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Novel Convolution-Based Signal Processing
Techniques for an Artificial Olfactory Mucosa

Julian W. Gardner, Senior Member, IEEE, and James E. Taylor

Abstract—As our understanding of the human olfactory system
has grown, so has our ability to design artificial devices that mimic
its functionality, so called electronic noses (e-noses). This has led to
the development of a more sophisticated biomimetic system known
as an artificial olfactory mucosa (e-mucosa) that comprises a large
distributed sensor array and artificial mucous layer. In order to
exploit fully this new architecture, new approaches are required
to analyzing the rich data sets that it generates. In this paper, we
propose a novel convolution based approach to processing signals
from the e-mucosa. Computer simulations are performed to inves-
tigate the robustness of this approach when subjected to different
real-world problems, such as sensor drift and noise. Our results
demonstrate a promising ability to classify odors from poor sensor
signals.

Index Terms—Convolution, electronic nose, signal processing.

I. INTRODUCTION

O VER the past 20 years, significant advances have been
made in the understanding of the mechanism by which

odors are detected by the human olfactory system. This has led
to the concurrent development of instruments designed to de-
tect odors and commonly known as artificial or electronic noses
(e-noses) [1].

However, sensor-based electronic noses today generally
suffer from significant weaknesses that limit their widespread
application. Their sensing ability is heavily affected by envi-
ronmental factors: general drift due to temperature, humidity
and background noise, sensor variations and sensor poisoning.
These problems, in addition to often wanting to detect very low
concentrations (below PPM) of the odor in air [2], [3], make
the design of an electronic nose difficult even with expensive
autosamplers and the supply of clean air.

Faced with this challenge, novel devices are being designed
to tackle these issues and improve detection thresholds and clas-
sification success rates; examples include combining an elec-
tronic nose array with a gas chromatography column or mass
spectrometer. These analytical instruments are large and expen-
sive and place significant limitations on the way in which their
application and potential market.
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Fig. 1. Schematic structure of the olfactory organ. Located in the (a) mucous
layer are the (b) olfactory cilia of the sensory cells. These cells consist of a
(c) cellular body, (d) a dendrite, and (e) a neurite or axon. They are wedged in
between support cells (f). The mucous layer is maintained by Bowman’s glands
(g) [5].

More recently, it has been suggested that chromatography
plays a role in odor discrimination within the biological ol-
factory system, known as nasal chromatography [4]. This re-
port suggests that the aqueous layer covering the olfactory re-
ceptors in the olfactory epithelium (Fig. 1) acts as a retention
layer as odors move along and through it, functioning similar
to a stationary phase coated channel in a gas chromatographic
system. Hence, different odors are partitioned and transported
at different rates to olfactory receptor cells – leading to dif-
ferent temporal signatures. This may even be further amplified
by the expressing of different binding proteins within the olfac-
tory epithelium.

While e-noses are becoming more common, the processing
methods used to analyze and classify sensor data are generally
time-invariant models. Statistical methods extract time indepen-
dent features from the sensor signals, such as baseline (zero
gas) and peak (analyte present) values or some simple parameter
from them (difference, ratio, etc.). These static features are then
passed into a pattern recognition algorithm, most commonly
linear discriminant function analysis. Linear regression is then
used to separate the groups of data and classify the results. Al-
ternatively, nonlinear but still static methods such as artificial
neural networks are used to classify these static features.

While these processing methods have proved to be sufficient
for traditional e-nose devices, the new architecture of the e-mu-
cosa provides novel data sets unlike those encountered in the
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Fig. 2. Photograph of the embodiment of the artificial olfactory mucosa with
40 sensors distributed along a meandering coated channel [6].

Fig. 3. Sensor arrangement in the artificial olfactory mucosa [6].

field before – even when considering time-series approaches ap-
plied to conventional e-noses. Thus, we require new approaches
to data processing and information extraction within an artificial
olfactory mucosa.

The artificial olfactory mucosa (Fig. 2), or e-mucosa, is a cur-
rent example of this kind of novel device [6]. In summary, this
device is a coated column with sensors placed at intervals along
its length. The distribution and number of these sensors deter-
mine the performance of the device. Fig. 3 illustrates the sensor
arrangement in the artificial olfactory mucosa. The basic device
shown here contains ten sensor tunings (s1 to s10) repeated four
times (A to D).

The data produced by this device are now more information
rich, containing information relating to both the spatially sepa-
rated data from different sensors (classical sensor-based e-nose)
and temporal differences between identical sensors at different
locations (GC-like system). This novel spatio-temporal data set
has been analyzed by treating the domains independently and
treating them as individual features for the pattern recognition
stage of processing. However, information relating to the rela-
tionship between these two domains is lost. A novel method of
processing is required to fully utilize the information contained
within these novel data.

This paper explores a simplified subsystem of the e-mucosa,
employing one sensor array at the start of the channel, and a
second set at the end of the channel. This simplified e-mucosa,
or perhaps a kind of “tandem electronic nose,” considerably re-
duces the dimensionality of the problem to solve. The aim is
then to apply novel convolution and signal combination tech-
niques to this the signal generated and thereby improve classifi-
cation by low-cost instruments in the field of artificial olfaction.

II. PROCESSING METHODS

The statistical processing of data is carried out in several
stages. First, a signal preprocessing stage is used to prepare the
data for processing. This can involve normalizing and/or fil-
tering the data. The functions carried out here should be con-
sidered carefully, as the quality of some aspects of the data will
be improved while others are diminished. For example, normal-
ization will make each set of data directly comparable; however
weak signals dominated by noise will have their relative noise
magnified greatly.

Features are then extracted from the data sets. The aim of
this process is to determine a parameter that can be used to dif-
ferentiate between the data from one input source and another.
Multiple features can be extracted. This adds to the possibility
of good discrimination, but also adds extra dimensionality to the
data and the potential of redundancy in the data. This paper will
only be considering single-feature processing methods.

The feature set is processed using a method that organizes
data for pattern discrimination or classification. Various robust
statistical methods for this process exist [7]. In the field of arti-
ficial olfaction, principle components analysis and discriminant
function analysis are commonly used [8], [9]. These functions
present high-dimensional data sets in a manner so that there is
maximum variance in a minimum number of dimensions.

Classification is the final step in the processing procedure.
This is done statistically, utilizing methods such as linear met-
rics and nearest neighbor linkage.

The methods presented hence focus on the feature extraction
stage. These methods will be combined with different standard
normalization techniques in the preprocessing stage. The ex-
tracted feature set will then be processed using principle com-
ponents analysis, and benchmarked based on the quality of the
separation in the principle component (PC) plots. Classification
is not carried out explicitly, because we are seeking excellent
linear separability of the samples.
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A. Preprocessing (Normalization)

Since the magnitude of the sensor output can vary greatly, it
is important to normalize each sensor’s raw data ( , where is
the sensor index) so that one sensor can be compared to another
in an unbiased manner. However, any noise on small signals will
be amplified greatly and must be carefully considered.

Two normalization schemes were used, signed auto-scaling
and auto-ranging. Auto-scaling takes the data and scales the
magnitude linearly so that all data points lie between 0 and 1,
and is signed to preserve the direction of the magnitude

(1)

Auto-ranging scales the data in a linear manner so that the
range of the data is 1. The advantage here is to preserve any
swing that may occur in more advanced problems, as multiple
odors may cause sensors to respond in both directions

(2)

These normalized data were passed to the feature extraction
stage, along with unmodified raw data for comparison and
benchmarking

(3)

B. Feature Extraction

In order to extract features from the two sensor arrays high-
lighted in Fig. 3, and , the normalized signals from these
arrays must be combined. Each sensor output from is com-
bined via a function with the equivalent sensor in . Different
combinatorial functions will generate different characteristic
signals. Convolution is often used in signal processing for
combining and identifying similarities between signals [10].
An example of this kind of characteristic signal is shown in
Fig. 4(b)

(4)

The product of the two data arrays can also form a charac-
teristic signal. To preserve magnitude, a signed root product is
used. Fig. 4(c) illustrated an example of this characteristic signal

(5)

The third characteristic signal considered is a simple differ-
ence between two signals. The resulting characteristic signal is
illustrated is Fig. 4(d)

(6)

In order to be used in the main processing step, a feature needs
to be chosen and extracted from these characteristic signals. The
area under the curve was chosen, as this feature contains infor-
mation on the shape of the signal. Combination signals obtain

Fig. 4. (a) Normalized response from two sensors, S1A and S1B, in the sim-
ulated artificial olfactory mucosa [11] to a 25 s pulse of toluene vapor in air.
(b) Characteristic signal generated by the convolution of the two sensor re-
sponses. (c) Characteristic signal generated by the signed root-product of the
two sensor responses. (d) Characteristic signal generated by the difference of
the two sensor responses.

their shape from the shape of the constituent signals, with varia-
tions in the shape of the source signals altering the overall shape,
and thus area, of the combined signal.

As the e-mucosa incorporates concepts of other traditional
e-nose devices, these can also be extracted from the same data
set and provide a point of comparison. For these devices, a suit-
able feature needed to be chosen for extraction and use in the
main processing step. Peak magnitude was selected due to its
prevalent use within standard e-nose devices [1]–[3]. Both an
e-nose ( ) and an advanced form of z-nose™ (an e-nose pre-
ceded by a GC column) ( ) were extracted and processed, so
both classes of device could be considered as comparison

(7)

(8)
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Fig. 5. Example of ten cross-convolution pairs available (from a possible 45)
for a ten sensor array.

The final feature extraction considered is referred to as cross-
convolution. Whereas the convolution method already presented
convolutes two identical sensors in different arrays, cross-con-
volution convolutes two different sensors in the same array. This
process was applied to both and , and the area under the
curve was extracted as the feature for future processing

(9)

(10)

where and are different sensor indices. This process creates
a large number of possible convolution pairs, some examples of
which are illustrated in Fig. 5. The rapidly increasing compu-
tational cost as the number of sensors rises, and the addition of
redundant noise make it impractical and undesirable to use all
these possible convolutions in data processing. Thus, a subset
of convolutions is chosen for the processing stage.

C. Data Processing

Once a feature array has been established from the feature
extraction process, it is entered into a principle components
analysis (PCA). This process establishes principle components
along which variance of the data is maximized.

The first 2 or 3 principle components are then used to gen-
erate a data plot. From the degree of separation observed in this
plot and variance information obtained from the principle com-
ponent analysis, the different processing methods can be easily
compared.

III. SIMULATION

Utilizing data simulated during the development of the
e-mucosa [6], [11], which simulated a 5 s pulse of three
analytes (ethanol, toluene, and a 50/50 mixture of the two)
passing through the system. The microchannel simulated has a
cross-sectional geometry of 0.5 mm 0.5 mm and a length of
2.3 m, and was coated with parylene as the stationary phase.
Forty sensors, in four groups of ten different tunings, were
placed along the microchannel, as shown in Fig. 3. These sim-
ulations were carried out in commercial software, MATLAB
using a finite-element model [11].

This simulation would be used to determine strengths and
weaknesses of the processing methods outlined previously. In
order to provide a meaningful test, noise needed to be added
to the e-mucosa simulation data. An e-nose system is subject
to many kinds of noise, ranging from environmental factors,

variations in analyte concentration, variations in sensor sensi-
tivity, changes in the sensors over time and poisoning of the sen-
sors. These major noise sources were considered as part of three
major categories of noise.

A. Additive Noise Signal-to-Noise Ratio (SNR)

Additive noise represents primarily background noise sources
– sensor noise, background environmental factors and taints
in the environment. This noise source was modeled as white
Gaussian noise, with zero mean and a variance based on a per-
centage of the sensor’s peak magnitude

(11)

where is the final noisy signal, the simulation
signal and the noise signal

(12)

where is the noise value, and is a number series gener-
ated by MATLAB’s random number generation function
with a mean of 0 and variance of 1.

B. Sample Variance (SV)

Sample variance (SV) focuses on factors directly affecting the
response of the sensors – sensor variation and sample variation.
This noise source was modeled as a Gaussian value with a mean
of 1 and a variance expressed as a percentage

(13)

where is the final noisy signal, the simulation
signal, and the noise value

(14)

where is the noise value and is a number generated by
MATLAB’s random number generation function with a
mean of 0 and variance of 1.

C. Baseline Drift (BD)

Baseline drift (BD) is a major problem in e-nose systems.
This represents variations in the sensor’s baseline, as a result of
age, poisoning, and temperature. This noise source was modeled
as a Gaussian value with a mean of 0 and a variance based on a
percentage of the sensor’s peak magnitude

(15)

where is the final noisy signal, the simulation
signal, and is the noise value

(16)

where is the noise value, and is a number generated by
MATLAB’s random number generation function with a
mean of 0 and variance of 1.

In order to prevent extreme differences in drift occurring in
the simulated channel, each pair of equivalent sensors are sub-
jected to the same drift value.
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Fig. 6. PCA plot of 5 s pulses of ethanol, toluene, and a 50/50 mixture of
the two, processed using auto-scaled sensor responses. Simulation noise:
5% sample variance. (a) e-mucosa, convolution characteristic signal feature.
(b) Traditional e-nose, peak magnitude feature. (c) GC-coupled e-nose,
cross-convolution feature.

The e-mucosa data set was replicated 20 times with each of
these noise sources and the noise value set to 5%, producing

Fig. 7. PCA plot of 25 s pulses of ethanol, toluene, and a 50/50 mixture of
the two, processed using auto-scaled sensor responses. (a) e-mucosa, convolu-
tion characteristic signal feature. (b) Traditional e-nose, peak magnitude feature.
(c) GC-coupled e-nose, cross-convolution feature.

three sets of 20 samples, each set having one noise source added.
Another three data sets, also of 20 samples each, were produced
with binary combinations of noise sources ( ,

, ).
The six noisy data sets where then normalized using the three

normalization methods presented in the data processing section,
producing three groups of six normalized data sets. Each nor-
malized group was then processed using the seven feature ex-
tractions presented in the data processing section, producing
an array of 42 PCA results in each of the three normalization
groups.
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TABLE I
�-SCORES BETWEEN EACH PAIR OF ANALYTE GROUPS (ETHANOL-TOLUENE, ETHANOL-50/50 MIX, TOLUENE-50/50 MIX) WITH RESPECT TO THE

FIRST TWO PRINCIPLE COMPONENTS OF A PRINCIPLE COMPONENT ANALYSIS, FOR EACH OF THE SEVEN FEATURE PROCESSING METHODS

DESCRIBED IN SECTION II USING AN AUTO-SCALING NORMALIZATION METHOD

IV. SIMULATION RESULTS

Each processing result was plotted with the first two principle
components, examples of which can be seen in Fig. 6.

-scores between each pair of analytes were calculated for the
first two principle components using a separate variance -test
in Unistat 5.5 software. Table I provides a summary of results
for the differing processing methods when using auto-scaling
normalization.

Overall, our results showed that auto-scaling was the prefer-
able normalization method. In the presence of significant
sample variance and SNR noise, the e-mucosa and a con-
volution or product characteristic signal showed a marked
improvement over the traditional e-nose systems, obtaining a
higher -score over the two principle component dimensions.
However, these same methods show a weakness to very large
amounts of baseline drift in the system during the measurement
period. This is actually unlikely as the measurement period is
short (minutes) compared with conventional e-noses that need
sensor stable over weeks or months. The difference signal per-
formed poorly overall, although was superior to the convolution
and product methods in the presence of baseline drift.

Cross-convolution performed well in all cases, showing
improvement for sample variance and SNR noise sources (al-
though not as much as the e-mucosa), and little to no weakness
to baseline drift.

V. EXPERIMENTAL DATA

A limited selection of experimental data was available from
a prototype e-mucosa system [6]. This data set contains five
repeats of data for ethanol, toluene, and a 50/50 mixture of the
two at each of five different pulse lengths: 1, 5, 10, 25, and 50
s. While a small sample, attempts were made to analyze these
data.

Based on the simulation results, the data were normalized
using auto-scaling. The data were then processed using each of
the seven processing methods. Fig. 7 illustrates some of the PCA
results.

As expected from such a small sample, the results were of
limited value. However, it can still be seen that convolution and
cross-convolution processing produced PCA plots where the
group crossover was significantly reduced.

VI. CONCLUSION

These results show that characteristic signals, such as those
produced through combinatorial functions (such as convolution,
product and difference) are suitable for use in a data processing
and pattern recognition system. The performance of classifica-
tion systems using these signals was comparable, or better, than
a traditional data processing methodology for a classic e-nose
device.

However, while being highly resistant to additive SNR noise
and sample variance, this system showed a weakness to baseline
drift in sensor outputs. The common mode effect and high noise
estimate of 5% has significantly overestimated this problem, as
sensors are unlikely to drift by such a large amount in the period
of seconds or minutes that such tests would normally be carried
out for a time-series approach. For example, 2.4% drift per day
for a classical e-nose is only 0.01% for a 6 min e-mucosa sample
time.

In conclusion, we believe that convolution-based methods of
processing can be used to improve the classification accuracy of
not only novel e-mucosa type sensor systems but may even be
applicable to conventional sensor-based e-nose technologies. In
fact, the technique could even be applied to other time-based sig-
nals generated by metal oxide and other types of odor sensors.
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Finally, our experimental results on simple odors (ethanol and
toluene) indicate that using convolution-based methods can pro-
vide an improved image for classification, and work utilizing
larger data sets will be presented in a separate article. The work
extends to more interesting odors, such as essential oils and
more complex odors, and ultimately tackling the odor segmen-
tation problem.
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