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Abstract
Background: A deep understanding of what causes the phenotypic variation arising from biological patterning
processes, cannot be claimed before we are able to recreate this variation by mathematical models capable of
generating genotype-phenotype maps in a causally cohesive way. However, the concept of pattern in a
multicellular context implies that what matters is not the state of every single cell, but certain emergent qualities
of the total cell aggregate. Thus, in order to set up a genotype-phenotype map in such a spatiotemporal pattern
setting one is actually forced to establish new pattern descriptors and derive their relations to parameters of the
original model. A pattern descriptor is a variable that describes and quantifies a certain qualitative feature of the
pattern, for example the degree to which certain macroscopic structures are present. There is today no general
procedure for how to relate a set of patterns and their characteristic features to the functional relationships,
parameter values and initial values of an original pattern-generating model. Here we present a new, generic
approach for explorative analysis of complex patterning models which focuses on the essential pattern features
and their relations to the model parameters. The approach is illustrated on an existing model for Delta-Notch
lateral inhibition over a two-dimensional lattice.

Results: By combining computer simulations according to a succession of statistical experimental designs,
computer graphics, automatic image analysis, human sensory descriptive analysis and multivariate data modelling,
we derive a pattern descriptor model of those macroscopic, emergent aspects of the patterns that we consider
of interest. The pattern descriptor model relates the values of the new, dedicated pattern descriptors to the
parameter values of the original model, for example by predicting the parameter values leading to particular
patterns, and provides insights that would have been hard to obtain by traditional methods.

Conclusion: The results suggest that our approach may qualify as a general procedure for how to discover and
relate relevant features and characteristics of emergent patterns to the functional relationships, parameter values
and initial values of an underlying pattern-generating mathematical model.
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Background
Modelling phenotypic variation in biological pattern 
generation
The whole development process of higher organisms can
be mathematically conceptualised as a recursive mapping
- i.e. successive cell differentiations leading to a sequence
of unfolding patterns at many different spatiotemporal
scales, each pattern defining the context for further differ-
entiation and thus for subsequent patterning processes. A
deep understanding of what causes the phenotypic varia-
tion arising from such patterning processes cannot be
claimed before we are able to recreate this variation theo-
retically by what we call causally cohesive genotype-phenotype
models (cGP models) [1]. Unlike the broader class of
mechanistic mathematical models describing how com-
plex biological phenotypes arise from the interactions of
lower-level systemic entities, cGP models are distin-
guished by linking together (cohering) the individual's
genotype and its phenotype in a causal mathematical
structure. cGP models thus allow the construction of gen-
otype-phenotype maps, i.e. mappings predicting the phe-
notype associated with a given genotype based on what
we know about the regulatory anatomy of a given biolog-
ical system.

Irrespective of the level of biological resolution of a cGP
model, genetic variation has to be represented as paramet-
ric variation. In a genotype-phenotype-map perspective
one is thus interested in getting a clear understanding of
the mappings between genotype parameter space and the
generated phenotypic space. However, in the context of
multicellular patterning models it is not trivial to establish
this relation. The very concept of pattern implies that what
matters is not the state of every single cell, but certain
emergent qualities of the total cell aggregate which express
relations between the states of subsets of the cells. Thus, in
order to set up a genotype-phenotype map in such a spa-
tiotemporal pattern setting one cannot just establish a
mapping between domains in parameter space and cer-
tain properties of locally defined intracellular and extra-
cellular state variables. One is actually forced to construct
new descriptors of the emergent pattern features, express them
in an abstract pattern descriptor space, and establish their rela-
tions to properties of the original model. In addition to lead-
ing to a genotype-phenotype map, this approach opens
possibilities for additional validation of the model
through prediction of higher level and empirically observ-
able properties that are by no means part of the model's
premise set, and which represent emergent features of the
pattern that are interesting and relevant from the point of
view of purpose and objectives of the original pattern-gen-
erating model.

There is today no general procedure for how to relate a set of
patterns and their characteristic features to the functional rela-

tionships, parameter values and initial values of the original
pattern-generating model. Here we propose a multivariate
data modelling approach which is based on three major
elements: (i) cost-effective computer simulations to probe
the high-dimensional parameter space, (ii) informative
ways to describe the model's graphical patterns quantita-
tively as points in a pattern descriptor (PD) space, and
(iii) ways to establish two-way mappings between the PD
space and the parameter space in terms of a statistically
reliable and interpretable statistical prediction model
(Figure 1).

We illustrate our approach on a simple mathematical
model of pattern generation, and show that even in this
case, traditional and intuitive methods prove inadequate
to describe and understand its full potential of pattern for-
mation, while our approach provides an overview and

Traditional and new process of analysis based on simulation studies of a model for pattern formationFigure 1
Traditional and new process of analysis based on sim-
ulation studies of a model for pattern formation. 
Starting with a point P in parameter space (represented by 
the black dot) given by a chosen set of parameter values, the 
stable solution X is obtained by integrating the dynamical 
model dx/dt = F(x, P), x(0) = x0. The second step is to repre-
sent each X by a point in Solution Space (phase space). Using 
a convenient graphical mapping, X defines a Graphical Pattern 
that can be inspected and analysed visually. So far this is con-
ventional procedure. To analyse and classify the patterns, 
new concepts, variables and names are necessary to describe 
the interesting macroscopic and emergent properties of the 
patterns in a Pattern Descriptor (PD) space. Each pattern 
descriptor is then given a numeric value according to chosen 
criteria. This permits the mapping of each point P in parame-
ter space onto a point in the PD space in terms of a PD 
model derived by various multivariate methods (see text). 
Being approximate and probabilistic in nature, this mapping 
by the statistical prediction model only indicates a certain 
domain in parameter space (coloured) which will produce 
patterns resembling a given pattern.
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reveals unexpected features and their relationship to the
model parameters.

The illustration model
A large number of cell differentiation processes involve
the membrane-bound protein Notch which interacts with
several transmembrane ligands in neighbouring cells [2-
4]. Thus, understanding the diverse functions of Notch is
of paramount importance in itself. One patterning mech-
anism in which Notch is involved is lateral inhibition: a
cell-cell interaction whereby a cell developing a specific
fate inhibits its neighbours from developing in the same
way. Delta is one of the ligands binding to Notch; Delta in
one cell binds to Notch in the cells in physical contact,
leading to juxtacrine signalling [5]. The multicellular gene
network regulating this process is called the neurogenic
network [6]. However, as early as 1996 Collier et al. [7]
presented what can be considered as a simplified multicel-
lular cGP model for Delta-Notch activity in a one- or two-
dimensional lattice of discrete cells. In this model the rate
of change of Notch activity increases with the average
activity level of its ligand Delta in neighbouring cells,
while the rate of change of Delta activity decreases with
increasing activity level of Notch in the same cell, both
relationships being expressed in terms of sigmoidal
response functions.

On a two-dimensional lattice of n identical hexagonal
cells we let Dk and Nk, k = 1,..., n, represent the activity
level of the two proteins Delta and Notch in cell number
k. In suitably scaled variables, assuming first-order degra-
dation, and with the standard Hill function representing
sigmoid stimulus-responses, the dimensionless model of
Collier et al. is

in which μ is the ratio between the degradation rates for

Delta and Notch,  is the average value of Delta in the

six neighbours of cell k, and S is the standard Hill function

S(x, θ, p) = xp/(xp+ θp). Thus, θD and θN are the thresholds

for the action of Delta and Notch, respectively, and pD and

pN are the corresponding steepness parameters (Additonal

file 1: Table S-T1).

The positive feedback loops between any pair of neigh-
bouring cells which these interactions generate, lead to
differentiation: high Delta and low Notch activity in a cell
favours low Delta and high Notch activity in neighbour-

ing cells, and vice versa. On a one-dimensional string of
discrete cells, the final, differentiated states are strongly
dominated by an alternating pattern: apart from scattered
exceptions in which two neighbouring cells both express
either Delta or Notch, every second cell expresses Delta
and suppresses Notch, and vice versa. On a two-dimen-
sional lattice of square cells this behaviour is consistent
with the well-known checkerboard pattern. Using stand-
ard linearisation methods, Collier et al. [7] showed that
the system of regular, hexagonal cells possesses three basic
3-periodic patterns consisting of up to three cell types. In
our simulations the basic regular patterns appear either by
cells expressing Notch surrounded by cells in which Notch
expression is inhibited, or vice versa.

However, two-dimensional lattices of real cells are usually
rather irregular and do not have periodic patterns.
Podgorski et al. [8] have combined the model of Collier et
al. with models for apoptosis and differential adhesion to
study the patterning process on irregular cell lattices. But
even on a regular lattice of hexagonal cells irregular pat-
terns arise because the system is frustrated [9]: it is impos-
sible to satisfy the requirement of opposite expression of
Delta and Notch between all pairs of neighbouring cells.
If cell 1 expresses Notch, its neighbouring cells 2 and 3
should both express Delta, which causes frustration
because cells 2 and 3 also may be neighbours. This results
in a multitude of different patterns, sometimes with a
high number of different Notch and Delta levels, depend-
ing on parameter values and initial conditions (Figure 2).

In fact, our simulations showed that the majority of pat-
terns and pattern features are highly irregular. Initial trial
and error simulations for different combinations of
parameter values revealed a wide range of different kinds
of patterns, and for certain parameter value combinations
we observed a large number of different equilibrium lev-
els. Trying to describe these irregularities as combinations
of basic regular patterns did not seem to make much
sense. Rather, our approach was to try to introduce new
concepts and pattern descriptors to classify and describe
the irregular pattern as patterns in their own right. It was
also obvious that without a systematic, planned simula-
tion design as outlined above, there could be no hope of
achieving a sound description and classification of the
pattern and reveal their relation to variations in parameter
values.

Results
General procedure
We combined various explorative principles in order to
maximise insight from the computer simulations. Facto-
rial statistical design plans ensured that the parameter
space was spanned systematically. Each solution image
was characterised by a range of dedicated, quantitative

dDk
dt

S N p Dk k= − −[ ]μ θ1 ( , , ) ,N N (1a)

dNk
dt

S D p Nk k= −( , , ) ,θD D (1b)

Dk
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descriptors, and the results interpreted by multivariate
data modelling.

We analysed the high-dimensional, non-linear Delta-
Notch model on a 2D lattice of hexagonal cells by this
approach. For each set of parameter values the system of
differential equations was integrated in time until a stable
state was reached. The spatial distribution of the stable-
state Notch concentrations were plotted as black and
white 2D images of the cell lattice for easy visual inspec-
tion.

The exploratory process proceeded through four distinct
stages (Figure 3). Together, these four stages were
intended to yield maximum new insight into the behav-
ioural repertoire of the model with minimum effort and
minimum number of additional assumptions.

(1) The interesting ranges for the model parameters were
determined in a preliminary exploration. In this trial-and-
error based phase the parameters were changed one at a
time, and the solution images inspected informally, to

determine values to be used as "high" and "low" for each
parameter in the subsequent designs.

(2) Secondly we defined a 27 full-factorial design and
expansions of this in order to explore the parameter space
domain found interesting in phase (1). The equilibrium
solutions images were submitted to computerised image
analysis by standard mathematical filters of various kinds,
like gray-tone density and spatial frequency histograms.
This profile of many, but per se meaningless image
descriptors could be related to the seven known model
parameter values by well-established multivariate meth-
ods from chemometrics, primarily conventional reduced-
rank Partial Least Squares Regression (PLSR) [10] with
optimal rank determined by cross-validation as described
in [11,12]. This permitted us to identify parameter combi-
nations which could be ignored in the main explorative
experiment because they had little or no effect on the solu-
tion patterns.

(3) In the main experiment we employed a more inform-
ative, but also more laborious solution profiling. It con-

Selected trimmed equilibrium patterns of Notch activity from the four main pattern classes for the Delta-Notch model on a 50 × 50 hexagonal lattice with periodic boundary conditionsFigure 2
Selected trimmed equilibrium patterns of Notch activity from the four main pattern classes for the Delta-
Notch model on a 50 × 50 hexagonal lattice with periodic boundary conditions. White means N = 0 (no activity), 
black means N = 1 (full activity). All solutions were initiated with different random initial values. The values of μ, M, and s had 
only minor effects on the final patterns. Other parameter values: (A) Class I: θD = 0.1, θN = 0.1, pD = 10, pN = 3; (B) Class II: θD 
= 0.7, θN = 0.7, pD = 3, pN = 10; (C) Class IV: θD = 0.7, θN = 0.1, pD = 3, pN = 10; (D) Class III: θD = 0.7, θN = 0.1, pD = 10, pN = 
3; (E) Class IV: θD = 0.7, θN = 0.7, pD = 10, pN = 10; (F) Class IV: θD = 0.4, θN = 0.4, pD = 6, pN = 6.

A) B) C)

F)E)D)
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sisted of a fractional factorial design created in order to
span the range of all parameters and their combinations
that were found to have a clear effect in (2), by means of
a minimum number of numerical simulation solutions.
Due to the insight obtained from our previous screening,
our new design could be reduced to only 32 selected com-
binations of a high or low value of each of the seven
model parameters, with six non-informative (no pattern-
ing) solutions replaced by two replicates of an intermedi-
ate parameter combination with independent random
starting value sets, each assessed independently in three
sensory parallels (see Additional file 1).

Human sensory descriptive analysis was used for image
description. It provides systematic, inter-subjective
description in intelligible terms with high repeatability.
Such sensory descriptive analysis is standard procedure in
food science [13] and also used for describing and com-
paring e.g. perfumes or the quality of MRI images [14].
Here we used it for assessing printed images of outcomes
from the model of cell differentiation. A panel of profes-
sional human assessors first developed adequate termi-
nology, and was then trained in describing and
comparing a set of images of steady-state solutions from
the simulations with respect to these descriptor terms

Method overview: four stages in the investigation of the high-dimensional non-linear dynamic model: (1) Preliminary explora-tionFigure 3
Method overview: four stages in the investigation of the high-dimensional non-linear dynamic model: (1) Pre-
liminary exploration. Design: trial-and-error. Analysis: visual inspection of model steady-state solutions, rendered as black 
and white images of Notch concentrations. (2) Large-scale systematic screening using extensive probing of the parameter 
space, monitored by computerised profiling by full factorial designs. Relating more than 50 computed image analysis descriptors 
to 7 known model parameters by regression in latent variables (jack-knifed PLSR). (3) Disciplined investigation using informa-
tive but more laborious human sensory descriptive profiling by a reduced factorial design, and relating 15 sensory image 
descriptors to all 7 model parameters by jack-knifed PLSR. (4) Pursuit of an unexpected discovery in a particular region of 
parameter space. Dense sampling of θD for chosen combination of other parameters, and relating estimated protein distribu-
tions and sensory image descriptors to θD by graphics.
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[13,15]. During this process each assessor's subjective
"private language" was replaced by a common "inter-sub-
jective" set of terms which was agreed upon by all persons
involved, both with respect to what it means qualitatively
and to how it should be reported quantitatively. The sen-
sory analyses are detailed elsewhere [16].

The resulting tables of profile data were modelled by mul-
tivariate "soft modelling" based on reduced-rank Partial
Least Squares (PLS) regression [10-12]. The main covaria-
tion patterns among the observed descriptors were identi-
fied and related to the chosen model parameter values in
a subspace-model defined by statistically significant cov-
ariance eigenvectors. Cross-validation was used to distin-
guish between phenomena with predictive validity and
apparent noise effects. This made it possible to find and
interpret the main patterns of co-variation while ignoring
minor details that otherwise would have lead to over-par-
ametrisation.

The 32 image profiles could thereby be mapped onto
points in the PD space, and PLSR was used for further
analysis of the descriptors and their relation to the model
parameters. Figure 2 shows examples of pattern classes
thus identified.

(4) Finally, we pursued unexpected pattern types discov-
ered in the main experiment (3) in more detail in a final
follow-up experiment, involving a dense sampling of the
model parameter θD for a few fixed combinations of the
other parameters. The solutions were characterised by
both sensory descriptive analysis and by a computational
method by which the frequency of the observed Notch
concentration levels were recorded at each parameter
value. (See Additonal file 1 for documentation of the
research process according to Figure 3.) In the following
we summarise the main results.

Pattern Descriptor Space and Pattern Descriptor Model
The parameter ranges found to be of interest in the prelim-
inary exploration (1) (see Additonal file 1: Table S-T2)
were used for designing the subsequent two experiments
(2) and (3). The image analysis filters employed in the
extensive screening experiment (2) (see Additonal file 1:
Table S-T3) revealed systematic co-variation patterns in
the image analysis profile data. But these patterns were
difficult to interpret. The main, sensory-based experiment
(3) employed a modified version of the reduced design
(see Additonal file 1: Table S-T4), and consisted in using
a trained sensory panel to define verbal pattern descrip-
tors and then quantify the patterns in each image in terms
of these descriptors. Based on input from the investigators
the sensory panel defined 12 descriptors which they con-
sidered sufficient and by which they subsequently quanti-
fied the patterns (see Additonal file 1: Table S-T5). This

allowed us to develop a PD model (Figure 4) by bi-linear
PLSR regression in latent variables, relating the chosen 12
sensory descriptors (see Additonal file 1: Table S-T5), to
the seven model parameters via 3 latent variables, over the
32 images. Perturbations in the model parameters θD, θN,
pD and pN, alone and in combinations, clearly affected the
solutions in systematic ways, while variations in μ (the
ratio between the degradation rates of Delta and Notch)
and in the initial conditions had fairly small effects. Based
on split-half cross-validation [12], the PD model correctly
predicted 88% of the variance in the 12 sensory descrip-
tors from the model parameters. Conversely, 85% of the
variance in the selected non-linear model parameter com-
binations was correctly predicted from the pattern
descriptors.

We found that the PD model clustered the 32 graphical
patterns in four main classes, here named I, II, III, IV (see
Additonal file 1: Table S-T6). In a cross-validation experi-
ment in which each image was treated as unknown
against a PLS discriminant analysis model estimated from
the other 31 images, the set of pattern descriptors could be
used for successful classification of each of the 32 images
into the four classes. The clustering was confirmed by
independent hierarchical cluster analysis of the patterns
based on their Euclidean distances in PD space, and
appears to be quite robust (see Additonal file 1: Figure S-
F3).

Images belonging to one and the same class share obvious
visual pattern characteristics that distinguish them from
images from the other classes, and can be associated with
different domains in parameter space (see Additonal file
1: Table S-T6, Figure S-F4). For example, low values of θD
are a clear indication that the resulting pattern will fall
into class I. The images in class I are likely to be high in
the descriptors Sharpness, Contrast and PatternBlack, and
low in Whiteness and PatternWhite, implying primarily
black and white cells, the former outnumbering the latter
and participating in the curls which dominate the pattern
in this class (Figure 2A).

Parameter-dependent differentiation phenomena
We subsequently (Phase 4) checked that the clustering is
not just an artefact stemming from the low number of pat-
terns in the fractional factorial design by running the
fourth and final set of simulations to pursue details. We
varied the Delta threshold parameter θD in small steps to
traverse the PD space along a straight line, illustrated in
the biplot of Figure 4a from the previous simulation
experiment, from class I (θD = 0.1, characterised e.g. by
sensory descriptor Sharpness) via class III (θD = 0.7, charac-
terised by Whiteness and MultiShade) and up to θD = 0.9.
Some new sensory descriptors were added (see Additonal
file 1: Table S-T7).
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(page number not for citation purposes)



BMC Systems Biology 2009, 3:87 http://www.biomedcentral.com/1752-0509/3/87
From these results, good predictive PLS regression models
were developed between the sensory descriptive profile
and the model parameters within the parameter range cal-
ibrated for, as exemplified for θD in Figure 5. Moreover,
rather than spreading evenly in PD space, the image prop-
erties jump between a few clearly separated domains in
the 3-dimensional PLS component space, with few inter-
mediates (Figure 6).

As θD increased, the estimated Notch activity passed
through a series of complicated, abrupt changes resem-
bling bifurcations (Figure 7a), showing that the statement
of Collier et al. [7] that the patterns are insensitive to the
precise values of the model parameters is only partially
true. Ordinary bifurcation diagrams show the number of
coexisting stable states of which the system may occupy
just one at a time, but Figure 7a shows the number of sta-
ble Notch levels actually expressed simultaneously over
the lattice for each value of θD. That is why this is not a

bifurcation diagram in the common sense. We propose to
call it a differentiation diagram, where θD is a differentiation
parameter regulating the number of simultaneous levels,
or the degree of differentiation. This being said, the dia-
gram shows a large number of "bifurcation" values of θD
for which the number of simultaneous Notch levels
changes. The number of levels is related to the complexity
of the image: a high number of levels come with a com-
plex and highly irregular pattern. A high number of equi-
librium levels, e.g. at either side of θD = 0.41 and 0.62,
correlates with long integration time (Figure 7a). Both can
be seen as a consequence of high frustration [9], which
implies that the system needs extensive fine-tuning and
either takes a long time to settle in a stable, patterned state
or is chaotic. Despite the fact that no descriptor was
designed with analysis of differentiation in mind, the
descriptors characterise the patterns in a way that at least
partly reflects the complicated differentiation pattern for
varying θD (Figure 7b).

(a) Main co-variations from sensory exploration (3) mapped by cross-validated PLSR bi-plot in which the design parameters θD, θN, pD, pN, μ, M, and s and selected interactions are related to the sensory image descriptors for 32 solution images from the fractional factorial design, plotted in the subspace of Pattern Descriptor Space spanned by the two first PLS components PC1 and PC2 (orthogonal linear combinations of the 12 sensory descriptors)Figure 4
(a) Main co-variations from sensory exploration (3) mapped by cross-validated PLSR bi-plot in which the 
design parameters θD, θN, pD, pN, μ, M, and s and selected interactions are related to the sensory image 
descriptors for 32 solution images from the fractional factorial design, plotted in the subspace of Pattern 
Descriptor Space spanned by the two first PLS components PC1 and PC2 (orthogonal linear combinations of 
the 12 sensory descriptors). Sensory descriptor variables, design parameters and 32 solution score indicators are posi-
tioned according to their correlations to PC1 and PC2. The origin represents zero correlation; outer ellipsis represents locus of 
variables with variance explained 100% by PC1 and PC2. Variables close to the ellipsis and close to (or opposite) each other are 
positively (or negatively) correlated to each other. Only the most salient variables are marked. Some correlations are illus-
trated in (b)-(e). Ellipses show approximate boundaries of the four classes I-IV; the coloured markers represent the classes. (b) 
Values of Sharpness vs. Contrast for the 32 images, r = 0.98. (c) Curls vs. θD, r = -0.84. (d) Regular vs. the four-factor interaction 
term pII = [θD+, θN+, pD ≠ pN], i.e. θD is high,θN is high, and pD is high for low pN and vice versa, r = 0.98. (e) PatternWhite and 
PatternBlack are anti-correlated, r = -0.82. Plot symbols: black asterisk = class I, yellow square = class II, blue circle = class III, 
cyan/magenta/white triangles = class IV (see Additonal file 1: Table S-T6). Abbreviations for sensory descriptors: PW = Pattern-
White, PB = PatternBlack, Co = Contrast, Cu = Curls, Re = Regular, MS = MultiShade. (see Additonal file 1: Table S-T5). Higher-
order interaction terms: pI = [θD-], pII = [θD +, θN+, pD ≠ pN], pIII = [θD+, θN-, pD+].
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Predicting model parameters from solution characteristicsFigure 5
Predicting model parameters from solution characteristics. Top row: multivariate calibration illustrated. (a) Regres-
sion coefficient for predicting θD from sensory profiles, estimated by PLSR. While θN was kept constant at 0.1, pD and pN were 
likewise calibrated for. (b) Predicted θD vs. known θD in the calibration samples, based on cross-validation to avoid over-fitting. 
Middle row: prediction in a normal sample. (c) A solution image generated with P = [θD, θD, pD, pN] = [0.7, 0.1, 10, 3]. (d) Image 
reconstructed from predicted sensory parameters P = [0.71, 0.1, 9.43, 3.57]. Right: outlier tests (1, relative leverage; 2, residual 
variance) indicate a valid prediction. Bottom row: prediction in an abnormal sample. (e) An image generated with a parameter 
combination outside the range calibrated for, P = [0.7, 0.5, 10, 3]. (f) Image reconstructed from predicted sensory parameters 
P = [0.79, 0.1, 11.3, 1.7]. The reconstruction is obviously bad, as expected. But since outlier tests (right) were too high, the 
invalid prediction caused automatic outlier warning.

0

Sensory Variables

Regression Coefficients

0

0 .3

0 .6

0 .9

0 0 .2 0 .4 0 .6 0 .8 1 .0

Measured Y

Predicted Y

1 2
0

1

2

3

4

1 2
0

1

2

3

4

a) b)

c) d)

e) f)



BMC Systems Biology 2009, 3:87 http://www.biomedcentral.com/1752-0509/3/87
Initial state variations, repeatability and boundary effects
For a given set of parameter values the total number of sta-
ble states in a large network is probably very large. How-
ever, each initial state (N0, D0) lies in the attractor basin of
just one patterned state. An important question is whether
the patterns generated by all (N0, D0) for a given set of
parameter values lead to more or less the same state in PD
space. For a realistic model of a biological system we
would expect this to be true, as biological systems are
almost by definition structurally stable and thus insensi-
tive to internal and external stochastic fluctuations. Thus,
contrary to stable points in phase space, we would expect
points in PD space to have large attractor basins.

Once the clustering into four classes was discovered dur-
ing the multivariate analysis of the sensory data, it was
straightforward to test the robustness and the visual
appearance of these pattern types. Varying initial condi-
tions within the imposed limits (see Methods) changed
the details of the patterns without appreciably altering
their descriptor profiles. This is illustrated by the proxim-
ity of the two independent random initial condition rep-
licates in class IV (Figure 4a, open triangles Δ, Ќ). The
precision of the sensory descriptive analysis is also illus-
trated in the same figure by the closeness of the three inde-
pendent sensory parallels within each of these two
initialisation replicates.

With periodic boundary conditions, which are commonly
used to mimic an infinite domain, we expected that the
boundary effects would be negligible as regards the pat-
tern characteristics. This was confirmed by simulations in
which the original 50 × 50 lattice was embedded in a
larger (75 × 75) lattice which was run with the same set of
random initial perturbations as in the 50 × 50 lattice. The
final patterns in the 50 × 50 lattice in the two cases
belonged to the same class, and in most cases were almost
identical (data not shown). Some very large-scale spatial
patterns appear as boundaries between domains with a
three-periodic pattern, but with a phase shift along the
boundaries (Figure 3B). In an infinite-sized lattice we
expect these patterns would fail to appear. By increasing
the pattern size to 51 × 51 we found that some of these
changed to a 3-periodic pattern all over the lattice without
phase-shift boundaries (51 is divisible by 3).

Discussion
Spatial patterns are determined by the concentrations of
certain species in each separate cell. But to handle and
analyse differentiation and patterning we need mathemat-
ical variables that express the macroscopic, essential prop-
erties that allow us to describe, classify, and distinguish
qualitatively different patterns in biologically meaningful
ways. To this end it is of little value to specify the equilib-
rium values and positions of millions of individual cells.

The sensory appearance of solution images jumps between distinct regions in the property space spanned by the three first principal components when θD increases from 0.9Figure 6
The sensory appearance of solution images jumps between distinct regions in the property space spanned by 
the three first principal components when θD increases from 0.1 to 0.9. Each of the 34 line segments connects the 
sensory properties of each image to its θD value. A subset of 9 solutions, simulated over a 51 × 51 lattice with fixed set of initial 
states, equally spaced at θD = 0.1, 0.2,..., 0.9 are marked by red and blue squares, respectively. Parameters kept constant: θN = 
0.1, pD = 10, pN = 3.
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The macroscopic pattern is an emergent, aggregate prop-
erty, and the pattern characteristics of interest can only be
described meaningfully by new, dedicated variables
defined explicitly to describe and quantify just the macro-
scopic properties of the patterns that the modellers deem
of interest.

For a moderately sized model, any number of numerical
simulations can be run and almost unlimited amounts of
simulation data can be stored with modern high speed
and high capacity computers. However, more data does
not necessarily lead to more insight. The challenge is to
maximise discovery, overview and statistical power, while
minimising work and risk of over-interpretation. Multi-
variate data modelling in latent variables has proven to be
a highly useful approach for extracting and displaying the
main co-variations in high-dimensional response profiles.

In the present case, we chose a pragmatic explorative
approach, involving qualitative methods that facilitate the
detection and conceptualisation of novel phenomena,
and quantitative methods that permit modelling, predic-
tion, validation and interpretation. For each stage in our
approach there exist general and well-documented meth-
ods that have proved their efficiency and reliability in a
large number of applications. As others have experienced

before us in various settings, the human visual system
combined with a task-specific vocabulary is a scientifically
reliable and superbly versatile tool [15] for finding, quan-
tifying and communicating regular as well as irregular pat-
terns. For example, we discovered the pattern type "two-
headedness" (short, crooked "worms" with two black
"heads" connected by a gray "body" on a white back-
ground, Figure 2D) because the Class-III parameter com-
bination showed abnormally high scores of the sensory
descriptor MultiShade in the 50 × 50 lattice in the first sen-
sory experiment. Once this feature was discovered, we
developed a specific term, "Two-headedness" for it, with
the descriptor Twoheadedness. The sensory panellists were
"calibrated" (trained on reference images) for this trait to
ensure intersubjectivity and repeatability. Then it was
quantified along with the other sensory descriptors in the
second sensory experiment (Figure 5), which allowed it to
be compared to the differentiation diagram (Figure 7).
Prior to its detection, it was difficult to pick up this strange
feature by the automatic computerised image analysis. But
after having discovered it during the sensory assessments
we were able to construct a specific mathematical image
analysis filter that quantifies it. This will be described else-
where.

Our set of descriptors is clearly not sufficient to describe
or classify all images generated by the model. That was
never our goal. We selected those descriptors that we
found best suited to describe those pattern features that
after the initial scans appeared to be most interesting to
us. Models are always constructed with a purpose, and the
researcher's interest will in general be focused on those
aspects of the images that are relevant for this purpose. A
need for extensive investigations of complex model arises
simply because one cannot say in advance how the model
will behave and which behaviours may turn out to be of
interest and importance.

It seems that our approach promotes effective investiga-
tion of the outcomes of pattern-generating models (and
possibly of complex mathematical models in general),
and is characterised by a number of attractive features. It
is cost-effective: initially screening many conditions by low-
cost, but non-specific profiling test methods, and then
pursuing selected conditions by more informative meth-
ods. It is statistically stable: only relationships that show
predictive ability in "secret" simulation (cross-validation)
are accepted. It is focused: searching for a description of
only those properties of the original model that are of
interest, ignoring all irrelevant details and leading to an
enormous phase space reduction. It is wide-ranging: yield-
ing an overview as well as the ability to predict details. It
is analytic: providing an explanation of the dominant pat-
tern features in terms of properties of the original model,
i.e. of the real system that is being modelled. It is adaptive:

(a) The Notch differentiation pattern obtained for 0 <θD < 1 in the 51 × 51 lattice with periodic boundary conditionsFigure 7
(a) The Notch differentiation pattern obtained for 0 
<θD < 1 in the 51 × 51 lattice with periodic boundary 
conditions. Patterns with θD ≅ 0.1 belong to Class I, with θD 
≈ 0.7 to Class III. The superimposed solid curve shows the 
relative convergence time required to reach the stable state. 
Other parameter values: θN = 0.1, pD = 10, pN = 3, μ = 0.5, M 
= 1, and s = 0.2. (b) Weighted averages of the ratings of 
Whiteness (green), ThicknessCurls (red), and Twoheadedness 
(blue) by the sensory panel vs. θD in the 51 × 51 lattice with 
periodic boundary conditions (see Additonal file 1: Table S-
T7). Vertical bars indicate standard deviations. The broad 
maximum for Twoheadedness corresponds to class III.
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if the researchers' attention should be turned towards
other or additional features, the model can be adapted or
replaced by another system-level model generated in the
same fashion. It is inter-subjective: using standardised and
well-tested methods from sensory science and chemomet-
rics helps to keep subjectivity due to the researchers' indi-
vidual bias and preferences to a minimum. It leads to a
system level model: seeking a description and understand-
ing of the emergent phenomena and features of the pat-
terns that are the result of the system as a whole and that
only have meaning on the level of the system itself, and
relating the relevant characteristics of the final patterns
directly to the system parameters without specifying the
levels of every single cell. As far as the relevant features of
the final, stable patterns are concerned, the system-level
model replaces the original ODE-based pattern-generat-
ing model. Given a set of parameter values, we can predict
the corresponding type of pattern without actually inte-
grating the system, and given a pattern, we can predict the
parameter domains leading to it.

In our opinion, there is little hope that realistic multi-scale
spatiotemporal cGP models which explain high-dimen-
sional phenotypic variation associated with the emer-
gence of biological structure, organisation and function
through differentiation, can be expressed in a simple way.
In contrast to our simple illustration model, realistic pat-
tern-generating cGP models will in general be dynamic,
non-linear and complex, with numerous variables and
parameters, possessing a hierarchical structure and per-
haps containing continuous processes as well as discrete
event processes, and discrete or distributed time delays.
They will also have to deal with noise and stochastisity as
well as random perturbations during the course of devel-
opment. Large and complex models for open systems will
possess emergent features that cannot be inferred from the
building blocks of the model, and may generate a large
repertoire of different mathematical behaviours depend-
ing on initial values and boundary conditions, parameter
values and details of the functional relationships. In this
connection the behaviour of the model could simply
mean its ensemble of final, stable states, or the transient
motions leading to these states might also be included. In
either case, achieving a complete survey of all possible,
relevant behaviours is hardly possible using a traditional
mathematical analysis where analytical investigations are
combined with intuition-based simulations and global or
individual parameter fits to data. That approach is widely
used, but may fall short of disclosing the full range of pos-
sible behaviours of even quite simple models. As the dis-
closure of a substantial part of the phenotype space is a
prerequisite for developing comprehensive genotype-phe-
notype maps, there is indeed a need to develop robust and
generic methodological standards for discovering the
behavioural repertoire of complex patterning models. It is

likely that combined with analytical investigations and
numerical "experiments", a factorial design approach as
outlined here will become part of such a standard.

Conclusion
The number of cells could have been increased many-fold
without complicating the analysis apart from being com-
putationally more demanding. This suggests that our
approach could be used on biologically more relevant and
mathematically more complex pattern models with many
chemical species, larger numbers of parameters and more
complex interactions. Scaling issues may appear, though,
and we do not know how human pattern description
scales up to three dimensions and irregular cell lattices.
This should be addressed so that we can make a realistic
assessment of to which degree a combined use of system
dynamics methodology and multivariate data modelling
in latent variables has the potential to become a generic
approach to explain higher-order differentiation phenom-
ena.

Methods
Model analysis
With suitable boundary conditions, for example periodic,
the model in Eqs. (1) has a homogeneous equilibrium
(D*, N*) given by the unique solution of D* = 1-S(N*, θN,
pN), N* = S(D*, θD, pD). This state is unstable unless the
steepness of the sigmoid functions is very gentle [7,17],
and a perturbation of the homogeneous state will initiate
a transient during which cells develop towards different
final states, creating a spatial pattern. It is far from obvious
which parameter value combinations generate which pat-
terns and how patterns could be described and classified.

The patterns were obtained by integrating Eqs. (1) numer-
ically from initial values Dk

0, Nk
0 on a 50 × 50 or 51 × 51

lattice of hexagonal cells with periodic boundary condi-
tions. The lattice dimensions 51 × 51 were chosen to avoid
certain shifts in the basic three-periodicity entirely due to
the periodic boundary conditions (50 is not divisible by
3). The initial values for the individual cells represented
small, random perturbations from the homogeneous
steady state value D*. To generate clearly different initial
value sets, we modified the maximum size M and sign s of
the perturbations (see Additonal file 1: Table S-T1), if s >
0 (< 0), all perturbed values were larger (smaller) than the
equilibrium value. Thus, including our parameterisation
of the initial values, our model has a total of seven param-
eters which span the Parameter Space.

Simulations and descriptive analysis of patterns
As a start we make some useful distinctions. For each
choice of parameter values and initial values the model
yields a stable solution, from which we generate a two-
dimensional image in which each cell is given a shade of
Page 11 of 13
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gray defined by its Notch level (white: N = 0, black: N =
1). The image exhibits certain pattern characteristics, in
short, a certain pattern. A pattern is a conspicuous, emer-
gent feature of an image (could be periodic or non-peri-
odic). The pattern characteristics, e.g. Whiteness, are
qualities. If the overall Notch level is low, we characterise
the image by attaching the quality Whiteness to it. Using
sensory methods or dedicated mathematical filters, the
degree of whiteness is given by the value of the scalar var-
iable Whiteness for this particular image.

The most interesting ranges for the individual model
parameters were sought by trial-and-error in an initial
exploration (1). Each parameter combination was tested
with a new set of random perturbations for the simula-
tion. A second, full factorial screening design 27 with cen-
tre-points (2) was then chosen as a compromise between
computational load and probability of finding important
patterns (see Additonal file 1: Figure S-F1, Table S-T2).
The multivariate profiling (see Additonal file 1: Table S-
T3) and data analysis (cross-validated PLS regression of
the relationships between the design parameters and
about 80 automatically generated image analysis descrip-
tors) showed that several kinds of pattern were indeed
generated by the simulations (see Additonal file 1: Figure
S-F2). Based on preliminary results, the design was
expanded in a couple of stages to ensure that the relevant
parameter domains were adequately spanned.

To ensure a more informative and interpretable character-
isation, we decided to apply human visual evaluation of
an interesting subset of the solutions in the main experi-
ment (3). Since this is a more laborious and expensive
measuring principle, a reduced statistical design was cho-
sen for this third stage. From the original screening design,
a fractional factorial design 27-2 was selected by combin-
ing a high or low value of each of the seven parameters,
confounding the least interesting main effects with
higher-order interactions of other factors (see Additonal
file 1: Table S-T4). Six of the 32 chosen parameter combi-
nations resulted in a return to the homogeneous equilib-
rium, and were replaced by three centre points in two
replicates with different initial conditions.

For each of the 32 experimental conditions, the full 50 ×
50 equilibrium lattice of Notch was printed on paper in
black-and-white. The sensory descriptive analysis, per-
formed by a panel of eleven assessors working as trained
sensory judges at the Norwegian Food Research Institute,
had two distinct steps, carried out according to the ISO
method convention [13], as e.g. used in [14]. (i) The
assessors and the researchers agreed on twelve descriptors
reflecting characteristic pattern features (see Additonal file
1: Table S-T5). The assessors were then trained to respond
similarly with respect to each descriptor. (ii) Each image

was judged with respect to each of the twelve descriptors
on a scale from 1 to 9 by the eleven individual assessors,
with the images anonymised and presented in random
order. Finally, PLSR with split-half cross-validation was
used in various ways to find reproducible patterns of co-
variation between the twelve sensory descriptors and the
seven design factors and their interactions (Figure 4).
Graphical inspection of the PLS score plot (Figure 4a) as
well as cluster analysis led us to group the solutions into
four distinct classes (see Additonal file 1: Figure S-F3,
Table S-T6).

In order to pursue in detail the effect of changing the
parameter θD from the low values giving class I through
class III (θD ≈ 0.7) up to θD = 0.9, a final sensory analysis
experiment (4) was performed on simulation results for
36 values of θD and constant values of the other parame-
ters, this time using a 51 × 51 lattice and a fixed set of ran-
domly chosen initial values (Figure 7). To focus on the
local fine-structure of the images, the panel and the
project leaders agreed upon a slightly revised set of twelve
descriptors of which two are reported here (see Additonal
file 1: Table S-T7). The eleven assessors and the general
evaluation conditions were the same as before.
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