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Abstract

In absolute identification experiments, theparticipant isasked to identify stimuli drawn from a

small set of items which dif fer onasinglephysical dimension (e.g., ten toneswhich vary in

frequency). Responses in these tasks show astriking pattern of sequential dependencies: The

current response assimilates towards the immediately precedingstimulus but contrastswith the

stimuli further back in thesequence. This pattern hasbeen variously interpreted as resulting from

confusion of items in memory, shif ts in response criteria or the action of selective attention, and

these interpretationshave been incorporated into competing formal models of absolute

identif ication performance. In two experiments, we demonstrate that lengthening the time

between trials increasescontrast to both theprevious stimulusand thestimulus two trials back.

This surprising pattern of results is dif ficult to reconcilewith the ideathat sequential

dependencies result from memory confusion or from criterionshif ts, but is consistent with an

account which emphasizes selective attention.

KEYWORDS:Absolute identification; Inter-stimulus interval; Sequential effects;

Assimilation; Contrast.
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The effect of inter-stimulus interval on sequential effects in absolute identification

On each trial of an absolute identif icationexperiment, theparticipant is required to identify a

stimulusdrawn from asmall set of itemswhich differ onasingle physical dimension (e.g., 10

tones which dif fer only in intensity). It has long been known that absolute identification data

exhibit several interesting phenomena, including a severe limit in information transmission

between stimuli and responses (e.g., Miller, 1956) and greater accuracy for stimuli at the endsof

thestimulus range than in themiddle (e.g., Murdock, 1960), and in thepast few years there has

been a resurgenceof interest in absolute identification research (Brown, Marley, Donkin, &

Heathcote, 2008; Brown, Marley, & Lacouture, 2007; Kent & Lamberts, 2005; Petrov &

Anderson, 2005; Rouder, Morey, Cowan, & Pfaltz, 2004; Stewart, 2007; Stewart, Brown, &

Chater, 2005).

A key result from absolute identif icationexperiments is the finding that the responseon

the current trial nR to thepresented stimulus nS depends uponthesequenceof preceding stimuli .

Typicall y, nR assimilates towards the immediately preceding stimulus 1�nS but contrastswith

(i.e., shif tsaway from) thestimuli presented two or more trials back ( 2�nS , 3�nS …). The

magnitudesof these effects, and thepoint in thesequence at which there is aswitch from

assimilation to contrast, depend uponthediff iculty of the task andwhether or not feedback is

provided (e.g., Ward & Lockhead, 1971), but thebasic pattern has been foundin a large number

of studies (Holland& Lockhead, 1968; Lacouture, 1997; Luce, Green, & Weber, 1976, analysed

in Jesteadt, Luce, & Green, 1977; Staddon, King, & Lockhead, 1980; Stewart et al., 2005;

Treisman, 1985; Ward & Lockhead, 1970; 1971).
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Over thepast 40 years, this pattern of sequential effectshasbeen given anumber of

dif ferent psychological interpretations, and these interpretationshave been incorporated into

competing formal modelsof absolute identification. Broadly speaking, the explanations for the

sequential dependencies fall i nto threegroups, which wenow discussin turn. Throughout, we

focuson thecore psychological ideas rather than detailed discussion of formal models, not least

becauserecent models (e.g., Brown et al., 2008; Stewart et al., 2005) incorporate many free

parameters andmay possibly, with appropriateparameter choices, be rendered indistinguishable.

The first interpretation of sequential effects isthat they represent the confusion of items

in memory. This ideawas first proposed byHollandand Lockhead (1968) and has appeared in

various forms sincethen (Lockhead & King, 1983; Lockhead, 1984; 1992). According to this

interpretation, therepresentation of each stimulus isconfused with thememories for earlier

stimuli in the trial sequence. More recently, Stewart et al. (2005) have incorporated the ideaof

memory-confusion into a highly successful model which captures the full set of absolute

identif icationchoicedata, including sequential effects. According to Stewart et al.’ s relative

judgment model (RJM), theparticipant estimates thedif ferencebetween the current stimulusand

thepreviousone(Laming, 1984). This dif ferenceis added to the feedback from the previous trial

to produce ajudgment of the current stimulus, with noise in themapping of theperceived

dif ferenceonto the responsescale which leads to the information transmission limit seen in

absolute identification. Cruciall y, theRJM assumes that the current stimulusdifferenceis

contaminated byresidual representations of earlier stimulus differences, and that themore

recently astimulusdif ferenceoccurred, the more li kely it is to contaminate the judgment of the

current dif ference. Stewart et al. (2005, pp. 896-897) show that, when feedback is provided and

assuming that theparticipant’s estimateof thestimulus difference correspondingto asingle unit
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on the responsescale is approximately correct, the confusion of stimulusdifferencespredicts

assimilation to 1�nS andcontrast to stimuli further back.

Memory-confusion interpretations of sequential effects li ke those of Stewart et al. (2005)

suggest that the current response is predicted bythepreceding stimulus sequence; preceding

responsesare ignored. Thedependenceof nR on the current and preceding stimuli may

conveniently be assessed byfittinga regression equation to thedata:

nknknnnn eSSSSrR �D��D�D�D� ��� ...221100 (1)

Because only preceding stimuli are included aspredictors in Equation 1, we refer to it asa

stimulus-only regression. When Equation 1is applied to absolute identif ication data, the

coeff icient for 1�nS is positive, indicatingassimilation, and the coeff icients for stimuli further

back in thesequence are negative, indicating contrast (e.g., Lockhead, 1984).

Thesecondinterpretation of sequential effects is that they represent trial-by-trial shif ts in

response criteria. A comprehensivestatement of this ideaisprovided bycriterion setting theory

(Triesman & Willi ams, 1984; Treisman, 1985). Criterion setting theory adopts aThurstonian

framework in which the presentation of each stimulus results in anoisy valueonan internal

sensory scale. Criteria, or responseboundaries, divide thesensory scale into response categories

and the response is determined bywhich criteria the (noisy) stimulus representation fall s

between. Each criterion hasa long-term referencelocation, but the effective criteria on each trial

are also influenced bytwo short-term processes: tracking andstabil ization. The tracking

mechanism is motivated bythe ideathat objects in the real world tend to persist, so that the

presenceof aparticular object indicates that it i s likely to occur again. Tracking therefore
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involves shif ting the criteria away from the most recently made response, increasing the

probabilit y that the responsewil l be repeated. Thus, the tracking mechanism produces

assimilation to recent responses. Thestabil izingmechanism, on the other hand, serves to place

criterianear to theprevail ing flux of sensory input. For example, if aseries of sensory inputsall

li ewell above a criterion then that criterion may be too low in relation to the current distribution

of inputs. Stabil ization thereforeshif tseach criterion towards the current sensory input,

producing contrast to recent stimuli .

Criterion setting theory thus asserts separate effectsof precedingstimuli and preceding

responses, with contrast to the former andassimilation to the latter. These effects suggest that

absolute identification datamay usefull y bedescribed with a regression equation in which both

stimuli and responsesare included as predictors:

nknkknknnnn eRSRSSrR �E�D��E�D�D� ���� ...111100 (2)

Because both preceding stimuli and preceding responsesare included aspredictors, we refer to

Equation 2asastimulus-response regression. (Note that the term stimulus-response regression

should not be taken to imply that the effects of preceding stimuli and responsesare linked, only

that both factorsarebeing considered aspredictorsof the current response.) Mori and Ward

(1995) applied aversion of Equation 2to absolute identif ication dataand foundthat, in keeping

with criterion setting theory, the coeff icient for 1�nR waspositivebut that the coeff icient for 1�nS

wasoften negative, most notably in the absenceof feedback - althoughthe highcorrelation of

stimuli and responses means that these coeff icientsmay not be reliable. Mori (1998) similarly

foundassimilation to 1�nR andcontrast to 1�nS , althoughthe latter changed to assimilationwhen
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thestimuli were masked. Both of thesestudies only considered the effectsof the immediately

preceding trial (Jesteadt et al., 1977).

The third interpretation of sequential effects is that they result from the operation of

selective attention (e.g., Luce et al., 1976). Selective attention forms thebasis of a recent, highly

successful account of absolute identif ication- the selective attention, mapping, ball istic

accumulator (SAMBA) model of Brown et al. (2008). SAMBA is able to predict the full range of

choice andRT data from absolute identification experiments. At theheart of themodel is a

selective attention mechanism based onthe rehearsal processof Marley andCook(1984; 1986).

It is assumed that thestimulusdimension is monotonicall y mapped onto a linearly ordered set of

leaky nodes. Throughout the experiment theparticipant rehearses a region of thestimulus

dimension by directingrehearsal activity to asubset of thesenodes. The upper and lower nodes

in this range are referred to as anchors; their positionsdepend uponthe rangeof stimuli in the

experiment. To produce amagnitude estimatefor the current stimulus theparticipant judges the

position of thestimuluswithin the rehearsed rangeby calculating�L, the total rehearsal

activation between the lower anchor and the current stimulus, and�U, the total activation

between the stimulusand theupper anchor. The magnitude estimate is then�L/(�L+ �U). This

magnitude estimate servesas input to Lacouture andMarley’s (1995) mappingmodel, which

produces aset of responsestrengths, one for each possible response. These responsestrengths

serve as inputs to the final, decisionstageof the model , which usesballistic accumulators

(Brown & Heathcote, 2005) to produce aresponse. There is oneball istic accumulator

corresponding to each possible response; each accumulator has astarting level of activation

which then increasesat a ratedetermined bythe responsestrengths from themapping stage. The

first accumulator to reach a threshold level of activation determines the response and the time it
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takes to doso determines theRT.

Sequential effectsare incorporated into SAMBA by the introduction of two additional

assumptions. The first of these concerns theselective attention stage and comprises the ideathat,

onsometrials, theparticipant directs rehearsal activity to thenode corresponding to the most

recently presented stimulus. For example, suppose the last stimuluswas Stimulus 5. Rather than

randomly allocating rehearsal activity between the lower and upper anchors, theparticipant

directs the activity to thenode corresponding to Stimulus5. If thenext stimulus liesabove

Stimulus5, this redirected activity wil l contribute to �L and thestimulusestimatewil l be larger

than when the rehearsal activity isdistributed randomly amongthe rehearsal nodes. Conversely,

if the current stimulus lies below Stimulus5 then the redirected activity wil l contribute to�U,

resulting in asmaller magnitude estimate than normal. In thisway, directing rehearsal activity to

the location of the most recently presented stimuluscauses subsequent responses to contrast with

this stimulus. Thesecondassumption concerns the decision stageof the model, in which ballistic

accumulators raceto threshold. Brown et al. (2008) assumethat once an accumulator reaches

threshold anda response is made, the activation begins to decay; the residual activity determines

thestarting point for each accumulator on thenext trial. Sincethe accumulator with the greatest

activity will be theone which reached threshold, the most recently maderesponsewil l have a

head start on thenext trial, thereby increasing the probabili ty that this responsewil l bemade

again. Thus, the model predictsassimilation to the previous response. To summarize: SAMBA,

li ke criterion setting theory, positsdistinct effects of preceding stimuli and responses. Selective

rehearsal of recent items producescontrast to the former whilst residual activity in the response

system produces assimilation to the latter.
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It is clear from the foregoing survey that, while sequential effects provide astrong

empirical constraint on formal models of absolute identification, thepsychological interpretation

of these effects remainsdisputed. In the current paper, weseek to clarif y the interpretation of

sequential dependencies by asking how the effects of previous stimuli and responsesdepend

uponthe time interval between trials. Manipulations of inter-stimulus interval haveproved useful

in distinguishing between interpretationsof sequential effects in other tasks (e.g., Coll ier, 1954;

DeCarlo, 1992) andseveral authors have recently argued for the importanceof manipulating

inter-stimulusinterval in absolute identification (Brown et al., 2008; Lockhead, 2004; Stewart et

al., 2005). The two experiments reported here represent the first attempt to doso.

Experiment 1

Method

Participants

Thirty nine membersof theUniversity of Warwick subject panel took part. Each was paid £12.

Stimuli

Ten tonesof varying frequency wereused. The lowest tonehad a frequency of 600Hz with each

subsequent tone increasing in frequency by 12%. Each tonehad a total duration of 500ms
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includinga50-ms ampli tude ramp at beginning andend. Toneswereplayed over Sennheiser

eH2270 or HD265 headphones.

Design and Procedure

Participantswere tested individuall y in quiet testingcubicles. Each participant completed two

sessions, onewith ashort ISI and onewith a long ISI. Each session consisted of four blocksof

90 trials; in each block, all ten toneswerepresented equall y often with the order randomized for

each participant. At thestart of the experiment the ten tones wereplayed in sequencefrom 1-10

witha1s gap between each. While the tonesplayed, the corresponding numbersappeared onthe

computer screen. Participants then began the experimental trials. On each trial participantsheard

one of the10 tones; after the tone had finished, the participant indicated which of the toneshad

played by pressing oneof thenumber keys alongthe top of astandard computer keyboard. In

order to ensure a controlled interval between successivestimuli , participantswere given a fixed

temporal window in which to make their response. Previous studieshave foundthat thevast

majority of responses take lessthan 2s, so a3s window was used. At the end of the response

window, the actual number of the presented tone was displayed for 500ms. The sequenceof

events oneach trial was therefore: a500ms ‘Ready’ signal, a500ms blank interval, thestimulus

for 500ms, a3000msresponsewindow, and feedback for 500ms. In theShort condition there

followed a500msblank interval before thenext trial; in the Longcondition, this interval was

5500ms. Thus, in theShort condition the interval between the end of one stimulusand thestart

of thenext was3000(responsewindow) + 500(feedback) + 500(ISI) + 500(‘Ready’) + 500
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(blank) = 5000mswhilst in the Longcondition it was 3000+ 500+ 5500+ 500+ 500=

10000ms. The experiment was controlled byDMDX (Forster & Forster, 2003).

All participantshad a break between sessionsand some chose to comeback onadif ferent

day to complete thesecondsession. The first block of trials fromeach sessionwas treated as

practice andexcluded from the analysis.

Results and Discussion

Oneparticipant wasdiscarded becauseof technical dif ficulties; asecondwasdiscarded because

of fail ing to respondwithin the3s responsewindow ona largeproportion (14.1%) of trials (the

mean proportion for the remaining subjectswas1.0%). For two of the37 useableparticipants,

one block of trials wasdiscarded because the test session was briefly interrupted; 18 participants

completed thesessions in theorder Short-Longand 19in theorder Long-Short.

Basic Performance

The averageproportion of trials onwhich theparticipant failed to respondin the3s window in

theShort condition was0.7% (SD = 1.0); themean for the Longcondition was1.4% (SD = 1.7).

We used a mixed ANOVA to examine the effects of ISI and session order (Short-Long or Long-

Short) on theproportion of missed responses. Therewas amain effect of condition, F(1,35) =

6.70, 2
pK = .16, p = .014, with signif icantly more missed responses in the Longcondition than

theShort condition. (Here and throughout what follows, the criterion for signif icancewas set at

05. D ). Althoughsignificant, this differenceisvery small and the very low number of missed
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responses in both conditions indicates that our choiceof a3s responsewindow was appropriate.

Therewasnoeffect of session order, F(1,35) < 1, and nointeraction, F(1,35) < 1. Themean

proportion of correct responses (excluding missed responses) in theShort condition was54.0%

(SD = 10.3), themean for the Longcondition was 52.7% (SD = 10.5). Analysisof variance

indicated noeffect of condition, F(1,35) = 1.37, 2
pK = .04, p = .249, noeffect of session order,

F(1,35) < 1, and nointeraction, F(1,35) < 1.

In short, analysis of accuracy and proportion of missed trials shows that thesestatistics

vary only sli ghtly with changes in ISI and do not compromise the analysis of sequential effects

which are themain focus of the current paper.

Sequential Effects

The effectsof theprecedingstimulus sequenceon the current response are illustrated in Figure1.

This figure provides aso-called “impulseplot” (e.g., Lockhead, 1984). In an impulseplot, the

mean error on thenth trial (averaged acrossall nS ) is shown asa function of the lag, k, for all

possible knS � . The left panel shows the results from theShort ISI condition; the right panel

shows the results from the LongISI condition. (As is usual, thedatahavebeen collapsed over

pairsof stimuli.)

Consider first thedata from the Short condition. There isassimilation to the stimuli

presented at lag k = 1, because the mean error on trial n ispositivewhen thestimuli presented on

trial n-1 are large, and negative when thestimuli presented ontrial n-1 aresmall . However, the

effect of stimuli shown at lag k = 2 is theopposite; when 2�nS was large, the mean error on trial

n wasnegative, andwhen 2�nS was small themean error waspositive. Thesame is trueof



12

stimuli at longer lags. The left panel of Figure1 therefore il lustrates the classic pattern of

assimilation to 1�nS andcontrast to 2�nS seen in many previous studiesof absolute identif ication

(e.g., Lockhead, 1984; Stewart et al., 2005; Ward & Lockhead, 1970; 1971) When we turn to the

results from the LongISI condition, however, two differences are apparent. Firstly, the

assimilation to 1�nS hasdisappeared and, if anything, been replaced byweak contrast. Secondly,

themagnitudeof the contrast to 2�nS , and possibly to stimuli further back in the sequence, has

increased. Figure1 thereforesuggests that increasing the ISI has led to a general increase in

contrast.

Impulseplotsprovide a convenient way to visualise thedata, but they do not permit a

quantitative analysis. Moreover, they do not separate the effectsof precedingstimuli and

preceding responses. We therefore fit Equations1 and 2to thedata, to obtain a clearer

understanding of the effects of inter-stimulus interval onsequential effects.

Stimulus-only regression

We began byfitting thestimulus-only regressionequation (Equation 1) using stimuli up to five

trialsback in thesequence aspredictors. (Responses which fell outside the3sresponse window

were excluded from the analysis.) We conducted the regression analysis separately for both the

Short and LongISI conditions for each participant and then compared the regression coeff icients

from the two conditions. (An alternative approach would be to include thedata from both

conditions in a single regression which included ISI and the interactions between ISI and the

various knS � termsaspredictors. Thepattern of results from such an analysis are identical to

those reported here.) The meansandstandard deviationsof the regression coeff icients for the37
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participantsarepresented in the left of Table 1. Inspection of the regression coeff icients reveals

thesamepattern as Figure1. In the Short ISI condition, the coeff icient for 1�nS is moderately

large and positive, indicatingassimilation, whilst the coeff icient for 2�nS isnegative, indicating

contrast. In the LongISI condition, the coeff icient for 1�nS hasdropped to sli ghtly below zero,

whilst the coeff icient for 2�nS hasbecome morenegative. Finall y, wenote that the fit of the

regression equation is good( 2R approximately .85), and li ttle affected bythe ISI condition. This

is trueof all of the regression equations fit in both experiments.

Asonewould expect when a large number of participantscompleteonly a few hundred

trialseach, therewas individual variation in the regression coeff icients. We thereforeused

analysisof varianceto statisticall y test the effects of ISI on the regression coeff icients (Lorch &

Myers, 1990)1. We conducted a mixed ANOVA with ISI (Short vs. Long) as awi thin-subject

factor and session order (Short-first vs. Long-first) asa between subjects factor. (Throughout

what follows, the effects of session order werenot significant unlessotherwisestated.) The right

sideof Table 1 shows the ANOVA results for themain effect of ISI oneach coeff icient. The

results show that inter-stimulus interval exerted a significant effect on the coeff icients for 1�nS

and 2�nS ; increasing the ISI signif icantly reduced assimilation to 1�nS andsignif icantly

increased contrast to 2�nS . The coeff icients for stimuli further back in the trial sequencewerenot

signif icantly affected by the ISI manipulation.

Stimulus-response regression
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To investigate theseparate effectsof preceding stimuli and responses, we applied Equation 2to

thedata from Experiment 1. For this analysis, we considered the effectsof stimuli and responses

from theprevious two trials. Themean andstandard deviationsof the regression coeff icientsare

shown in thebottom of Table1. Also shown at the right of the table are the ANOVA results for

themain effect of ISI condition.

The coeff icient for 1�nS is signif icantly influenced bythe inter-stimulus interval. In the

Short condition, it is close to zero; in the Longcondition, it is markedly negative, indicatinga

shif t to contrast as the ISI is increased. A similar pattern is foundfor 2�nS , with contrast in the

Short condition becoming signif icantly more pronounced in the Longcondition (althoughthe p

value for this effect is not particularly small ; asa general point in the current work, wesuggest

that any significant results for which the p value is not considerably lessthan .05 be treated with

some caution). The effectsof previous responsesarenot influenced by ISI. There is moderate

assimilation to 1�nR and very little effect of 2�nR , neither of which is influenced bythe ISI

manipulation. Therewasalso asignif icant main effect of session order for the 2�nR coeff icient,

F(1,35) = 5.20, p = .029, 2
pK = .13, althoughsession order did not interact with experimental

condition, F(1,35) = 1.41, p =.243, 2
pK = .04. This result is hard to interpret, andwe do not

consider it further.

In short, increasing the ISI makes the coeff icients for both 1�nS and 2�nS more negative.

That is, in the Longcondition, there is stronger contrast to precedingstimuli than in theShort

condition 2.

Summary
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Theresults of Experiment 1 show that, irrespectiveof which regression model is used to assess

thesequential effects, increasing the timebetween trials increasescontrast to precedingstimuli.

This isanovel andcounter-intuitive result with strongtheoretical implications, which wediscuss

below. Before that, we report asecondexperiment which sought both toestablish the generality

of this findingand to dissect the influenceof intervals between specif ic pairsof trials.

Experiment 2

In Experiment 1, the Short and LongISI conditionswere grouped into blocks of trials. In

Experiment 2, short and longinter-stimulus intervalswere randomly intermixed throughout the

experiment. The motivation for this was twofold. Firstly, wesought to replicate the striking

pattern of resultsobtained in Experiment 1 under dif ferent conditions. Secondly, wesought to

clarif y which inter-stimulus intervalscontribute to theobserved effects. For example, in

Experiment 1 it was foundthat increasing the ISI caused increased contrast to 2�nS . Was this

becauseof the increased interval between 2�nS and 1�nS , the increasebetween 1�nS and nS , or

both? Randomly intermixing short and long inter-stimulus intervals throughout the trial sequence

allowsus to answer this typeof question.

Method

Participants
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Thirty eight membersof theUniversity of Warwick subject panel took part. Each waspaid £6.

Stimuli

Thestimuli were thesame asExperiment 1.

Design & Procedure

Each participant completed asingle experimental sessionconsisting of f ive blocks of 80 trials. In

each block, each of the ten tones waspresented eight times, four times followed byashort ISI

and four times followed bya long ISI. Theorder was randomized for each participant.

At thestart of the experiment, the ten toneswere played in sequencefrom 1-10with a1s

gap between each. While the tonesplayed, the corresponding numbersappeared onthe computer

screen. Participants then began the experimental trials. On each trial, participantsheard oneof

the10 tones; after the tonehad finished, theparticipant had 2.5 seconds to indicatewhich of the

tones had played by pressing oneof thenumber keys along the top of a standard computer

keyboard. At the end of the response window, the actual number of thepresented tonewas

displayed for 500ms. On trialswhereparticipants failed to make aresponse, thewords ‘Too

slow’ were presented with thenumerical feedback. Following the feedback therewas a blank

interval of 500ms (short ISI) or 5000ms (long ISI) after which theword ‘Ready’ was shown for

500ms followed bya further 500msblank interval before thenext toneplayed.

The total interval between the end of one tone and thestart of thenext was therefore2500

(responsewindow) + 500(feedback) + 500(ISI) + 500(‘Ready’) + 500(blank) = 4500ms in the
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short ISI conditionand 2500+ 500+ 5000+ 500+ 500= 9000ms in the longISI condition. The

first block of trials from each session was treated aspractice and excluded from the analyses.

Results and Discussion

Two participants failed to respondwithin the2.5swindow ona large proportion of trials (19.9%

and 20.8%) and were excluded from the analysis; themean proportion of missed responses for

the remaining participants was 1.5%.

We refer to the interval between 2�nS and 1�nS as 1,2 �� nnISI , and to the interval between

1�nS and nS as nnISI ,1� . Thedatawereorganized according to 1,2 �� nnISI and nnISI ,1� . For each

trial, the lengthsof 1,2 �� nnISI and nnISI ,1� were established and thedataorganized into the four

possible combinations of the two ISIs: S,S (i.e., both ISIswereshort: 1,2 �� nnISI = 4.5s and nnISI ,1�

= 4.5s), S,L (ashort ISI followed bya long ISI, 1,2 �� nnISI = 4.5s, nnISI ,1� = 9s), L,S ( 1,2 �� nnISI =

9s, nnISI ,1� = 4.5s) and L,L ( 1,2 �� nnISI = 9s, nnISI ,1� = 9s). Note that we label the conditions to

reflect, from left to right, theorder in which the intervals were experienced. Thus condition S, L

corresponds to thestimulus sequence: 2�nS - short interval - 1�nS - long interval - nS . In order to

have auseablenumber of trials in each condition, the length of the ISI separating 3�nS and

2�nS was ignored, as wereother ISIs further back in the sequence.

Basic Performance
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Theproportion of trials onwhich each participant failed to respondwascalculated for each ISI

condition. In condition S,S the mean proportion was 1.0% (SD = 1.5); in conditionS,L the mean

was1.6% (SD = 2.3); in condition L,S the mean was1.2% (SD = 1.5) and in condition L,L the

mean was2.1% (SD = 2.7). A 2x2within-subject ANOVA revealed a marginall y significant

effect of 1,2 �� nnISI , F(1,35) = 4.13, p = .050, 2
pK = .11, andasignif icant effect of nnISI ,1� , F(1,35)

= 8.28, p = .007, 2
pK = .19, but no interaction, F(1,35) < 1. As in Experiment 1, the overall

proportion of missed responseswasvery low, indicating that the choiceof responsewindow

(2.5s) wasappropriate. Themean proportion of correct responses (excluding missed responses)

wasalso calculated for each condition. In conditionS,S, the mean was54.1% (SD = 14.9); in

conditionS,L themean was 52.1% (SD = 12.6); in condition L,S themean was53.2% (SD =

14.2); in condition L,L themean was51.1% (SD = 13.1). A 2x2within-subjectsANOVA

revealed nosignif icant effect of 1,2 �� nnISI , F(1,35)=1.16, p = .289, 2
pK = .03, or nnISI ,1� , F(1,35) =

3.66, p = .064, 2
pK = .09, and nointeraction, F(1,35) < 1.

Sequential Effects

As in Experiment 1, webegin byconsidering impulseplots for each of the four conditions. These

areshown in Figure2. The top left panel shows the resultswhen both intervals wereshort. There

is assimilation to
1�nS andweak contrast to

2�nS . Thebottom left panel shows the resultswhen

the interval between
2�nS and

1�nS was longand the interval between
1�nS and

nS was short.

The assimilation to 1�nS hasnot changed, but the contrast to 2�nS hasbecome more pronounced.

The top right panel shows the resultswhen the interval between 2�nS and 1�nS was short but the
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interval between 1�nS and nS was long. Now the assimilation to 1�nS has been replaced byweak

contrast; there is also contrast to 2�nS , and themagnitudeof this effect is similar to that seen in

condition L,S. Finall y, thebottom right panel shows the resultswhen both intervals are long. As

in theprecedingcondition, there is weak contrast to 1�nS , andcontrast to 2�nS which is even

stronger than before.

To quantify these findings, we again fit Equations 1 and 2to thedata.

Stimulus-only regression

For each of the four 1,2 �� nnISI , nnISI ,1� combinations, we fit astimulus-only regression model

(Equation 1) to thedata from each participant. Themean andstandard deviationsof the

regression coeff icients for the 36 participantsarepresented in theupper portion of Table 2. (As

in Experiment 1, an alternative approach is to conduct asingle regression for thedata from all

four conditionswith the inclusion of interaction terms to assessthe effects of 1,2 �� nnISI

and nnISI ,1� . The resultsare identical to those reported here.)

The coeff icientswere entered in a2x2within-subject ANOVA. Theupper portion of

Table 3 shows theF values, p values, and effect sizes for the main effects of 1,2 �� nnISI and

nnISI ,1� and for the interaction term. For the nS coeff icient, there is a main effect of nnISI ,1� and

an 1,2 �� nnISI * nnISI ,1� interaction. When 1,2 �� nnISI is short, the coeff icient is unaffected by

nnISI ,1� . When 1,2 �� nnISI is long, the nS coeff icient is larger when nnISI ,1� is longthan when

nnISI ,1� is short. Of more interest are the results for 1�nS and 2�nS . The results confirm the
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pattern suggested by inspection of the impulseplots in Figure3: There is a main effect of nnISI ,1�

on the coeff icient for 1�nS , but noeffect of 1,2 �� nnISI and nointeraction. Both 1,2 �� nnISI and

nnISI ,1� signif icantly affect the coeff icient for 2�nS , but again there is no interaction. The lack of

interaction between the effects of 1,2 �� nnISI and nnISI ,1� suggests that it i s the total amount of time

since 2�nS waspresented that determines the extent of contrast to this stimulus– i.e., the effects

of 1,2 �� nnISI and nnISI ,1� are additive.

Stimulus-response regression

We next applied astimulus-response regression (Equation 2). The means andstandard deviations

of the regression coeff icientsare presented in the lower part of Table2. A seriesof 2x2within-

subject ANOVAs were used to examine the effectsof 1,2 �� nnISI and nnISI ,1� oneach coeff icient

and the resultsareshown in the lower half of Table 3. Thepattern for nS is thesame as for the

stimulus-only regression. For the 1�nS coeff icient, there is amain effect of nnISI ,1� ; when the

interval between 1�nS and nS is short (i.e., in conditionsS,S and L,S), there is weak assimilation

to 1�nS , but when the interval is longthe coeff icient becomesnegative, indicatingcontrast. There

is nomain effect of 1,2 �� nnISI and nointeraction. The coeff icient for 1�nR ismoderately large and

positive in all conditions; there isnoeffect of nnISI ,1� , noeffect of 1,2 �� nnISI , and nointeraction.

That is, assimilation to 1�nR seems to beunaffected by inter-stimulus interval. Similarly, there is

contrast to 2�nS in all conditions. Inspection of thevalues for this coeff icient suggests an

increase in contrast as the time between 2�nS and nS is increased. The coeff icient is smallest in
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conditionS,Sand largest in condition L,L, with S,L and L,Shaving intermediatelevels of

contrast. However, the ANOVA indicatesno effect of nnISI ,1� , noeffect of 1,2 �� nnISI , and no

interaction. It seems likely that the effect of inter-stimulus interval on the coeff icient for 2�nS is

no longer signif icant becauseof the increased noise in the regression parameters due to the

multicoll inearity amongthestimulusand response predictors. (Recall also that the pattern of

increasing contrast to 2�nS seen here was foundto besignif icant in Experiment 1, where there

were more trials in each condition.) Finall y, there is some evidenceof weak assimilation to 2�nR ,

but as for 1�nR there is noeffect of nnISI ,1� , noeffect of 1,2 �� nnISI , and nointeraction.

Summary

Theresults of Experiment 2 repli cate thoseof Experiment 1. Both thestimulus-only and

stimulus-response regression analyses indicate that increasing the timebetween trials increases

contrast to preceding stimuli . In addition, the effect of 1�nS depends only on nnISI ,1� , whilst the

effect of 2�nS dependson both nnISI ,1� and 1,2 �� nnISI .

General Discussion

In both experiments, and irrespectiveof which regression equationwasused to assess sequential

effects 3, increasing the timebetween trials led to increased contrast to preceding stimuli . In

Experiment 1, trials were blocked by inter-stimulus interval. TheShort (5s) ISI condition

produced results typical of previouswork: When the current response was considered asa
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function of thepreceding stimuli (ignoring previous responses, Equation 1), therewas

assimilation to 1�nS andcontrast to stimuli further back in thesequence(e.g., Ward & Lockhead,

1970). However, when the ISI was increased to 10s the assimilation to 1�nS disappeared whilst

the contrast to 2�nS became more marked. That is, for both 1�nS and 2�nS there was ashift

towardscontrast. When the effectsof preceding responseswere also considered (Equation 2), the

Short ISI condition indicated very litt le effect of 1�nS andcontrast to 2�nS , and theLongISI

conditionshowed a significant increase in contrast to both 1�nS and 2�nS . Therewasalso

evidenceof assimilation to 1�nR which wasunaffected bythe time between trials. Experiment 2

replicated these findings, andadditionall y foundthat the effectsof 1�nS and 2�nS depend the

total timesincetheir occurrence.

Aswe described above, sequential effectshavevariously been interpreted as resulting

from memory confusion, from shif ts in Thurstonian response criteria, or from selective attention.

Thesurprising pattern of results found here imposes an important constraint on thepsychological

interpretation of sequential effectsand onthe formal modelsof absolute identification which

incorporate these ideas. In what follows, wediscussthese interpretations in turn andask whether

each can accommodate thepattern of results foundin the two experiments.

Memory confusion

Asdescribed in the Introduction, sequential effectshave long been taken to indicate the

confusion of items in memory (e.g. Holland & Lockhead, 1968). The most successful

formulation of this ideaisStewart et al.’s (2005) relative judgment model, in which each item is
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judged relative to thepreviousonebut with the judgment of the current stimulus dif ference

contaminated bymemory for previous dif ferences. Existing memory-based interpretationsof

sequential dependencies emphasizethe effectsof preceding stimuli and ignoreprevious

responses; the impulseplotsandstimulus-only regression analyses thereforeprovide the

appropriatedescription of thedata for appraising thememory-confusionaccount.

The results of these analysesaredif ficult to reconcilewith amemory-based interpretation

of sequential effects. If sequential effects reflect the influenceof memories for previously

encountered stimuli, we would expect that influenceto decrease as the time sincethe

presentation of thosestimuli is lengthened, because the memory tracefadesover time (e.g.,

Wicklegren, 1974). This is true irrespectiveof whether thesequential effects result from memory

for actual stimuli or from memory of stimulusdif ferences. Even if one assumes that forgetting

occursover items rather than in physical time (e.g., McGeoch, 1932), thebest that can be

expected is that increasing the ISI will makeno differenceto the effectsof previous stimuli . In

Experiments1 and 2, increasing the timebetween trials decreased assimilation to 1�nS , consistent

with the ideathat thememory for that stimulusdiminished. However, contrast to 2�nS became

morepronounced, not less.

It might bepremature to abandonStewart et al.’s (2005) highly successful account of

absolute identification onthebasis of the current results. However, we can seeno

straightforwardmemory-based interpretation of the finding that increasing the time between

trialsdiminishes the effect of themore recently presented stimulusbut increases the effect of the

moredistantly presented item. Furthermore, the situation is not improved byassertingseparate

effectsof precedingstimuli and responses. Thestimulus-response regressions show that

increasing the ISI leads to greater contrast to both 1�nS and 2�nS , and it isagain diff icult to see
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why lengthening the time sincethe establishment of amemory traceshould increase the effect of

that traceon the current response.

Shifts in response criteria

The current data are also hard to reconcilewith the ideathat sequential effects result from shifts

in Thurstonian response criteria. According to criterion setting theory (Treisman & Will iams,

1984), each trial establishes a tracking tracewhich shif ts the response criteria away from the

current response, andastabilization tracewhich produces asmaller shift towards the current

stimulus. These traces decay over timeso that the criteria move back to their long-term reference

locations. Criterion setting theory thereforepredicts separate effectsof recent stimuli and

responses, with contrast to the former andassimilation to the latter. Increasing the time between

trials should reduceboth the assimilation to preceding responses and the contrast to preceding

stimuli , and thestimulus-response regressionanalyses provide an appropriatedescription of the

dataagainst which to test thesepredictions.

The results of these analysescontradict criterion setting theory. In keeping with the

model, we foundassimilation to 1�nR ; themagnitude of this effect wasnot affected bythe ISI,

but this may simply reflect aslow decay in the tracking trace. However, we also foundthat

increasing the timebetween trials rendered the regression coeff icients for 1�nS and 2�nS

signif icantly morenegative. This is exactly theopposite of what is predicted; criterion setting

theory assumes that thestabil izing shiftsdecay linearly over time, such that increasing the ISI

must decrease the magnitudeof the contrast effect.
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Criterion setting theory is, of course, only one instantiation of the ideathat sequential

effects result from shifts in response criteria. Alternative criterion-settingmodelscould be

developed to account for the current data if one werewilli ng to assume arbitrary shifts in

response criteria. Specificall y, one would need to postulateshif tswhich initiall y increased over

time (to explain the increase in contrast with increasing inter-stimulus interval) but which

eventuall y changed direction and began to decay (because it makes nosense for the criteria to

drif t apart indefinitely). It would behard to motivatesuch assumptions: WhereasTreisman and

Will iams (1984) convincingly argue that theshif ts in criteria predicted bycriterion setting theory

tune the responsesystem to theprevalent flux of sensory information, it is dif ficult to seehow

thepattern of criterion shif tsneeded to explain the current datacould be justif ied.

Selective attention

Our resultsarehard to interpret in terms of memory processesor shif ts in response criteria. They

are, however, consistent with an account based onselective attention, the SAMBA model of

Brown et al. (2008). Like criterion setting theory, this account posits separate influencesof

preceding stimuli and responses such that astimulus-response regression provides themost

appropriatedescription of sequential effects, and, as wehaveshown, the resultsof such analysis

show that increasing the timebetween trials producesan increase in contrast to both 1�nS and

2�nS . This is thepattern of resultspredicted byBrown et al.’s model.

Recall that the key ideaof SAMBA is that theparticipant selectively attends to the region

of thestimulus dimension occupied bythe experimental stimuli . This selective attention is

modelled byaPoisson rehearsal process: Thestimulusdimension is represented byan ordered
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seriesof nodes and theparticipant directs rehearsal activity to the nodes covering the range of

stimuli presented during the experiment (Marley & Cook, 1984). Increments in the activity of

each node areoffset by a passivedecay process, and the magnitudeof a given stimulus is judged

by determining theproportion of total rehearsal activity which liesbelow (or above) the

corresponding node. On someproportion of trials, the rehearsal activity is preferentiall y directed

towards the most recently presented stimulus; this preferential rehearsal may also be considered

a form of selective attention. If a subsequent stimulus liesabove thepreferentiall y-rehearsed

node, the stimulusmagnitudewil l beoverestimated; if it li es below, themagnitudewil l be

underestimated. Thus, preferential rehearsal of recent stimuli producescontrast to thosestimuli .

This model predicts that contrast wil l increasewith increasing ISI. Immediately after the

presentation of 1�nS , the participant begins to direct rehearsal activity to the corresponding node.

Meanwhile, the activity in all theother nodespassively decays. The longer this goes on, the

greater theproportion of total rehearsal activity accruing to the 1�nS node and, correspondingly,

the greater the contrast effect. Therewil l also be increased contrast to 2�nS , provided the model

parameters are chosen such that the increased rehearsal of the 2�nS nodeduring the interval

between 2�nS and 1�nS is not offset by increased decay during the interval between 1�nS and nS

(or if, asBrown et al., 2008, suggest, the redirection of rehearsal activity continues for more than

one trial.) Theselective attentionmechanism embodied in Brown et al.’s SAMBA model

thereforesuccessfull y predicts thekey pattern of results foundin the current experiments.

According to SAMBA, themagnitude estimateproduced bytheselective attentionstage

is fed into Lacouture and Marley’s (1995) mapping model, theoutputsof which serve as inputs

to ball istic accumulators (Brown & Heathcote, 2005) which producethe final response. Residual

activation in theball istic accumulators is responsible for assimilation to previous responses, and
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this effect is predicted to decreaseover time. The current experiments foundthepredicted

response assimilation, andalthoughwe did not observe adecline in thiseffect when the ISI was

increased this may simply reflect aslow decay in ballistic accumulator activity. Cruciall y, the

selective attention mechanism is not tied to theother elementsof SAMBA. The selective

attentioncomponent of SAMBA representsa general ideawhich may be incorporated into other

psychophysical models, including ones which provide different explanations for response

assimilation.

Theselective attentioncomponent of SAMBA provides theonly account of sequential

effects which correctly predicts that increasing the ISI wil l increase contrast to preceding stimuli .

However, there is one aspect of the current data which ispotentiall y problematic for this account,

namely that thestimulus-response regressionanalyses provide li ttle evidencefor contrast to 1�nS

in theshort ISI conditions. In Experiment 1, the mean coeff icient for 1�nS in theShort condition

was0.009(Table1). In Experiment 2, thestimulus-response regression produced mean

coeff icients for 1�nS of 0.030in the S,S condition and 0.029in the L,Scondition (seethe lower

half of Table 2). Onesample t-tests establi shed that none of these coeff icientsare signif icantly

dif ferent from zero. Mori and Ward (1995) similarly foundthat the coeff icients for 1�nS were

sometimespositive, althoughthey are typicall y strongly negative in the absenceof feedback (see

also Mori, 1998). We do not regard this asaseriousproblem because the selective attention

mechanism isonly expected to produceweak contrast to 1�nS when the ISI is short, and the

coeff icientsobtained from thestimulus-response regression used to identify stimulus-specif ic

effectsarenoisy because of themulticoll inearity amongstimuli and responsepredictor variables.

However, should future experiments find signif icant assimilation to 1�nS (when 1�nR is included

in the regression model), theselective attentionexplanationwil l need to be modif ied.
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The current resultshave applicabilit y beyondabsolute identification. DeCarlo (1992)

varied the ISI in a magnitude estimation experiment and foundthat, when a stimulus-response

regression was used, therewas contrast to 1�nS which became morepronounced as the ISI

increased. DeCarlo suggested that this pattern indicated a mis-specif ication of the regression

model. However, theselective attentioncomponent of SAMBA producesa magnitude estimate

andMarley andCook (1986) developed amodel for magnitude estimation based uponthis

mechanism but without the redirection of rehearsal activity which produces contrast. If the re-

direction of rehearsal activity to recently presented stimuli assumed bySAMBA also occurs in

magnitude estimationexperiments, then this might provide an explanation for DeCarlo’s result.

That is, in magnitude estimation, as in absolute identif ication, preferential rehearsal of recent

items may produce contrast to preceding stimuli , themagnitudeof which increaseswith

increasing timebetween trials. Similarly, the current results argue against the ideathat sequential

effects result from confusion of items in memory or shif ts in response criteria. Both of these

ideashavebeen invoked asexplanations for sequential effects in other psychophysical tasks

(e.g., Lockhead, 1992; 2004; Treisman, 1984; Treisman & Willi ams, 1984); their failure to

capture the pattern in absolute identificationcasts doubt on their appli cabil ity in thesesituations,

too.

Oneoutstanding questionconcerns the reason for redirecting rehearsal activity to the

most recently presented stimuli . This redirection producescontrast andalso underlies the

increase in contrast which results from increasing the ISI. Since contrast shif tstheparticipant’s

response away from the correct value, we might ask what function the preferential rehearsal

serves. In the real-world, recently presented stimuli are likely to occur again in thenear future

(Treisman, 1985). It may be that selectively attending to the most recent stimuli reduces the
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perceptual noise in the representation of these items, thereby improving the accuracy with which

li kely futurestimuli are represented. In absolute identification tasks, perceptual noise is usuall y

so small as to be irrelevant, but under other conditions the redirected rehearsal activity may

improve performance. Alternatively, thepreferential rehearsal of recent items may serve as a

general tracking mechanism such that, if the range or distribution of stimuli suddenly change

(e.g., Ward, 1987), thesystem reallocates rehearsal activity to the new values.
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Footnotes

1 When separate regressionanalyses are conducted for a number of different participants, it is

common to use inferential statistics, such as t-testsandANOVA, to test whether the mean

coeff icientsdif fer from zero or dif fer between conditions (Lorch & Myers, 1990). However, an

alternative, arguably superior, approach is provided bymulti-level analysis (Raudenbush &

Bryk, 2002). For all of the analyses reported here we conducted corresponding multil evel

analysesand foundthesamepattern of significant results.

2 A reviewer asked whether the results for the subject averaged data reflected the findings from

individual participants. In thestimulus-only regression, the 1�nS coeff icient decreased when the

ISI was lengthened for 27 of the37 participants (p = .008, two-tailed Binomial test) and the 2�nS

coeff icient decreased for 25 of the37 participants (p = .047). The coeff icients for the nS , 3�nS ,

4�nS and 5�nS termsdecreased for 17, 15, 22and 18 participants, respectively (all ps> .3). For

thestimulus-response regression, increasingthe ISI led to adecrease in the 1�nS coeff icient for

26 of the37 participants (p = .02). Similarly, 26 participantsshowed a decrease in the coeff icient

for 2�nS . The coeff icients for nS , 1�nR and 2�nR decreased for 15, 17and 15 participants,

respectively (all ps> 0.3). These results match thoseof the averaged data.

3 In addition to Equations1 and 2, several alternative regressionequations for the assessment of

sequential effectshavebeen proposed (Lockhead 1984; Lockhead & King, 1983; DeCarlo &

Cross, 1990; in addition, a reviewer suggested regressing the current responseonly on the
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preceding sequenceof responses). These approachesproduced the essentiall y thesame resultsas

those reported here.



33

References

Brown, S., andHeathcote, A. (2005). A ball istic model of choice response time.

Psychological Review, 112, 117-128.

Brown, S. D., Marley, A. A. J., Donkin, C., and Heathcote, A. (2008). An

integrated model of choicesand responses timesin absolute identification.

Psychological Review, 115, 396-425.

Brown, S., Marley, A. A. J., and Lacouture, Y. (2007). Isabsolute identif icationalways

relative?Comment onStewart, Brown, andChater (2005). Psychological Review, 114,

528-532.

Coll ier, G. (1954). Intertrial associationat the visual threshold asa function of

intertrial interval. Journal of Experimental Psychology, 48, 330-334.

DeCarlo, L. T. (1992). Intertrial interval andsequential effects in magnitude scaling.

Journal of Experimental Psychology: Human Perception and Performance, 18, 1080-

1088.

DeCarlo, L. T., andCross, D. V. (1990). Sequential effects in magnitudescaling:

models and theory. Journal of Experimental Psychology: General, 119, 375-396.



34

Forster, K. I., and Forster, J. C. (2003). DMDX: A Windows display program with

mil lisecondaccuracy. Behavior Research Methods, Instruments & Computers, 35,

116-124.

Holland, M. K., and Lockhead, G. R. (1968). Sequential effects in absolute judgments

of loudness. Perception & Psychophysics, 3, 409-414.

Jesteadt, W., Luce, R. D., andGreen, D. M. (1977). Sequential effects in judgmentsof

loudness. Journal of Experimental Psychology: Human Perception and Performance, 3,

92-104.

Kent, C., and Lamberts, K. (2005). An exemplar account of thebow andset-size effects in

absolute identification. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 31, 289-305.

Lacouture, Y. (1997). Bow, range, andsequential effects in absolute identification: A

response-time analysis. Psychological Research, 60, 121-133.

Lacouture, Y., and Marley, A. A. J. (1995). A mapping model of bow effects in

absolute identification. Journal of Mathematical Psychology, 39, 383-395.

Laming, D. (1984). The relativity of ‘ absolute’ judgments. British Journal of

Mathematical and Statistical Psychology, 37, 152-183.



35

Lockhead, G. R. (1984). Sequential predictorsof choicein psychophysical tasks. In S.

Kornblum & J. Requin (Eds.), Preparatory states and processes (pp. 27-47). Hil lsdale,

NJ: Erlbaum.

Lockhead, G. R. (1992). Psychophysical scaling: judgmentsof attributesor objects? Behavioral

and Brain Sciences, 15, 543-601.

Lockhead, G. R. (2004). Absolute judgmentsare relative: A reinterpretation of some

psychophysical ideas. Review of General Psychology, 8, 265-272.

Lockhead, G. R., and King, M. C. (1983). A memory model of sequential effects in

scaling tasks. Journal of Experimental Psychology: Human Perception and Performance,

9, 461-473.

Lorch, R. F., andMyers, J. L. (1990). Regression analysesof repeated measuresdata in

cognitive research. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 16, 149-157.

Luce, R. D., Green, D. M., and Weber, D. L. (1976). Attention bands in absolute

identif ication. Perception & Psychophysics, 20, 49-54.

Marley, A. A. J., andCook, V. T. (1984). A fixed rehearsal capacity interpretation of



36

limitsonabsolute identification performance. British Journal of Mathematical and

Statistical Psychology, 37, 136-151.

Marley, A. A. J., andCook, V. T. (1986). A limited capacity rehearsal model for

psychophysical judgmentsapplied to magnitude estimation. Journal of Mathematical

Psychology, 30, 339-390.

McGeoch, J. A. (1932). Forgettingand the law of disuse. Psychological Review, 39, 352-370.

Mil ler, G. A. (1956). The magical number seven, plus or minus two: some limitson

our capacity for information processing. Psychological Review, 63, 81-97.

Mori, S. (1998). Effectsof stimulus informationand number of stimuli on sequential

Dependencies in absolute identification. Canadian Journal of Experimental

Psychology, 52, 72-83.

Mori, S., and Ward, L. M. (1995). Pure feedback effects in absolute identification.

Perception & Psychophysics, 57, 1065-1079.

Murdock, B. B. (1960). Thedistinctivenessof stimuli . Psychological Review, 67, 16-

31.

Petrov, A. A., andAnderson, J. R. (2005). Thedynamicsof scaling: A memory-based



37

anchor model of category ratingandabsolute identif ication. Psychological Review, 112,

383-416.

Raudenbush, S. W., and Bryk, A. S. (2002). Hierarchical linear models: applications and data

analysis methods (2nd ed.). ThousandOaks, Cali fornia: Sage Publications.

Rouder, J. N., Morey, R. D., Cowan, N., and Pfaltz, M. (2004). Learning in a

unidimensional identif ication task. Psychonomic Bulletin & Review, 11, 938-944.

Staddon, J. E. R., King, M., and Lockhead, G. R. (1980). On sequential effects in

absolute judgment experiments. Journal of Experimental Psychology: Human Perception

and Performance, 6, 290-301.

Stewart, N. (2007). Absolute identification is relative: A reply to Brown, Marley, and

Lacouture (2007). Psychological Review, 114, 533-538.

Stewart, N., Brown, G. D. A., andChater, N. (2005). Absolute identification by

relative judgment. Psychological Review, 112, 881-911.

Treisman, M. (1984). A theory of criterion setting: An alternative to the attention bandand

response ratio hypotheses in magnitude estimation andcross-modali ty matching. Journal

of Experimental Psychology, General, 113, 443-463/



38

Treisman, M. (1985). Themagical number seven andsome other featuresof category

scaling: properties of amodel for absolute judgment. Journal of Mathematical

Psychology, 29, 175-230.

Treisman, M., and Will iams, T. C. (1984). A theory of criterion settingwith an

application to sequential dependencies. Psychological Review, 91, 68-111.

Ward, L. M. (1987). Remembranceof sounds past: Memory and psychophysical scaling. Journal

of Experimental Psychology: Human Perception and Performance, 13, 216-227.

Ward, L. M., and Lockhead, G. R. (1970). Sequential effects and memory in category

judgments. Journal of Experimental Psychology, 84, 27-34.

Ward, L. M., and Lockhead, G. R. (1971). Responsesystem processed in absolute judgment.

Perception & Psychophysics, 9, 73-78.

Wicklegren, W. A. (1974). Single-tracefragil ity theory of memory dynamics. Memory &

Cognition, 2, 775-780.



39

Tables

Table 1. Regression coefficients for the stimulus-only regression (Equation 1) and stimulus-

response regression (Equation 2) from Experiment 1.

Predictor or
2R

Mean SD F(1,35) 2
pK p

Short Long Short Long

Stimulus-only regression (Equation 1)

nS 0.877 0.888 0.067 0.073 1.36 .04 .252

1�nS 0.042 -0.005 0.046 0.059 19.44 .36 <.001

2�nS -0.037 -0.059 0.029 0.030 14.40 .29 .001

3�nS -0.034 -0.032 0.025 0.031 0.09 .00 .765

4�nS -0.021 -0.022 0.029 0.022 0.01 .00 .930

5�nS -0.014 -0.015 0.027 0.030 0.00 .00 .991

2R 0.855 0.860 0.072 0.071

Stimulus-response regression (Equation 2)

nS 0.877 0.887 0.066 0.073 1.24 .03 .274

1�nS 0.009 -0.047 0.078 0.110 11.29 .24 .002

1�nR 0.040 0.049 0.081 0.082 0.34 .01 .565

2�nS -0.032 -0.066 0.067 0.071 5.30 .13 .027

2�nR -0.008 0.015 0.062 0.072 2.22 .06 .145

2R 0.852 0.859 0.072 0.071
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Table 2. Regression coefficients for the stimulus-only (Equation 1) and stimulus-response

regression (Equation 2) analyses for Experiment 2.

Predictor
or 2R

Mean SD

S,S S,L L,S L,L S,S S,L L,S L,L

Stimulus-only regression

nS 0.880 0.887 0.859 0.907 0.074 0.088 0.082 0.066

1�nS 0.068 -0.010 0.080 -0.011 0.069 0.076 0.068 0.066

2�nS -0.015 -0.038 -0.025 -0.064 0.057 0.048 0.047 0.054

2R 0.852 0.831 0.846 0.857 0.081 0.097 0.084 0.081

Stimulus-response regression

nS 0.885 0.890 0.864 0.908 0.074 0.088 0.079 0.068

1�nS 0.030 -0.048 0.029 -0.080 0.113 0.155 0.128 0.141

1�nR 0.043 0.046 0.059 0.079 0.107 0.148 0.115 0.133

2�nS -0.033 -0.042 -0.048 -0.077 0.109 0.111 0.119 0.116

2�nR 0.016 0.000 0.037 0.015 0.121 0.123 0.120 0.107
2R 0.861 0.836 0.857 0.863 0.074 0.094 0.076 0.082

Note. Column headings indicate 1,2 �� nnISI , nnISI ,1� durations: S= Short (4.5s), L = Long(9.0s)
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Table 3. ANOVA results for stimulus-only (Equation 1) and stimulus-response regression

(Equation 2) coefficient from Experiment 2.

Predictor 1,2 �� nnISI nnISI ,1� 1,2 �� nnISI * nnISI ,1�

F(1,35) 2
pK p F(1,35) 2

pK p F(1,35) 2
pK p

Stimulus-only regression

nS 0.00 .00 .965 15.68 .31 <.001 5.48 .14 .025

1�nS 0.39 .01 .537 40.70 .54 <.001 0.60 .02 .445

2�nS 4.65 .12 .038 14.31 .29 <.001 0.96 .03 .335

Stimulus-response regression

nS 0.02 .00 .896 10.39 .23 .003 5.09 .13 .030

1�nS 0.59 .02 .447 21.39 .38 <.001 0.63 .02 .431

1�nR 1.44 .04 .239 0.39 .01 .535 0.19 .01 .662

2�nS 1.44 .04 .239 1.01 .03 .321 0.31 .01 .583

2�nR 0.98 .03 .329 0.86 .02 .360 0.04 .00 .853



42

Figure Legends

Figure1. Impulse plots for Experiment 1.

Figure2. Impulse plots for Experiment 2.
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Figure1.
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Figure2.
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