cell in the quotient network.

For example, the quotient network of the seven cell chain with feedback is shown in Figure 1.3.

We relabel the cell “147” by “1”, the cell “25” by “2”, and the node “36” by “3”. Then
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Figure 1.3: Quotient network of the seven cell chain with feedback (Figure 1.2). Three cells 1, 4
and 7 in the original network are clumped together as a single cell labelled by “147”. Similarly
cells 2 and 5 are clumped into a cell labelled by “25” and cells 3 and 6 are clumped into a cell
labelled by “36”.

the compatible differential equations are given by:

ẏ1 = g(y1, y3)

ẏ2 = g(y2, y1)

ẏ3 = g(y3, y2)

This quotient network has the same topology as unidirectional ring G1 and the network

is symmetric under cyclic permutations of cell labels, and so are the equations. One common

dynamical behaviour of a network with this symmetry is a rotating wave: a periodic oscillation

in which successive cells differ by a phase shift of one-third of a period; that is cell 2 is one-third

of a period out of phase with cell 1 and cell 3 is two-thirds of a period out of phase with cell 1.

What is the connection between a quotient network and the original network?

We say the colouring is robustly polysynchronous if, for every admissible (compatible

with network topology) dynamical system, whenever two cells of the same colour begin in the

same state, then they stay in the same state for all time (this means two cells of the same

colour are synchronous). Stewart et al. (2003) Theorem 6.5 states that a colouring is robustly

polysynchronous if and only if it is balanced.

Hence, the above balanced colouring (cells 1, 4, 7 have red colour, cells 2 and 5 have

yellow colour, and cells 3 and 6 have pink colour) tells us that the following subspace

(x1, x2, x3, x4, x5, x6, x7) = (y1, y2, y3, y1, y2, y3, y1)

is a synchronous subspace and the dynamics restricted to this subspace has the form determined

by the quotient network.

Using what we know from this quotient network, in the original chain network with

feedback, there exists a periodic state in which cells 1, 4 and 7 are in synchrony, and cells 2 and

5 are in synchrony. The synchronous state of cells 2 and 5 is one-third of a period out of phase

with the synchronous state of cells 1, 4 and 7. Similarly, cells 3 and 6 are in synchrony with each
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other but their synchronous state is two-thirds of a period out of phase with the synchronous

state of cells 1, 4 and 7. That is, there are travelling-wave states in which successive cells along

the chain differing only by a phase shift of one-third of a period. A sample simulation of the 7

cell chain with feedback network is shown in Stewart et al. (2003).

All patterns of robust synchrony in a network, which occur (stably or unstably) for all

differential equations compatible with the network topology, can be obtained from balanced

colourings (balanced equivalence relations). These balanced colourings are determined just by

the network architecture (topology). But how exactly can we determine the balanced colourings

from the network architecture?

The topological structure of the network is determined by the adjacency matrix A =

(aij), where aij is the number of arrows whose tail is at cell j and whose head is at cell i.

For simplicity, assume that networks have one cell type and one arrow type for the rest of this

discussion. Consider the following four-cell coupled cell network G with the associated 4 × 4

adjacency matrix A in Table 1.1.

Network G Adjacency matrix A Eigenvalues Eigenvectors

A =


0 0 0 2
0 0 1 1
0 0 1 1
2 0 0 0


λ0 = 2 v0 = (1, 1, 1, 1)
λ1 = 1 v1 = (0, 1, 1, 0)
λ2 = 0 v2 = (0, 1, 0, 0)
λ3 = −2 v3 = (3, 1, 1,−3)

Table 1.1: Four-cell network (#61 in Figure 3.3) with the associated adjacency matrix and its
eigenvalues and the corresponding eigenvectors.

Just using the adjacency matrix A, all balanced colourings (balanced equivalence rela-

tions) are determined. There are four balanced colourings in total. Two of them are coloured

by two colours and the other two balanced colourings have three colours. Let G/./ be a quotient

network determined by a balanced colouring ./. The corresponding quotient networks for these

four balanced colourings are shown in Figure 1.4.

Note that each balanced colouring (and the corresponding quotient network) denoted by

./i (G/./i) is related to the eigenvector structure of vi. For example, the balanced colouring ./2

corresponds to the partition of four cells such as (134)(2). If we observe the entries of eigenvector

v2, they satisfy v1 = v3 = v4, but v2 is distinct. Similar properties are satisfied for ./1 and ./3.

Now we see that there is a relation between a balanced colouring and an eigenvector of

the adjacency matrix that describes the network architecture. Can this relation tell us about the

bifurcation behaviour of the network?
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G/./2 G/./1

−→ −→

G/./3

−→ −→

Figure 1.4: Four quotient networks from four balanced colourings.

1.6 Synchrony-Breaking Bifurcation in Coupled Cell Networks

So far we have discussed synchronous solutions for a coupled cell system and what kind of

synchronous solutions the system has. Namely, a solution has synchrony if there are at least

two states whose dynamical behaviours are identical for all times. Moreover, all possible robust

synchronous solutions are determined by the network topology (adjacency matrix).

Coupled cell systems may have several parameters which describe certain characteristics

of the system, and these parameters can be varied. When we change parameter values, this

may cause a qualitative change in the dynamical behaviour of the system, such as the number of

steady states, or the stability of solutions. Such parameters are called bifurcation parameters.

We consider a coupled cell system which has only one parameter and ask: How does the synchrony

of solutions change as this parameter is varied? We only consider steady state solutions, not

periodic solutions.

All possible forms of robust synchronous solutions are listed just from the network topol-

ogy, and now bifurcation theory can be used to decide which of these forms are likely to be seen

first.

We use the same network G in Table 1.1. The compatible system of differential equations

with the network topology along with a bifurcation parameter µ ∈ R is given by the same

function f(u, v, w, µ) such as:

ẋ1 = f(x1, x4, x4, µ)

ẋ2 = f(x2, x3, x4, µ)

ẋ3 = f(x3, x3, x4, µ)

ẋ4 = f(x4, x1, x1, µ)
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where f(xi, xj , xk, µ) means that influences from cells j and k to cell i are identical (i.e.,

f(u, v, w, µ) = f(u, w, v, µ)).

Assume that all four cells are in the fully synchronous state for any bifurcation parameter

µ; that is (x1, x2, x3, x4, µ) = (u, u, u, u, µ), where u ∈ R for all µ ∈ R. Without loss of generality,

we can shift this fully synchronous state to the origin (0, 0, 0, 0). Now we are interested in how

this fully synchronous solution loses coherence and breaks into less synchronous solutions.

Recall that all possible robust synchronous subspaces are defined by balanced colourings

./ and we denote these subspaces by 4./. We also denote the fully synchronous subspace by 4.

The Jacobian of the system, evaluated at (0, 0, 0, 0, µ) and its eigenvalues and the corre-

sponding eigenvectors are given by:

Jacobian J e.vals e.vecs
fu(0, µ) 0 0 2fv(0, µ)

0 fu(0, µ) fv(0, µ) fv(0, µ)

0 0 fu(0, µ) + fv(0, µ) fv(0, µ)

2fv(0, µ) 0 0 fu(0, µ)


fu(0, µ) + 2fv(0, µ) v0 ∈ 4

fu(0, µ) + fv(0, µ) v1 ∈ 4./1

fu(0, µ) + 0 · fv(0, µ) v2 ∈ 4./2

fu(0, µ)− 2fv(0, µ) v3 ∈ 4./3

where fu is the first derivative with respect to the internal variable and fv(= fw) is the first

derivative with respect to the coupling variables.

By local bifurcation theory, when each distinct real critical eigenvalue passes zero with

nonzero speed, the fully synchronous state bifurcates, stably or unstably, towards the corre-

sponding eigenvector direction (that is, less synchrony). Since each eigenvector belongs to a

synchronous subspace, which is determined by a balanced colouring, the dynamical behaviour

in this subspace is determined by the corresponding quotient network.

What kind of bifurcation we have in this subspace can be determined by the geometry

of the equilibrium solution curve near a bifurcation point. In some cases, the network topology

forces one bifurcation type. For example, if a network has Z2 symmetry, the generic bifurcation

from a trivial branch is a pitchfork. Conditions for a solution curve geometry then provide

nondegeneracy conditions of functions. Dynamical behaviour occurring in the quotient network

can then describe a synchronous solution in the original network.

So far, we have discussed bifurcation at distinct eigenvalues (simple eigenvalues). From

simple eigenvalues, we expect to have a unique synchrony-breaking bifurcating branch if it

exists. However, when the adjacency matrix of the network (equivalently the Jacobian of the

system) has repeated eigenvalues, the existence of bifurcating branches at each bifurcation point

is not unique, and we expect multiple bifurcating branches as there might be more than one
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polysynchronous subspaces at a single bifurcation point. Often they are symmetrically related

synchronous solutions. How can we systematically predict the existence of bifurcating branches

at which bifurcating point, and how many branches occur?

1.7 Ordered Structure of Balanced Colourings

Remember that there are four balanced colourings on the network G in Table 1.1 and three of

them correspond to the eigenvector structures of v1, v2, and v3 of the adjacency matrix A. If

we know all of the eigenvector structures for a given network, these tell us possible bifurcating

branch directions (if they determine balanced colourings). Some eigenvector structures do not

give balanced colourings. For simple eigenvalues associated with networks, this approach gives

all possible (nontrivial) bifurcating directions. However, for a repeated eigenvalue, the corre-

sponding eigenspace is not one-dimensional, and therefore there is no one-to-one relationship

between the representative eigenvectors and the bifurcating branch directions.

What about the converse? How can we tell which balanced colourings correspond to

the eigenvectors? We can determine all possible balanced colourings for the network, and order

them hierarchically. From this ordered structure we can determine which balanced colourings

correspond to eigenvector structures. In this approach we identify in which synchronous sub-

space bifurcating branches exist, and how many branches there are, regardless of the eigenvalue

structure (simple or non-simple).

Finally, ordered structures of balanced colourings are used for a broad classification of

the existence of synchrony-breaking bifurcating branches. If two networks belong to the same

ordered structure of balanced colourings, they are candidates to have equivalent bifurcation

behaviour. To determine if their bifurcation is equivalent, meaning that their bifurcation types

are the same (in the same synchronous subspace or not) at each bifurcation point, we compare

which quotient networks for each balanced colouring these networks have. This kind of detailed

classification enables us to tell which networks show a desired bifurcation.

1.8 Thesis overview

Existing results and definitions are summarised in preliminary (sub)sections, or clearly cited in

the main content of the thesis (which is otherwise new work).

In the following chapter we enumerate inhomogeneous regular networks where each node

can have at most six input arrows by extending an existing group theoretic formula developed

by Aldosray and Stewart (2005). Additionally, multiple cell types are considered (represented
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by different cell colours), and how many of these coloured networks are invariant under a per-

mutation of the cell colour.

In Chapter 3 we visualise connected graphs with two, three or four cells, with exactly two

input arrows each (homogeneous regular networks). Then in Chapter 4, we compute all possible

balanced equivalence relations (balanced colourings) for regular homogeneous networks with n

cells (where all the cells have the same fixed number of input arrows). We show that finding

balanced equivalence relations is equivalent to finding invariant polydiagonals of an adjacency

matrix which describes a given network structure. These invariant polydiagonals are determined

by considering projection maps onto polydiagonals. We next show that an adjacency matrix

which leaves a given polydiagonal invariant has a block structure. This matrix property leads to

a computer algorithm which searches all balanced equivalence relations of a network. Stewart

(2007) proved that all balanced equivalence relations form a lattice. Using balanced equivalence

relations computed by this algorithm, and the refinement relation, we construct explicit forms

for lattices of 3 and 4 cell regular homogeneous networks. These lattices are illustrated in

Appendix A.

Chapter 5 firstly reviews basic local bifurcation theory, including how Liapunov-Schmidt

reduction is used to compute nondegeneracy conditions. Previous work on codimension-one

synchrony breaking bifurcations of regular homogeneous networks is introduced. In new work,

we show the spectrum of eigenvalues of an adjacency matrix of any regular homogeneous network

is linked to the number of input arrows, where this result is equivalent to a well known property

of stochastic matrices. We finally show that symmetric coupling constrains the form of the

Taylor expansion of admissible vector fields.

Chapter 6 looks at the synchrony-breaking bifurcations in two cell regular homogeneous

networks. The nondegeneracy conditions for the existence for generic bifurcations (transcrit-

ical and pitchfork) are computed using Liapunov-Schmidt reduction or the Implicit Function

Theorem using the Taylor expansion form from Chapter 5.

Chapter 7 constructs all possible lattice structures for simple eigenvalue regular homoge-

nous networks with three or four cells of any valency. In Stewart (2007), it is shown that there

exists a bijection between a lattice of balanced equivalence relations and a lattice of balanced

polydiagonals. Here, we further prove that there exists a third form of lattice constructed from

the eigenvalues of the quotient networks, order-isomorphic to the other two lattices. Each lattice

node p can be assigned an integer η(p), whose properties allow the construction of all possible

lattice structures. Some lattice nodes are linked to the adjacency matrix’s eigenvector structures,

and we show these important nodes can generate the full lattice, and also give rise to synchrony-
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breaking bifurcating branches. The existence of synchrony-breaking bifurcating branches and

their directions (although not their type of bifurcations and their stability) are determined for all

possible lattice structures of three and four cell regular networks. One four-cell regular network

of valency 2 is chosen as an example, and the lattice based predictions are verified against a

Liapunov-Schmidt reduction and a numerical analysis using xppaut. This analysis using lattices

is extended to non-simple eigenvalue three and four cell networks of valency 2 in Chapter 8,

where all possible lattice structures are classified, and each lattice can be reduced to a sim-

ple eigenvalue lattice. The existence and direction of synchrony-breaking bifurcating branches is

analysed in a similar manner to the simple eigenvalue case, and the number of multiple branches

is determined from the original lattice.

Finally, conclusions and possible future work are given in Chapter 9.
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Chapter 2

Enumeration of Inhomogeneous

Coupled Cell Networks

This chapter is an extension of the work of Aldosray and Stewart (2005) to enumerate homo-

geneous coupled cell networks using group-theoretic formulas. Their work is summarised in

preliminary sub-sections, interleaved with new results, followed by the enumeration of inhomo-

geneous networks. The results in this Chapter are not used in the rest of thesis, but they would

be useful for future work.

2.1 Introduction to Coupled Cell Networks

We briefly introduce the notions of a coupled cell network. This formalism will be made precise

in Chapter 4.

A coupled cell network can be thought of as a directed graph whose cells (nodes) repre-

sent dynamical systems and whose arrows (edges) represent couplings. The network is homo-

geneous of valency r if there is one type of cell and every cell has r input arrows. Moreover,

a homogeneous network that has one type of arrow is said to be regular.

For more complex applied networks, such as gene regulatory networks or social networks,

we often want to allow different types of cells and arrows in the system with different valencies

for each cell. We call these generalised regular coupled cell networks inhomogeneous coupled

cell networks.

The enumeration of n-cell regular homogeneous networks of valency r when n, r ≤ 6, up

to graph-isomorphism was done by Aldosray and Stewart (2005). In this Chapter, we consider

two different kinds of inhomogeneous coupled cell networks. Firstly, we generalise their method

for the enumeration of n-cell networks where each cell has any valency less than or equal to r

for one type of cell and one type of arrow as shown in Figure 2.1.

Secondly, we allow different types of cells for n-cell networks with one type of arrow and
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Figure 2.1: Regular inhomogeneous two-cell network of valency less than or equal to 1. There
is only one cell type and one arrow type. Cell 1 has valency zero and cell 2 has valency 1.

fixed valency for all cells and enumerate networks up to graph-isomorphism, further allowing

cell types permutations.

2.2 Enumeration of All Possible Adjacency Matrices

2.2.1 Preliminaries

Let G be a regular coupled cell network (that is, all arrows are identical.) with one type of cell.

Instead of all cells having the same number of input arrows, assume that each cell of G has at

most r ∈ N0 input arrows. We permit multiple arrows and internal arrows (self-couplings). The

n cells in G are labelled 1, 2, . . . , n.

The topological structure of G is determined by the adjacency matrix, which is the

n× n matrix A = (aij) over N0, where aij is the number of arrows whose tail is at node j and

whose head is at node i. Throughout, we denote the set of the square matrices of order n and

non-negative integer entries by Mn×n(N0) and the identity matrix in this set by In.

In the case of regular homogeneous networks, all row-sums of A are equal to r, the valency

of G. For example, a homogeneous three-cell network (n = 3) of valency r = 2, there are six

possible rows in A, namely:

011 101 110 200 020 002 (2.1)

Let

Vnr = {v ∈ Nn
0 :

n∑
i=1

vi = r}

be the set of all possible row-vectors for the adjacency matrix of a regular homogeneous n-cell

network of valency r. Let

Xnr = (Vnr)
n

be the set of all possible adjacency matrices. We calculate the cardinalities of these sets for

regular homogeneous networks as follows:

Lemma 2.1. (Regular Homogeneous Networks)

|Vnr | =

 n + r − 1

r

 and |Xnr | =

 n + r − 1

r

n
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Proof. See Aldosray and Stewart (2005).

This result shows that there are six possible row vectors for regular homogeneous three-

cell networks of valency 2, as we showed in Equation (2.1), and hence, there are precisely 63 = 198

possible distinct adjacency matrices to express these networks.

2.2.2 Regular Inhomogeneous Network Case

Now we generalise Lemma 2.1 for inhomogeneous regular networks.

In regular inhomogeneous networks where each cell has at most r input arrows, all row-

sums of A are less than or equal to r. For example, when r ≤ 2, n = 3, there are ten possible

rows in A, namely:

000 001 010 100 011 101 110 200 020 002 (2.2)

Note that these possible rows in A are the union of the cases of valency r equal to 0, 1 and 2 in

regular homogeneous three-cell networks.

For the case of regular inhomogeneous networks, we define Vn≤r
as follows:

Vn≤r
= {v ∈ Nn

0 :
n∑

i=1

vi ≤ r}

Lemma 2.2. (Inhomogeneous Regular Networks)

|Vn≤r
| =

 n + r

r

 and |Xn≤r
| =

 n + r

r

n

Proof. The set of all possible row-vectors of valency less than or equal to r is the result of

combining all possible row vectors of valency 0, 1, . . . and r. Therefore, using the identity from

Lemma 2.1

|Vn≤r
| =

r∑
k=0

 n + k − 1

k


=

 n− 1

0

+

 n

1

+

 n + 1

2

+

 n + 2

3

+ · · ·+

 n + r − 1

r


=

 n + r

r


Since there are |Vn≤r

| possibilities for each n row, the cardinality of all possible adjacency

matrices is:

|Xn≤r
| =


r∑

k=0

 n + k − 1

k


n

=

 n + r

r

n
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G1 A1 G2 A2 1 0 0
1 0 0
0 1 0

  0 1 0
0 1 0
1 0 0


Table 2.1: Two isomorphic regular homogeneous three-cell coupled cell networks G1 and G2 and
their adjacency matrices A1 and A2, respectively.

The cardinality of all possible row vectors in (2.2) is easily verified using the above result.

Hence, there are 103 = 1000 distinct adjacency matrices for regular inhomogeneous three-cell

networks of valency at most 2.

2.3 Isomorphic Networks

2.3.1 Preliminaries

Some adjacency matrices obtained in the previous section 2.2 may express the same network

topology.

Example 2.1. Table 2.1 shows two three-cell regular homogeneous networks of valency 1 and

their adjacency matrices.

Since the adjacency matrix of network Gi for i = 1, 2 is determined using a fixed num-

bering of the cells, A1 and A2 are different. The labellings of these two networks are different,

however, G1 and G2 are topologically the same (isomorphic). We can obtain network G1 from

network G2 by swapping the labels “1” and “2”.
3

This example poses a question: how can we show that G1 and G2 are isomorphic under

permutation of labellings of cell 1 and cell 2 solely from their adjacency matrices A1 and A2?

To deal with isomorphic networks of labelled by n numbers in general, we consider

the action of the permutation group Sn on the set of all possible adjacency matrices Xnr by

conjugation:

P ·A = PAP−1

where · means group action, and P is an n× n permutation matrix.

Let π ∈ Sn. The corresponding permutation matrix P = (pij) is defined by

pi,π(i) = 1

with all other entries being 0.
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If A = (aij) is any n× n matrix, it follows that

(PAP−1)ij = aπ(i),π(j)

The action of P has the effect of permuting the node labels by permuting the rows (input arrows

to the nodes) and columns (output arrows from the nodes) of A according to π.

In Example 2.1, let π = (12) ∈ S3. Then the corresponding permutation matrix P is

defined by:

P =


0 1 0

1 0 0

0 0 1

 and P−1 =


0 1 0

1 0 0

0 0 1


Therefore, two networks G1 and G2 are isomorphic under permutation (12) because

PA1P
−1 =


0 1 0

1 0 0

0 0 1




1 0 0

1 0 0

0 1 0




0 1 0

1 0 0

0 0 1

 =


0 1 0

0 1 0

1 0 0

 = A2

Now we can define when two networks are essentially the same (isomorphic): namely,

the action of one of these permutations on one network produces the other.

Definition 2.1. Suppose G is a group which acts on the set X. We define a relation ∼G on X

as follows:

For all x, y ∈ X, x ∼G y ⇔ for some g ∈ G, g · x = y.

Clearly ∼G is an equivalence relation on X.

In general, the equivalence classes of the relation ∼G are called the orbits of the group

action. Thus, in our example, two networks G1 and G2 lie in the same Sn-orbit for the action

on Xnr for n = 3 and r = 1. The orbit to which the element x ∈ X belongs is written as Orbx.

Thus for x, y ∈ X,

Orbx = Orby ⇔ x ∼G y

Since x ∼G y if and only if y = g · x for some g ∈ G, it follows that

Orbx = {g · x : g ∈ G}

Lemma 2.3. The orbits partition X into disjoint sets.

Proof. The orbits are equivalence classes. See Slomson (1991) for more details.
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2.4 Orbit Counting Theorem

The number of distinct isomorphism classes of networks is the number of distinct orbits of Sn on

the set of all possible adjacency matrices Xnr (and Xn≤r
for inhomogeneous regular networks).

If we write OrbXnr
(Sn) (or OrbXn≤r

(Sn)) for the set of orbits, we want to compute |OrbXnr
(Sn)|

(or |OrbXn≤r
(Sn)|).

2.4.1 Preliminaries

Let G be a group and H be a subgroup of G. For each g ∈ G, the coset gH is defined to be

the set

{gx : x ∈ H}

Thus gH is the set of all those elements of G obtained by combining the fixed element g with

the elements of H in turn.

The number of distinct cosets of H in G is called the index of H in G, written |G : H|.

The distinct cosets of H partition G into |G : H| sets each containing |H| elements. Therefore,

we have

|G : H| × |H| = |G| (2.3)

Lemma 2.4. If H is a subgroup of the group G, and g1, g2 ∈ G, then

g1H = g2H ⇔ g−1
2 g1 ∈ H

Proof. See Slomson (1991).

We call the set of group elements of G which fix a particular x ∈ X, the stabilizer of x,

and we denote it by Sx. Thus

Sx = {g ∈ G : g · x = x}

Lemma 2.5. If a group G acts on a set X, then for each x ∈ X, the set Sx is a subgroup of G.

Proof. See Slomson (1991).

There is a very close relationship between the size of the orbit and the size of the stabilizer:

Theorem 2.1 (Orbit-Stabilizer Theorem). Let G be a group which acts on a set X. Then

for each x ∈ X,

|Orbx| × |Sx| = |G| (2.4)

Proof. We can show that there is a one-to-one correspondence between the elements of Orbx

and the cosets of Sx in G using Lemma 2.4. See Slomson (1991) for more details.
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The Orbit-Stabilizer Theorem relates the number of elements in each orbit to the number

of elements in each stabilizer, but as the next theorem shows, it can easily be rearranged to give

a formula for the number of distinct orbits of the set X (not for each element of X).

Theorem 2.2. Let G be a finite group which acts on a set X. Then the number of distinct

orbits k is given by

k =
1
|G|

∑
x∈X

|Sx|

Proof. This is well known but we include it for completeness.

Suppose that there are k distinct orbits Orbx1 , . . . ,Orbxk
. For any t such that 1 ≤ t ≤ k,

∑
x∈Orbxt

|Sx| =
∑

x∈Orbxt

|G|
|Orbx|

=
|G|
|Orbxt |

× |Orbxt |, since Orbx = Orbxt for each x ∈ Orbxt

= |G|

Since the sum of the numbers |Sx| taken over the elements of just one orbit comes to |G| in each

case, when we take the sum over all the elements of X we get a total of |G| for each orbit and

hence k|G| in total. That is,

∑
x∈X

|Sx| =
k∑

t=1

∑
x∈Orbxt

|Sx|

=
k∑

t=1

|G|

= k|G|

Therefore,

k =
1
|G|

∑
x∈X

|Sx|

This theorem enable us to calculate the number of distinct orbits easily if |X| is not

too large. For example, assume that we want to calculate the number of topologically distinct

three-cell homogeneous regular networks of valency 1. There are |X31 | = 33 = 27 elements in

the set of all possible adjacency matrices for three-cell homogeneous networks of valency 1 and

the group acts on this set is S3. We count group elements which fix each element x ∈ X31 ;

however, this calculation is not practical if |X| is too large.

Notice that what we are counting is the same as counting the number of elements x ∈ X31

which are fixed by each group element g ∈ S3. In general the set X can become very large
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depending on the problem, while the group G acting on the set X remains the same. Thus the

problem of evaluating the sum becomes much easier by replacing the sum over X by a sum over

G. Therefore, instead of the number of elements

{g ∈ G : g · xi = xi}

we use the number of elements in the set

{x ∈ X : gi · x = x}

This is the set of those elements of X which are fixed by the group element gi. We call it the

fixed-point set of gi, written Fix(gi). The sum over G is thus
∑

g∈G |Fix(g)|. Thus we can

replace the sum
∑

x∈X |Sx| by
∑

g∈G |Fix(g)| and deduce the following theorem called the Orbit

Counting Theorem by Aldosray and Stewart (2005).

Theorem 2.3 (Orbit Counting Theorem). Let a finite group G act on a finite set Ω. Then

|OrbΩ(G)| = 1
|G|

∑
g∈G

|FixΩ(g)|

where

FixΩ(g) = {x ∈ Ω : g · x = x}

is the fixed-point set of g.

Proof. If g, h ∈ G are conjugate then g = khk−1 for some k ∈ G. Hence, for x ∈ FixΩ(g)

g · x = x ⇔ (khk−1) · x = x

⇔ k · h · (k−1 · x) = x

⇔ h · (k−1 · x) = k−1 · x

Therefore, k−1 · x is fixed by h. Thus,

FixΩ(h) = k−1 · x ⇔ kFixΩ(h) = x

⇔ kFixΩ(h) = FixΩ(g)

Since the fixed-point set of g is equal to the fixed-point set of h multiplied by some k ∈ G, we

have |FixΩ(g)| = |FixΩ(h)|. Therefore, we may compute one fixed-point space per conjugacy

class and weight the sum by the size of the conjugacy class. That is, if the conjugacy classes are

C1, C2, . . . , Ct and we pick a unique element gi ∈ Ci for each i, then

|OrgΩ(G)| = 1
|G|

t∑
i=1

|Ci||FixΩ(gi)| (2.5)
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2.5 Enumeration of Four-Cell Inhomogeneous Regular Networks

In this section, we give an example showing how the number of topologically distinct regular

inhomogeneous four-cell networks of valency at most 2 is computed.

2.5.1 Preliminaries

Let π ∈ Sn with the corresponding permutation matrix P . Let Fix(P ) be the set of adjacency

matrices which are fixed by the permutation matrix P . Then A ∈ Fix(P ) if and only if PA = AP ,

since if A ∈ Fix(P ), then

P ·A = A⇔ PAP−1 = A⇔ PA = AP

2.5.2 Example

We compute the number of all possible row-vectors and adjacency matrices for four-cell (i.e.

n = 4) inhomogeneous regular networks of valency at most 2 (i.e. r ≤ 2). By Lemma 2.2,

|V4≤2
| =

 4 + 2

2

 = 15. Therefore, there are fifteen possibilities for each row in the adjacency

matrix A, namely:

0000 0001 0010 0100 1000 0011 0101 1001

0110 1010 1100 2000 0200 0020 0002

The number of all possible adjacency matrices for these row-vectors is: |X4≤2
| =

 4 + 2

2

4

.

Therefore in this case there are precisely 154 distinct adjacency matrices with all rows-sums less

than or equal to 2.

The elements of S4 split into five conjugacy classes: the class consisting of the identity i,

the class consisting of six two-cycles, conjugate to α = (12), the class consisting of eight three-

cycles, conjugate to β = (123), the class consisting of six four-cycles, conjugate to γ = (1234),

and the class consisting of three double two-cycles, conjugate to δ = (12)(34).

Now we count the number of fixed-point set Fix(P ), where P corresponds to the permu-

tation matrix for each representative permutation in each conjugacy class.

Clearly Fix(i) = X4≤2
so |Fix(i)| = 154.
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To compute Fix(α) we take

P =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 A =


a b c d

e f g h

i j k l

m n o p


Then

PA =


e f g h

a b c d

i j k l

m n o p

 AP =


b a c d

e f g h

j i k l

n m o p


so PA = AP if and only if

A =


a b c d

b a c d

i i k l

m m o p


for suitable a, b, c, d, i, k, l, m, o, p ∈ N0. We count the matrices of this form that have all row-

sums less than or equal to 2. The top row can be any of the fifteen possibilities. The second

row is uniquely determined by the top row. The third row must be any of the following:

0000 0001 0010 0011 1100 0020 0002

The fourth row can be any of the seven possibilities as above. So |Fix(α)| = 15 · 1 · 7 · 7 = 735.

Similarly, we compute |Fix(β)| where β = (123). Now we take

P =


0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1


Then

PA =


e f g h

i j k l

a b c d

m n o p

 AP =


c a b d

g e f h

h i j l

o m n p


so PA = AP if and only if

A =


a b c d

c a b d

b c a d

m m m p


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for suitable a, b, c, d, m, p ∈ N0. The top row can be any of the fifteen possibilities. The second

and third rows are uniquely determined by the top row. The fourth row must be any of:

0000 0001 0002

So |Fix(β)| = 15 · 1 · 1 · 3 = 45.

For γ = (1234), we take

P =


0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0


Then

PA =


e f g h

i j k l

m n o p

a b c d

 AP =


d a b c

h e f g

l i j k

p m n o


so PA = AP if and only if

A =


a b c d

d a b c

c d a b

b c d a


for suitable a, b, c, d ∈ N0. The top row can be any of the fifteen possibilities. The other rows

are uniquely determined by the top row. So |Fix(γ)| = 15 · 1 · 1 · 1 = 15.

Finally, for δ = (12)(34), we take

P =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


Then

PA =


e f g h

a b c d

m n o p

i j k l

 AP =


b a d c

f e h g

j i l k

n m p o


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so PA = AP if and only if

A =


a b c d

b a d c

i j k l

j i l k


for suitable a, b, c, d, i, j, k, l ∈ N0. The top row can be any of the fifteen possibilities. The second

row is uniquely determined by the top row. The third row can by any of the fifteen possibilities.

And the fourth row is uniquely determined by the third row. So |Fix(δ)| = 15 · 1 · 1 · 15 = 225.

Finally, we apply Equation (2.5) from the Orbit Counting Theorem to obtain

|OrbX(S4)| =
1
24

[1 · 154 + 6 · 735 + 8 · 45 + 6 · 15 + 3 · 225] = 2340

and conclude that the number of topologically distinct inhomogeneous four-cell networks of

valency at most 2 is 2340.

2.6 Periodic Banded Matrices

2.6.1 Preliminaries

A partition of an integer n is a representation of n in the form

n = α1 · 1 + α2 · 2 + · · ·+ αn · n

where all αj ∈ N0. The coefficient αj is the multiplicity of the part j. We denote this partition

by

[1α12α2 · · ·nαn ] (2.6)

When it is convenient, we omit terms jαj with αj = 0. For example, if n = 4 then there are five

partitions and these partitions are denoted by symbols as in (2.6):

4 · 1 [14]

2 · 1 + 1 · 2 [1221]

1 · 1 + 1 · 3 [1131]

1 · 4 [41]

2 · 2 [22]

The set of all partitions of n is denoted Πn. If ρ ∈ Πn we define the multiplicities αρ
j by

ρ = [1αρ
12αρ

2 · · ·nαρ
n ].

Every element of Sn can be written as a product of disjoint cycles. This decomposition

is unique except for the order in which the cycles occur. Disjoint cycles commute. The cycle
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type of an element π ∈ Sn is the partition of n determined by the lengths of the component

cycles of π. Two permutations in Sn are conjugate if and only if they have the same cycle type.

When π has cycle type [1α12α2 · · ·nαn ], the size of the corresponding conjugacy class is

n!
1α12α2 · · ·nαnα1!α2! · · ·αn!

Within each conjugacy class we distinguish a canonical element, which we say is written

in normal form. This element is obtained by writing the numbers 1, 2, . . . , n in order into the

product of cycles, starting with the 1-cycles, then the 2-cycles, and so on in increasing order of

length. For example, the permutation

(1)(2)(3)(45)(678) ∈ S8

is in normal form for the (conjugacy class determined by the) partition [132131].

As motivation, suppose that

π = (1)(23)(456) ∈ S6

which is the normal form for the partition [112131]. Let A be a 6× 6 matrix, and write A as a

block matrix where the blocks correspond to pairs of cycles from π, with one cycle determining

a set of rows and the other a set of columns. That is,

A =



a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66


There are nine blocks in the matrix A; Aij where 1 ≤ i, j ≤ 3 and |Aij | = i × j. A block is

uniquely determined by a pair of cycles (ρ, γ), where ρ is the permutation for rows and γ is the

permutation for columns. Thus, the length of ρ = i and the length of γ = j. For example, the

pair ((23), (456)) determines a 2× 3 block in rows 2, 3 and columns 4, 5, 6, namely

A23 =

 a24 a25 a26

a34 a35 a36


Let P be the permutation matrix of π. Then conjugation of A by P permutes both the rows

and columns according to π, however, this operation preserves the block structure. Actually, in
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this case

P =



1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0


and P−1 =



1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0


Therefore,

PAP−1

=



1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 1 0 0





a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66





1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 1 0



=



a11 a13 a12 a15 a16 a14

a31 a33 a32 a35 a36 a34

a21 a23 a22 a25 a26 a24

a51 a53 a52 a55 a56 a54

a61 a63 a62 a65 a66 a64

a41 a43 a42 a45 a46 a44


The matrix A is fixed by P if and only if each block is fixed. For example, since

PA23P
−1 =

 a35 a36 a34

a25 a26 a24

, A23 is fixed by the action of P if and only if all

 a24 a25 a26

a34 a35 a36

 =

 a35 a36 a34

a25 a26 a24


⇒ a24 = a35 = a26 = a34 = a25 = a36

Therefore, the entries of A23 must have the following form:

A23 =

 a a a

a a a


where a ∈ N0.

The following Lemma 2.6 in Aldosray and Stewart (2005) gives a general method to find

the matrix form which is fixed by the permutation group action.
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Lemma 2.6. Let R be the s × s permutation matrix of the cycle (1 . . . s), let C be the t × t

permutation matrix of the cycle (1 . . . t), and let B be an arbitrary s × t matrix. Define h =

hcf(s, t) to be the highest common factor of s and t. Then RBC = B if and only if the first row

of B is periodic with period h, and each successive row is shifted one place to the right. That is,

b1i = b1j if i ≡ j (mod h)

b1i = bk,i+k−1

where i + k − 1 is taken modulo t.

Proof. See Aldosray and Stewart (2005).

A fixed block of the above form is called an h-periodic banded matrix. It now follows

that:

Proposition 2.1. A matrix A is fixed under conjugation by a permutation matrix P in normal

form if and only if each block of A is an h-periodic banded matrix, where h = hcf(s, t) for an

s× t block.

Proof. See Aldosray and Stewart (2005).

For example, in the 6× 6 case above, the matrix A is fixed by P if and only if it has the

form

A =



a b b c c c

d e f g g g

d f e g g g

h i i j k l

h i i l j k

h i i k l j


(2.7)

for suitable a, b, c, d, e, f, g, h, i, j, k, l ∈ N0.

2.7 Fixed-Point Sets

2.7.1 Preliminaries

For regular homogeneous networks, we enumerate matrices of the type described in Proposi-

tion 2.1, subject to the condition that the entries are natural numbers (including zero) and

every row-sum is r. Notice that the matrix form in (2.7) is determined uniquely by the first

row of each row cycle. The first row is determined by the three arbitrary numbers a , b and
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c, corresponding to the row cycle (1). Once we define the second row using the four arbitrary

numbers d, e, f and g, then the third row is uniquely determined by the second row. These two

rows correspond to the row cycle (23). Finally, the fourth row is defined by the five arbitrary

numbers h, i, j, k, and l. The fifth and sixth rows are uniquely determined by the fourth row.

These three rows correspond to the row cycle (456).

Next, we require the sum of the entries in the first row of each cycle to be equal to r.

The form of such a row depends on the lengths of the cycles concerned, and on the type ρ of

the permutation π. Specifically, it must be h-periodic in each s × t block, where h = hfc(s, t).

Such a vector is called (s, ρ)-compatible.

For example, the row 4 of the matrix A ((3, ρ)-compatible vector), associated with a

six-cell regular homogeneous network of valency r, in (2.7) satisfies the following condition

h + (i + i) + (j + k + l) = r

As a more complicated example, suppose that

π = (1)(23)(456)(7 8 9 10) ∈ S10

which is the normal form for partition ρ = [11213141] of the integer 10. When s = 3, an

(s, ρ)-compatible vector (the row 4 of a 10× 10 matrix) has the form

[a b b c d e f f f f ] (2.8)

For a ten-cell regular homogeneous network of valency r, (3, ρ)-compatible vector (2.8) satisfies

the following row-sum condition:

a + (b + b) + (c + d + e) + (f + f + f + f) = r

The same method applies in full generality. For each partition ρ = [1α12α2 . . . nαn ] of

n, each cycle-length s, and each natural number r, we define Vnr(s, ρ) to be the set of all

(s, ρ)-compatible vectors in Vnr .

Let

φnr(s, ρ) = |Vnr(s, ρ)|

and consider the generating function

Φsρ(z) =
∞∑

r=0

φr(s, ρ)zr

This leads to the following result:
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Proposition 2.2. The number of (s, ρ)-compatible vector which satisfy the sum of all coordinates

is equal to r is obtained as the coefficient of zr in the following form:

Φsρ(z) =
n∏

k=1

(1− z
k
h )−αρ

kh

where h = hcf(s, k).

Proof. See Aldosray and Stewart (2005).

Hence, the cardinality of the fixed-point set is computed such as:

Proposition 2.3 (Regular Homogeneous Networks). If π ∈ Sn has type ρ = [1α12α2 . . . nαn ],

then its fixed-point set in Xnr has cardinality

n∏
k=1

φnr(k, ρ)αρ
k

Proof. Since there are φnr(k, ρ) all possible (k, ρ)-compatible vectors in a cycle which have the

length k and there are αρ
k such cycles. See Aldosray and Stewart (2005) for more details.

2.7.2 Inhomogeneous Network Case

We start this subsection with new work. Firstly, we give the form of (s, ρ)-compatible vectors

for each partition of n in Table 2.2.

We now generalise the formula for the computation of fixed-point set for regular inho-

mogeneous networks of valency at most r.

Let

φn≤r
(s, ρ) = |Vn≤r

(s, ρ)|

Then we have:

Proposition 2.4 (Regular Inhomogeneous Networks). If π ∈ Sn has type ρ = [1αρ
12αρ

2 . . .

nαρ
n ], then its fixed-point set in Xn≤r

for regular inhomogeneous networks has cardinality

n∏
k=1

(
r∑

i=0

φni(k, ρ)

)αρ
k

where φn0(k, ρ)) := 1.

Proof. Vn≤r
(k, ρ) is expressed as a sum of compatible vectors for each valency as follows:

Vn≤r
(k, ρ) = Vn0(k, ρ) ∪ Vn1(k, ρ) ∪ · · · ∪ Vnr(k, ρ)
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n Partition ρ s=1 s=2 s=3 s=4 s=5 s=6
1 [11] [a]
2 [12] [a|b]

[21] [ab]
3 [13] [a|b|c]

[11 · 21] [a|bb] [a|bc]
[31] [abc]

4 [14] [a|b|c|d]
[12 · 21] [a|b|cc] [a|b|cd]
[11 · 31] [a|bbb] [a|bcd]
[41] [abcd]
[22] [ab|cd]

5 [15] [a|b|c|d|e]
[13 · 21] [a|b|c|dd] [a|b|c|de]
[12 · 31] [a|b|ccc] [a|b|cde]
[11 · 41] [a|bbbb] [a|bcde]
[51] [abcde]
[11 · 22] [a|bb|cc] [a|bc|de]
[21 · 31] [ab|ccc] [aa|bcd]

6 [16] [a|b|c|d|e|f ]
[14 · 21] [a|b|c|d|ee] [a|b|c|d|ef ]
[13 · 31] [a|b|c|ddd] [a|b|c|def ]
[12 · 41] [a|b|cccc] [a|b|cdef ]
[11 · 51] [a|bbbbb] [a|bcdef ]
[61] [abcdef ]
[21 · 41] [ab|cdcd] [ab|cdef ]
[11 · 21 · 31] [a|bb|ccc] [a|bc|ddd] [a|bb|cde]
[32] [abc|def ]
[23] [ab|cd|ef ]
[12 · 22] [a|b|cc|dd] [a|b|cd|ef ]

Table 2.2: (s, ρ)-compatible vector for partitions of n and a, b, . . . , f ∈ N0. Symbols a, . . . , f are
used to show periodic patterns in a (s, ρ)-compatible vector.

By Lemma 2.2, the cardinality of Vn≤r
(k, ρ) is a sum of the cardinalities of Vni(k, ρ), where

i = 0, 1, . . . , r. Hence, the cardinality of (k, ρ)-compatible vectors which satisfy the condition

that the row-sum is less than or equal to r is:

φn≤r
(k, ρ) =

r∑
i=0

φni(k, ρ)

We take a power αρ
k for each cardinality since there are αρ

k rows which have (k, ρ)-

compatible vector with φn≤r
(k, ρ) possible forms. (Note that we can omit terms with αρ

k = 0

since these contribute a factor 1.)

Hence, the set of regular inhomogeneous networks of valency at most r has cardinality

n∏
k=1

(
r∑

i=0

φni(k, ρ)

)αρ
k
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We show how to compute the cardinality of the fixed-point set of a three-cell regular

inhomogeneous network of valency at most 3 for a given partition in the following example.

Example 2.2. Let ρ = [1121] be the partition of n = 3. Using (s, ρ)-compatible vector forms in

Table 2.2, the periodic banded matrix A has the following form:

A =


a b b

a′ b′ c′

a′ c′ b′


To compute φ3≤3

(1, ρ), we enumerate all possible cases which satisfy:

{(a, b) ∈ N2 : a + b + b ≤ 3} = {(a, b) : a + 2b = 0} ∪

{(a, b) : a + 2b = 1} ∪

{(a, b) : a + 2b = 2} ∪

{(a, b) : a + 2b = 3}

where 0 ≤ a, b ≤ 3.

Therefore, there are six combinations for a and b, namely:

(a, b) = (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (3, 0)

Next, we find φ3≤3
(2, ρ) for arbitrary numbers 0 ≤ a′, b′, c′ ≤ 3 which satisfy:

a′ + b′ + c′ ≤ 3

Then,

|(a′, b′, c′)| =

 3 + 3

3

 = 20

Since 6 = 1 + 1 + 2 + 2 and 20 = 1 + 3 + 6 + 10, this agrees with Lemma 2.2.

Hence, by Proposition 2.4, 61 ·201 = 120 adjacency matrices are fixed by the permutation

of label of two cells.
3

Proposition 2.4 implied that we can compute the cardinalities of regular inhomogeneous

networks using the same data set as regular homogeneous networks, however, we take the sum

of data from different valencies. For this reason, we modify data table 1 in Aldosray and Stewart

(2005) as the following Table 2.3 which shows the cardinalities of each compatible vector.
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2.8 Enumeration Formulas

Note that the networks enumerated by the following formulas will include disconnected networks.

Enumeration for connected networks will be discussed in a later section.

2.8.1 Preliminaries

By substituting the cardinality of the fixed-point set in (2.5) as |FixΩ(gi)| for the corresponding

partition, the enumeration formula is:

Theorem 2.4. Let n, r ∈ N. Then the number of n-cell regular homogeneous networks of valency

r is

Hnr =
1
n!

∑
ρ∈Πn

n!
1αρ

12αρ
2 · · ·nαρ

nαρ
1!α

ρ
2! · · ·α

ρ
n!
×

n∏
k=1

φnr(k, ρ)αρ
k

Proof. See Aldosray and Stewart (2005).

2.8.2 Regular Inhomogeneous Network Case

The enumeration formula for regular inhomogeneous networks is given by:

Theorem 2.5. Let n ∈ N, r ∈ N0. Then the number of n-cell regular inhomogeneous networks

of valency at most r is

In≤r
=

1
n!

∑
ρ∈Πn

n!
1αρ

12αρ
2 · · ·nαρ

nαρ
1!α

ρ
2! · · ·α

ρ
n!
×

n∏
k=1

(
r∑

i=0

φni(k, ρ)

)αρ
k

Proof. This follows directly from Theorem 2.4.

2.9 Manipulation of Network Structure

2.9.1 Homogeneous Networks without Self-Coupling

In some applications, we wish to consider networks which do not have self-coupling. We enu-

merate regular homogeneous networks without self-coupling.

Lemma 2.7. Let Ã be the adjacency matrix associated with an n-cell regular homogeneous

network G̃, which does not have self-coupling. Let Ṽnr be the set of all possible row vectors of

Ã and φ̃nr(s, ρ) = |Ṽnr(s, ρ)| be the cardinality of the set of all (s, ρ)-compatible vectors in Ṽnr .

Then

φ̃nr(s, ρ) = φnr(s, ρ)− φnr−1(s, ρ)

where φni(s, ρ) is the set of all (s, ρ)-compatible vectors for regular homogeneous networks of

valency i.

35



Proof. Suppose that

φnr(s, ρ) =

 p

q


for arbitrary positive integers p and q.

If G̃ has no self-couplings, one of the coordinates in v ∈ Vnr(s, ρ) is always zero. Hence

φ̃nr(s, ρ) =

 p− 1

q


Now  p− 1

q

 =

 p

q

−
 p− 1

q − 1


= φnr(s, ρ)− φnr−1(s, ρ)

Theorem 2.6. The number of n-cell regular homogeneous networks of valency r without self-

coupling is

H̃nr =
1
n!

∑
ρ∈Πn

n!
1αρ

12αρ
2 · · ·nαρ

nαρ
1!α

ρ
2! · · ·α

ρ
n!
×

n∏
k=1

φ̃nr(k, ρ)αρ
k

Proof. This immediately follows from Lemma 2.7 and Theorem 2.4.

The following example illustrates the computation of the cardinality of the fixed-point

sets for a 4-cell regular homogeneous network without self-coupling.

Example 2.3. Let ρ = [1221] be the cycle type of the partition of integer n = 4. We compute the

fixed-point set of ρ = [1221] in the set of adjacency matrices of regular homogeneous networks of

valency r = 3 without self-coupling. Using Table 2.2, the matrix form which is fixed by a given

partition is: 
a b c c

d e f f

g h i j

g h j i


To obtain φ̃43(1, ρ), we enumerate all possible cases which satisfy:

a + b + c + c = 3⇔ a + b + 2c = 3

where a = 0 (since no self-couplings) and 0 ≤ b, c ≤ 3.

Therefore, all combinations of a b and c are the following two cases:

(a, b, c) = (0, 1, 1), (0, 3, 0)
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Next, for φ̃43(2, ρ), we consider all possible cases of :

g + h + i + j = 3

where 0 ≤ g, h, i, j ≤ 3.

Since i = 0 (no self-couplings), g + h + i + j = 3⇔ g + h + j = 3, therefore

|(g, h, i, j)| =

 3 + 3− 1

3

 = 10

Thus, the cardinality of the set of adjacency matrices which is fixed by a given partition

is:

22 · 101 = 40

Using Table 2.3, we can verify the result in Theorem 2.6 since

2 = 6− 4 = φ43(1, ρ)− φ42(1, ρ)

10 = 20− 10 = φ43(2, ρ)− φ42(2, ρ)

3

The relevant data for fixed-point sets for regular homogeneous networks without self-

coupling are obtained using Lemma 2.7 and shown in Table 2.4.

2.9.2 Regular Inhomogeneous Networks without Self-Coupling

Theorem 2.7. Let N ∈ N and r ∈ N0. Then the number of n-cell regular inhomogeneous

networks of valency at most r is

In≤r
=

1
n!

∑
ρ∈Πn

n!
1αρ

12αρ
2 · · ·nαρ

nαρ
1!α

ρ
2! · · ·α

ρ
n!
×

n∏
k=1

(
r∑

i=0

φ̃ni(k, ρ)

)αρ
k

Proof. This follows directly from Proposition 2.4 and Theorem 2.4.

2.9.3 Computational Results

Table 2.5 shows the enumeration results. n is the number of cells and r is the valency of networks.

Although trivial, the enumeration results of networks with valency 0 are shown for completeness.

2.9.4 Bijection Between Homogeneous and Inhomogeneous Networks

Note that the enumeration results of “regular homogeneous networks” (the first data set) and

“regular inhomogeneous networks without self-coupling” (the fourth data set) in Table 2.5 are

identical. The reason is:
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Enumeration of regular homogeneous networks
n r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
1 1 1 1 1 1 1 1
2 1 3 6 10 15 21 28
3 1 7 44 180 590 1582 3724
4 1 19 475 6915 63420 412230 2080827
5 1 47 6874 444722 14072268 265076184 3405665412
6 1 130 126750 43242604 5569677210 355906501686 13508534834704

Enumeration of regular inhomogeneous networks
n r = 0 r ≤ 1 r ≤ 2 r ≤ 3 r ≤ 4 r ≤ 5 r ≤ 6
1 1 2 3 4 5 6 7
2 1 6 21 55 120 231 406
3 1 16 190 1400 7315 29624 99484
4 1 45 2340 64225 1009680 10540782 81171405
5 1 121 36796 4658320 265706712 8479734126 175485117498
6 1 338 712996 492565066 119362310539 13513121673238 864517486233114

Enumeration of regular homogeneous networks without self-coupling
n r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
1 1 0 0 0 0 0 0
2 1 1 1 1 1 1 1
3 1 2 7 12 25 38 63
4 1 6 66 445 2175 8211 25837
5 1 13 916 27046 440310 4597548 34883346
6 1 40 16816 2575900 163762914 5561236158 119147448025

Enumeration of regular inhomogeneous networks without self-coupling
n r = 0 r ≤ 1 r ≤ 2 r ≤ 3 r ≤ 4 r ≤ 5 r ≤ 6
1 1 1 1 1 1 1 1
2 1 3 6 10 15 21 28
3 1 7 44 180 590 1582 3724
4 1 19 475 6915 63420 412230 2080827
5 1 47 6874 444722 14072268 265076184 3405665412
6 1 130 126750 43242604 5569677210 355906501686 13508534834704

Table 2.5: Computational results for four different network types.
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Proposition 2.5. Let Mnr be the set of adjacency matrices of n-cell regular homogeneous net-

works of valency r and let M̃n≤r
be the set of adjacency matrices of n-cell regular inhomogeneous

networks of valency up to r without self-coupling. Then, the cardinalities of these sets are equal;

that is

|Mnr | = |M̃n≤r
|

Proof. We show that there is a bijection between Mnr and M̃n≤r
. Firstly we show there is a

one-to-one map f such that

f : M̃n≤r
→Mnr

Since there exist some elements Ã ∈ M̃nr such that Ã ∈ M̃nr ∩Mnr , we only need to consider

the case when Ã ∈ M̃n≤r
\Mnr . Ã ∈ M̃n≤r

\Mnr has the following form:

Ã =


0 ã12 · · · · · · ã1n

ã21 0 ã13 · · · ã2n

... · · · · · · · · ·
...

ãn1 · · · · · · · · · 0


where 0 ≤ ãij ≤ r for i, j = 1, . . . , n with i 6= j.

Construct a diagonal matrix D̃ = (d̃ij) such that d̃ii +
∑n

j=1 ãij = r with 0 ≤ d̃ii ≤ r for

all i = 1, . . . , n. Adding this diagonal matrix D̃ to Ã gives the following form:

Ã + D̃ =


d̃11 ã12 · · · · · · ã1n

ã21 d̃22 ã13 · · · ã2n

... · · · · · · · · ·
...

ãn1 · · · · · · · · · d̃nn

 (2.9)

The matrix form in (2.9) corresponds to a unique homogeneous regular network. There-

fore, f is one-to-one.

Similarly, we define a map f−1 (which we will show is the inverse of f) such that

f−1 : Mnr → M̃n≤r

If A ∈Mnr does not have any self-loop, there is a unique element in M̃n≤r
which corresponds to

A. Hence, we only consider the case when A ∈Mnr has self-loops. Suppose A has the following

form:

A =


a11 a12 · · · · · · a1n

a21 a22 a13 · · · a2n

... · · · · · · · · ·
...

an1 · · · · · · · · · ann


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where 0 ≤ aij ≤ r for i, j = 1, . . . , n with i 6= j and aii 6= 0 for some i. By subtracting a diagonal

matrix D, whose diagonal elements consists of a11, . . . , ann, from Ã gives the following form:

A−D =


0 a12 · · · · · · a1n

a21 0 a13 · · · a2n

... · · · · · · · · ·
...

an1 · · · · · · · · · 0


This corresponds to a unique inhomogeneous regular network in M̃n≤r

. Hence f−1 is also one-

to-one and provides an inverse for f . As a result, |Mnr | = |M̃n≤r
|.

Example 2.4. The following figures show how one network is constructed from the other.

←→

In one direction all self-couplings are removed, in the other sufficient self-couplings are added so

that each cell has the desired valency (here 2).
3

2.10 Connected Graphs

2.10.1 Preliminaries

The enumeration of networks in Theorem 2.4 and 2.5 includes some disconnected networks. If a

network is disconnected, it decomposes into more than one connected subnetwork. For example,

a five-cell disconnected network can be decomposed into

Case 1: four-cell connected subnetwork and one isolated cell,

Case 2: three-cell connected subnetwork and two-cell connected subnetwork,

Case 3: three-cell connected subnetwork and two isolated cells,

Case 4: two two-cell connected subnetworks and one isolated cell,

Case 5: two-cell connected subnetwork and three isolated cells,

Case 6: five isolated cells.
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Therefore, the enumeration of connected networks can be done recursively by removing

all possible disconnected subnetworks from the total number of networks as described in the

following.

Let Knr be the number of isomorphism classes of connected n-cell regular homogeneous

networks of valency r. For the case n = 5, r = 2, we computed the number of regular homoge-

neous networks (including disconnected networks) H52 = 6874. Since there is only one network

with one cell (corresponding to isolated cell for each case above), K52 is computed such as

K52 = H52 −
{

K42 + K32K22 + K32 +
K22(K22 + 1)

2
+ K22 + K12

}
where the term K22 (K22+1)

2 corresponds to the case 4. In this case we have to remember inter-

changing the two subnetworks is a possible isomorphism.

Therefore, K52 is expressed recursively in terms of H52 and Kn2 for 1 ≤ n < 5. In

general, we have

Theorem 2.8. Let n, r ∈ N. Then the number of isomorphism classes of connected regular

homogeneous n-cell networks of valency r is

Knr = Hnr −
∑

[n1] 6=ρ∈Πn

n∏
k=1

 Kkr + αρ
k − 1

αρ
k


Proof. See Aldosray and Stewart (2005).

2.10.2 Regular Inhomogeneous Network Case

Theorem 2.9. Let n ∈ N and r ∈ N0. Then the number of isomorphism classes of connected

regular inhomogeneous n-cell networks of valency up to r is

IKn≤r
= In≤r

−
∑

[n1] 6=ρ∈Πn

n∏
k=1

 IKk≤r
+ αρ

k − 1

αρ
k


where In≤r

is the number of isomorphism classes of n-cell regular inhomogeneous networks of

valency at most r.

Proof. Since the structures of disconnected networks are the same as regular homogeneous net-

works case, the same method enable us to enumerate connected networks for inhomogeneous

case.

2.11 Computational Results

The enumeration results for connected regular homogeneous networks and connected regular

inhomogeneous networks are listed in the following Table 2.6.
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Enumeration of connected regular homogeneous networks
n r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
1 1 1 1 1 1 1 1
2 0 2 5 9 14 20 27
3 0 4 38 170 575 1561 3696
4 0 9 416 6690 62725 410438 2076725
5 0 20 6209 436277 14000798 264632734 3403484793
6 0 51 117020 42722972 5554560632 355631996061 13505066262007

Enumeration of connected regular inhomogeneous networks
n r = 0 r ≤ 1 r ≤ 2 r ≤ 3 r ≤ 4 r ≤ 5 r ≤ 6
1 1 2 3 4 5 6 7
2 0 3 15 45 105 210 378
3 0 6 135 1200 6755 28308 96754
4 0 13 1710 57905 968695 10344243 80411702
5 0 29 28300 4355604 260021011 8410984578 174882419829
6 0 71 573928 470969051 117919071374 13459826248926 863255706129012

Enumeration of connected regular homogeneous networks without self-coupling
n r = 0 r = 1 r = 2 r = 3 r = 4 r = 5 r = 6
1 1 0 0 0 0 0 0
2 0 1 1 1 1 1 1
3 0 2 7 12 25 38 63
4 0 6 66 445 2175 8211 25837
5 0 13 916 27046 440310 4597548 34883346
6 0 40 16816 2575900 163762914 5561236158 119147448025

Enumeration of connected regular inhomogeneous networks without self-coupling
n r = 0 r ≤ 1 r ≤ 2 r ≤ 3 r ≤ 4 r ≤ 5 r ≤ 6
1 1 1 1 1 1 1 1
2 0 2 5 9 14 20 27
3 0 4 38 170 575 1561 3696
4 0 9 416 6690 62725 410438 2076725
5 0 20 6209 436277 14000798 264632734 3403484793
6 0 51 117020 42722972 5554560632 355631996061 13505066262007

Table 2.6: Enumeration results of connected networks.
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2.12 Regular Networks with Different Cell Types

In the preceding sections, we discussed enumeration of inhomogeneous regular networks, mean-

ing that they have one cell type and one arrow type and different valencies for each cell. Often

complex networks consist of several different types of cells (nodes). For example, in gene reg-

ulatory network, genes and proteins might be represented with two different cell types (node

types). We express different roles of cells in the network by colouring cells.

We assume that arrows with same head/tail types are same types (this follows from

property 6 in Definition 4.1 in Chapter 4). Under this assumption, it suffices to vary only cell

types for the consideration of regular networks with different cell types as well as different arrow

types.

In this section, we consider how many networks are possible if we allow more than one

cell type (colour). Every cell has the same valency. Moreover, we explore how many networks

preserve their colour-dependent topology after permuting the cell colours (although it is difficult

to see a real-world application of this type of symmetry). This work is new and we motivate our

discussion by showing a simple example.

Example 2.5. Consider two-cell regular homogeneous networks of valency 1. There are three

topologically distinct such networks (including disconnected networks) as shown in Figure 2.2.

Figure 2.2: Three topologically distinct two-cell regular homogeneous networks of valency 1.

There are 10 possible colourings using up to two colours as shown in Figure 2.3. Trivially

all ten networks are preserved if both two colours are fixed; that is black stays as black and

white stays as white. This trivial colour permutation is expressed as (b)(w) where “b” means

black and “w” means white.

Which coloured networks preserve colour-dependent network topology after swapping

black and white colours? We observe that only two networks 5 and 8 are not changed after this

colour permutation, in symbol (bw).
3

We consider a systematic method to enumerate the number networks which are fixed by

a given colour permutation in the following subsections.
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1 2 3 4

5 6 7

8 9 10

Figure 2.3: Ten possible colourings of two-cell networks using up to two colours.

2.12.1 Vector Notation of Coloured Cells

Define different cell types by colouring cells. An n-cell network is expressed by n× n adjacency

matrix A. If we colour cells, how can we put this information into the adjacency matrix A?

Let σ be a partition of n cells and let P be the corresponding permutation matrix to

σ. Note that a permutation group action on the adjacency matrix A, that is PAP−1, preserves

diagonal positions such as:

aii → aσ(i)σ(i)

where these diagonal elements correspond to each of n cells.

It tells us that we can put colour information into the diagonal element vector, v =

[a11, a22, . . . , ann]. Specifically, when A is fixed by a permutation σ with associated cycle type

σ = [112131], it maps a vector v ∈ R6 such that:

v = [a11|a22a33|a44a55a66]

→ [aσ(1)σ(1)|aσ(2)σ(2)aσ(3)σ(3)|aσ(4)σ(4)aσ(5)σ(5)aσ(6)σ(6)]

= [a11|a33a22|a55a66a44]

Note that a mapped vector has the same cycle type as σ since the block structure of A is fixed.

We next assign algebraic symbols, which express colours, to each element of v. Let

V ⊂ Nn,C ⊂ Nk be two different sets. Let f be the set of all mappings from V to C. Here

V = {v1, v2, . . . , vn} stands for the set of cells and C = {c1, c2, . . . , ck} stands for the set of
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colourings which are assigned to elements of V . We let VC be the image of V by the map f .

Therefore, each vi ∈ VC , 1 ≤ i ≤ n is an element in {c1, c2, . . . , ck}, which are algebraic symbols,

corresponding to each cell’s colour at the i-th element in the vector.

2.12.2 Fixed-Point Set under a Group Action (P, Q)

We motivate our discussion by the following simple example.

Example 2.6. Three cells in a unidirectional ring are coloured red, green, and blue. In the

following figure, the three colours are permuted so that red→ green→ blue→ red:

−→

We observe that the colour-dependent network topology is preserved by the permutation of the

three colours, in symbols (rgb). The green cell has an arrow from the red cell, the blue cell has

an arrow from the green cell, and the red cell has an arrow from the blue cell.

However, if we swap green and blue, but red is fixed, then we have

−→

Now, the blue cell has an arrow from the red (not from the green cell), and the green cell has an

arrow from the blue cell (not from the red cell), and the red cell has an arrow from the green cell

(not from the blue cell). Here the colour-dependent network structure changes after the colour

permutation (r)(gb).
3

Example 2.6 shows that a unidirectional three-cell ring network is fixed by the colour

permutation (rgb), but not by the colour permutation (r)(gb).

We firstly allow cells in a network to have up to k ∈ N colours. For example, if we colour

a three-cell network with three colours, we allow all three cells have the same colour (one colour

in total), two cells have the same colour and the third cell has the different colour (two colours

in total), or all three cells have different colours (three colours in total). Then we consider which

network structures are preserved (fixed) after changing colours by a given colour permutation.

Suppose that P ∈ Sn is some group of permutation of an adjacency matrix A ∈Mn×n(N0)

and Q ∈ Sk is some group of permutation of v, which is the vector of cells with colour informa-

tion. We define an action of (P,Q) on (A,v) by

(P,Q) · (A,v) = (PAP−1, (P,Q) · v) (2.10)
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Specifically, the group action on v is given by

(P,Q) · (v1, v2, . . . , vn) = (Q(vP−1(1)), Q(vP−1(2)), . . . , Q(vP−1(n))) (2.11)

Lemma 2.8. Formula (2.11) defines a group action.

Proof. Let iP and iQ be the identity elements of P and Q, respectively. Then iP is the identity

map iP : A→ A and iQ is the identity map iQ : C → C and for each vc ∈ VC ,

(iP , iQ) · (v1, v2, . . . , vN ) = (iQ(v1), iQ(v2), . . . , iQ(vN ))

= (v1, v2, . . . , vN )

and thus the identity element exists.

Now let P1, P2 be two permutations from P and Q1, Q2 be two permutations from Q.

Then

(P1P2, Q1Q2) · (v1, v2, . . . , vN ) = (Q1Q2) · (vP2P1(1), vP2P1(2), . . . , vP2P1(n))

= (Q1Q2(vP2P1(1)), Q1Q2(vP2P1(2)), . . . , Q1Q2(vP2P1(n)))

= (P1, Q1) · (Q2(vP2(1)), Q2(vP2(2)), . . . , Q2(vP2(n)))

= (P1, Q1) · {(P2, Q2) · (v1, v2, . . . , vn)}

Hence the second axiom of a group action also holds, thus completing the proof.

To find networks which are preserved by colour permutation as well as cell label permu-

tation by P , we want to calculate fixed-point sets for group action Sn × Sk such that

(P,Q) · (A,v) = (PAP−1, (P,Q) · v)

where P ∈ Sn, Q ∈ Sk, A is an adjacency matrix and v is a vector of colours. Therefore, orbits of

Sn × Sk on a set Ω(A,v) enumerate graphs up to topological changes and colour permutations.

The fixed-point set Fix(A,v)(P,Q) is defined by

(A,v) ∈ Fix(A,v)(P,Q)⇐⇒ (PAP−1, (P,Q) · v) = (A,v)

Therefore, we must have

1. PAP−1 = A⇔ PA = AP

2. (P,Q) · v = v
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The cardinality of Fix(A,v)(P,Q) is

|Fix(A,v)(P,Q)| = |FixAP | × |Fixv(P,Q)|

We have already found the cardinality of FixAP in Proposition 2.3. The cardinality of

Fixv(P,Q) is obtained from the lemmas below. Note that for the rest of arguments, we denote

cycle types in the normal form only when the multiplicities are not zero.

Lemma 2.9. Let P be a permutation with cycle type [lα1
1 lα2

2 · · · lαs
s ] on an n×n adjacency matrix,

and let Q be a permutation of cycle type [mβ1
1 mβ2

2 . . .mβt
t ] on k colours, where

∑s
i=1 liαi = n,

αi 6= 0 for all i and
∑t

j=1 mjβj = k, βj 6= 0 for all j. Let v = (v1, . . . , vn) be an arbitrary vector

with each vi ∈ {c1, . . . , ck}. Then (P,Q) · v = v if and only if ∀li, i = 1, . . . , s ∃mj , j = 1, . . . , t

such that mj | li.

Proof. If (P,Q) · v = v, then

(P,Q) · v = (P,Q) · (v1, v2, . . . , vn)

= (Q(vP−1(1)), Q(vP−1(2)), Q(vP−1(n)))

= (v1, v2, . . . , vn)

Let an element vx ∈ v is in cycle li of P . Therefore, for each cycle li of P , we must have

vx = Qli(vx),∀i = 1, . . . , s

This is true if and only if there is a cycle length mj of Q which divides the cycle length of li.

We now show that for each cycle li of P , the corresponding vector elements of v to this

cycle; that is (vx, vx+1, . . . , vx+li−1), have a periodic property.

Lemma 2.10. Let M(li) be the set of cycles mj of a permutation ρ of Q such that mj | li and

let H(li) be the set of highest common factors h = hcf(li,mj) for all mj ∈ M(li). Let elements

(vxi , vxi+1, . . . , vxi+li−1) of v be in a given cycle li of P . Then v is fixed if and only if for all

i = 1, . . . , s,

vxi = vyi if xi ≡ yi (mod h) for any h ∈ H(li)

Proof. If (P,Q) · v = v, then we must have vxi = Qli(vxi) for all i = 1, . . . , s. We can express

Qli(vxi) such as Qli(vxi) = Qh·p(vxi) for any h ∈ H(li) and p ∈ Z+. Hence if vxi = vxi+h, then

Qh(vxi) = vxi and moreover, Qli(vxi) = Qh·p(vxi) = vxi . The converse follows similarly.

Let ρ be the cycle type of P and κ be the cycle type of Q. We call a vector which has

the periodic property of Lemma 2.10 an h-periodic (κ, ρ)-compatible coloured vector. Let

|Fixv(P,Q)| be the number of fixed vector under an action (P,Q). Then we have the following:
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Theorem 2.10. Let n be the number of cells and k be the number of colours. Let P have cycle

type ρ = [lα1
1 lα2

2 · · · lαs
s ] and Q have cycle type κ = [mβ1

1 mβ2
2 · · ·m

βt
t ], where

∑s
i=1 liαi = n and∑t

j=1 mjβj = k. The cardinality of the fixed-point set under the action (P,Q) is

|FixA,v(P,Q)| =
s∏

j=1


t∑

i=1, mi|lj

(mi × βi)


αj

(2.12)

Proof. Using Lemma 2.10, we consider how many colourings are possible in the (κ, ρ)-compatible

coloured vector which corresponds to each cycle li of P .

The (κ, ρ)-compatible coloured vector is h-periodic for any h, where h = hcf(mj , li) for

all possible mj such that mj | li. Hence the number of colours which satisfy h-periodic property

is
∑t

i=1, mi|lj (mi×βi). There are αj such cycles. Therefore we take the power αj over this sum.

Repeating this computation for the rest of cycles give the result required.

Corollary 2.1. If ∃li such that mj - li for all mj, then |FixA,v(P,Q)| = 0.

Proof. This is the contrapositive of Lemma 2.9 and it implies there is no fixed-point set. Also,

this case gives
∑t

i=1,mi|lj (mi × βi) = 0 in Equation (2.12). Hence, |FixA,v(P,Q)| = 0.

Example 2.7. Let ρ = [2131] by the cycle type of P and let κ = [1121] be the cycle type of Q.

Then (P,Q) acts on v = (v1, v2, v3, v4, v5) such as

(v1, v2, v3, v4, v5)
P−→ (v2, v1, v5, v3, v4)

Q−→ (Q(v2), Q(v1), Q(v5), Q(v3), Q(v4))

Hence (P,Q) · v = v implies

v1 = Q(v2)

v2 = Q(v1)

v3 = Q(v5)

v4 = Q(v3)

v5 = Q(v4)

This means

vi = Q2(vi) for i = 1, 2 and vi = Q3(vi) for i = 3, 4, 5. (2.13)

Let (a)(bc) be a representative permutation of colours for the conjugacy class determined

by the cycle type κ = [1121]. Algebraic symbols “a”, “b”, and “c” represent three colours.
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Since both cycle lengths of “(a)” and “(bc)”in Q divide the first cycle “21” of P , there

are three possible colouring for this first cycle “21” of P . However, only the cycle length of “(a)”

in Q divides the second cycle “31” of P , so there is only one possible colouring for the second

cycle “31” of P . Therefore, the cardinality of the fixed-point set is

|Fixv(P,Q)| = (1× 1 + 2× 1)1 × (1× 1)1 = 3

Namely, all possible colourings which satisfy Equation (2.13) are

(v1v2v3v4v5) = (aa|aaa)

(v1v2v3v4v5) = (bc|aaa)

(v1v2v3v4v5) = (cb|aaa)

3

In the following tables 2.7 and 2.8 show examples of a (κ, ρ)-compatible coloured vector

for each colour permutation. Algebraic symbols, e.g., “a”, “b”,. . . express colours for each vector

element. For example, [a|bc] means that the first element of v has colour “a”, the second has

colour “b” and the third has colour “c”.

2.12.3 Enumeration Formulas

By substituting the cardinality of the fixed-point set obtained in Theorem 2.10 as |FixΩ(gi)| for

the corresponding partition, the enumeration formula is given by:

Theorem 2.11. Let n, r ∈ N. Let ρ = [lα
ρ
1

1 l
αρ

2
2 · · · lα

ρ
s

s ] be a cycle type of permutation of n labels

on cells and let κ = [mβκ
1

1 m
βκ
2

2 · · ·m
βκ

t
t ] be a cycle type of a permutation of k colours. Let v

be a vector which contains cells’ colour information. Then the number of n-cell homogeneous

networks of valency r with k different cell types, which are fixed by a colour permutation κ is

CHnr =
1
n!

k!

m
βκ
1

1 m
βκ
2

2 · · ·m
βκ

t
t βκ

1 !βκ
2 ! · · ·βκ

t !

∑
ρ∈Πn

{
n!

l
αρ

1
1 l

αρ
2

2 · · · l
αρ

s
s αρ

1!α
ρ
2! · · ·α

ρ
s !

×
n∏

k=1

φnr(k, ρ)αρ
k × |Fixv(ρ, κ)|

}

Proof. W multiply by the size of the corresponding conjugacy class of the colour permutation

given by:
k!

m
βκ
1

1 m
βκ
2

2 · · ·m
βκ

t
t βκ

1 !βκ
2 ! · · ·βκ

t !

The rest of part follows directly from Theorem 2.4.
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2.12.4 Computational Results

In Tables 2.9 and 2.10, we show the computational results for the number of n-cell networks

of valency r with 2 ≤ k ≤ n different cell types (colours) which are fixed by a given colour

permutation. Colours are expressed using algebraic symbols “a”, “b”, “c”, and “d” in the table.

Using more colours than cells (k > n) is a simple combinatorial extension to the re-

sults for n colours. Note that the following enumeration results in Tables 2.9 and 2.10 include

disconnected networks.

2.13 Conclusions

All possible networks, for a given number of cells and valency constraint, are expressed as a

set of adjacency matrices. Two different adjacency matrices may express topologically identical

networks. In such cases, we can obtain one adjacency matrix from the other by applying a

permutation matrix P to the cell labels. Therefore, the number of topologically distinct networks

is equivalent to the number of distinct orbits of the symmetric group Sn for n-cell networks.

In the Orbit Counting Theorem, the number of distinct orbits of Sn is enumerated by

considering the cardinality of fixed-point sets of a group element for each conjugacy class. The

cardinalities of the fixed-point sets are computed by using the periodic property of row vectors

in an adjacency matrix.

Firstly, we considered the enumeration of more generalised regular networks, where each

equivalent cell can have a different number of input arrows (valency), unlike regular homogeneous

networks have the fixed valency for every cell. To compute the cardinalities of fixed-point sets

for regular inhomogeneous networks, we decomposed the number of fixed-points sets of regular

homogeneous networks into the product of the number of fixed-point sets for each permutation

cycle.

We next considered another generalisation of regular networks by allowing different cell

types with the fixed valency for every cell and enumerated how many networks are preserved by

a colour permutation Q. Different cell types are expressed by assigning colours to cells.

Since a permutation P preserves diagonal positions in an adjacency matrix, colour infor-

mation of cells are given to the diagonal elements vector v. Therefore, the number of networks

which are fixed by cell label permutation and colour permutation is given by the product of

the fixed-point set of P on the set of adjacency matrices and the fixed-point set of Q on v.

|Fixv(P,Q)| is computed as a combination of permutation cycles of P and Q.

Which networks are fixed after colour permutation relates to symmetry of networks.
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Chapter 3

Enumeration and Visualisation of

Homogeneous Networks

3.1 Introduction

In the previous chapter, we enumerated networks (graphs) under certain restrictions. However,

for dynamical analysis, we need to consider the topology of the network. In this chapter, we

explain a computer algorithm in Python which displays all connected and strongly connected

(that is path-connected) regular homogeneous networks of a given valency. There are 416 con-

nected four-cell regular homogeneous networks of valency 2. We will use these four-cell regular

homogeneous networks for bifurcation analysis. The list of 416 networks is shown as well as the

lists of 38 three-cell and 5 two-cell regular homogeneous networks of valency 2.

3.2 Preliminaries

3.2.1 Connected Networks

In graph theory, a path in a graph (network) is a sequence of vertices (cells) such that from

each of its vertices there is an edge (arrow) to the next vertex in the sequence. The length of a

path is the number of edges that the path uses.

In an undirected graph G, two vertices u and v are called connected if G contains a

path from u to v. A graph is called connected if every pair of distinct vertices in the graph is

connected (directly or indirectly).

A directed graph is called connected if replacing all of its directed edges with undi-

rected edges produces a connected (undirected) graph.

The following Theorem 3.1 is useful to check the connectedness of a given network.

Theorem 3.1. If A is the adjacency matrix of a connected directed graph with n nodes, the
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number of paths of length k from a vertex vj to vi is given by the (i, j)-th entry of Ak, where

1 ≤ k ≤ n− 1.

Proof. See Koshy (2003).

In general, the total number of paths from vj to vi within k length is given by:

k∑
l=1

Al.

If a network is connected, any vertex can be reached from any other arbitrary vertex

with at most n− 1 edges. Hence, we considered the following two steps to determine if a n-cell

network (directed graph) G with the associated n× n adjacency matrix is connected:

• Form a symmetric matrix Â = (âij) from an asymmetric adjacency matrix A = (aij)

defined in the following way: âij = âji = 1 if there exist at least one directed edge between

cell j to cell i (in either direction).

• If all entries of
∑k

l=1 Âl are nonzero for some 1 ≤ k ≤ n− 1, then G is connected.

3.2.2 Path-Connected Networks

A directed graph is called strongly connected (or path-connected) if it contains a directed

path from u to v for every pair of vertices u, v.

Theorem 3.2. A directed graph with n vertices is strongly connected if and only if its adjacency

matrix A has the property that
n−1∑
l=1

Al

has no zero entries.

Proof. See Bernard and Hill (2005).

An algorithm to determine if a given network is strongly connected uses Theorem 3.2

directly. However as in the algorithm to determine the connectedness of a network, we do not

need to compute the whole summation. It is sufficient to check if all entries of
∑k

l=1 Al are

nonzero for some 1 ≤ k ≤ n− 1.

3.3 Computer Algorithms

Step 1: All possible n×n adjacency matrices with valency r are considered in turn. These are

generated by first computing all possible row vectors with sum equal to the valency r, and

then taking all possible combinations of n row vectors.
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Step 2: Loop over each adjacency matrix generated in Step 1.

Step 3: For the current adjacency matrix, determine if the associated regular homogeneous

network is connected or not. If not, further analysis is skipped, returning to Step 2 to

consider the next matrix.

Step 4: For the current adjacency matrix, check if the associated network is isomorphic to

any previously considered network by comparing it with previously recorded adjacency

matrices. If a permutation of the current adjacency matrix has been observed, further

analysis is skipped, returning to Step 2 to consider the next matrix.

Step 5: Increment the count of isomorphic connected networks1.

Step 6: For the current adjacency matrix, check if the associated network is strongly connected

using Theorem 3.2. It is strongly connected, then increment the number of isomorphic

strongly connected networks.

Step 7: Record the current adjacency matrix and all permutations of it (for use in Step 4).

Step 8: Using the current adjacency matrix, draw a figure of the associated network.

For graph visualisation, in general GraphViz (www.graphviz.org) was used. However, for

the listings in the following figures compact PDF figures were created using bespoke code

with the ReportLab python library (www.reportlab.org).

#1

1

2

#2

1

2

#3

1

2

#4

1

2

#5

1

2

Figure 3.1: All 5 connected regular homogeneous two-cell networks of valency two (n = 2, r = 2).
The 3 strongly connected networks are shown with dark grey cells, the rest have pale grey cells.

1The current count is used as a unique reference number for the associated network within the set of n-cell
homogeneous networks of valency r.
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Figure 3.2: All 38 connected regular homogeneous three-cell networks of valency two (n = 3,
r = 2). The 14 strongly connected networks are shown with dark grey cells, the rest have pale
grey cells.
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Figure 3.3: All 416 connected regular homogeneous four-cell networks of valency two (n = 4,
r = 2), split over eight pages. The 108 strongly connected networks are shown with dark grey
cells, the rest have pale grey cells. In some cases the cells have been rearranged to allow the
graph to be drawn with the minimum of crossing edges.
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3.4 Conclusions

The network reference numbers in the preceding figures will be used in later chapters2.

For each adjacency matrix, the corresponding eigenvalues and eigenvectors can easily be

computed. It can happen for some four-cell networks that the four eigenvalues consist of the

valency, a real value, and a complex conjugate pair where the these last three all have the same

real part (e.g. r, 0, i,−i where r is the valency). Indeed there are 9 such four-cell networks of

valency 2. These are networks #26, #109, #138, #175, #238, #278, #294 #295 and #391.

Although we only consider steady-state bifurcations of regular homogeneous networks in

later chapters, such networks are interesting as we expect to see Steady-state/Hopf synchrony-

breaking bifurcations when the critical eigenvalue crosses the imaginary axis with nonzero speed,

and is therefore associated with all of these three eigenvalues. This phenomenon cannot occur

in three-cell networks.

2Note that Leite and Golubitsky (2006) uses a different set of reference numbers for three-cell networks of
valency 2.
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Chapter 4

Computation of All Balanced

Equivalence Relations

4.1 Introduction

An important feature of networks is the possibility of synchrony, which occurs when distinct

nodes exhibit identical dynamics at all instants of time. When a fully synchronised network loses

coherence, it breaks up into multiple clusters of synchronised sub-networks. We use the term

pattern of synchrony to describe which nodes in a given network are synchronised. Some

patterns of synchrony are more robust than others. Theorem 4.2 (Stewart et al., 2003, Theorem

6.5) states that all robust patterns of synchrony — those determined by the network architecture

rather than any specific choice of dynamic — correspond to balanced equivalence relations

(balanced colourings) on the set of cells. Associated with each balanced equivalence relation is

a polysynchronous subspace (balanced polydiagonal). A coupled cell network restricted

to a balanced polydiagonal defines a quotient network which describes multiple clusters of

synchronised sub-networks.

In this chapter, we describe a method to determine all possible balanced equivalence

relations on a given regular homogeneous coupled cell network. To determine which equiv-

alence relations are balanced is equivalent to finding which corresponding polydiagonals are

flow-invariant for every coupled cell system with the given network architecture. We show that

balanced polydiagonals are determined solely by the adjacency matrix which describes the net-

work architecture, by considering projection maps onto polydiagonals. An adjacency matrix

which leaves a given polydiagonal invariant has a block structure, and this matrix property

leads to a computer algorithm which determines all balanced equivalence relations and adja-

cency matrices of the corresponding quotient networks using matrix computations.

It has been shown that balanced equivalence relations form a complete lattice in a general
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context in Stewart (2007). We construct the lattice of balanced equivalence relations using a

refinement relation as an order for the lattice. Lattices of balanced equivalence relations for all

38 three-cell regular homogeneous networks of valency 2 and 416 four-cell regular homogeneous

networks of valency 2 are listed in Appendix A.

4.2 Preliminaries

4.2.1 Coupled cell network formalism

The state of cell c at time t is determined by a list of state variables for that cell. Each cell c

must be assigned a cell phase space Pc, and its state xc(t) at time t is an element of Pc. In

general, Pc should be a manifold, and for simplicity we take it to be a finite-dimensional real

vector space, which is sufficient for local bifurcation theory.

Each cell typically has an internal dynamic, an ODE that determines its behaviour in

isolation. In a network, the internal dynamic of a given cell is modified by coupling effects from

other cells. The direction of coupling is important since it determines which cell is affected by

which. Therefore the cells are represented as the nodes of a directed graph, and the couplings

as directed edges, drawn as arrows.

In many applications the cells occur in a variety of different types, and cells of the same

type have the same phase space. There are two ways to formalise this requirement. One is to

attach labels to cells, symbols drawn from some finite set such as circle, square, triangle. Cells

with identical labels are required to have the same type. Alternatively, we can introduce an

equivalence relation same type on cells.

Similarly, coupling among cells also occurs in various distinguishable types. We can label

arrows graphically by using different kinds of lines (solid, dashed, dotted). Alternatively, we can

introduce an equivalence relation same type on arrows as we introduced on cells.

Finally, we represent the topology of the network by two incidence relations, H and T ,

which determine the cells that lie at the head and tail of a given arrow. Now we can state a

formal definition of a coupled cell network as a directed graph.

4.2.2 Definition of a coupled cell network

Definition 4.1. A coupled cell network G comprises:

1. A finite set C = {1, . . . , N} of nodes or cells.

2. An equivalence relation ∼C on cells in C.
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3. A finite set E of edges or arrows.

4. An equivalence relation ∼E on edges in E.

5. Two maps H : E → C and T : E → C.

For e ∈ E we call H(e) the head of e and T (e) the tail of e.

The following compatibility condition is required:

6. Equivalent arrows have equivalent tails and heads. That is, if e1, e2 ∈ E and e1 ∼E e2,

then

H(e1) ∼C H(e2) T (e1) ∼C T (e2)

Two noteworthy features of this definition are:

• Self-coupling is permitted: we allow H(e) = T (e) for an edge e.

• Multiple arrows are permitted: we allow H(e1) = H(e2) and T (e1) = T (e2) for e1 6= e2.

The reasons for these conditions are explained in Golubitsky et al. (2005).

4.2.3 Input sets and Groupoid of a network

Associated with each cell c ∈ C is a canonical set of edges, namely, those that represent couplings

into cell c.

Definition 4.2. If c ∈ C, then the input set of c is

I(c) = {e ∈ E : H(e) = c}

An element of I(c) is called an input edge or input arrow of c.

Input edges determine the form of the ODEs associated with G. For a given cell c ∈ C,

the form of ẋc should depend only on the cells coupled to cell c, that is, on xc and on those xi for

which there exists an arrow with head c and tail i. If two cells have a common input structure,

it reflects that the occurrence of the same function in the ODEs for both cells. We now state

these ideas formally.

Definition 4.3. The relation ∼I of input equivalence on C is defined by c ∼I d if and only if

there exists an arrow-type preserving bijection

β : I(c)→ I(d)

That is, for every input arrow i ∈ I(c)

i ∼E β(i)
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Any such bijection β is called an input isomorphism from cell c to cell d. The set B(c, d)

denotes the collection of all input isomorphisms from cell c to cell d. The set

BG =
⋃

c,d∈C
B(c, d)

is the (symmetry) groupoid of the network. The set B(c, c) is a permutation group acting

on the input set I(c), which we call the vertex group of cell c.

Note that with a suitable interpretation the union above is disjoint. Suppose there exists

β ∈ B(c, d) ∩ B(c′, d′), where B(c, d) 6= B(c′, d′) and c 6= c′ and d 6= d′. Then β : I(c) → I(d)

such that i →∼E β(i) for all i ∈ I(c). Also β : I(c′) → I(d′) such that i →∼E β(i) for all

i ∈ I(c′). Therefore we must have I(c) = I(c′) and I(d) = I(d′). This contradict to c 6= c′

and d 6= d′. Hence the union BG =
⋃

c,d∈C B(c, d) is disjoint. See Stewart et al. (2003) for more

details.

Clearly

c ∼I d ⇒ c ∼C d

The proof is easy. If c ∼I d, ∃β : I(c) → I(d) such that i ∼E β(i) for all i ∈ I(c). By the

consistency condition (6) of Definition 4.1, H(i) ∼C H(β(i)). Therefore, c ∼C d since H(i) = c

and H(β(i)) = d.

However, the converse

c ∼C d ⇒ c ∼I d

fails in general. For example, consider the following network in which all three cells are equiva-

lent:

Although the only ∼C-equivalence class is {1, 2, 3}, there is no input isomorphism between cell

1 and cell 2, or between cell 1 and cell 3.

Definition 4.4. A homogeneous network is a coupled cell network such that B(c, d) 6= ∅ for

every pair of cells c, d. That is, all cells are input isomorphic. A homogeneous network that has

one equivalence class of edges is said to be regular. The valency of a regular network is the

number of arrows in any (hence every) input set.
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4.2.4 Admissible vector fields

We now define the class FP
G of admissible vector fields corresponding to a given coupled cell

network G. This class consists of all vector fields that are compatible with the labelled graph

structure, or equivalently are symmetric under the groupoid BG . The class FP
G also depends on a

choice of total phase space P , which we assume is fixed throughout the subsequent discussion.

We construct P as follows.

For each cell in C define a cell phase space Pc. We assume Pc to be a nonzero finite-

dimensional real vector space. We require

c ∼c d ⇒ Pc = Pd

and we assign the same coordinate systems on Pc and Pd.

Define the corresponding total phase space to be

P =
∏
ci∈C

Pci , i = 1, . . . , N

and employ the coordinate system

x = (xc1 , . . . , xcN )

on the total phase space P , where xci ∈ Pci .

More generally, suppose that D = (d1, . . . , ds) is any finite ordered set of s cells in C. In

particular, the same cell can appear more than once in D, in order to accommodate multiple

arrows. Define

PD = Pd1 × · · · × Pds

and employ the coordinate system

xD = (xd1 , . . . , xds)

on D, where xdi
∈ Pdi

.

Suppose that D1, D2 are ordered sets of C, and that there is a bijection γ : D1 → D2

such that γ(d) ∼C d for all d ∈ D1. Define the pullback map

γ∗ : PD2 → PD1

by

(γ∗(z))j = zγ(j)

for all j ∈ D1 and z ∈ PD2 .
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Now we use pullback maps on isomorphic input sets.

Suppose c, d ∈ C and c ∼I d. T (I(c)) and T (I(d)) are subsets of C. For a given cell c the

internal phase space is Pc and the coupling phase space is

PT (I(c)) = PT (i1) × · · · × PT (is)

where T (I(c)) denotes the ordered set of cells (T (i1), . . . , T (is)) as the arrows ik run through

I(c).

For any β ∈ B(c, d), define the pullback map β∗ : PT (I(d)) → PT (I(c)) as follows. Write

xT (I(c)) = (xT (i1), . . . , xT (is)). Then

β∗xT (I(d)) = (xT (β(i1)), . . . , xT (β(is)))

We use pullback maps to relate different components of a vector field associated with a given

coupled cell network. Specifically, the class of vector fields that is encoded by a coupled cell

network is given by:

Definition 4.5. A vector field f : P → P is G-admissible if:

(a) (domain condition) For all c ∈ C the component fc(x) depends only on the internal phase

space variable xc and the coupling phase space variables xT (I(c)); that is, there exists f̂c :

Pc × PT (I(c)) → Pc such that

fc(x) = f̂c(xc, xT (I(c))) (4.1)

(b) (pullback condition) For c, d ∈ C and β ∈ B(c, d)

f̂d(xd, xT (I(d))) = f̂c(xd, β
∗xT (I(d))) for all x ∈ P (4.2)

Remark: If β belongs to the vertex group B(c, c), then (4.2) implies that

f̂c(xc, xT (I(c))) = f̂c(xc, β
∗(xT (I(c)))) for all x ∈ P

That is, f̂c is B(c, c)-invariant.

Definition 4.6. For a given choice of the Pc we define the class FP
G to consist of all G-admissible

vector fields on P .

These are the most general vector fields on P that are consistent with the structure of

the coupled cell network. The following theorem states that f is determined if we specify one

mapping (on the appropriate spaces) for each input equivalence class of cells.
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Theorem 4.1. Let C ⊆ C be an ∼I-equivalence class. Let f̂c : Pc × PT (I(c)) → Pc be B(c, c)-

invariant for c ∈ C. Then f̂c extends uniquely to a vector field in FP
G (C).

Proof. Extend to input-equivalent cells using the pullback condition, for details, see Stewart

et al. (2003).

In particular, each admissible vector field on a regular homogeneous cell system is

uniquely determined by a single mapping f̂c at some (indeed, any) node c. The following

example shows how to determine f for a given homogeneous coupled cell network with valency

2.

Example 4.1. Consider the following three-cell regular homogeneous network

We describe FP
G for this network. There is only one cell type labelled by a symbol©. We choose

P1 as the cell phase space of cell 1. Then the state variable is x = (x1, x2, x3), where xi ∈ P1

for all i = 1, 2, 3 and the total phase space is P = (P1)3. We claim that the G-admissible vector

fields f are those of the form

f1(x) = A(x1, x1, x3)

f2(x) = A(x2, x1, x3)

f3(x) = A(x3, x2, x3)

where A(xi, xj , xk) means A(xi, xj , xk) = A(xi, xk, xj) (i.e., inputs have symmetric effects)

Input sets are

I(1) = {−→11,
−→
31}, I(2) = {−→12,

−→
32}, I(3) = {−→23,

−→
33}

77



The non-empty sets B(c, d) are given by

B(1, 1) = {{β1(
−→
11) =

−→
11, β1(

−→
31) =

−→
31}, {β2(

−→
11) =

−→
31, β2(

−→
31) =

−→
11}}

B(2, 2) = {{β1(
−→
12) =

−→
12, β1(

−→
32) =

−→
32}, {β2(

−→
12) =

−→
32, β2(

−→
32) =

−→
12}}

B(3, 3) = {{β1(
−→
23) =

−→
23, β1(

−→
33) =

−→
33}, {β2(

−→
23) =

−→
33, β2(

−→
33) =

−→
23}}

B(1, 2) = {{β1(
−→
11) =

−→
12, β1(

−→
31) =

−→
32}, {β2(

−→
11) =

−→
32, β2(

−→
31) =

−→
12}}

B(2, 1) = {{β1(
−→
12) =

−→
11, β1(

−→
32) =

−→
31}, {β2(

−→
12) =

−→
31, β2(

−→
32) =

−→
11}}

B(1, 3) = {{β1(
−→
11) =

−→
23, β1(

−→
31) =

−→
33}, {β2(

−→
11) =

−→
33, β2(

−→
31) =

−→
23}}

B(3, 1) = {{β1(
−→
23) =

−→
11, β1(

−→
33) =

−→
31}, {β2(

−→
23) =

−→
31, β2(

−→
33) =

−→
11}}

B(2, 3) = {{β1(
−→
12) =

−→
23, β1(

−→
32) =

−→
33}, {β2(

−→
12) =

−→
33, β2(

−→
32) =

−→
23}}

B(3, 2) = {{β1(
−→
23) =

−→
12, β1(

−→
33) =

−→
32}, {β2(

−→
23) =

−→
32, β2(

−→
33) =

−→
12}}

Now all cells are input-isomorphic. By Theorem 4.1 any f ∈ FP
G can be expressed in terms

of a single B(c, c)-invariant map f̂c : Pc × PT (I(c)) → Pc. Let f̂1 : P1 × PT (I(1) → P1 be

B(1, 1)-invariant. Suppose we define a function A : P1 × PT (I(1) → P1 by

A(x1, x1, x3) = f̂1(x)

so that A = f̂1. Then the admissible vector field on this system is uniquely determined by this

single mapping f̂1 as following:

f̂d(xd, xT (I(d))) = f̂1(xd, β
∗xT (I(d))) ∀β ∈ B(1, d)

The function f1 is not arbitrary: there is a symmetry condition. We find this as follows.

Determination of f1(x): The non-trivial element of B(1, 1) is

β2(
−→
11) =

−→
31, β2(

−→
31) =

−→
11

Since xT (I(1)) = (xT (
−→
11)

, xT (
−→
31)

) ≡ (x1, x3) so

β∗2(xT (I(1))) = (xT (β2(
−→
11))

, xT (β2(
−→
31))

) ≡ (x3, x1)

Then the invariance condition demands that

f̂1(x1, x1, x3) = f̂1(x1, x3, x1)

Thus

A(x1, x1, x3) = A(x1, x3, x1)
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Therefore

f1(x) = A(x1, x1, x3)

Determination of f2(x): The first element of B(1, 2) is

β1(
−→
11) =

−→
12, β1(

−→
31) =

−→
32

The pullback condition demands that

f̂2(x2, xT (I(2))) = f̂1(x2, β
∗
1xT (I(2)))

Since T (I(2)) = (1, 3), T (I(1)) = (1, 3), we have xT (I(2)) ≡ (x1, x3). Therefore

β∗1xT (I(2)) = (xT (β1(
−→
11))

, xT (β1(
−→
31))

) ≡ (x1, x3)

Thus

f̂2(x2, x1, x3) = f̂1(x2, x1, x3) = A(x2, x1, x3)

Similarly, we perform the computation for the second element of B(1, 2) is

β2(
−→
11) =

−→
32, β2(

−→
31) =

−→
12

The pullback condition demands that

f̂2(x2, xT (I(2))) = f̂1(x2, β
∗
2xT (I(2)))

The pullback map β∗2 satisfies

β∗2xT (I(2)) = (xT (β2(
−→
11))

, xT (β2(
−→
31))

) ≡ (x3, x1)

Thus

f̂2(x2, x1, x3) = f̂1(x2, x3, x1) = A(x2, x3, x1)

The domain condition implies that

f2(x) = f̂2(x2, xT (I(2))) = A(x2, x1, x3) = A(x2, x3, x1)

Therefore

f2(x) = A(x2, x1, x3)

Determination of f3(x): A similar method for the determination of f2(x) gives:

f3(x) = A(x3, x2, x3)
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Hence

f1(x) = A(x1, x1, x3)

f2(x) = A(x2, x1, x3)

f3(x) = A(x3, x2, x3)

as claimed.
3

An ODE defined by an admissible vector field on a coupled cell network is called a

coupled cell system.

4.2.5 Balanced Equivalence Relations

In the following two subsections, we introduce the concepts of balanced equivalence relations

and quotient networks based on the formalism for coupled cell networks which permits multiple

couplings between cells and self-coupling, as in Golubitsky et al. (2005).

Let G = (C, E ,∼C ,∼E) be a coupled cell network. Choose a total phase space P , and let

./ be an equivalence relation on C, partitioning the cells into equivalence classes. Abstractly, the

relation “c and d are synchronous” is an equivalence relation on the set of cells, so we formalise

pattern of synchrony in terms of an equivalence relation ./ on C. Since cells can be considered

synchronous only when they have the same cell-type, ./ must be refinement of ∼C ; that is, if

c ./ d, then c ∼C d.

For a given equivalence relation ./ which determines a unique partition of C, the corre-

sponding polysynchronous subspace of P is defined by

4./ = {x ∈ P : c ./ d⇒ xc = xd}

A polysynchronous subspace is robustly polysynchronous if it is flow-invariant for

every coupled cell system with the given network architecture. That is,

f(4./) ⊆ 4./ ∀f ∈ FP
G

and we say ./ is robustly polysynchronous. Equivalently, if x(t) is a trajectory of any

f ∈ FP
G , with initial condition x(0) ∈ 4./, then x(t) ∈ 4./ for all t ∈ R. For example, the

diagonal subspace x1 = · · · = xn in Rn is always robustly polysynchronous in a homogeneous

coupled cell network.

Patterns of robust synchrony do not depend on the choice of P , because they are classified

by a special type of equivalence relation:
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Definition 4.7. An equivalence relation on C is balanced if for every c, d ∈ C with c ./ d, there

exists an input isomorphism β ∈ B(c, d) such that T (i) ./ T (β(i)) for all i ∈ I(c).

In particular, B(c, d) 6= ∅ implies c ∼I d. Hence, balanced equivalence relations refine

input equivalence ∼I . Now we state a necessary and sufficient condition for a polysynchronous

subspace to be a robustly polysynchronous:

Theorem 4.2. Let ./ be an equivalence relation on a coupled cell network. Then ./ is robustly

polysynchronous if and only if ./ is balanced.

Proof. See (Stewart et al., 2003, Theorem 6.5).

4.2.6 Quotient networks

A balanced equivalence relation ./ on a network G guarantees the existence of associated syn-

chronised states in a robust manner. Now we ask: what kinds of synchronous dynamics can occur

for a given network and a given balanced equivalence relation? The answer is: the dynamics

are determined by a network whose nodes correspond to clusters of synchronous cells (that is,

./-equivalence classes) and whose edges are defined to preserve the isomorphic input sets defined

by ./. We call this network the quotient of G by ./.

We observe that each balanced equivalence relation ./ of a coupled cell network G induces

a unique canonical coupled cell network G/./ on 4./, called the quotient network.

To define a network as in Definition 4.1, we must specify (1) the cells, (2) an equivalence

relation on cells, (3) the arrows, (4) an equivalence relation on arrows, and (5) the head and tail

incidence relations. We must also specify (6) to satisfy a consistency relation between arrows

and cells.

1. Let c denote the ./-equivalence class of c ∈ C. The cells in C./ are the ./-equivalence classes

in C, that is,

C./ = {c : c ∈ C}

Thus we obtain C./ by forming the quotient of C by ./, that is, C./ = C/ ./.

2. Define

c ∼C./ d⇔ c ∼C d

The relation ∼C./ is well-defined since ./ refines ∼C .

3. Let S ⊂ C be a set of cells consisting of precisely one cell c from each ./-equivalence class.

The input arrows for a quotient cell c are identified with the input arrows in cell c, where
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c ∈ S, that is I(c) = I(c).

When viewing the arrow i ∈ I(c) as an arrow in I(c), we denote that arrow by i. Thus,

the arrows in the quotient network are the projection of arrows in the original network

formed by the disjoint union

E./ =
⋃̇

c∈S
I(c) (4.3)

The definition of the quotient network structure is independent of the choice of the repre-

sentative cells c ∈ S.

4. Two quotient arrows are equivalent when the original arrows are equivalent. That is,

i1 ∼E./ i2 ⇔ i1 ∼E i2 (4.4)

where i1 ∈ I(c1), i2 ∈ I(c2), and c1, c2 ∈ S.

5. Define the heads and tails of quotient arrows by

H(i) = H(i) T (i) = T (i)

6. It is easy to verify that the quotient network satisfies the compatibility condition in Defi-

nition 4.1 (6). The quotient network is independent of the choice of cells in S because ./

is balanced.

Any dynamics on the quotient lifts to a synchronous dynamic on the original network as

the following Theorem states.

Theorem 4.3. Let ./ be a balanced equivalence relation on a coupled cell network G.

(a) The restriction of a G-admissible vector field to 4./ is G/./-admissible.

(b) Every G-admissible vector field on the quotient lifts to a G-admissible vector field on the

original network.

Proof. See Golubitsky et al. (2005).

4.2.7 Invariant Subspaces

We now restate concepts of invariant subspaces and projection mappings. For more details, see

Hohn (1973).

Definition 4.8. Let T be a linear transformation on a vector space V . A subspace W of V is

said to be invariant under T (or T -invariant) if and only if T (x) ∈ W for every x ∈ W , or

equivalently T (W ) ∈W .

The transformation T on V defines a transformation T |W on W , called T restricted to

W .
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4.2.8 Projection Mappings

A stronger form of invariance occurs in connection with familiar mappings called projections.

A projection P is defined simply as any idempotent linear transformation:

P 2 = P

Suppose that a vector v belongs to the range of the projection. Then there exists a vector

u such that P (u) = v. Since

P (v) = P (P (u)) = P 2(u) = P (u) = v

it follows that for every vector v of the range

P (v) = v

Hence not only is the range of P invariant under P as a subspace, but each point of the

range of P is invariant. Furthermore, range(P ) ∩ kernel(P ) = 0, so V = range(P )⊕ kernel(P ).

Hence any projection P on V decomposes V into the direct sum of two subspaces; P is the

identity mapping on one of these subspaces and the zero mapping on the other.

Conversely, if V = M1 ⊕M2, each v ∈ V has a unique expression v = µ1 + µ2 where

µ1 ∈M1, µ2 ∈M2. The mapping P defined by

P (v) = µ1

is linear and idempotent, and hence a projection, called the projection of V on M1 along M2.

Clearly, M1 = range(P) and M2 = kernel(P).

4.2.9 Lattice Theory: Part 1

We recall some basic facts about lattice theory. See Davey and Priestley (1990) for more details.

Orders: An order L = 〈L,≤〉 consists of a nonempty set L and a binary relation ≤ on L (that

is, a subset of L) — called an ordering — such that the relation ≤ is:

• reflexive (a ≤ a for all a ∈ L)

• antisymmetric (a ≤ b and b ≤ a imply that a = b for all a, b ∈ L)

• transitive (a ≤ b and b ≤ c imply that a ≤ c for all a, b, c ∈ L)

An order that is linear (a ≤ b or b ≤ a for all a, b ∈ L) is called a chain.

Join and Meet: In an order L, the element u is an upper bound of H ⊆ L if and only if

h ≤ u for all h ∈ H. An upper bound u of H is the least upper bound of H if and only
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if, for any upper bound v of H, we have u ≤ v. We shall write u =
∨

H. The concepts of

lower bound and greatest lower bound (denoted by
∧

H) are similarly defined. We use the

notation a∧b =
∧
{a, b} and a∨b =

∨
{a, b} and call ∧ the meet and ∨ the join of the elements

a and b.

Lattices and Complete lattices: An order L is a lattice if and only if a∧ b and a∨ b always

exist for all a, b ∈ L. An order L is a complete lattice if and only if
∧

H and
∨

H exist for

all H ⊆ L.

Let L be a lattice and ∅ 6= M ⊆ L. Then M is a sublattice of L if

a, b ∈M ⇒ a ∧ b ∈M and a ∨ b ∈M

In lattices, the join and meet are both binary operations, which means that they can be applied

to a pair of elements a, b of L to yield again an element of L. They are

• idempotent (a ∧ a = a, a ∨ a = a for all a ∈ L)

• commutative (a ∧ b = b ∧ a, a ∨ b = b ∨ a for all a, b ∈ L)

• associative ((a ∧ b) ∧ c = a ∧ (b ∧ c), (a ∨ b) ∨ c = a ∨ (b ∨ c) for all a, b, c ∈ L)

and satisfy the:

• absorption identities (a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a for all a, b ∈ L)

On the set Part(X) of all equivalence relations on X, we can introduce an ordering

R1 ≺ R2 if R1 is a refinement of R2; that is, xR1y implies that xR2y, where xRy means that

x and y are in relation R. Consequently, the partition of X defined by R1 is finer than defined

by R2 in the sense that for any x ∈ X

[x]1 ⊆ [x]2

where [x]j is the Rj-equivalence class of x for j = 1, 2.

The refinement relation is a partial order on the set of partitions of X.

In fact, with this ordering, the corresponding Part(X) is a lattice, called the partition

lattice of X with the meet and join operations are defined as follows.

〈x, y〉 ∈ R1 ∧R2 if and only if 〈x, y〉 ∈ R1 and 〈x, y〉 ∈ R2.

The join, however, is more complicated to describe: 〈x, y〉 ∈ R1 ∨ R2 if and only if

∃x1, x2, . . . , xn ∈ X such that 〈xi, xi+1〉 ∈ R1 or 〈xi, xi+1〉 ∈ R2, i = 1, . . . , n − 1 and x = x1

and y = xn.

Diagrams: In the order L, a is covered by b (written a ≺ b) if and only if a < b and a < x < b

holds for no x. The covering relation, ≺, determines the ordering in a finite order.
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The diagram of an order L represents the elements with small circles. The circles rep-

resenting two elements x, y are connected by a straight line if and only if one covers the other:

if x is covered by y, then the circle representing y is higher than the circle representing x. For

example, the following diagram represents a partition lattice of three elements {1, 2, 3}.

4.3 Computation of All Balanced Equivalence Relations

4.3.1 Balanced Polydiagonals are Invariant Subspaces of the Adjacency Ma-

trix

When a fully synchronised network breaks its synchrony, we would like to determine how this

network breaks into multiple clusters of synchronised sub-networks. We are interested in de-

termining these patterns of synchrony not from a particular function form which describes the

cells’ dynamics, but from the network structure which describes how cells are interacting.

There are Tn =
∑n

k=1 S(n, k) possible patterns of synchrony for a given n-cell homoge-

neous network, including two trivial patterns (fully synchronised state and all cells have different

state), where S(n, k) are Stirling numbers (of the second kind) Biggs (1989). Here however, some

patterns of synchrony are more robust than others. We aim to determine these robust patterns

of synchrony of a network solely from the network structure.

Assume that the dimension of the internal dynamics of a cell is one dimensional. For a

given n-cell regular homogeneous network G with valency r, we define an associated admissible

vector field F where i-th coordinate of the admissible vector field has the form:

f(xi, xi1 , . . . , xir) : R× R× · · · × R︸ ︷︷ ︸
r

→ R

where fi(xi, xi1 , . . . , xir) distinguishes between the single internal variable xi and the r external

inputs xi1 , . . . , xir , with the bar indicating the coupling from these external cells is symmetric.

Proposition 4.1 relates robust polysynchronous subspaces to the adjacency matrix A

which describes the network structure. This result is well known, but seems not to have been

stated explicitly, so we provide a proof.
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Proposition 4.1. Let A be the adjacency matrix of a regular homogeneous coupled cell network

G. ./ is robustly polysynchronous, that is F (4./) ⊆ 4./, if and only if A(4./) ⊆ 4./.

Proof. F (4./) ⊆ 4./ ⇒ A(4./) ⊆ 4./ is trivial. We show the converse. In Theorem 4.3

in Golubitsky et al. (2005), they proved that if F (4./) ⊆ 4./, then ./ is balanced by considering

admissible linear vector fields.

For a regular homogeneous network G, G-admissible linear vector fields are expressed as:

R{I, A}

where I is the identity matrix.

Since all vector spaces are invariant under the identity matrix I, 4./ is invariant under

any G-admissible linear vector fields if A(4./) ⊆ 4./. This implies the corresponding equivalence

relation ./ is balanced. Hence, if A(4./) ⊆ 4./ then ./ is robustly polysynchronous.

Therefore, polydiagonal invariant subspaces of an adjacency matrix A are robust polysyn-

chronous subspaces and corresponding equivalence relations are balanced. Now, we ask: Which

polysynchronous subspaces are invariant subspaces of the adjacency matrix A?

4.3.2 Projection onto a Polysynchronous Subspace

Let 4./ ⊆ V be a polysynchronous subspace, and 4′./ denote its complement. Then,

V = 4./ ⊕4′./

where ⊕ is a direct sum.

Each v ∈ V is uniquely expressed as v = µ1 + µ2 where µ1 ∈ 4./, µ2 ∈ 4′./. The mapping P./

defined by

P./(v) = µ1

is the projection of V on 4./ along 4′./.

In general, we can construct a projection map on a given polysynchronous subspace as

follows.

A polysynchronous subspace is defined by a given equivalence relation which determines

a unique partition of cells. We consider this partition using a cycle notation. Every partition of

cells can be written as a product of disjoint cycles. Especially, here we use normal form cycle

notation which is obtained by writing the cell numbers 1, . . . , n in increasing order in each cycle,

starting with the 1-cycle, then the 2-cycles, and so on in increasing order of length. For example,

the following polysynchronous subspace

4./ = {(x1, x2, x3)|x2 = x3}
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is written as a product of disjoint cycles

(1)(23)

and this is in normal form for the partition [1121].

Now we define a map π which maps each element to the first element of the cycle that

they belong to when written in normal form. For example, the elements in the above product

of disjoint cycles are mapped to

1→ 1

2→ 2

3→ 2

by a map π.

Now we can define a projection matrix P./ = (pij) on 4./, which is written in normal

form of a partition using the map π as following:

pi,π(i) = 1

with all other entries being 0.

Now we can see a projection matrix which is defined from normal form as a block diagonal

matrix having the form

P./ =


P1 0 · · · 0

0 P2 · · · 0
...

...
. . .

...

0 0 · · · Pk


where k is the number of disjoint cycles and Pi, i = 1, · · · , k is a ti× ti square projection matrix

on 4 = {(x1, . . . , xti)|x1 = · · · = xti} and off-diagonal blocks are zero matrices. P./ can also be

indicated as

P./ = P1 ⊕ P2 ⊕ · · · ⊕ Pk

Proposition 4.2. Let P./ and A be linear mapping of V and let V = 4./ ⊕ 4′./. 4./ is A-

invariant if and only if P./AP./ = AP./, where P./ is the projection on 4./ along 4′./ and A is

the adjacency matrix of a given coupled cell network.

Proof. Assume 4./ is A-invariant and let µ1 ∈ 4./, then

P./AP./(µ1) = P./A(µ1)

= P./(µ′1) where µ′1 ∈ 4./

= µ′1
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Similarly,

AP./(µ1) = A(µ1)

= µ′1 where µ′1 ∈ 4./

Above equalities hold for any µ′1 ∈ 4./. Therefore, P./AP./ = AP./.

Now, we show the converse. Let v = µ1+µ2 where µ1 ∈ 4./, µ2 ∈ 4′./. If P./AP./ = AP./,

then

AP./(v) = AP./(µ1 + µ2)

= A(µ1)

= µ′1 where µ′1 ∈ V

However, this should be the same as

P./AP./(v) = P./AP./(µ1 + µ2)

= P./A(µ1)

= P./(µ′1) where µ′1 ∈ V

= µ′′1 where µ′′1 ∈ 4./

for any µ1 ∈ 4./. It means µ′1 = µ′′1 ∈ 4./. Therefore,

A(4./) ⊆ 4./

Hence 4./ is A-invariant.

Now, we state

Theorem 4.4. 4./ is a robust polysynchronous subspace if and only if P./AP./ = AP./, where

P./ is the projection on 4./ along 4′./.

Proof. From Proposition 4.1, if 4./ is a robust polysynchronous subspace, then 4./ is A-

invariant and from Proposition 4.2, the corresponding projection map P./ to 4./ satisfies

P./AP./ = AP./. Conversely, if P./AP./ = AP./, then the corresponding subspace 4./ is A-

invariant by Proposition 4.2 and by Proposition 4.1, it is a robust polysynchronous subspace.

4.3.3 Block Structure of an Adjacency Matrix

We show that if 4./ is invariant under the adjacency matrix A, then A has a block matrix

representation similar to a block matrix form of the corresponding projection matrix P./.
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Example 4.2. Suppose the projection mapping on 4./ = {(x1, x2, x3)|x2 = x3} is:

P./ =


1 0 0

0 1 0

0 1 0


Now, we determine a matrix form of A which leaves 4./ invariant. 4./ is invariant under A if

and only if P./AP./ = AP./. Let

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


Then,

P./AP./ =


1 0 0

0 1 0

0 1 0




a11 a12 a13

a21 a22 a23

a31 a32 a33




1 0 0

0 1 0

0 1 0



=


1 0 0

0 1 0

0 1 0




a11 a12 + a13 0

a21 a22 + a23 0

a31 a32 + a33 0



=


a11 a12 + a13 0

a21 a22 + a23 0

a21 a22 + a23 0


Therefore,

P./AP./ = AP./ ⇒ a21 = a31 and a22 + a23 = a32 + a33

Hence, 4./ is invariant under A if and only if A has the following block structure:

A =


a11 a12 a13

a21 a22 a23

a21 a32 a33


where the lower right 2× 2 block matrix itself is an adjacency matrix associated with a regular

homogeneous coupled cell network with valency either 0, 1 or 2 (i.e. a22 + a23 = a32 + a33 = r

where r = 0, 1, 2).
3

Lemma 4.1. Let A be the n × n adjacency matrix of a given coupled cell network G. Suppose

a polysynchronous subspace 4./ is defined by a partition [1α12α2 · · ·nαn ] and the corresponding

projection matrix P./ is a block diagonal matrix whose diagonal blocks Pi, i = 1, . . . , k, where
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k =
∑n

i=1 αi are projection matrices on diagonal subspaces 4 in the corresponding dimensions.

Then P./AP./ = AP./ if and only if corresponding blocks of A to P./ satisfy the following

condition:

• Let Aij, where i, j = 1, . . . , k be blocks of A. For all blocks Aij, the sum of each row is the

same.

Proof. Let P./AP./ = AP./, where P./ =


P1 0

. . .

0 Pk

. Since

RHS: AP./ =


A11 · · · A1k

...
. . .

...

Ak1 · · · Akk




P1 0
. . .

0 Pk



=



A11P1 A12P2 · · · A1kPk

A21P1 A22P2
. . . A2kPk

...
...

. . .
...

Ak1P1 Ak2P2
. . . AkkPk



LHS: P./AP./ =


P1 · · · 0

. . .

0 · · · Pk





A11P1 A12P2 · · · A1kPk

A21P1 A22P2
. . . A2kPk

...
...

. . .
...

Ak1P1 Ak2P2
. . . AkkPk



=



P1A11P1 P1A12P2 · · · P1A1kPk

P2A21P1 P2A22P2
. . . P2A2kPk

...
...

. . .
...

PkAk1P1 PkAk2P2
. . . PkAkkPk



⇐⇒ PsAstPt = AstPt, where s, t = 1, . . . , k.

Let any arbitrary block Ast = (ast)ij be a l×m matrix. Then Pt is a m×m square matrix

and Ps is a l× l square matrix. Since Pt and Ps are projection matrices onto m-dimensional and
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l-dimensional diagonals, respectively,

AstPt =


ast

11 · · · ast
1m

...
. . .

...

ast
l1 · · · ast

lm




1 0 · · · 0

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0



=



ast
11 + · · ·+ ast

1m 0 · · · 0

ast
21 + · · ·+ ast

2m 0
. . . 0

...
...

. . .
...

ast
l1 + · · ·+ ast

lm 0
. . . 0



PsAstPt =


1 0 · · · 0

1 0 · · · 0
...

...
. . .

...

1 0 · · · 0





ast
11 + · · ·+ ast

1m 0 · · · 0

ast
21 + · · ·+ ast

2m 0
. . . 0

...
...

. . .
...

ast
l1 + · · ·+ ast

lm 0
. . . 0



=



ast
11 + · · ·+ ast

1m 0 · · · 0

ast
11 + · · ·+ ast

1m 0
. . . 0

...
...

. . .
...

ast
11 + · · ·+ ast

1m 0
. . . 0


⇐⇒ ast

11 + · · ·+ ast
1m = ast

21 + · · ·+ ast
2m = · · · = ast

l1 + · · ·+ ast
lm

⇐⇒
∑m

j=1 ast
ij is same for all i = 1, . . . , l

⇐⇒ For all blocks Aij , sum of each row is same.

We call a block of this form a homogeneous block matrix. It now follows immediately

that:

Proposition 4.3. A polysynchronous subspace 4./ is a robust polysynchronous subspace if and

only if each block of an adjacency matrix A, which corresponds to a block of P./, is a homogeneous

block matrix.

Proof. Let each block of A is a homogeneous block matrix.

⇐⇒ P./AP./ = AP./ (by Lemma 4.1)

⇐⇒ 4./ is a robust polysynchronous subspace (by Theorem 4.4)

Table 4.1 shows polysynchronous subspaces 4./ and corresponding projection mappings

P./ for three-cell and four-cell regular homogeneous networks. The last columns show the matrix

which leaves 4./ invariant with each block being a homogeneous block matrix.
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Only representative projection mappings and invariant matrix forms from each equiva-

lence class of partitions are shown in Table 4.1.

4./ ⊆ R3 Partition P./ A

(x1, x2, x3) = (u, u, u) (123)

 1 0 0
1 0 0
1 0 0

  a11 a12 a13

a21 a22 a23

a31 a32 a33


(x1, x2, x3) = (u, v, v) (1)(23)

 1 0 0
0 1 0
0 1 0

  a11 a12 a13

a21 a22 a23

a21 a32 a33


(x1, x2, x3) = (u, v, w) (1)(2)(3)

 1 0 0
0 1 0
0 0 1

  a11 a12 a13

a21 a22 a23

a31 a32 a33


4./ ⊆ R4 Partition P./ A

(x1, x2, x3, x4) = (u, u, u, u) (1234)


1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44


(x1, x2, x3, x4) = (u, v, v, v) (1)(234)


1 0 0 0
0 1 0 0
0 1 0 0
0 1 0 0




a11 a12 a13 a14

a21 a22 a23 a24

a21 a32 a33 a34

a21 a42 a43 a44


(x1, x2, x3, x4) = (u, u, w,w) (12)(34)


1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



(x1, x2, x3, x4) = (u, v, w,w) (1)(2)(34)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a31 a32 a43 a44



(x1, x2, x3, x4) = (u, v, w, z) (1)(2)(3)(4)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44



Table 4.1: Block structures of invariant adjacency matrices for three-cell and four-cell regular
homogeneous coupled cell networks.

Next we derive an adjacency matrix of a quotient network which is defined as the adja-

cency matrix A restricted on a robust polysynchronous subspace 4./.
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Proposition 4.4. Let4./ be a robust polysynchronous subspace defined by a partition [1α12α2 · · ·

nαn ] with k = α1 + · · · + αn conjugacy classes, and P./ be the corresponding block projection

matrix. Let Ast for s, t = 1, . . . , k corresponding to the blocks of P./ be blocks of an n × n

adjacency matrix A. If blocks Ast = (ast)ij are homogeneous block matrices such that:

A =


A11 · · · A1α1 A1(α1+1) · · · A1(α1+α2) · · · A1(α1+···+αn−1+1) · · · A1k

A21 · · · A2α1 A2(α1+1) · · · A2(α1+α2) · · · A2(α1+···+αn−1+1) · · · A2k

...
. . .

...
...

. . .
...

. . .
...

. . .
...

Ak1 · · · Akα1 Ak(α1+1) · · · Ak(α1+α2) · · · Ak(α1+···+αn−1+1) · · · Akk



then the quotient network corresponding to ./ has a k×k adjacency matrix A|4./, denoted

by A./, of the form:

A./ =



∑1
j=1 a11

1j · · ·
∑1

j=1 a1α1
1j · · ·

∑n
j=1 a

1(α1+···+αn−1+1)
1j · · ·

∑n
j=1 a1k

1j∑1
j=1 a21

1j · · ·
∑1

j=1 a2α1
1j · · ·

∑n
j=1 a

2(α1+···+αn−1+1)
1j · · ·

∑n
j=1 a2k

1j

...
. . .

...
. . .

...
. . .

...∑1
j=1 ak1

1j · · ·
∑1

j=1 akα1
1j · · ·

∑n
j=1 a

k(α1+···+αn−1+1)
1j · · ·

∑n
j=1 akk

1j



Proof. Let {v1, . . . , vα1 , vα1+1, . . . , vk} be a basis of a robust polysynchronous subspace. Each

basis element corresponds to a conjugacy class of the partition ./ and is an n × 1 vector.

Therefore, the basis elements have the following forms:

v1 = [1, 0, . . . , 0]t

...

vα1 = [0, . . . , 0︸ ︷︷ ︸
α1−1

, 1, 0, . . . , 0]t

vα1+1 = [0, . . . , 0︸ ︷︷ ︸
α1

, 1, 1︸︷︷︸
2

, 0, . . . , 0]t

...

vk = [0, . . . , 0︸ ︷︷ ︸∑n−1
i=1 iαi

, 1, . . . , 1︸ ︷︷ ︸
n

]t

Since each block Ast is a homogeneous block matrix, i.e., the sum of each row is the

same, we can express the image of each basis element using a linear combination of a basis with

93



the sum of the first row of each Ast being used as a coefficient such as:

Av1 =



∑1
j=1 a11

1j∑1
j=1 a21

1j

...∑1
j=1 ak1

1j


=

1∑
j=1

a11
1jv1 +

1∑
j=1

a21
1jv2 + · · ·+

1∑
j=1

ak1
1j vk

Av2 =



∑1
j=1 a12

1j∑1
j=1 a22

1j

...∑1
j=1 ak2

1j


=

1∑
j=1

a12
1jv1 +

1∑
j=1

a22
1jv2 + · · ·+

1∑
j=1

ak2
1j vk

...

Avk =



∑n
j=1 a1k

1j∑n
j=1 a2k

1j

...∑n
j=1 akk

1j


=

n∑
j=1

a1k
1j v1 +

n∑
j=1

a2k
1j v2 + · · ·+

n∑
j=1

akk
1j vk

Therefore a k×k matrix A./, which is an adjacency matrix A restricted on4./, is written

as

A./ =



∑1
j=1 a11

1j · · ·
∑1

j=1 a1α1
1j · · ·

∑n
j=1 a

1(α1+···+αn−1+1)
1j · · ·

∑n
j=1 a1k

1j∑1
j=1 a21

1j · · ·
∑1

j=1 a2α1
1j · · ·

∑n
j=1 a

2(α1+···+αn−1+1)
1j · · ·

∑n
j=1 a2k

1j

...
. . .

...
. . .

...
. . .

...∑1
j=1 ak1

1j · · ·
∑1

j=1 akα1
1j · · ·

∑n
j=1 a

k(α1+···+αn−1+1)
1j · · ·

∑n
j=1 akk

1j


and this is the adjacency matrix of the quotient network corresponding to ./.

The above adjacency matrix forms state the combinatorial properties of adjacency ma-

trices that determine, for a given homogeneous coupled cell network, which polysynchronous

subspaces are balanced, and what the corresponding quotient network is.
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4.3.4 Enumeration Algorithm using Adjacency Matrix Combinatorics

The above combinatorial properties of adjacency matrices leads to a computer algorithm which

determines all balanced equivalence relations and adjacency matrices A./ of associated quotient

networks G/./ for a given regular homogeneous network G.

Firstly, for all possible equivalence relations ./ of n-cells, we construct n × k matrices,

where k is the number of equivalence classes of ./, from a n × n adjacency matrix of G. To

determine which equivalence relations are balanced, we check if all rows in each equivalence

class are the same. Finally, for balanced equivalence relations, we construct adjacency matrices

A./ of the corresponding quotient networks G/./.

Step 1: For a given n-cell regular homogeneous coupled cell network G = (C, E ,∼C ,∼E), we

express the corresponding n× n adjacency matrix A as

A = [C1 · · ·Cn]

where Ci ∈ Rn×1, i = 1, . . . , n are column vectors. Let Cp denote the ./-equivalence classes on C

where p = 1, . . . , k. For example, if C = {{1, 3, 5}, {2}, {4}} then C1 = {1, 3, 5}, C2 = {2}, and

C3 = {4}. Note that
∑k

p=1 |Cp| = n. Let Cp1 be the first element of each equivalence class. We

assume that C11 < C21 < · · · < Ck1, where these cell numbers are used as index for row vectors

in Step 3.

We generate a new n× k matrix Ã./ with columns

C̃./p =
∑
j∈Cp

Cj for p = 1, . . . , k

for all possible equivalence relations ./.

Let R̃./i ∈ R1×k, where i = 1, . . . , n, denote the row vectors of this new n×k matrix Ã./.

Therefore,

Ã./ =


R̃./1

...

R̃./n

 = [C̃./1 · · · C̃./k
]

Step 2: Now we determine which balanced equivalence relations ./ are balanced. An equivalence

relation ./ on C is balanced if and only if for all p = 1, . . . , k, R̃./l
= R̃./m ∀l,m ∈ Cp. Hence we

check if

R̃./l
= R̃./m ∀l, m ∈ Cp (4.5)

Step 3: If the above condition (4.5) is satisfied, a k × k adjacency matrix of the quotient
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network A./ corresponding to a balanced equivalence relation ./ is given by:

A./ =


R./1

...

R./k


where R./i ∈ R1×k, i = 1, . . . , k are representative row vectors in each equivalence class.

Table 4.2 shows forms of adjacency matrices A./ of three and four-cell regular homoge-

neous networks. Note that all blocks in each adjacency matrix A are homogeneous block

matrices, therefore, which satisfy the condition (4.5) in Step 2.

4./ ⊆ R3 A A./

(x1, x2, x3) = (u, u, u)

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 —

(x1, x2, x3) = (u, v, v)

 a11 a12 a13

a21 a22 a23

a21 a32 a33

 (
a11 a12 + a13

a21 a22 + a23

)

(x1, x2, x3) = (u, v, w)

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 —

4./ ⊆ R4 A A./

(x1, x2, x3, x4) = (u, u, u, u)


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 —

(x1, x2, x3, x4) = (u, v, v, v)


a11 a12 a13 a14

a21 a22 a23 a24

a21 a32 a33 a34

a21 a42 a43 a44

 (
a11 a12 + a13 + a14

a21 a22 + a23 + a24

)

(x1, x2, x3, x4) = (u, u, w,w)


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 (
a11 + a12 a13 + a14

a31 + a32 a33 + a34

)

(x1, x2, x3, x4) = (u, v, w,w)


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a31 a32 a43 a44


 a11 a12 a13 + a14

a21 a22 a23 + a24

a31 a32 a33 + a34



(x1, x2, x3, x4) = (u, v, w, z)


a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

 —

Table 4.2: Block structures of invariant adjacency matrices under given robust polysynchronous
subspaces and adjacency matrices of the corresponding quotient networks.
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4.3.5 Lattice of Balanced Equivalence Relations

Using the above computer algorithm, we can determine all balanced equivalence relations and

corresponding quotient networks for a given regular homogeneous coupled cell network. Now,

using the refinement relation of partitions, we construct a lattice of balanced equivalence relations

for a given regular homogeneous coupled cell network.

Example 4.3. Consider the following four-cell regular homogeneous network of valency 2:

This network has 5 non-trivial balanced equivalence relations. The following table shows the

robust polysynchronous subspaces and the corresponding partitions:

Polysynchronous subspace Partition

4 = {(u, u, u, u)} (1234)

4./1 = {(u, v, v, v)} (1)(234)

4./2 = {(u, v, u, u)} (2)(134)

4./3 = {(u, u, w,w)} (12)(34)

4./4 = {(u, u, w, z)} (12)(3)(4)

4./5 = {(u, v, w,w)} (1)(2)(34)

4= = {(u, v, w, z)} (1)(2)(3)(4)

The above seven partitions form a subset of the partition lattice of four elements. The partition

lattice of four elements has the following structure:

Balanced equivalence relations, which are found in the above network, are shaded in the following

partition lattice of four elements.
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At the top level, there is only one trivial partition (1234). The second level (L2) contains

seven non-trivial partitions. There are six non-trivial partitions at the third level (L3). Finally

the bottom level has only one trivial partition (1)(2)(3)(4).

Now, using a refinement relation, we order the balanced equivalence relations as follows:

Bottom — L3 L3 — L2 L2 — Top

(1)(234) ≺ (1234)

(2)(134) ≺ (1234)

(12)(34) ≺ (1234)

(1)(2)(34) ≺ (1)(234)

(1)(2)(34) ≺ (2)(134)

(1)(2)(34) ≺ (12)(34)

(12)(3)(4) ≺ (12)(34)

(1)(2)(3)(4) ≺ (12)(3)(4)

(1)(2)(3)(4) ≺ (1)(2)(34)

The following diagram shows the lattice of balanced equivalence relations of the given

network using the above covering relations:

3

Hence a lattice of balanced equivalence relations can be seen as an intersection of invariant

subspaces with all possible balanced polydiagonals. In Appendix A, we show the lattice of

balanced equivalence relations for all 38 three-cell regular homogeneous networks and 416 four-

cell regular homogeneous networks.

4.4 Conclusions

When a fully synchronised network loses coherence, we expect it to break up into multiple clusters

of synchronised sub-networks. All possible balanced equivalence relations for a given regular
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homogeneous network, which describe clusters of synchronised sub-networks, were determined

by using projection mappings P./ along polysynchronous directions 4./ using the relation:

P./AP./ = AP./

where A is the adjacency matrix of the given network.

We found that an adjacency matrix forms a block structure if it satisfies the above relation

for each polysynchronous subspace. This block matrix form leads to a computer algorithm to

search for all possible balanced equivalence relations and the corresponding quotient networks,

solely from the adjacency matrix of the network. Some authors actually take this matrix property

as their definition of the balanced equivalence relation (e.g. Aguiar et al. (2008)).

Using the refinement relation, we constructed a lattice of balanced equivalence relations

for all three and four-cell regular homogeneous networks of valency 2. These lattices are used

for a bifurcation analysis which will be discussed in Chapter 7 and 8.

Even though the number of networks increases with valency, the number of possible

distinct lattice structures is the same. This raises a question: How does it change if we allow

different arrow types? However, we leave it as future work.
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Chapter 5

Codimension-one Bifurcation of

Homogeneous Networks

5.1 Introduction

We study local bifurcation from a fully synchronous equilibrium of an admissible ODE for an

n-cell regular homogeneous coupled cell network. Without loss of generality we may assume that

this equilibrium is at the origin for all values of the bifurcation parameter in some interval. When

the Jacobian of the system crosses the imaginary axis with nonzero speed, there are two types

of codimension-one steady-state bifurcation. One is synchrony-preserving (i.e., the eigenspace is

in the fully synchronous direction); the other is synchrony-breaking (i.e., the eigenspace is not

in the fully synchronous direction). We consider how codimension-one steady-state synchrony-

breaking bifurcations occur from the fully synchronous state. Generically, transcritical and

pitchfork bifurcations may occur and conditions for their existence are derived by Liapunov-

Schmidt reduction, including nonlinear terms.

We use the Liapunov-Schmidt reduction method to reduce the original system of n equa-

tions to a single reduced equation. We compute the derivatives of the reduced equation, ex-

pressing them in terms of the derivatives of the original system. Since these derivatives of the

reduced system describe the geometry of steady states, we can determine generic conditions for

existence, and the types of bifurcating branches.

We first review the basics of bifurcation theory and derive nondegeneracy conditions

for generic codimension-one bifurcations. Then we compute these nondegeneracy conditions by

Liapunov-Schmidt reduction.
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5.2 Bifurcation Theory

5.2.1 Flows

We start with a system of ordinary differential equations

dx
dt

= F (x, µ), x ∈ Rn, µ ∈ Rm (5.1)

where t ∈ R is time, x ∈ Rn, and µ ∈ Rm is a system of parameters.

Solutions of the system define a parameterised family of flows φµ(x, t) in phase space

passing through xµ(0) such that xµ(t) = φµ(xµ(0), t), where xµ(0) is the family of initial values

at t = 0 depending on µ, i.e., φµ(xµ(0), 0) = xµ(0).

The collective representation of these flows for all points in phase space comprises the

phase portrait. This portrait provides a global qualitative picture of the dynamics.

There are some flows which play a central role in the qualitative study of differential

equations, as well as in applications.

A steady state (or fixed point or stationary point) is a point (x, µ) = (x∗, µ∗) such

that
dx
dt

= F (x∗, µ∗) = 0

Note that given a steady state can always be moved to the origin (0,0) by a change of coordinates.

A point (x, µ) is periodic with period T if and only if φµ(x, t + T ) = φµ(x, t) for all t

and φµ(x, t + s) 6= φµ(x, t) for all 0 < s < T . The trajectory starting at (x, µ) at time t first

returns after an additional time T . The closed curve

C = {y|y = φµ(x, t), 0 ≤ t < T}

is a periodic orbit, and consists of the trajectory joining the periodic point (x, µ) back to itself

in phase space.

5.2.2 Stability of Steady States

If a system of differential equations has steady states, we can consider the stability of those

steady states. Roughly speaking, a steady state x∗ is stable if all solutions near µ stay nearby.

Stability of a steady state µ can be analysed by linearising the system around the steady state:

Linear Theory: Perturb a steady state x∗ so that x = x∗ + η(t), with 0 < |η| � 1:

dη

dt
= F (x∗ + η, µ)

= F (x∗, µ) + DF (x∗, µ) · η + O(|η|2)
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where DF represents the n× n square matrix with elements

(DF )ij =
∂Fi

∂xj
i, j = 1, . . . , n (5.2)

and O(|η|2) indicates higher-order terms that are at least quadratic in the components of η.

Since the constant term vanishes at µ = µ∗ and near x∗ we study the linearised system

dη

dt
= DF (x∗, µ∗) · η (5.3)

Since (x∗, µ∗) is a steady state, DF (x∗, µ∗) is a matrix with constant entries, and the

solutions of Equation (5.3) through the point η0 ∈ Rn of t = 0 can be written as

η(t) = eDF (x∗,µ∗)tη0 (5.4)

Thus, η(t) is asymptotically stable if all eigenvalues of DF (x∗, µ∗) have negative real

parts. Since this solution describes the evolution near (x∗, µ∗), the following theorem shows the

stability of a steady state (x∗, µ∗).

Theorem 5.1. Suppose all of the eigenvalues of DF (x∗, µ∗) have negative real parts. the steady

state (x, µ) = (x∗, µ∗) of the nonlinear vector field (5.1) is asymptotically stable.

Proof. See Wiggins (1990).

5.2.3 Hyperbolic Steady States

There is a steady state of a nonlinear vector field which is stable in the linear approximation,

but is actually unstable. Hence, linearly stable solutions may be nonlinearly unstable. However,

if the eigenvalues of the associated linear vector field have nonzero real parts, then the flow

structure near a steady state of the nonlinear vector field is essentially the same as that of the

linear vector field. Such steady states are called hyperbolic steady states.

Definition 5.1. Let (x, µ) = (x∗, µ∗) be a steady state of dx
dt = F (x, µ) x ∈ Rn, µ ∈ Rm. Then

(x∗, µ∗) is called a hyperbolic steady state if no eigenvalue of DF (x∗, µ∗) has zero real part.

Some steady states have the following terminology:

• If all of the eigenvalues of DF (x∗, µ∗) have negative real parts, then the hyperbolic steady

state is called a stable node or sink, and if all of the eigenvalues have positive real parts,

then the hyperbolic steady state is called an unstable node or source.

• If some, but not all, of the eigenvalues have positive real parts and the rest of the eigen-

values have negative real parts, then the hyperbolic steady state is called a saddle.

103



• If the eigenvalues are purely imaginary and nonzero, then the steady state is called a

centre. It is not hyperbolic.

If the steady state (x∗, µ∗) is hyperbolic, the stability of (x∗, µ∗) is determined by the

equation (5.3). Furthermore, a hyperbolic steady state persists under small perturbations of the

governing differential equation. That is, if the governing equation is changed slightly to

dx
dt

= F (x, µ) + εP (x, µ), x ∈ Rn, µ ∈ Rm

where P (x, µ) is a smooth vector field and 0 < ε� 1 is sufficiently small, then for each hyperbolic

steady state of the original equation, there is a hyperbolic steady state of the perturbed equation

that lies very close to the unperturbed steady state in phase space and has the same stability

type. However, the stability type of a nonhyperbolic, i.e., when DF (x∗, µ∗) has an eigenvalue

on the imaginary axis, steady state cannot be analysed in the same way as that of a hyperbolic

steady state.

5.2.4 Nonhyperbolic Steady States

If some parameters of the system are varied, the phase portrait may deform slightly without

altering its qualitative features. Alternatively, sometimes the dynamics may be modified signif-

icantly, producing a qualitative change in the phase portrait. Small changes to the parameter

values are equivalent to making a small perturbation to the governing ordinary differential equa-

tion, and hyperbolic steady states persist under those circumstances. Therefore local changes

in the number or stability-type of steady states can only happen when those steady states are

not hyperbolic. In this case, for µ very close to µ∗, different behaviour can occur.

Bifurcation theory studies these qualitative changes in the phase portrait, which typically

includes the appearance or disappearance of equilibria and periodic orbits, change of stability

properties of equilibria and periodic orbits, or more complicated features such as strange attrac-

tors.

The parameters that lead to these changes are called bifurcation parameters and the

point in parameter space at which the changes occur is called the bifurcation point. Local

bifurcation theory is concerned with changes in the phase portrait in the neighbourhood of a

single point. By contrast, on global bifurcations, qualitative changes in the phase portrait

occur that are not captured by looking near a single point. Here we concentrate on local

bifurcations.

The codimension of a bifurcation is the difference between the dimension of the bifur-

cation parameter space and the dimension of the object (e.g., surface, line or point) that gives
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the location of the bifurcation in that space. Alternatively, we can regard the codimension as

the number of bifurcation parameters that we need to vary in order for the bifurcation to arise

typically. Bifurcations that are typical in systems depending on a single parameter are referred

to as codimension-one bifurcations. More generally, a codimension-n bifurcation is one that

can occur robustly in systems with n parameters, but not in systems with n− 1 parameters.

5.2.5 Codimension-one Steady-state Bifurcations

For codimension-one bifurcations, we consider the following system of ODEs:

dx
dt

= F (x, µ), x ∈ Rn, µ ∈ R.

A local bifurcation at (x, µ) = (x∗, µ∗) will occur when an eigenvalue of the Jacobian matrix

Jµ∗ = DF (x∗, µ∗)

crosses the imaginary axis with nonzero speed as parameters are varied. When Jµ∗ = DF (x∗, µ∗)

has real coefficients, either real eigenvalues or complex conjugate pairs of eigenvalues cross this

axis (often called critical eigenvalues). Hence, when a single parameter is involved, there are

two cases:

• Steady-state bifurcation: Jµ∗ has a zero eigenvalue.

• Hopf bifurcation: Jµ∗ has a complex conjugate pair of eigenvalues ±iω, where 0 6= ω ∈ R

We consider steady-state bifurcations that correspond to a real eigenvalue passing through zero,

using the one-dimensional system

ẋ = f(x, µ), x ∈ R, µ ∈ R (5.5)

We consider the case where the bifurcation occurs at µ = 0. When there is a nonhyperbolic

steady state at µ = 0, Equation (5.5) must satisfy

f(0, 0) = 0 (5.6)
∂f

∂x
(0, 0) = 0 (5.7)

Equation (5.6) is simply the steady state condition and Equation (5.7) is the zero eigenvalue

condition. We remark that the system (5.5) is given by a smooth function.

There are three basic types of steady state orbit structures near the bifurcation point;

Saddle-Node, Transcritical, and Pitchfork bifurcation.
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Saddle-Node Bifurcation: Consider the vector field

ẋ = f(x, µ) = µ− x2, x ∈ R, µ ∈ R (5.8)

It is easy to verify that

f(0, 0) = 0 (5.9)

and
∂f

∂x
(0, 0) = 0 (5.10)

The set of all steady states of Equation (5.8) is given by

µ− x2 = 0 ⇒ x = ±√µ (5.11)

This represents a parabola in the µ− x plane as shown in Figure 5.1, which is referred to as a

bifurcation diagram. For µ > 0, Equation (5.8) has two steady states, and no steady states

for µ < 0. The Jacobian at the steady states x = ±√µ is

Df |x=±√µ = −2x|x=±√µ = ∓2
√

µ

Therefore, the steady state x =
√

µ is stable and x = −√µ is unstable. This particular type of

bifurcation (i.e., where on one side of a parameter value there are no fixed points and on the

other there are two steady states) is referred to as a saddle-node bifurcation.

Figure 5.1: Saddle-node bifurcation diagram.

A Saddle-node is the generic codimension-one steady-state bifurcation. We would expect

to find saddle-node bifurcation when no special conditions have been imposed on the system.

The bifurcation problem

ẋ = f(x, µ)
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is generic for its class, if for sufficiently small ε > 0 the perturbed problem

ẋ = f(x, µ) + εv(x, µ)

has the same type of bifurcation at a nearby value of µ for all perturbations v(x, µ).

Consider a smooth perturbation to the system (5.8)

ẋ = µ− x2 + εv(x, µ)

Taylor expansion at (x, µ) = (0, 0) gives

ẋ = µ(1 + εv1 + εv2µ) + ε(v3 + v4µ)x− (1 + εv5)x2 + · · ·

up to quadratic order in x and µ, for some constant vi.

Steady states are

x =
1

2(1 + εv5)

{
ε(v3 + v4µ)±

√
ε2(v3 + v4µ)2 + 4µ(1 + εv5)(1 + εv1 + εv2µ)

}
and exist only for

µ > µc ≡ −
ε2v2

3

4
+ O(ε3)

There is a saddle-node bifurcation at µ = µc ∼ ε2, close to µ = 0. Thus a saddle-node is generic

for one-dimensional steady-state bifurcation problems.

Transcritical Bifurcation: The simplest codimension-one steady-state bifurcation, under the

condition that the steady state that persists for all values of the bifurcation parameter; that is

f(0, µ) = 0, ∀µ ∈ R

is the transcritical bifurcation.

Consider the vector field

ẋ = f(x, µ) = µx− x2, x ∈ R, µ ∈ R (5.12)

It is easy to verify that

f(0, 0) = 0 (5.13)

and
∂f

∂x
(0, 0) = 0 (5.14)

Moreover, the steady states of (5.12) are given by

µx− x2 = 0 ⇒ x = 0 and x = µ, ∀µ ∈ R (5.15)

and are plotted in Figure 5.2.
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The Jacobian at x = 0 and x = µ is

Df |x=0 = µ− 2x|x=0 = µ

and

Df |x=µ = µ− 2x|x=µ = −µ

Therefore, x = 0 is stable for µ < 0 and unstable for µ > 0. However, x = µ is unstable for

µ < 0 and stable for µ > 0. Hence at the bifurcation point µ = 0, the stability of the two steady

states is exchanged.

Figure 5.2: Transcritical bifurcation diagram.

The additional constraint on f(x, µ) for a transcritical bifurcation, beyond that for a

saddle-node, is

f(0, µ) = 0, ∀µ ∈ R (5.16)

which forces x = 0 to be a steady state of Equation (5.16) for all µ. In this case, transcritical

bifurcations are generic. On the other hand, they are not generic within the wider class of

steady-state bifurcation problems in one dimension. Consider the following perturbed equation

in linear order that does not satisfy (5.16)

ẋ = εv1 + µx− x2 (5.17)

Steady states are

x =
1
2
(µ±

√
µ2 + 4εv1) (5.18)

as long as µ2 + 4εv1 > 0. If v1 ≥ 0 there are steady states for all values of µ, and there is no

bifurcation. On the other hand if v1 < 0 steady states only exist in the regions |µ| > 2
√
−εv1,

and the transcritical bifurcation breaks up into two saddle-nodes. It is no surprise that if we
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see bifurcations in the perturbed case they are saddle-nodes, because these are generic when the

constraint f(0, µ) = 0 for all µ is broken.

Pitchfork Bifurcation: If we require both that x = 0 is a steady state for all values of the

bifurcation parameter, and also that the system is symmetric under the transformation x→ −x,

then we obtain a pitchfork bifurcation. There are two possible forms. The first case is known

as subcritical pitchfork bifurcation shown in Figure 5.3:

ẋ = µx + x3, x ∈ R, µ ∈ R (5.19)

The steady states are x = 0 for all µ and x = ±
√
−µ for µ < 0. The Jacobian at x = 0 is

Df |x=0 = µ + 3x2|x=0 = µ

so x = 0 is stable for µ < 0 and unstable for µ > 0.

Similarly, the Jacobian at x = ±
√
−µ is

Df |x=±
√
−µ = µ + 3x2|x=±

√
−µ = −2µ

therefore, these steady states x = ±
√
−µ are unstable for µ < 0 (and does not exist for µ > 0).

Figure 5.3: Subcritical bifurcation diagram.

The second case is known as supercritical pitchfork bifurcation shown in Figure 5.4;

ẋ = µx− x3, x ∈ R, µ ∈ R (5.20)

The steady states are x = 0 for all µ and x = ±√µ for µ > 0. The Jacobian at x = 0 is

Df |x=0 = µ− 3x2|x=0 = µ

so x = 0 is stable for µ < 0 and unstable for µ > 0.
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Similarly, the Jacobian at x = ±√µ is

Df |x=±√µ = µ− 3x2|x=±√µ = −2µ

therefore, these steady states x = ±√µ are stable for µ > 0 (and does not exist for µ < 0).

Figure 5.4: Supercritical bifurcation diagram.

In both cases there is a bifurcation at µ = 0 where the zero steady state loses stability.

Pitchfork bifurcations are generic for the class of one-dimensional steady-state bifurcation

problems satisfying

f(0, µ) = 0 (5.21)

f(−x, µ) = −f(x, µ) (5.22)

in other words those that not only have a steady state x = 0 for all µ, but are also symmetric

under the reflection symmetry x → −x. The reflection symmetry requires f to be an odd

function in x. Pitchforks are not generic in the wider class of one-dimensional steady state

bifurcation problems that satisfy only f(0, µ) = 0. Without loss of generality, we perturb a

supercritical pitchfork bifurcation problem such as:

ẋ = µx + εv1x
2 − x3 + · · · (5.23)

where v1 is a constant. The steady states are:

x = 0, and x =
1
2
(εv1 ±

√
(εv1)2 + 4µ)

The nonzero steady states exist only for

µ > −(εv1)2

4
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and there is a saddle-node bifurcation at µ = µc ≡ − (εv1)2

4 where this pair of steady states is

formed. There is also a transcritical bifurcation at µ = 0. As a result of the perturbation,

the bifurcation problem (5.23) breaks the x → −x symmetry, but it still lies in the class

where f(0, µ) = 0, for which transcritical bifurcations are generic. It is natural that there is a

transcritical, rather than a pitchfork bifurcation at the origin in the perturbed case.

In all three bifurcation types,

f(0, 0) = 0 (5.24)
∂f

∂x
(0, 0) = 0 (5.25)

However, the orbit structure of steady states near µ = 0 is different in all three cases. Hence,

knowing that a steady state has a zero eigenvalue for µ = 0 is not sufficient to determine the

orbit structure of steady states for µ near zero.

Now we want to derive conditions under which a general one-parameter family of one-

dimensional vector fields will undergo the above three bifurcation types. These conditions in-

volve derivatives of the vector field evaluated at the bifurcation point, and are obtained by

consideration of the geometry of the curve of fixed points in the (µ, x)-plane in a neighbour-

hood of the bifurcation point. In the following, we consider a general one-parameter family of

one-dimensional vector fields

ẋ = f(x, µ) x ∈ R, µ ∈ R (5.26)

Suppose Equation (5.26) has a fixed point at (x, µ) = (0, 0), i.e.,

f(0, 0) = 0 (5.27)

Further, suppose that the fixed point is not hyperbolic, i.e.,

∂f

∂x
(0, 0) = 0 (5.28)

We derive additional general conditions for Saddle-Node, Transcritical, and Pitchfork bifurca-

tions followed by the technique of Liapunov-Schmidt reduction.

5.2.6 Nondegeneracy Conditions for Saddle-Node Bifurcation

In the saddle-node bifurcation, a unique curve of steady states, parameterised by x, passes

through (x, µ) = (0, 0). We denote the curve of steady states by µ(x). The curve of steady

states satisfies two properties.

1. It is tangent to the line µ = 0 at x = 0, i.e.,

dµ

dx
(0) = 0
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2. It lies entirely to one side of µ = 0. Locally, this will be satisfied if

d2µ

dx2
(0) 6= 0

Now we want to derive conditions in terms of derivatives of f evaluated at (x, µ) = (0, 0)

so that

dµ

dx
(0) = 0 (5.29)

d2µ

dx2
(0) 6= 0 (5.30)

We can derive expressions for (5.29) and (5.30) in terms of derivatives of f at the

bifurcation point by implicitly differentiating f along the curve of fixed point (see Wiggins

(1990) for the details). In order for (5.26) to undergo a saddle-node bifurcation we must have

f(0, 0) = 0 (5.31)
∂f

∂x
(0, 0) = 0 (5.32)

∂f

∂µ
(0, 0) 6= 0 (5.33)

∂2f

∂x2
(0, 0) 6= 0 (5.34)

The first two conditions ensure a nonhyperbolic fixed point. Equation (5.33) implies that a

unique curve of fixed points passes through (x, µ) = (0, 0), and (5.34) implies that the curve lies

locally on one side of µ = 0.

The Taylor expansion at (x, µ) = (0, 0) of the vector field (5.26) is given as follows

f(x, µ) = f(0, 0) + fx(0, 0)x + fµ(0, 0)µ +
1
2
(fxx(0, 0)x2 + 2fxµ(0, 0)xµ + fµµ(0, 0)µ2)

+
1
6
(fxxx(0, 0)x3 + 3fxxµ(0, 0)x2µ + 3fxµµ(0, 0)xµ2 + fµµµ(0, 0)µ3) + O(4)

where fu(0, 0) means the first partial derivative with respect to the variable u evaluated at

(x, µ) = (0, 0).

The dynamics of the above equation near (x, µ) = (0, 0) satisfying the conditions (5.31),

(5.32), (5.33) and (5.34) are qualitatively the same as one of the following vector fields

ẋ = µ± ax2 (5.35)

where a = 1
2fxx(0, 0) is a constant.

Hence, (5.35) can be viewed as the normal form for saddle-node bifurcations.
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5.2.7 Nondegeneracy Conditions for Transcritical Bifurcation

We again use the implicit function theorem to characterise the geometry of the curves of fixed

points passing through the bifurcation point. For transcritical bifurcation, the orbit structure

near the bifurcation point is characterised as follows.

1. Two curves of fixed points pass through (x, µ) = (0, 0).

2. Both curves of fixed points exist on both sides of µ = 0.

3. The stability along each curve of fixed points changes on passing through µ = 0.

Using these three points as a guide, we derive general conditions. We summarise the results as

follows. In order for (5.26) to undergo a transcritical bifurcation we must have

f(0, 0) = 0 (5.36)
∂f

∂x
(0, 0) = 0 (5.37)

∂f

∂µ
(0, 0) = 0 (5.38)

∂2f

∂x∂µ
(0, 0) 6= 0 (5.39)

∂2f

∂x2
(0, 0) 6= 0 (5.40)

The first two conditions ensure a nonhyperbolic fixed point.

Thus, (5.36), (5.37), (5.38), (5.39) and (5.40) show that the orbit structure near

(x, µ) = (0, 0) is qualitatively the same as the orbit structure near (x, µ) = (0, 0) of

ẋ = µx± ax2 (5.41)

where a = 1
2fxx(0, 0) is a constant.

Equation (5.41) can be viewed as a normal form for the transcritical bifurcation.

5.2.8 Nondegeneracy Conditions for Pitchfork Bifurcation

The geometry of the curves of steady states associated with the pitchfork bifurcation has the

following characteristics.

1. Two curves of steady states pass through (x, µ) = (0, 0), one given by x = 0, the other by

µ = x2.

2. The curve x = 0 exists on both sides of µ = 0; the curve µ = x2 exists on one side of

µ = 0.
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3. The steady states on the curve x = 0 have different stability types on opposite sides of

µ = 0. The steady states on µ = x2 all have the same stability type.

In order for (5.26) to undergo a pitchfork bifurcation at (x, µ) = (0, 0), it is sufficient to have

the following conditions which satisfy the above properties of the steady state curve:

f(0, 0) = 0 (5.42)
∂f

∂x
(0, 0) = 0 (5.43)

∂f

∂µ
(0, 0) = 0 (5.44)

∂2f

∂x∂µ
(0, 0) 6= 0 (5.45)

∂2f

∂x2
(0, 0) = 0 (5.46)

∂3f

∂x3
(0, 0) 6= 0 (5.47)

We conclude by noting that (5.42), (5.43), (5.44), (5.45) (5.46) and (5.47) imply that

the orbit structure of steady states near (x, µ) = (0, 0) is qualitatively the same as the orbit

structure of steady states near (x, µ) = (0, 0) of the vector field

ẋ = µx± ax3 (5.48)

where a = 1
6 fxxx(0, 0) is a constant.

Thus, (5.48) can be viewed as a normal form for the pitchfork bifurcation.

5.3 Liapunov-Schmidt Reduction

The type of a bifurcation can be obtained by using the Liapunov-Schmidt reduction procedure.

This procedure determines a mapping from the kernel of the linearisation of the original mapping

into the complement of the image of the linearised mapping. The solutions along the new branch

are tangent to the kernel.

The following derivation is from Golubitsky and Schaeffer (1990) pages 25-35. Consider

a system of n equations

fi(x, µ) = 0, i = 1, . . . , n (5.49)

where fi : Rn×R→ R is a smooth mapping. The vector x = (x1, . . . , xn) is the unknown to be

solved for in Equation (5.49), and µ is a parameter.

Let F = (f1, . . . , fn) such that F : Rn × R → Rn. We assume that F (0, 0) = 0 and we

attempt to describe the solution of this system locally near the origin.
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Let J = (dF )(0,0) be the n × n Jacobian matrix ( ∂fi

∂xj
(0, 0)). If rank(dF )(0,0) = n, the

implicit function theorem implies that (5.49) may be solved uniquely for x as a function of

µ. In other words, this is a nondegenerate case where no bifurcation occurs. We consider the

minimally degenerate case, where

rank(dF )(0,0) = n− 1 (5.50)

We show that under the assumption (5.50) , solutions of the full system (5.49) may locally

be put in one-to-one correspondence with solutions of a single equation

g(y, µ) = 0 (5.51)

where g : R × R → R and g is the restriction of F onto ker(J) about (0, 0). This is the

Liapunov-Schmidt reduction for Equation (5.49).

We choose vector space complements M and N to ker(J) and range(J), respectively,

obtaining the decompositions:

Rn = ker(J)⊕M (5.52)

Rn = N ⊕ range(J) (5.53)

From the dimension theorem,

dim(range(J)) = dim(M) = n− 1

dim(ker(J)) = dim(N) = 1

Let E be the projection map of Rn onto range(J), with complementary projection map

I − E, defined as follows:

E : Rn → range(J) with ker(E) = N

(I − E) : Rn → N with ker(I − E) = range(J)

Observe that F (x, µ) = 0 if and only if the components of F in range(J) and in N are

zero:

EF (x, µ) = 0 (5.54)

(I − E)F (x, µ) = 0 (5.55)

To solve these equations, write

x = v + w, v ∈ ker(J),w ∈M
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The implicit function theorem implies that (5.54) is uniquely solvable for w near the

origin. Write this solution as w = W (v, µ); thus W : kerJ × R→M satisfies

EF (v + W (v, µ), µ) ≡ 0, W (0, 0) = 0 (5.56)

Substitute w into (5.55) to obtain the reduced mapping g : kerJ × R→ N , where

g(v, µ) = (I − E)F (v + W (v, µ), µ) (5.57)

Then the zeros of g(v, µ) are in one-to-one correspondence with the zeros of F (x, µ), being given

by

g(v, µ) = 0⇔ F (v + W (v, µ), µ) = 0

since F (v + W (v, µ), µ) is not a member of ker(I −E) = rangeJ and w is uniquely determined

by v.

The reduced function g contains all the qualitative information that we need.

Now we choose arbitrary coordinates on kerJ and N . Let v0 and v∗0 be nonzero vectors

in kerJ and (rangeJ)⊥, respectively. Any v ∈ kerJ may be written uniquely in the form v = xv0

where x ∈ R. Define r : R× R→ R by

r(x, µ) =< v∗0, g(xv0, µ) > (5.58)

where < ·, · > is the inner product. Since g(xv0, µ) ∈ N ,

r(x, µ) = 0⇔ g(xv0, µ) = 0

Thus the zeros of r are also in one-to-one correspondence with solutions of F (x, µ) = 0.

Now, we compute the derivatives of the reduced function r(x, µ) from derivatives of the

original mapping F (x, µ). The derivatives of r can be obtained if we know the derivatives

of the function g. The derivatives of g evaluated at (x, µ) = (0, 0) are computed as follows.

See Golubitsky and Schaeffer (1990) for a detail.

gx = 0

gxx = (I − E)
{
d2F (0, 0)(v0,v0)

}
gxxx = (I − E)

{
3d2F (0, 0)(v0,Wxx(0, 0)) + d3F (0, 0)(v0,v0,v0)

}
gµ = (I − E) {Fµ(0, 0)}

gµx = (I − E)
{
d2F (0, 0)(v0,Wµ(0, 0)) + dFµ(0, 0)(v0)

}
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Moreover at (x, µ) = (0, 0)

Wxx(0, 0) = −J−1Ed2F (0, 0)(v0,v0), (5.59)

Wµ(0, 0) = −J−1EFµ(0, 0). (5.60)

where J−1 : range(J)→M denote the inverse of the linear map J |M .

We now recall that 〈v∗0, (I − E)y〉 = 〈v∗0,y〉 since v∗0 ∈ (rangeJ)⊥ and for any vector

y ∈ Rn, Ey ∈ range(J), so 〈v∗0, Ey〉 = 0. Hence,

〈v∗0, (I − E)y〉 = 〈v∗0, Iy − Ey〉 = 〈v∗0,y〉

Therefore, the resulting formulas are:

rx = 0

rxx = 〈v∗0, d2F (0, 0)(v0,v0)〉

rxxx = 〈v∗0, d3F (0, 0)(v0,v0,v0)− 3d2F (0, 0)(v0, J
−1Ed2F (0, 0)(v0,v0))〉

rµ = 〈v∗0, Fµ(0, 0)〉

rµx = 〈v∗0, dFµ(0, 0)(v0)− d2F (0, 0)(v0, J
−1EFµ(0, 0))〉

Finally, since x = 0 is a solution of the equation for all value of µ, i.e., F (0, µ) ≡ 0,

Fµ(0, 0) = 0, so Wµ(0, 0) = 0. Hence, we can simplify the above formulas for synchrony-breaking

codimension-one bifurcation of homogeneous networks as follows:

rx = 0 (5.61)

rxx = 〈v∗0, d2F (0, 0)(v0,v0)〉 (5.62)

rxxx = 〈v∗0, d3F (0, 0)(v0,v0,v0)− 3d2F (0, 0)(v0, J
−1Ed2F (0, 0)(v0,v0))〉 (5.63)

rµ = 0 (5.64)

rµx = 〈v∗0, dFµ(0, 0)(v0)〉 (5.65)

Proposition 5.1. Let G be a regular homogeneous coupled cell network with one-dimensional

internal dynamics for each cell. Let A be the n×n adjacency matrix associated with G. Assume

that A has simple eigenvalues. Let

λ : simple real eigenvalue of A

v : corresponding eigenvector

u : corresponding eigenvector of AT
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Then

〈v∗0, d2F (0, 0)(v0,v0)〉 = 〈u,v[2]〉, (5.66)

〈v∗0, d3F (0, 0)(v0,v0,v0)〉 = 〈u,v[3]〉, (5.67)

〈v∗0, d2F (v0, J
−1Ed2F (0, 0)(v0,v0))〉 = 〈u,v ∗Av[2]〉, (5.68)

where v[2] = (v2
1, v

2
2, . . . , v

2
n), v[3] = (v3

1, v
3
2, . . . , v

3
n) and x ∗ y = (x1y1, x2y2, . . . , xnyn).

Hence,

• If 〈u,v[2]〉 6= 0, then there exists a transcritical bifurcation.

• If 〈u,v[2]〉 = 0, then generically the bifurcation is a pitchfork, provided 〈u,v[3]〉 6= 0,

〈u,v ∗Av[2]〉 6= 0, or v ∗ (A− λI)−1v[2] 6= 0.

All three may vanish.

Proof. See Golubitsky and Stewart (2008) (to appear).

5.4 Synchrony-Breaking Bifurcations

5.4.1 Generic Codimension-one Steady-state Bifurcations

We consider synchrony-breaking bifurcations from a fully synchronous equilibrium in a regular

homogeneous coupled cell system; that is a coupled cell network with only one type of cell and

one kind of arrow and all cells have the same number of input arrows.

Consider an n-cell regular homogeneous coupled cell network G and denote the total

phase space by P = (Rk)n where Rk is the phase space of each cell. For simplicity assume that

the dimension k is 1. As noted in Leite and Golubitsky (2006), this assumption will not change

the classification of codimension one bifurcations.

Let

Ẋ = F (X, µ) (5.69)

where X ∈ Rn, µ ∈ R is a real bifurcation parameter and F : Rn × R → Rn is an admissible

vector field for G, where all coordinates of F are defined by the same function f . The diagonal

subspace

4 = {(x, x, . . . , x) : x ∈ R}

is flow-invariant because F (4) ⊆ 4 for all F . Moreover, the class of G-admissible vector fields

restricted to 4 is the set of all vector fields on 4. Thus, it is reasonable to assume that there
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exists a synchronous equilibrium in 4, which we may assume, after a change of coordinates, is

at the origin. Therefore, we assume

F (0, µ) ≡ 0

for all µ ∈ R. This means that the fully synchronous state exists for all bifurcation parameter

value µ.

We define a function f associated to a regular homogeneous coupled cell network with

valency r as follows:

f(xi, xi1 , . . . , xir) : R× R× · · · × R︸ ︷︷ ︸
r

→ R

for i = 1, . . . , n. The bar in f(xi, xi1 , . . . , xir) indicates that the coupling from these external

cells is symmetric.

Let y ∈ Rn be a perturbation from 0 ∈ 4. Let α = (dxif)|(0,µ) ∈ R be the linearised

internal dynamics and let β = (dxi1
f)|(0,µ) = · · · = (dxir

f)|(0,µ) ∈ R be the linearised coupling.

Let In be n× n identity matrix and A be the adjacency matrix of network G. Then

F (y, µ) = F (0, µ) + (DF )|(0,µ) · y + O(2)

= (αIn + βA) · y + O(2)

Hence

(DF )|(0,µ) = αIn + βA

Every eigenvalue of Jµ = (DF )|(0,µ) has the form α + λβ, where λ is an eigenvalue of

A. For general k ≥ 1, this result is stated in Leite and Golubitsky (2006) as the following

proposition:

Proposition 5.2. Let λi, i = 1, . . . , n be eigenvalues of adjacency matrix A. The eigenvalues

of Jµ are the union of the eigenvalues of the n of k×k matrices Q+λjR, j = 1, . . . , n, including

algebraic multiplicity, where Q is the linearised internal dynamics and R be the linearised cou-

pling. The eigenvectors of Jµ are the vectors u ⊗ w, where u ∈ Ck is an eigenvector of Q and

w ∈ Cn is an eigenvector of A.

Proof. See Leite and Golubitsky (2006).

Furthermore, eigenvalues of an adjacency matrix of a regular homogeneous networks have

the following property:

Proposition 5.3. Let G be an n-cell homogeneous network and A be the associated n × n

adjacency matrix. Then A always has the largest eigenvalue λ0 = r, where r is the valency

of the network and corresponding synchronous eigenvector v0 = (1, · · · , 1)t ∈ Cn×1 and the

spectrum of eigenvalues of A is given by |λ| ≤ r.
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Proof.

Av0 =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
. . . . . .

...

an1 an2 · · · ann




1

1
...

1

 =


a11 + a12 + · · ·+ a1n

a21 + a22 + · · ·+ a2n

...

an1 + an2 + · · ·+ ann

 = r


1

1
...

1


Therefore, r is an eigenvalue of A with the corresponding eigenvector (1, . . . , 1)t ∈ Cn×1.

Next we show that the spectrum of eigenvalues of A is |λ| ≤ r.

Let λ ∈ C be an eigenvalue of A and v ∈ Cn×1 be the corresponding eigenvector. Then

Av = λv (5.70)

k-th component of the equation (5.70) is expressed as:

n∑
j=1

akjvj = λvk

Suppose that each component of v satisfies |vj | ≤ |vk| for ∀j = 1, . . . , n. Then

|λ||vk| = |λvk|

=

∣∣∣∣∣∣
n∑

j=1

akjvj

∣∣∣∣∣∣
≤

n∑
j=1

|akjvj |

=
n∑

j=1

akj |vj |

≤
n∑

j=1

akj |vk|

= r|vk|

Therefore, |λ| ≤ r.

Remark 5.1. This property in Proposition 5.3 is equivalent to a well known property of stochas-

tic matrices.

Define the centre subspace Ec of the Jacobian Jµ = (DF )|(0,µ) such as:

Ec = span{e1, . . . , ec}

where {e1, . . . , ec} are the (generalised) eigenvectors of Jµ corresponding to the eigenvalues of

Jµ having zero real part. By a synchrony-breaking bifurcation, we mean that at the origin
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there is a critical eigenvector in the centre subspace Ec of the Jacobian Jµ = (DF )|(0,µ) that is

not in 4.

Codimension-one bifurcations divide into steady-state (Jµ has a zero eigenvalue) and

Hopf bifurcation (Jµ has purely imaginary eigenvalues). We focus on synchrony-breaking

steady-state bifurcations from a synchronous equilibrium. In our bifurcation analysis we shall

assume that the critical eigenvalues cross the imaginary axis with nonzero speed.

We have seen that, in general dynamical systems, a saddle-node bifurcation is the generic

codimension-one bifurcation. However, because of the assumption F (0, µ) ≡ 0, i.e., (0, 0, . . . , 0)

is a steady state for all µ ∈ R, we exclude the saddle-node bifurcation as a generic codimension-

one synchrony-breaking bifurcation in regular homogeneous networks. By contrast, this assump-

tion F (0, µ) ≡ 0 make a transcritical bifurcation generic. Therefore, we expect transcritical and

pitchfork bifurcations as the generic codimension-one bifurcations for regular homogeneous cou-

pled cell networks. When the Jacobian matrix has simple eigenvalues, we can reduce a system

of n equations F (X, µ) = 0 to a single equation g(x, µ) = 0, where g : R× R→ R, by applying

Liapunov-Schmidt reduction. The existence of transcritical and pitchfork bifurcating branches

can then be shown by computing the derivatives of g(x, µ), as in Subsections 5.2.7 and 5.2.8.

5.4.2 Symmetric coupling constrains the form of the Taylor Expansion

Consider codimension-one bifurcation of a regular homogeneous coupled cell network G with

valency 2, whose associated admissible vector field is defined by the function f(u, v, w, µ). Let

A be the n×n adjacency matrix A of G with its eigenvalues λ0, . . . , λn−1 and the corresponding

eigenvectors v0, . . . ,vn−1, where λ0 = 2 and v0 = (1, . . . , 1).

So far, we have derived general conditions using derivatives of a function evaluated at

the origin (u, v, w, λ) = (0, 0, 0, 0) for the existence of each bifurcation branch. Let λ0, . . . , λn−1

be eigenvalues of an n-cell coupled cell networks, in general, there are at most n− 1 synchrony-

breaking bifurcation points µi, 1 ≤ i ≤ n − 1, which depend on the eigenvalues λ1, . . . , λn−1

of A. Hence when we prove the existence of various types of bifurcation branches, we consider

derivatives of a function evaluated at each bifurcation point.

The O(2) Taylor expansion evaluated at each bifurcation point (u, v, w, µ) = (0, 0, 0, µi)
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is:

f(u, v, w, µ) = f(0, 0, 0, µi) + fu(0, 0, 0, µi)u

+fv(0, 0, 0, µi)v + fw(0, 0, 0, µi)w + fµ(0, 0, 0, µi)(µ− µi)

+
1
2
{
fuu(0, 0, 0, µi)u2 + fvv(0, 0, 0, µi)v2 + fww(0, 0, 0, µi)w2

+fµµ(0, 0, 0, µi)(µ− µi)2
}

+fuv(0, 0, 0, µi)uv + fuw(0, 0, 0, µi)uw + fuµ(0, 0, 0, µi)u(µ− µi)

+fvw(0, 0, 0, µi)vw + fvµ(0, 0, 0, µi)v(µ− µi) + fwµ(0, 0, 0, µi)w(µ− µi) + O(3)

Since f(0, µ) ≡ 0, f(0, 0, 0, µi) = fµ(0, 0, 0, µi) = fµµ(0, 0, 0, µi) = 0. Also some coefficients are

equal because of the symmetry property f(u, v, w, µ) = f(u, w, v, µ). Hence,

f(u, v, w, µ) = fu(0, 0, 0, µi)u + fv(0, 0, 0, µi)(v + w)

+
1
2
fuu(0, 0, 0, µi)u2 +

1
2
fvv(0, 0, 0, µi)(v2 + w2)

+ fuv(0, 0, 0, µi)u(v + w) + fvµ(0, 0, 0, µi)(µ− µi)(v + w)

+ fuµ(0, 0, 0, µi)u(µ− µi) + fvw(0, 0, 0, µi)vw + O(3)

(5.71)

5.5 Conclusions

In regular homogeneous coupled cell systems, we expect generic steady-state synchrony-breaking

bifurcation from a synchronous equilibrium is either transcritical or pitchfork. Liapunov-Schmidt

reduction is applied to show the existence of transcritical and pitchfork bifurcating branches at

simple real eigenvalues in Chapter 6 and Example 7.5 in Chapter 7.

Golubitsky and Stewart (2008) obtain necessary and sufficient conditions for generic

synchrony-breaking steady-state bifurcation at a simple real eigenvalue to be transcritical or

pitchfork. These conditions are expressed in terms of algebraic properties of the critical eigen-

vectors of the adjacency matrix of the network and its transpose. However, they show that these

conditions are not always satisfied and there exist exceptional networks (one of them is 4-cell

network of valency 736) for which generic steady-state bifurcation at a simple eigenvalue is more

degenerate than transcritical or pitchfork. They speculate that this phenomenon seems to be a

consequence of number-theoretic and combinatorial properties of the adjacency matrix, with a

given valency, and its eigenvectors, rather than network topology as such.
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Chapter 6

Homogeneous Two-cell Networks:

Steady-state Bifurcation

6.1 Introduction

For a bifurcation analysis of n-cell regular homogeneous coupled cell networks, we consider the

bifurcation behaviour of k-cell regular homogeneous coupled cell networks inductively, where

1 < k < n.

There are five two-cell regular homogeneous coupled cell networks with valency 2 as

shown in Figure 3.1 , Chapter 3. For each two-cell regular homogeneous network, we consider

Ẋ = F (X, µ)

where F : R2 × R→ R2 is an admissible vector field of two-cell valency 2 regular homogeneous

coupled cell networks defined by the same function f : R3 ×R→ R.

We assume that F (0, µ) ≡ 0 for all bifurcation parameter µ and prove the existence of

various synchrony-breaking bifurcating branches from the trivial solution X = 0, using either

the Implicit Function Theorem or Liapunov-Schmidt reduction.

In these five networks, the conditions for the critical eigenvalues crossing the imaginary

axis with nonzero speed are all satisfied.

6.2 Network #1

Consider 2-cell network #1 with valency 2, whose adjacency matrix, its eigenvalues, and the

corresponding eigenvectors are shown in Table 6.1.

The admissible dynamical systems for this network have the form:

ẋ1 = f(x1, x2, x2, µ)

ẋ2 = f(x2, x2, x2, µ)
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Network #1 Adjacency matrix Eigenvalues Eigenvectors

A1 =
(

0 2
0 2

)
λ0 = 2 (1, 1)
λ1 = 0 (1, 0)

Table 6.1: Two-cell network #1

Since we are interested in finding non-trivial bifurcation branches, i.e., the eigenvector

corresponding to a new branch is not (1, 1), we want to obtain the condition that the correspond-

ing eigenvalue becomes zero. By Proposition 5.2, the critical eigenvalue for synchrony-breaking

is:

fu(0, µ1) · 1 + fv(0, µ1) · λ1 = fu(0, µ1)

where µ1 is a bifurcation point which depends on the eigenvalue λ1.

Therefore, when this critical eigenvalue fu(0, µ1) = 0 with fuµ(0, µ1) 6= 0, a codimension-

one steady state bifurcation occurs.

Theorem 6.1. Assume that the coupled cell system defined by f(u, v, w, µ) associated to network

#1 satisfies the following conditions:

fu(0, µ1) = 0, fv(0, µ1) 6= 0, fµu(0, µ1) 6= 0, fuu(0, µ1) 6= 0.

Then there is one transcritical branch bifurcating from the trivial solution (x1, x2, µ) = (0, 0, µ1)

of the form

(x1, x2) = (X1(µ), 0)

where X1(µ1) = 0 and X ′
1(µ1) 6= 0.

Proof. Using (5.71), the O(2) Taylor expansion for four variables function evaluated at

(u, v, w, µ) = (0, 0, 0, µ1) is given by:

f(u, v, w, µ) ≈ fu(0, µ1)u + fv(0, µ1)(v + w)

+fuv(0, µ1)u(v + w) + fvw(0, µ1)vw + fvµ(0, µ1)(µ− µ1)(v + w)

+fµu(0, µ1)(µ− µ1)u +
1
2
(fuu(0, µ1)u2 + fvv(0, µ1)(v2 + w2)) + O(3)

where u is internal variable, v and w is external signal from neighbouring cells, and µ is a

bifurcation parameter.
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Since fu(0, µ1) = 0, the equation for cell 2 is:

f(x2, x2, x2, µ) ≈ 2fv(0, µ1)x2

+2fuv(0, µ1)x2
2 + fvw(0, µ1)x2

2 + 2fvµ(0, µ1)(µ− µ1)x2

+fµu(0, µ1)(µ− µ1)x2 +
1
2
(fuu(0, µ1)x2

2 + 2fvv(0, µ1)x2
2) + O(3)

Since fv(0, µ1) 6= 0, the first derivative for the function is

f ′(0, µ1) = 2fv(0, µ1) 6= 0

Therefore, by the Implicit Function Theorem, x2 = 0 is the unique solution for the cell 2

equation.

Substituting x2 = 0 into the cell 1 equation gives

f(x1, 0, 0, µ) = 0

Using the O(2) Taylor expansion for this equation,

f(x1, 0, 0, µ) ≈ fµu(0, µ1)(µ− µ1)x1 +
1
2
fuu(0, µ1)x2

1 + O(3)

Therefore, the steady states are given by the equation f(x1, 0, 0, µ) = 0, that is,

x1(fµu(0, µ1)(µ− µ1) +
1
2
fuu(0, µ1)x1) = 0

Since fuu(0, µ1) 6= 0 and fµu(0, µ1) 6= 0, we have x1 = 0 or x1 = −2fµu(0,µ1)(µ−µ1)
fuu(0,µ1) .

When x1 = 0, this gives the trivial solution (x1, x2) = (0, 0).

We set X1(µ) = −2fµu(0,µ1)(µ−µ1)
fuu(0,µ1) , then X1(µ1) = 0 and X ′

1(µ1) = −2fµu(0,µ1)
fuu(0,µ1) 6= 0.

Therefore, the non-trivial branch that bifurcates from the trivial branch is transcritical.

Alternatively, we can apply Liapunov-Schmidt reduction to the system

F (X, µ) = (F1(X, µ), F2(X, µ)) = 0

where F1(X, µ) = f(x1, x2, x2, µ) and F2(X, µ) = f(x2, x2, x2, µ).

The reduced equation obtained by applying Liapunov-Schmidt reduction has the form

K(y, µ) = 0

where y ∈ R, K : R × R → R is smooth, Ky(0, µ1) = 0, Kµ(0, µ1) = 0 and K(0, µ1) = 0. We

calculate each derivative of this reduced equation to determine which bifurcation occurs.

The Jacobian J is given by:

J = fu(0, µ1)

 1 0

0 1

+ fv(0, µ1)

 0 2

0 2

 = fv(0, µ1)

 0 2

0 2


where fv(0, µ1) 6= 0.
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• Obtaining v0 ∈ kerJ and v∗0 ∈ (rangeJ)⊥:

Let (x, y) be any vector in R2.

fv(0, µ1)

 0 2

0 2

 x

y

 = fv(0, µ1)

 2y

2y

 =

 0

0

 ⇒

 x

y

 =

 1

0


where fv(0, µ1) 6= 0.

Therefore, v0 = (1, 0). Since (1, 1) ∈ rangeJ , v∗0 = (1,−1) ∈ (rangeJ)⊥.

• Computation of Kyµ(0, µ1):

Fµ = (fµ(x1, x2, x2, µ), fµ(x2, x2, x2, µ))

dFµ(v0) =

 fµu 2fµv

0 fµu + 2fµv

 1

0

 =

 fµu

0


Therefore,

Kyµ(0, µ1) = 〈v∗0, dFµ(v0)〉 =

 1

−1

 ·
 fµu(0, µ1)

0


= fµu(0, µ1)

which is generically nonzero.

• Computation of Kyy(0, µ1):

Since v∗0 = (1,−1),

Kyy(0, µ1) = d2F1(v0, v0)− d2F2(v0, v0)

Now

dF1(v0) =

 fu

2fv

 ·
 1

0

 = fu(x1, x2, x2, µ)

d2F1(v0, v0) =

 fuu

2fuv

 ·
 1

0

 = fuu(0, µ1)

dF2(v0) =

 0

fu + 2fv

 ·
 1

0

 = 0

d2F2(v0, v0) =

 0

0

 ·
 1

0

 = 0

Therefore, Kyy(0, µ1) = fuu(0, µ1), which is generically non-zero.
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Hence, the above conditions are the same as the conditions we found by using the Implicit

Function Theorem, and they also guarantee the existence of a transcritical bifurcating branch

from the trivial solution.

6.3 Network #2

Consider 2-cell network #2 with valency 2, whose adjacency matrix, its eigenvalues, and the

corresponding eigenvectors are shown in Table 6.2.

Network #2 Adjacency matrix Eigenvalues Eigenvectors

A2 =
(

0 2
1 1

)
λ0 = 2 (1, 1)
λ1 = −1 (2,−1)

Table 6.2: Two-cell network #2

The admissible dynamical systems for this network have the form:

ẋ1 = f(x1, x2, x2, µ)

ẋ2 = f(x2, x2, x1, µ)

The critical eigenvalue for synchrony-breaking is:

fu(0, µ1) · 1 + fv(0, µ1) · λ1 = 0

⇒ fu(0, µ1)− fv(0, µ1) = 0

⇒ fu(0, µ1) = fv(0, µ1)

where µ1 is determined by λ1.

So, we can obtain the Jacobian:

J = fu(0, µ1)I + fv(0, µ1)A

= fv(0, µ1)(I + A)

= fv(0, µ1)

 1 2

1 2


where fv(0, µ1) 6= 0.

Theorem 6.2. Assume that the coupled cell system defined by f(u, v, w, µ) associated to network

#2 satisfies the following conditions:

fu(0, µ1) = fv(0, µ1), fv(0, µ1) 6= 0, fµu(0, µ1) 6= fµv(0, µ1),

fuu(0, µ1)− 2fuv(0, µ1) + fvv(0, µ1) 6= 0.
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Then there is one transcritical bifurcating branch from the trivial solution (x1, x2, µ) = (0, 0, µ1).

Proof. We apply Liapunov-Schmidt reduction to the system

F (X, µ) = (F1(X, µ), F2(X, µ)) = 0

where F1(X, µ) = f(x1, x2, x2, µ) and F2(X, µ) = f(x2, x2, x1, µ).

The reduced equation has the form

K(y, µ) = 0

where y ∈ R, K : R × R → R is smooth, Ky(0, µ1) = 0, Kµ(0, µ1) = 0 and K(0, µ1) = 0. We

calculate each derivative of this reduced equation to determine which bifurcation occurs.

• Obtaining v0 ∈ kerJ and v∗0 ∈ (rangeJ)⊥:

Let (x, y) be any vector in R2.

fv(0, µ1)

 1 2

1 2

 x

y

 = fv(0, µ1)

 x + 2y

x + 2y

 =

 0

0

 ⇒

 x

y

 =

 2

−1


Therefore, v0 = (2,−1). Since (1, 1) ∈ rangeJ , v∗0 = (1,−1) ∈ (rangeJ)⊥.

• Computation of Kyµ(0, µ1):

Fµ = (fµ(x1, x2, x2, µ), fµ(x2, x2, x1, µ))

dFµ(v0) =

 fµu 2fµv

fµv fµu + fµv

 2

−1

 =

 2fµu − 2fµv

fµv − fµu


Therefore,

Kyµ(0, µ1) = 〈v∗0, dFµ(v0)〉 =

 1

−1

 ·
 2fµu(0, µ1)− 2fµv(0, µ1)

fµv(0, µ1)− fµu(0, µ1)


= 3(fµu(0, µ1)− fµv(0, µ1))

which is nonzero if fµu(0, µ1) 6= fµv(0, µ1).

• Computation of Kyy(0, µ1):

Since v∗0 = (1,−1),

Kyy(0, µ1) = d2F1(v0, v0)− d2F2(v0, v0)
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Now

dF1(v0) =

 fu

2fv

 ·
 2

−1

 = 2fu(x1, x2, x2, µ)− 2fv(x1, x2, x2, µ)

d2F1(v0, v0) =

 2fuu − 2fvu

4fuv − 4fvv

 ·
 2

−1


= 4fuu(0, µ1)− 8fuv(0, µ1) + 4fvv(0, µ1)

dF2(v0) =

 fv

fu + fv

 ·
 2

−1

 = fv(x2, x2, x1, µ)− fu(x2, x2, x1, µ)

d2F2(v0, v0) =

 fvv − fuv

fvu + fvv − fuu − fuv

 ·
 2

−1


= fvv(0, µ1)− 2fuv(0, µ1) + fuu(0, µ1)

Therefore, Kyy(0, µ1) = 3(fuu(0, µ1)− 2fuv(0, µ1) + fvv(0, µ1)), which is generically non-

zero.

Therefore there is one transcritical branch bifurcating from the trivial solution.

6.4 Network #3

Consider 2-cell network #3 with valency 2, whose adjacency matrix, its eigenvalues, and the

corresponding eigenvectors are shown in Table 6.3.

Network #3 Adjacency matrix Eigenvalues Eigenvectors

A3 =
(

0 2
2 0

)
λ0 = 2 (1, 1)
λ1 = −2 (1,−1)

Table 6.3: Two-cell network #3

The admissible dynamical systems for this network have the form:

ẋ1 = f(x1, x2, x2, µ)

ẋ2 = f(x2, x1, x1, µ)

The critical eigenvalue for synchrony-breaking is:

fu(0, µ1) · 1 + fv(0, µ1) · λ1 = 0

⇒ fu(0, µ1) + fv(0, µ1) · (−2) = 0

⇒ fu(0, µ1) = 2fv(0, µ1)
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where µ1 is determined by λ1.

Therefore, the Jacobian is:

J = fu(0, µ1)I + fv(0, µ1)A

= fv(0, µ1)(A + 2I)

= fv(0, µ1)

 2 2

2 2


where fv(0, µ1) 6= 0.

Theorem 6.3. Assume that the coupled cell system defined by f(u, v, w, µ) associated to network

#3 satisfies the following conditions:

fu(0, µ1) = 2fv(0, µ1), fv(0, µ1) 6= 0, fµu(0, µ1)− 2fµv(0, µ1) 6= 0, A− 3B 6= 0.

where

A = 2(fuuu(0, µ1)− 6fuuv(0, µ1) + 12fvvu(0, µ1)− 8fvvv(0, µ1))

B =
(fuu(0, µ1)− 4fuv(0, µ1) + 4fvv(0, µ1))

2fv(0, µ1)
(fuu(0, µ1)− 4fvv(0, µ1))

Then, a pitchfork branch bifurcates from the trivial solution (x1, x2, µ) = (0, 0, µ1).

Proof. We apply Liapunov-Schmidt reduction to the system

F (X, µ) = (F1(X, µ), F2(X, µ)) = 0

where F1(X, µ) = f(x1, x2, x2, µ) and F2(X, µ) = f(x2, x1, x1, µ).

The reduced equation has the form

K(y, µ) = 0

where y ∈ R, K : R × R → R is smooth, Ky(0, µ1) = 0, Kµ(0, µ1) = 0 and K(0, µ1) = 0. We

calculate each derivative of this reduced equation to determine which bifurcation occurs.

• Obtaining v0 ∈ kerJ and v∗0 ∈ (rangeJ)⊥:

Let (x, y) be any vector in R2.

fv(0, µ1)

 2 2

2 2

 x

y

 = fv(0, µ1)

 2(x + y)

2(x + y)

 =

 0

0

 ⇒

 x

y

 =

 1

−1


Therefore v0 = (1,−1). Since (1, 1) ∈ rangeJ , v∗0 = (1,−1) ∈ (rangeJ)⊥.
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• Computation of Kyµ(0, µ1):

Fµ = (fµ(x1, x2, x2, µ), fµ(x2, x1, x1, µ))

dFµ(v0) =

 fµu 2fµv

2fµv fµu

 1

−1

 =

 fµu − 2fµv

2fµv − fµu


Therefore

Kyµ(0, µ1) = 〈v∗0, dFµ(v0)〉 =

 1

−1

 ·
 fµu − 2fµv

2fµv − fµu


= 2fµu(0, µ1)− 4fµv(0, µ1)

which is generically nonzero.

• Computation of Kyy(0, µ1):

Since v∗0 = (1,−1),

Kyy(0, µ1) = d2F1(v0, v0)− d2F2(v0, v0)

Now

dF1(v0) =

 fu

2fv

 ·
 1

−1

 = fu(x1, x2, x2, µ)− 2fv(x1, x2, x2, µ)

d2F1(v0, v0) =

 fuu − 2fvu

2fuv − 4fvv

 ·
 1

−1


= fuu(0, µ1)− 4fuv(0, µ1) + 4fvv(0, µ1)

dF2(v0) =

 2fv

fu

 ·
 1

−1

 = 2fv(x2, x1, x1, µ)− fu(x2, x1, x1, µ)

d2F2(v0, v0) =

 4fvv − 2fuv

2fvu − fuu

 ·
 1

−1


= 4fvv(0, µ1)− 4fuv(0, µ1) + fuu(0, µ1)

Therefore Kyy(0, µ1) = 0.

• Computation of Kyyy(0, µ1):

We calculate Kyyy(0, µ1) by first calculating

A ≡ 〈v∗0, d3F (v0, v0, v0)〉

B ≡ 〈v∗0, d2F (v0, J
−1Ed2F (v0, v0))〉

Since v∗0 = (1,−1),

A = d3F1(v0, v0, v0)− d3F2(v0, v0, v0)

B = d2F1(v0, J
−1Ed2F (v0, v0))− d2F2(v0, J

−1Ed2F (v0, v0))
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Now

d3F1(v0, v0, v0) =

 fuuu − 4fuvu + 4fvvu

2fuuv − 8fuvv + 8fvvv

 ·
 1

−1


= fuuu(0, µ1)− 6fuuv(0, µ1) + 12fvvu(0, µ1)− 8fvvv(0, µ1)

d3F2(v0, v0, v0) =

 8fvvv − 8fuvv + 2fuuv

4fvvu − 4fuvu + fuuu

 ·
 1

−1


= 8fvvv(0, µ1)− 12fuvv(0, µ1) + 6fuuv(0, µ1)− fuuu(0, µ1)

Therefore, A = 2(fuuu(0, µ1)− 6fuuv(0, µ1) + 12fvvu(0, µ1)− 8fvvv(0, µ1)).

To find B we need to know J−1 : rangeJ → M where M satisfies R2 = kerJ ⊕M . Now

M and rangeJ are spanned by (1, 1), so in this basis

J

 1

1

 = fv(0, µ1)

 2 2

2 2

 1

1

 = 4fv(0, µ1)

 1

1


Therefore, J−1 = 1

4fv(0,µ1) .

Given v = (v1, v1) ∈ rangeJ , v ∈M has the form

v =
1

4fv(0, µ1)
(v1, v1)

Now

d2F (v0, v0) = (a, a)

where a = fuu(0, µ1)− 4fuv(0, µ1) + 4fvv(0, µ1). Hence d2F (v0, v0) ∈ rangeJ . Note that

E|rangeJ = I, so

u0 = J−1Ed2F (v0, v0) =
1

4fv(0, µ1)
(a, a)

Therefore

d2F1(v0, u0) =
1

4fv(0, µ1)

 fuu − 2fvu

2fuv − 4fvv

 a

a

 =
a

4fv(0, µ1)
(fuu(0, µ1)− 4fvv(0, µ1))

d2F2(v0, u0) =
1

4fv(0, µ1)

 4fvv − 2fuv

2fuv − fuu

 a

a

 =
a

4fv(0, µ1)
(4fvv(0, µ1)− fuu(0, µ1))

Hence

B =
a

2fv(0, µ1)
(fuu(0, µ1)− 4fvv(0, µ1))
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Finally,

Kyyy(0, µ1) = A− 3B

= 2(fuuu(0, µ1)− 6fuuv(0, µ1) + 12fvvu(0, µ1)− 8fvvv(0, µ1))

−3(fuu(0, µ1)− 4fuv(0, µ1) + 4fvv(0, µ1))
2fv(0, µ1)

(fuu(0, µ1)− 4fvv(0, µ1))

which is generically non-zero.

Therefore, a pitchfork branch bifurcates from the trivial solution.

6.5 Network #4

Consider 2-cell network #4 with valency 2, whose adjacency matrix, its eigenvalues, and the

corresponding eigenvectors are shown in Table 6.4.

Network #4 Adjacency matrix Eigenvalues Eigenvectors

A4 =
(

1 1
0 2

)
λ0 = 2 (1, 1)
λ1 = 1 (1, 0)

Table 6.4: Two-cell network #4

The admissible dynamical systems for this network have the form:

ẋ1 = f(x1, x1, x2, µ)

ẋ2 = f(x2, x2, x2, µ)

The critical eigenvalue for synchrony-breaking is:

fu(0, µ1) · 1 + fv(0, µ1) · λ1 = 0

⇒ fu(0, µ1) + fv(0, µ1) = 0

⇒ fu(0, µ1) = −fv(0, µ1)

where µ1 is determined by λ1.

Therefore, we can obtain the Jacobian as follows :

J = fu(0, µ1)I + fv(0, µ1)A

= fv(0, µ1)(A− I)

= fv(0, µ1)

 0 1

0 1


where fv(0, µ1) 6= 0.
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Theorem 6.4. Assume that the coupled cell system defined by f(u, v, w, µ) associated to network

#4 satisfies the following conditions:

fu(0, µ1) = −fv(0, µ1), fv(0, µ1) 6= 0, fµu(0, µ1) 6= −fµv(0, µ1),

fuu(0, µ1) + 2fuv(0, µ1) + fvv(0, µ1) 6= 0.

Then a transcritical branch bifurcates from the trivial solution (x1, x2, µ) = (0, 0, µ1).

Proof. We apply Liapunov-Schmidt reduction to the system

F (X, µ) = (F1(X, µ), F2(X, µ)) = 0

where F1(X, µ) = f(x1, x1, x2, µ) and F2(X, µ) = f(x2, x2, x2, µ).

The reduced equation has the form

K(y, µ) = 0

where y ∈ R, K : R × R → R is smooth, Ky(0, µ1) = 0, Kµ(0, µ1) = 0 and K(0, µ1) = 0. We

calculate each derivative of this reduced equation to determine which bifurcation occurs.

• Obtaining v0 ∈ kerJ and v∗0 ∈ (rangeJ)⊥:

Let (x, y) be any vector in R2.

fv(0, µ1)

 0 1

0 1

 x

y

 = fv(0, µ1)

 y

y

 =

 0

0

 ⇒

 x

y

 =

 1

0


Therefore v0 = (1, 0). Since (1, 1) ∈ rangeJ , v∗0 = (1,−1) ∈ (rangeJ)⊥.

• Computation of Kyµ(0, µ1):

Fµ = (fµ(x1, x1, x2, µ), fµ(x2, x2, x2, µ))

dFµ(v0) =

 fµu + fµv fµv

0 fµu + 2fµv

 1

0

 =

 fµu + fµv

0


Therefore

Kyµ(0, µ1) = 〈v∗0, dFµ(v0)〉 =

 1

−1

 ·
 fµu + fµv

0


= fµu(0, µ1) + fµv(0, µ1)

which is nonzero if fµu(0, µ1) 6= −fµv(0, µ1).
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• Computation of Kyy(0, µ1):

Since v∗0 = (1,−1),

Kyy(0, µ1) = d2F1(v0, v0)− d2F2(v0, v0)

Now

dF1(v0) =

 fu + fv

fv

 ·
 1

0

 = fu(x1, x1, x2, µ) + fv(x1, x1, x2, µ)

d2F1(v0, v0) =

 fuu + fuv + fvu + fvv

fuv + fvv

 ·
 1

0


= fuu(0, µ1) + 2fuv(0, µ1) + fvv(0, µ1)

dF2(v0) =

 0

fu + 2fv

 ·
 1

0

 = 0

d2F2(v0, v0) =

 0

0

 ·
 1

0


= 0

Therefore Kyy(0, µ1) = fuu(0, µ1) + 2fuv(0, µ1) + fvv(0, µ1), which is generically non-zero.

Therefore there exists a transcritical branch bifurcating from the trivial solution.

Alternatively, we can derive the same conditions using the. Implicit function theorem.

Since f(0, µ1) = 0 and fu(0, µ1) = −fv(0, µ1), the equation for cell 2 is:

f(x2, x2, x2, µ) ≈ fv(0, µ1)x2

+2fuv(0, µ1)x2
2 + fvw(0, µ1)x2

2 + 2fvµ(0, µ1)x2(µ− µ1)

+fµu(0, µ1)(µ− µ1)x2 +
1
2
(fuu(0, µ1)x2

2 + 2fvv(0, µ1)x2
2) + O(3)

Since fv(0, µ1) 6= 0, the Implicit Function theorem implies that the equation for cell 2

has the unique solution x2 = 0.

Substituting x2 = 0 into the equation for cell 1 gives:

f(x1, 0, x1, µ) ≈ (fu(0, µ1)x1 + fv(0, µ1)x1)

+(fvµ(0, µ1)x1(µ− µ1) + fµu(0, µ1)(µ− µ1)x1 + fuv(0, µ1)x2
1)

+
1
2
(fuu(0, µ1)x2

1 + fvv(0, µ1)x2
1)

= x1{[
1
2
(fuu(0, µ1) + fvv(0, µ1)) + fuv(0, µ1)]x1

+(fvµ(0, µ1) + fµu(0, µ1))(µ− µ1)}

as fu(0, µ1) + fv(0, µ1) = 0.
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Therefore, two roots of this equation are:

x1 = 0, x1 =
−{(fvµ(0, µ1) + fµu(0, µ1))(µ− µ1)}
1
2(fuu(0, µ1) + fvv(0, µ1)) + fuv(0, µ1)

Therefore, if

fvµ(0, µ1) + fµu(0, µ1) 6= 0

fuu(0, µ1) + fvv(0, µ1) + 2fuv(0, µ1) 6= 0

then a transcritical branch bifurcates from the trivial solution. This condition is the same as

the one that we found by applying Liapunov-Schmidt reduction.

6.6 Network #5

Consider 2-cell network #5 with valency 2, whose adjacency matrix, its eigenvalues, and the

corresponding eigenvectors are shown in Table 6.5.

Network #5 Adjacency matrix Eigenvalues Eigenvectors

A5 =
(

1 1
1 1

)
λ0 = 2 (1, 1)
λ1 = 0 (1,−1)

Table 6.5: Two-cell network #5

The admissible dynamical systems for this network have the form:

ẋ1 = f(x1, x1, x2, µ)

ẋ2 = f(x2, x1, x2, µ)

The critical eigenvalue for synchrony-breaking is:

fu(0, µ1) · 1 + fv(0, µ1) · λ1 = 0

⇒ fu(0, µ1) + fv(0, µ1) · 0 = 0

⇒ fu(0, µ1) = 0

where µ1 is determined by λ1.

Therefore, the Jacobian is :

J = fu(0, µ1)I + fv(0, µ1)A

= fv(0, µ1)A

= fv(0, µ1)

 1 1

1 1


where fv(0, µ1) 6= 0.
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Theorem 6.5. Assume that the coupled cell system defined by f(u, v, w, µ) associated to network

#5 satisfies the following conditions:

fu(0, µ1) = 0, fv(0, µ1) 6= 0, fµu(0, µ1) 6= 0, A− 3B 6= 0.

where

A = 2fuuu(0, µ1)

B =
fuu(0, µ1)
fv(0, µ1)

(fuu(0, µ1) + 2fuv(0, µ1))

Then a pitchfork branch bifurcates from the trivial solution (x1, x2, µ) = (0, 0, µ1).

Proof. We apply Liapunov-Schmidt reduction to the system

F (X, µ) = (F1(X, µ), F2(X, µ)) = 0

where F1(X, µ) = f(x1, x1, x2, µ) and F2(X, µ) = f(x2, x1, x2, µ).

The reduced equation has the form

K(y, µ) = 0

where y ∈ R, K : R × R → R is smooth, Ky(0, µ1) = 0, Kµ(0, µ1) = 0 and K(0, µ1) = 0. We

calculate each derivative of this reduced equation to determine which bifurcation occurs.

• Obtaining v0 ∈ kerJ and v∗0 ∈ (rangeJ)⊥:

Let (x, y) be any vector in R2.

fv(0, µ1)

 1 1

1 1

 x

y

 = fv(0, µ1)

 x + y

x + y

 =

 0

0

 ⇒

 x

y

 =

 1

−1


Therefore v0 = (1,−1). Since (1, 1) ∈ rangeJ , v∗0 = (1,−1) ∈ (rangeJ)⊥.

• Computation of Kyµ(0, µ1):

Fµ = (fµ(x1, x1, x2, µ), fµ(x2, x1, x2, µ))

dFµ(v0) =

 fµu + fµv fµv

fµv fµu + fµv

 1

−1

 =

 fµu

−fµu


Therefore

Kyµ(0) = 〈v∗0, dFµ(v0)〉 =

 1

−1

 ·
 fµu

−fµu


= 2fµu(0, µ1)

which is generically nonzero.
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• Computation of Kyy(0, µ1):

Since v∗0 = (1,−1),

Kyy(0, µ1) = d2F1(v0, v0)− d2F2(v0, v0)

Now

dF1(v0) =

 fu + fv

fv

 ·
 1

−1

 = fu(x1, x1, x2, µ)

d2F1(v0, v0) =

 fuu + fuv

fuv

 ·
 1

−1


= fuu(0, µ1)

dF2(v0) =

 fv

fu + fv

 ·
 1

−1

 = −fu(x2, x1, x2, µ)

d2F2(v0) =

 −fuv

−fuu − fuv

 ·
 1

−1


= fuu(0, µ1)

Therefore Kyy(0, µ1) = 0.

• Computation of Kyyy(0, µ1):

We calculate Kyyy(0, µ1) by first calculating

A ≡ 〈v∗0, d3F (v0, v0, v0)〉

B ≡ 〈v∗0, d2F (v0, J
−1Ed2F (v0, v0))〉

Since v∗0 = (1,−1),

A = d3F1(v0, v0, v0)− d3F2(v0, v0, v0)

B = d2F1(v0, J
−1Ed2F (v0, v0))− d2F2(v0, J

−1Ed2F (v0, v0))

Now

d3F1(v0, v0, v0) =

 fuuu + fuuv

fuuv

 ·
 1

−1


= fuuu(0, µ1)

d3F2(v0, v0, v0) =

 fuuv

fuuu + fuuv

 ·
 1

−1


= −fuuu(0, µ1)
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Therefore A = 2fuuu(0, µ1).

To find B we need to know J−1 : rangeJ → M where M satisfies R2 = kerJ ⊕M . Now

M and rangeJ are spanned by (1, 1), so in this basis

J

(
1
1

)
= fv(0, µ1)

 1 1

1 1

 1

1

 = 2fv(0, µ1)

 1

1


Therefore, J−1 = 1

2fv(0,µ1) .

Given v = (v1, v1) ∈ rangeJ , v ∈M has the form

v =
1

2fv(0, µ1)
(v1, v1)

Now

d2F (v0, v0) = (a, a)

where a = fuu(0, µ1). Hence d2F (v0, v0) ∈ rangeJ . Note that E|rangeJ = I, so

u0 = J−1Ed2F (v0, v0) =
1

2fv(0, µ1)
(a, a)

Therefore,

d2F1(v0, u0) =
a

2fv(0, µ1)
(fuu(0, µ1) + 2fuv(0, µ1))

d2F2(v0, u0) =
a

2fv(0, µ1)
(−fuu(0, µ1)− 2fuv(0, µ1))

Hence

B =
a

fv(0, µ1)
(fuu(0, µ1) + 2fuv(0, µ1))

Finally,

Kyyy(0, µ1) = A− 3B

= 2fuuu(0, µ1)−
3fuu(0, µ1)
fv(0, µ1)

(fuu(0, µ1) + 2fuv(0, µ1))

which is generically non-zero.

Therefore a pitchfork branch bifurcates from the trivial solution.

6.7 Conclusions

We summarise the results in the following:
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network bifurcation type generic conditions

#1 transcritical fu(0, µ1) = 0,

fv(0, µ1) 6= 0,

fµu(0, µ1) 6= 0,

fuu(0, µ1) 6= 0

#2 transcritical fu(0, µ1) = fv(0, µ1),

fv(0, µ1) 6= 0,

fµu(0, µ1) 6= fµv(0, µ1),

fuu(0, µ1)− 2fuv(0, µ1) + fvv(0, µ1) 6= 0

#3 pitchfork fu(0, µ1) = 2fv(0, µ1),

fv(0, µ1) 6= 0,

fµu(0, µ1)− 2fµv(0, µ1) 6= 0,

A− 3B 6= 0, where

A = 2(fuuu(0, µ1)− 6fuuv(0, µ1) + 12fvvu(0, µ1)− 8fvvv(0, µ1)),

B = (fuu(0,µ1)−4fuv(0,µ1)+4fvv(0,µ1))
2fv(0,µ1) (fuu(0, µ1)− 4fvv(0, µ1))

#4 transcritical fu(0, µ1) = −fv(0, µ1),

fv(0, µ1) 6= 0,

fµu(0, µ1) 6= −fµv(0, µ1),

fuu(0, µ1) + 2fuv(0, µ1) + fvv(0, µ1) 6= 0

#5 pitchfork fu(0, µ1) = 0,

fv(0, µ1) 6= 0,

fµu(0, µ1) 6= 0,

A− 3B 6= 0, where

A = 2fuuu(0, µ1),

B = fuu(0,µ1)
fv(0,µ1) (fuu(0, µ1) + 2fuv(0, µ1))

Remark 6.1. Strongly connected networks are shaded, namely networks #2, #3 and #5.

Although networks #1 and #4 are topologically distinct, we expect their dynamical be-

haviour to be equivalent (They are called ODE-equivalent (Dias and Stewart, 2005)). Similarly,

network #3 and #5 also have equivalent dynamical behaviour despite with their distinct topology.
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Chapter 7

Steady-state Bifurcation Analysis

using the Lattice

7.1 Introduction

In Chapter 4, we computed all balanced equivalence relations of any regular homogeneous cou-

pled cell network G, using just the adjacency matrix, and constructed a lattice, denoted by ΛG

in this chapter, that consists of these balanced equivalence relations. Each balanced equivalence

relation ./∈ ΛG is associated with a subspace 4./ ⊆ P , called the balanced polydiagonal cor-

responding to ./. A coupled cell network restricted to this subspace 4./ determines a quotient

network G/./ whose dynamics correspond to synchronous dynamics of G. In this Chapter, we

firstly define two further lattices, V P
G with balanced polydiagonals as elements, and UP

G with sets

of eigenvalues of quotient networks as elements. We show the three lattices for a given network

in the following example.

Example 7.1. Consider regular homogeneous four-cell valency 2 network #326, denoted by G.

The associated adjacency matrix has four distinct (and therefore simple) eigenvalues, as shown

in Table 7.1. There are two non-trivial quotient networks as shown in Figure 7.1. The three

different lattices for G (discussed above) are shown in Figure 7.2.
3

We then show that there are lattice generators of V P
G for any coupled cell network where

the associated adjacency matrix has distinct eigenvalues. These lattice generators are con-

structed from the eigenvector structures of corresponding distinct eigenvalues. In Example 7.1,

equivalence relations (the corresponding balanced polydiagonals) generated from eigenvectors

v1 (or equivalently v2) and v3 are possible lattice generators. All other non-trivial lattice el-

ements can be constructed by a join of lattice generators. All possible lattice structures for

3-cell and 4-cell regular homogeneous networks of any valency, but with simple eigenvalues, are

constructed.
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Network #326 Adjacency matrix Eigenvalues Eigenvectors
0 0 1 1
0 0 1 1
0 1 1 0
1 1 0 0


λ0 = 2 v0 = (1, 1, 1, 1)
λ1 = −1−

√
5

2 v1 = (−1−
√

5
4 , −1−

√
5

4 , −1+
√

5
4 , 1)

λ2 = −1+
√

5
2 v2 = (−1+

√
5

4 , −1+
√

5
4 , −1−

√
5

4 , 1)
λ3 = 0 v3 = (−1, 1,−1, 1)

Table 7.1: Four-cell valency 2 network #326, its adjacency matrix, eigenvalues and the corre-
sponding eigenvectors.

{2, 0} {2, −1−
√

5
2 , −1+

√
5

2 }

Figure 7.1: Two quotient networks of four-cell valency 2 network #326. The sets of eigenvalues
of each quotient network are shown.

ΛG V P
G UP

G

Figure 7.2: Three different lattices for four-cell valency 2 network #326, here denoted as G.
Firstly ΛG , a lattice of balanced equivalence relations. Secondly V P

G , which depends on the total
phase space P , consists of the balanced polydiagonals 4./ corresponding to ./∈ ΛG . The third
lattice UP

G consists of the sets of eigenvalues of the adjacency matrices of the quotient networks
G/./.
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The lattice UP
G has an important role in the determination of bifurcation branches as

it shows where synchrony-breaking steady-state bifurcation occurs and in which polydiagonals

bifurcating branches lie. Corollary 7.2 states that all quotient networks of a simple eigenvalue

network are topologically distinct. Since an eigenspace corresponding to a simple eigenvalue is

one-dimensional and the Jacobian evaluated at the bifurcation point is singular, this guaran-

tees a unique bifurcating branch at a simple real eigenvalue. The bifurcation type is uniquely

determined by a topologically distinct quotient network. The existence of synchrony-breaking

steady-state bifurcation branches is shown schematically for 3 and 4-cell simple eigenvalue net-

works.

7.2 Preliminaries

7.2.1 Lattice Theory: Part 2

The following definitions are from Davey and Priestley (1990).

Definition 7.1. Let 〈P,≤P 〉 and 〈Q,≤Q〉 be ordered sets and let f : P → Q be a map. Then f

is order-preserving if and only if for all p1, p2 ∈ P

p1 ≤P p2 ⇒ f(p1) ≤Q f(p2)

Definition 7.2. Let P and Q be ordered sets and let φ : P → Q be a map. Then φ is an

order-isomorphism if and only if

1. φ is order-preserving,

2. φ has an inverse φ−1,

3. φ−1 is order-preserving.

The ordered sets P and Q are order-isomorphic if and only if there is an order-isomorphism

φ : P → Q.

Definition 7.3. Let P be an ordered set and let Q ⊆ P . Then

1. a ∈ Q is the greatest element of Q if a ≥ x for every x ∈ Q.

2. a ∈ Q is the least element of Q if a ≤ x for every x ∈ Q.

Definition 7.4. Let P be an ordered set. The greatest element of P , if it exists, is called the

top element of P and written > (‘top’). Similarly, the least element of P , if such exists, is

called the bottom element and denoted ⊥ (‘bottom’).
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For example, in regular homogeneous coupled cell networks, > = (x, . . . , x) ⊆ Rn and

⊥ = P .

Definition 7.5. Let 〈L,≤〉 be a lattice. A non-empty subset F of L is called a filter if

1. x, y ∈ F imply x ∧ y ∈ F ,

2. if x ∈ F and y ∈ L with y ≥ x, then y ∈ F .

(That is, F is closed under finite meets and closed under going up.)

7.3 Three Lattices: ΛG, V P
G and UP

G

7.3.1 Lattice of Balanced Equivalence Relations and Polydiagonals

The following notations and definitions are from Stewart (2007).

Suppose that G is a coupled cell network with cells C and a choice of total phase space

P . Let MG be the complete lattice of all equivalence relations on C. Associated with each

equivalence relation ./∈ MG is a polysynchronous subspace 4./ ⊆ P , called the polydiagonal

corresponding to ./.

Define WP
G to be the set of all polydiagonals for this choice of P and G. There is a

bijection

δ : MG →WP
G δ(./) = 4./

Lemma 7.1. The map δ is a lattice anti-isomorphism, that is, an isomorphism that reverses

order, and hence interchanges meet and join.

Proof. See Stewart (2007).

Let ./1, ./2∈MG . Recall that ./1 refines ./2, denoted by ./1≺./2, if and only if

c ./1 d⇒ c ./2 d where c, d ∈ C

That is, the partition of C defined by ./1 is finer than that defined by ./2 in the sense that for

any c ∈ C

[c]1 ⊆ [c]2

where [c]j is the ./j-equivalence class of c for j = 1, 2.

As in Lemma 7.1, forming polydiagonals reverses order:

./1≺./2⇔4./1 ⊃ 4./2
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Let ΛG be the set of all balanced equivalence relations for G, and denote the set of all

balanced polydiagonals for G by V P
G . Then

ΛG ⊆MG V P
G ⊆WP

G

Next, we define the rank of an element in MG and the corresponding dimension of an

element in WP
G using an anti-isomorphism δ.

7.3.2 Rank and Dimension of a Partition Lattice

The rank is a parameter that indicates the height at which one can find an element in an ordered

set (Schröder, 1990). We particularly consider the rank and corresponding dimension in a finite

partition lattice.

Definition 7.6. Let P be a finite partition lattice and let n ∈ N. For p ∈ P , define the rank

of p to be the number of equivalence classes in p. That is, if the partition p has n equivalence

classes, then rank(p) = n.

Since MG is a finite partition lattice, the bijection δ lets us define the dimension of the

corresponding element in WP
G as in the following Theorem 7.1:

Theorem 7.1. Let ./∈ MG and let 4./ ∈ WP
G be the corresponding polysynchronous subspace.

Then

dim(4./) = rank(./)

Proof. If rank(./) = n, then it means there are n equivalence classes in ./. Since the subspace

4./ is defined as:

4./ = {x ∈ P : c, d ∈ C and c ./ d⇒ xc = xd}.

and δ(./) = 4./ by a bijection δ, 4./ has n distinct components, v1, v2, . . . , vn. For each

component vi, i = 1, 2, . . . , n, there is a natural basis vector which has either 1 for the position

of vi or 0 for the position of vj , j 6= i as elements. This leads that the n basis vectors complement

each other, therefore, they are linearly independent. Hence, the n linearly independent vectors

form a basis of 4./. Therefore the dimension of 4./ is n, which is the same as the rank of the

corresponding equivalence relation ./.

7.3.3 Lattice of Eigenvalues of Adjacency Matrices of Quotient Networks

Any balanced equivalence relation ./ on a network G determines a quotient network G/./ (Sub-

section 4.2.6) in which all cells of any equivalence class are identified. The dynamics of G/./

correspond to synchronous dynamics of G; that is, dynamics restricted to 4./.
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The number of cells of a quotient network G/./ is the same as the dimension of 4./ ∈ V P
G ,

which is equal to the rank of ./∈ ΛP
G by Theorem 7.1.

Lemma 7.2. Let ./1, ./2∈ ΛG. If ./1≺./2, then G/./2 is a quotient network of G/./1.

Proof. By Lemma 7.1, ./1≺./2⇔ 4./1 ⊃ 4./2 . Hence G/./2 is a quotient network of G/./1

restricted to a subspace 4./2 of 4./1 .

Now we construct a lattice of the sets of eigenvalues of adjacency matrices of quotient

networks. In the following, we will define L./ as the set of eigenvalues of the adjacency matrix

of a quotient network G/./:

Definition 7.7. Let G be an n-cell regular homogeneous coupled network associated with an n×n

adjacency matrix A. Let G/./ be a k-cell quotient network of G restricted to a k-dimensional

balanced polydiagonal 4./ ∈ V P
G associated with a k × k adjacency matrix A./. Define L./ to be

the set of eigenvalues of A./ with k elements, including repeated eigenvalues.

Next, we will define UP
G as the set of sets L./ as follows:

Definition 7.8. Define UP
G to be the set of all sets L./ for all balanced equivalence relations

./∈ ΛG on a regular homogeneous coupled cell network G.

Definition 7.9. Let G be a regular homogeneous coupled cell network and let G/./ be the quotient

network of G associated with a balanced equivalence relation ./. Let L./ be the set of eigenvalues

of the adjacency matrix of G/./. We denote the number of distinct eigenvalues in L./ by |L./| .

The following Lemma 7.3 shows an order in the set UP
G . It shows that the set of eigenval-

ues of the adjacency matrix A./2 is contained in the set of eigenvalues of the adjacency matrix

A./1 if ./1≺./2.

Lemma 7.3. Let A./l
be the kl × kl adjacency matrix of a kl-cell regular homogeneous coupled

network G and let L./l
be the set of eigenvalues of A./l

. If ./l≺./m, then L./l
⊃ L./m for l, m ∈ N.

Proof. Without loss of generality, set l = 1 and m = 2. Since ./1≺./2, we have k1 > k2.

Let {v0, . . . ,vk2−1} be the basis vectors of 4./2 where vi ∈ Rn×1, i = 0, . . . , k2 − 1 and

v0 = (1, 1, . . . , 1) as every 4./ is expressed as a sum with the fully synchronous eigenspace

R{(1, 1, . . . , 1)}. Complete this basis with {vk2 , . . . ,vk1−1} for Rn×1. Since 4./2 is invariant

under A./1 , A./1 with respect to the above basis has the structure:

A./1 =

 A./2 B

0 D


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where A./2 is a k2×k2 matrix which is the restriction of A./1 to4./2 . The matrix A./2 corresponds

to the quotient network of G/./1 by Lemma 7.2. Further, B is a k2 × (k1 − k2) matrix and D is

a (k1 − k2)× (k1 − k2) square matrix.

Since A./1 is upper triangular, the set of eigenvalues of A./1 is the union of the eigenvalues

of the diagonal block matrices A./2 and D. Therefore the set of eigenvalues of A./2 is a subset

of the set of eigenvalues of A./1 , equivalently, L./1 ⊃ L./2 .

Now, we show that there is an order-preserving map between ΛG (equivalently, V P
G using

a bijection δ) and UP
G .

Proposition 7.1. Let V P
G be the set of all balanced polydiagonals of a regular homogeneous

coupled cell network G. Let UP
G be a set of sets L./ of quotient networks G/./ associated with for

all 4./ ∈ V P
G . Then, there is a order-preserving map

f : V P
G → UP

G f(4./) = L./

Proof. Each balanced polydiagonal 4./ ∈ V P
G generates a quotient network G/./. There is

the corresponding adjacency matrix A./ to a quotient network G/./. Let 4./1 ,4./2 ∈ V P
G and

4./1 ⊂V 4./2 , then G/./1 is a quotient network of G/./2 restricted on 4./1 . Hence, by the

Lemma 7.3, f(4./1) ⊂U f(4./2).

As a consequence, UP
G forms a lattice.

7.4 Steady-state Bifurcation Analysis of Simple Eigenvalue Net-

works

So far we have discussed three different lattices, ΛG , V P
G and UP

G , of a given network, regardless

network’s eigenvalue structure (simple eigenvalues or non-simple eigenvalues). For the rest of

this Chapter, we consider only regular homogeneous networks where the associated adjacency

matrices have distinct eigenvalues (which are therefore simple).

7.4.1 Simple Quotient Networks

Lemma 7.4. Let G be an n-cell regular homogeneous coupled network with n×n adjacency matrix

A, and let G/./ be the corresponding quotient network to ./. Let L./ be the set of eigenvalues of

the adjacency matrix of G/./ and UP
G be the lattice of L./. If A has n distinct eigenvalues, then

|L./| = rank(./), ∀L./ ∈ UP
G (7.1)
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Proof. By Lemma 7.3, it follows that the eigenvalues of the adjacency matrix A./ of the quotient

network G/./ are a subset of the eigenvalues of the adjacency matrix A of G. Therefore, if A has

n distinct eigenvalues, then A./ has k distinct eigenvalues, where k is the size of the quotient

network G/./; that is rank(./). Hence,

|L./| = rank(./), ∀L./ ∈ UP
G

Proposition 7.2. If the adjacency matrix of a regular homogeneous coupled cell network G has

simple eigenvalues, then the adjacency matrices of all quotient networks G/./ also have simple

eigenvalues.

Proof. This follows from Lemma 7.3.

7.4.2 Polysynchronous subspaces and Eigenvectors of A

Let v = (v)c∈C be an eigenvector of the adjacency matrix A of a regular homogeneous coupled

cell network G. For a given eigenvector v, there is an equivalence relation associated with v as

follows:

c ./v d⇔ vc = vd

The corresponding polydiagonal subspace is defined by

4./v = {x ∈ P : c ./v d⇔ xc = xd}

Lemma 7.5. Let v = (v)c∈C be an eigenvector of the adjacency matrix A of a regular homo-

geneous coupled cell network G. For a given eigenvector v we have 4 ⊕ R{v} ⊆ 4./v , where

4 = R{(1, . . . , 1)} is the synchronous eigenspace.

Proof. There is a unique coarsest (top) element ./>∈ ΛG such that

c ./> d⇔ xc = xd for all c, d ∈ C (7.2)

and

./i≺./> for all ./i∈ ΛG , i 6= > (7.3)

(7.3) implies that

./v≺./> where v 6= (1, . . . , 1) (7.4)

The polydiagonal corresponding to the coarsest element is the smallest polydiagonal 4 =

R{(1, . . . , 1)} by (7.2).
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By Lemma 7.1, forming polydiagonals reverses order, so by (7.4)

./v≺./>⇔4./v ⊃ 4

Hence 4 ⊂ 4./v .

Since c ./v d⇔ vc = vd for any given eigenvector v, it easily follows that R{v} ⊆ 4./v .

Therefore, the direct sum 4⊕ R{v} of the subspaces 4 and R{v} is also a subspace in 4./v ,

that is 4⊕ R{v} ⊆ 4./v .

Lemma 7.6. Let G be an n-cell regular homogeneous coupled network with n×n adjacency matrix

A. Let v be any eigenvector of A. If v has only two distinct entries, then 4./v = 4⊕ R{v}.

Proof. By Lemma 7.5, 4⊕ R{v} ⊆ 4./v . Now we show that 4⊕ R{v} ⊇ 4./v .

Writing the two distinct entries of v as x, y ∈ R, where x 6= y, with a suitable ordering

of cells we can express v as:

v = (x, x, . . . , x︸ ︷︷ ︸
k

, y, y, . . . , y︸ ︷︷ ︸
n−k

)

We now consider any polydiagonal p ∈ 4./v , which can be expressed as:

p = (x′, x′, . . . , x′︸ ︷︷ ︸
k

, y′, y′, . . . , y′︸ ︷︷ ︸
n−k

), where x′, y′ ∈ R (7.5)

Now we express p as a sum of the form:

p = a(1, 1, . . . , 1︸ ︷︷ ︸
k

, 1, 1, . . . , 1︸ ︷︷ ︸
n−k

) + b(x, x, . . . , x︸ ︷︷ ︸
k

, y, y, . . . , y︸ ︷︷ ︸
n−k

) (7.6)

Comparing coefficients in Equations (7.5) and (7.6)

a + bx = x′

a + by = y′

These simultaneous equations can be solved for a, b ∈ R regardless of the values of x′, y′, and

there is no contradiction. Hence any vector p ∈ 4./v can be written as q + r, where q ∈ 4 and

r ∈ R{v}, that is, 4⊕ R{v} ⊇ 4./v . Therefore, 4./v = 4⊕ R{v}.

Since both eigenvectors and balanced polydiagonals are A-invariant, we expect there is a

relationship between them. The following Lemma 7.7 shows that, for some cases, an equivalence

relation associated with the eigenvector structure is balanced.

Lemma 7.7. Let G be an n-cell homogeneous coupled network with n× n adjacency matrix A.

Let v be any eigenvector of A. If v has only two distinct entries, then ./v is balanced.
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Proof. We show that 4./v is an A-invariant polydiagonal. This implies that the associated

equivalence relation ./v is balanced.

If v has only two distinct entries, then by Lemma 7.6, the subspace 4./v generated by

./v is a direct sum of two eigenspaces:

4./v = R{(1, 1, . . . , 1)} ⊕ R{v}

= 4⊕ R{v}

Since both (1, 1, . . . , 1) and v are eigenvectors of A, the direct sum of these eigenspaces, that

is 4./v , is A invariant. Hence A(4./v) ⊆ 4./v and the associated equivalence relation ./v is

balanced.

However, if v has more than two distinct entries, polydiagonals generated by eigenvector

structures are not always balanced, as the following example shows.

Example 7.2. Consider strongly connected four-cell regular homogeneous network #295 with

the associated 4× 4 adjacency matrix A shown in Figure 7.3:

Network #295 Adjacency matrix A

A =


0 0 0 2
1 0 1 0
1 0 1 0
0 1 0 1


Figure 7.3: Strongly connected four-cell network #295 with the associated adjacency matrix.

The admissible ODEs associated with this network are those of the form:

ẋ1 = f(x1, x4, x4)

ẋ2 = f(x2, x1, x3)

ẋ3 = f(x3, x1, x3)

ẋ4 = f(x4, x2, x4)

The table below shows eigenvalues and corresponding eigenvectors of the adjacency ma-

trix. The last column shows predicted balanced equivalence relations from the eigenvector

structures:
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Eigenvalues Eigenvectors Partition Polysynchronous subspace

µ0 = 2 v0 = (1, 1, 1, 1) {1, 2, 3, 4} {x, x, x, x}

µ1 = 0 v1 = (1, 0,−1, 0) {1}, {3}, {2, 4} {x, y, z, y}

µ2 = i v2 = (−2i,−1 + i,−1 + i, 1) {1}, {2, 3}, {4} {x, y, y, z}

µ3 = −i v3 = (2i,−1− i,−1− i, 1) {1}, {2, 3}, {4} {x, y, y, z}

Now we show that the second equivalence relation ./ is not balanced, therefore, the

corresponding polysynchronous subspace 4./ = (x, y, z, y) is not robust.

The projection map P./ on 4./ is:

P./ =


1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0

 .

Then

P./AP./ = P./ (AP./)

=


1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0






0 0 0 2

1 0 1 0

1 0 1 0

0 1 0 1




1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0





=


1 0 0 0

0 1 0 0

0 0 1 0

0 1 0 0






0 2 0 0

1 0 1 0

1 0 1 0

0 2 0 0





=


0 2 0 0

1 0 1 0

1 0 1 0

1 0 1 0



Therefore, P./AP./ 6= AP./ and, by Proposition 4.2, 4./ is not A-invariant.

This means 4./ is not a robust polysynchronous subspace, either. We verify this as

follows.

151



A(4./) =


0 0 0 2

1 0 1 0

1 0 1 0

0 1 0 1




x

y

z

y



=


2y

x + z

x + z

2y

 * 4./

Therefore, from Proposition 4.1, 4./ is not robustly polysynchronous.
3

Hence the eigenspaces do not directly specify balanced equivalence relations.

7.4.3 Order-Isomorphism between V P
G and UP

G

In the following lemmas, we show that the three lattices ΛG , V P
G and UP

G are order-isomorphic

if the associated regular homogeneous coupled cell networks has simple eigenvalues.

Lemma 7.8. Let G be a regular homogeneous coupled cell network with adjacency matrix A,

and suppose that A has simple eigenvalues. Then

L./1 = L./2 ⇔4./1 = 4./2

Proof. 4./1 = 4./2 ⇒ L./1 = L./2 is trivial. We show the converse.

Let λ0, . . . , λn−1 be the distinct eigenvalues of A and v0, . . . ,vn−1 be the corresponding

eigenvectors. Since v0, . . . ,vn−1 are linearly independent, {v0, . . . ,vn−1} forms a basis of Rn.

Suppose the space Rn is decomposed into a direct sum of two subspaces, one of which is A-

invariant. Consider two different decomposition of Rn as follows:

Rn = L1+̇L2 (7.7)

Rn = L′1+̇L′2 (7.8)

where 4./1 = L1 and 4./2 = L′1 are both A-invariant, but L1 6= L′1.

It suffices to consider the case when dim(L1) = dim(L′1), because if the dimensions of

subspaces are different, the cardinalities of the sets L./1 and L./2 are different, so L./1 6= L./2 .

Since L1 6= L′1, there are two different bases for L1 and L′1 from {v0, . . . ,vn−1} such as:

L1 = span{v0,v2, . . . ,vk−1} and L2 = span{vk, . . . ,vn−1} (7.9)

L′1 = span{v′0,v′2, . . . ,v′k−1} and L′2 = span{v′k, . . . ,v′n−1} (7.10)
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in Rn, where k = dim(L1) = dim(L′1) and the first k elements constitute a basis in L1 and L′1,

respectively with {v0, . . . ,vk−1} 6= {v′0, . . . ,v′k−1}.

Since L1 and L′1 are A-invariant, A(vj) ∈ L1 and A(v′j) ∈ L′1 for j = 0, . . . , k − 1. In

general, we can write

A(vj) =
k−1∑
i=0

aijvi, j = 0, . . . , k − 1.

Similarly,

A(v′j) =
k−1∑
i=0

a′ijv
′
i, j = 0, . . . , k − 1.

However,

A(vj) = λjvj , j = 0, . . . , k − 1.

Similarly,

A(v′j) = λ′jv
′
j , j = 0, . . . , k − 1.

as vj and v′j are eigenvectors of A.

Hence the matrix A = (aij)n
i,j=1 with respect to the basis {v0,v2, . . . ,vk−1} with its

complement has the form,

A =


λ0 · · · 0
...

. . .
... B

0 · · · λk−1

0 D

 .

Similarly, the matrix A = (aij)n
i,j=1 with respect to the basis {v′0,v′2, . . . ,v′k−1} with its comple-

ment has the form

A =


λ′0 · · · 0
...

. . .
... B′

0 · · · λ′k−1

0 D′

 .

The upper-left k× k matrices are similar matrices to A./1 and A./2 , respectively. Since {v0, . . . ,

vk−1} 6= {v′0, . . . ,v′k−1}, the two sets of eigenvalues L./1 6= L./2 for quotient networks G/./1 and

G/./2 . Hence, if4./1 6= 4./2 then L./1 6= L./2 . Equivalently, if L./1 = L./2 then4./1 = 4./2 .

On the contrary, if the eigenvalues of A are not simple, there can be more than one

balanced polydiagonal which gives the same set of eigenvalues for the quotient network. This

is the reason why there is more than one topologically identical quotient network in the double

and triple eigenvalue cases.

We now show the converse of Lemma 7.3 is true if the associated adjacency matrix of a

given network has distinct eigenvalues.
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Lemma 7.9. Let A be the adjacency matrix of a regular homogeneous coupled cell network G

with simple eigenvalues. If L./1 ⊃ L./2, then ./1≺./2.

Proof. Let |L./1 | = k1. Since A has simple eigenvalues, there are k1 distinct eigenvalues in L./1

and these eigenvalues correspond to k1 linearly independent eigenvectors, v1, . . . ,vk1 . Hence the

corresponding balanced polydiagonal 4./1 to the balanced equivalence relation ./1 is spanned

by v1, . . . ,vk1 .

Since L./1 ⊃ L./2 , the corresponding balanced polydiagonal 4./2 to the balanced equiv-

alence relation ./2 is spanned by some of the vectors v1, . . . ,vk1 . Hence 4./1 ⊃ 4./2 . Using an

anti-isomorphism in Lemma 7.1, this implies ./1≺./2.

In Proposition 7.1, we showed that there exists an order-preserving map from V P
G to UP

G .

We now show that V P
G (equivalently ΛG) and UP

G are order-isomorphic if the adjacency matrices

of networks have simple eigenvalues.

Lemma 7.10. Let A be the adjacency matrix of a regular homogeneous coupled cell network G.

If A has simple eigenvalues, then there exist an order-isomorphism f : V P
G → UP

G .

Proof. In Proposition 7.1, we showed f : V P
G → UP

G is an order-preserving map for any Jordan

normal forms of A. To show f is an order-isomorphism when A has simple eigenvalues, we show

there exists f−1 : UP
G → V P

G and it is an order-preserving map.

Since each quotient network is uniquely determined by the corresponding balanced poly-

diagonal, for any L./ ∈ UP
G there exists an element 4./ ∈ V P

G such that f(4./) = L./. Hence f

is a surjection.

If A has simple eigenvalues, by Lemma 7.8, f is an injection. Therefore there exists

f−1 : UP
G → V P

G since f is a bijection.

Now we show that f−1 : UP
G → V P

G is an order-preserving map. Let L./1 ⊃ L./2 and

let 4./1 and 4./2 be the corresponding balanced polydiagonals, respectively. We want to show

that 4./1 ⊃ 4./2 .

By Lemma 7.9, if L./1 ⊃ L./2 , then ./1≺./2. Using the anti-isomorphism in Lemma 7.1,

4./1 ⊃ 4./2 .

7.4.4 Lattice Generators of Simple Eigenvalue Networks

In Subsection 7.4.2 we showed that the equivalence relation defined by an eigenvector is balanced

if the eigenvector has only two distinct entries. However, an equivalence relation generated by

an eigenvector which has more than two distinct entries is not always balanced. The following
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Theorem 7.2 shows the condition

P./AP./ = AP./

where P./ is a projection matrix onto a polydiagonal subspace 4./, must be satisfied so that a

given equivalence relation (equivalently the corresponding polydiagonal), which is generated by

an eigenvector is balanced.

Theorem 7.2. Let G be an n-cell regular homogeneous coupled network with n × n adjacency

matrix A and total phase space P = Rn. Let V P
G be the set of all balanced polydiagonals for this

choice of P and G. If A has simple eigenvalues, then there exists a subset Ṽ P
G ⊆ V P

G such that

all 4./ ∈ Ṽ P
G are generated by equivalence relations of eigenvectors of A.

Proof. Let λ0 6= λ1 6= · · · 6= λn−1 be the n distinct eigenvalues of A and let v0, · · · ,vn−1 be the

corresponding eigenvectors, where v0 = (1, 1, . . . , 1) is associated with λ0.

Since v0, · · · ,vn−1 are linearly independent, Rn can be decomposed as:

Rn = R{v0} ⊕ · · · ⊕ R{vn−1}

where R{vi} = {kvi : k ∈ R} is the one-dimensional eigenspace spanned by vi.

For the equivalence relation ./vi associated with vi, where i = 1, . . . , n − 1, the corre-

sponding polydiagonal subspace is

4./vi
= {x ∈ P : c ./vi d⇔ xc = xd}

For i = 1, . . . , n− 1, consider the direct sum of a one-dimensional eigenspace R{vi} and

the synchronous eigenspace R{v0}:

R{v0} ⊕ R{vi} = {x + y : x ∈ R{v0} and y ∈ R{vi}}

By Lemma 7.5, this direct sum is a subspace of the polydiagonal 4./vi
.

Note that it is possible for different eigenspaces to be complements to R{v0} for the

same polydiagonal. We let {4./v1
, · · · ,4./vs

} ⊆ WP
G , where s ≤ n − 1, be the set of distinct

polydiagonals in {4./v1
, · · · ,4./vn−1

}.

Now, 4./vi
is invariant under A because this is the sum of two invariant subspaces. For

4./vi
to be a balanced polydiagonal, we need to check the following condition.

Theorem 4.4 states that 4./ is a balanced polydiagonal if and only if P./AP./ = AP./,

where P./ is the projection on 4./. Here, we define a projection map πG of polydiagonals to

itself such that

πG(4./vi
) =

 4./vi
if P./AP./ = AP./

0 otherwise
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and therefore

range(πG) = Ṽ P
G ⊆ V P

G ⊆WP
G

which is the set of balanced polydiagonals. Hence Ṽ P
G ⊆ V P

G .

We now define a corresponding balanced equivalence relation ./ to a balanced polydiag-

onal 4./. When πG(4./vi
) 6= 0, using δ−1:

δ−1 : Ṽ P
G → Λ̃G δ−1(4./vi

) =./vi

where Λ̃G ⊆ ΛG .

So far we have found generators for the lattice of balanced equivalence relations. Every

lattice of balanced equivalence relations of regular homogeneous networks contains two trivial

relations: all cells are equivalent and all cells are different. Therefore, we will construct the rest

of non-trivial balanced equivalence relations in the lattice using these generators.

Lemma 7.11. Let Ṽ P
G = {4./1 , . . . ,4./s}, where s < n, be the set of balanced polydiagonals

generated from the eigenvectors of the n × n adjacency matrix A of a given n-cell regular ho-

mogeneous network G. If A has simple eigenvalues, then all other non-trivial lattice elements of

balanced polydiagonals (if they exist) are generated by 〈ṼG ,∨〉 which satisfy

dim(4./) = rank(./).

Proof. Let ŨP
G = {L./1 , . . . , L./s} be the set of eigenvalue sets. Each L./ corresponds to the set

of eigenvalues of the adjacency matrix of a quotient network G/./. Let S =
⋃s

i=1 L./i which is

the collection of eigenvalues correspond to the generators of Ṽ P
G , and let T = {λ0, . . . , λn−1} be

n distinct eigenvalues of A. If there exists a balanced polydiagonal 4./ ∈ V P
G \ Ṽ P

G , then, by an

order-isomorphism f , there are three cases for the corresponding set of eigenvalues L./:

1. L./ /∈ ŨP
G and ∃λ ∈ L./ such that λ ∈ T \S,

2. L./ ∈ ŨP
G , but the corresponding 4./ /∈ Ṽ P

G ,

3. L./ /∈ ŨP
G . ∀λ ∈ L./, λ ∈ S, but the corresponding 4./ /∈ Ṽ P

G .

The first case does not happen because the polydiagonal generated by λ ∈ T \S is not balanced.

The second case also does not happen since, by Lemma 7.8, there is a one-to-one relationship

between L./ and 4./.

Therefore, the third case is the only possibility. Since ∀λ ∈ L./, λ ∈ S, L./ is generated

by the join operation of elements in ŨP
G which satisfy |L./| = rank(./). Note that we can exclude

the case of a meet operation as smaller sets of eigenvalues must have been found already in ŨP
G .
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Using an order-isomorphism f , the corresponding polydiagonal4./ /∈ Ṽ P
G is generated by

the join operation of the corresponding elements in Ṽ P
G which satisfy dim(4./) = rank(./). This

polydiagonal is the sum of balanced polydiagonals, firstly it is A-invariant. To be a balanced

polydiagonal, this must satisfy

P./AP./ = AP./

where P./ is projection onto 4./.

Hence if there exists a polydiagonal 4./ /∈ Ṽ P
G , then it can be generated only by 〈ṼG ,∨〉

which satisfy

dim(4./) = rank(./).

Definition 7.10. Define V∨ to be the set of balanced polydiagonals which are generated by the

join operation applied to elements 4./ ∈ Ṽ P
G .

Theorem 7.3. Let G be a regular homogeneous coupled cell network with adjacency matrix A

and total phase space P . If the adjacency matrix A associated with the coupled cell network G

has simple eigenvalues, then V P
G =

(
Ṽ P
G ∪ V∨

)
∪ (4∪ P ).

Proof. From Lemma 7.11, no other non-trivial balanced polydiagonals exist. Hence, the set of

all non-trivial balanced polydiagonals is the union of the set of balanced polydiagonals generated

by eigenvector structures (which is Ṽ P
G ) and the set of balanced polydiagonals generated by the

join operation (which is V∨). Also V P
G contains two trivial balanced polydiagonals 4 and P .

Hence, V P
G =

(
Ṽ P
G ∪ V∨

)
∪ (4∪ P ).

Corollary 7.1. Let G be a regular homogeneous coupled cell network with adjacency matrix

A. Let Λ̃G be the set of balanced equivalence relations associated with eigenvectors of A. If the

adjacency matrix A associated with the coupled cell network G has simple eigenvalues, then all

other non-trivial balanced equivalence relations (if they exist) are generated by 〈Λ̃G ,∧〉.

Proof. Applying the anti-isomorphism δ−1 : WP
G →MG to Ṽ P

G gives:

Λ̃G = {δ−1(4./) : ∀4./ ∈ Ṽ P
G }

Other non-trivial balanced equivalence relations, if they exist, correspond to δ−1(4./) where

4./ ∈ V∨. Since δ−1 interchanges meet and join, they are generated by the meet operation of

elements in Λ̃G .
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Network #297 Adjacency matrix Eigenvalues Eigenvectors
0 0 0 2
1 0 1 0
1 0 1 0
1 0 0 1


2 (1, 1, 1, 1)
1 (0, 1, 1, 0)
0 (0, 1, 0, 0)
−1 (−2, 1, 1, 1)

Table 7.2: Four-cell network #297

{2, 0} {2, 1} {2,−1}

{2, 1, 0} {2, 0,−1} {2, 1,−1}

Figure 7.4: The six quotient networks and corresponding eigenvalues of four-cell network #297,
where shaded networks are generated by non-trivial balanced equivalence relations associated
with eigenvectors.

Example 7.3. Consider 4-cell valency 2 regular homogeneous network #297, whose adjacency

matrix has simple eigenvalues (Table 7.2). This has six quotient networks shown in Figure 7.4,

with their corresponding eigenvalues. The resulting lattice is shown in Figure 7.5.
3

7.4.5 Existence of Bifurcating Branches

The above discussion is valid for real and complex simple eigenvalues. However, note that some

statements below consider only simple real eigenvalues, since we restrict attention to synchrony-

breaking steady-state bifurcations.

We now define the number of independent (distinct) eigenvalues in each L./ ∈ UP
G . These

independent eigenvalues correspond to critical eigenvalues of the Jacobian of a coupled cell sys-

tem. Bifurcation points are determined by these critical eigenvalues and there exist bifurcating

branches either along the balanced polydiagonal 4./ or outside these balanced polydiagonals.

First we define the number of independent eigenvalues for each element p ∈ UP
G . This
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Figure 7.5: Lattice of the eigenvalues of quotient networks for four-cell network #297, where
the shaded non-trivial lattice points are generated by eigenvectors.

number will be used for the construction of the minimum lattice of balanced polydiagonals.

Definition 7.11. For p ∈ UP
G , define the number of independent eigenvalues η(p) ∈ N0 recur-

sively as follows. Consider the filter with p as bottom element. If p = >, define η(p) := 1. Let

F(p) be the filter with bottom element p; that is F(p) = {x|x ≥ p, x ∈ UP
G }. Then define η(p)

by:

η(p) = rank(p)−
∑

e∈F(p),e 6=p

η(e)

Proposition 7.3. Let n be the number of cells in a regular homogeneous coupled cell network

G. Then

∑
p∈UP

G

η(p) = n (7.11)

where η(p) := 1 if p = > and 0 ≤ η(p) ≤ rank(p)− 1 if p 6= >.

Proof. This follows directly from the definition of η(p). In fact, η(p) counts the number of

eigenvalues in a set of eigenvalues in p = L./ which does not come from connecting higher lattice

points. Since there are n eigenvalues (including repeated eigenvalues),
∑

p∈UP
G

η(p) sums to

n.

Example 7.4. Given the following lattice structure, we assign numbers η(p) to each lattice point

p as in Definition 7.11:
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a = 1 since a is the top.

b = 2-1 = 1

c = 2-1 = 1

d = 3-(1+1)=1

e = 3-(1+1+1)=0

f = 4-(1+0+1+1+1)=0

3

Lemma 7.12. Let G be a coupled cell network with associated adjacency matrix A, which has

simple real eigenvalues. Let L./ ∈ UP
G . If η(L./) 6= 0, then there exists a unique synchrony-

breaking steady-state bifurcating branch which lies in the corresponding balanced polydiagonal

4./ and its bifurcation type is determined by the quotient network G/./.

Proof. If η(L./) 6= 0, then there exists an eigenvalue λ of A which determines a synchrony-

breaking bifurcation point µ through the equation:

h(µ) + λk(µ) = 0 (7.12)

where h and k are functions of µ, determined by the linearised internal and external dynamics of

the admissible vector field of G, respectively. Therefore, synchrony-breaking bifurcation occurs

at µ, where Equation (7.12) is satisfied with the derivative of a critical eigenvalue with respect

to µ; that is h′(µ) + λk′(µ), is nonzero.

Since the centre eigenspace corresponding to λ (and µ) is one-dimensional, it is contained

in the synchronous subspace 4./ associated with the quotient network G/./. Moreover, the

Jacobian evaluated at the bifurcation point, corresponding to a simple eigenvalue, is singular,

therefore, there exists a unique synchrony-breaking bifurcating branch lying in 4./. Finally, the

type of generic bifurcation of the synchronous state in 4./ is determined by the corresponding

quotient network.

For a specific eigenvector structure (eigenvectors with only two distinct entries), the ex-

istence of a unique synchrony-breaking bifurcating branch is guaranteed. The following Lemma

is equivalent to the result shown in Wang and Golubitsky (2005) for lattice dynamical systems.

This paper considers four types of planar lattice dynamical system. It shows that for a given bal-

anced two-colouring in these lattice dynamical systems, there is a codimension one bifurcation

from a synchronous equilibrium to a branch of equilibria with that two-colouring.
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Lemma 7.13. Let G be an n-cell regular homogeneous network and let the associated system of

the form

Ẋ = F (X, µ)

where µ ∈ R is a bifurcation parameter. Assume that F (0, µ) = 0 for all µ. Let αA + βI, where

α, β ∈ R, be a linear admissible vector field of the system. Let v be an eigenvector of A that has

only two distinct entries in R. Then there exists a unique synchrony-breaking bifurcating branch

bifurcating from the fully synchronous state X = 0 such that the bifurcating branch is in 4./v ,

where 4./v is the polydiagonal generated by v.

Proof. By Lemma 7.7, if v has only two distinct entries, the equivalence relation defined by v is

always balanced. By Lemma 7.12, balanced equivalence relations determined by an eigenvector

structures always have nonzero values for η(p), and this guarantee the existence of a bifurcating

branch from the fully synchronous state. The bifurcating branch is unique since this bifurcates

at a simple eigenvalue.

Let ⊥ to be the bottom element in UP
G . Now:

η(⊥) = dim(ker(πG)) + #(trivial polydiagonal = P)

Therefore, η(⊥) is equal to the number of non-balanced polydiagonals plus the trivial polydiag-

onal P . Now we define

Definition 7.12. If η(⊥) = 0, we call the lattice UP
G nondegenerate. If η(⊥) 6= 0, we call the

lattice UP
G degenerate.

Theorem 7.4. Let G be a regular homogeneous coupled cell network with adjacency matrix A,

which has simple real eigenvalues. If UP
G is nondegenerate, then synchrony-breaking steady-state

bifurcations of a network G can be deduced solely from those quotient networks for which η(L./) 6=

0. If UP
G is degenerate, there may be bifurcating branches outside the balanced polydiagonals.

Proof. If UP
G is nondegenerate, by Lemma 7.12, all synchrony-breaking bifurcation points are de-

termined by the simple eigenvalues of A and their bifurcation is determined by the corresponding

quotient network.

If UP
G is degenerate, there exists an eigenvalue λ of A where a synchrony-breaking bi-

furcation occurs; however, the centre eigenspace corresponding to λ is not in any synchronous

subspace. Hence, there may be synchrony-breaking bifurcating branches outside the balanced

polydiagonal.
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Theorem 7.5. If G1 and G2 are n-cell regular homogeneous coupled cell networks and their

adjacency matrices A1 and A2 are not similar (have different Jordan Normal Forms), then

G1 � G2; that is G1 and G2 are topologically distinct.

Proof. Assume G1
∼= G2. Then there exists a permutation matrix P such that

PA1P
−1 = A2

This means that A1 and A2 are similar. Equivalently, if A1 and A2 are not similar, then

G1 � G2.

As a Corollary of Theorem 7.5, we prove that all quotient networks corresponding to

elements in UP
G are topologically distinct.

Corollary 7.2. Let A be the n× n adjacency matrix associated with an n-cell regular homoge-

neous coupled cell network G. Let 4./ ∈ V P
G and let G/./ be the corresponding quotient network.

If all eigenvalues of the adjacency matrix A are distinct, then all quotient networks G/./ are

topologically distinct.

Proof. Assume G/./1
∼= G/./2 with L./1 6= L./1 , consequently 4./1 6= 4./1 . Then there exists a

permutation matrix P such that

PA./1P
−1 = A./2

where A./1 and A./2 are adjacency matrices of G/./1 and G/./2 . This means that A./1 is similar to

A./2 . However, A./1 and A./2 have different sets of distinct eigenvalues (spectrums), therefore,

they are not similar. This is contradiction. Hence there does not exist such a permutation

matrix P , so G/./1 and G/./2 are topologically distinct.

Therefore, quotient networks of regular homogeneous coupled cell networks with simple

eigenvalues are all topologically different. Bifurcation types (e.g., transcritical, pitchfork) which

lie in the corresponding polysynchronous subspaces are determined from the corresponding quo-

tient networks.

7.4.6 Lattice Determination of 3 and 4-cell Networks with Simple Eigenvalues

Proposition 7.4. Let G be a 3-cell regular homogeneous coupled cell network with any valency

r, and let A be the corresponding 3× 3 adjacency matrix. If A has 3 distinct eigenvalues, then

there are just 3 possible lattice structures, shown in Figure 7.6, which satisfy Equation (7.11) in

Proposition 7.3.
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L1 L2 L3

Figure 7.6: The three lattice structures for 3-cell networks with simple eigenvalues. The shaded
lattice nodes are (non-trivial) lattice generators constructed from the eigenvector structures.

Proof. A lattice always has a top element > and a bottom element ⊥, whose corresponding

elements in V P
G are the fully synchronous state (1, . . . , 1) and total phase space P , respectively.

The top element has η(>) = 1 since, by Proposition 5.3, r is always an eigenvalue of homogeneous

coupled cell networks, with eigenvector (1, . . . , 1).

Equation (7.11) requires
∑

p∈UP
G

η(p) = 3. The top element > contributes η(>) = 1

to this sum, with the rest from the bottom element ⊥ and any rank 2 elements. There are

three possibilities for the rank 2 elements corresponding to the three lattice structures shown in

Figure 7.6:

1. If there are two lattice elements of rank 2, then by Definition 7.11, η(p) = 2 − 1 = 1 for

both these lattice elements, and η(⊥) = 3− (1 + 1 + 1) = 0. This leads to L1.

2. If there is one lattice element of rank 2 with η(p) = 2−1 = 1, then η(⊥) = 3− (1+1) = 1.

This leads to L2.

3. If there is no lattice element of rank 2, then η(⊥) = 3− 1 = 2. This leads to L3.

We can exclude the possibility of there being more than two rank 2 lattice elements, as

these would each have η(p) = 1. It would then follow that η(⊥) < 0 which is invalid.

Proposition 7.5. Let G be a 4-cell regular homogeneous coupled cell network with any valency

r, and let A be the corresponding 4× 4 adjacency matrix. If A has 4 distinct eigenvalues, then

the lattice of balanced equivalence relations must be one of the 14 structures shown in Figure 7.7.

Proof. As in the proof of Proposition 7.4, a lattice always has a top element > with η(>) = 1

and a bottom element ⊥. To satisfy
∑

p∈UP
G

η(p) = 4, there can be at most three lattice elements

of rank 2. More than this would require η(⊥) < 0 which is invalid. We consider the following

cases:
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L6 L8

L2 L5 L3 L7

L1 L12 L9 L10

L4 L11 L14 L13

Figure 7.7: The 14 possible lattice structures for four-cell networks with simple eigenvalues.
The number in each node p is η(p). The shaded lattice nodes correspond to non-trivial balanced
equivalence relations generated from the eigenvector structures (which are equivalently lattice
generators).
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1. There are three lattice elements of rank 2:

All three lattice elements of rank 2 have η(p) = 2 − 1 = 1. Since
∑

η(p) = 4 already,

η(⊥) = 0 and η(p) = 0 for all other lattice elements, if they exist. Since lattices ΛG and

UP
G are isomorphic, then by applying Corollary 7.1 to ΛG , we may consider all possible

lattice elements as the result of a meet operation using the above three lattice elements as

lattice generators.

In order to satisfy η(p) = 0, any lattice element p of rank 3 must have exactly two edges

from elements of rank 2. There are the following cases to consider:

(a) If all possible intersections (as a result of a meet operation) of the three balanced

equivalence relations of rank 2 are balanced, then there are three lattice elements of

rank 3. This is labelled as L4.

(b) If only two possible intersections of the three balanced equivalence relations are bal-

anced, then this corresponds to L11.

(c) If only one intersection of the three balanced equivalence relations is balanced, then

this corresponds to L14.

(d) If none of the intersections of the three balanced equivalence relations is balanced,

then this leads to L13.

2. There are two lattice elements of rank 2:

Two lattice elements of rank 2 have η(p) = 2 − 1 = 1. To satisfy
∑

η(p) = 4, we have a

lattice element with η(p) = 1 either of rank 3 or rank 4.

(a) If there exists a lattice element of rank 3, this lattice must have one edge from a

lattice element of rank 2, so that η(p) = 3 − (1 + 1) = 1. In this case there are two

possibilities, as follows:

i. If the intersection of two lattice elements of rank 2 is balanced with η(p) = 0,

then this leads to L1.

ii. If the intersection of two lattice elements of rank 2 is not balanced, then this

leads to L12.

(b) If there is no lattice element with η(p) = 1 of rank 3, then η(⊥) = 4− (1+1+1) = 1.

In this case, there are two possibilities:

i. If the intersection of two lattice elements of rank 2 is balanced with η(p) = 0,

then this leads to L9.
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ii. If the intersection of two lattice elements of rank 2 is not balanced, then this

leads to L10.

3. There is one lattice element of rank 2:

One lattice element of rank 2 will have η(p) = 2− 1 = 1.

(a) If the total value of η(p) is 2 for rank 3, then η(⊥) = 4− (1 + 1 + 2) = 0. There are

two possibilities for this case:

i. If there is a lattice element of rank 3, which is directly connected to >, then

η(p) = 3− 1 = 2. This corresponds to L2.

ii. If there are two lattice elements of rank 3, each with a single edge from rank 2,

then each of them has η(p) = 3− (1 + 1) = 1. This leads to L5.

(b) If there is only one lattice element with η(p) = 3 − (1 + 1) = 1 of rank 3, then

η(⊥) = 4− (1 + 1 + 1) = 1. This corresponds to L3.

(c) Finally, if there is no lattice element of rank 3, then η(⊥) = 4 − (1 + 1) = 2. This

corresponds to L7.

4. There is no lattice element of rank 2:

If there exists a lattice element of rank 3, then η(p) = 3 − 1 = 2. In this case, η(⊥) =

4− (1 + 2) = 1; that is L6. Otherwise, η(⊥) = 4− 1 = 3 which leads to L8. Two or more

lattice elements of rank 3 would contradict
∑

η(p) = 4.

Remark 7.1. There are two lattice structures which we can not observe in four-cell regular

homogeneous networks of valency 2.

(i) Lattice structure L13 appears for the first time when the valency is 3 for the four-cell network

shown in Figure 7.8.

(ii) The lattice structure L14 does not occur for any four-cell network of valency ≤ 5. We do

not know whether it can occur for higher valency.

The 14 lattice structures for four-cell regular homogeneous networks (Figure 7.7) are

possible minimum lattice topologies and we can’t reduce the lattice size any further. When an

adjacency matrix has any repeated eigenvalues with algebraic multiplicity more than 1, the size

of lattice would be larger – up to 15 nodes, and quotient networks corresponding to the nodes

in the lattice are not isomorphic.
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Adjacency matrix Eigenvalues
0 0 1 2
0 0 2 1
1 2 0 0
2 1 0 0




3
1
−1
−3



Figure 7.8: A four-cell network of valency 3 with lattice structure L13.

7.4.7 Example: Four-cell Simple Eigenvalue Network

We show an example which contrast the results from Liapunov-Schmidt reduction and from the

lattice method for the determination of the existence of synchrony-breaking branches from a

trivial solution. We also show an numerical analysis using a specific function form for Xppaut

simulation in Example 7.6.

Example 7.5 (The Existence of Branches from Liapunov-Schmidt Reduction). Consider the fol-

lowing 4-cell valency 2 regular homogeneous network #10 (denoted by G for lattices). The

associated adjacency matrix, its eigenvalues, and the corresponding eigenvectors are shown in

Table 7.3.

Network #10 Adjacency matrix Eigenvalues Eigenvectors

A10 =


0 0 0 2
0 0 0 2
0 0 1 1
0 2 0 0


λ0 = 2 (1, 1, 1, 1)
λ1 = 1 (0, 0, 1, 0)
λ2 = 0 (1, 0, 0, 0)
λ3 = −2 (−3,−3,−1, 3)

Table 7.3: Four-cell network #10 of valency 2.

All balanced equivalence relation are computed and its lattice is shown as ΛG . Each

balanced equivalence relation ./ in ΛG defines a balanced polydiagonal 4./ and the admissible

vector field restricted to 4./ determines the quotient network G/./. The lattice of eigenvalues

of quotient networks is defined as UP
G . These lattices are shown in Figure 7.9.

The lattice UP
G has L1 structure in Figure 7.7. Hence we expect to have three unique

synchrony-breaking branches bifurcate from three distinct bifurcation points µ1, µ2 and µ3.

Each bifurcation type is determined by the corresponding quotient network and the bifurcating

branch lies in the corresponding balanced polydiagonal. We now find nondegeneracy conditions

for each synchrony-breaking bifurcating branch.
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Figure 7.9: Lattices ΛG and UP
G of network #10. Shaded lattice nodes are generated by eigen-

vectors of A10.

The admissible dynamical systems for this network have the form:

ẋ1 = f(x1, x4, x4, µ)

ẋ2 = f(x2, x4, x4, µ)

ẋ3 = f(x3, x4, x3, µ)

ẋ4 = f(x4, x2, x2, µ)

where µ ∈ R is a bifurcation parameter.

We apply Liapunov-Schmidt reduction to the system

F (X, µ) = (F1(X, µ), F2(X, µ), F3(X, µ), F4(X, µ)) = 0

where F1(X, µ) = f(x1, x4, x4, µ), F2(X, µ) = f(x2, x4, x4, µ), F3(X, µ) = f(x3, x4, x3, µ), and

F4(X, µ) = f(x4, x2, x2, µ).

The reduced equation obtained by applying Liapunov-Schmidt reduction has the form

K(y, µ) = 0

where y ∈ R, K : R× R→ R is smooth.

The critical eigenvalue µi for synchrony-breaking associated with the eigenvalue λi, i =

1, 2, 3 is given by

fu(0, µi) + λifv(0, µi)

Hence the Jacobian J is:

J = fu(0, µi)


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

+ fv(0, µi)


0 0 0 2

0 0 0 2

0 0 1 1

0 2 0 0


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We calculate each derivative of the reduced equation to determine which bifurcation occurs at

each synchrony-breaking bifurcation point. In the following, we assume that

fµu(0, µi) + λifµv(0, µi) 6= 0 (7.13)

at each bifurcation point µi
1.

1. When fu(0, µ1) = −fv(0, µ1):

Since fu(0, µ1) = −fv(0, µ1), the Jacobian is:

J = fv(0, µ1)(A10 − I4) = fv(0, µ1)


−1 0 0 2

0 −1 0 2

0 0 0 1

0 2 0 −1


where fv(0, µ1) 6= 0.

• Obtaining v0 ∈ kerJ and v∗0 ∈ (rangeJ)⊥:

Let (x, y, z, w) be any vector in R4.

fv(0, µ1)


−1 0 0 2

0 −1 0 2

0 0 0 1

0 2 0 −1




x

y

z

w

 = fv(0, µ1)


−x + 2w

−y + 2w

w

2y − w

 =


0

0

0

0



⇒


x

y

z

w

 =


0

0

α

0


where α ∈ R.

Therefore, v0 = (0, 0, 1, 0). By solving ker(J t), we obtain v∗0 = (0, 2,−3, 1) ∈

(rangeJ)⊥.

• Computation of Kyµ(0, µ1):

Fµ = (fµ(x1, x4, x4, µ), fµ(x2, x4, x4, µ), fµ(x3, x4, x3, µ), fµ(x4, x2, x2, µ))

dFµ(v0) =


fµu 0 0 2fµv

0 fµu 0 2fµv

0 0 fµu + fµv fµv

0 2fµv 0 fµu




0

0

1

0

 =


0

0

fµu + fµv

0


1This condition is actually satisfied as the same condition for Kµy(0, µi) 6= 0.
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Therefore,

Kyµ(0, µ1) = 〈v∗0, dFµ(v0)〉 =


0

2

−3

1

 ·


0

0

fµu + fµv

0


= −3(fµu(0, µ1) + fµv(0, µ1))

which is generically nonzero if fµu(0, µ1) 6= −fµv(0, µ1).

• Computation of Kyy(0, µ1):

Since v∗0 = (0, 2,−3, 1),

Kyy(0, µ1) = 2d2F2(v0,v0)− 3d2F3(v0,v0) + d2F4(v0,v0)

Now

dF1(v0) =


fu

0

0

2fv

 ·


0

0

1

0

 = 0

d2F1(v0,v0) = 0

dF2(v0) =


0

fu

0

2fv

 ·


0

0

1

0

 = 0

d2F2(v0,v0) = 0

dF3(v0) =


0

0

fu + fv

fv

 ·


0

0

1

0

 = fu(x3, x3, x4, µ) + fv(x3, x3, x4, µ)

d2F3(v0,v0) =


0

0

fuu + 2fuv + fvv

fuv + fvv

 ·


0

0

1

0

 = fuu + 2fuv + fvv
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dF4(v0) =


0

2fv

0

fu

 ·


0

0

1

0

 = 0

d2F4(v0,v0) = 0

Therefore, Kyy(0, µ1) = −3(fuu(0, µ1)+2fuv(0, µ1)+fvv(0, µ1)), which is generically

nonzero if fuu(0, µ1) + 2fuv(0, µ1) + fvv(0, µ1) 6= 0.

The above conditions guarantee the existence of a transcritical bifurcating branch from

the trivial solution (x1, x2, x3, x4, µ) = (0, 0, 0, 0, µ1). Note that these conditions are the

same as we found in two-cell quotient network # 4 in Table 7.4. The transcritical branch

lies in the two-dimensional polydiagonal (x1, x2, x3, x4) = (u, u, v, u).

2. When fu(0, µ2) = 0:

Since fu(0, µ1) = 0, the Jacobian is:

J = fv(0, µ2)A10 = fv(0, µ2)


0 0 0 2

0 0 0 2

0 0 1 1

0 2 0 0


where fv(0, µ2) 6= 0.

• Obtaining v0 ∈ kerJ and v∗0 ∈ (rangeJ)⊥:

Let (x, y, z, w) be any vector in R4.

fv(0, µ2)


0 0 0 2

0 0 0 2

0 0 1 1

0 2 0 0




x

y

z

w

 = fv(0, µ2)


2w

2w

z + w

2y

 =


0

0

0

0



⇒


x

y

z

w

 =


α

0

0

0


where α ∈ R,
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Therefore, v0 = (1, 0, 0, 0). By solving ker(J t), we obtain v∗0 = (1,−1, 0, 0) ∈

(rangeJ)⊥.

• Computation of Kyµ(0, µ2):

Fµ = (fµ(x1, x4, x4, µ), fµ(x2, x4, x4, µ), fµ(x3, x4, x3, µ), fµ(x4, x2, x2, µ))

dFµ(v0) =


fµu 0 0 2fµv

0 fµu 0 2fµv

0 0 fµu + fµv fµv

0 2fµv 0 fµu




1

0

0

0

 =


fµu

0

0

0


Therefore,

Kyµ(0, µ2) = 〈v∗0, dFµ(v0)〉 =


1

−1

0

0

 ·


fµu

0

0

0


= fµu(0, µ2)

which is generically nonzero .

• Computation of Kyy(0, µ2):

Since v∗0 = (1,−1, 0, 0),

Kyy(0, µ2) = d2F1(v0,v0)− d2F2(v0,v0)

Now

dF1(v0) =


fu

0

0

2fv

 ·


1

0

0

0

 = fu(x1, x4, x4, µ)

d2F1(v0,v0) =


fuu

0

0

2fuv

 ·


1

0

0

0

 = fuu(0, µ2)

172



dF2(v0) =


0

fu

0

2fv

 ·


1

0

0

0

 = 0

d2F2(v0,v0) = 0

Therefore, Kyy(0, µ2) = fuu(0, µ2), which is generically nonzero.

The above conditions guarantee the existence of a transcritical bifurcating branch from

the trivial solution (x1, x2, x3, x4, µ) = (0, 0, 0, 0, µ2). Note that these conditions are the

same as we found in two-cell quotient network # 1 in Table 7.4. The transcritical branch

lies in the two-dimensional polydiagonal (x1, x2, x3, x4) = (u, v, v, v).

3. When fu(0, µ3) = 2fv(0, µ3):

Since fu(0, µ3) = 2fv(0, µ3), the Jacobian is:

J = fv(0, µ3)(A10 + 2I4) = fv(0, µ3)


2 0 0 2

0 2 0 2

0 0 3 1

0 2 0 2


where fv(0, µ3) 6= 0.

• Obtaining v0 ∈ kerJ and v∗0 ∈ (rangeJ)⊥:

Let (x, y, z, w) be any vector in R4.

fv(0, µ3)


2 0 0 2

0 2 0 2

0 0 3 1

0 2 0 2




x

y

z

w

 = fv(0, µ3)


2x + 2w

2y + 2w

3z + w

2y + 2w

 =


0

0

0

0



⇒


x

y

z

w

 =


3α

3α

α

−3α


where α ∈ R.

Therefore, v0 = (3, 3, 1,−3). By solving ker(J t), we obtain v∗0 = (0, 1, 0,−1) ∈

(rangeJ)⊥.
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• Computation of Kyµ(0, µ3):

Fµ = (fµ(x1, x4, x4, µ), fµ(x2, x4, x4, µ), fµ(x3, x4, x3, µ), fµ(x4, x2, x2, µ))

dFµ(v0) =


fµu 0 0 2fµv

0 fµu 0 2fµv

0 0 fµu + fµv fµv

0 2fµv 0 fµu




3

3

1

−3

 =


3fµu − 6fµv

3fµu − 6fµv

fµu − 2fµv

6fµv − 3fµu


Therefore,

Kyµ(0, µ3) = 〈v∗0, dFµ(v0)〉 =


0

1

0

−1

 ·


3fµu − 6fµv

3fµu − 6fµv

fµu − 2fµv

6fµv − 3fµu


= 6(fµu(0, µ3)− 2fµv(0, µ3))

which is generically nonzero if fµu(0, µ3) 6= 2fµv(0, µ3).

• Computation of Kyy(0, µ3):

Since v∗0 = (0, 1, 0,−1),

Kyy(0, µ3) = d2F2(v0,v0)− d2F4(v0,v0)

Now

dF2(v0) =


0

fu

0

2fv

 ·


3

3

1

−3

 = 3fu(x2, x4, x4, µ)− 6fv(x2, x4, x4, µ)

d2F2(v0,v0) =


0

3fuu − 6fuv

0

6fuv − 12fvv

 ·


3

3

1

−3


= 9fuu(0, µ3)− 36fuv(0, µ3) + 36fvv(0, µ3)
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dF4(v0) =


0

2fv

0

fu

 ·


3

3

1

−3

 = 6fv(x4, x2, x2, µ)− 3fu(x4, x2, x2, µ)

d2F4(v0,v0) =


0

12fvv − 6fuv

0

6fuv − 3fuu

 ·


3

3

1

−3


= 36fvv(0, µ3)− 36fuv(0, µ3) + 9fuu(0, µ3)

Therefore, Kyy(0, µ3) = 0.

• Computation of Kyyy(0, µ3):

We calculate Kyyy(0, µ3) by first calculating

A ≡ 〈v∗0, d3F (v0,v0,v0)〉

B ≡ 〈v∗0, d2F (v0, J
−1Ed2F (v0,v0))〉

Since v∗0 = (0, 1, 0,−1),

A = d3F2(v0,v0,v0)− d3F4(v0,v0,v0)

B = d2F2(v0, J
−1Ed2F (v0,v0))− d2F4(v0, J

−1Ed2F (v0,v0))

Now

d3F2(v0,v0,v0) =


0

9fuuu − 36fuvu + 36fvvu

0

18fuuv − 72fuvv + 72fvvv

 ·


3

3

1

−3


= 27fuuu(0, µ3)− 108fuuv(0, µ3) + 108fvvu(0, µ3)

−54fuuv(0, µ3) + 216fuvv(0, µ3)− 216fvvv(0, µ3)

d3F4(v0,v0,v0) =


0

72fvvv − 72fuvv + 18fuuv

0

36fvvu − 36fuvu + 9fuuu

 ·


3

3

1

−3


= 216fvvv(0, µ3)− 216fuvv(0, µ3) + 54fuuv(0, µ3)

−108fvvu(0, µ3) + 108fuvu(0, µ3)− 27fuuu(0, µ3)
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Therefore

A = 2 {27fuuu(0, µ3)− 162fuuv(0, µ3) + 324fuvv(0, µ3)− 216fvvv(0, µ3)} (7.14)

To find B we need to know J−1 : rangeJ → M where M satisfies R4 = kerJ ⊕M .

Now M and rangeJ are spanned by {(1, 0, 0, 0), (0, 1, 0, 1), (0, 0, 1, 0)}, so in this basis
2 0 0 2

0 2 0 2

0 0 3 1

0 2 0 2




1

0

0

0

 =


2

0

0

0

 = 2


1

0

0

0

+ 0


0

1

0

1

+ 0


0

0

1

0




2 0 0 2

0 2 0 2

0 0 3 1

0 2 0 2




0

1

0

1

 =


2

4

1

4

 = 2


1

0

0

0

+ 4


0

1

0

1

+ 1


0

0

1

0




2 0 0 2

0 2 0 2

0 0 3 1

0 2 0 2




0

0

1

0

 =


0

0

3

0

 = 0


1

0

0

0

+ 0


0

1

0

1

+ 3


0

0

1

0


Hence J restricted to M has the form:

J =


2 2 0

0 4 0

0 1 3


and the inverse of J exists such as:

J−1 =
1
12


6 −3 0

0 3 0

0 −1 4


v = (v1, v2, v3, v2) ∈ range(J) can be written as:

v1

v2

v3

v2

 = v1


1

0

0

0

+ v2


0

1

0

1

+ v3


0

0

1

0


The coordinate of v in M is:

J−1


v1

v2

v3

 =
1
12


6v1 − 3v2

3v2

−v2 + 4v3


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Hence for a given v ∈ range(J), v ∈M has the form

v =
1
12

(6v1 − 3v2)


1

0

0

0

+
1
12

3v2


0

0

1

0

+
1
12

(−v2 + 4v3)


0

0

1

0

 (7.15)

Now

d2F1(v0,v0) =


3fuu − 6fuv

0

0

6fuv − 12fvv

 ·


3

3

1

−3


= 9fuu(0, µ3)− 36fuv(0, µ3) + 36fvv(0, µ3)

dF3(v0) =


0

0

fu + fv

fv

 ·


3

3

1

−3

 = fu(x3, x3, x4, µ)− 2fv(x3, x3, x4, µ)

d2F3(v0) =


0

0

fuu − fuv − 2fvv

fuv − 2fvv

 ·


3

3

1

−3


= fuu(0, µ3)− 4fuv(0, µ3) + 4fvv(0, µ3)

Therefore

d2F (v0,v0) =


9fuu(0, µ3)− 36fuv(0, µ3) + 36fvv(0, µ3)

9fuu(0, µ3)− 36fuv(0, µ3) + 36fvv(0, µ3)

fuu(0, µ3)− 4fuv(0, µ3) + 4fvv(0, µ3)

9fuu(0, µ3)− 36fuv(0, µ3) + 36fvv(0, µ3)

 =


a

a

b

a

 ∈ range(J)

where

a = 9fuu(0, µ3)− 36fuv(0, µ3) + 36fvv(0, µ3)

b = fuu(0, µ3)− 4fuv(0, µ3) + 4fvv(0, µ3)

Therefore, use the form of v ∈M and note that E|range(J) = I to obtain

u0 = J−1Ed2F (v0,v0) =
1
4


a

a

−1
3a + 4

3b

a


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as v1 = v2 = a and v3 = b in Equation (7.15). We calculate d2F2(v0,u0) and

d2F4(v0,u0) as follows:

d2F2(v0,u0) =
1
4


0

3fuu − 6fuv

0

6fuv − 12fvv




a

a

−1
3a + 4

3b

a


=

1
4
(3afuu(0, µ3)− 12afvv(0, µ3))

d2F4(v0,u0) =


0

12fvv − 6fuv

0

6fuv − 3fuu




a

a

−1
3a + 4

3b

a


=

1
4
(12afvv(0, µ3)− 3afuu(0, µ3))

Therefore

B =
3
2
a(fuu(0, µ3)− 4fvv(0, µ3)) (7.16)

Generically, Kyyy(0, µ3) = A− 3B is nonzero.

The above conditions guarantee the existence of a pitchfork bifurcating branch from the

trivial solution (x1, x2, x3, x4, µ) = (0, 0, 0, 0, µ3). Note that these conditions are the same

as we found in 3-cell quotient network # 10 shown in Table 7.4. The pitchfork branch lies

in the three-dimensional polydiagonal (x1, x2, x3, x4) = (u, u, v, w).

The following Table 7.4 summarises the relations of nondegeneracy conditions among

quotient networks in the lattice. Since all quotient networks of a simple eigenvalue network

also have simple eigenvalues, all nondegeneracy conditions for each quotient network are also

calculated by using Liapunov-Schmidt reduction.
3
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two-cell quotient network # 4 two-cell quotient network # 1

critical eigenvalue: Bif. type: critical eigenvalue: Bif. type:
fu(0, µ1) = −fv(0, µ1) transcritical fu(0, µ2) = 0 transcritical

nondegeneracy conditions: nondegeneracy conditions:
fv(0, µ1) 6= 0 fv(0, µ2) 6= 0
fµu(0, µ1) 6= −fµv(0, µ1) fµu(0, µ2) 6= 0
fuu(0, µ1) + 2fuv(0, µ1) + fvv(0, µ1) 6= 0 fuu(0, µ2) 6= 0

three-cell quotient network # 10 three-cell quotient network # 5

critical eigenvalue: Bif. type: critical eigenvalue: Bif. type:
fu(0, µ1) = −fv(0, µ1) transcritical fu(0, µ1) = −fv(0, µ1) transcritical

nondegeneracy conditions: nondegeneracy conditions:
fv(0, µ1) 6= 0 fv(0, µ1) 6= 0
fµu(0, µ1) 6= −fµv(0, µ1) fµu(0, µ1) 6= −fµv(0, µ1)
fuu(0, µ1) + 2fuv(0, µ1) + fvv(0, µ1) 6= 0 fuu(0, µ1) + 2fuv(0, µ1) + fvv(0, µ1) 6= 0

critical eigenvalue: Bif. type: critical eigenvalue: Bif. type:
fu(0, µ3) = 2fv(0, µ3) pitchfork fu(0, µ2) = 0 transcritical

nondegeneracy conditions: nondegeneracy conditions:
fv(0, µ3) 6= 0 fv(0, µ2) 6= 0
fµu(0, µ3) 6= 2fµv(0, µ3) fµu(0, µ2) 6= 0
A− 3B 6= 0 fuu(0, µ2) 6= 0

Table 7.4: Quotient networks of four-cell network #10 and their nondegeneracy conditions from
Liapunov-Schmidt reduction. A and B are given Equation (7.14) and (7.16). The shaded
quotient networks are determined by the balanced polydiagonals which are generated from the
eigenvector structures of the adjacency matrix of the network.
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Example 7.6 (Numerical Analysis). We numerically analyse synchrony-breaking steady-state

bifurcations of the same four-cell valency 2 network #10 using a specific function form.

From the above Example 7.5, we expect to have three unique bifurcating branches from

three distinct bifurcation points, that is:

1. a transcritical branch in a polydiagonal subspace (x1, x2, x3, x4) = (u, u, v, u),

2. a transcritical branch in a polydiagonal subspace (x1, x2, x3, x4) = (u, v, v, v),

3. a pitchfork branch in a polydiagonal subspace (x1, x2, x3, x4) = (u, u, v, w).

No other branches are expected.

We choose a function form which satisfies the nondegeneracy conditions for all bifurcation

points so that we expect to see all predicted bifurcating branches at all three synchrony-breaking

bifurcation points. For example, the function form

f(u, v, w, µ) = µu− (u + v + w) + u2 − u3 (7.17)

has the following derivatives:

fu(0, µ) = µ− 1,

fµu(0, µ) = 1,

fv(0, µ) = −1,

fµv(0, µ) = 0,

fuu(0, µ) = 2,

fuv(0, µ) = 0,

fvv(0, µ) = 0,

fuuu(0, µ) = −6,

fuuv(0, µ) = 0,

fuvv(0, µ) = 0,

fvvv(0, µ) = 0.

Three synchrony-breaking bifurcation points are:

Eigenvalue of A Bifurcation point

λ1 = 1 fu(0, µ1) + λ1fv(0, µ1) = 0⇒ µ1 = 2

λ2 = 0 fu(0, µ2) + λ2fv(0, µ2) = 0⇒ µ2 = 1

λ3 = −2 fu(0, µ3) + λ3fv(0, µ3) = 0⇒ µ3 = −1
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All nondegeneracy conditions at every µi, i = 1, 2, 3 are satisfied.

Using the function form (7.17), the system of ODEs for the network #10 has the form:

ẋ1 = µx1 − (x1 + x4 + x4) + x2
1 − x3

1

ẋ2 = µx2 − (x2 + x4 + x4) + x2
2 − x3

2

ẋ3 = µx3 − (x3 + x3 + x4) + x2
3 − x3

3

ẋ4 = µx4 − (x4 + x2 + x2) + x2
4 − x3

4

Table 7.5 shows steady states close to each bifurcation point (x1, x2, x3, x4, µ) = (0, 0, 0, 0,

µi), i = 1, 2, 3. ./ shows the patterns of synchrony and the corresponding polydiagonals in which

bifurcating branches lie. The existence of generic bifurcations is guaranteed by nondegeneracy

conditions. “P” means a “pitchfork” bifurcation and “T” means a “transcritical” bifurcation in

the last column.

Bifurcation parameter µ3 = −0.9999
x1 x2 x3 x4 ./ Bif.

−0.0140908 −0.0140908 −0.00472295 0.0141908 (12)(3)(4) P
0.0141908 0.0141908 0.00470444 −0.0140908

Bifurcation parameter µ2 = 1.0001
x1 x2 x3 x4 ./ Bif.

−0.00009999 0 0 0 (234)(1) T

Bifurcation parameter µ1 = 2.0001
x1 x2 x3 x4 ./ Bif.
0 0 −0.00009999 0 (124)(3) T

Table 7.5: Steady states of four-cell network #10 at very close to each bifurcation point.

These numerical solutions show three bifurcation branches in the expected polydiagonal

and their bifurcation types.

Four bifurcation diagrams are shown in Figure 7.10. Each axis x (as x1), y (as x2), z

(as x3) and w (as x4) corresponds to a state variable for cell “1”, cell “2”, cell “3” and cell “4”,

respectively with the bifurcation parameter axis r (as µ).

By comparing the bifurcation diagrams in Figure 7.10 for each variable with Table 7.5,

we can see how the four states x1, x2, x3 and x4 are coupled as steady state solutions and three

synchrony-breaking bifurcating branches lie in three distinct polydiagonals. This result is shown

schematically in Figure 7.12, L1 lattice.
3
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Figure 7.10: Bifurcation diagrams of four-cell valency 2 network #10 for cell “1”, “2”, “3” and
“4” state variables.

7.4.8 Bifurcation Diagrams of 3 and 4-cell Networks with Simple Eigenvalues

The following schematic Figure 7.11 shows the existence of synchrony-breaking steady-state

bifurcating branches, for the three lattice structures observed in 3-cell regular homogeneous

networks with simple real eigenvalues. Because there are three distinct eigenvalues, there are

three corresponding distinct bifurcation points. There have been marked on the horizontal axis

from left to right as µ0, µ1 and µ2. This ordering on the axis does not reflect their numerical

values2.

The bifurcation point µ0 corresponds to the synchrony-preserving bifurcating point (i.e.,

the eigenvalue equal to a valency of the network), and therefore has no synchrony-breaking

bifurcation branches.

The vertical axis does not represent any particular variable, but is a simplified representa-

tion of directions in the relevant balanced polydiagonals. The shape and direction of the curves

shown has no significance in these schematic figures. Synchrony-breaking bifurcation branches

2If we want to study the equivalence of two bifurcation diagrams, we need to consider the spectrum of eigen-
values. Then the order of µ0, µ1 and µ2 does matter.
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lie in a particular balanced polydiagonal direction, which has been labelled. For example P2

indicates two conjugacy classes, e.g. (x, y, z) = (u, u, v), while for P3 we have three conjugacy

classes, i.e. (x, y, z) = (u, v, w).

L1

L2

L3

Figure 7.11: Existence of bifurcating branches for each 3-cell network lattice structure. The
shaded lattice nodes correspond to non-trivial balanced equivalence relations generated from
the eigenvector structures (which are equivalently lattice generators).
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Similarly, Figure 7.12 shows the existence of synchrony-breaking steady-state bifurcation

branches schematically, for the fourteen lattice structures of 4-cell regular homogeneous networks

with simple real eigenvalues listed in Figure 7.7.

L6

L8

Figure 7.12: Existence of bifurcating branches for 4-cell network lattice structures shown in
Figure 7.7 (split over four pages). The shaded lattice nodes correspond to non-trivial balanced
equivalence relations generated from the eigenvector structures (which are equivalently lattice
generators).
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L2

L5

L3

L7
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L1

L12

L9

L10
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L4

L11

L14

L13
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7.5 Conclusions

For both simple eigenvalue networks and non-simple eigenvalue networks, we defined three lat-

tices: lattice of balanced equivalence relations, lattice of balanced polydiagonals and lattice of

the set of eigenvalues of quotient networks, denoted by ΛG , V P
G and UP

G , respectively. We showed

that these three lattices are order-isomorphic if the adjacency matrices of networks have simple

eigenvalues. However, when the adjacency matrix has repeated eigenvalues, V P
G is isomorphic

to ΛG but there is only an order-preserving map between UP
G and ΛG (or equivalently V P

G ).

We then showed that there exist lattice generators for simple networks and these genera-

tors can be constructed from the eigenvector structures of the adjacency matrices of the networks.

The rest of the lattice elements in V P
G were constructed by a join of lattice generators.

All possible lattice structures for three and four-cell regular homogeneous networks of any

valency with simple eigenvalues are determined. If balanced equivalence relations ./ are defined

by lattice generators, then synchrony-breaking bifurcating branches exist in the corresponding

balanced polydiagonals 4./ at a simple real eigenvalue. From lattice structures, the existence of

bifurcating branches and their bifurcating directions was determined. In particular, the number

of the bottom element, η(⊥), in a lattice elucidates the existence of bifurcating branches outside

the possible balanced polydiagonals.

Schematic bifurcation diagrams which show the existence of bifurcating branches and

their bifurcating directions (the dimension of balanced polydiagonals) were listed for all possi-

ble lattice structures of all three and four-cell regular homogeneous networks with simple real

eigenvalues.

Bifurcation diagrams of four-cell network lattices L1 and L12 have the same number of

synchrony-breaking branches in P2 and in P3. Similarly, L9 and L10 are the same, and L4, L11,

L14 and L13 are the same. These groupings share the same number of nonzero lattice nodes

in each rank. Note that L2 and L5 have the same number of synchrony-breaking branches

in P2 and P3, however, in L2 two 3-dimensional polydiagonals are identical and in L5 two

3-dimensional polydiagonals are distinct. They are slightly different from the above groupings.

Although in these diagrams the position of bifurcation points is not considered, we can

elucidate that the existence of their bifurcating branches are topologically similar. When two

networks G1 and G2 share the same bifurcation diagram (in the above sense), this means that

we can expect the same number of bifurcating branches in each dimension (e.g. P2 or P3). For

example, if G1 has two branches in P2 and one branch in P3, then so will G2. However, from

which bifurcation point these branches occur may be different.

For a more detailed classification of bifurcation behaviour, such as which branch is a
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transcritical or pitchfork, we need to determine the corresponding quotient networks in balanced

polydiagonals. This is summarised in Appendix B for all four-cell regular homogeneous networks

of valency 2 with simple eigenvalues (both real and complex).
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Chapter 8

Steady-state Bifurcation Analysis:

Non-Simple Eigenvalue Networks

8.1 Introduction

When an n × n adjacency matrix A of a regular homogeneous network has n distinct eigen-

values (which are therefore simple), the corresponding n eigenvectors are linearly independent.

Each of the n eigenspaces is spanned by one eigenvector, and is therefore one-dimensional.

One-dimensional eigenspaces can generate at most one balanced polydiagonal, which is either

balanced or not.

However, when an adjacency matrix has a repeated eigenvalue λ (i.e., the algebraic

multiplicity of λ is more than one) with geometric multiplicity g(λ) > 1, the dimension of the

corresponding eigenspace ker(A − λIn) is more than one. In this case, ker(A − λIn) might be

able to generate more than g(λ) balanced polydiagonals, or equivalently quotient networks which

have the same set of eigenvalues. This leads to the fact that some lattice nodes correspond to

possibly topologically identical quotient networks with different balanced equivalence relations,

which we do not observe in networks with simple eigenvalues (proved in Proposition 7.2). Also

these additional lattice nodes make the lattice size of non-simple eigenvalue networks larger than

those of simple eigenvalue networks.

Example 8.1. Regular homogeneous three-cell valency 2 network #27 from Table 8.1.

Network #27 Adjacency matrix Eigenvalues Eigenvectors 1 1 0
1 1 0
1 1 0

 2 (1, 1, 1)
0 }

(α,−α, β)
0

Table 8.1: Three-cell network #27. α,β ∈ R
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The geometric multiplicity of the eigenvector (α,−α, β), corresponding to the double

eigenvalue 0, is two. From the eigenvector structure, there are three possible equivalence relations

as follows:

Case I If α = 0, (x1, x2, x3) = (u, u, v), i.e., ./1= (12)(3),

Case II If α = β, (x1, x2, x3) = (u, v, u), i.e., ./2= (13)(2),

Case III If −α = β, (x1, x2, x3) = (u, v, v), i.e., ./3= (1)(23),

where u, v ∈ R.

In this example, all three equivalence relations are balanced and the restrictions of the

admissible vector fields to the corresponding balanced polydiagonals generate three associated

quotient networks. For example, the balanced equivalence relation ./1= (12)(3) generates a

two-cell quotient network with one cell, made by merging cell 1 and 2 in the original three-cell

network and the second cell corresponding to cell 3. The three quotient network are as follows:

./1= (12)(3) ./2= (13)(2) ./3= (1)(23)

Figure 8.1: Three two-cell quotient networks of network #27.

The two quotient networks generated by ./2 and ./3 are topologically identical. From the

adjacency matrix computation as we discussed in Chapter 4, we observe that these three two-

cell quotient networks correspond to all of the non-trivial quotient networks for the three-cell

network #27. Hence, the lattice of balanced equivalence relations, shown in Figure 8.2, consists

of five lattice nodes; two of them correspond to trivial balanced equivalence relations and the

other three nodes are as above. Each lattice node describes which cell coordinates are equal to

generate the corresponding quotient network.

There are three lattice nodes in rank 2, although we had a maximum of two lattice nodes

in rank 2 for simple eigenvalue three-cell networks.
3

The questions we want to answer are:

1. In which balanced polydiagonals do bifurcating branches exist?

2. How many branches exist at each bifurcation point?
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Figure 8.2: Lattice of balanced equivalence relations of three-cell network #27. The node labels
show the equivalence classes. For example (12)(3) means that there are two equivalence classes
and cell 1 and cell 2 are in the same equivalence class while cell 3 is in the other class, that is
(x1, x2, x3) = (u, u, v)

3. Are there any other bifurcating branches outside the balanced polydiagonals?

If we can assign η(p) to each lattice node as we did for lattices of networks with sim-

ple eigenvalues, it would enable us to answer Question 1 and 3. However, we cannot directly

apply the same method for the lattices of non-simple eigenvalue networks, because an eigen-

vector which corresponds to a repeated eigenvalue might generate more balanced polydiagonals

than its algebraic multiplicity. How can we exclude these additional lattice nodes to assign the

correct number η(p)? The approach taken here is to clump these extra lattice nodes together

and reduce the original lattice to one of the lattices observed in networks with simple eigen-

values. This procedure is equivalent to taking the intersection of balanced polydiagonals with

generalised eigenspaces. Note that to identify the existence of bifurcating branches outside of

balanced polydiagonals, we need to check if enough balanced polydiagonals are generated from

eigenspaces, which have more than one dimension.

To answer Question 2, we simply go back to the original lattices to observe how many

balanced polydiagonals are generated by the same eigenvalue.

8.2 Preliminaries

Let an n× n matrix AB represent a linear map

T : V → V

for V = Rn with a basis B = {b1,b2, . . . ,bn}. We can represent AB with respect to different

bases. If

B′ = {b′1,b′2, . . . ,b′n}

is a basis, then the matrix AB′ representing AB with respect to B′ is

AB′ = P−1ABP
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where P is the transition matrix from the basis B′ to the basis B. If there exists such a nonsin-

gular matrix P , then AB and AB′ are said to be similar. In particular, if P is a permutation

matrix, then AB and AB′ are said to be permutation similar.

Given a general matrix AB, the problem of finding a similar matrix AB′ = P−1ABP with

a simpler form thus becomes the same as that of finding a nice basis. For example, consider

a basis B′ consisting entirely of eigenvectors of A. By constructing a transition matrix P

using these basis vectors as columns, P−1ABP becomes a diagonal matrix with the eigenvalues

along the diagonal. This diagonalisation happens exactly when there are n linearly independent

eigenvectors, or equivalently, when the minimal polynomial has no repeated roots. The theory

of the Jordan normal (or canonical) form generalises this diagonalisation process to the situation

where some of the roots might have multiplicities.

8.2.1 Minimal Polynomial of a Matrix

Let A be an n× n matrix with s distinct eigenvalues λ1, λ2, . . . , λs, where s ≤ n. Let

f(λ) = det(A− λIn) = λn + an−1λ
n−1 + · · ·+ a1λ + a0 =

s∏
i=1

(λ− λi)di

be the characteristic polynomial of A, where di is the algebraic multiplicity of the eigenvalue λi.

Then, the Cayley-Hamilton theorem states that

An + an−1A
n−1 + · · ·+ a1A + a0In = 0

which is one of annihilating polynomials of A, that is f(A) = 0.

The minimal polynomial of a matrix A is the monic polynomial m(λ) =
∑l

i=0 ciλ
i,

where cl = 1, of the smallest degree l ≤ n such that

m(A) =
l∑

i=0

ciA
i = 0

The minimal polynomial divides any polynomial p(λ) satisfying p(A) = 0. In particular,

the minimal polynomial m(λ) divides the characteristic polynomial so that

m(λ) =
s∏

i=1

(λ− λi)mi

for some positive integers mi ≤ di. The exponent mi associated with the eigenvalue λi is unique

and it is known as the index of λi.1

A matrix A is diagonalisable if and only if its minimal polynomial is equal to
∏s

i=1(λ−λi),

where λ1, . . . , λs are the distinct eigenvalues of A. Therefore, when a matrix A has simple
1We show later that the indices mi are the maximal sizes of Jordan blocks associated with the eigenvalues λi.
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eigenvalues, the minimal polynomial does not have repeated roots and furthermore, the minimal

polynomial of A coincides with its characteristic polynomial.

Note that any two similar matrices have the same minimal polynomial because
s∏

i=1

(P−1AP − λiI)mi = P−1

(
s∏

i=1

(A− λiI)mi

)
P

for any invertible matrix P . Hence, the indices of each λi with respect to A and P−1AP are

equal.

In the next subsection 8.2.2, we show that the subspaces ker(A−λiI)mi with i = 1, . . . , s

play an important role for the construction of Jordan normal forms of A and vector space V = Rn

can be decomposed as a direct sum of these subspaces.

8.2.2 Generalised Eigenspaces

Let Eλ,r = Ker(A−λI)r, where r varies over the set of nonnegative integers. For a finite vector

space Rn, subspaces Eλ,r have the following property:

{0} = Eλ,0 ⊂ Eλ,1 ⊂ · · · ⊂ Eλ,p = Eλ,p+1 = · · · ⊂ Rn (8.1)

for some positive integer p. Note that Eλ,1 is the eigenspace of A associated with λ.

The subspace Eλ,r(1 ≤ r ≤ p) in (8.1) is referred to as a generalised eigenspace of A

of order r associated with the eigenvalue λ. Also, a nonzero element xr such that xr ∈ Eλ,r,

but xr /∈ Eλ,r−1 is said to be a generalised eigenvector of A of order r corresponding to the

eigenvalue λ, that is

xr ∈ ker(A− λI)r, but xr /∈ ker(A− λI)r−1

In particular, eigenvectors of A can be viewed as generalised eigenvectors of A of order 1 corre-

sponding to the same eigenvalue.

Let m(λ) be the minimal polynomial of matrix A with the distinct eigenvalues λ1, λ2, . . . , λs

as follows:

m(λ) =
s∏

i=1

(λ− λi)mi

for some positive indices mi, possibly equal to 1.

We can decompose the vector space V as a direct sum of A-invariant subspaces such as:

V = Eλ1,m1 ⊕ Eλ2,m2 ⊕ · · ·Eλs,ms

where Eλi,mi
are the generalised eigenspaces of order mi corresponding to the eigenvalue λi.

Each generalised eigenspace is A-invariant because if

(A− λiI)mi(xmi) = 0
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then

(A− λiI)mi(Axmi) = A(A− λiI)mi(xmi) = A(0) = 0

As a consequence, when we choose bases Bi for each Eλi,mi
separately and combine them

to make a basis B = B1 ∪ B2 ∪ · · · ∪ Bs for V as a whole, then the matrix of A will take the

block diagonal form 

AB1 0 · · · · · · 0

0 AB2 0 · · · 0
...

. . . . . . . . .
...

...
. . . . . . ABs−1 0

0 · · · · · · 0 ABs


where the spectrum of ABi for i = 1, . . . , s, consists of one point only, in fact λi. Moreover, the

sizes of ABi , 1 ≤ i ≤ s, are the algebraic multiplicities of the eigenvalues λi.2

Thus, to find a nice form AB, it suffices to find a nice form for each ABi separately and

combine them.

In the following subsection 8.2.3, we show that generalised eigenspaces Eλi,mi
can be

decomposed further. This means that each ABi can be decomposed into a diagonal matrix

whose diagonal elements are one or several smaller blocks, called Jordan blocks. We next find

a basis for each generalised eigenspace Eλi,mi
for this decomposition.

8.2.3 Jordan Normal Forms

We note the following:

Lemma 8.1. xr is a generalised eigenvector of A of order r ≥ 2 if and only if the element

xr−1 = (A− λI)(xr) is a generalised eigenvector of A of order r − 1, or, equivalently,

A(xr) = λxr + xr−1 (8.2)

where xr−1 ∈ Eλ,r−1, xr−1 /∈ Eλ,r−2.

Proof. See Lancaster and Tismenetsky (1985).

Lemma 8.2. xr is a generalised eigenvector of A of order r ≥ 1 if and only if the vector

(A− λI)r−1(xr) is an eigenvector of A or, equivalently,

(A− λI)k(xr) = 0 for k ≥ r.

Proof. See Lancaster and Tismenetsky (1985).
2Later, ABi will be denoted as J(λi).
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Using Lemma 8.1, observe that if xr is a generalised eigenvector of A of order r, then

there are vectors xr−1, . . . ,x2,x1 for which

A(x1) = λx1,

A(x2) = λx2 + x1,

...

A(xr) = λxr + xr−1,

where xj ∈ Eλ,j , xj /∈ Eλ,j−1 for j = 1, 2, . . . , r. Such a sequence x1,x2, . . . ,xr is called a

Jordan chain of length r associated with the eigenvalue λ. Observe that the above equations

imply

(A− λI)xj = xj−1 for j = 2, 3 . . . , n− 1 (8.3)

From this point of view, the vectors x2, . . . ,xr are generated by successively solving the above

equations as long as there exist solutions to the nonhomogeneous equation (8.3). The vectors of

a Jordan chain are linearly independent. See Lancaster and Tismenetsky (1985) for the proof.

The subspace generated by the elements of a Jordan chain of A of length r:

Jr = span{x1,x2, . . . ,xr} (8.4)

is defined as the Jordan subspace.

Any Jordan subspace for A contains only one (linearly independent) eigenvector and it

is A-invariant.

Let A : V → V be a linear transformation and let the subspace V0 ⊂ V be A-invariant.

If x ∈ V0 and there exists a basis in V0 of the form

{x, A(x), . . . , Ak−1(x)}, k = dim(V0) (8.5)

then V0 is said to be a cyclic subspace of V (with respect to A or A|V0).

By induction, Aj(xr) is a linear combination of x1,x2, . . . ,xr. Hence the set (8.5) is

also a basis of the Jordan subspace. Since the Jordan subspace is A-invariant and xr is in this

subspace, it follows that the Jordan subspace is cyclic with respect to A.

Let A : V → V and let Ep = Ker(A−λI)p be the generalised eigenspace of A of maximal

order p associated with the eigenvalue λ, that is, Ep−1 6= Ep = Ep+1.

Theorem 8.1. There exists a unique decomposition

Ep =
tp∑

i=1

·J (i)
p ⊕

tp−1∑
i=1

·J (i)
p−1 ⊕ · · · ⊕

t1∑
i=1

·J (i)
1

where J (i)
j , 1 ≤ j ≤ p, 1 ≤ i ≤ tj is a cyclic Jordan subspace of dimension j and

∑tj
i=1 ·J

(i)
j

means a direct sum of tj cyclic Jordan subspaces J (i)
j , which are j-dimensional.
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Proof. See Lancaster and Tismenetsky (1985).

Theorem 8.1 implies that there exists a basis in ker(A−λI)p consisting of Jordan chains;

each chain is a basis in a cyclic Jordan subspace J (i)
j . Starting with j = p, we have the basis

J (1)
p x(1)

1 , x(1)
2 , . . . , x(1)

p−1, x(1)
p ,

...
...

...
...

...

J (tp)
p x(tp)

1 , x(tp)
2 , . . . , x(tp)

p−1, x(tp)
p ,

J (tp+1)
p−1 x(tp+1)

1 , x(tp+1)
2 , . . . , x(tp+1)

p−1 ,
...

...
...

...

J (tp+tp−1)
p−1 x(tp+tp−1)

1 , x(tp+tp−1)
2 , . . . , x(tp+tp−1)

p−1 ,
...

...
...

...

J (t−t1+1)
1 x(t−t1+1)

1 ,
...

...

J (t)
1 x(t)

1 ,

(8.6)

where t =
∑p

j=1 tj and the elements of each row form a Jordan chain of maximal possible length.

Also, the elements of column r in (8.6) are generalised eigenvectors of A of order r associated

with λ. The basis (8.6) of ker(A− λI)p is called a Jordan basis of the generalised eigenspace.

The cyclic Jordan subspace of dimension r, Jr, is spanned by

(A− λiI)r−1(x), . . . , (A− λiI)(x),x (8.7)

where λi is an eigenvalue of A and x is a generalised eigenvector of A of order r associated with

λi. Denote xj = (A− λiI)r−j(x). Then the above basis is expressed as

x1,x2, . . . ,xr

Since

A(x1) = λx1,

A(x2) = λx2 + x1,

...

A(xr) = λxr + xr−1,
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the representation Jr = (αij)r
i,j=1 of A|Jr with respect to the basis (8.7) is

Jr =



λi 1 0 · · · 0

0 λi 1 · · ·
...

...
. . . . . . . . . 0

...
. . . . . . . . . 1

0 · · · · · · 0 λi


(8.8)

which is called a Jordan block of order r corresponding to the eigenvalue λi. A Jordan block

has λi’s on the main diagonal, 1’s on the superdiagonal, and 0’s elsewhere.

Let A : V → V with distinct eigenvalues λ1, . . . , λs. Choosing in each generalised

eigenspace Eλi,mi
= ker(A − λiI)mi , 1 ≤ i ≤ s, a Jordan basis of the form (8.6), we obtain

a Jordan basis for the whole space V as a union of Jordan bases. This union is described as a

A-Jordan basis for V .

Theorem 8.2. In the notation of the preceding paragraph, the representation of A with respect

to a A-Jordan basis is the matrix

J = diag[J(λ1), J(λ2), . . . , J(λs)] (8.9)

where for 1 ≤ i ≤ s,

J(λi) = diag[J (i)
p , . . . , J (i)

p , J
(i)
p−1, . . . , J

(i)
p−1, . . . , J

(i)
1 , . . . , J

(i)
1 ] (8.10)

in which the j × j matrix J
(i)
j of the form (8.8) appears t

(i)
j times in (8.10).

Proof. See Lancaster and Tismenetsky (1985).

Note that the number of Jordan blocks in J(λi) is equal to the number of rows in (8.6),

that is, to the geometric multiplicity of the eigenvalue λi. The sum of the dimensions of all

Jordan blocks associated with λi is equal to the algebraic multiplicity of λi.

The representation of J in (8.9) and (8.10) is called a Jordan normal form of the

transformation A.

Corollary 8.1. Any complex square matrix A is similar to a Jordan normal form that is uniquely

determined by A up to the permutation of the matrices J(λi) in (8.9) and the Jordan blocks

in (8.10).

Proof. See Lancaster and Tismenetsky (1985).
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8.2.4 Lattice Theory: Part 3

An equivalence relation θ on a lattice L which is compatible with both join and meet is called

a congruence on L; that is for all a, b, c, d ∈ L

a ≡ b(modθ) and c ≡ d(modθ)

imply

a ∨ c ≡ b ∨ d(modθ) and a ∧ c ≡ b ∧ d(modθ)

A congruence on a lattice L can be indicated on a diagram by placing a loop or square around

the elements in each block of the corresponding partition.

Given an equivalence relation θ on a lattice L there is a natural way to try to define

operations ∨ and ∧ on the set

L/θ := {[a]θ|a ∈ L}

of blocks. Namely, for all a, b ∈ L, we define

[a]θ ∨ [b]θ := [a ∨ b]θ and [a]θ ∧ [b]θ := [a ∧ b]θ

This will produce well-defined operations precisely when the definitions are independent of the

elements chosen to represent the equivalence classes, that is, when

[a1]θ = [a2]θ and [b1]θ = [b2]θ

imply

[a1 ∨ b1]θ = [a2 ∨ b2]θ and [a1 ∧ b1]θ = [a2 ∧ b2]θ

for all a, b ∈ L. Since, for all a1, a2 ∈ L,

[a1]θ = [a2]θ ⇔ a1 ∈ [a2]θ ⇔ (a1, a2) ∈ θ ⇔ a1 ≡ a2(modθ)

It follows that ∨ and ∧ are well defined on L/θ if and only if θ is a congruence. When θ is a

congruence on L, we call 〈L/θ;∨,∧〉 the quotient lattice of L modulo θ.

When considering the blocks of a congruence θ on L, it is best to think of each block as

an entity in its own right rather than as the block [a]θ associated with some a ∈ L. Intuitively,

the quotient lattice L/θ is obtained by collapsing each block to a point.

Lemma 8.3. Let θ be a congruence on the lattice L. Then 〈L/θ;∨,∧〉 is a lattice and the natural

quotient map q : L→ L/θ, defined by q(a) := [a]θ is a homomorphism.

Proof. See Davey and Priestley (1990).
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8.2.5 n Repeated Eigenvalues of n-cell Networks

The following result is trivial, however, we provide a proof here.

Proposition 8.1. Let G be an n-cell regular homogeneous coupled cell network of valency r

associated with the n × n adjacency matrix A. Let λ0, λ1, . . . , λn−1 be the n eigenvalues of A,

including repeated eigenvalues. If λ0 = λ1 = · · · = λn−1 = r, then G is disconnected.

Proof. If (λ0, . . . , λn−1) = (r, . . . , r), then A is similar to the following diagonal matrix:



r 0 0 · · · 0

0 r 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 r 0

0 · · · 0 0 r


= rIn

This matrix describes n isolated nodes with r self-coupling to themselves, hence it is

a disconnected network. Since the identity matrix is similar only to itself, there is no other

connected homogeneous network which is similar to A.

8.3 Isomorphic Quotient Networks

We firstly show that a double eigenvalue with geometric multiplicity two generates multiple

polydiagonals from its eigenvector structure.

Proposition 8.2. Let A be a 3 × 3 adjacency matrix with double eigenvalue λ. If there exist

two linearly independent eigenvectors v1 and v2 associated with the eigenvalue λ, then v1 and

v2 generate three non-trivial balanced equivalence relations.

Proof. Up to the permutation of the positions of coordinates, the eigenvector with geometric

multiplicity two can be written as:

(x1, x2, x3) = (α, β, lα + mβ), (8.11)

where α, β ∈ R and l,m are any scalars for α and β.

Since 4 = {(x1, x2, x3)|x1 = x2 = x3} is always an eigenvector of a given regular homo-

geneous network with eigenvalue equal to the valency, any eigenvector expressed in (8.11) must

be linearly independent of vectors in 4.
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There are three possible pattern of synchrony (excluding trivial balanced equivalence

relations) depending on the values of α, β and their scalars such as

(x1, x2, x3) = (u, u, v) if α = β,

(x1, x2, x3) = (u, v, u) if α = lα + mβ,

(x1, x2, x3) = (v, u, u) if β = lα + mβ.

which are linearly independent of the diagonal subspace 4.

These three forms of the eigenvector have only two distinct entries. Therefore, by

Lemma 7.7, the corresponding equivalence relations generated from above three eigenvector

structures are balanced.

Hence, if the corresponding eigenvector to the double eigenvalue λ has geometric mul-

tiplicity two, there exist three non-trivial balanced equivalence relations (or equivalently three

non-trivial balanced polydiagonals).

This result shows that a 2-dimensional eigenspace can generate 3 balanced polydiagonals,

which is more than the algebraic multiplicity of the corresponding eigenvalue.

Lemma 7.8, states that

L./1 = L./2 ⇒4./1 = 4./2

is true when the associated matrix of a given regular homogeneous has distinct eigenvalues

(simple). However, this is not always true for networks with non-simple eigenvalues. We now

show that non-simple eigenvalue networks can generate the same set of eigenvalues of quotient

networks from different balanced equivalence relations.

Lemma 8.4. Let A be the n × n adjacency matrix of an n-cell regular homogeneous coupled

cell network G. If A has repeated eigenvalues, then there exist equivalence relations ./1 6=./2 with

rank(./1) = rank(./2) such that L./1 = L./2.

Proof. Let λ1, . . . , λk where k < n be the distinct eigenvalues of A. Then Jordan normal form

of A is: 
J(λ1) 0 · · · · · · 0

0 J(λ2) 0 · · · 0
...

. . . . . . . . . 0

0 · · · · · · 0 J(λk)


where J(λi), i = 1, . . . , k has g(λi) Jordan blocks, where g(λi) is the geometric multiplicity of

the eigenvalue λi.
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Jordan blocks associated with the eigenvalue λi have the form:

λi 1 · · · · · · 0

0 λi 1 · · · · · · 0
...

. . . . . . . . . 0

0 · · · · · · 0 λi 1

0 · · · · · · 0 λi


where all superdiagonal elements are ones and all unmarked elements are zeros.

Since there is a bijection between ./∈ ΛG and 4./ ∈ V P
G , there are the corresponding

balanced polydiagonals 4./1 and 4./2 for the balanced equivalence relations ./1 and ./1, respec-

tively, which satisfy 4./1 6= 4./2 with dim(4./1) = dim(4./2). Let v1, . . . ,vn be n generalised

eigenvectors of the n × n adjacency matrix A. Let s = dim(4./1) = dim(4./2). Suppose 4./1

and 4./2 are spanned by

4./1 = span{v1
1,v

1
2, . . . ,v

1
s} and

4./2 = span{v2
1,v

2
2, . . . ,v

2
s}

where {v1
1, . . . ,v

1
s} 6= {v2

1, . . . ,v
2
s} are sets of s vectors chosen from {v1, . . . ,vn} as a basis of

4./1 and 4./2 , respectively. We can complete the above bases of 4./i to obtain bases of Rn.

The matrix A with respect to these bases has the structures: A./1 B1

0 D1

 , and

 A./2 B2

0 D2


respectively, where A./i is the s× s adjacency matrix of the quotient network G/./i for i = 1, 2.

There are s × s Jordan normal forms which are similar to A./1 and A./2 . Since A has

repeated eigenvalues, some diagonal elements in its Jordan blocks are equal. Hence A./1 and

A./2 can have the same set of eigenvalues. Therefore, there exist 4./1 6= 4./2 , equivalently

./1 6=./2 such that L./1 = L./2 .

Furthermore, some quotient networks can be topologically identical. The following propo-

sition follows from Lemma 8.4:

Proposition 8.3. Let A be the n×n adjacency matrix of an n-cell regular homogeneous network

G. Let G/./ be a quotient network of G restricted to a balanced polydiagonal4./. If A has repeated

eigenvalues, there exist ./1 6=./2 such that G/./1
∼= G/./2.

Proof. Lemma 8.4 states that there exist ./1 6=./2 with rank(./1) = rank(./2) such that L./1 =

L./2 . Now we show that for such L./1 and L./2 , the corresponding quotient networks G/./1
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and G/./2 can be topologically identical. Theorem 7.5 states that if G/./1
∼= G/./2 , then the

corresponding adjacency matrices A./1 and A./2 are similar. The converse is not always true,

however, it is true if A./1 and A./2 are permutation similar. Hence, there exist ./1 6=./2 such

that G/./1
∼= G/./2 .

8.4 Reduction of Lattices

So far, we have shown that an eigenspace which has dimension more than one can generate more

balanced equivalence relations than the algebraic multiplicity of the corresponding eigenvalue

(Proposition 8.2). Proposition 8.3 states that these balanced equivalence relations generated

from the eigenvector structure whose geometric multiplicity is more than one can lead to topo-

logically identical quotient networks. Now we consider a method to exclude additional balanced

equivalence relations (or equivalently topologically identical quotient networks) from the lattice

using a congruence relation. We motivate our discussion in the following example.

Example 8.2. Consider regular homogeneous four-cell valency 2 network #1. The associated

adjacency matrix has a triple eigenvalue λ1 = λ2 = λ3 = 0 and the corresponding eigenvector

has the geometric multiplicity three as shown in Table 8.2. The lattice of balanced equivalence

Network #1 Adjacency matrix Eigenvalues Eigenvectors
0 0 0 2
0 0 0 2
0 0 0 2
0 0 0 2


λ0 = 2 (1, 1, 1, 1)
λ1 = 0 }

(α, β, γ, 0)λ2 = 0
λ3 = 0

Table 8.2: Four-cell network #1 with a triple eigenvalue and three eigenvectors.

relations of this network is the same as the partition lattice of the set of four elements as shown

in Figure 8.3. This shows there are seven two-cell quotient networks and six three-cell quotient

networks corresponding to non-trivial balanced equivalence relations. The reason why there are

so many balanced equivalence relations is because of the degree of freedom of the eigenvector

structure (α, β, γ, 0) corresponding to the triple eigenvalue. However, we observe that all seven

two-cell quotient networks are topologically identical, as are all six three-cell quotient networks,

as shown in Figure 8.4. This poses a question: can we simplify the lattice?

The eigenvalue structure (α, β, γ, 0) corresponding to the triple eigenvalue λ1 = λ2 =

λ3 = 0 shows there are seven possible coordinate structures which have only two distinct entries,

e.g. (1, 0, 0, 0), (1, 1, 0, 0), . . .. As shown in Lemma 7.7, all equivalence relations generated from

these seven eigenvector structures are balanced. Furthermore, we observe that the six balanced
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Figure 8.3: The lattice of balanced equivalence relations of four-cell network #1, which has the
same structure as the partition lattice of the set of four elements.

two-cell quotient network three-cell quotient network

Figure 8.4: Two-cell and three-cell quotient network topology of four-cell network #1.

equivalence relations in rank 3 are generated by taking several combinations of intersections

from balanced equivalence relations in rank 2 as shown in Corollary 7.1. Therefore the seven

balanced equivalence relations are considered to be lattice generators.

In simple eigenvalue networks, lattice generators have a one-to-one relationship with

eigenvectors. However, for this non-simple eigenvalue network #1, we have seven lattice gener-

ators versus three linearly independent eigenvectors.

In simple eigenvalue networks, we showed that all quotient network are topologically

distinct (Corollary 7.2). So if we try to simplify the original lattice by merging all topologically

identical quotient networks and assign η(p) for each lattice node, we have a reduced lattice

in Figure 8.5. The lattice of the sets of eigenvalues of quotient networks is shown next to the

reduced lattice. The eigenvalue inheritance does not look right. For example, a double eigenvalue

in rank 3 should be inherited from eigenvalues in rank 2, but the lattice of the sets of eigenvalues

shows it comes from itself.

Instead, we consider weaker reduction by merging topologically identical quotient network

without losing the dimension of eigenspace (three) as in Figure 8.6. This reduced lattice shows

three lattice generators and the sets of eigenvalues of three-cell quotient networks shows their

double eigenvalues are inherited from eigenvalues of two-cell quotient networks.
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Figure 8.5: A fully reduced version of the lattice in Figure 8.3 for four-cell network #1, con-
structed by merging all lattice nodes with topologically identical quotient networks.

Figure 8.6: A minimally reduced version of the lattice in Figure 8.3, which unlike Figure 8.5,
preserves the dimension of the eigenspace.

Finally, remember that the three lattice nodes in rank 2 represent seven balanced equiv-

alence relations, which are generated from eigenvectors with two distinct entries. Hence there

exist seven bifurcating branches from a bifurcation point corresponding to the triple eigenvalue

(Lemma 7.13).
3

Now we formalise the reduction method described in Example 8.2 as follows.

Let ΛG be a lattice of balanced equivalence relations of a regular homogeneous network

G with total phase space P . Each balanced equivalence relation ./∈ ΛG determines the cor-

responding balanced polydiagonal 4./. Let QP
G be the set of quotient networks of G. Since a

quotient network G/./ is uniquely determined by the equivalence relation ./, there is a bijection

between ΛG and QP
G , hence, QP

G forms a lattice. Meet and join operations in QP
G are defined

by taking a meet and join operation of the corresponding balanced equivalence relations and

determine a quotient network restricted to the corresponding balanced polydiagonal.

Lemma 8.5. The graph isomorphism is a congruence on QP
G .
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Proof. The graph isomorphism is trivially an equivalence relation. We show that the graph

isomorphism is compatible with both join and meet.

Let G./a
∼= G./b

and G./c
∼= G./d

, where G./a ,G./b
,G./c ,G./d

∈ QP
G .

If G./a
∼= G./b

, then the corresponding adjacency matrices A./a and A./b
are similar,

hence, L./a = L./b
, where L./a , L./b

∈ UP
G . Similarly, L./c = L./d

for L./c , L./d
∈ UP

G . Therefore,

(L./a ∨ L./c) = (L./b
∨ L./d

) and (L./a ∧ L./c) = (L./b
∧ L./d

)

Since there is an order-preserving map from ./∈ ΛG to L./ ∈ UP
G , there are the corresponding

elements in ΛG such as:

(./a ∨ ./c) = (./b ∨ ./d) and (./a ∧ ./c) = (./b ∧ ./d)

Using a bijection map from ΛG to QP
G , we furthermore have

(G./a ∨ G./c) ∼= (G./b
∨ G./d

) and (G./a ∧ G./c) ∼= (G./b
∧ G./d

)

Hence both join and meet operations are preserved and the graph isomorphism is a congruence

on QP
G .

Once we find a congruence on a lattice QP
G , we are free to choose which elements in each

block (congruence) collapse to a single point. Because each lattice node contains information

about the dimension of an eigenspace, we should not collapse too much. Now we define a

minimal reduced lattice in the following:

Definition 8.1 (Reduction of Lattice). Starting from rank 2, choose lattice elements from

each congruence block, which is the set of topologically identical quotient networks. Then reduce

the lattice size by clumping them accordingly clumping corresponding lattice elements in higher

ranks. Repeat this procedure until the lattice has the same structure as one of simple eigenvalue

network lattice structures. We define this lattice as a minimal reduced lattice of the original

lattice.

Definition 8.2. Define the congruence defined in Lemma 8.5 as ~. Define the congruence

described in 8.1 as ~, which covered by ~; that is ~ ≺ ~.

By Lemma 8.3, the quotient map q : QP
G → QP

G /~ is a homomorphism, which means

both meet and join operations are preserved. In lattice UP
G , this reduction minimally merges

sets which contain the same set of eigenvalues. Hence, the reduced lattice structure contains

the same information in simple eigenvalue network lattice structures to determine from which

lattice node independent eigenvalues appear. Therefore, using reduced lattice structures, we

assign η(p) to each lattice node as defined in (7.11) to determine the existence of bifurcating

branches.
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8.5 Three-cell Networks: Lattice Structures and Steady-state

Bifurcations

Leite and Golubitsky (2006) classified the possible generic steady-state bifurcations of regular

homogeneous three-cell networks using an eigenvalue structure and the corresponding eigenvec-

tor structure of a 3× 3 adjacency matrix of a network as follows:

S1 simple eigenvalues

S2 double eigenvalues and two eigenvectors

S3 double eigenvalues and one eigenvector

S4 double eigenvalues and one eigenvector in 4 (fully synchronous subspace)

Note that we can exclude the possibility that all eigenvalues are equal by Proposition 8.1.

We use the same notation for three-cell network classification for the rest of the anal-

ysis. In Chapter 7, we showed that all adjacency matrices of quotient networks have simple

eigenvalues when the original network has an adjacency matrix with simple eigenvalues, i.e.,

type S1 networks have type S1 quotient networks. On the contrary, networks with non-simple

eigenvalues can have combinations of different types of networks as quotient networks.

In this section, we consider the reduction of lattices of three-cell networks. We show that

only type S2 three-cell networks need a reduction of lattices. Then we determine the existence of

bifurcation branches from their reduced lattice structures. These results from lattice structure

match those of Leite and Golubitsky (2006) using graph decomposition and the implicit function

theorem.

8.5.1 S2: Double Eigenvalues and Two Eigenvectors

Proposition 8.4. There are two possible lattice structures for type S2 three-cell networks, shown

in Figure 8.7.

Figure 8.7: Lattices of balanced equivalence relations of three-cell networks of type S2. Shaded
lattice nodes correspond to the balanced equivalence relations generated by eigenvector structures.
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Proof. There are three balanced equivalence relations in rank 2 for S2 networks as shown in

Proposition 8.2. Since Proposition 8.3 implies the existence of topologically identical quotient

networks, there are three possibilities for the topology of quotient networks in rank 2.

The first case is all three two-cell quotient networks are topologically identical as shown

on the left lattice in Figure 8.7.

The second case is two-cell quotient networks are topologically identical and the third

two-cell quotient network is topologically distinct from other two networks as shown on the right

lattice as shown in Figure 8.7.

The third case is all three two-cell quotient networks are topologically distinct. However,

we can exclude this possibility since there are at most two topologically distinct 2-cell networks

with the same spectrum (shown in Chapter 6).

Hence if there are three 2-cell quotient networks with the same set of eigenvalues, then

at least two of them are topologically identical.

The labels “a” and “b” in rank 2 describe quotient network topology. When all three

lattice nodes have the same label “a”, this means all three two-cell quotient networks are topo-

logically identical (although their equivalence relations are different). On the other hand, two

lattice nodes labelled “a” and the third node labelled “b” means two of two-cell quotient net-

works are topologically identical, but the third two-cell quotient network is topologically distinct

from other two networks.

We did not observe the above lattice structures in three-cell networks with simple eigen-

values. Also these lattice structure break the dimension rule as the bottom lattice node has three

edges from rank 2 nodes. We now reduce these lattice structures to one of 3 lattice structures

observed in simple eigenvalue three-cell networks and determine the existence of bifurcating

branches and its types. We show this procedure through an example.

Example 8.3. Consider three-cell valency 2 regular homogeneous network #1, which has repeated

eigenvalue 0 with the algebraic multiplicity 2 and the geometric multiplicity 2 shown in Table 8.3.

Network #1 Adjacency matrix Eigenvalues Eigenvectors 0 2 0
0 2 0
0 2 0

 λ0 = 2 (1, 1, 1)
λ1 = 0 }

(α, 0, β)
λ2 = 0

Table 8.3: Three-cell network #1. α,β ∈ R

Figure 8.8 is the lattice of balanced equivalence relations. Each lattice describes which
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cell coordinates are equal to generate a corresponding quotient network. The lattice nodes are

labelled as in Example 8.1.

Figure 8.8: Lattice of balanced equivalence relations of three-cell network #1. Shaded lattice
nodes are generated from the eigenvector structures.

Three two-cell quotient networks corresponding to the three balanced equivalence re-

lations in Figure 8.8 are listed in Figure 8.9. Observe that all three quotient networks are

topologically identical.

Figure 8.9: Topologically identical three two-cell quotient networks. Shaded quotient networks
are determined by the balanced equivalence relations generated by the eigenvector structures.

Now, we reduce the lattice structure of Figure 8.8 by merging the lattice nodes, which

corresponds to topologically identical quotient networks, but keeping the same number of nodes

as the dimension of eigenspace (in this case, the dimension is two) as described in Definition 8.1.

In this example there are three nodes with topologically identical corresponding quotient

networks, but we only merge two of them, as illustrated in Figure 8.10.

The congruence block is expressed by placing a rectangle box in Figure 8.10. We then

assign η(p) for each lattice node in the minimal reduced lattice.

In the reduced lattice, the label “1 a” means there exists one bifurcating branch whose

bifurcation type is determined by a quotient network structure labelled by “a” and which lie in

the corresponding balanced polydiagonal.

Since η(⊥) = 0, from Theorem 7.4, all synchrony-breaking bifurcating branches are

analysed from quotient networks and there are not any other bifurcating branches.

In the original lattice, there are three balanced equivalence relations, equivalently three
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=⇒

Figure 8.10: Reduction of lattice by merging the lattice nodes corresponding to topologically
identical quotient networks.

balanced polydiagonals (x1, x2, x3) = (u, u, v), (u, v, u), (v, u, u), generated by double eigenvalue

0. Therefore, we expect there exist three synchrony-breaking bifurcation branches, along above

three polydiagonals, whose bifurcation types are determined by the two-cell quotient networks

in Figure 8.9. In chapter 5, we showed the corresponding two-cell network shows the existence

of transcritical bifurcation. Hence, we expect there are three transcritical bifurcation branches

from the trivial solution at the bifurcation point corresponding to the eigenvalue λ1 = λ2 = 0,

which lie on three different polysynchronous subspaces (x1, x2, x3) = (u, u, v), (u, v, u), (v, u, u),

where u, v ∈ R.
3

Leite and Golubitsky (2006) show that S2 bifurcations lead to multiple nontrivial bifur-

cating branches as opposed to S1 bifurcations which lead to a unique nontrivial branch. In their

analysis of three-cell network #1 (number four in their notation which is ODE-equivalent to

network #1), there exist three transcritical branches bifurcating from the trivial solution. This

agrees with the above analysis from the lattice structure.

8.5.2 S3: Double Eigenvalues and One Eigenvector

The following Figure 8.11 shows observed lattice structure of type S3 three-cell networks of

valency 2 with double eigenvalues and one eigenvector.

Figure 8.11: Lattice of balanced equivalence relations of three-cell networks of type S3, where
shaded nodes correspond to the balanced equivalence relations generated by eigenvector struc-
tures.
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Since the dimension of the eigenspace associated with the double eigenvalue is one, unlike S2

networks, the one-dimensional eigenspace does not generate multiple possible polydiagonals.

Hence a reduction of lattices is not necessary for type S3 networks. We can assign η(p) for each

lattice node directly as the following example shows.

Example 8.4. Consider three-cell valency 2 regular homogeneous network #28 shown in Ta-

ble 8.4.

Network #28 Adjacency matrix Eigenvalues Eigenvectors 0 1 1
0 1 1
1 0 1

 λ0 = 2 (1, 1, 1)
λ1 = 0 (α, α,−α)
λ2 = 0

Table 8.4: Three-cell network #28. α ∈ R

The geometric multiplicity of eigenvector corresponding to the double eigenvalue λ1 =

λ2 = 0 is one.

Figure 8.12 shows the lattice of balanced equivalence relations on the left. η(p) is assigned

for each lattice node on the right figure.

=⇒

Figure 8.12: Lattice of balanced equivalence relations of three-cell network #28 (left) and the
assigned η(p) values (right). The shaded balanced equivalence relation is generated from the
eigenvector structure associated with the double eigenvalue 0.

There is only one two-cell quotient network shown in Figure 8.13, which guarantee the

existence of a pitchfork bifurcation.

Figure 8.13: Two-cell quotient network of three-cell network #28.
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Since there is non-zero lattice node in rank 2 and rank 3, we expect to have two synchrony-

breaking bifurcating branches from the trivial solution: one is a pitchfork branch in a balanced

polydiagonal (x1, x2, x3) = (u, u, v) and the other does not lie in none of synchronous subspace,

i.e., all three state variables are different, and its bifurcation type would be obtained by the

analysis of the original three-cell network. Both branches bifurcate from the bifurcation point

corresponding to the eigenvalue λ1 = λ2 = 0.
3

Leite and Golubitsky (2006) show that S3 bifurcations lead to two non-trivial bifurcating

branches. Their analysis shows that three-cell network #28 (six in their reference numbering)

has two branches of asynchronous solutions bifurcating from the trivial solution; when viewed

in cell 3 one is transcritical and the other is pitchfork in a polydiagonal (x1, x2, x3) = (u, u, v).

8.5.3 S4: Double Eigenvalues and One Eigenvector in 4

Proposition 8.5. Let G be an n-cell regular homogeneous network with valency r with n × n

adjacency matrix A. If A has a double eigenvalue λ0 = λ1 = r, as a consequence one eigenvector

associated with the double eigenvalue is in a fully synchronous subspace 4, then the eigenvector

associated with this double eigenvalue generates at most one non-trivial balanced polydiagonal.

Proof. There are two possibilities for the geometric multiplicity for the eigenvector corresponding

to the valency double eigenvalue; either one or two. If the geometric multiplicity is one, then

the eigenvector is (1, 1, . . . , 1) = 4 as this is always the eigenvector associated with the valency

eigenvalue of a homogeneous network.

Now we consider the case of the geometric multiplicity being two. One of eigenvectors

can be taken as the fully synchronous subspace, i.e., 4 and we will write v for the second

eigenvector. Any polydiagonal generated from an eigenvector v is given by R{(1, . . . , 1),v}.

Hence if there is any non-trivial polydiagonal generated from the eigenvector associated with a

double eigenvalue, it is expressed as R{(1, . . . , 1),v}. Whether this is balanced or not depends

on the linear transformation described by the matrix A. Hence there is at most one non-trivial

balanced polydiagonal generated from the double eigenvalue and one eigenvector in 4.

As a consequence of Proposition 8.5, the reduction of lattices for type S4 networks is

not required because two linearly independent eigenvectors generate at most one non-trivial

balanced equivalence relation.

Figure 8.14 shows observed lattice of balanced equivalence relations of type S4 three-cell

regular homogeneous networks of valency 2 with double eigenvalues and one eigenvectors in 4.
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Figure 8.14: Lattice of balanced equivalence relations of three-cell networks of type S4, where
the shaded nodes correspond to the balanced equivalence relations generated by eigenvector
structures.

Example 8.5. Consider three-cell valency 2 regular homogeneous network #30 shown in Ta-

ble 8.5.

Network #30 Adjacency matrix Eigenvalues Eigenvectors 0 1 1
0 2 0
0 0 3

 λ0 = 2 }
(α, β,−α + 2β)

λ1 = 2
λ2 = 0 (1, 0, 0)

Table 8.5: Three-cell network #30, its adjacency matrix, eigenvalues and the corresponding
eigenvectors. α, β ∈ R

This network has λ0 = 2 as a double eigenvalue and the corresponding two-dimensional

eigenvector is expressed as (α, β,−α + 2β), where α, β ∈ R. The only possible pattern of

synchrony is (x1, x2, x3) = (u, u, u), i.e., a fully synchronous state with α = β. Hence, the three

coordinates of the second possible eigenvector (for λ0 = λ1 = 2) are independent of each other

and thus it cannot express any non-trivial pattern of synchrony. As a result, this eigenvector

structure does not generate any non-trivial balanced equivalence relation.

Figure 8.15 shows the lattice of balanced equivalence relations on the left. The shaded

node is generated from the eigenvector structure associated with the distinct eigenvalue λ2 = 0.

This balanced equivalence relation determine two-cell quotient network shown in Figure 8.16.

Without any reduction, η(p) is assigned for each lattice node on the right figure.

=⇒

Figure 8.15: Lattice of balanced equivalence relations of three-cell network #30.

The two-cell quotient network in Figure 8.16 guarantees the existence of a transcritical
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bifurcation.

Figure 8.16: Two-cell quotient network of three-cell network #30.

Since there is one non-zero η(p) in rank 2 and also in rank 3, we expect there exist

two synchrony-breaking bifurcating branches from the trivial solution: one is a transcritical

branch in a balanced polydiagonal (x1, x2, x3) = (u, v, v) bifurcating from the bifurcation point

corresponding to the eigenvalue λ2 = 0 and the second synchrony-breaking branch which does

not lie in any synchronous subspace, i.e., all three state variables are different, occurs at the

bifurcation point corresponding to the eigenvalues λ0 = λ1 = 2, and the type of this bifurcating

branch can be obtained by the analysis of the original three-cell network.
3

8.5.4 Bifurcation Diagrams of S2, S3, and S4 Networks

The following figures show schematically the existence of synchrony-breaking steady-state bifur-

cating branches from the synchronous state.

µ0 is the bifurcation point where the synchrony-preserving bifurcating branch originates,

hence there is no synchrony-breaking bifurcation branch unless one of the eigenvectors is in 4.

Red nodes correspond to balanced equivalence relations generated from the eigenvector

structures of repeated eigenvalues. The bifurcation point associated with this “red” double

eigenvalue is plotted as µ1 on the horizontal axis, where we can observe multiple bifurcating

branches.

The green node in S4 network corresponds to the balanced equivalence relation generated

from the eigenvector structure whose corresponding eigenvalue is not repeated. The bifurcation

point associated with this “green” single eigenvalue is plotted as µ1 on the horizontal axis.

In reduced lattices, each lattice node p has labelled with η(p). Additionally, some lattice

node also include a letter “a” or “b” in rank 2. These letters describe sets of equal quotient

network topologies. If lattice nodes in rank 2 are labelled “1 a” this means that their bifur-

cating branches will be constrained by having the same network structure, and therefore their

bifurcation types should be the same. Other notations are used as in Chapter 7.
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Original lattice Reduced lattice Bifurcation diagram
S2

S3

S4

Figure 8.17: Existence of bifurcating branches for 3-cell valency 2 regular homogeneous networks
with non-simple eigenvalues.
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8.6 Four-cell Networks: Reduced Lattice Structures

There are eight four-cell regular homogeneous network types, which are classified by their adja-

cency matrix eigenvalue and eigenvector structures as follows:

1 simple eigenvalues

2 double eigenvalues and two eigenvectors

3 double eigenvalues and one eigenvector

4 pair of double eigenvalues and one eigenvector in 4 (fully synchronous subspace)

5 double eigenvalues and one eigenvector in 4 (fully synchronous subspace)

6 triple eigenvalues and three eigenvectors

7 triple eigenvalues and two eigenvectors

8 triple eigenvalues and one eigenvector

We consider non-simple eigenvalue cases; that is type 2 to 8. Reduction of lattices would be

required for type 2, 4, 6, and 7 since the geometric multiplicities of eigenvalues are more than

one and this may generate more balanced equivalence relations than the algebraic multiplicity of

the eigenvalues (the number of generalised eigenvectors). Thus in the following, we only consider

the types 2, 4, 6 and 7.

A lattice of four-cell networks contains lattices of three-cell networks. Therefore, for each

non-simple eigenvalue network type, we firstly consider which three-cell network types can be

seen in a given four-cell valency 2 regular homogeneous network. This simplifies how we can

reduce a lattice structure as we know which three-cell network type need a reduction.

8.6.1 Double Eigenvalues and Two Eigenvectors

Proposition 8.6. Let G be a four-cell regular homogeneous network with adjacency matrix A. If

A has a double eigenvalue λ2 with two linearly independent eigenvectors, then three-cell quotient

networks G/./ of G are either type S1 or S2.

Proof. Let λ0, λ1, and λ2 are distinct eigenvalues of A, where λ2 is a double eigenvalue with the

geometric multiplicity two eigenvector. Then the Jordan normal form of A is

J =


λ0 0 0 0

0 λ1 0 0

0 0 λ2 0

0 0 0 λ2


An adjacency matrix associated with a homogeneous coupled cell network always has

the eigenvalue which is equal to the valency. Hence for each balanced equivalence relations with
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rank 3 (i.e. three equivalence classes), the Jordan normal form is decomposed either into

J./ =


λ0 0 0

0 λ1 0

0 0 λ2


which is a similar matrix to adjacency matrices of S1 networks, or

J./ =


λ0 0 0

0 λ2 0

0 0 λ2


which is a similar matrix to the adjacency matrices of S2 networks.

Hence three-cell quotient networks are either of type S1 or S2.

Example 8.6. Consider four-cell valency 2 regular homogeneous network #2 which has a double

eigenvalue λ1 = λ2 = 0 with the geometric multiplicity 2 eigenvector shown in Table 8.6.

Network #2 Adjacency matrix Eigenvalues Eigenvectors
0 0 0 2
0 0 0 2
0 0 0 2
0 0 1 1


λ0 = 2 (1, 1, 1, 1)
λ1 = 0 }

(α, β, 0, 0)
λ2 = 0

λ3 = −1 (−2,−2,−2, 1)

Table 8.6: Four-cell network #2 with a double eigenvalue and two eigenvectors.

There are eight quotient networks. Figure 8.18 shows these quotient networks and the

corresponding eigenvalues:

{2,−1} {2, 0} {2, 0} {2, 0}

{2, 0,−1} {2, 0,−1} {2, 0,−1} {2, 0, 0}

Figure 8.18: Eight quotient networks of four-cell network #2. For each quotient network, the
set of eigenvalues of adjacency matrices are shown.
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Figure 8.19: Lattice UP
G of the sets of eigenvalues of quotient networks, where shaded lattice

points were generated by eigenvector structures.

Figure 8.19 shows eigenvalue structure of three type S1 3-cell quotient networks and one

type S2 3-cell quotient network. If we look at each lattice node in rank 3 and go up to the

top element, we observe that there are three type S1 lattice structures and one type S2 lattice

structure (before reduction).

We need a lattice reduction for lattice nodes corresponding to type S2 three-cell quotient

network as it contains three lattice nodes in rank 2. In Figure 8.20, the “green” lattice node is

generated by the eigenvector structures corresponding to a distinct eigenvalue λ3 = −1 and “red”

lattice nodes is generated by the eigenvector structure corresponding to a double eigenvalue

λ1 = λ2 = 0. Now we make a minimal reduced lattice by clumping each of the blocks in

Figure 8.20 to a single point. Firstly, we merge two lattice nodes in rank 2, which correspond

to type S2 lattice structure. Because of this merging, two lattice nodes in rank 3 in the box

become identical, hence, we merge them. This reduced lattice is the same as L4 lattice structure

for simple eigenvalue networks. Then, we assign η(p) to each lattice element.

=⇒

Figure 8.20: Minimal reduced lattice of four-cell network #2.

The lattice of eigenvalues of quotient networks is reduced as in Figure 8.21.
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=⇒

Figure 8.21: Lattice UP
G of the sets of eigenvalues of quotient networks, where shaded lattice

points were generated by eigenvector structures.

Both two topologically distinct 2-cell quotient networks in rank 2 guarantee the existence

of transcritical bifurcating branches from the trivial solution (x1, x2, x3, x4) = (0, 0, 0, 0). To

determine how many bifurcating branches exist from a certain bifurcation point, we return to

the original lattice. There are three balanced polydiagonals associated with the eigenvalue 0 and

one balanced polydiagonal associated with the eigenvalue −1. Hence we expect to have three

transcritical branches bifurcating from a bifurcation point corresponding to the eigenvalue 0 and

one transcritical branches bifurcating from a bifurcation point corresponding to the eigenvalue

−1. The schematic bifurcation diagram is shown in Section 8.7.
3

Definition 8.3. Let G be a four-cell regular homogeneous network associated with an adjacency

matrix A. Let A have a double eigenvalue λ with corresponding eigenvector of geometric multi-

plicity two. Define a lattice which is already the minimal reduced lattice without any reduction

or a lattice which is not reduced to one of 14 lattice structures of simple eigenvalue networks

after reduction as a defective lattice.

Conjecture 8.1. In a defective lattice, the number η(⊥) is non-zero.

Xppaut simulations and Mathematica computations show the existence of additional

solution branches outside the balanced polydiagonals determined from lattice structures.

For defective lattices, we set 1 as a default number for η(⊥).

Remark 8.1. There are five defective lattices; four-cell valency 2 regular homogeneous networks

#29, #51,#293, #303, and #76.

8.6.2 A Pair of Double Eigenvalues and One Eigenvector in 4

Let (λ0, λ0, λ1, λ1) be the four eigenvalues of the adjacency matrix of a four-cell regular ho-

mogeneous network, where one eigenvector associated with the double eigenvalue λ0 (which is
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equal to the valency) is in 4. By Proposition 8.5, the double eigenvalue λ0 does not generate

multiple balanced polydiagonals. Hence the reduction of a lattice would be required depending

on the eigenvector structures corresponding to the other double eigenvalue λ1. Let g(λ1) be the

geometric multiplicity of the eigenvector associated with the eigenvalue λ1. There are two cases

as follows:

Case I: g(λ1) = 2,

Case II: g(λ1) = 1

Hence, the reduction can be necessary only for case I.

Example 8.7. Consider four-cell valency 2 regular homogeneous network #315 which has a pair

of double eigenvalues shown in Table 8.7.

Network #315 Adjacency matrix Eigenvalues Eigenvectors
0 0 1 1
0 0 1 1
0 0 2 0
0 0 0 2


λ0 = 2 }

(α, α, β, 2α− β)
λ1 = 2
λ2 = 0 }

(γ, δ, 0, 0)
λ3 = 0

Table 8.7: Four-cell network #315 and its associated adjacency matrix with eigenvalues and the
corresponding eigenvectors. α, β, γ, δ ∈ R.

There are two double eigenvalues λ0 = λ1 = 2 with two linearly independent eigenvectors

and λ2 = λ3 = 0 with two linearly independent eigenvectors (Case I).

There are five quotient networks. Figure 8.22 shows these quotient networks and the

corresponding eigenvalues.

In Figure 8.23, the lattice of the left shows there is one type S4 3-cell quotient network

and one type S2 3-cell quotient network in rank 3. Now we make a minimal reduced lattice by

clumping the blocks in the Figure 8.23 to a single point and assign η(p) to each lattice element.

Figure 8.24 shows the lattice of eigenvalues of quotient networks and its reduced structure.

Topologically identical two-cell quotient networks in rank 2 guarantee the existence of

transcritical bifurcating branches from the trivial solution (x1, x2, x3, x4) = (0, 0, 0, 0). To deter-

mine how many bifurcating branches exist from a bifurcation point corresponding to the double

eigenvalue λ2 = λ3 = 0, we return to the original lattice. There are three balanced polydiagonals

associated with this double eigenvalue. Hence we expect to have three transcritical branches
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{2, 0} {2, 0} {2, 0}

{2, 2, 0} {2, 0, 0}

Figure 8.22: Five quotient networks of four-cell network #315. The sets of eigenvalues of each
quotient network are shown.

=⇒

Figure 8.23: Minimal reduced lattice of four-cell network #315.

bifurcating from a bifurcation point corresponding to the double eigenvalue 0. One 3-cell quo-

tient network in rank 3 guarantee the existence of a saddle-node bifurcation (analysed in (Leite

and Golubitsky, 2006)). Hence there are three synchrony-preserving bifurcating branches from

a bifurcation point corresponding to the eigenvalue λ2 = λ3 = 0 and one synchrony-breaking

bifurcating branch from a bifurcation point corresponding to the eigenvalue λ0 = λ1 = 2. The

schematic bifurcation diagram is shown in Section 8.7. Only synchrony-breaking bifurcating

branches are shown.
3

8.6.3 Triple Eigenvalues and Three Eigenvectors

Proposition 8.7. Let G be a four-cell regular homogeneous network with adjacency matrix A.

If A have a triple eigenvalue λ1 with three linearly independent eigenvectors, then all of the

three-cell quotient networks G/./ of G are type S2.
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=⇒

Figure 8.24: The lattice of the sets of eigenvalues of quotient networks UP
G of four-cell network

#315. Some sets, which have the same set of eigenvalues are merged into a single lattice node.
Shaded lattice nodes are generated from the eigenvector structures.

Proof. Let λ0, λ1 be distinct eigenvalues of A, where λ1 is a triple eigenvalue with the geometric

multiplicity three eigenvector. Then the Jordan normal form of A is

J =


λ0 0 0 0

0 λ1 0 0

0 0 λ1 0

0 0 0 λ1


An adjacency matrix associated with a regular homogeneous coupled cell network has

an eigenvalue which is equal to the valency. Hence for each balanced equivalence relations with

rank 3 (i.e. three equivalence classes), the Jordan normal form is uniquely decomposed into

J./ =


λ0 0 0

0 λ1 0

0 0 λ1


which is a similar matrix to the adjacency matrices of S2 networks.

Hence all of the three-cell quotient networks are type S2.

We consider regular homogeneous four-cell valency 2 network #311 which has a triple

eigenvalue with the corresponding eigenvector with the geometric multiplicity three. We show

how to reduce the original lattice to the minimal reduced lattice in the following.

Colour each lattice element in rank 2 either blue or yellow. Two colours express two

topologically distinct two-cell quotient networks. Figure 8.25 shows there are three topologically

identical two-cell quotient networks (coloured by blue) and four topologically identical two-cell

quotient networks (coloured by yellow). Similarly, six three-cell quotient networks in total in rank
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3 are coloured with two colours. Only one of quotient network (coloured by red) is topologically

different from the rest of five quotient networks (coloured by green).

The minimal reduced lattice is obtained by clumping topologically identical networks as

little as possible. Once we obtain the minimal reduced lattice, we assign η(p) to each lattice

node to determine the existence of bifurcating branches.

=⇒

Figure 8.25: Minimal reduced lattice of four-cell network #311.

From the reduced lattice, we expect to have bifurcating branches only from rank 2 lattice

elements. The two-cell quotient network coloured by blue guarantees the existence of a trans-

critical branch and the two-cell quotient network coloured by yellow guarantees the existence of

a pitchfork branch. By looking at the original lattice, there are three blue lattice elements and

four yellow lattice elements. Hence, we expect there to be seven bifurcating branches from the

trivial solution; three of them are transcritical and four of them are pitchfork. These seven bifur-

cating branches lie in the corresponding two-dimensional balanced polydiagonals. A schematic

bifurcation diagram is shown in Section 8.7.

8.6.4 Triple Eigenvalues and Two Eigenvectors

Proposition 8.8. Let G be a four-cell regular homogeneous network with adjacency matrix A. If

A have a triple eigenvalue λ1 with two linearly independent eigenvectors, then three-cell quotient

networks G/./ of G are either type S2 or S3.

Proof. Let λ0, λ1 be distinct eigenvalues of A, where λ1 is a triple eigenvalue with the geometric

multiplicity two eigenvector. Then the Jordan normal form of A is

J =


λ0 0 0 0

0 λ1 0 0

0 0 λ1 1

0 0 0 λ1


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An adjacency matrix associated with a regular homogeneous coupled cell network always

has an eigenvalue equal to the valency. Hence for each balanced equivalence relations with rank

3 (i.e. three equivalence classes), the Jordan normal form is decomposed either as

J./ =


λ0 0 0

0 λ1 0

0 0 λ1


which is a similar matrix to adjacency matrices of S2 networks, or as

J./ =


λ0 0 0

0 λ1 1

0 0 λ1


which is a similar matrix to the adjacency matrices of S3 networks.

Hence three-cell quotient networks are either of type S2 or S3.

Remark 8.2. Four-cell valency 2 regular homogeneous networks #343, #6, #13, #270, #410,

#344 have exceptional structures. The existence of bifurcating branches outside the balanced

polydiagonals in lattices are analysed by xppaut and mathematica.

8.7 Bifurcation Diagrams of Four-cell Networks

The following figures show schematically the existence of synchrony-breaking bifurcating branches

from the synchronous state. The minimal reduced lattices are labelled from MRL1 to MRL46

with the corresponding simple eigenvalue network lattice structure, one of L1 to L14, in brackets.

There are several choices how to merge lattice nodes in each congruence block unless

there are some constraints of quotient network topologies. Note that the order of the lattice

UP
G (the sets of eigenvalues of adjacency matrices of quotient networks) and the lattice QP

G (the

set of quotient networks) are preserved under the reduction, however, the order of balanced

equivalence relations is not.

8.7.1 Double Eigenvalues with Geometric Multiplicity 2

Let (λ0, λ1, λ2, λ2) be a set of eigenvalues of the adjacency matrix of a given four-cell regular

homogeneous network G. λ0 is equal to the valency of the network and λ2 is a repeated eigenvalue

with the geometric multiplicity two. The bifurcation points µi correspond to each λi.

µ0 is the bifurcation point where the synchrony-preserving bifurcating branch originates,

hence there is no synchrony-breaking bifurcation branch unless one of the eigenvectors is in 4.
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The green node in each lattice corresponds to the balanced equivalence relation generated

from the eigenvector structure whose corresponding eigenvalue has geometric multiplicity one

(λ1). The bifurcation point associated with this “green” single eigenvalue is plotted as µ1 on

the horizontal axis.

Red nodes correspond to balanced equivalence relations generated from eigenvector struc-

tures of the double eigenvalue (λ2). The bifurcation point associated with this “red” double

eigenvalue is plotted as µ2 on the horizontal axis, where we can observe multiple bifurcating

branches.

In the minimal reduced lattices (labelled MRL with the corresponding simple eigenvalue

network lattice structure), each lattice node p is labelled with η(p). Additionally, some lattice

nodes also include a letter a or b in rank 2 and c or d in rank 3. These letters describe sets

of equal quotient network topologies. If lattice nodes in rank 2 are labelled 1 a this means

that their bifurcating branches will be constrained by having the same network structure, and

therefore their bifurcation types should be the same.

Some of the structures shown in the “original lattices” column are identical except for

the colouring of the nodes. For example, the original lattices leading to MRL1 and MRL2 have

the same structure, but the location of one red node is different. This leads to differences in

the number of topologically distinct quotient networks. Therefore, we list all possible coloured

variations of the original lattices in turn, and the possible reduced lattices in each case. For

example MRL2 and MLR3 both come from the same original lattice.

The final column shows a schematic bifurcation diagram, where the number of branches

can be inferred from the clumping used to construct the reduced lattice, but the bifurcation

types (labelled using a or b) can be determined from the minimal reduced lattice directly. To

emphasize that MLR1 to MLR8 cover only two distinct bifurcation diagrams, these have been

labelled with type (i) or (ii).

Three of the following exceptional lattices have been labelled with four-cell valency 2

network numbers; namely networks #29, #51, #293, #303, #76 and #327.
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Original Lattice Reduced Lattices Bifurcation diagrams
MRL1 (L4) Type (i)

MRL2 (L4) Type (ii)

MRL3 (L4) Type (i)

MRL4 (L4) Type (ii)

Figure 8.26: Existence of bifurcating branches for 4-cell valency 2 regular homogeneous networks
with double eigenvalues and two eigenvectors (split over five pages).
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MRL5 (L4) Type (i)

MRL6 (L4) Type (i)

MRL7 (L4) Type (i)

MRL8 (L4) Type (ii)
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MRL9 (L1)

MRL10 (L1)

MRL11 (L1)

#29, #51, #293, #303 MRL12
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MRL13 (L1)

MRL14 (L1)

MRL15 (L1)

MRL16 (L9)
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MRL17 (L1)

MRL18 (L1)

#76 MRL19

#327 MRL20 (L12)
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8.7.2 Double Eigenvalues with Geometric Multiplicity 1

Let (λ0, λ1, λ2, λ2) be a set of eigenvalues of the adjacency matrix of a given four-cell regular

homogeneous network G. λ0 is equal to the valency of the network and λ2 is a repeated eigenvalue

with the geometric multiplicity one. The bifurcation points µi correspond to each λi.

The green node in each lattice corresponds to the balanced equivalence relation generated

from the eigenvector structure whose corresponding eigenvalue has geometric multiplicity one

(λ1). The bifurcation point associated with this “green” single eigenvalue is plotted as µ1 on

the horizontal axis.

Red nodes correspond to balanced equivalence relations generated from eigenvector struc-

tures of the double eigenvalue (λ2) with only one linearly independent eigenvector. The bifurca-

tion point associated with this “red” double eigenvalue is plotted as µ2 on the horizontal axis,

where we can observe multiple bifurcating branches.

Note that the reduced lattices are the same as the original lattices. Since there is only

one linearly independent eigenvector for the corresponding double eigenvalue, the reduction is

not required for this type of networks.
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Original Lattice Reduced Lattices Bifurcation diagrams
MRL21 (L1)

MRL22 (L3)

MRL23 (L3)

MRL24 (L3)

Figure 8.27: Existence of bifurcating branches for 4-cell valency 2 regular homogeneous networks
with double eigenvalues and one eigenvector (split over two pages).
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MRL25 (L5)

MRL26 (L9)

MRL27 (L7)

MRL28 (L8)
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8.7.3 A Pair of Double Eigenvalues and one eigenvector in 4

Let (λ0, λ0, λ1, λ1) be a set of a pair of double eigenvalues of a given four-cell regular network

G. λ0 is equal to the valency of the network with the one of the corresponding eigenvectors is

(1, 1, 1, 1) ∈ 4.

The green node in each lattice corresponds to the balanced equivalence relation generated

from the eigenvector structure whose corresponding eigenvalue is λ1. The bifurcation point

associated with this “green” single eigenvalue is plotted as µ1 on the horizontal axis.

Red nodes correspond to balanced equivalence relations generated from eigenvector struc-

tures of the double eigenvalue λ0. The bifurcation point associated with this “red” double

eigenvalue is plotted as µ0 on the horizontal axis, where it is not shown but there exists a

synchrony-preserving bifurcating branch.

The reduction would be required if the corresponding eigenvector to the double eigenvalue

λ1 has the geometric multiplicity two (Case I).

Case I: (λ0, λ0, λ1, λ1) with g(λ1) = 2

Original Lattice Reduced Lattices Bifurcation diagrams
MRL29 (L1)

Figure 8.28: Existence of bifurcating branches for 4-cell valency 2 regular homogeneous networks
with a pair of double eigenvalues and one eigenvector in 4 (split over two pages).
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Case II: (λ0, λ0, λ1, λ1) with g(λ1) = 1

Original Lattice Reduced Lattices Bifurcation diagrams

MRL30 (L5)

MRL31 (L3)

MRL32 (L3)

8.7.4 Double Eigenvalues and one eigenvector in 4

Let (λ0, λ0, λ1, λ2) be the eigenvalues, where one eigenvector associated with the double eigen-

value λ0 is in 4 The green node in each lattice corresponds to the balanced equivalence relation

generated from the eigenvector structure whose corresponding eigenvalue is either λ1 or λ2. The

bifurcation point associated with this “green” single eigenvalue is plotted as µ1 or µ2 on the

horizontal axis.

Red nodes correspond to balanced equivalence relations generated from eigenvector struc-
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tures of the double eigenvalue λ0. The bifurcation point associated with this “red” double

eigenvalue is plotted as µ0 on the horizontal axis, where it is not shown but there exists a

synchrony-preserving bifurcating branch.

Original Lattice Reduced Lattices Bifurcation diagrams
MRL33 (L1)

MRL34 (L3)

MRL35 (L3)

Figure 8.29: Existence of bifurcating branches for 4-cell valency 2 regular homogeneous networks
with double eigenvalues and one eigenvector in 4.

237



8.7.5 Triple Eigenvalues with Geometric Multiplicity 3

Let (λ0, λ1, λ1, λ1) be a set of eigenvalues of the adjacency matrix of a given four-cell regular

homogeneous network G. λ0 is equal to the valency of the network and λ1 is a repeated eigenvalue

(the algebraic multiplicity is three) with the geometric multiplicity three.

Red nodes correspond to balanced equivalence relations generated from eigenvector struc-

tures of the triple eigenvalue λ1. The bifurcation point associated with this “red” triple eigen-

value is plotted as µ1 on the horizontal axis.

There are only three four-cell valency 2 regular homogeneous networks, where the associ-

ated adjacency matrices has a triple eigenvalue with three linearly independent vectors; namely

#1, #408 and #311. The dynamical behaviours of #1 and #408 are known to be equivalent.

These original lattices are reduced as described in Subsection 8.6.3, but the groupings

are not illustrated due to the complexity of the figures.

Original Lattice Reduced Lattices Bifurcation diagrams
#1∼=#408 MRL36 (L4)

#311 MRL37 (L4)

Figure 8.30: Existence of bifurcating branches for 4-cell valency 2 regular homogeneous networks
with triple eigenvalues and three eigenvectors.
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8.7.6 Triple Eigenvalues with Geometric Multiplicity 2

Let (λ0, λ1, λ1, λ1) be a set of eigenvalues of the adjacency matrix of a given four-cell regular

homogeneous network G. λ1 has the algebraic multiplicity is three with the geometric multiplicity

two.

Red nodes correspond to balanced equivalence relations generated from eigenvector struc-

tures of the triple eigenvalue λ1. The bifurcation point associated with this “red” triple eigen-

value is plotted as µ1 on the horizontal axis.

There are six four-cell valency 2 regular homogeneous networks which have exceptional

existence of synchrony-breaking bifurcating branches. The minimal reduced lattice of network

#344 does not match to any of 14 lattice structures of simple eigenvalue four-cell networks.

The minimal reduced lattices of networks #6, #13, #270, #410 and #343 is the same as L1,

however, xppaut simulation and mathematica shows additional solution branches outside the

balanced polydiagonals. Hence we have non-zero η(p) for the bottom elements.

Networks #64 and #137 are the only networks which have the minimal reduced lattice

MRL41. Numerical analysis shows that there are two branches in the trivial polydiagonal P4

from µ1, which have been included in the figure.
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Original Lattice Reduced Lattices Bifurcation diagrams
MRL38 (L1)

MRL39 (L1)

#344 MRL40

MRL41 (L9)

Figure 8.31: Existence of bifurcating branches for 4-cell valency 2 regular homogeneous networks
with triple eigenvalues and two eigenvectors (split over two pages).
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MRL42 (L3)

MRL43 (L5)

#6, #13, #270, #410 MRL44

#343 MRL45
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8.7.7 Triple Eigenvalues with Geometric Multiplicity 1

Red nodes correspond to balanced equivalence relations generated from eigenvector structures

of the triple eigenvalue λ1 with the geometric multiplicity one. The bifurcation point associated

with this “red” triple eigenvalue is plotted as µ1 on the horizontal axis.

Note that the reduced lattice is the same as the original lattice as there is only one

linearly independent eigenvector corresponding to the triple eigenvalue λ1.

From numerical analysis, it seems there exist two branches in the trivial polydiagonal

P4. Therefore, two bifurcating branches in P4 from the bifurcation point µ1 are drawn.

Original Lattice Reduced Lattices Bifurcation diagrams
MRL46 (L3)

Figure 8.32: Existence of bifurcating branches for 4-cell valency 2 regular homogeneous networks
with triple eigenvalues and one eigenvector.

8.8 Conclusions

If the dimension of an eigenspace is more than one, the spanning eigenvectors can generate

more balanced equivalence relations than the algebraic multiplicity of the corresponding eigen-

value. Hence there is no one-to-one relationships between balanced equivalence relations and

eigenvectors. Furthermore, often the topologies of the quotient networks defined by the corre-

sponding balanced polydiagonals are identical (this constrains identical dynamical behaviour).

This causes multiple bifurcating branches from a single bifurcating branch, and the solution

branches behave in a similar manner.

To remove additional lattice elements, which are generated by the multiple dimension-

ality of an eigenspace, we considered a reduction of lattice by minimally merging topologically

identical quotient network lattice elements together. Once the reduction is completed, then

η(p) is assigned to each lattice element, and the remaining analysis follows as for the simple

eigenvalue networks.
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The number of multiple bifurcating branches, which was ignored in the reduction of the

lattice, can be obtained from the original lattice.

All non-simple eigenvalue three and four-cell regular homogeneous networks of valency

2 were classified, and schematic diagrams which show the existence of bifurcating branches,

the dimension of balanced polydiagonals, where bifurcating branches lie, and the grouping of

bifurcation types using algebraic symbols are listed. There are eleven four-cell valency 2 reg-

ular homogeneous networks, which have exceptional lattice structures. Five four-cell networks

#29, #51,#293, #303 and #76 have double eigenvalues and two eigenvectors. The rest of six

four-cell networks #343, #6, #13, #270, #410 and #344 have triple eigenvalues and two eigen-

vectors. The existence of bifurcating branches of these networks were analysed using xppaut

and mathematica.

An eigenvector with the geometric multiplicity g(λ) may generate more than g(λ) bal-

anced equivalence relations. However, in the implementation of the computer algorithm, at

most g(λ) balanced equivalence relations are identified as being generated by the eigenvector

and coloured accordingly (red in the diagrams in Section 8.7, medium grey in Appendix A).

Although non-trivial to implement, the program could potentially label all the possible bal-

anced equivalence relations from a given eigenvalue, which would make the figure colouring less

misleading.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

Group-theoretic enumeration formulas for regular homogeneous networks of valency r by Al-

dosray and Stewart (2005) were extended for more generalised networks which allow different

valencies for each cell in Chapter 2. Furthermore, we considered another type of generalised

network, which allows different cell types, represented by different colours. The relevant group

action on coloured networks is defined in (2.10) as a product of two different kinds of permu-

tation: one is for an adjacency matrix, and the other is for cell colouring. Lemma 2.8 proved

this defines a group action. The cardinalities of fixed-point sets were calculated as a product

of the number of fixed adjacency matrices and the number of fixed colour vectors. The above

enumeration is computationally inexpensive (when n ≤ 6, the number of colours is up to four,

and the valency r ≤ 6).

To analyse network dynamics, we next considered a visualisation of regular homoge-

neous networks in Chapter 3. This visualisation is computationally more expensive (keeping

the number of cells to at most five, and the valency r ≤ 4 is tractable). From all possible

adjacency matrices, those corresponding to isomorphic connected networks were selected, and

furthermore strongly connected networks were determined. These adjacency matrices were used

for visualising networks.

Next, in Chapter 4, we showed how to compute all possible balanced equivalence relations

for regular homogeneous networks. Proposition 4.1 proved that finding a balanced equivalence

relation ./ of a given network G is equivalent to determining an invariant polydiagonal subspace

of the corresponding adjacency matrix A of G. Furthermore, in Theorem 4.4, we proved that a

polydiagonal subspace 4./ is invariant if and only if it satisfies the relation:

P./AP./ = AP./

where P./ is the projection mapping along polysynchronous direction 4./.
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In Lemma 4.1 followed by Proposition 4.3, we proved that an adjacency matrix has a block

structure if a polysynchronous subspace 4./ is invariant under A, and this led to a computer

algorithm to search all possible balanced equivalence relations just from the adjacency matrices.

In this computer algorithm, firstly we consider all possible equivalence relations on the set

of cells. All corresponding columns of the adjacency matrix in the same conjugacy class are

summed up, and the corresponding rows are compared. If the equivalence relation is balanced,

then these rows are identical. This result follows from Lemma 4.1 and Proposition 4.3. For each

balanced equivalence relation, the corresponding quotient network was also displayed (quotient

networks are not shown in the Appendix). Stewart (2007) proved that all balanced equivalence

relations form a lattice using a refinement relation in a general context. Using the refinement

relation, we generated explicit forms of the lattices of balanced equivalence relations of all three

and four-cell network of valency 2 (listed in Appendix A).

In Chapter 5, we reviewed basic local bifurcation theory, followed by Liapunov-Schmidt

reduction. We included a result from Golubitsky and Stewart (2008) which proves that nonde-

generacy conditions can be computed as an inner product of the corresponding eigenvectors of

the adjacency matrix of a network. We described why generic codimension-one local synchrony-

breaking steady-state bifurcations of regular homogeneous networks are usually transcritical

or pitchfork bifurcations, but can be more degenerate in rare cases (Golubitsky and Stewart,

2008). Finally we showed that symmetric coupling constrains the form of the Taylor expansion

of admissible vector fields.

In Chapter 6, we analysed the generic bifurcation type of two-cell regular homogeneous

networks of valency 2. There are five such networks and their nondegeneracy conditions for

the existence for generic bifurcations (transcritical or pitchfork) were computed using Liapunov-

Schmidt reduction or the Implicit Function Theorem using the Taylor expansion form from

Chapter 5. The results in this chapter were used in Example 7.5 in Chapter 7 and in Chapter 8.

Stewart (2007) showed that there exists a bijection between a lattice of balanced equiv-

alence relations, denoted by ΛG , and a lattice of balanced polydiagonals, denoted by V P
G . In

the first part of Chapter 7, we further proved that there exists a third form of lattice, denoted

by UP
G , constructed from the eigenvalues of the quotient networks. The lattice UP

G is important

for the determination of the existence of synchrony-breaking branches, and in which balanced

polydiagonal these branches lie.

For the remainder of Chapter 7, we only considered the case of regular homogeneous

networks whose adjacency matrices have simple eigenvalues. Theorem 7.2 proved that there exist

important lattice nodes which are defined by the eigenvector structures of the adjacency matrix
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of the network. These lattice nodes are called lattice generators. Furthermore, in Lemma 7.10,

we proved that the three forms of lattices, ΛG , V P
G and UP

G are order-isomorphic for simple

eigenvalue networks. This Lemma 7.10 led to Theorem 7.3, which showed that the full lattice

of a simple eigenvalue network was generated using these lattice generators.

Next, a number η(p) was assigned for each lattice element in UP
G as described in Defini-

tion 7.11. These numbers η(p) have to satisfy a condition stated in Proposition 7.3 and their

properties allowed the construction of all possible lattice structures. We showed there are 3

possible lattice structures and 14 possible lattice structures, for three-cell and four-cell regular

homogeneous networks (of any valency), respectively.

In particular, we now summarise the results for three and four cell regular homogeneous

networks of valency 2. There are 21 networks with simple real eigenvalues and 6 networks with

simple complex eigenvalues for three-cell regular homogeneous networks of valency 2. In these

three-cell regular networks, all 3 possible lattice structures are observed. Hence all 27 simple

(real or complex) eigenvalue three-cell regular homogeneous networks of valency 2 were classified

into 3 types of lattice. Similarly, there are 98 networks with simple real eigenvalues and 130

networks simple complex eigenvalues for four-cell regular homogeneous networks of valency 2.

There are 14 possible lattice structures for four-cell simple eigenvalue networks, however, two

of these lattices are not observed for four-cell networks of valency 2. The thirteenth lattice was

found for valency 3, while the fourteenth lattice has not yet been found considering up to valency

5. Therefore, this result shows that all 228 simple (real or complex) eigenvalue four-cell regular

homogeneous networks of valency 2 were classified into 12 lattice structures. Note that these

networks include ODE-equivalent networks, as defined in Dias and Stewart (2005).

A lattice node in UP
G with non-zero η(p) indicates the existence of synchrony-breaking

bifurcating branches in the corresponding polysynchronous subspace, proved in Lemma 7.12.

A special case of this lemma is the existence of synchrony-breaking bifurcating branches corre-

sponding to balanced two-colourings, stated in Lemma 7.13. This result follows from Lemma 7.7,

which proved that equivalence relations generated from eigenvectors with only two distinct en-

tries are always balanced, and Lemma 7.12. Theorem 2.1. in Wang and Golubitsky (2005)

shows the equivalent result to Lemma 7.13 for planar lattice dynamical systems. Using an

order-isomorphism from UP
G to V P

G , the rank of any non-zero η(p) represents the dimension of

the corresponding polysynchronous subspace. Therefore, using the number η(p) and its posi-

tion in the lattice, schematic diagrams for the existence of bifurcating branches were drawn for

three-cell and four-cell regular homogeneous networks with simple real eigenvalues. The distinct

bifurcation diagrams (for the existence of branches, not the types of bifurcation) were further
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classified into 9 different types for four-cell regular homogeneous networks. Types of bifurca-

tion for each branch can be computed by Liapunov-Schmidt reduction using the corresponding

quotient network.

Finally in Chapter 8, we applied this lattice classification method to non-simple eigenvalue

networks. Although all quotient networks of simple eigenvalue networks are topologically distinct

(Corollary 7.2), some quotient networks are topologically identical for many non-simple eigen-

value networks, shown in Proposition 8.3. This happens when the dimension of an eigenspace is

more than one and it makes the lattice size of non-simple eigenvalue networks bigger than the

lattice size of simple eigenvalue networks.

Our main purpose for using lattice structures is to detect which balanced polydiagonals

belong to eigenspaces, and which determine bifurcating branch directions for local bifurcations.

In simple eigenvalue networks, this method works well since there is one-to-one relationship

between balanced polydiagonals and eigenspaces. However, for non-simple eigenvalue networks,

this approach is not so straightforward because there are other lattice elements which arise from

the multiple dimensionality of eigenspaces.

To detect one-to-one relationships between balanced polydiagonals and the correspond-

ing eigenspaces (for example, at most two balanced polydiagonals from a two dimensional

eigenspace), we defined a reduced lattice as described in Definition 8.1, where topologically

identical quotient networks are minimally merged.

Once we had obtained a reduced lattice from the original lattice, η(p) were assigned for

each lattice element in a similar manner to simple eigenvalue networks. The number of multiple

bifurcating branches from a single bifurcation point (corresponding to a repeated eigenvalue) was

observed from the original lattice. Diagrams which show the existence of bifurcating branches

(unique or non-unique) were listed for all three and four-cell regular homogeneous networks of

valency 2 with non-simple real eigenvalues.

9.2 Discussion and Future Work

There is a theorem which states:

Theorem 9.1. A square adjacency matrix is irreducible if and only if its directed graph is

strongly connected.

Proof. See Brualdi (2006).

It seems that similar enumeration formulas could be applied to the enumeration of

strongly connected networks.
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Leite and Golubitsky (2006) found that there are exactly five three-cell regular homo-

geneous networks with eigenvalue type S3 (double eigenvalues with one eigenvector). They

analysed these networks and found that three networks which they denoted 3, 27 and 28 (#12

(equivalently #37), #6 and #14 in our Table 3.2) have nontrivial bifurcating solutions whose

rates of growth are different in distinct cells, while in networks 6 and 11 (#28 and #18 in our

Table 3.2) the growth rate of solutions in a given bifurcating branch is equal for all cells. In our

analysis, networks 6 and 11 are found to be strongly connected networks. It is worth analysing

if strongly connected networks influence the growth rate in cells.

Aguiar et al. (2008) use an algorithm to search all possible adjacency matrices which have

a given quotient network. This is the opposite direction from our algorithm which generates all

possible quotient networks from a given network. If we are interested in a particular quotient

network as in Aguiar et al. (2007), their approach is computationally inexpensive and searches

target networks efficiently.

The number of n-cell regular homogeneous networks increases as valency increases, how-

ever, the structures of lattices of balanced equivalence relations of the networks are independent

of valency. Golubitsky and Stewart (2008) found an exceptional four-cell homogeneous regular

network of valency 736, where the generic bifurcation behaviour is different from other networks.

Generic bifurcation type is determined by nondegeneracy conditions using Liapunov-Schmidt

reduction, which deals with nonlinear terms. By contrast, balanced equivalence relations are

determined from a linear admissible vector field. While existence of local bifurcation branches

and their directions is not affected by higher order terms of the admissible vector field, the

generic type of bifurcations might be influenced by nonlinear terms.

Observe that the number of distinct lattice structures (14 for simple eigenvalue four-

cell networks and 3 for simple eigenvalue three-cell networks) is much less than the number of

networks. Furthermore, the number of distinct bifurcation diagrams of four-cell regular homo-

geneous networks with simple eigenvalues is even smaller than 14, at just 9. This observation

leads to the classification of existence of bifurcation branches. Since the diagrams of the exis-

tence of bifurcating branches do not consider the position (order on the bifurcation parameter

axis) of critical eigenvalues, the equivalence of the existence of bifurcating branches would be

topological. If we add the information about the types of bifurcating branches, this classification

would be more complex and the number of categories would increase.

In our computer algorithm, balanced equivalence relations generated from eigenvector

structures are coloured differently to be distinguished from other balanced equivalence rela-

tions. For one dimensional eigenvectors (associated with a simple eigenvalue) most linear al-
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gebra implementations will return a unit vector for the eigenvector which is well defined other

than the sign. However, for multidimensional eigenspaces the precise numerical values of the

spanning eigenvectors which the computer algorithm selects will depend on the implementation

details. This means that for example given a double eigenvalue, where the eigenspace is a plane

(e.g. (x, y, z) = (a, b, 0)), the eigenvectors could be any two vectors spanning this plane. The

eigenspace may contain multiple possible polydiagonals (in this example (a, a, 0), (a, 0, 0) and

(0, b, 0)) but it is non-trivial to compute these from any two eigenvectors. If we can overcome

this difficulty, colouring scheme of the lattices of non-simple eigenvalue networks would look

simpler.

There are some exceptional four-cell regular homogeneous networks of valency 2, where

the reduced lattice does not match any simple eigenvalue lattice structure. These are networks

#29, #51, #293, #303 and #76 with double eigenvalues and two eigenvectors, and networks

#343, #6, #13, #270, #410 and #344 with triple eigenvalues and two eigenvectors. We spec-

ulate that these exceptional networks may have special adjacency matrix structures.

If two networks G and G̃ are ODE-equivalent (Dias and Stewart, 2005), then they have

the same lattice of balanced equivalence relations Λ. There exist many networks which have

the same lattice of balanced equivalence relations, however, they do not satisfy the definition

of ODE-equivalence. Lattice classifications show that their bifurcation existence diagrams are

equivalent. We speculate that there exists a category broader than ODE-equivalence to classify

network bifurcation behaviour.

In this thesis, we considered synchrony-breaking steady-state bifurcations. A similar

analysis can be extended to synchrony-breaking Hopf bifurcations.

In applications, we are particularly interested in stable solutions. In this thesis we only

considered the existence of bifurcating branches, however, the relationships between the network

structure and the stability of these branches can be analysed.

9.3 Towards Applications

We aimed to classify qualitative dynamical behaviours solely from the network architecture

(topology), not from specific function forms of a system. This kind of approach is inverted

compared to conventional methods which use specific function forms and reduce qualitative

dynamical behaviours, or use all available data as much possible and extract the essence of a given

complex system. However, in complex networks, it is quite hard to determine specific function

forms, but easier to find linkage information. Mochizuki (2007) used this approach to determine

the number of possible steady state solutions (which correspond to the number of different
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cell types) in gene regulatory networks for early development in a sea urchin species. Similarly,

Albert and Othmer (2003) analysed whether gene expression patterns of the Drosophila segment

polarity was determined by the topology of the network, but not from the detailed form of the

rate laws described by a system of ODEs.

Another aspect of our analysis is the size of networks. We analysed and classified bifur-

cation behaviours of much smaller networks than the complex networks which we can find in

real world. However, this does not imply that analysing small networks is far from practical

applications.

Recently, it has been discovered that there are several small size subnetworks, which

frequently occur within complex networks throughout many branches of science such as WWW,

gene regulatory networks, food webs, electric circuit, etc. These small networks are called

network motifs and are considered to be building blocks of complex networks (Milo et al.,

2005), which carry important functionality needed in a complex network.

Kashtan et al. (2004) found that larger network motifs have topological similarities to

smaller network motifs. They defined motif generalisations, which are families of motifs of differ-

ent sizes which share a common network architecture and analysed their dynamical behaviours.

Ishihara et al. (2005) also analysed a similar generalization of one network motif, the

feed-forward loop. They considered several combinations of feed-forward loops and suggested

their cross talk would play important roles in morphogenesis.

Golubitsky and Lauterbach (2008) introduces the notion of a product network, where

the nodes (cells) of one network are replaced by copies of another network. This might give a

formalism for a generalisation of small networks (network motifs) to build larger networks.

One of immediate generalisation of regular homogeneous networks would be to allow dif-

ferent cell types in a network. These networks were enumerated in Chapter 2. In such networks,

the entries of adjacency matrices can no longer be represented as a single positive integer, but

could require algebraic symbols or one adjacency matrix per connection type. However, the

computation of all possible balanced equivalence relations would follow in a similar manner.

Equality of numbers would be replaced by the equality of algebraic symbols. This work is

ongoing.
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Appendix A

Listing of Homogeneous Coupled

Cell Network Lattices

253



#1
T

α1 α2 α3

⊥

#2
T

α1 α3

⊥

#3
T

α1 α3

⊥

#4
T

α1

⊥

#5
T

α2 α3

⊥

#6
T

α3

⊥

#7
T

α3

⊥

#8
T

α2

⊥

#9
T

⊥

#10
T

α2

⊥

#11
T

α3

⊥

#12
T

α3

⊥

#13
T

⊥

#14
T

α2

⊥

#15
T

⊥

#16
T

⊥

#17
T

α2 α3

⊥

#18
T

α3

⊥

#19
T

α2

⊥

#20
T

α2

⊥

#21
T

⊥

#22
T

⊥

#23
T

α2 α3

⊥

#24
T

α3

⊥

#25
T

⊥

#26
T

α1 α3

⊥

#27
T

α1 α2 α3

⊥

#28
T

α1

⊥

#29
T

α1 α2

⊥

#30
T

α3

⊥

#31
T

⊥

#32
T

α2

⊥

#33
T

α1 α2 α3

⊥

#34
T

α3

⊥

#35
T

α1 α2 α3

⊥

#36
T

α1 α3

⊥

#37
T

α3

⊥

#38
T

⊥

Figure A.1: All lattices of balanced equivalence relations for the 38 connected networks with
three cells and valency two (n = 3, r = 2, see Figure 3.2). The lattices for the 14 strongly
connected networks are shown with dark grey nodes, the rest have pale grey nodes. Nodes
in the medium grey are associated with equivalence relations generated by eigenvectors. >
denotes the top lattice element, {{1, 2, 3}}, ⊥ the bottom lattice element, {{1}, {2}, {3}}, while
α1, . . . , α3 denote {{1, 2}, {3}}, {{1, 3}, {2}} and {{1}, {2, 3}} respectively.
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#1
T

α1 α2 β1

γ1

α3 β2

γ2

β3 α4

γ3 γ4 γ5 γ6

⊥

#2
T

α1 β1

γ1

α3

γ2

α4

γ3 γ6

⊥

#3
T

α1 β1

γ1

α3

γ2

α4

γ3 γ6

⊥

#4
T

α1

γ1 γ2

α4

γ3

⊥

#5
T

α2 β1

γ1

α3 α4

γ4 γ5 γ6

⊥

#6
T

β1

γ1

α3 α4

γ6

⊥

#7
T

β1

γ1

α3 α4

γ6

⊥

#8
T

α2

γ1

α4

γ5

⊥

#9
T

γ1

α4

⊥

#10
T

α2

γ1

α4

γ5

⊥

#11
T

α2

γ1

⊥

#12
T

β1

γ1

α3 α4

γ6

⊥

#13
T

β1

γ1

α3 α4

γ6

⊥

#14
T

γ1

α4

⊥

#15
T

α2

γ1

β2 α4

γ4 γ5

⊥

#16
T

γ1

α4

⊥

#17
T

γ1

α4

⊥

#18
T

α2 β1

γ1

β2 α4

γ5 γ6

⊥

#19
T

β1

γ1

α4

γ6

⊥

Figure A.2: All lattices of balanced equivalence relations for the 416 connected networks with
four cells and valency two (n = 4, r = 2, see Figure 3.3), split over fifteen pages. The lat-
tices for the 108 strongly connected networks are shown with dark grey nodes, the rest have
pale grey nodes. Nodes in the medium grey are associated with equivalence relations gener-
ated by eigenvectors. > denotes the top lattice element, {{1, 2, 3, 4}}, ⊥ the bottom lattice
element, {{1}, {2}, {3}, {4}}, α1, . . . , α4 denote {{1, 2, 3}, {4}}, {{1, 2, 4}, {3}}, {{1, 3, 4}, {2}}
and {{1}, {2, 3, 4}} (triplet and singleton), β1, . . . β3 denote {{1, 2}, {3, 4}}, {{1, 3}, {2, 4}} and
{{1, 4}, {2, 3}} (two pairs), and finally γ1, . . . , γ6 denote {{1, 2}, {3}, {4}}, {{1, 3}, {2}, {4}},
{{1}, {2, 3}, {4}}, {{1, 4}, {2}, {3}}, {{1}, {2, 4}, {3}}, and {{1}, {2}, {3, 4}} (pair and two sin-
gletons) respectively.
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#20
T

α2

γ1

β2 α4

γ5

⊥

#21
T

α2 β1

γ1 γ4

⊥

#22
T

β1

γ1

⊥

#23
T

α2

γ1

⊥

#24
T

α2

γ1 γ4

⊥

#25
T

α2

γ1

α4

γ4 γ5

⊥

#26
T

γ1

α4

⊥

#27
T

γ1

α4

⊥

#28
T

α2 β1

γ1

α4

γ5 γ6

⊥

#29
T

β1

γ1

α4

γ6

⊥

#30
T

α2

γ1

α4

γ5

⊥

#31
T

α2 β1

γ1 γ4

⊥

#32
T

β1

γ1

⊥

#33
T

α2

γ1

⊥

#34
T

α2

γ1 γ4

⊥

#35
T

α2

γ1

β2 α4

γ4 γ5

⊥

#36
T

γ1

α4

⊥

#37
T

γ1

α4

⊥

#38
T

α2

γ1

β2 α4

γ5

⊥

#39
T

γ1

α4

⊥

#40
T

α2 β1

γ1

β2 α4

γ5 γ6

⊥

#41
T

α2

γ1 γ4

⊥

#42
T

γ1

⊥

#43
T

α2 β1

γ1

⊥

#44
T

α2 β1

γ1 γ4

⊥

#45
T

α2

γ1 γ4 γ5

⊥

#46
T

γ1

⊥

#47
T

γ1

⊥

#48
T

α2

γ1 γ5

⊥

#49
T

γ1

⊥
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#50
T

α2 β1

γ1 γ5

⊥

#51
T

α2 β1

γ1 γ6

⊥

#52
T

β1 α3 β3 α4

γ3 γ4 γ6

⊥

#53
T

β1 α3 α4

γ3 γ5 γ6

⊥

#54
T

β1 α3 α4

γ3 γ6

⊥

#55
T

α4

γ3

⊥

#56
T

α4

γ3 γ5

⊥

#57
T

α4

γ3

⊥

#58
T

α3 β3

γ3 γ4

⊥

#59
T

α3

γ3

⊥

#60
T

γ3

⊥

#61
T

α3 β3

γ3 γ4

⊥

#62
T

β1 α3 α4

γ4 γ6

⊥

#63
T

β1 α3 α4

γ5 γ6

⊥

#64
T

β1 α3 α4

γ6

⊥

#65
T

α4

⊥

#66
T

α4

γ5

⊥

#67
T

α4

⊥

#68
T

α3

γ4

⊥

#69
T

α3

⊥

#70
T

⊥

#71
T

α3

γ4

⊥

#72
T

β3 α4

γ3 γ4

⊥

#73
T

β2 α4

γ3 γ5

⊥

#74
T

α4

γ3

⊥

#75
T

β1 β2 α4

γ3 γ5 γ6

⊥

#76
T

β1 β2 β3

γ3 γ4

⊥

#77
T

β1

γ3

⊥

#78
T

β3

γ3 γ4

⊥

#79
T

α4

γ4

⊥
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#80
T

α4

γ5

⊥

#81
T

α4

⊥

#82
T

β1 α4

γ6

⊥

#83
T

β1 α4

γ5 γ6

⊥

#84
T

α4

⊥

#85
T

β1

γ4

⊥

#86
T

β1

⊥

#87
T

⊥

#88
T

γ4

⊥

#89
T

α4

γ4

⊥

#90
T

β2 α4

γ5

⊥

#91
T

α4

⊥

#92
T

α4

⊥

#93
T

β2 α4

γ5

⊥

#94
T

β2

γ4

⊥

#95
T

⊥

#96
T

β1 β2

⊥

#97
T

β1

γ4

⊥

#98
T

α3

γ4

⊥

#99
T

α3

γ5

⊥

#100
T

α3

⊥

#101
T

β1

⊥

#102
T

β1

γ5

⊥

#103
T

⊥

#104
T

β1 α3

γ4 γ6

⊥

#105
T

β1 α3

γ6

⊥

#106
T

⊥

#107
T

α3

γ4

⊥

#108
T

α3 β3

γ4

⊥

#109
T

α3

γ5

⊥
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#110
T

α3

⊥

#111
T

β1

⊥

#112
T

β1

γ5

⊥

#113
T

⊥

#114
T

β1 α3 β3

γ4 γ6

⊥

#115
T

β1 α3

γ6

⊥

#116
T

⊥

#117
T

α3 β3

γ4

⊥

#118
T

β3

γ4

⊥

#119
T

γ5

⊥

#120
T

⊥

#121
T

⊥

#122
T

γ5

⊥

#123
T

β1

⊥

#124
T

β3

γ4

⊥

#125
T

⊥

#126
T

β1

γ6

⊥

#127
T

β1 β3

γ4

⊥

#128
T

α3

γ4

⊥

#129
T

α3

γ5

⊥

#130
T

α3

⊥

#131
T

⊥

#132
T

γ5

⊥

#133
T

β1

⊥

#134
T

α3

γ4

⊥

#135
T

α3

⊥

#136
T

β1 α3 α4

γ4 γ6

⊥

#137
T

β1 α3 α4

γ6

⊥

#138
T

α4

⊥

#139
T

α4

⊥
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#140
T

α4

⊥

#141
T

α3

γ4

⊥

#142
T

⊥

#143
T

α3

γ4

⊥

#144
T

α4

γ3

⊥

#145
T

α4

γ3

⊥

#146
T

α4

γ3

⊥

#147
T

γ3

⊥

#148
T

β1 α4

γ3 γ6

⊥

#149
T

β1 α4

γ3 γ6

⊥

#150
T

α4

γ3

⊥

#151
T

γ3

⊥

#152
T

α4

γ3

⊥

#153
T

β1

⊥

#154
T

β1

⊥

#155
T

⊥

#156
T

⊥

#157
T

β1

⊥

#158
T

⊥

#159
T

⊥

#160
T

β1

γ6

⊥

#161
T

β1

⊥

#162
T

α2 α3 β3 α4

γ3 γ4 γ5 γ6

⊥

#163
T

α3 α4

γ3 γ6

⊥

#164
T

α3 α4

γ3 γ6

⊥

#165
T

α4

γ3

⊥

#166
T

α2 α3 β3

γ3 γ4

⊥

#167
T

α3

γ3

⊥

#168
T

α2 α3 β3

γ3 γ4

⊥

#169
T

α3 α4

γ6

⊥
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#170
T

α3 α4

γ6

⊥

#171
T

α4

⊥

#172
T

α3

⊥

#173
T

α2 α4

γ4 γ5

⊥

#174
T

α4

⊥

#175
T

α4

⊥

#176
T

α2 α4

γ5 γ6

⊥

#177
T

α4

γ6

⊥

#178
T

α2 α4

γ5

⊥

#179
T

α2

γ4

⊥

#180
T

⊥

#181
T

α2

⊥

#182
T

α2

γ4

⊥

#183
T

α2 α3

γ4 γ5

⊥

#184
T

α3

⊥

#185
T

α3

⊥

#186
T

α2

γ5

⊥

#187
T

⊥

#188
T

α2

γ5

⊥

#189
T

α2 α3

γ4 γ6

⊥

#190
T

α3

γ6

⊥

#191
T

α2

⊥

#192
T

α2 α3

γ4

⊥

#193
T

α2 α3 β3

γ4 γ5

⊥

#194
T

α3

⊥

#195
T

α3

⊥

#196
T

α2

γ5

⊥

#197
T

⊥

#198
T

α2

γ5

⊥

#199
T

α2 α3 β3

γ4 γ6

⊥
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#200
T

α3

γ6

⊥

#201
T

α2

⊥

#202
T

α2 α3 β3

γ4

⊥

#203
T

α2 β3

γ4 γ5

⊥

#204
T

⊥

#205
T

⊥

#206
T

α2

γ5

⊥

#207
T

⊥

#208
T

α2 β3

γ4

⊥

#209
T

⊥

#210
T

α2

γ6

⊥

#211
T

α2 α3

γ4 γ5

⊥

#212
T

α3

⊥

#213
T

α3

⊥

#214
T

α2

γ5

⊥

#215
T

⊥

#216
T

α3

⊥

#217
T

α3 α4

γ3 γ5 γ6

⊥

#218
T

α4

γ3

⊥

#219
T

α4

γ3 γ5

⊥

#220
T

α4

γ3

⊥

#221
T

α3

γ3

⊥

#222
T

γ3

⊥

#223
T

α4

γ3 γ5

⊥

#224
T

α4

γ3 γ5 γ6

⊥

#225
T

γ3

⊥

#226
T

α3

γ4

⊥

#227
T

α3

γ5

⊥

#228
T

⊥

#229
T

γ5

⊥
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#230
T

⊥

#231
T

α3

γ4 γ6

⊥

#232
T

α3

γ6

⊥

#233
T

⊥

#234
T

α3

γ4

⊥

#235
T

α3

γ4

⊥

#236
T

α3

γ5

⊥

#237
T

⊥

#238
T

γ5

⊥

#239
T

⊥

#240
T

α3

γ4 γ6

⊥

#241
T

α3

γ6

⊥

#242
T

⊥

#243
T

γ4

⊥

#244
T

γ5

⊥

#245
T

⊥

#246
T

γ5

⊥

#247
T

γ4

⊥

#248
T

⊥

#249
T

γ6

⊥

#250
T

α3

γ4

⊥

#251
T

α3

γ5

⊥

#252
T

γ5

⊥

#253
T

α3

⊥

#254
T

α4

γ3

⊥

#255
T

α2

γ5

⊥

#256
T

⊥

#257
T

α2

γ5

⊥

#258
T

α2

⊥

#259
T

α2

γ5

⊥
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#260
T

⊥

#261
T

α2

⊥

#262
T

α2

γ4 γ5

⊥

#263
T

⊥

#264
T

⊥

#265
T

α2

γ5

⊥

#266
T

⊥

#267
T

α2

γ4

⊥

#268
T

⊥

#269
T

α2

γ6

⊥

#270
T

α2 α3 β3

γ3 γ4

⊥

#271
T

α3

γ3

⊥

#272
T

α3

γ3

⊥

#273
T

γ3

⊥

#274
T

α2 α3 β3 α4

γ3 γ4 γ5 γ6

⊥

#275
T

α3 α4

γ3 γ6

⊥

#276
T

α2 α3 β3

γ3 γ4

⊥

#277
T

α2 α3

γ4

⊥

#278
T

α3

⊥

#279
T

α3

⊥

#280
T

α2

⊥

#281
T

⊥

#282
T

α2 α3 α4

γ4 γ5 γ6

⊥

#283
T

α3 α4

γ6

⊥

#284
T

α2 α4

γ5

⊥

#285
T

α2

γ4

⊥

#286
T

⊥

#287
T

⊥

#288
T

α2

⊥

#289
T

⊥

264



#290
T

α2 α4

γ4 γ5

⊥

#291
T

α4

⊥

#292
T

α2 α4

γ5 γ6

⊥

#293
T

α3 β3

γ3 γ4

⊥

#294
T

α3

γ3

⊥

#295
T

γ3

⊥

#296
T

γ3

⊥

#297
T

α3 β3 α4

γ3 γ4 γ6

⊥

#298
T

α3 α4

γ3 γ5 γ6

⊥

#299
T

α4

γ3

⊥

#300
T

β3

γ3 γ4

⊥

#301
T

γ3

⊥

#302
T

γ3

⊥

#303
T

β3 α4

γ3 γ4

⊥

#304
T

α4

γ3 γ5

⊥

#305
T

α2 α3 β3

γ3 γ4

⊥

#306
T

α3

γ3

⊥

#307
T

γ3

⊥

#308
T

α2 α3 β3 α4

γ3 γ4 γ5 γ6

⊥

#309
T

α3 α4

γ3 γ6

⊥

#310
T

α1 β1

γ1

α3

γ2

α4

γ3 γ6

⊥

#311
T

α1 α2 β1

γ1

α3 β2

γ2

β3 α4

γ3 γ4 γ5 γ6

⊥

#312
T

α1

γ1 γ2

β3 α4

γ3

⊥

#313
T

α1 α2

γ1

β2

γ2

α4

γ3 γ5

⊥

#314
T

α1

γ1

β2

γ2

β3

γ3

⊥

#315
T

β1

γ1

α3 α4

γ6

⊥

#316
T

γ1

α4

⊥

#317
T

α2

γ1

α4

γ5

⊥

#318
T

γ1

⊥
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#319
T

α1 β1

γ1

β3 α4

γ3 γ6

⊥

#320
T

α1 α2 β1

γ1

α4

γ3 γ5 γ6

⊥

#321
T

α1 β1

γ1 γ3

⊥

#322
T

α1 α2 β1

γ1

β3

γ3 γ4

⊥

#323
T

α1

γ1

β3

γ3

⊥

#324
T

β1

γ1

α4

γ6

⊥

#325
T

β1

γ1

β2

⊥

#326
T

γ1

β2

⊥

#327
T

β1

γ1

β2 β3

γ6

⊥

#328
T

α1 α3 β2

γ2

α4

γ3 γ5 γ6

⊥

#329
T

α1 α3

γ2

β3 α4

γ3 γ4 γ6

⊥

#330
T

α1 β2

γ2

β3 α4

γ3 γ5

⊥

#331
T

α1

γ2

α4

γ3

⊥

#332
T

α1 α3

γ2 γ3

⊥

#333
T

α1 α3

γ2

β3

γ3 γ4

⊥

#334
T

α1

γ2

β3

γ3

⊥

#335
T

α3 α4

γ5 γ6

⊥

#336
T

α3 α4

γ4 γ6

⊥

#337
T

α4

γ5

⊥

#338
T

α4

⊥

#339
T

α3

⊥

#340
T

α3

γ4

⊥

#341
T

⊥

#342
T

α1 α4

γ3 γ5

⊥

#343
T

α1 β3 α4

γ3 γ4

⊥

#344
T

α1 β3 α4

γ3 γ5 γ6

⊥

#345
T

α1 α4

γ3 γ6

⊥

#346
T

α1

γ3

⊥

#347
T

α1 β3

γ3 γ4

⊥

#348
T

α1 β3

γ3

⊥
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#349
T

β2 α4

γ5

⊥

#350
T

α4

γ4

⊥

#351
T

β2 α4

γ5 γ6

⊥

#352
T

α4

γ6

⊥

#353
T

⊥

#354
T

γ4

⊥

#355
T

⊥

#356
T

α1 α3 β2

γ2 γ5

⊥

#357
T

α1 α3

γ2 γ4

⊥

#358
T

α1 β2

γ2 γ5

⊥

#359
T

α1

γ2

⊥

#360
T

α1 α3

γ2 γ4 γ6

⊥

#361
T

α3

γ5

⊥

#362
T

α3 β3

γ4

⊥

#363
T

β3

γ5

⊥

#364
T

⊥

#365
T

α3

γ6

⊥

#366
T

α3 β3

γ4 γ6

⊥

#367
T

β3

⊥

#368
T

β2

γ5

⊥

#369
T

β3

γ4

⊥

#370
T

β2 β3

γ5

⊥

#371
T

⊥

#372
T

β3

γ4

⊥

#373
T

β2

γ2

α4

γ5

⊥

#374
T

γ2

α4

⊥

#375
T

γ2

⊥

#376
T

β3 α4

γ3 γ5

⊥

#377
T

α4

γ3

⊥

#378
T

β3

γ3

⊥
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#379
T

α4

γ5 γ6

⊥

#380
T

α4

γ6

⊥

#381
T

⊥

#382
T

γ4

⊥

#383
T

⊥

#384
T

β2 β3 α4

γ3 γ5 γ6

⊥

#385
T

γ3

⊥

#386
T

β3

γ3 γ4

⊥

#387
T

α1

⊥

#388
T

α1

γ4

⊥

#389
T

α1

γ6

⊥

#390
T

⊥

#391
T

β2

γ4

⊥

#392
T

γ6

⊥

#393
T

β2

γ6

⊥

#394
T

β2

γ5

⊥

#395
T

γ4

⊥

#396
T

β2

⊥

#397
T

α3

γ2 γ6

⊥

#398
T

α3 β2

γ2

β3

γ4 γ6

⊥

#399
T

γ2

β3

⊥

#400
T

α3 β2

γ2 γ5

⊥

#401
T

β2

γ2

β3

γ5

⊥

#402
T

α3

γ6

⊥

#403
T

⊥

#404
T

α3

γ5

⊥

#405
T

γ6

⊥

#406
T

β2

γ5

⊥

#407
T

α3 α4

γ3 γ5 γ6

⊥
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#408
T

α1 α2 β1

γ1

α3 β2

γ2

β3 α4

γ3 γ4 γ5 γ6

⊥

#409
T

α1 β1

γ1

α3

γ2

α4

γ3 γ6

⊥

#410
T

β1

γ1

α3 α4

γ6

⊥

#411
T

α2

γ1

β2 α4

γ4 γ5

⊥

#412
T

γ1

α4

⊥

#413
T

α2 β1

γ1

β2 α4

γ5 γ6

⊥

#414
T

α2 β1

γ1 γ4

⊥

#415
T

α4

γ3

⊥

#416
T

β1

⊥
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Appendix B

Tables of Quotient Networks for

Four-cell valency two Networks

All two-cell and three-cell quotient networks of a given four-cell valency 2 regular homogeneous

network are listed. We categorised networks in a same class if they have the same set of quotient

networks (for both two-cell and three-cell quotients). In this classification, ODE-equivalent

networks of two-cell and three-cell networks are used. We list ODE-equivalent networks in the

following:

ODE-equivalent two-cell networks ODE-equivalent three-cell networks

#1 ∼=#4 #1 ∼=#35

#3 ∼=#5 #3 ∼=#36

#12 ∼=#37

#25 ∼=#38

For simple eigenvalues, lattices L1 to L12 are observed, as defined in Figure 7.7. For

non-simple eigenvalues the minimal reduced lattices are given (MRL1 to MRL46 as defined in

the figures in Section 8.7) together with the equivalent simple eigenvalue lattice number where

appropriate.
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B.1 Simple Real Eigenvalues

All quotient networks with simple real eigenvalues are listed below, sorted according to their

lattice in the order shown in Figure 7.7. For example there are 18 such networks with lattice

L1, but these cover only 15 classes of behaviour.

For example, the first row in the table shows network #148 which has lattice structure L1

with 2 two-cell quotient networks and 2 three-cell quotient networks. These quotient networks

are listed in the same order (left to right) as in Figure 7.7, or equivalently Figure 7.12 which

also shows the bifurcation behaviour. From this lattice structure L1, we expect to have three

synchrony-breaking branches in total from three distinct bifurcation points. The types of these

three bifurcating branches are determined by two-cell quotient networks #1 and #2, and three-

cell quotient network #11, but not by three-cell quotient network #2 (see Figure 7.12).

272



Class Network Lattice 2-cell Quotients 3-cell Quotients
1 #148(S1) L1 #1 #2 #11(S1) #2(S1)
2 #331(S1) L1 #1 #2 #34(S1) #17(S1)
3 #324(S1) L1 #1 #2 #34(S1) #2(S1)
4 #61(S1) L1 #1 #4 #10(S1) #26(S1)
5 #10(S1) L1 #1 #4 #10(S1) #5(S1)
′′ #30(S1) L1 #1 #4 #10(S1) #5(S1)
6 #317(S1) L1 #1 #4 #32(S1) #26(S1)
7 #58(S1) L1 #1 #4 #8(S1) #26(S1)
8 #72(S1) L1 #1 #4 #32(S1) #5(S1)
9 #164(S1) L1 #1 #4 #7(S1) #5(S1)
10 #8(S1) L1 #1 #4 #8(S1) #5(S1)
′′ #189(S1) L1 #1 #4 #8(S1) #5(S1)
11 #31(S1) L1 #2 #4 #20(S1) #23(S1)
12 #309(S1) L1 #2 #4 #24(S1) #23(S1)
13 #334(S1) L1 #2 #5 #34(S1) #29(S1)
14 #358(S1) L1 #4 #5 #32(S1) #36(S1)
15 #357(S1) L1 #4 #5 #8(S1) #36(S1)
′′ #366(S1) L1 #4 #5 #8(S1) #36(S1)
16 #14(S1) L2 #1 #13(S1)
′′ #89(S1) L2 #1 #13(S1)
′′ #269(S1) L2 #1 #13(S1)
17 #79(S1) L2 #1 #31(S1)
′′ #316(S1) L2 #1 #31(S1)
′′ #374(S1) L2 #1 #31(S1)
18 #9(S1) L2 #1 #9(S1)
′′ #59(S1) L2 #1 #9(S1)
′′ #210(S1) L2 #1 #9(S1)
19 #94(S1) L2 #2 #13(S1)
20 #85(S1) L2 #2 #31(S1)
21 #77(S1) L2 #2 #9(S1)
22 #97(S1) L2 #3 #13(S1)
23 #221(S1) L2 #4 #13(S1)
24 #361(S1) L2 #4 #31(S1)
′′ #404(S1) L2 #4 #31(S1)
25 #167(S1) L2 #4 #9(S1)
26 #363(S1) L2 #5 #31(S1)
27 #326(S1) L2 #5 #9(S1)
28 #66(S1) L3 #1 #11(S1)
′′ #141(S1) L3 #1 #11(S1)
′′ #143(S1) L3 #1 #11(S1)
′′ #380(S1) L3 #1 #11(S1)
29 #165(S1) L3 #1 #7(S1)
30 #11(S1) L3 #4 #10(S1)
′′ #33(S1) L3 #4 #10(S1)
31 #198(S1) L3 #4 #20(S1)
′′ #234(S1) L3 #4 #20(S1)
32 #118(S1) L3 #4 #32(S1)
33 #200(S1) L3 #4 #8(S1)
′′ #241(S1) L3 #4 #8(S1)
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Class Network Lattice 2-cell Quotients 3-cell Quotients
34 #297(S1) L4 #1 #2 #4 #17(S1) #23(S1) #26(S1)
35 #282(S1) L4 #1 #2 #4 #17(S1) #23(S1) #5(S1)
36 #28(S1) L4 #1 #2 #4 #2(S1) #23(S1) #5(S1)
37 #333(S1) L4 #2 #4 #5 #23(S1) #29(S1) #36(S1)
38 #34(S1) L5 #4 #10(S1) #20(S1)
39 #78(S1) L5 #4 #10(S1) #32(S1)
40 #300(S1) L5 #4 #20(S1) #32(S1)
41 #231(S1) L5 #4 #20(S1) #8(S1)
42 #147(S1) L6 #13(S1)
′′ #151(S1) L6 #13(S1)
′′ #222(S1) L6 #13(S1)
′′ #225(S1) L6 #13(S1)
′′ #318(S1) L6 #13(S1)
43 #88(S1) L6 #31(S1)
′′ #243(S1) L6 #31(S1)
′′ #247(S1) L6 #31(S1)
′′ #375(S1) L6 #31(S1)
′′ #382(S1) L6 #31(S1)
′′ #385(S1) L6 #31(S1)
44 #60(S1) L6 #9(S1)
′′ #249(S1) L6 #9(S1)
45 #65(S1) L7 #1
′′ #67(S1) L7 #1
′′ #69(S1) L7 #1
′′ #84(S1) L7 #1
′′ #92(S1) L7 #1
′′ #171(S1) L7 #1
′′ #191(S1) L7 #1
′′ #258(S1) L7 #1
′′ #338(S1) L7 #1
46 #172(S1) L7 #4
′′ #181(S1) L7 #4
′′ #201(S1) L7 #4
′′ #261(S1) L7 #4
′′ #339(S1) L7 #4
47 #367(S1) L7 #5
48 #70(S1) L8
′′ #87(S1) L8
′′ #341(S1) L8
49 #82(S1) L9 #1 #2 #2(S1)
50 #117(S1) L9 #1 #4 #26(S1)
′′ #208(S1) L9 #1 #4 #26(S1)
51 #178(S1) L9 #1 #4 #5(S1)
′′ #192(S1) L9 #1 #4 #5(S1)
52 #96(S1) L10 #2 #3
53 #114(S1) L11 #1 #2 #4 #2(S1) #26(S1)
54 #325(S1) L12 #2 #5 #34(S1)
55 #127(S1) L12 #3 #4 #32(S1)
56 #370(S1) L12 #4 #5 #32(S1)
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B.2 Simple Complex Eigenvalues

The following networks have a pair of complex conjugate eigenvalues. For these networks,

synchrony-breaking Hopf bifurcations occur, instead of steady-state bifurcations. Again, for

each network we list the lattice type (defined in Figure 7.7), and the two-cell and three-cell

quotient networks, which are used to classify theses networks into classes.

Class Network Lattice 2-cell Quotients 3-cell Quotients
1 #16 L2 #1 #15
′′ #99 L2 #1 #15
′′ #271 L2 #1 #15
2 #17 L2 #1 #16
′′ #39 L2 #1 #16
′′ #272 L2 #1 #16
3 #26 L2 #1 #21
′′ #109 L2 #1 #21
′′ #294 L2 #1 #21
4 #27 L2 #1 #22
′′ #36 L2 #1 #22
′′ #129 L2 #1 #22
5 #37 L2 #1 #25
6 #350 L2 #1 #38
7 #389 L2 #2 #15
′′ #102 L2 #2 #15
8 #112 L2 #2 #21
9 #227 L2 #4 #15
10 #236 L2 #4 #21
′′ #306 L2 #4 #21
11 #251 L2 #4 #22
12 #412 L2 #4 #38
13 #388 L2 #5 #15
′′ #393 L2 #5 #15
14 #391 L2 #5 #21
15 #399 L2 #5 #38
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Class Network Lattice 2-cell Quotients 3-cell Quotients
16 #42 L6 #16
′′ #49 L6 #16
′′ #273 L6 #16
17 #47 L6 #25
18 #46 L6 #22
′′ #132 L6 #22
′′ #252 L6 #22
′′ #296 L6 #22
′′ #302 L6 #22
′′ #307 L6 #22
19 #119 L6 #15
′′ #122 L6 #15
′′ #229 L6 #15
′′ #244 L6 #15
′′ #246 L6 #15
′′ #392 L6 #15
20 #238 L6 #21
′′ #295 L6 #21
′′ #301 L6 #21
′′ #395 L6 #21
′′ #405 L6 #21
21 #354 L6 #38
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Class Network Lattice 2-cell Quotients 3-cell Quotients
22 #81 L7 #1
′′ #91 L7 #1
′′ #100 L7 #1
′′ #110 L7 #1
′′ #130 L7 #1
′′ #135 L7 #1
′′ #138 L7 #1
′′ #139 L7 #1
′′ #140 L7 #1
′′ #174 L7 #1
′′ #175 L7 #1
′′ #278 L7 #1
′′ #279 L7 #1
′′ #288 L7 #1
23 #101 L7 #2
′′ #111 L7 #2
′′ #153 L7 #2
′′ #154 L7 #2
′′ #157 L7 #2
′′ #291 L7 #2
24 #123 L7 #3
′′ #133 L7 #3
′′ #161 L7 #3
25 #184 L7 #4
′′ #185 L7 #4
′′ #194 L7 #4
′′ #195 L7 #4
′′ #212 L7 #4
′′ #213 L7 #4
′′ #280 L7 #4
′′ #216 L7 #4
′′ #253 L7 #4
′′ #387 L7 #4
26 #396 L7 #5
′′ #416 L7 #5

277



Class Network Lattice 2-cell Quotients 3-cell Quotients
27 #95 L8
′′ #103 L8
′′ #106 L8
′′ #113 L8
′′ #116 L8
′′ #120 L8
′′ #121 L8
′′ #125 L8
′′ #131 L8
′′ #155 L8
′′ #156 L8
′′ #158 L8
′′ #159 L8
′′ #180 L8
′′ #187 L8
′′ #197 L8
′′ #204 L8
′′ #205 L8
′′ #207 L8
′′ #209 L8
′′ #215 L8
′′ #228 L8
′′ #230 L8
′′ #233 L8
′′ #237 L8
′′ #239 L8
′′ #242 L8
′′ #245 L8
′′ #248 L8
′′ #256 L8
′′ #260 L8
′′ #263 L8
′′ #264 L8
′′ #266 L8
′′ #268 L8
′′ #281 L8
′′ #286 L8
′′ #287 L8
′′ #289 L8
′′ #353 L8
′′ #355 L8
′′ #364 L8
′′ #371 L8
′′ #381 L8
′′ #383 L8
′′ #390 L8
′′ #403 L8
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B.3 Non-simple Double Eigenvalues

For all four cell valency two networks with non-simple double eigenvalues, we list their minimal

reduced lattice (MRL1 to MRL35 as defined in Section 8.7) and their two-cell and three-cell

quotient networks.

For example, the first network listed is four-cell network #2. This has minimal reduced

lattice MRL1, which has the same structure as L4 for simple eigenvalue networks (see Fig-

ure 8.26). There are 3 two-cell quotient networks and 3 three-cell quotient networks in the

minimal reduced lattice. From this minimal reduced lattice, we expect to have three synchrony-

breaking bifurcating branches in two-dimensional balanced polydiagonals (P2). The types of

these bifurcating branches are determined by 2 topologically distinct two-cell quotient networks,

#1 and #2. To determine how many bifurcating branches there exist for the original lattice

(this network), we observe how many corresponding lattice nodes there are to the lattice nodes

in the minimal reduced lattice. There is only one lattice node correspond to two-cell quotient

network #2 (as this quotient network is generated from a simple eigenvalue). On the other hand,

there are three lattice nodes in the original lattice which correspond to two-cell quotient network

#1 (related to non-simple eigenvalue). Hence, in total, we expect there exist four synchrony-

breaking bifurcating branches. One branch occurs at the bifurcation point corresponding to the

distinct eigenvalue and the type of bifurcation is determined by two-cell network #2. The other

three branches occur at the same bifurcation point corresponding to the double eigenvalue and

their bifurcation types are generically the same as these are determined by the same two-cell

quotient networks.

Note that some quotient networks have complex conjugate eigenvalues in the following

table.
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Class Network Lattice 2-cell Quotients 3-cell Quotients
1 #2 MRL1 (L4) #2 #1 #1 #2(S1) #2(S1) #1(S2)
2 #3 MRL1 (L4) #3 #1 #1 #3(S1) #3(S1) #1(S2)
′′ #409 MRL1 (L4) #5 #4 #4 #36(S1) #36(S1) #35(S2)
3 #5 MRL1 (L4) #4 #1 #1 #5(S1) #5(S1) #1(S2)
′′ #162 MRL1 (L4) #1 #4 #4 #5(S1) #5(S1) #35(S2)
4 #274 MRL1 (L4) #2 #1 #1 #17(S1) #17(S1) #1(S2)
5 #308 MRL1 (L4) #2 #4 #4 #23(S1) #23(S1) #35(S2)
6 #310 MRL1 (L4) #4 #1 #1 #23(S1) #23(S1) #1(S2)
7 #313 MRL2 (L4) #2 #5 #1 #29(S1) #17(S1) #27(S2)
8 #329 MRL2 (L4) #4 #5 #1 #36(S1) #5(S1) #27(S2)
9 #320 MRL3 (L4) #1 #2 #2 #17(S1) #2(S1) #33(S2)
10 #319 MRL4 (L4) #2 #5 #1 #29(S1) #2(S1) #27(S2)
11 #18 MRL5 (L4) #2 #1 #1 #17(S1) #2(S1) #1(S2)
12 #52 MRL5 (L4) #4 #1 #1 #26(S1) #5(S1) #1(S2)
13 #40 MRL6 (L4) #3 #1 #1 #3(S1) #3(S1) #1(S2)
′′ #413 MRL6 (L4) #5 #4 #4 #36(S1) #36(S1) #35(S2)
14 #322 MRL7 (L4) #5 #2 #2 #29(S1) #29(S1) #33(S2)
15 #330 MRL8 (L4) #4 #5 #1 #36(S1) #26(S1) #27(S2)
16 #4 MRL9 (L1) #3 #1 #4(S1) #3(S1)
17 #298 MRL9 (L1) #2 #1 #24(S1) #17(S1)
18 #25 MRL10 (L1) #4 #1 #20(S1) #5(S1)
19 #217 MRL10 (L1) #1 #4 #11(S1) #5(S1)
20 #407 MRL10 (L1) #2 #4 #34(S1) #23(S1)
21 #360 MRL11 (L1) #4 #2 #8(S1) #23(S1)
22 #29 MRL12 #2 #1 #24(S1) #2(S1)
23 #51 MRL12 #3 #1 #4(S1) #3(S1)
24 #293 MRL12 #4 #1 #20(S1) #26(S1)
25 #303 MRL12 #2 #4 #32(S1) #23(S1)
26 #75 MRL13 (L1) #1 #2 #7(S1) #2(S1)
27 #134 MRL13 (L1) #2 #5 #24(S1) #29(S1)
28 #384 MRL14 (L1) #1 #4 #11(S1) #26(S1)
29 #398 MRL15 (L1) #4 #5 #20(S1) #36(S1)
30 #202 MRL16 (L9) #4 #4 #35(S2)
31 #7 MRL17 (L1) #1 #1 #7(S1) #1(S2)
32 #12 MRL17 (L1) #1 #1 #11(S1) #1(S2)
33 #166 MRL17 (L1) #4 #4 #8(S1) #35(S2)
34 #168 MRL17 (L1) #4 #4 #10(S1) #35(S2)
35 #305 MRL17 (L1) #4 #4 #20(S1) #35(S2)
36 #276 MRL17 (L1) #1 #1 #19(S1) #1(S2)
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Class Network Lattice 2-cell Quotients 3-cell Quotients
37 #20 MRL18 (L1) #1 #1 #19(S1) #1(S2)
38 #38 MRL18 (L1) #1 #1 #7(S1) #1(S2)
′′ #54 MRL18 (L1) #1 #1 #7(S1) #1(S2)
39 #63 MRL18 (L1) #1 #1 #11(S1) #1(S2)
′′ #136 MRL18 (L1) #1 #1 #11(S1) #1(S2)
40 #193 MRL18 (L1) #4 #4 #20(S1) #35(S2)
41 #199 MRL18 (L1) #4 #4 #8(S1) #35(S2)
42 #356 MRL18 (L1) #4 #4 #32(S1) #35(S2)
43 #76 MRL19 #4 #2 #8(S1) #32(S1)
44 #327 MRL20 (L12) #3 #5 #4(S1)
45 #19 MRL21 (L1) #2 #1 #2(S3) #18(S1)
46 #21 MRL21 (L1) #1 #2 #14(S3) #17(S1)
′′ #290 MRL21 (L1) #1 #2 #14(S3) #17(S1)
47 #44 MRL21 (L1) #1 #3 #12(S3) #3(S1)
′′ #414 MRL21 (L1) #4 #5 #37(S3) #36(S1)
48 #50 MRL21 (L1) #1 #3 #14(S3) #3(S1)
49 #73 MRL21 (L1) #1 #2 #6(S3) #2(S1)
′′ #83 MRL21 (L1) #1 #2 #6(S3) #2(S1)
50 #104 MRL21 (L1) #1 #2 #14(S3) #2(S1)
51 #149 MRL21 (L1) #1 #2 #12(S3) #2(S1)
52 #163 MRL21 (L1) #1 #4 #6(S3) #5(S1)
′′ #176 MRL21 (L1) #1 #4 #6(S3) #5(S1)
53 #173 MRL21 (L1) #4 #1 #37(S3) #5(S1)
′′ #211 MRL21 (L1) #1 #4 #12(S3) #5(S1)
′′ #336 MRL21 (L1) #4 #1 #37(S3) #5(S1)
54 #183 MRL21 (L1) #1 #4 #14(S3) #5(S1)
55 #203 MRL21 (L1) #1 #4 #14(S3) #26(S1)
′′ #342 MRL21 (L1) #1 #4 #14(S3) #26(S1)
56 #275 MRL21 (L1) #2 #1 #18(S3) #17(S1)
′′ #292 MRL21 (L1) #2 #1 #18(S3) #17(S1)
57 #321 MRL21 (L1) #5 #2 #28(S3) #29(S1)
′′ #347 MRL21 (L1) #5 #2 #28(S3) #29(S1)
58 #323 MRL21 (L1) #2 #5 #18(S3) #29(S1)
59 #332 MRL21 (L1) #5 #4 #28(S3) #36(S1)
′′ #400 MRL21 (L1) #5 #4 #28(S3) #36(S1)
60 #345 MRL21 (L1) #1 #2 #6(S3) #17(S1)
61 #351 MRL21 (L1) #1 #4 #6(S3) #26(S1)
62 #373 MRL21 (L1) #4 #1 #37(S3) #26(S1)
63 #22 MRL22 (L3) #4 #18(S3)
64 #107 MRL22 (L3) #1 #14(S3)
′′ #134 MRL22 (L3) #1 #14(S3)
′′ #188 MRL22 (L3) #1 #14(S3)
′′ #255 MRL22 (L3) #1 #14(S3)
′′ #265 MRL22 (L3) #1 #14(S3)
65 #150 MRL22 (L3) #1 #12(S3)
′′ #152 MRL22 (L3) #1 #12(S3)
′′ #220 MRL22 (L3) #1 #12(S3)
66 #179 MRL22 (L3) #4 #12(S3)
′′ #182 MRL22 (L3) #4 #12(S3)
′′ #235 MRL22 (L3) #4 #12(S3)
′′ #340 MRL22 (L3) #4 #37(S3)
67 #372 MRL22 (L3) #5 #28(S3)
′′ #406 MRL22 (L3) #5 #28(S3)
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Class Network Lattice 2-cell Quotients 3-cell Quotients
68 #23 MRL23 (L3) #1 #19(S1)
69 #57 MRL23 (L3) #1 #7(S1)
70 #144 MRL23 (L3) #1 #5(S1)
71 #259 MRL23 (L3) #4 #20(S1)
72 #359 MRL23 (L3) #2 #34(S1)
73 #365 MRL23 (L3) #4 #8(S1)
74 #368 MRL23 (L3) #4 #32(S1)
75 #32 MRL24 (L3) #2 #24(S1)
76 #74 MRL24 (L3) #1 #7(S1)
77 #124 MRL24 (L3) #4 #32(S1)
78 #126 MRL24 (L3) #3 #4(S1)
′′ #160 MRL24 (L3) #3 #4(S1)
79 #190 MRL24 (L3) #4 #8(S1)
′′ #232 MRL24 (L3) #4 #8(S1)
80 #196 MRL24 (L3) #4 #20(S1)
′′ #226 MRL24 (L3) #4 #20(S1)
′′ #250 MRL24 (L3) #4 #20(S1)
81 #218 MRL24 (L3) #1 #11(S1)
82 #299 MRL24 (L3) #2 #24(S1)
83 #24 MRL25 (L5) #1 #19(S1) #14(S3)
84 #41 MRL25 (L5) #1 #7(S1) #12(S3)
85 #48 MRL25 (L5) #1 #7(S1) #14(S3)
86 #56 MRL25 (L5) #1 #7(S1) #6(S3)
87 #223 MRL25 (L5) #1 #11(S1) #6(S3)
88 #240 MRL25 (L5) #4 #8(S1) #37(S3)
89 #304 MRL25 (L5) #2 #24(S1) #18(S3)
90 #379 MRL25 (L5) #1 #11(S1) #14(S3)
91 #386 MRL25 (L5) #4 #32(S1) #37(S3)
92 #397 MRL25 (L5) #4 #20(S1) #37(S3)
93 #219 MRL25 (L5) #1 #11(S1) #12(S3)
94 #43 MRL26 (L9) #1 #3 #3(S1)
′′ #362 MRL26 (L9) #5 #4 #36(S1)
95 #90 MRL26 (L9) #1 #2 #2(S1)
′′ #93 MRL26 (L9) #2 #1 #2(S1)
′′ #105 MRL26 (L9) #2 #1 #2(S1)
′′ #115 MRL26 (L9) #1 #2 #2(S1)
96 #108 MRL26 (L9) #1 #4 #26(S1)
′′ #349 MRL26 (L9) #4 #1 #26(S1)
97 #169 MRL26 (L9) #4 #1 #5(S1)
′′ #170 MRL26 (L9) #1 #4 #5(S1)
′′ #277 MRL26 (L9) #1 #4 #5(S1)
98 #283 MRL26 (L9) #1 #2 #17(S1)
99 #284 MRL26 (L9) #2 #4 #23(S1)
100 #348 MRL26 (L9) #5 #2 #29(S1)
101 #86 MRL27 (L7) #2
102 #142 MRL28 (L8)
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(A pair of) Double Eigenvalues with One Eigenvector in 4

Class Network Lattice 2-cell Quotients 3-cell Quotients
1 #62 MRL29 (L1) #1 #1 #30(S4) #1(S2)
′′ #315 MRL29 (L1) #1 #1 #30(S4) #1(S2)
2 #262 MRL30 (L5) #1 #30(S4) #14(S3)
3 #254 MRL31 (L3) #1 #12(S3)
4 #377 MRL31 (L3) #1 #14(S3)
5 #337 MRL32 (L3) #1 #30(S4)
6 #376 MRL33 (L1) #1 #4 #30(S4) #26(S1)
7 #68 MRL34 (L3) #1 #30(S4)
′′ #71 MRL34 (L3) #1 #30(S4)
′′ #267 MRL34 (L3) #1 #30(S4)
8 #378 MRL35 (L3) #4 #32(S1)
9 #402 MRL35 (L3) #4 #20(S1)
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B.4 Non-simple Triple Eigenvalues

For all four-cell valency two networks with non-simple triple eigenvalues, we list their minimal

reduced lattice (MRL36 to MRL46 as defined in Section 8.7) and their two-cell and three-cell

quotient networks.

Class Network Lattice 2-cell Quotients 3-cell Quotients
1 #1 MRL36 (L4) #1 #1 #1 #1(S2) #1(S2) #1(S2)
′′ #408 MRL36 (L4) #4 #4 #4 #35(S2) #35(S2) #35(S2)
2 #311 MRL37 (L4) #1 #1 #5 #27(S2) #27(S2) #1(S2)
3 #15 MRL38 (L1) #1 #1 #1(S2) #14(S3)
4 #35 MRL38 (L1) #1 #1 #1(S2) #12(S3)
′′ #411 MRL38 (L1) #4 #4 #35(S2) #37(S3)
5 #53 MRL38 (L1) #1 #1 #1(S2) #6(S3)
6 #312 MRL39 (L1) #1 #5 #27(S2) #28(S3)
7 #344 MRL40 #5 #1 #27(S2) #6(S3) #14(S3)
8 #64 MRL41 (L9) #1 #1 #1(S2)
′′ #137 MRL41 (L9) #1 #1 #1(S2)
9 #401 MRL42 (L3) #5 #28(S3)
10 #45 MRL43 (L5) #1 #12(S3) #14(S3)
11 #224 MRL43 (L5) #1 #12(S3) #6(S3)
12 #6 MRL44 #1 #1 #1(S2) #6(S3)
13 #13 MRL44 #1 #1 #1(S2) #12(S3)
′′ #410 MRL44 #4 #4 #35(S2) #37(S3)
14 #270 MRL44 #1 #1 #1(S2) #14(S3)
15 #343 MRL45 #1 #5 #27(S2) #28(S3)
16 #55 MRL46 (L3) #1 #6(S3)
′′ #80 MRL46 (L3) #1 #6(S3)
′′ #177 MRL46 (L3) #1 #6(S3)
′′ #352 MRL46 (L3) #1 #6(S3)
17 #145 MRL46 (L3) #1 #12(S3)
′′ #146 MRL46 (L3) #1 #12(S3)
′′ #214 MRL46 (L3) #1 #12(S3)
′′ #415 MRL46 (L3) #4 #37(S3)
18 #98 MRL46 (L3) #1 #14(S3)
′′ #128 MRL46 (L3) #1 #14(S3)
′′ #186 MRL46 (L3) #1 #14(S3)
′′ #206 MRL46 (L3) #1 #14(S3)
′′ #257 MRL46 (L3) #1 #14(S3)
′′ #285 MRL46 (L3) #1 #14(S3)
19 #346 MRL46 (L3) #5 #28(S3)
′′ #369 MRL46 (L3) #5 #28(S3)
′′ #394 MRL46 (L3) #5 #28(S3)

284



Bibliography

Aguiar, M. A. D., Dias, A. P., Golubitsky, M., and Leite, M. C. A. (2007). Homogeneous coupled

cell networks with S3-symmetric quotient. Discrete and Continuous Dynam. Sys. Supplement ,

pages 1–9.

Aguiar, M. A. D., Dias, A. P., Golubitsky, M., and Leite, M. C. A. (2008). Bifurcation from

quotient coupled cell networks. Phisica D, Submitted .

Aittokallio, T. and Schwikowski, B. (2006). Graph-based methods for analysing networks in cell

biology. Briefings in Bioinformatics., 7, 243–255.

Albert, R. and Barabási, A. L. (2002). Statistical mechanics of complex networks. Rev. Mod.

Phys., 74, 47–97.

Albert, R. and Othmer, H. G. (2003). The topology of the regulatory interactions predicts the

expression pattern of the drosophila segment polarity genes. J. Theor. Biol., 223, 1–18.

Aldosray, F. and Stewart, I. (2005). Enumeration of homogeneous coupled cell networks. Int.

J. Bifurcation Chaos, 15, 2361–2372.

Bernard, K. and Hill, D. R. (2005). Introductory Linear Algebra (Eighth Edition). Pearson

Prentice Hall, San Diego.

Biggs, N. L. (1989). Discrete Mathematics (Revised Edition). Oxford University Press, Oxford.

Brualdi, R. (2006). Combinatorial matrix classes. Cambridge University Press, Cambridge.

Davey, B. A. and Priestley, H. A. (1990). Introduction to Lattices and Order . Cambridge

University Press, Cambridge.

Dias, A. and Stewart, I. (2005). Linear equivalence and ode-equivalence for coupled cell networks.

Nonlinearity , 18, 1003–1020.

Golubitsky, M. and Lauterbach, R. (2008). Bifurcations from synchrony in homogeneous net-

works: linear theory. SIAM J. Appl. Dynam. Sys., Submitted .

285



Golubitsky, M. and Schaeffer, D. G. (1990). Singularities and Groups in Bifurcation Theory,

Volume I . Springer-Verlag, New York.

Golubitsky, M. and Stewart., I. (2002). The Symmetry Perspective From Equilibrium to Chaos

in Phase Space and Physical Space. Birkhäuser.
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