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Abstract
Background: miRNAs play important roles in the regulation of gene functions. Maternal dietary
modifications during pregnancy and gestation have long-term effects on the offspring, but it is not
known whether a maternal high fat (HF) diet during pregnancy and lactation alters expression of
key miRNAs in the offspring.

Results: We studied the effects of maternal HF diet on the adult offspring by feeding mice with
either a HF or a chow diet prior to conception, during pregnancy and lactation, and all offspring
were weaned onto the same chow diet until adulthood. Maternal HF fed offspring had markedly
increased hepatic mRNA levels of peroxisome proliferator activated receptor-alpha (ppar-alpha)
and carnitine palmitoyl transferase-1a (cpt-1a) as well as insulin like growth factor-2 (Igf2). A HF
diet induced up-regulation of ppar-alpha and cpt-1a expression in the wild type but not in Igf2 knock
out mice. Furthermore, hepatic expression of let-7c was also reduced in maternal HF fed offspring.
Among 579 miRNAs measured with microarray, ~23 miRNA levels were reduced by ~1.5-4.9-fold.
Reduced expression of miR-709 (a highly expressed miRNA), miR-122, miR-192, miR-194, miR-
26a, let-7a, let7b and let-7c, miR-494 and miR-483* (reduced by ~4.9 fold) was validated by qPCR.
We found that methyl-CpG binding protein 2 was the common predicted target for miR-709, miR-
let7s, miR-122, miR-194 and miR-26a using our own purpose-built computer program.

Conclusion: Maternal HF feeding during pregnancy and lactation induced co-ordinated and long-
lasting changes in expression of Igf2, fat metabolic genes and several important miRNAs in the
offspring.
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Background
miRNAs are small (~21 nt) non-coding RNAs that were
originally discovered to regulate development in C. ele-
gans [1-3]. A significant number of miRNAs are conserved
across different species [4-7]. miRNAs regulate gene func-
tions mainly through degradation of their cognate
mRNAs by perfect matches with the mRNA molecules; or
via inhibition of protein translation through base pairing
of ~7 nucleotides (called "seed sequence") between
miRNA and the 3'-untranslated region (3'-UTR) of the tar-
get mRNA molecules [8]. Expression of miRNAs may be
regulated by transcription factors (e.g. myogenin and
myoD regulate expression of a number of miRNAs [9]),
and transcription factors per se may also be regulated by
miRNAs (e.g. miR-1 promotes myogenesis by targeting
histone deacetylase 4, a transcriptional repressor of mus-
cle gene expression) [10]. A single miRNA can repress the
production of hundreds of proteins, but this repression is
relatively mild [11]. On the other hand one mRNA can be
targeted by several miRNAs, which have additive effects in
regulation of protein synthesis [12]. For example, SMAD-
1 gene has two predicted binding sites for miR-26a [12],
and greater suppression effects on protein translation
have been observed in mRNAs containing multiple bind-
ing sites for a miRNA [13].

miRNAs are involved in the regulation of almost all
important biological processes including development
[14], differentiation, cell proliferation, cell cycle regula-
tion [15,16] and energy metabolism [17], including fat
metabolism and glucose homeostasis [18,19]. For exam-
ple, miR-375 suppresses glucose-induced insulin secre-
tion in pancreatic β-cells [20], thus demonstrating an
essential role in plasma glucose homeostasis. Knocking
down of endogenous miR-122, a miRNA abundantly
expressed in the liver, reduces plasma cholesterol concen-
trations in mice [21], with parallel up-regulation of 363
mRNA transcripts and down-regulation of 305 mRNA
transcripts in the liver [21]. MiR-143 stimulates human
adipocyte differentiation [22]. Analysis of global profiles
of miRNA expression in skeletal muscle with microarray
shows that expression of 4 miRNAs (miR-29a, miR-29b,
miR-29c and miR-150) are up-regulated [23], whereas
expression of 11 miRNAs (miR-379, miR-127, miR299-
5p, miR-434-3p, miR-335, miR130a, miR-19b, miR-451,
miR-148a, miR-199a and miR-152) are down-regulated
in skeletal muscle of type 2 diabetic rats [23].

The prevalence of obesity is increasing markedly in indus-
trialised countries [24-28], and high fat, high protein, low
carbohydrate diets including proprietary diets such as the
Atkins diet are widely consumed [29-31]. The prevalence
of obesity in women of reproductive age continues to rise
[32], and it is likely that many women of reproductive age
also consume a low carbohydrate, high fat and high pro-

tein diet during pregnancy and lactation. However the
effects of increased maternal dietary consumption of fat
during pregnancy and weaning on the long term health of
the offspring are not fully characterized.

Many studies have indicated long-term consequences of
maternal dietary modifications (e.g. caloric or protein
restrictions) during pregnancy and lactation on the devel-
opment of insulin resistance and risk of cardiovascular
disease in the offspring [33-37]. We have previously
shown in mice that adult offspring of dams fed a low car-
bohydrate, high fat and high protein diet during preg-
nancy and lactation but weaned onto a chow diet have
reduced hepatic triglyceride levels in association with
increased protein levels of key genes regulating fatty acid
oxidation including carnitine palmitoyltransferase-1a
(CPT-1a) and peroxisome proliferator-activated receptor-
alpha (PPARα) predominantly in the female offspring
[33]. Pups born to dams on a high fat (HF) diet during
gestation and lactation have increased percentage of body
fat, plasma glucose, free fatty acids, insulin and choles-
terol levels, liver weight and lipid concentrations at wean-
ing or in adulthood [38,39].

Fetal growth is regulated by insulin-like growth factor 2
(IGF2) [40]. Recent data suggest that IGF2 may regulate
fat metabolism. For example, body weight is affected by
several polymorphisms in the Igf2 gene [41,42], and low
circulating IGF2 concentrations are associated with weight
gain and obesity [43]. In contrast, high circulating IGF2
levels associated with the Apal polymorphism of Igf2 are
associated with low body weight in middle aged men
[44]. Mice overexpressing Igf2 have increased fatty acid
oxidation [45]. Maternal dietary protein restriction
reduces hepatic expression of Igf2 in the male fetal off-
spring. However, whether maternal HF feeding alters off-
spring Igf2 expression has not been documented.

Following our previous studies on maternal high fat, high
protein and low carbohydrate diet[33], we used a modi-
fied diet to investigate whether maternal HF feeding dur-
ing pregnancy and lactation altered mRNA levels of ppar-
α and cpt-1a and whether changes in ppar-α and cpt-1a
were related to changes in Igf2 expression. We also ana-
lyzed global miRNA expression profile in the liver to
determine which miRNAs were altered in the offspring
born to dams fed a HF diet during pregnancy and lacta-
tion.

Results
Maternal HF fed offspring had increased mRNA levels of 
ppar-α, cpt-1a and Igf2 in the liver
We have previously shown that maternal high fat, high
protein and low carbohydrate diet fed offspring had
increased protein levels of PPARα and CPT-1a levels in the
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liver, in association with reduced hepatic lipid levels,
despite having no significant changes in body weight,
plasma glucose and lipid profile [33]. In this study, a
modified HF diet was fed to dams, in which the percent-
age of fat was increased by more than 2-fold with a small
increase in protein levels compared to the chow diet (see
methods section). Consistently, no significant difference
in body weight, fasting plasma triglyceride, total choles-
terol and glucose levels were observed between maternal
HF fed offspring weaned on a chow diet (HF/C) and con-
trol mice (C/C, data not shown). mRNA levels of ppar-α
and cpt-1a in the HF/C mice were increased by ~1.6 and
~3.7-fold respectively compared to C/C mice (p < 0.05
and 0.01 for ppar-α and cpt-1a respectively, Table 1).

As the maternal HF diet was implemented prior to con-
ception and continued throughout pregnancy and lacta-
tion, we investigated whether expression of Igf2, an
imprinted gene encoding a growth factor expressed during
early development [40] was altered in the maternal HF fed
offspring. The mRNA level of Igf2 was increased by ~2.7-
fold in maternal HF diet fed offspring compared to the
control animals (p < 0.01, Table 1).

To determine whether increased expression of ppar-α and
cpt-1a was related to increased expression of Igf2 in the
maternal HF fed offspring, we measured mRNA levels of
ppar-α and cpt-1a in Igf2 KO mice. A HF diet modestly
increased hepatic expression of ppar-α and cpt-1a in the
WT mice (p < 0.05 and 0.01 for ppar-α and cpt-1a respec-
tively, Table 2), but the HF diet had no effects on ppar-α
and cpt-1a expression in the KO mice (p = 0.98 and 1.0 for
ppar-α and cpt-1a respectively, Table 2), suggesting that
expression of Igf2 was required for the HF diet induced
up-regulation of expression of ppar-α and cpt-1a.

Hepatic expression of let-7c was reduced in maternal HF 
offspring
Let-7 was originally discovered due to its regulation of
developmental timing in C. elegans, through binding to
the 3'-UTR region of Lin-41 [46,47]. Levels of let-7c and
other members of let-7 including let-7a, let-7b and let-7d
were reduced by 2-2.5-fold in maternal HF fed offspring
compared to the control animals (p < 0.01 for let-7a, let-
7b and let-7d, Table 3).

Having observed reduced expression of let-7s in maternal
HF fed offspring, we measured the global miRNA expres-
sion profile with microarrays.

Expression of ~5.7% of miRNAs was altered in the 
maternal HF fed offspring
A cut-off threshold of 1.5-fold change [48] in miRNAs was
used to determine whether altered miRNAs levels were
likely to be significant. Of 579 miRNAs measured, expres-
sion of 10 miRNAs (~1.7%) was increased by ~1.5-2-fold
(average increase was ~1.64-fold, Table 4), whereas
expression of 23 miRNAs (~3.97%) were reduced by 1.51
- 4.93 fold (average reduction of 2.16-fold, Table 5), with
miR-483* showing the biggest reduction (by ~4.9-fold,
Table 5). In contrast, expression of most miRNAs
remained unchanged (Additional file 1: Table S1).

Among those miRNAs showing reduced expression, aver-
age levels of expression were 90310 arbitrary units (Table
5), whereas in those showing increased expression, the
average levels of the 10 miRNAs were 16083 arbitrary
units (Table 4), which was 5.6-fold lower than those miR-
NAs showing reduced expression.

We validated microarray data with the stem-loop RT-PCR
method [49] using purchased miRNA primers (ABI). 5
miRNAs (let-7c, miR-483*, miR-22, miR-29a and miR-
30c) were measured as these miRNAs showed different
magnitude of reduced expression in the HF offspring
(Table 6). Expression of miR-483*, let-7c and miR-29a
measured with qPCR were consistent with values
obtained from microarray data, with minor differences in
the magnitude of changes in expression (Table 6). How-
ever, a discrepancy in levels of miR-30c and miR-22
between qPCR and microarray was observed (Table 6).
Levels of miR-30c between maternal HF and chow fed off-
spring were similar when measured with microarrays, but
significantly different when measured with qPCR. A ~2.9-
fold reduction was obtained with microarray analyses
whereas a ~42% increase occurred in levels of miR-22 in
maternal HF offspring measured with qPCR (Table 6). We
also noted that levels of miR-483* were very low when
measured with qPCR, consistent with poorly expressed
Igf2 mRNA levels. However, data from microarray sug-
gested that miR-483* was abundantly expressed, which
was not consistent with qPCR data (Table 6).

We examined the miR-483* genomic DNA location
because miR-483* showed the greatest reduction in
expression in maternal HF fed offspring, and found that
miR-483* was encoded in an intron of Igf2. As intronic
miRNAs may share common promoters as their host
genes, many intronic miRNAs show significantly corre-
lated expression profiles with their host genes[50,51].
Thus, we would expect that the levels of intronic miRNA
(e.g. miR-483*) are increased with the host gene (Igf2) in

Table 1: Effects of maternal HF feeding on hepatic mRNA levels 
in adult offspring

Genes C/C (n = 7) HF/C (n = 7)

ppar-α 61873 ± 7638 97445 ± 11712*
cpt-1a 34193 ± 4420 126777 ± 23720**
Igf2 520 ± 70 1404 ± 266**

Levels of mRNA expression (arbitrary units) were measured with real 
time qPCR as described in the method section. Mean ± S.E. * p < 0.05 
and ** p < 0.01.
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the HF/C mice. To our surprise, expression of miR-483* in
the HF/C was reduced (shown by qPCR and microarray,
Table 4a) in association with increased Igf2 levels. Mir-
483 is also processed from the same mmu-mir-483 gene
and share most of the complementary sequence of miR-
483* [52]. We then examined expression levels of miR-
483 from microarray, and found that expression of miR-
483 was not markedly different in HF/C mice compared
to the controls (Additional file 1: Table S1 and Table 6).
We could not validate levels of miR-483 with the stem-
loop qPCR because the primers for miR-483 were not
available at the time of the study (ABI). Therefore, we
measured expression of miR-483 with another qPCR
method involving reverse-transcribed poly(T) adaptor
during the RT step [53], and found that the low levels of
miR-483 expression were consistent with microarray data,
similar to poorly expressed miR-483* obtained with the
stem-loop method (Table 6). We repeated measurements
of let-7c using the poly (T) adaptor method and the results
were consistent with those obtained from microarray or
the stem-loop qPCR (Table 6). We therefore carried out
further validation of miRNAs with the poly (T) adaptor
method as this methodology provided flexibility in
primer design.

We tried to validate miRNAs showing increased expres-
sion with the poly (T) adaptor method. However, among
those showing increased expression measured with micro-
array, miR-667, miR-207, miR-197, miR-770-3p and miR-
369-3p were very poorly expressed (data not shown).
miR-328 was expressed at much higher levels, but a
reduced rather than increased expression in maternal HF
diet fed offspring was observed (data not shown). We
then focused our study on those miRNAs showing
reduced expression in maternal HF fed offspring but

excluded those poorly expressed miRNAs (Table 5) plus
miR-709, as microarray data suggested that miR-709 had
the greatest level of expression in the liver (Additional file
1: Table S1 and Table 6). Data from qPCR confirmed the
highly expressed miR-709, but also showed marked
reduction in expression in maternal HF fed offspring (p <
0.01, Table 6), which was not consistent with microarray
results. However, the levels of most miRNA expression
measured with qPCR were consistent with data obtained
from microarrays except minor differences in the magni-
tude of changes (Table 6).

Bioinformatic analysis of predicted targets for miRNAs
As miR-709 was the highest expressed miRNA in the liver,
it might be an important miRNA for the regulation of
hepatic gene expression. We analysed the predicted targets
with widely used algorithms. 1241 hits were found using
the miRanda algorithm [54], whereas 353 targets were
found using the TargetScan algorithm [12]. At the time of
writing, miR-709 was not in the data base of PicTar [55].
We compared the outcome from miRanda and TargetSan
algorithms using our own purpose-built computer pro-
gram and found that 28 common targets (Additional file
2: Table S2) were predicted by both algorithms.

A feature of miRNA function is that several miRNAs tend
to act together to generate greater effects than single

Table 2: Hepatic gene expression in wild type and Igf2 knock out mice

Genes KO-C (n = 5) WT-C (n = 6) KO-HF (n = 6) WT-HF (n = 6)

ppar-α 210.34 ± 33.17 220.32 ± 40.99 283.88 ± 15.97 370.91 ± 31.35*
cpt-1a 266.71 ± 17.41 236.68 ± 50.41 266.05 ± 36.59 391.26 ± 21.61**

Both the wild type (WT) and Igf2 knock out (KO) mice were fed either a HF or chow diet as described in the methods section. mRNA levels were 
measured using real time PCR. Mean ± S.E. * p < 0.05 and ** p < 0.01 (HF v chow diet).

Table 3: Hepatic let-7s levels in maternal HF fed offspring.

Genes Expression levels (arbitrary units)

C/C (n = 7) HF/C (n = 7)
let-7c 118.10 ± 9.71 60.31 ± 6.80**
let-7a 278.62 ± 15.64 107.64 ± 11.82*
let-7b 107.10 ± 5.45 45.82 ± 4.28**
let-7d 164.68 ± 15.50 80.29 ± 8.10**

Levels (arbitrary units) of let-7s were measured as described in the 
methods section. Mean ± S.E. ** p < 0.01.

Table 4: Hepatic miRNA levels increased in maternal HF fed 
offspring

miRNAs C/C HF/C ↑ Fold

miR-503* 12765 19148 1.50
miR-379 13463 20313 1.51
miR-770-3p 17118 26761 1.56
miR-369-3p 14441 22857 1.58
miR-197 20128 32193 1.60
miR-21* 12420 19874 1.60
miR-328 18750 30348 1.62
miR-471 12420 20167 1.62
miR-207 21638 38458 1.78
miR-667 17689 36156 2.04

Mean 16083 26628 1.61

Levels of miRNAs were measured with microarrays as described in 
the method section. Relative values of signals for each miRNAs are 
presented in the two columns.
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miRNA [13]. We therefore undertook bioinformatics
analysis to investigate whether it was possible to identify
common targets for those validated miRNAs that showed
reduced expression in the maternal HF fed offspring using
our own purpose-built computer program. We found that
ZSWIM3 (zinc finger, SWIM domain containing 3), a pro-
tein whose function was yet to be characterised [56], was
targeted by 5 miRNAs namely miR-122, miR-192, miR-
194, miR-709 and miR-483*. 14 genes were targeted by 3
different miRNAs ' [see Additional file 22: Table S3]' and
10 genes (including citrate synthase and Igf-1 receptor)
were targeted by miR-122 and miR-494 ' [see Additional
file 2: Table S4]'. These results suggested that functions of
specific genes might be co-ordinately regulated by a small
number of miRNAs.

Discussion
Maternal HF fed offspring mice have: 1) increased hepatic
expression of key genes including those regulating fetal
growth (such as Igf2) and fat metabolism (such as ppar-α
and cpt-1a); 2) altered expression of a small percentage
(~5.7%) of important miRNAs. Among the miRNAs
showing reduced expression, let-7c regulates developmen-
tal timing [46,47] and miR-122 regulates fat oxidation
[21,57]. Thus, these data suggest co-ordinated changes in
key metabolic genes and miRNAs that regulate early fetal
growth and fat metabolism in offspring of dams fed HF
diet.

As both offspring from HF- and chow-fed dams are
weaned onto the same chow diet and maintained on

Table 5: Hepatic miRNAs levels reduced in maternal HF fed 
offspring

miRNAs C/C HF/C ↓ Fold

miR-410 18072 11997 1.51
miR-804 19831 13138 1.51
miR-323-5p 17402 11500 1.51
let-7c 108628 71343 1.52
miR-302a* 16365 10647 1.54
miR-711 25823 16057 1.61
miR-26a 95209 58142 1.64
miR-122 324798 192912 1.68
miR-216b 16179 9463 1.71
miR-294* 17402 10168 1.71
miR-185 27121 15378 1.76
miR-192 80361 44865 1.79
miR-29a 30002 16331 1.84
miR-194 92178 49817 1.85
miR-145 28108 14841 1.89
miR-126-3p 41868 20020 2.09
miR-762 76284 32872 2.32
miR-16 109631 43004 2.55
miR-1224 69200 24241 2.85
miR-22 130448 44304 2.94
miR-30c-2* 67031 20460 3.28
miR-494 298733 82842 3.61
miR-483* 366458 74387 4.93

Mean 90310 38640 2.16

Levels of miRNAs were measured with microarrays as described in 
the method section. Relative values of signals for each miRNAs were 
presented in the two columns.

Table 6: Validation of microarray data with stem-loop real-time qPCR

Genes qPCR (arbitrary units) Microarray ↓ Fold (HF/C v C/C)

C/C (n = 7) HF/C (n = 7) C/C HF/C qPCR Microarray

Stem-loop real time PCR
miR-30c 1572 ± 670 1168 ± 230* 19436 18861 1.35 1.03
miR-22 309 ± 163 440 ± 179* 130448 44304 0.70 2.94
miR-29a 370 ± 117 276 ± 109* 30002 16331 1.34 1.84
Let-7c 330 ± 31 227 ± 19* 108628 71343 1.45 1.52
miR-483* 1.9 ± 0.2 0.3 ± 0.1*** 366458 74387 6.89 4.93
Poly dT adaptor qPCR method
miR-709 1304 ± 118 768 ± 129** 1387121 1258883 1.70 1.10
miR-122 948 ± 61 473 ± 40*** 324798 192912 2.00 1.68
miR-192 321 ± 24 121 ± 10*** 80361 44865 2.64 1.79
miR-194 124 ± 11 81 ± 7** 92178 49817 1.53 1.85
miR-26a 157 ± 17 58 ± 10*** 95209 58142 2.72 1.64
Let-7c 118 ± 10 60 ± 7*** 108628 71343 1.96 1.52
let-7a 279 ± 16 108 ± 12*** 60650 43004 2.59 1.41
let-7b 107 ± 5 46 ± 4*** 83730 63907 2.34 1.31
let-7d 165 ± 16 80 ± 8*** 91702 72642 2.05 1.26
miR-494 12 ± 2 5.5 ± 0.8*** 298733 82842 2.18 3.61
miR-483 1.3 ± 0.2 1.0 ± 0.2 17689 22100 0.78 0.80

Levels of miRNAs were measured either with purchased primers for specific miRNAs (stem-loop real time PCR) or poly dT adaptor as described 
in the method section. Mean ± S.E. * p < 0.05 and *** p < 0.001 (HF/C v C/C). ** p < 0.01, and ***p < 0.001 (HF/C v C/C).
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chow until adulthood, changes in expression of key meta-
bolic genes and miRNAs in adult offspring are likely to
occur prior to weaning. IGF2 is a growth factor highly
expressed during early development [58]. Offspring Igf2
gene expression can be altered by maternal dietary modi-
fications during early development. For example, a mater-
nal low protein diet restricted only to the preimplantation
period reduces hepatic Igf2 mRNA in fetal rats [59] and
maternal dietary calorie restriction increases Igf2 mRNA
levels in the liver and skeletal muscle in fetal sheep [60].
Here we further show that hepatic mRNA levels of Igf2 are
elevated in the adult mouse offspring born to dams fed a
HF diet, suggesting that maternal HF feeding increases off-
spring hepatic Igf2 expression prior to weaning. This is
supported by our observation that hepatic Igf2 levels in
fetal offspring from dams fed a HF diet are increased
(unpublished data). Similarly, it is likely that altered
expression of hepatic ppar-α and cpt-1a and miRNAs in
maternal HF fed adult offspring might have also occurred
prior to weaning.

Growth
IGF2 is an early growth factor expressed at the two-cell
stage in the mouse embryo[61], and mice deficient in
IGF2 have reduced birth weight [58]. In contrast, excess
IGF2 in transgenic mice promotes fetal overgrowth result-
ing in increased birth weight [62]. Our data showing that
HF/C offspring have increased Igf2 expression and a trend
toward increased liver weight [~16% increase, compared
with the control mice (p = 0.44)], suggest that liver growth
prior to weaning may be increased in maternal HF fed off-
spring (Fig 1). This finding is consistent with an early
observation in rats showing that maternal HF feeding dur-
ing gestation increases offspring liver weight, in associa-
tion with increased body weight and percentage body fat
at weaning[38]. In our study, the body weight of maternal
HF fed offspring at weaning is ~19.6% (p < 0.05) greater
than control mice (data not shown), consistent with
increased hepatic Igf2 expression. However, we observed
no significant difference in body weights between mater-
nal HF and chow fed adult offspring, when both sets of
offspring were fed the same chow diet from weaning,
which could be due to that circulating IGF2 is markedly
decreased after birth in rodents [63,64], suggesting that
IGF2 is unlikely to play a major role in post weaning
growth.

PPARα promotes hepatic proliferation through inhibition
of let-7c [65,66]. Let-7c plays a critical role in the regula-
tion of growth[67]. Overexpression of let-7c decreases c-
myc and miR-17, suppressing the growth of hepatocytes
[66]. Consistently, we have observed that mRNA levels of
ppar-α (and protein [33]) are elevated whereas levels of
let-7c reduced in maternal HF fed offspring (Fig. 1), sug-
gesting a co-ordinated regulation of mRNA and miRNA
expression in favour of promoting hepatic growth.

It is uncertain whether let-7c is regulated by IGF2. Our
data showing increased Igf2 expression in association with
reduced let-7c expression, is consistent with the negative
regulation of let-7c by PPAR-α as discussed above. In Igf2
KO mice, expression of let-7c levels are increased by ~31%
(p = 0.004). These data suggest a negative correlation
between Igf2 and let-7c expression (Fig. 1). Further studies
are required to determine whether let-7c expression is
directly regulated by IGF2. Taking together, our data sug-
gest that maternal HF feeding has induced co-ordinated
changes in expression of early growth factor (e.g. Igf2),
transcription factor (e.g. ppar-α) and miRNA (e.g. let-7c)
to promote hepatic growth.

Fat metabolism
PPAR-α is a master transcription factor regulating hepatic
fatty acid oxidation [68-73]. We have shown previously
that maternal high fat high protein and low carbohydrate
diet-fed offspring have increased protein levels of PPAR-α
and CPT-1a in association with reduced hepatic lipid lev-
els [33]. Here we further show that mRNA levels of ppar-α
and cpt-1a are increased in the maternal HF fed offspring,
suggesting that maternal HF feeding increases expression
of ppar-α and cpt-1a mRNA and protein levels.

IGF2 may also regulate fat metabolism as low circulating
IGF2 concentrations are associated with weight gain and
obesity [43], whereas high circulating IGF2 levels are asso-
ciated with low body weight in middle aged men [44].
Mice overexpressing Igf2 have increased fatty acid oxida-
tion [45]. Our data show that maternal HF offspring have
increased Igf2 expression with parallel increased ppar-α,
whereas a HF induced increase in ppar-α expression is sup-
pressed in the Igf2 KO mice. These data suggest that Igf2
might regulate fat metabolism through regulation of ppar-
α expression, and that up-regulation of ppar-α in maternal
HF diet fed offspring is mediated, at least in part through
increased expression of Igf2.

miR-122 is abundantly expressed in the liver and regulates
fat metabolism [21], as knocking down miR-122 increases
hepatic fatty-acid oxidation [21,57]. Hepatic expression of
miR-122 is reduced in the maternal HF adult offspring
(Fig. 1), which is consistent with increased expression of
PPARα and CPT-1a, two key molecules regulating hepatic
fatty acid oxidation (Fig. 1). Maternal HF fed adult off-
spring have reduced hepatic lipid levels when weaned
onto a chow diet and maintained on the chow diet until
adulthood[33]. It is likely that increased capacity of fat
oxidation (due to reduced miR-122 and increased PPARα
and CPT-1a) prior to weaning are maintained until adult-
hood. This continuing increased fatty acid oxidation
capacity leads to reduced hepatic lipid levels when HF off-
spring mice are weaned onto a chow diet. Taking together,
our data suggest that maternal HF feeding increases
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expression of key genes regulating hepatic fatty acid oxida-
tion and miRNA in the offspring.

The mechanisms by which early changes are maintained
until adulthood require further studies. However, it is
likely that epigenetic mechanisms may play an important
role. Igf2 expression is regulated by DNA methyla-
tion[74], and increased Igf2 expression is associated with
changes in DNA methylation [75]. Gestational choline
deficiency causes global and Igf2 gene DNA hypermethyl-
ation through up-regulation of Dnmt1 expression in fetal
offspring [75]. Thus, it is likely that increased Igf2 expres-
sion in maternal HF adult offspring is associated with
altered DNA methylation in the offspring. Similar mecha-
nisms may exist in ppar-α, because hepatic expression of
ppar-α is regulated by DNA methylation [76]. A maternal
low protein diet during pregnancy and lactation reduces

DNA methylation in the promoter region of ppar-α [77],
in association with increased ppar-α mRNA levels [77].
Expression of miRNAs can also be regulated by epigenetic
mechanisms. Let-7a-3 belongs to the let-7 miRNA gene
family and is heavily methylated by the DNA methyltrans-
ferases Dnmt1 and Dnmt3b [78]. Let-7a-3 hypomethyla-
tion facilitates epigenetic reactivation of the gene and
elevates expression of let-7a-3 in human lung cancer cells
[78]. Thus, altered DNA methylation could be involved in
early changes maintained until adulthood.

Interestingly, several important proteins involved in epi-
genetics are predicted targets for those miRNAs showing
altered expression in the HF offspring. For example, miR-
709 is the most abundantly expressed miRNA in the liver
detected with microarray (greater than miR-122). Accord-
ing to the TargetScan algorithm [12], miR-709 targets

Maternal high fat diet during gestation and lactation alters hepatic expression of key genes and miRNAs in the offspringFigure 1
Maternal high fat diet during gestation and lactation alters hepatic expression of key genes and miRNAs in the 
offspring. A maternal HF diet during gestation and lactation increased hepatic Igf2 expression in the offspring, which may be 
required for the up-regulation of ppar-α/cpt-1a by HF diet as suggested by our data presented in the Table 2. Increased ppar-α 
suppresses expression of let-7c, facilitates hepatic growth. Igf2 could down regulate let-7c through increased expression of 
ppar-α. Increased expression of ppar-α and reduced expression of miR-122 may increase hepatic fatty acid oxidation in the off-
spring. Igf1 receptor (Igf1R) and citrate synthase (CS) are predicted targets shared by both miR-122 and miR-494. Inhibition of 
Igf1R has been confirmed very recently [86]. Similar to miR-122, maternal HF offspring have reduced miR-494 levels, which 
favour increased Igf1R and CS activities. Several key proteins involved in epigenetics are predicted targets for miRNAs, in par-
ticular, methyl-CpG binding protein 2 are predicted targets for 5 miRNAs (miR-709, let-7s, miR-122, miR-194 and miR-26a) 
showing reduced levels in maternal HF fed offspring. Histone 4 H4 are predicted targets for 5 miRNAs (miR-503*, miR-770-3p, 
miR-369-3p, miR-197 and miR-667) showing increased levels in maternal HF fed offspring. Arrows suggest stimulatory and 
blocked arrows inhibitory effects. Solid lines represent established relationships whereas broken lines represent relationships 
not yet confirmed experimentally. FFA: free fatty acids. CS: citrate synthase, ppar-a: peroxisome proliferator activated recep-
tor-alpha, cpt: carnitine pamitoyltransferase, MBD: methyl-CpG binding domain protein, MECP2:Methyl-CpG-binding protein 
2, CHD4:chromodomain helicase DNA binding protein 4, DOT1L: DOT1-like, histone H3 methyltransferase, HIC2: hyper-
methylated in cancer 2, Hist4H4, histone 4 H4.
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include methyl-CpG binding domain protein 6 and
methyl CpG binding protein2 (MECP2, Fig. 1). Among
predicted targets of let-7c are proteins including hyper-
methylated in cancer 2 (HIC2), chromodomain helicase
4, DOT1-like histone H3 methyltransferase (Fig. 1).

A feature of miRNA function is that several miRNAs tend
to act together, and a relatively small set of miRNAs
account for most of the differences in miRNA profiles
between cell lineages and tissues [52]. For example, it has
been shown that expression of 4 miRNAs (miR-29a, miR-
29b, miR-29c and miR-150) is up-regulated [23], whereas
expression of 11 miRNAs (miR-379, miR-127, miR299-
5p, miR-434-3p, miR-335, miR130a, miR-19b, miR-451,
miR-148a, miR-199a and miR-152) is down-regulated in
skeletal muscle of type 2 diabetic rats [23]. Here we show
that levels of only ~5.7% of miRNAs are altered in the
maternal HF fed mouse offspring, whereas levels of the
remaining miRNAs are unchanged. These data suggest
that 1) these 23 miRNAs are likely to be expressed during
early development and play active roles in the regulation
of metabolism and fetal growth; and 2) if these miRNAs
have common targeted transcripts, they are likely to have
greater effects than a single miRNA in suppressing protein
synthesis [13].

However, it remains a challenge to identify common tar-
gets shared by several miRNAs, because several hundreds
or even over 1000 predicted targets may arise from one
single miRNA using current algorithms. Experimentally, it
is impractical to knock down each of the miRNAs. In this
study, we have written a computer program that allows us
to analyse quickly common targets shared by several miR-
NAs. For example, we have undertaken analysis of com-
mon targets among 11 miRNAs and found that the
maximum number of shared targets is 5 miRNAs and no
common targets are found among 6 different miRNAs.
MECP2 is a common predicted target for 5 miRNAs
including two abundantly expressed miRNAs (miR-709
and miR-122, Fig. 1). MeCP2 is required to maintain CpG
status of genomic DNA[79,80]. Maternal nutrient restric-
tion decreases MeCP2 levels in the brain in offspring
rats[81]. Among those miRNAs showing increased expres-
sion in the HF fed offspring, histone 4 H4 is a common
target for 5 different miRNAs (miR-503*, miR-770-3p,
miR-369-3p, miR-197 and miR-667, Fig. 1).

Finally, despite the observation that offspring born to
dams fed a HF diet during pregnancy and lactation and
fed a chow diet from weaning have no significant changes
in phenotype compared to the control animals, marked
changes in expression of important genes such as Igf2,
ppar-α and cpt-1a and a class of miRNAs have occurred.
Such altered expression of metabolic genes and miRNAs
are likely to affect the homeostatic responses of such off-
spring to dietary challenges in later life.

Conclusion
A maternal HF diet prior to conception, during pregnancy
and lactation induces coordinated and long-lasting
changes in expression of Igf2 and key fat metabolic genes
and miRNAs in the offspring, which may have long-term
effects on their health.

Methods
Animal
All procedures in this study were carried out in accordance
with the UK Animal Scientific Procedures Act of 1986 and
approved by a local ethics committee. Female C57 BL6J
black mice were maintained under controlled conditions
(room temperature at 22 ± 2°C; 12 hr light/dark cycle)
and randomly assigned to either a HF (22.6% fat, 23%
protein and 48.6% carbohydrate, W/W) or standard chow
diet (10% fat, 18% protein and 68.8% carbohydrate, W/
W [82,83], RM1 - special diet services) diet. They were pro-
vided with water ad-libitum. Dams were fed either the HF
or chow diet 4 weeks prior to conception, during preg-
nancy (day 1 of pregnancy indicated by presence of copu-
lation plug) and lactation. Litter size were standardised to
6 pups. All offspring were weaned at 3 weeks of age and
fed the same chow diet for 12 weeks. At 15 weeks of age,
female mice (n = 7 per group from different litters) were
sacrificed and liver samples were quickly removed, snap
frozen in liquid nitrogen, and stored at -80°C for further
analysis.

Igf2 KO mice
Female B6CBF1 mice were bred with male Igf2-knock (+/
-) out mice [40]. Offspring of either WT or Igf2 KO mice
(females only) were determined with genotyping using
PCR as previously described [84]. Female animals (KO
and WT) were housed individually under controlled con-
ditions. At two months of age, female mice (both WT and
KO, from different dams) were age-matched, divided into
two groups, and were fed ad-libitum either a HF or chow
diets for 6 months. Mice were sacrificed at 8 months of
age, liver samples were quickly removed, snap frozen in
liquid nitrogen, and stored at -80°C for further analysis.

Preparation of total RNAs
For preparation of miRNA containing total RNAs, ~100
mg of liver tissue was homogenised in lyses buffer pro-
vided with the mirVana™ miRNA Isolation Kit (P/N: 1560,
Ambion, Austin, TX) and total RNA were prepared accord-
ing to the manufacturer's protocol. Purified total RNA was
eluted in 100 μl of elution buffer. Concentrations of total
RNAs were measured using a Nanodrop (ND-1000, Nan-
oDrop products, Bancroft Building, Wilmington, USA).
The RNA integrity was analysed using an Agilent Bioana-
lyser 2100 (Agilent Technologies UK Limited, Cheshire,
UK) with the RNA integrity number > 8.0, and the ratio of
OD260/280 = ~2.0.
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MiRNA microarray
This work was carried out at Febit Biomed Gmbh (Febit
biomed gmbh, Heidelberg, Germany). Each sample from
the control (n = 7) or HF (n = 7) offspring were pooled for
microarray analysis (two-class experiment [48]). Each
array contains the reverse complements of all major
mature miRNAs and the mature* sequences published in
the Sanger miRBase release (version 10.1, December
2007, see http://microrna.sanger.ac.uk/sequences/
index.shtml) for mice. Each miRNA contains 10 replicates
to increase the statistical confidence. For each array 2 μg
of total RNA were labelled according to the manufac-
turer's instructions (miRVana labelling kit from Ambion).
After labelling, samples were dried in a speed-vac and re-
suspended in febit's proprietary miRNA Hybridization
Buffer (18 μl per array). Samples were loaded onto a chip,
and overnight (16 hours) hybridization was undertaken
at 42°C, using argon pressure to move the samples within
the arrays. After the hybridization, the array was washed
with the 'febit miRNA standard (external incubation)'
hybridization profile and a standard detection using the
appropriate filter set. Data was normalised using the soft-
ware "R" with the "VSN" package and are presented in
Additional file 1: Table S1.

Measurement of mRNA expression using real time PCR
During cDNA synthesis, ~200-500 ng of total RNA was
used in a 20 μl cDNA synthesis reaction. Total RNA was
denatured at 70°C for 5 min and chilled in ice. Then the
reaction was added with random hexamers (2.5 ng/μl).
The reactions were undertaken at 42°C for 60 min and the
reaction was stopped by denaturing at 95°C for 5 min.

For PCR reactions, allsamples from 4 groups of animals
were measured in one single 96-well plate, with each reac-
tion undertaken in triplicates. Equal volume of cDNA (0.5
μl/reaction) was added to Sensimix Lowref SYBR green
qPCR reagent (Quantace Ltd, London, UK) with gene spe-
cific primers (1.0 μM) ' [see Additional file 2: Table S5]'.
PCR reactions for all samples including no temperate con-
trols were run on a 7500 Fast Realtime PCR System
(Applied Biosystems, Warrington UK, which was also
used for all miRNA analysis described below). The reac-
tion conditions were 95°C for 15 min (hotstart) at 95°C
for 15 sec, 60°C for 30 sec and 72°C for 30 sec. Results
were analyzed using 7500 System SDS software (v1.4).
Expression levels were calculated by normalisation to a
standard curve using the total amount of RNA as a
denominator and expressed as arbitrary units.

Measurement of miRNAs using real time RT-PCR
Two qPCR methods were used in the validation of micro-
array: the stem-loop RT-PCR method [49], using miRNA
specific primers purchased from Applied Biosystems and
polyadenylated and reverse-transcribed with a poly(T)

adapter into cDNAs for real-time PCR using sequence
complementary to the poly(T) adapters during RT reac-
tions [53].

The stem-loop RT PCR (Taqman based technology) was
performed according to the manufacturer's protocol
(Applied Biosystems, Foster City, CA, USA). ~100 ng total
RNA was added to each reverse transcription reaction (RT)
for each miRNA. Three replicates were done for each
miRNA from RT to PCR and the results were averaged.

For poly(T) adaptor RT-PCR, ~100 ng total RNA was
added to a reaction containing 2.5 units E. Coli Poly A
polymerase (New England Biolabs Ltd. Herts. UK), 0.75
mM rATP and 1 × Pol A polymerase buffer containing 250
mM NaCl, 50 mM Tris-HCl, 10 mM MgCl2. The reaction
(10 μl) was incubated at 37°C for 30 min for extension of
the poly A tail. The reaction was heated to 60°C for 5 min,
cooling to 4°C and added with an Oligo dT adaptor (0.5
μl of 5 μM) with RT buffer, dNTP mix and MMLV and
H2O to a total 20 μl reaction volume (Applied Biosystems,
according to the manufacturers' conditions) and incu-
bated at 42°C for 60 min for cDNA synthesis. The cDNA
synthesis reaction was stopped by heating at 95°C for 5
min.

Real time PCR was undertaken with Sensimix Lowref
SYBR green qPCR reagent (Quantace Ltd, London, UK) in
triplicates. 0.5 μl of cDNA was added to PCR reaction con-
taining 1 × PCR reagent mix and universal primer (0.25
μM), miRNA specific primer (0.5 μM, designed based on
miRNA sequences released (Release 12.0 Sept 2008) by
the Sanger Institute [85]. The reaction conditions were
95°C for 15 min (hotstart), and 95°C for 15 sec, 60-62°C
for 60 sec (optimised according to each specific miRNA
primers) and a total of 40 cycles.

Computer analysis of target predictions for miRNAs
Prediction of targets for a single miRNA was undertaken
using three algorithsms: TargetScan [12], miRanda [54]
and PicTar [55]. To identify groups of miRNAs having
common predicted targets, we have written a computer
program which can be used in conjunction with any of the
three algorithms. As the list of targets generated by Target-
Scan or miRanda are more comprehensive than those
from PicTar, we based our analysis of common targets on
TargetScan and miRanda.

Statistical analysis
Data from real time PCR were presented as mean ± SE.
Skewed data were transformed before statistical analysis.
A student t-test was used to compare results between two
groups, and a p value < 0.05 was considered to be signifi-
cant.
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Additional file 1
Table S1. Hepatic miRNA expression profile in adult mice. The data set 
provided analysed data obtained from microarray on either HF/C or C/C 
using pooled total RNA samples.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-478-S1.XLS]

Additional file 2
Table S2, S3, S4 and S5. S2: The table listed 28 common predicted tar-
gets shared by both TargetScan and miRbase algorithm. S3: The table 
listed 14 common predicted targets shared by 3 different miRNAs. S4: The 
table listed 11 common targets predicted by both miRNA-122a and miR-
494. S5: The table listed DNA sequences for measurement of 3 mRNA 
transcripts.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-478-S2.DOC]
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