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Abstract

In absolute identification experiments, the participant is asked to identify stimuli drawn from a
small set of items which differ onasingle physical dimension (e.g., ten tones which vary in
frequency). Resporsesin these tasks how astriking pattern of sequential dependencies. The
current resporse asgmil ates towards the immediately preceding stimulus but contrasts with the
stimuli further badk in the sequence This pattern has been variously interpreted as resulting from
confusion of itemsin memory, shiftsin resporse aiteria or the adion o selective dtention, and
these interpretations have been incorporated into competing formal models of absolute
identification performance In two experiments, we demonstrate that lengthening the time
between trials increases contrast to both the previous gimulus and the stimulus two trials back.
This surprising pettern of results is difficult to reconcil e with the ideathat sequential
dependencies result from memory confusion or from criterion shifts, but is consistent with an

acount which emphasizes slective atention.

KEY WORDS: Absolute identification; Inter-stimulus interval; Sequentia effeds,

Asdmil ation; Contrast.



The effect of inter-stimulusinterval on sequential effectsin absolute identification

On ead tria of an absolute identification experiment, the participant is required to identify a
stimulus drawn from asmall set of items which differ onasingle physical dimension (e.g., 10
tones which differ only in intensity). It has long been known that absolute identification data
exhibit several interesting prenomena, including a severe limit in information transmission
between stimuli and resporses (e.g., Miller, 1956 and gedaer acaracy for stimuli at the ends of
the stimulus range than in the middle (e.g., Murdock, 1960, and in the past few yeas there has
been aresurgence of interest in absolute identification reseach (Brown, Marley, Donkin, &
Heahcote, 2008 Brown, Marley, & Lamuture, 2007 Kent & Lamberts, 2005 Petrov &
Anderson, 2005 Rouder, Morey, Cowan, & Pfaltz, 2004 Stewart, 2007 Stewart, Brown, &
Chater, 2005.

A key result from absolute identification experiments is the finding that the resporse on

the aurrent trial R, to the presented stimulus S, depends uponthe sequence of precaling stimuli.
Typicaly, R, assmilates towards the immediatdy precaling stimulusS, ; but contrasts with
(i.e., shifts away from) the stimuli presented two or more trials back (S, ,,S, ;...). The

magnitudes of these dfeds, and the paint in the sequence & which there is a switch from

assmil ation to contrast, depend uponthe difficulty of the task and whether or not feedbadk is
provided (e.g., Ward & Lockhead, 1971), but the basic pattern has been foundin alarge number
of studies (Holland & Lockhead, 1968 Lamuture, 1997 Luce Green, & Weber, 1976 analysed
in Jesteadt, Luce & Green, 1977 Staddon King, & Lockheal, 198Q Stewart et a., 2005

Treisman, 1985 Ward & Lockhead, 197Q 1977).



Over the past 40 yeas, this pattern of sequential eff eds has been given a number of
different psychologicd interpretations, and these interpretations have been incorporated into
competing formal models of absolute identification. Broadly spe&king, the explanations for the
sequential dependencies fall i nto threegroups, which we now discussin turn. Throughou, we
focus on the core psychdogical i deas rather than detailed discusson of formal models, nat least

becaise recent models (e.g., Brown et a., 2008 Stewart et al., 2005 incorporate many free

parameters and may possbly, with appropriate parameter choices, be rendered indistinguishable.
Thefirst interpretation of sequential effeds isthat they represent the confusion of items
in memory. This ideawas first proposed by Holland and Lockhead (1968 and hes appeaed in
various forms dncethen (Lockhead & King, 1983 Lockhead, 1984 1992. According to this
interpretation, therepresentation of ead stimulus is confused with the memories for ealier
stimuli in the trial sequence More recantly, Stewart et al. (2005 have incorporated the ideaof
memory-confusion into a highly succesful model which cgptures the full set of absolute
identification choice data, including sequential effeds. Accordingto Stewart et a.’srelative
judgment moded (RIM), the participant estimates the dif ference between the aurrent stimulus and
the previous one (Laming, 1984). This differenceis added to the feedbad from the previous trial
to produce ajudgment of the aurrent stimulus, with ndase in the mapping of the perceved
difference onto the resporse scde which leads to the information transmission limit seen in
absolute identification. Crucially, the RIM assumes that the aurrent stimulus differenceis
contaminated by residual representations of ealier stimulus diff erences, and that the more
recently a stimulus difference occurred, the more likely it is to contaminate the judgment of the
current difference. Stewart et al. (2005 pp. 896:897) show that, when feedbadk is provided and

asauming that the participant’s estimate of the stimulus diff erence rrespondngto asingle unit



ontheresporse scdeis approximately corred, the confusion of stimulus differences predicts
assmilationto S, , and contrast to stimuli further badk.

Memory-confusion interpretations of sequential effeds like those of Stewart et al. (2005
suggest that the aurrent resporse is predicted by the preceding stimulus ssquence preceding

resporses are ignared. The dependence of R, onthe aurrent and preceding stimuli may

conveniently be assessed by fitting aregresson equation to the data:

R =r+a,S, +o0,S, ,+a,5 ,+..+o,S, ,+e, (1

Because only precealing stimuli areincluded as predictorsin Equation 1, we refer toit asa
stimulus-only regresson. When Equation 1is applied to absolute identification data, the

coefficient for S, , is pasitive, indicating assmilation, and the aoefficients for stimuli further

badk in the sequence ae negative, indicating contrast (e.g., Lockhead, 1984).

The secondinterpretation of sequential effedsis that they represent trial-by-trial shiftsin
resporse aiteria. A comprehensive statement of this ideais provided by criterion setting theory
(Triesman & Willi ams, 1984 Treisman, 1985. Criterion setting theory adopts a Thurstonian
framework in which the presentation o ead stimulus results in anoisy value on an interna
sensory scde. Criteria, or resporse boundxries, divide the sensory scde into resporse cdegories
and the resporse is determined by which criteriathe (noisy) stimulus representation fall s
between. Eadc criterion has alongterm referencelocation, but the dfedive aiteria onead tria
are dso influenced by two short-term processs: tradking and stabilization. The traking
mechanism is motivated by the ideathat objectsin the red world tend to persist, so that the

presenceof a particular object indicates that it islikely to occur again. Tradking therefore



involves dhifting the aiteria away from the most recently made response, increasing the
probabilit y that the response will be repeaed. Thus, the tradking medanism produces
assmil ation to recent resporses. The stabilizing mechanism, on the other hand, servesto place
criterianea to the prevailing flux of sensory input. For example, if a series of sensory inputs all
liewell abowe a citerion then that criterion may be too low in relation to the aurrent distribution
of inputs. Stabilization therefore shifts ead criterion towards the aurrent sensory input,
producing contrast to recent stimuli.

Criterion setting theory thus aserts separate eff eds of precading stimuli and preceding
resporses, with contrast to the former and assmil ation to the latter. These dfeds uggest that
absolute identification data may usefull y be described with aregresson equationin which bah

stimuli and resporses are included as predictors:

R =r,+a,S,+o,S,; +BR,+..+o, S, +B.R, +€, 2

Because both precaling stimuli and preceding resporses are included as predictors, we refer to
Equation 2 as a stimulus-resporse regresson. (Note that the term stimulus-resporse regresson
shoud nat be taken to imply that the feds of precealing stimuli and resporses are linked, only
that both fadors are being considered as predictors of the aurrent resporse.) Mori and Ward
(1999 applied aversion d Equation 2to absolute identification data and foundthat, in keeping

with criterion setting theory, the coefficient for R, , was positive but that the aefficient for S,

was often negative, most notably in the dsence of fealbadk - athoughthe high correlation o
stimuli and resporses means that these efficients may not be reliable. Mori (1998 similarly

foundasdmilationto R, ; andcontrast to S, , , althoughthe latter changed to assmil ation when

n-1°’



the stimuli were masked. Both of these studies only considered the f eds of the immediately
precaling trial (Jesteadt et al., 1977).

The third interpretation of sequentia effedsisthat they result from the operation o
selective atention (e.g., Luce @ al., 1976. Seledive dtention forms the basis of arecent, highly
succesdul acourt of absolute identification- the seledive dtention, mapping, ballistic
acamulator (SAMBA) model of Brown et a. (2008. SAMBA is able to predict the full range of
choice and RT data from absolute identification experiments. At the heat of themodel is a
selective dtention medhanism based onthe reheasal processof Marley and Cook (1984 1986.
It is assumed that the stimulus dimensionis monatonicaly mapped orto alinealy ordered set of
leaky nodes. Throughou the experiment the participant reheases aregion o the stimulus
dimension by dreding reheasal adivity to a subset of these nodes. The upper and lower nodes
in this range ae referred to as anchors; their pasitions depend uponthe range of stimuli in the
experiment. To produce amagnitude estimatefor the aurrent stimulus the participant judges the
pasition o the stimulus within the reheased range by cdculating £, the total reheasal
adivation between the lower anchor and the aurrent stimulus, and Xy, the total adivation
between the stimulus and the upper anchor. The magnitude estimate is then Z(/(Z.+ Xu). This
magnitude estimate serves asinpu to Lacuture and Marley’s (1995 mapping model, which
produces a set of resporse strengths, one for eat possble resporse. These resporse strengths
serve s inputsto the final, dedsion stage of the model, which uses ballistic acaimulators
(Brown & Heahcote, 2009 to produce aresporse. Thereis one ballistic acamulator
correspondng to ead possble resporse; ead acawmulator has a starting level of adivation
which then increases at a rate determined by the response strengths from the mapping stage. The

first acaimulator to read athreshdd level of adivation determines the resporse and thetime it



takes to do so determines the RT.

Sequential effeds are incorporated into SAMBA by the introduction o two additional
asaumptions. Thefirst of these concerns the seledive atention stage and comprises the ideathat,
on some trials, the participant direds rehearsal adivity to the node correspondng to the most
recantly presented stimulus. For example, suppcse the last stimulus was Stimulus 5. Rather than
randamly all ocaing reheasa adivity between the lower and upper anchors, the participant
diredsthe adivity to thenode correspondngto Stimulus 5. If the next stimulus lies above
Stimulus 5, this redireded adivity wil | contribute to ¥ and the stimulus estimate will be larger
than when the reheasal adivity is distributed randamly amongthe reheasal nodes. Conversely,
if the aurrent stimulus lies below Stimulus 5 then the redireded adivity wil | contribute to Xy,
resulting in asmall er magnitude estimate than narmal. In thisway, direding reheasal adivity to
the location d the most recently presented stimulus causes subsequent resporses to contrast with
this stimulus. The second assumption concerns the dedsion sage of the model, in which ballistic
acamulators raceto threshod. Brown et a. (2008 assumethat once an acaumulator reades
threshad and aresporse is made, the adivation begins to decay; the residual adivity determines
the starting pant for ead acawmulator on the next trial. Sincethe acaimulator with the greaest
adivity will be the one which readed threshold, the most recently made resporse will have a
hea start onthe next trial, thereby increasing the probability that this response wil | be made
again. Thus, the mode predicts assmil ation to the previous resporse. To summarize: SAMBA,
like aiterion setting theory, posits distinct eff eds of preceding stimuli and resporses. Selective
reheasal of recent items produces contrast to the former whil st residua adivity in the respornse

system produces assmil ation to the latter.



It is clear from the foregoing survey that, while sequential effeds provide astrong
empirica constraint onformal models of absolute identification, the psychologicd interpretation
of these dfeds remains disputed. In the aurrent paper, we seek to clarify the interpretation of
sequential dependencies by asking how the dfeds of previous gimuli and resporses depend
uponthetime interval between trials. Manipulations of inter-stimulus interval have proved useful
in distingushing between interpretations of sequentia effedsin other tasks (e.g., Collier, 1954
DeCarlo, 1992 and several authors have receantly argued for the importance of manipulating
inter-stimulusinterval in absolute identification (Brown et a., 2008 Lockheal, 2004 Stewart et

al., 2005. The two experiments reported here represent the first attempt to do so.

Experiment 1

M ethod

Participants

Thirty nine members of the University of Warwick subjed panel took part. Each was paid £12

Stimuli

Ten tones of varying frequency were used. The lowest tone had a frequency of 600 Hz with eat

subsequent tone increasing in frequency by 12%. Eac tone had atotal duration o 500ms



including a 50-ms amplitude ramp at beginning and end. Tones were played over Sennheiser

eH2270 o HD265 headphores.

Design and Procedure

Participants were tested individuall y in quiet testing cubicles. Each participant completed two
sesgons, one with ashort 1SI and ore with along ISl. Eadh sesson consisted of four blocks of
90trials; in eat block, al ten tones were presented equall y often with the order randamized for
ead participant. At the start of the experiment the ten tones were played in sequencefrom 1-10
with a 1s gap between ead. Whil e the tones played, the correspondng numbers appeaed onthe
computer screen. Participants then began the experimental trials. On ead tria participants heard
one of the 10 tones; after the tone had finished, the participant indicated which of the tones had
played by pressng ore of the number keys along the top o a standard computer keyboard. In
order to ensure a ontrolled interval between successve stimuli, participants were given afixed
temporal window in which to make their resporse. Previous dudies have foundthat the vast
majority of resporses take lessthan 2s, so a3swindow was used. At the end o the resporse
window, the adual number of the presented tone was displayed for 500ms. The sequence of
events on ead trial was therefore: a500ms ‘Realy’ signal, a 500ms blank interval, the stimulus
for 500ms, a 3000ms resporse window, and feedbadk for 500ms. In the Short condtion there
followed a 500ms blank interval before the next trial; in the Longcondtion, this interval was
5500ms. Thus, in the Short condtion the interval between the end o one stimulus and the start

of the next was 3000(resporse window) + 500 (feedback) + 500(1SI) + 500 (‘Ready’) + 500



(blank) = 5000ms whil st in the Long condtion it was 3000+ 500+ 5500+ 500+ 500=
10000ns. The experiment was controlled by DMDX (Forster & Forster, 2003.

All participants had a bre&k between sessons and some chose to come badk on a dif ferent
day to complete the ssandsesson. Thefirst block of trials from ead sessonwas treaed as

pradice and excluded from the analysis.

Results and Discussion

One participant was discarded because of technicd difficulties; asecond was discarded because
of failing to respondwithin the 3s respornse window on alarge propation (14.1%) of trials (the
mean propation for the remaining subjects was 1.0%). For two of the 37 useable participants,
one block of trials was discarded because the test sesson was briefly interrupted; 18 participants

completed the sesgonsin the order Short-Longand 19in the order Long-Short.

Basic Performance

The average propartion o trials on which the participant failed to respondin the 3swindow in
the Short condtion was 0.7% (SD = 1.0); the mean for the Longcondtionwas 1.4% (SD = 1.7).
We used amixed ANOVA to examine the dfeds of | S| and sesson order (Short-Long a Long

Short) onthe propartion of missed resporses. There was amain effed of condtion, F(1,35) =

6.70, ni = .16, p = .014, with significantly more missed resporses in the Long condtion than

the Short condtion. (Here and throughou what foll ows, the aiterion for significancewas st at

a =.05). Althoughsignificant, this differenceis very small and the very low number of missed

10



resporses in bath condtions indicates that our choice of a 3s response window was appropriate.
There was no effed of sesgon order, F(1,35) < 1, and nointeradion, F(1,35) < 1. Themean
propartion o corred resporses (excluding missed resporses) in the Short condtion was 54.0%
(SD =10.3), the mean for the Longcondtion was 52.7% (SD = 10.5). Analysis of variance
indicated noeffed of condtion, F(1,35) = 1.37, nzp = .04, p=.249 noeffed of sesson order,
F(1,35) < 1, and nointeradion, F(1,35) < 1.

In short, analysis of acaracy and propation o missed trials shows that these statistics
vary only glightly with changesin 1SI and do nd compromise the analysis of sequential effeds

which are the main focus of the aurrent paper.

Sequential Effects

The dfeds of the precaling stimulus squence onthe aurrent resporse aeillustrated in Figure 1.
This figure provides a so-cdled “impulse plot” (e.g., Lockhead, 1984). In an impulse plot, the
mean error onthenth trial (averaged acossall S, ) is shown asafunction o thelag, k, for all
possble S, . Theleft panel shows the results from the Short 1SI condtion; the right panel
shows the results from the Long 1Sl condtion. (Asis usual, the data have been coll apsed over
pairs of stimuli.)

Consider first the data from the Short condtion. Thereis asgmil ation to the stimuli
presented at lag k = 1, because the mean error ontrial n is pasitive when the stimuli presented on
trial n-1 are large, and negative when the stimuli presented ontrial n-1 are small . However, the

effed of stimuli shown at lag k = 2 is the oppasite; when S, , waslarge, the mean error onftrial

nwas negative, andwhen S, , was gnall the mean error was paositive. The same is true of

11



stimuli a longer lags. The left panel of Figure 1 therefore il lustrates the dassc pattern of
assmilationto S, , andcontrastto S, , seenin many previous gudies of absolute identification
(e.g., Lockhead, 1984 Stewart et a., 2005 Ward & Lockhead, 197Q 1971 When weturn to the
results from the Long 1Sl condtion, however, two diff erences are goparent. Firstly, the

assmilationto S, has disappeaed and, if anything, been replaced by week contrast. Secondy,
the magnitude of the contrast to S, ,, and passbly to stimuli further badk in the sequence, has

increased. Figure 1 therefore suggeststhat increasing the ISl has led to agenera increase in
contrast.

Impulse plots provide a ®nvenient way to visualise the data, but they do nd permit a
guantitative analysis. Moreover, they do nd separate the dfeds of precading stimuli and
precaling resporses. We therefore fit Equations 1 and 2to the data, to obtain a dearer

understanding o the dfeds of inter-stimulusinterval on sequential effeds.

Simulus-only regression

We began byfitting the stimulus-only regresson equation (Equation 1) using stimuli upto five
trials badk in the sequence a predictors. (Resporses which fell outside the 3s response window
were excluded from the enalysis.) We conducted the regresson analysis separately for both the
Short and LonglSI condtionsfor ead participant and then compared the regresson coefficients
from the two condtions. (An aternative goproach would be to include the data from bath

condtionsin asingle regresson which included ISl and the interadions between ISl and the

various S, terms as predictors. The pattern of results from such an anaysis are identical to

those reported here.) The means and standard deviations of the regresson coefficients for the 37

12



participants are presented in the left of Table 1. Inspedion o the regresson coefficients reveds
the same pattern as Figure 1. In the Short IS condtion, the coefficient for S, ; is moderately
large and pasitive, indicating assmilation, whil st the aefficient for S, , isnegative, indicating
cortrast. In the LonglSI condtion, the aefficient for S, has dropped to slightly below zero,
whil st the coefficient for S, , has become more negative. Finally, we note that the fit of the

regresson equation is good( R* approximately .85), andlittle dfeded bythe ISl condtion. This
is true of al of the regresson equationsfit in both experiments.

Asonewould exped when alarge number of participants complete only afew hunded
trials ead, there was individua variationin the regresson coefficients. We therefore used
analysis of varianceto statisticaly test the dfeds of 1Sl on the regresgon coefficients (Lorch &
Myers, 199()1. We monduwcted a mixed ANOVA with ISI (Short vs. Long as awithin-subed
fador and sesson ader (Short-first vs. Longfirst) as a between subjeds fador. (Throughou
what follows, the dfeds of sesson order were nat significant unlessotherwise stated.) The right
side of Table 1 showsthe ANOVA results for the main effed of 1Sl on ead coefficient. The

results show that inter-stimulus interval exerted asignificant effed onthe coefficientsfor S, |
and S__,; increasingthe ISl significantly reduced assmilationto S, and significantly
increased contrast to S, ,. The coefficients for stimuli further bad in thetrial sequencewere not

significantly affeded by the ISI manipulation.

Simulus-response regression

13



To investigate the separate df eds of precaling stimuli and resporses, we gplied Equation 2to
the data from Experiment 1. For this analysis, we considered the df eds of stimuli and resporses
from the previous two trials. The mean and standard deviations of the regresson coefficients are
shown in the bottom of Table 1. Also shown at the right of the table are the ANOVA results for
the main effed of I SI condtion.

The woefficient for S, is significantly influenced by the inter-stimulusinterval. In the
Short condtion, it is close to zero; in the Longcondtion, it is markedly negative, indicating a
shift to contrast asthe ISl is increased. A similar patternis foundfor S, , with contrast in the
Short condtion becoming significantly more pronourced in the Longcondtion (althoughthe p
value for this effed is not particularly small; as a general point in the aurrent work, we suggest

that any significant results for which the p valueis not considerably lessthan .05 be treaed with

some caution). The dfeds of previous resporses are not influenced by 1SI. There is moderate

assmilationto R , and very little dfed of R, , neither of which isinfluenced bythe IS
manipulation. There was aso asignificant main effed of sesson arder for the R, , coefficient,
F(1,35) =5.20, p=.029 ni, = .13, dthoughsesson ader did not interad with experimental
condtion, F(1,35) = 1.41, p=.243 nf) =.04. This result is hard to interpret, and we do nd

consider it further.

In short, increasing the |SI makes the wefficientsfor bath S, ; and S, , more negative.

That is, in the Longcondtion, there is stronger contrast to preceding stimuli than in the Short

condtion?.

Summary

14



The results of Experiment 1 show that, irrespedive of which regresson model is used to assess
the sequentia effeds, increasing the time between trials increases contrast to preceading stimuli.
This isanowel and courter-intuitive result with strongtheoretica i mplications, which we discuss
below. Before that, we report a seaond experiment which sought both to establi sh the generality

of this findingand to dissed the influence of intervals between spedfic pairs of trials.

Experiment 2

In Experiment 1, the Short and Long1SI condtions were grouped into blocks of trials. In
Experiment 2, short and longinter-stimulus interval s were randomly intermixed throughou the
experiment. The motivation for this was twofold. Firstly, we sought to replicate the striking
pattern of results obtained in Experiment 1 uncer different condtions. Secondy, we sought to
clarify which inter-stimulus interval s contribute to the observed eff eds. For example, in
Experiment 1 it was foundthat increasing the ISI caused increased contrastto S, ,. Was this

because of theincreased interval between S, , and S, ;, theincrease between S, and S, or

bath? Randamly intermixing short and long inter-stimulus intervals throughou the trial sequence

allows usto answer thistype of question.

Method

Participants

15



Thirty eight members of the University of Warwick subject pand took part. Each was paid £6.

Stimuli

The stimuli were the same as Experiment 1.

Design & Procedure

Eadch participant completed asinge experimental sesson consisting d five blocks of 80trials. In
ead block, eat of the ten tones was presented eight times, four times foll owed by ashort IS
andfour times followed byalongISl. The order was randamized for ead participant.

At the start of the experiment, the ten tones were played in sequencefrom 1-10with als
gap between ead. Whil e the tones played, the correspondng numbers appeared onthe computer
screen. Participants then began the experimental trials. On ead tria, participants heard one of
the 10tones; after the tone had finished, the participant had 2.5 seconds to indicate which of the
tones had played by pressng ore of the number keys along the top o a standard computer
keyboard. At the end d the resporse window, the adual number of the presented tone was
displayed for 500ms. On trials where participants fail ed to make aresporse, the words ‘ Too
slow’ were presented with the numerical feedbadk. Following the feedbadk there was a blank
interval of 500ms (short ISl) or 5000ms (long 1SI) after which the word *Ready was shown for
500ms foll owed by afurther 500ms blank interval before the next tone played.

Thetotal interval between the end of one tone and the start of the next was therefore 2500

(resporse window) + 500 (feadbadk) + 500 (1SI) + 500 (* Ready’) + 500 (blank) = 4500msin the

16



short 1Sl condtion and 2500+ 500+ 5000+ 500+ 500=9000ms in the longlSI condtion. The

first block of trials from ead sesson was treaed as pradice and excluded from the analyses.

Results and Discussion

Two participants failed to respondwithin the 2.5s window on alarge propartion o trials (19.9%
and 208%) and were excluded from the analysis; the mean propartion of missed resporses for
the remaining participants was 1.5%.

Werefer to theinterval between S, , and S, as IS and to the interval between

n-2,n7
S..and § as IS . Thedatawereorganized acordingto 1S, , ,and IS, . For eat
tria, thelengthsof 1S, ,and IS _, were established and the data organized into the four
possble combinations of thetwo ISIs: S,S(i.e., bath ISIswereshort: 1S, , , =4.5sand 19,
=4.5s), SL (ashort ISl followed byalonglSl, IS, ., =45s 19, ,,=99),L,S(I9,,,, =

9, 19,,, =459 andL,L (1S =0s, 19, ,, = 99). Notethat we label the condtionsto

n-2,n-1
reflect, from left to right, the order in which the intervals were experienced. Thus condtion S, L

corresponds to the stimulus squence S, , - shortinterva - S, - longinterval - S, . In order to
have ause&ble number of trials in ead condtion, the length of the 1Sl separating S, ; and

S._, Wasignared, as were other |SIs further badk in the sequence

Basic Performance

17



The propation o trials on which ead participant fail ed to respondwas caculated for ead S|
condtion. In condtion S,S the mean propartion was 1.0% (SD = 1.5); in condtion S,L the mean
was 1.6% (SD = 2.3); in condtion L,Sthe mean was 1.2% (SD = 1.5) and in condtion L,L the
mean was 2.1% (SD = 2.7). A 2x2 within-subjead ANOVA reveded amarginally significant

effeaof IS, ,,F(1,35 =4.13,p=.050, nzp =.11, andasignificant effed of 19 F(1,35

n-1n?
=8.28,p =.007, nf)= .19, but nointeradion, F(1,35) < 1. Asin Experiment 1, the overall

propartion o missed resporses was very low, indicating that the dhoice of response window
(2.5s) was appropriate The mean propation o corred responses (excluding missed resporses)
was aso cdculated for ead condtion. In condtion S,S, the mean was 54.1% (SD = 14.9); in
condtion S,L the mean was 52.1% (SD = 12.6); in condtion L,S the mean was 53.2% (D =
14.2); in condtion L,L the mean was 51.1% (SD = 13.1). A 2x2 within-subjeds ANOVA

reveded nosignificant effea of IS, | ,, F(1,35=1.16, p =.289, nf) =.03 or IS F(1,35) =

n-1n?

3.66, p =.064, n;,= .09, and nointeradion, F(1,35) < 1.

Sequential Effects

Asin Experiment 1, we begin by considering impulse plots for ead of the four condtions. These
are shown in Figure 2. The top left panel shows the results when bath intervals were short. There

isassmilationto S, andwedk contrast to S, _, . The battom left panel shows the results when
theinterval between S__, and S | waslongandtheinterval between S, | and S was hort.
The asdmilationto S, ; hasnot changed, but the contrast to S, has beame more pronourced.

Thetop right panel shows the results when the interval between S, , and S, ; was short but the
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interval between S, and S, waslong Now the ssamilationto S, , has been replaceal by week
contrast; thereis also contrast to S,,_, , and the magnitude of this effed is dmilar to that seenin

condtionL,S. Finaly, the bottom right panel shows the results when bah intervals are long. As
in the precaling condtion, thereis we&k contrastto S, , and contrast to S, , which is even

stronger than before.

To quantify these findings, we again fit Equations 1 and 2to the data.

Simulus-only regression

For eath of thefour IS, ,, IS combinations, we fit a stimulus-only regresson model

n-1,n
(Equetion 1) to the data from ead participant. The mean and standard deviations of the
regresson coefficients for the 36 participants are presented in the upper portion of Table 2. (As

in Experiment 1, an aternative goproad is to condict asingle regresson for the data from all

four condtions with the inclusion o interadion termsto assessthe dfedsof 19

n-2,n-1
andlS . Theresults are identical to those reported here.)

The wefficients were entered in a 2x2 within-subject ANOVA. The upper portion of

Table 3 showstheF values, p values, and effed sizes for the main effeds of 1S and

n-2,n-1

IS, ., andfor theinteradionterm. For the S coefficient, thereis amain effed of IS, and

anlS , ,*19 ,, interadion. When IS is short, the aoefficient is unaffeded by

n-2,n-1

1S ,,,-When IS, ,islong the S coefficientislarger when IS,  islongthan when

IS, ,is short. Of moreinterest aretheresultsfor S, and S, ,. The results confirm the
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pattern suggested by inspedion d theimpulse plotsin Figure 3: Thereis amain effed of 1S, |

onthe wefficient for S

n-1?

but noeffed of 19, ,, , and nointeradion. Both 1S, and
1S, significantly affed the coefficient for S, , but again thereis nointeradion. The lack of
interadion between the dfedsof 19, ;, and IS, suggeststhat it isthetotal amourt of time
since S, , was presented that determines the extent of contrast to this stimulus—i.e., the dfeds

of IS, ,,,and IS, are aditive.

Simulus-response regression

We next applied a stimulus-resporse regresson (Equation 2). The means and standard deviations
of the regresson coefficients are presented in the lower part of Table 2. A series of 2x2 within-

subed ANOVAs were used to examine the dfedsof 1S, ,, ,and IS _, onead coefficient
and the results are shown in the lower half of Table 3. The pattern for S, is the same & for the

stimulus-only regresson. For the S, coefficient, thereis amain effea of 1S when the

nin
interval between S, ; and S, is short (i.e., in condtions SSandL,S), there is week assmilation
to S, _;, but when theinterva is longthe aefficient beames negative, indicating cortrast. There
isnomain effea of 1S9, , ., and nointeradion. The cefficient for R, ismoderately large and

positivein all condtions; thereisnoeffed of |9 noeffed of 19, ,,,, and nointeradion.

n-1n?
That is, assmilationto R, seemsto be unaffeded by inter-stimulusinterva. Similarly, there is

contrast to S, , inall condtions. Inspedion o the values for this coefficient suggests an

increase in contrast asthe time between S, ,and S, isincreased. The wefficient is gnallest in
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condtion S,Sand largest in condtionL,L, with SL and L,S having intermediatelevels of

contrast. However, the ANOVA indicates no effed of 19 noeffedof IS, ,,and no

n-1n?
interadion. It seemslikely that the dfed of inter-stimulusinterval onthe wefficient for S , is
no longer significant because of the increased nase in the regresson parameters due to the
multicollineaity amongthe stimulus and resporse predictors. (Recdl also that the pattern of

increasing contrast to S, , seen here was foundto be significant in Experiment 1, where there
were more trials in ead condtion.) Finally, there is some evidence of week assmilationto R, ,,

but asfor R, , thereisnoeffed of 1S noeffed of IS, ., and nointeradion.

n-1n?

Summary

The results of Experiment 2 repli cate those of Experiment 1. Both the stimulus-only and
stimulus-resporse regresson analyses indicate that increasing the time between trials increases

contrast to preceding stimuli. In addition, the dfed of S, dependsonly on 1S whilst the

n-1n?

effea of S, dependsonbah IS , and 1S , ;.

General Discussion

In bath experiments, and irrespedive of which regresgon equation was used to asess gquential
effeds °, increas ng the time between trials led to increased contrast to preceding stimuli. In
Experiment 1, trials were blocked by inter-stimulus interval. The Short (5s) ISl condtion

produced resultstypicd of previous work: When the aurrent response was considered as a
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function of the preceding stimuli (ignaing previous resporses, Equation 1), there was

assmilationto S, , and contrast to stimuli further badk in the sequence (e.g., Ward & Lockhead,
1970. However, when the IS| was increased to 10s the assmilationto S_,disappeaed whil st
the contrast to S, , becane more marked. That is, for both S, ;, and S, , there was a shift

towards contrast. When the dfeds of preceading resporses were dso considered (Equation 2), the

Short 1SI condtion indicated very little effed of S, , and contrastto S

n-21

andthe LonglSl

condtion showed a significant increasein contrast to bah S_ , and S

n

_,. Therewas also
evidenceof assmilation to R, , which was unaffeded by the time between trials. Experiment 2
repli cated these findings, and additionally foundthat the efedsof S, , and S, , dependthe

total time sincetheir occurrence

Aswe described above, sequential eff eds have variously been interpreted as resulting
from memory confusion, from shiftsin Thurstonian resporse aiteria, or from seledive atention.
The surprising pattern of results found here imposes an important constraint on the psychological
interpretation o sequential effeds and onthe formal models of absolute identification which

incorporate these ideas. In what follows, we discussthese interpretations in turn and ask whether

ead can acommodate the pattern of results foundin the two experiments.

Memory confusion

As described in the Introduction, sequential eff eds have long keen taken to indicate the

confusion of itemsin memory (e.g. Holland & Lockhead, 1968. The most succes<ul

formulation o this ideais Stewart et al.’s (2005 relative judgment model, in which ead item s
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judged relative to the previous one but with the judgment of the aurrent stimulus dif ference
contaminated by memory for previous dif ferences. Existing memory-based interpretations of
sequential dependencies emphasizethe dfeds of precaling stimuli andignare previous
resporses; the impulse plots and stimulus-only regresson analyses therefore provide the
appropriate description o the data for appraising the memory-confusion acourt.

The results of these analyses are difficult to reconcil e with a memory-based interpretation
of sequential effeds. If sequential effeds reflect the influence of memories for previously
encourtered stimuli, we would exped that influenceto deaease as the time sincethe
presentation o those stimuli is lengthened, becaise the memory tracefadesover time (e.g.,
Wicklegren, 1974. This istrueirrespedive of whether the sequential effeds result from memory
for adua stimuli or from memory of stimulus differences. Even if one assumes that forgetting
occurs over items rather than in physical time (e.g., McGeoch, 1932), the best that can be
expeded is that increasing the 1SI will make no dfferenceto the dfeds of previous gimuli. In

Experiments 1 and 2, increasing the time between trials deaeased assmilationto S, ,, consistent
with the ideathat the memory for that stimulus diminished. However, contrast to S, , became

more pronourced, not less

It might be premature to abandonStewart et al.’s (2005 highly succesdul acourt of
absolute identification onthe basis of the aurrent results. However, we can seeno
straightforward memory-based interpretation o the finding that increasing the time between
trials diminishes the dfed of the more recently presented stimulus but increases the dfed of the
more distantly presented item. Furthermore, the Situation is not improved by asserting separate
effeds of preceading stimuli and resporses. The stimulus-response regressons show that

increasing the ISl leadsto greder contrasttoboth S, ; and S, ,, andit isagain difficult to see
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why lengthening the time sincethe establi shment of a memory traceshoud increase the dfed of

that traceon the aurrent resporse.

Shiftsin response criteria

The aurrent data are dso hard to reconcil e with the ideathat sequential effeds result from shifts
in Thurstonian resporse aiteria. Acoording to criterion setting theory (Treisman & Williams,
1984, eadh trid establishes atradking tracewhich shifts the resporse aiteria avay from the
current resporse, and a stabili zation tracewhich produces a small er shift towards the aurrent
stimulus. These traces decay over time so that the aiteria move badk to their long-term reference
locations. Criterion setting theory therefore predicts sparate df eds of recent stimuli and
resporses, with contrast to the former and assmil ation to the latter. Increasing the time between
trials shoud reduce both the assmil ation to preceading resporses and the contrast to precaling
stimuli, and the stimulus-resporse regresson analyses provide an appropriate description o the
data against which to test these predictions.

The results of these analyses contradict criterion setting theory. In keeping with the
model, we foundassmilationto R ,; the magnitude of this effed was nat affeded bythe IS,
but this may ssimply refled aslow deca in the tracking trace However, we dso foundthat
increasing the time between trials rendered the regresson coefficientsfor S, and S, ,

significantly more negative. This is exadly the oppasite of what is predicted; criterion setting
theory assumes that the stabilizing shifts decay linealy over time, such that increasingthe ISl

must deaease the magnitude of the contrast eff ed.
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Criterion setting theory is, of course, only one instantiation o the ideathat sequential
effeds result from shiftsin resporse aiteria. Alternative aiterion-setting models could be
developed to acount for the aurrent data if one were willi ngto assume abitrary shiftsin
resporse aiteria. Spedficdly, one would need to postulate shifts which initialy increased over
time (to explain the increase in contrast with increasing inter-stimulus interva) but which
eventualy changed diredion and began to decay (because it makes no sense for the aiteria to
drift apart indefinitely). It would be hard to motivate such assumptions: Whereas Treisman and
Williams (1984 convincingly argue that the shifts in criteria predicted by criterion setting theory
tune the resporse system to the prevalent flux of sensory information, it is difficult to seehow

the pattern of criterion shifts needed to explain the aurrent data could be justified.

Selective attention

Our results are hard to interpret in terms of memory processes or shiftsin resporse aiteria. They
are, however, consistent with an acourt based onselective atention, the SAMBA model of
Brown et al. (2008. Like aiterion setting theory, this aceount posits separate influences of
precaling stimuli and responses auch that a stimulus-response regresson provides the most

appropriate description o sequential effeds, and, as we have shown, the results of such analysis
show that increasing the time between trials produces an increase in contrast to both S, ; and
S, ,. This isthe pattern of results predicted by Brown et al.’s model.

Recdl that the key ideaof SAMBA isthat the participant selectively attends to the region
of the stimulus dimension occupied by the experimental stimuli. This seledive atentionis

modell ed by a Poisson reheasal process The stimulus dimensionis represented by an ordered
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series of nodes and the participant direds reheasal adivity to the nodes covering the range of
stimuli presented during the experiment (Marley & Cook, 1984). Incrementsin the adivity of
eat noct ae off set by a pasgve deca process and the magnitude of a given stimulusiis judged
by determining the propation o total rehearsal adivity which lies below (or abowe) the
correspondng nock. On some propartion of trials, the reheasal adivity is preferential y direced
towards the most recently presented stimulus; this preferential rehearsal may aso be considered
aform of seledive dtention. If a subsequent stimulus lies above the preferential y-rehearsed
node, the stimulus magnitude wil | be overestimated; if it li es below, the magnitude will be
underestimated. Thus, preferential reheasal of recent stimuli produces contrast to those stimuli.
This model predicts that contrast will increase with increasing I1SI. Immediately after the
presentation o S_ ,, the participant begins to dired rehearsal adivity to the correspondng noce.
Meanwhil g, the adivity in all the other nodes passvely decays. The longer this goes on, the

greder the propartion o total reheasal adivity acauingtothe S, node and, correspondngly,
the greaer the contrast effed. There will aso beincreased contrast to S, , , provided the model
parameters are dhosen such that the increased reheasal of the S, , node during the interval

between S, , and S_, is not offset by increased decay duringtheinterval between S, and S|

(orif, asBrown et d., 2008 suggest, the rediredion d reheasal adivity continues for more than
onetrial.) The selective dtention medhanism emboded in Brown et a.”s SAMBA model
therefore succesdully predicts the key pattern of results foundin the aurrent experiments.
According to SAMBA, the magnitude estimate produced by the selective atention stage
is fed into Lacouture and Marley’s (1995 mapping model, the outputs of which serve e inputs
to ballistic acaimulators (Brown & Hedahcote, 2005 which producethe final resporse. Residua

adivationin the balistic acawmulators is resporsible for assmil ation to previous resporses, and
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this effed is predicted to deaease over time. The aurrent experiments foundthe predicted
resporse assmilation, and althoughwe did not observe adedine in this effed when the 1S was
increased this may simply reflect aslow decay in balistic acamulator adivity. Crucialy, the
selective dtention medianism is not tied to the other elements of SAMBA. The seledive
attention componrent of SAMBA represents a general ideawhich may be incorporated into other
psychophysicd models, including ores which provide diff erent explanations for resporse
asgmil ation.

The selective atention comporent of SAMBA provides the only acourt of sequential
effeds which corredly predicts that increasing the ISl will increase contrast to precading stimuli.
However, there is one asped of the aurrent data which is patentially problematic for this acourt,

namely that the stimulus-resporse regresson analyses provide little evidencefor contrastto S_ ,
in the short 1SI condtions. In Experiment 1, the mean coefficient for S, ; in the Short condtion
was 0.009(Table 1). In Experiment 2, the stimulus-resporse regresson produced mean
coefficientsfor S, , of 0.030in the S,S condtion and 0029in the L,S condtion (seethe lower
half of Table 2). One sample t-tests establi shed that nore of these aefficients are significantly

different from zero. Mori and Ward (1999 similarly foundthat the coefficientsfor S, , were

sometimes pasitive, althoughthey are typically strondy negative in the ésence of feedbad (see
also Mori, 1998. We do nd regard this as a serious problem becaise the seledive dtention
medanism is only expeded to produceweek contrast to S, ; when the ISl is short, and the
coefficients obtained from the stimulus-response regresson used to identify stimulus-speafic
effeds are noisy becaise of the multicollineaity amongstimuli and response predictor variables.

However, shoud future experiments find significant assmilationto S, (when R, is included

in the regresson model), the selective atention explanation will need to be modified.
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The aurrent results have gpplicabilit y beyond absolute identification. DeCarlo (1992
varied the ISI in amagnitude estimation experiment and foundthat, when a stimulus-response
regresson was used, there was contrast to S, , which became more pronourced asthe |SI

increased. DeCarlo suggested that this pattern indicated a mis-spedfication o the regresson
model. However, the selective atention comporent of SAMBA produces a magnitude estimate
and Marley and Cook (1986 devel oped amodel for magnitude estimation based uponthis
mechanism but without the rediredion o reheasal adivity which produces contrast. If the re-
diredion o reheasal adivity to recently presented stimuli assumed by SAMBA also occursin
magnitude estimation experiments, then this might provide an explanation for DeCarlo’ s result.
That is, in magnitude estimation, asin absolute identification, preferential reheasal of recent
items may produce @ntrast to preceading stimuli, the magnitude of which increases with
increasing time between trials. Similarly, the aurrent results argue egainst the ideathat sequential
eff eds result from confusion of itemsin memory or shiftsin resporse aiteria. Both of these
ideas have been invoked as explanations for sequential effedsin other psychophysical tasks
(e.g., Lockhead, 1992 2004 Treisman, 1984 Treisman & Willi ams, 1984); their failureto
cgpture the pattern in absolute identificaion casts doult on their appli cability in these situations,
too.

One outstanding question concerns the reason for redireding reheasal adivity to the
most recently presented stimuli. Thisrediredion produces contrast and also uncerlies the
increase in contrast which results from increasing the I1SI. Since ontrast shiftsthe participant’s
response avay from the corred value, we might ask what function the preferentia reheasal
serves. In the red-world, recently presented stimuli are likely to occur again in the nea future

(Treisman, 1985. It may be that selectively attending to the most recent stimuli reduces the
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perceptual noise in the representation of these items, thereby improving the acairacy with which
likely future stimuli are represented. In absolute identification tasks, perceptual noise is usually
so small asto beirrelevant, but under other condtions the redireded reheasa adivity may
improve performance Alternatively, the preferential reheasal of recent items may serve as a
general tracking mechanism such that, if the range or distribution o stimuli suddenly change

(e.g., Ward, 1987, the system redl ocates reheasal adivity to the new values.
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Footnotes

! When separate regresgon anayses are conducted for a number of diff erent participants, it is
common to use inferential statistics, such ast-tests and ANOVA, to test whether the mean
coefficients differ from zero or differ between condtions (Lorch & Myers, 1990. However, an
aternative, arguably superior, approad is provided by multi-level analysis (Raudenbush &
Bryk, 2002. For all of the analyses reported here we condicted correspondng multil evel

analyses and foundthe same pattern of significant results.

% A reviewer asked whether the results for the subject averaged data reflected the findings from

individual participants. In the stimulus-only regresson, the S, , coefficient deaeased when the
ISl was lengthened for 27 o the 37 participants (p = .008, two-tail ed Binomial test) andthe S, ,
coefficient deaeased for 25 o the 37 participants (p = .047). The wefficientsfor the S, , S, ;,
S, .and S, . termsdeaeased for 17, 15, 22 and 18 mrticipants, respedively (al ps> .3). For
the stimulus-resporse regresson, increasingthe ISl led to adeaeasein the S, ; coefficient for

26 o the 37 participants (p = .02). Similarly, 26 participants showed a deaease in the coefficient

for S, _,. The wefficientsfor S, R, , and R, deaeased for 15, 17 and 15 mrticipants,

respedively (al ps> 0.3). These results match those of the averaged data.
®In additionto Equations 1 and 2 severa alternative regresson equations for the assesament of

sequential effeds have been proposed (Lockhead 1984 Lockhead & King, 1983 DeCarlo &

Cross 199Q in addition, areviewer suggested regressng the aurrent resporse only onthe
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preceading sequence of resporses). These goproadhes produced the eseentiall y the same results as

those reported here.
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Tables

Table 1. Regression coefficients for the stimulus-only regression (Equation 1) and stimulus-

response regression (Equation 2) from Experiment 1.

Predictor or

=2 Mean D F(1,35) m, p
Short  Long Short  Long
Stimulus-only regresson (Equation 1)
S, 0.877 0888 Q067 0073 136 04 252
S, 0.042 -0.005 Q046 Q059 1944 36 <.001
S -0.037 -0.059 Q029 Q030 1440 29 .001
S -0.034 -0.032 Q025 0031 Q09 .00 .765
S -0.021 -0.022 Q029 0022 Q01 .00 .930
S5 -0.014 -0.015 Q027 Q030 Q00 00 991
R? 0.855 0860 Q072 Q071
Stimulus-resporse regresson (Equation 2)
S, 0.877 0887 Q066 Q073 124 03 274
S, 0.009 -0.047 Q078 Q110 1129 24  .002
R 0.040 Q049 Q081 0082 Q34 01 565
ST -0.032 -0.066 Q067 Q071 530 13 .027
R, -0.008 Q015 Q062 0072 222 06 .145

R? 0.852 0859 Q072 Q071




Table 2. Regression coefficients for the stimulus-only (Equation 1) and stimulus-response

regression (Equation 2) analyses for Experiment 2.

Predlctzor Mean D
or R
S,S SL L,S L,L SS SL L,S L,L
Stimulus-only regresson
S, 0.880 0887 0859 Q907 Q074 Q088 Q082 Q066
S 0.068 -0.010 Q080 -0.011 Q069 Q076 Q068 Q066
S, -0.015 -0.038 -0.025 -0.064 Q057 Q048 Q047 Q054
R? 0.852 0831 (0846 0857 Q081 Q097 Q084 Q081
Stimulus-resporse regresson
S, 0.885 0890 0864 Q908 Q074 Q088 Q079 Q068
S 0.030 -0.048 Q029 -0.080 0113 Q155 Q128 Q141
R 0.043 Q046 Q059 Q079 Q107 0148 Q115 Q133
S, -0.033 -0.042 -0.048 -0.077 Q109 Q111 Q119 Q116
R 0.016 Q000 Q037 Q015 0121 Q123 Q120 Q107
R? 0.861 0836 0857 0863 Q074 Q094 Q076 Q082

Note. Column healingsindicate IS, , . ,,19,,, duraions: S= Short (4.5s), L = Long(9.0s)



Table 3. ANOVA results for stimulus-only (Equation 1) and stimulus-esponse regression

(Equation 2) coefficient from Experiment 2.

Predictor IS P IS I S PRI S PR
F(L35) m,  p F(L35) m;  p F(L35) m;  p
Stimulus-only regresson
S, 0.00 00 .965 1568 .31 <.001 548 14 .025
S 0.39 01 537 4070 54 <001 Q60 .02 445
S 4.65 12 .038 1431 .29 <.001 Q96 03 .335
Stimulus-resporse regresson
S, 0.02 00 .896 1039 .23 .003 509 13 .030
S 0.59 02 447 2139 .38 <.001 063 02 431
R.. 1.44 04 239 Q39 01 535 Q19 01 .662
S, 1.44 04 239 101 03 321 031 01 .583
R 0.98 03 .329 086 02 .360 Q04 .00 .853
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Figure Legends

Figure 1. Impulse plots for Experiment 1.

Figure 2. Impulse plots for Experiment 2.

42



Figure 1.

Short

Long

0.4
0.3

1

0.2

1

1

-0.1

-0.2

43



Figure 2.
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