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ABSTRACT 

The present study is concerned with the effects of exposure time, repetition, spacing and lag on 

old/new recognition memory for generic visual scenes presented in a RSVP paradigm. Early 

memory studies with verbal material found that knowledge of total exposure time at study is 

sufficient to accurately predict memory performance at test (the Total Time Hypothesis), 

irrespective of number of repetitions, spacing or lag. However, other studies have disputed such 

simple dependence of memory strength on total study time, demonstrating superadditive 

facilitatory effects of spacing and lag, as well as inhibitory effects, such as the Ranschburg 

effect, Repetition Blindness and the Attentional Blink. In the experimental conditions of the 

present study we find no evidence of either facilitatory or inhibitory effects: recognition memory 

for pictures in RSVP supports the Total Time Hypothesis. The data are consistent with an 

Unequal Variance Signal Detection Theory model of memory that assumes the average strength 

and the variance of the familiarity of pictures both increase with total study time. The main 

conclusion is that the growth of visual scene familiarity with temporal exposure and repetition is 

a stochastically independent process. 
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INTRODUCTION 

It is common knowledge that memory depends on time and practice. Repeating the 

material to be remembered and/or studying it for a longer time increases the probability of 

correctly recalling it at a later epoch (the Law of Practice) and quality of recall declines with the 

passage of time since last study (the Law of Recency). While these psychological “laws” of 

memory may seem evident even from casual observations, scientific investigations of temporal 

aspects of memory function, ongoing since the classical studies of Ebbinghaus (Ebbinghaus, 

1964), have provided a more nuanced view of the influence of time and practice on various 

aspects of memory performance (Roediger, 2008). Consider the Law of Practice: early studies 

showed that repeated exposure to an item over two separate epochs each lasting a time T affords 

the same memory performance as exposure to the same item over a single epoch lasting a time 

2T (Bugelski, 1962, Cooper & Pantle, 1967), suggesting that total exposure time completely 

predicts memory strength (the Total Time Hypothesis).  However, later studies (Cepeda, Pashler, 

Vul, Wixted & Rohrer, 2006) have disputed such simple dependence of memory strength on total 

study time and have provided evidence for super-additive, facilitatory effects: it has been shown 

that under appropriate conditions there is greater improvement when repeated items are spaced 

(separated in time by intervening items or interruptions) rather than massed (the Spacing Effect), 

and that performance may improve further as a function of temporal distance between repetitions 

(the Lag Effect).  

The present study is concerned with the effects of exposure time, repetition, spacing and 

lag on memory for generic visual scenes, such as those normally encountered in everyday life by 

exploring the visual environment. The range of temporal exposures that were investigated in this 
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project, from a few milliseconds to a few seconds, is representative of the normal range of 

durations of ocular fixations (Harris, Hainline, Abramov, Lemerise & et al., 1988). The number 

of pictures displayed at study (the list length) was limited to less than 10, affording close to 

perfect performance at the longest exposures used. An old-new recognition memory test was 

adopted and the test was completed within a period of about a minute from the beginning of the 

study phase. Thus, it may be said that the present study is concerned with what is customarily 

referred to as Visual Short-Term Memory. The procedure adopted to display the pictures during 

the study phase, the Rapid Serial Visual Presentation Procedure (RSVP), seemed particularly 

suited to study the temporal aspects of recognition memory that are of interest. In RSVP each 

upcoming picture follows the previous picture in the stream without interruption and serves as an 

efficient backward mask that affords precise control on the effects of temporal exposure (Potter 

& Levy, 1969). Pictures can be repeated within the stream with different spacing (by varying the 

exposure of each single frame) and different temporal lags (1, 2 or 3 intervening pictures) and 

recognition performance for repeated pictures can be compared with performance for unrepeated 

pictures within the same stream.  

The primary goal of this project was to test for effects of super- and sub-additivity of 

repetitions against the null hypothesis of total time. Given the apparent differences, 

methodological as well as of material content, between the present study and classical studies of 

memory for verbal material, the first question to ask is whether super-additive, facilitatory 

effects of repetitions, such as spacing and lag effects, will be found in the present visual 

paradigm. Another possibility is that inhibitory, rather than facilitatory effects may be revealed. 

For example, in the context of visual short-term memory and RSVP, previous studies have found 

interference effects between intra-list items, such as Repetition Blindness (Kanwisher, 1987) and 
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the Attentional Blink (Raymond, Shapiro & Arnell, 1992). Yet, it is an unanswered empirical 

question whether similar interference effects would appear in the present study, given that the 

old-new recognition test used here does not require explicit repetition detection or item 

identification. 

We tested recognition memory in two different settings. The first setting was comprised 

of naïve participants that saw the pictures only once, so that contamination from long-term 

memory was minimized, but the analysis had to be carried out on pooled data. In the second 

setting single participants saw the pictures’ set repeatedly, thus there was buildup of long-term 

memory for the seen pictures that contaminated performance, but we could analyze individual 

subjects’ data. The ability to probe differences between single subject and group analysis is 

important, given the possibility of artifacts induced by averaging across subjects. It is also 

interesting to test what effect, if any, does long-term memory contamination produce on short-

term memory performance.  

Previous memory studies have been analyzed and interpreted within two antagonistic 

theoretical frameworks: Threshold models and Signal Detection Theory (SDT) models. Merits 

and pitfalls of these two modeling approaches and their variants have long been topics of lively 

discussions in the memory literature (Wixted, 2007, Yonelinas & Parks, 2007). Here we provide 

analyses based on both classes of models. It will be evident from the data that both Threshold 

and Signal Detection Theory accounts provide the same answer in terms of the effects of 

repetitions on visual short-term recognition memory performance. To anticipate, the results of 

the present study show no evidence of either superadditive facilitatory effects, such as spacing 

and lag effects, or inhibitory effects due to intra-list interference: they are instead entirely 

compatible with the Total Time Hypothesis. 
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METHODS 
 
Subjects. Two groups of participants were used: 64 undergraduate University students served as 

naïve participants; an additional 8 undergraduate students took part as practiced participants. All 

participants were 18-25 years of age and sexes were equally represented in both groups. 

 

Stimuli. Stimuli were 340 colour photographs of generic real life scenes taken at a variety of 

focal lengths, such as would normally be encountered in everyday life by exploring the visual 

environment, including outdoor and indoor scenes, objects, people etc. These pictures were 

presented surrounded by a black background on the face of a CRT monitor with a refresh rate of 

75 Hz, in a room with low ambient lighting. At the viewing distance of 57 cm the pictures 

subtended 8x10 degrees of visual angle. 

 

Procedure: naïve participants. The task consisted of a block of trials, where each trial was 

comprised of a study and a test phase (figure 1). In the study phase subjects saw an RSVP stream 

of 9 pictures, comprising an unrepeated image, three repeated images where the repetition 

followed one, two or three intervening pictures (lag 1, 2, 3, respectively), and two buffer images 

that were never tested for recognition, one shown at the beginning and one at the end of the 

stream. After a 1.5 s blank delay following the study phase, a test phase commenced where 8 

images were shown singly, the 4 old pictures from the study phase and 4 new images. The 

observers were given unlimited time to enter their responses on the computer keyboard and 

indicate whether each picture was new or old. Their reaction time was recorded and they were 

given no feedback on the accuracy of their responses. Observers also indicated their level of 
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confidence, by scoring the response (old or new) on a scale 1-3 (low, medium or high 

confidence, respectively). Each block consisted of 32 trials (preceded by two practice trials), 

with 4 trials at each of 8 temporal exposures (13, 27, 56, 110, 220, 430, 860 and 1710ms). The 

framerate of the RSVP stream did not change during a single trial, therefore temporal exposure 

varied between, but not within trials (between lists factor), whereas repetition and lag varied 

within each trial (within list factor). Each subject run only one block of trials, thus each subject 

saw each “new” picture only once (at test), each unrepeated “old” picture twice (once at study 

and once at test) and each repeated “old” picture three times (twice at study and once at test). 

The design was counterbalanced over serial study and test position, new and old, repetition, lag 

and temporal exposure. As such, across all participants each individual image was shown at each 

temporal exposure as new and old and at each lag.  
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Figure 1. Task procedure for naïve participants. During the study phase subjects saw an uninterrupted 
stream of 9 images, where each image had the same exposure (chosen from 8 possible exposures, from 
12.5msec/picture to 1704msec/picture). Within the stream one image was presented singly and 3 images 
were repeated with one, two or three intervening images (lag 1, 2, 3, represented by brackets in the 
figure). Subjects were then tested with 4 images from the stream and 4 new images (the first and last 
images in the study stream were never tested) and indicated after having seen each image whether it was 
old or new and how confident they were of their responses on a three-level scale. 
 

Procedure: practiced participants. The design for practiced subjects differed in two crucial 

aspects from that adopted for naïve participants: only lag 1 repetitions were used and more 

importantly the pictures’ pool was re-sampled several times, so that each participant became 

highly familiar with the entire set of images. The RSVP stream was comprised of 12 pictures: 

there were 3 buffer pictures at the beginning and end of the stream that were never tested, one 

picture repeated with one intervening item (lag 1) and 4 unrepeated pictures. During the test 

phase subjects were queried on 6 items, 3 “new” pictures and 3 “old” pictures from the RSVP 

stream, comprised of the repeated picture and 2 of the 4 unrepeated pictures. Reaction time and 

confidence level were also recorded. As for naïve participants, temporal exposure was a 

between-trials factor and repetition a within-trial factor. For each trial, the required 14 pictures 

were drawn at random from the pool of 340 images, such that each picture could be seen more 

than once by each subject, both within and across blocks, and serial study and test positions were 

assigned randomly on every trial. Each block comprised 91 trials, with 7 trials at each of 13 

exposures (13-3850 ms) and each subject ran 6 blocks over several days. 

 

Data Analysis: Threshold and Signal Detection Theory models.  

We provide here a cursory overview of the salient aspects of Threshold and Signal 

Detection Theory models of memory that are relevant and useful for an immediate understanding 
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of the present findings. Thorough treatments can be obtained from standard sources (Egan, 1975, 

Green & Swets, 1966, Macmillan & Creelman, 2005, Wickens, 2002). 

Threshold models treat memory as a probabilistic process that allows the observer to be 

in one of a finite number of states. For example, memory for a test item in High-Threshold 

models is either above threshold and thus forces the observer to produce an “old” response, or it 

is below threshold and forces the observer either to declare the item “new” or guess an “old” 

response. Guessing an “old” response produces one of two possible outcomes: a false alarm or a 

hit. A false alarm is an incorrect “old” response to a “new” item, whereas a response to an item 

that has been guessed correctly as “old”, despite the memory signal being below threshold, 

produces a hit. This contamination of hits by guessed responses unrelated to the memory signal 

is accounted for in this class of models by subtracting the false alarm rate from the hit rate, thus 

obtaining an adjusted hit rate that is thought to be related to the strength of the memory signal: 

 

Adjusted hit rate = [hits / (hits+misses)] - [false alarms / (false alarms + correct rejections)] 

 

 SDT models of memory are based on the concept of familiarity, a graded quantity related 

to memory strength that unlike the discrete, probabilistic representation of threshold models is 

assumed to be a continuous variable. SDT theory assumes that memory signals for “new” and 

“old” pictures form two Gaussian distributions that differ in location along the familiarity axis, 

thus having different familiarity means. Unequal Variance SDT models further assume that the 

“new” and “old” distributions differ in variance, with familiarity of “old” pictures being higher 

on average, but also more variable than “new” pictures. Threshold, Equal and Unequal-Variance 

SDT models make different predictions about the distribution of data on a Receiver Operating 
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Characteristic (ROC) Curve. A ROC curve is constructed by plotting the hit rate versus the false 

alarm rate at different levels of bias. These coordinate pairs are computed by aggregating 

responses according to their associated confidence scores. Assuming that the underlying 

distributions are Gaussian, hit and false alarm rates can then be transformed to z-scores obtaining 

a z-ROC representation. z-ROC predictions differ among the models: Threshold models predict 

curvilinear z-ROCs, whereas SDT models predict linear z-ROCs with slopes that are either unity 

in the Equal Variance case, or less than unity when the variance of “old” is greater than “new” 

items, as in Unequal Variance models. When z-ROCs are linear (the nearly universal finding 

with recognition memory data) the intercept represents the difference between the “old” and 

“new” means divided by the “old” standard deviation 
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 , thus a slope less than unity indicates that “old” variance is greater than 

“new” variance. Dividing the intercept by the slope and taking the inverse of the slope yields, 

respectively, measures of familiarity and variance in units of “new” standard deviation. 

 

RESULTS 

Accuracy: Threshold Theory treatment 

For each single exposure, data were pooled across all naïve subjects and the adjusted hit 

rate was calculated as the difference between hit rate and false alarm rate. An exponential growth 

model was then fitted by non-linear regression to the obtained scores: 
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Exponential growth models have been shown previously to provide excellent fits to recognition 

memory data for generic visual material in RSVP tasks (Maljkovic & Martini, 2005).  

 

 

Figure 2. Accuracy data for naïve subjects. Left, the adjusted hit rate is plotted as function of frame 
exposure (duration of a single picture frame in the RSVP stream) for the repeated pictures at all lags. 
There is no significant difference between lag conditions. The solid line through the data is the 
exponential model fitted to all 3 conditions with time constant τ=192±9 ms, R2=0.99. Midlle, results for 
unrepeated pictures (solid symbols) and repeated pictures (hollow symbols) collapsed across lags, as 
function of frame exposure. Best fit estimates of the exponential time constants are 418±32 ms and 
198±15 ms. Right, Results for unrepeated and repeated pictures are re-plotted as a function of total 
exposure, demonstrating that in these coordinates data from the two conditions overlap. Best fit time 
constant is τ=411±25 ms, R2=0.99. 
 

Data and model for the repeated conditions with naïve subjects are shown in figure 2, 

left. Increasing temporal exposure improves recognition memory, leading to almost perfect 

performance at exposures of about 2 s/picture. However, the rate of improvement is the same for 

the three lags at all exposures tested: asymptotes and time constants of the fitted exponential 

models do not differ between lag conditions (F(2,48)=0.94, p=0.46). Given the apparent absence 

of a lag effect, data were then collapsed across lags, yielding a single distribution representing 

memory for repeated pictures.  Exponential growth models were then fitted to the unrepeated and 

repeated data, as shown in figure 2, middle, obtaining estimates for the exponential time 
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constants of 418±32 ms and 198±15 ms, respectively. The fact that the time constants are nearly 

in a 2:1 relationship indicates that memory strength accrued in two separate exposures to the 

same item is a simple function of total exposure. This is demonstrated more clearly by 

comparing repeated and unrepeated performance on a common scale of total exposure. As shown 

in figure 2, right, on such scale repeated and unrepeated performance are indistinguishable and 

asymptotes and time constants of the fitted models do not differ (F(2,12)=0.36, p=0.7).  

 

Figure 3. Accuracy data for practiced participants. Top row, results are reported for a representative 
single subject, bottom row results are averaged across 8 participants. Single subject’s and average results 
follow similar trends. Left, data plotted as function of frame exposure indicate that performance improves 
twice as fast for repeated than unrepeated pictures, for the single subject as for the average group. Right, 
when re-plotted as function of total exposure data collapse into a single distribution, as for naïve 
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participants. Notice that asymptotic performance is on average lower for practiced than naïve participants, 
but the time constants are similar. 
 

Very similar results are obtained with practiced participants, as shown in figure 3, top, for 

a representative single subject, and in figure 3, bottom, as the aggregate performance of all 8 

participants. As with naïve participants, the time constants of the exponential model fitted to 

unrepeated and repeated performance scores are nearly in a 2:1 relationship (single subject: 

558±58 ms and 213±22 ms, average of subjects: 413±33 ms and 192±15 ms, see figure 3, left) 

and data from the two conditions overlap on a common scale of total exposure (shared time 

constant 398±25, figure 3, right). Although the time constants are very similar to those of naïve 

participants, practiced subjects achieve on average a lower asymptotic performance at long 

exposures (compare figure 2, right, with figure 3, bottom right). This may relate to the main 

difference between the two designs: while naïve participants saw each picture only once, twice 

or three times (“new”, “old” unrepeated and “old” repeated, respectively), for practiced 

participants each picture in the pool had the same probability of being chosen for display on 

every trial and thus could be seen several times across trials within a single block and across 

blocks, both as “new” and “old”. Therefore, in the practiced participants’ case, differences in 

familiarity between “new” and “old” pictures were superimposed on a higher baseline of long-

term memory elicited by previous encounters. We return to this point below. 

 

Accuracy: Signal Detection Theory treatment    

 SDT analysis was carried out on the data pooled across participants. Following standard 

procedures (Wickens, 2002), z-ROC curves were constructed from z-transforms of hit and false 

alarm rates across different levels of confidence, separately for each exposure (see figure 4). 
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Straight lines were fitted to the data by linear regression, taking into account variability in both x 

and y dimensions. There was no significant deviation from linearity, suggesting normality of the 

underlying distributions.  

 

Figure 4. Left, zROC curves for unrepeated and r ight, repeated pictures; top, naïve and bottom, 
practiced participants. In each diagram, the z-scored hit rate is plotted as function of the z-scored false 
alarm rate corresponding to the 5 criteria separating responses with different levels of confidence. Straight 
lines are linear regressions applied to the data, accounting for variance in both x and y, for each exposure. 
No significant deviations from linearity were observed, suggesting normality of the underlying 
distributions. Consistent with improving performance, the curves’ distance from the diagonal and their 
intercepts increase with increasing exposure. Conversely, the curves’ slopes decrease with exposure.  
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Figure 5 shows intercepts and slopes of the fitted z-ROC curves as function of temporal 

exposure, for repeated and unrepeated pictures and for naïve and practiced participants. 

Intercepts, which represent a measure of familiarity in units of “old” standard deviation, increase 

with exposure and are higher for repeated than unrepeated pictures (figure 5, top). Slopes, which 

represent the ratio of “new” to “old” standard deviations, are all less than unity, they are smaller 

for repeated than unrepeated pictures and decrease with exposure (figure 5, bottom). These 

results are qualitatively similar for both groups of participants. 

 

Figure 5. Top row, z-ROC intercepts and bottom row, slopes are plotted for unrepeated (solid symbols) 
and repeated pictures (hollow symbols) as function of frame exposure; left, naïve and r ight, practiced 
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participants. The scale for both intercepts and slopes is in units of “old” standard deviation. Errors are 
95% C.I. Intercepts increase monotonically with exposure and are higher for repeated than unrepeated 
pictures. Inversely, slopes decrease monotonically with exposure and are lower for repeated than 
unrepeated pictures. The results imply that average “old” familiarity and its standard deviation increase 
with exposure and are higher for repeated than unrepeated pictures. Data for naïve and practiced 
participants show the same trends.  

 

Assuming that the variance of the distribution of familiarity of “new” pictures does not 

change systematically with exposure (a reasonable assumption given the mixing of exposures 

and repetition condition in the experimental design), this indicates that the standard deviation of 

the familiarity of “old” pictures increases with exposure and that the familiarity of repeated 

pictures is more variable than unrepeated pictures. Dividing the intercepts by the slopes, thus 

expressing familiarity in common units of “new” standard deviation, and plotting these scores as 

a function of total exposure, reveals that data for repeated and unrepeated pictures overlap, 

indicating that total exposure fully predicts the familiarity of repeated pictures (figure 6). While 

the curves for naïve (figure6, left) and practiced participants (figure 6, right) have similar shapes, 

the growth of the data for practiced subjects is attenuated and at long exposures performance 

remains lower than naïve subjects by about a factor-of-two. Perhaps the simplest explanation of 

this finding is that the standard deviation of the familiarity of “new” pictures, which determines 

the scale of the ordinate, differs between the two paradigms, being greater for practiced than 

naïve participants due to the repeated sampling of the pictures’ pool across trials. As such, the 

higher variance of “new” pictures scales down the performance of practiced compared to naïve 

participants.   
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Figure 6. Left, accuracy data for naïve and r ight, practiced participants, with repeated (solid symbols) 
and unrepeated pictures (hollow symbols). Memory performance, expressed as distance of the “old” from 
the “new” distribution in units of “new” standard deviation (z-ROC intercepts divided by slopes), is 
plotted as function of total exposure to the pictures. The two distributions overlap, indicating that total 
exposure completely determines performance in the repeated condition. The distribution for practiced 
participants appears as a scaled down version of naïve participants, suggesting differences in the scale of 
the ordinate. This is consistent with the hypothesis that the standard deviation of “new” pictures is higher 
for practiced than naïve subjects, due to differences in the experimental design.  

 

Analysis of the z-ROC curves of naïve participants for repeated pictures at different lags 

reveals no effect of lag on either intercepts or slopes (figure 7).      
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Figure 7. Left, z-ROC intercepts and r ight, slopes are plotted as function of exposure to repeated pictures 
for naïve participants in the 3 lag conditions. Errors are 95% C.I. Neither intercepts nor slopes differ 
between lags. 

 

Finally, in figure 8 the inverse of the slopes are plotted as function of the intercepts 

divided by slopes, for all data sets including unrepeated and repeated pictures and naïve as well 

as practiced participants. This diagram represents the relationship between standard deviation 

and mean of the familiarity distribution of “old” pictures in “new” standard deviation units. A 

power law model 

 

y =1+ αxβ was fitted to the data, obtaining estimates α=0.39 (C.I. 0.34-0.44) 

and β=0.59 (C.I. 0.48-0.70). Separate analysis of the four individual data sets (repeated and 

unrepeated for naïve and practiced participants) yields statistically indistinguishable estimates of 

the model’s parameters. The power law exponent is not significantly different than 0.5, 

indicating that the variance of the familiarity distribution of “old” pictures grows linearly with 

the mean. This may be taken to indicate that the noise associated with “old” items is uncorrelated 

(or very little correlated).  
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Figure 8. The inverse of the z-ROC slope is plotted as function of the intercept divided by the slope. Data 
are for unrepeated and repeated pictures, from both naïve and practiced participants. The scale of both 
axes is in units of “new” standard deviation. The diagram represents the growth of the standard deviation 
with the mean of the familiarity distribution of “old” pictures. The solid line is the best fit of a power 
function to the data; the dashed lines indicate the 95% prediction interval. The power exponent is not 
significantly different than 0.5 (the variance of the distribution grows linearly with the mean). 

 

In summary, the evidence for both naïve and practiced participants and for single subjects 

as for aggregate data, indicates that visual short-term recognition memory for generic visual 

scenes in the RSVP paradigm is consistent with the Total Time Hypothesis and lacks 

superadditive facilitatory effects of spacing and lag, as well as inhibitory effects normally found 

in repetition blindness and attentional blink paradigms. 

 

Reaction times and confidence ratings 

 Reaction times and confidence ratings for naïve participants are shown in figure 9 

(similar results, not shown, were obtained with practiced participants). For each total exposure, 

data were pooled across participants and repetition conditions.  
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Correct “old” responses (Hits) become progressively faster with increasing temporal 

exposure to the pictures. An exponential decay model 

 

y = me
−

t
τ + c  with a fixed decay parameter 

τ=411 ms, as obtained from the adjusted hit rate data (as in figure 2, right), provides an excellent 

fit to Hit response times (figure 9, top, left). False positive responses (FA, false alarms) are as 

slow as correct responses to pictures seen very briefly. Average confidence ratings for Hit 

responses increase with exposure and for False Alarms they are as low as Hits to very briefly 

seen pictures (figure 9, left, bottom). Taken together, these results suggest that familiarity, speed 

and confidence are very highly correlated in the case of “old” responses. 

 

Figure 9. Top, reaction times and bottom, average confidence scores of naïve participants are plotted as a 
function of total exposure, collapsed across repeated and unrepeated pictures, left for “old” and r ight, for 
“new” responses. FA are false alarms; CR are correct rejections. Errors are 95% C.I. The solid line 
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through the reaction times for hits (top, left) is an exponential decay function with the same time constant 
as the accuracy data in figure 2, right (τ=411 ms). There is an almost perfect correlation between speed, 
accuracy and confidence for “old” responses. Reaction times for incorrect “new” responses to “old” 
pictures (misses, left, top) do not depend on exposure, but confidence scores increase with exposure (left, 
bottom). The increase in variance with familiarity and shifts in criteria explain the temporal dependence 
of confidence scores for errors.    

 

Differently than “old” responses, the speed of incorrect “new” responses to “old” pictures 

(Misses) does not depend on temporal exposure and is similar to the speed of correct “new” 

responses (CR, correct rejections) (figure 9, right, top). However, incorrect responses to “old” 

pictures seen briefly are committed with less confidence than to pictures seen at long exposures, 

where the reported confidence is the same as observed with correct rejections (figure 9, right, 

bottom). In the context of a SDT account, two factors may explain this counterintuitive growth 

of confidence in errors with temporal exposure. The first factor to consider is the “old” 

distribution’s variance. As exposure increases, the distribution of familiarity of “old” pictures 

shifts away from the distribution of “new” pictures improving the hit-rate, but at the same time 

the distribution also grows in variance, increasing the relative probability of encountering “old” 

pictures with extremely low familiarity that are incorrectly classified as “new”. The progressive 

fattening of the left-hand tail of the “old” distribution increases the relative proportion of “old” 

samples falling below the high confidence “new” criterion. Secondly, confidence criteria may 

change with exposure. The location of the criteria on the familiarity axis can be computed by 

negating the z-scores of the false alarm rates associated with different levels of confidence (by 

negating the x coordinates of the z-ROC curves) (Stretch & Wixted, 1998a, Wixted & Gaitan, 

2002). As such, criteria are expressed as distances from the mean of the “new” distribution, in 

units of “new” standard deviation. The criteria used by naïve and practiced participants at 

different temporal exposures are reported in figure 10, top. For both participants’ groups, there is 
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a tendency for the distance between criteria to narrow as exposure increases and this tendency is 

more pronounced for the leftmost criteria (NH and NM, associated with “new” responses) than 

for the rightmost criteria (OH and OM, associated with “old” responses), resulting in an 

asymmetrical shift towards higher familiarity levels. This shift means that with growing 

exposure observers become more conservative, reducing the false alarm rate, but also increasing 

the probability of missing “old” pictures with high confidence.  

 
Figure 10. Top, the location of criteria on the familiarity axis, expressed as distance from the mean of the 
“new” distribution in units of “new” standard deviation, is plotted for each temporal exposure studied, left 
for naïve and r ight for practiced subjects. Labels for criteria are N for “new” and O for “old”; H for high 
confidence and M for medium confidence; C is the central criterion separating “new” from “old” 
responses. The observed “fanning” pattern could be qualitatively consistent with an effort to maintain a 
constant likelihood ratio of a picture being “old” to “new”. This conjecture is tested in the bottom graphs 
of the figure. The log of the likelihood ratio corresponding to the observed criteria is plotted for all 
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exposures studied. The central criterion is maintained at a constant likelihood ratio (equal likelihoods of 
“old” and “new”), but the more extreme criteria fan out with increasing exposure.   
 

One interesting question regards the mechanism by which observers choose the locations 

of criteria. An influential account of criterion placement, going back to the origins of SDT 

(Green & Swets, 1966), is that criteria represent likelihood ratios of pictures being “old” versus 

“new”. For example, the optimal placement of the criterion separating “old” from “new” items 

corresponds to the point along the familiarity axis where the probability of a picture being “old” 

is equal to the probability of being “new”, corresponding to a likelihood ratio of unity. If 

observers choose their criteria based on fixed likelihood ratios, then as memory strength 

increases with exposure criteria should move on the familiarity axis in a manner qualitatively 

consistent with the “fanning” pattern observed in the data reported in figure 10, top. To see if the 

observed pattern is indeed quantitatively consistent with this invariance hypothesis, likelihood 

ratios corresponding to the reported confidence criteria were computed for each exposure (by 

using equation A4 in (Stretch & Wixted, 1998a)). Figure 10, bottom, reports how the logarithm 

of the computed ratios (log(L)) changes with the logarithm of temporal exposure. In this 

coordinate space, the log-likelihood of the central criterion C separating “old” from “new” 

pictures remains roughly invariant at 0 with growing exposure, consistent with the criterion 

being placed optimally. The more extreme criteria for “new” and “old” pictures, however, tend 

to increase their distance with exposure in a roughly linear (in this double logarithmic 

representation) and symmetrical manner, implying more conservative judgments at longer 

exposures. If the underlying assumptions of the analysis are correct (particularly if the standard 

deviation of the “new” distribution does not change with exposure), then clearly this analysis 
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shows that observers do not maintain their most extreme criteria at fixed likelihood ratios as 

memory strength increases.  

 

Discussion 

Absence of interference and distributed practice effects in RSVP recognition tasks 

 The literature concerning studies that have used the RSVP paradigm for stimulus 

presentation has been dominated in the past several years by two influential findings and 

associated theoretical accounts: Repetition Blindness (RB) and the Attentional Blink (AB). Both 

these phenomena represent interference effects between intra-list items. RB refers to the finding 

that observers fail to recognize that an item has been repeated within a list when the repetition 

occurs with a short delay of about 150 ms (Kanwisher, 1987); it is a robust effect with verbal 

material and has been reported also with streams of pictures (Bavelier, 1994, Coltheart, 1999), 

although the effect with pictures seems less reliable. AB refers to the finding that a second target 

is frequently missed when it appears 200-500 ms after the onset of a first target and it is a robust 

effect with pictures (Einhauser, Koch & Makeig, 2007, Raymond et al., 1992). While 

interference effects have been demonstrated with RSVP sequences similar to those used in the 

present study, it is important to recognize the differences in task demands: the present 

recognition task required only an old/new judgment, whereas RB and AB tasks require 

identification and explicit report of the targets. Repetition of a picture in the present study always 

led to improved recognition performance, of a magnitude such as to exclude interference 

between items. In one of the earliest RSVP studies (Potter & Levy, 1969) Potter and Levy made 

a related observation, based on sequential analysis: they noted that recognition of a picture did 

not interact with recognition of the immediately following picture in the RSVP stream. It seems 



 

page 26 

plausible to assume that the absence of interference effects in recognition as opposed to 

identification paradigms must be related to differences in task demands. Future investigations 

inspired by such differences may contribute to clarify the nature of the interferences found in RB 

and AB tasks, which at present remain controversial. From a pragmatic point of view, the present 

results simplify the discussion of short-term recognition memory mechanisms by demonstrating 

that intra-list interference effects are not detectable and therefore unlikely to play a role in 

judgments of picture familiarity.  

 A second topic that has been prominent in the recent memory literature regards the 

facilitatory effect of distributed practice. Increasing lag (number of intervening items) and 

spacing (temporal distance between repetitions) has been shown to improve the effectiveness of 

learning beyond the level produced by an equivalent massed study time (Kahana & Howard, 

2005), but the majority of relevant studies have been concerned with recall tasks of verbal 

material and relatively long retention intervals (Cepeda et al., 2006). In the present study of 

recognition memory with pictures there were no effects of either lag or spacing: recognition 

performance with repeated pictures did not vary with the number of intervening items and was 

indistinguishable from performance obtained with an equivalent massed study time. The same 

result was borne out by measuring adjusted hit rates, based on a Threshold model analysis, as by 

a more sophisticated measure of familiarity, based on an Unequal Variance SDT analysis. We do 

not know of any study that has used words in the same repetition paradigm used here. As such it 

remains unclear whether the absence of distributed practice effects under the present conditions 

is specific for pictures or generalizes to other material. 

 

Total Time Hypothesis and memory mechanisms 
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 The obtained results are consistent with the Total Time Hypothesis (Bugelski, 1962), 

which states that “a fixed amount of time is necessary to learn a fixed amount of material 

regardless of the number of individual trials into which that time is divided” (Cooper & Pantle, 

1967). As such, the hypothesis is simply a descriptive device: what do the results tell us about 

memory mechanisms?  

 Consider the implications in terms of memory decay. The absence of lag or spacing 

effects and the total time dependence suggest that no appreciable memory decay exists over a 

span of several seconds and several intervening items. Potter and colleagues (Potter, Staub, Rado 

& O'Connor, 2002) have shown that there are no appreciable serial study position effects with 

RSVP streams of up to 10 items at 5.5 Hz framerate, suggesting lack of decay over 10 

intervening items and/or at least 2 s. Notice that in the same study robust serial test position 

effects were observed, consistent with previous findings with verbal material and longer 

retention intervals (Kim & Glanzer, 1995), a pattern that may suggest an explanation of memory 

decay at test in terms of retrieval interference (Anderson, Bjork & Bjork, 1994, Roediger, 1974). 

Melcher (Melcher, 2001, Melcher, 2006) observed total time dependencies of recognition 

memory over a span of up to 20 seconds and several intervening items and distracting tasks, but 

also noted that no memory buildup could be found across days. Older (Shepard, 1967, Standing, 

1973, Standing, Conezio & Haber, 1970) and more recent studies indicate an impressive capacity 

for picture memory: in the most recent study by Brady and colleagues (Brady, Konkle, Alvarez 

& Oliva, 2008) 2500 pictures were shown at a rate of 3 s/picture and recognition memory 

remained above 80% at lags of 1000 intervening pictures. In addition, the same study showed 

that the information retained is sufficiently fine grained to allow discrimination of detail, not just 

the gist of the image. The available evidence thus suggests that we are concerned here with a 
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memory system capable of supporting recognition of hundreds (perhaps thousands) of complex 

images over a span of seconds (perhaps minutes) and/or hundreds (perhaps thousands) of 

intervening items. 

 Encoding capacity and decay rate are tightly coupled parameters in memory networks 

(Amit & Fusi, 1994, Yakovlev, Amit, Romani & Hochstein, 2008). Evidence from Neuroscience 

suggests that memories entail modifications of the strength of bounded synapses and that 

memory decay is due to overwriting of these synaptic modifications by ongoing plasticity, either 

spontaneous or due to interference by other memories, in a spike-timing dependent manner. The 

number of synapses in the network and the degree to which activity evoked by a stimulus 

overlaps with activity evoked by previous stimulus encounters are two factors that influence both 

the capacity and the decay rate (Fusi & Abbott, 2007). The behavioral results with picture 

memory, consistent with high capacity and relatively slow decay, suggest that pictures must be 

represented sparsely in memory, such that interference is kept to a minimum. While much recent 

research indicates that a major goal of early vision is to reduce redundancy (Simoncelli & 

Olshausen, 2001) and achieve sparse coding to optimize metabolic energy efficiency (Attwell & 

Laughlin, 2001, Levy & Baxter, 1996, Olshausen & Field, 2004), it is clear that one major 

advantage of decorrelated and sparse image codes is to allow optimal memory encoding 

(Willshaw, Buneman & Longuet-Higgins, 1969). 

  

Accumulation of memory strength as a stochastically independent process 

 One of the most robust finding of this as well as other studies on the growth of short-term 

memory performance with temporal exposure concerns the form of the best fitting function 

describing such growth. Fraction correct or adjusted hit rate grows with exposure exponentially 
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(Lamberts, Brockdorff & Heit, 2002, Maljkovic & Martini, 2005). This suggests a notion of 

independence: what is added to memory in the current instant does not interact with what was 

added to memory previously beyond what is expected from random coincidences, paradoxically 

a “memory without memory”. Accordingly, performance in the repeated condition could be 

accurately predicted from performance in the unrepeated condition via a probability summation 

formula. Disputing such threshold analysis on account of its well-known inadequacies does not 

change the conclusion: the same outcome is borne out by the SDT analysis of the growth of 

noise with familiarity as follows. It is now recognized that the vast majority of recognition 

memory experiments has produced zROC curves with slopes that are less than unity (Glanzer, 

Kim, Hilford & Adams, 1999, Heathcote, 2003, Hirshman & Hostetter, 2000, Yonelinas & 

Parks, 2007), suggesting that the familiarity representation of “old” items has a standard 

deviation greater than “new” items. Familiarity grows with temporal exposure and so does its 

standard deviation: as the intercept of the zROC curve increases with exposure, its slope 

diminishes. This finding raises two questions: by how much does variability increase with 

familiarity and why does it increase at all? The results of this study (figure 8) show that the 

standard deviation of the distribution of familiarity of “old” pictures (expressed in units of “new” 

standard deviation) grows roughly with the square root of the mean, suggesting proportionality 

of the variance with the mean and thus indicating that the noise is uncorrelated. As such, the 

growth of familiarity with temporal exposure is a process akin to a random walk with drift. In the 

absence of sufficient mechanistic knowledge of the underlying neurobiology, we can only 

speculate on the instantiation of such walk at a process level. Possibilities include the progressive 

recruitment and/or potentiation/depression of a large number of independent elementary 

mechanisms encoding the stimulus. While on average such growth is positive, leading to an 
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increased memory signal, the crucial observation is that growth is noisy, resulting sometimes in a 

strong signal and other times in a signal so weak as to be indistinguishable from baseline noise.  

  

Decision criteria shift with memory strength  

There are no discrepancies in the results discussed so far between the Threshold Model 

and SDT analysis. As such, the reader may be led to conclude with S.S. Stevens that in 

computing the somewhat more elaborate measures of SDT we have engaged in “much honing of 

the tool’s edge, but little cutting” (Stevens, 1975). Stevens was a proponent of an extreme 

version of threshold theory known as the Neural Quantum and in his characteristic style 

described SDT as follows: “As I understand it, the idea is simply that, when a human observer 

undertakes to detect a signal immersed in noise, his behavior has much in common with 

statistical decision theory. Being confronted with two statistical distributions, that of the noise 

and that of the noise plus the signal, the observer seems to behave as though he were testing a 

statistical hypothesis: given a sample, he tries to decide which of the two populations it came 

from. Depending on the ‘pay-off matrix’, the observer may be timid or bold in his willingness to 

commit errors of one kind or another, and the degree of his daring helps to determine a boundary 

criterion (a cut-off) for the categories of his response. Since the parameters of the experiment can 

move the cut-off up or down the ‘decision axis’, there is said to be no unique threshold in the 

sense of an all-or-none process” (Stevens, 1961). Perhaps against the intention of it’s skeptical 

Author, this succinct description of SDT makes clear its distinctive advantage over threshold 

models: the natural ability to account for processes of decision-making and motivation, as well 

as for those of perception and memory. In the present study it was found that familiarity, speed 

and confidence are almost perfectly correlated in the case of “old” responses, a result that is 
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perhaps as reassuring as it is unsurprising and easily understandable from a threshold model 

perspective. It is not unreasonable to suppose that a higher familiarity signal increases the 

probability of a correct response, reduces the time necessary for reaching a threshold that triggers 

a response and increases confidence inasmuch as confidence is proportional to the familiarity 

signal. What seems more difficult to explain without resorting to SDT is the finding that 

confidence grows with exposure also in the case of incorrect “new” responses. A related 

observation is the so-called “mirror effect”, the finding that higher hit rates are always associated 

with lower false alarm rates (Glanzer & Adams, 1985). In both cases the explanation has to do 

with shifts in criteria: as familiarity increases, observers tend to become more conservative 

(Stretch & Wixted, 1998b). The “fanning” pattern of shifts in criteria that we have observed with 

increasing exposure (figure 10) is, to a first approximation, qualitatively consistent with an effort 

to maintain constant likelihood ratios of “old” versus “new” as the familiarity of “old” pictures 

increases (Stretch & Wixted, 1998a). Maintaining fixed likelihood ratios is what an ideal 

observer would do, having perfect knowledge at any instant of time of the shape of the 

distributions, their location and variance (Green & Swets, 1966). Implausible as this may be in 

the case of the human observer, other mechanisms, shaped by learning, previous history of 

reinforcement and trial-by-trial adjustments, may mimic this invariance (Treisman & Williams, 

1984, Wixted & Gaitan, 2002). Indeed, the central criterion separating “old” from ”new” 

responses seems to shift in a way such as to maintain a constant ratio across exposures, but the 

more extreme criteria do not. We find that the criteria other than the central one seem roughly to 

obey a rule such that their distance increases linearly and symmetrically on a log-likelihood ratio 

scale as function of the logarithm of temporal exposure (see figure 10, bottom). The nature of the 

underlying computation and the ability of this observation to generalize to other settings (for 
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example low prevalence search tasks (Wolfe, Horowitz, Van Wert, Kenner, Place & Kibbi, 

2007)) remain topics for future investigations. 
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