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The Impact of Contact Tracing in Clustered Populations
Thomas House*, Matt J. Keeling

Warwick Mathematics Institute and Department of Biological Sciences, University of Warwick, Coventry, United Kingdom

Abstract

The tracing of potentially infectious contacts has become an important part of the control strategy for many infectious
diseases, from early cases of novel infections to endemic sexually transmitted infections. Here, we make use of mathematical
models to consider the case of partner notification for sexually transmitted infection, however these models are sufficiently
simple to allow more general conclusions to be drawn. We show that, when contact network structure is considered in
addition to contact tracing, standard ‘‘mass action’’ models are generally inadequate. To consider the impact of mutual
contacts (specifically clustering) we develop an improvement to existing pairwise network models, which we use to
demonstrate that ceteris paribus, clustering improves the efficacy of contact tracing for a large region of parameter space.
This result is sometimes reversed, however, for the case of highly effective contact tracing. We also develop stochastic
simulations for comparison, using simple re-wiring methods that allow the generation of appropriate comparator networks.
In this way we contribute to the general theory of network-based interventions against infectious disease.
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Introduction

Modelling has become a central tool in understanding the

epidemiology of infectious disease, and designing control strate-

gies. One control method, contact tracing, has been considered in

a large number of disease contexts. These include the 2003 SARS

pandemic [1,2], the 2001 UK FMD epidemic [3–6], contingency

planning for deliberate release of smallpox [7,8], and control of

sexually transmitted infections [9–11]. A particular benefit of

tracing is that it allows targeting of control, at the cost of effort

spent on finding the individuals at risk.

Since contact tracing takes place as a process over the network

of interactions between hosts, it is natural to consider network-

based models of this process. Theoretical work has so far dealt with

contact tracing as a branching process [12], through modifications

to mean-field equations [13], pairwise approximations [14] and

simulation [15]. This work means that the implications of

heterogeneous numbers of contacts (and related network proper-

ties such as assortativity) for the efficacy of contact tracing are

reasonably well understood.

For the case of clustering, due to the analytical challenge posed

by the existence of short closed loops in the contact network, it has

generally been more difficult to make similar progress. Existing

theoretical work has therefore either been restricted to the ‘limiting

case’ of clump structured populations, with all clustering due to

completely connected cliques [16], or else simulation on exemplar

networks [13,14,17].

In this work, we derive an improved triple closure for clustered

pairwise models that removes two significant problems with

existing closure regimes, and use this to make a systematic

investigation of the impact of clustering on the efficacy of contact

tracing, keeping other network and epidemiological parameters

constant as appropriate. We find that, for many parameter

choices, there are intuitive explanations, borne out by modelling,

for the increased impact of contact tracing as clustering increases.

This is not, however, a completely general result, meaning that the

full implications of clustering for the efficacy of contact tracing are

subtle and should be the subject of case by case investigation.

We perform our analysis within the SIS paradigm, meaning that

while some of our terminology will be general to all infectious

disease epidemiology, other statements will be geared towards the

modelling of sexually transmitted infections where recovery/

treatment does not confer lasting immunity.

Methods

Modelling contact tracing
The dynamics underpinning our model are shown schematically

in Figure 1. Individuals are either susceptible (S), infectious (I ) or

traced (T ) and move between these compartments due to four

processes: infection; treatment; tracing; and stopping tracing. This

paradigm is suitable for the consideration of sexually transmitted

diseases, where infectious individuals can transmit infection to

contacts, then seek treatment, which clears the pathogen and stops

transmission but leaves the individual susceptible. It also involves

the process of contact tracing, which we use as a general term that

includes both partner notification and efforts by public-health

workers to track down potentially infected individuals.

The four processes described so far separate into two categories:

those that happen at an individual level, and contact processes.

Seeking treatment and the cessation of tracing take place in the

population at rates proportional to a number of individuals, and so

fall into the former category. Using square brackets around a quantity

to indicate its expected number in the population (so that quantities in

square brackets are extensive expected numbers rather than intensive

proportions) we take treatment to happen at a rate g½I �, where g is the
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treatment rate constant, and the cessation of efforts to trace a treated

individual’s contacts to happen at rate gT ½T �, where gT is the rate

constant associated with the end of tracing.

Infection and contact tracing, on the other hand, are contact

processes, and so take place at a rate proportional to a number of

partnerships in the population. The full set of partnership links can

be thought of as forming a network, through which contact

processes spread. For infection, the rate is t½S/I �, where the term

in brackets is the number of susceptible-infectious pairs in the

population and t is the transmission rate constant, and for tracing,

the rate is r½I/T �, where the term in brackets is the number of

infectious-traced pairs in the population and r is the tracing rate

constant. We have introduced here a notation in which a arrow is

drawn from a state that transmits across the link to the state that is

affected by the transmission, which will become important when

we consider triples in addition to pairs.

To consider the impact of network structure, in particular

clustering, on the efficacy of contact tracing, we consider a

scenario in which an infection with underlying SIS dynamics is at

its endemic equilibrium, and then contact tracing is introduced

and the numbers infectious measured over time. This requires a

dynamical model, and so we now turn to two complementary

methods that we use to study the system in question: ODE-based

models and stochastic simulation.

ODE-based models
Models based on ordinary differential equations (ODEs) are

widely used in infectious disease modelling. We present here a

series of ODE systems that can be used in the context of network

models, starting with mean-field approaches, and moving on to

pairwise models. We have found that, for application to contact

tracing, mean-field models and existing pairwise closures are

inadequate and so we develop an improved pairwise model to

study this system.
Mean-field models. For SIS dynamics with transmission rate

t across a network link and treatment rate g on a large network,

the expected numbers of susceptible and infectious individuals

evolve according to the following exact, but unclosed, set of

equations.

d

dt
½S� ~{t½S/I �zg½I �,

d

dt
½I � ~t½S/I �{g½I �:

ð1Þ

In our notation, ½A� refers to the number of individuals in state A,

½A{B� and ½A/B� to the number of pairs with one individual in

state A and one in state B, and a directed arrow on the right hand

side of a differential equation denotes the direction of transmission

for a contact process.

Figure 1. The compartments and processes for SIS dynamics with contact tracing. Processes are shown with coloured arrows, labelled
according to the rate at which they happen.
doi:10.1371/journal.pcbi.1000721.g001

Author Summary

There are multiple ways to control infectious diseases—
vaccination and drugs such as antibiotics or anti-virals
form part of the pharmaceutical approach, however
another route is to stop people infecting each other. This
can be done either through general efforts to reduce
epidemiologically relevant contacts, or through a more
targeted attempt to trace the contacts of known cases
who can then be isolated or treated. The impact of this
kind of contact tracing is a priori likely to depend strongly
on the network of contacts linking people together. In this
paper, we develop new mathematical and computational
techniques to model the impact of clustering: the
probability that any two contacts of a given individual
are also linked to each other in the network, creating
triangles. Often, and for intuitively understandable rea-
sons, the presence of clustering increases the efficacy of
contact tracing, however we show that in the regime of
highly effective contact tracing sometimes the opposite is
true.

Contact Tracing in Clustered Populations
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To produce a mean-field model, we use a low-level closure that

approximates pairs in terms of individuals.

½A/B�& n

N
½A�½B�, ð2Þ

where N is the number of nodes in the network, and n is the

number of links per node. For SIR dynamics, improvements of this

scheme are possible that have a factor of n{1 in the numerator of

(2) in the place of n, representing the fact that after the first

infection, each infected individual in an unclustered network will

have one fewer link due to the individual they were infected by.

For clustered networks, SIS dynamics and contact tracing, all of

which we are considering here, it is not clear that a similar

argument can be used and so we keep the factor of n.

Pairwise models. In pairwise models, rather than using

assumptions like (2), equations for the pair-level variables that

appear on the right-hand side of (1) are written down, leading to

triple-level variables that are then closed in terms of pairs.

The starting point for our analysis is the standard pairwise model

for SIS dynamics [18], with transmission rate t across a network link

and treatment rate g. This consists of the unclosed equations (1)

above, together with the following equations for pairs.

d

dt
½S{S�~{2t½S{S/I �z2g½S{I �,

d

dt
½S{I �~t ½S{S/I �{½I{S/I �{½S/I �ð Þzg ½I{I �{½S{I �ð Þ,

d

dt
½I{I �~2t ½I{S/I �z½S/I �ð Þ{2g½I{I �:

ð3Þ

Here, ½A{B/C� is the number of nodes of type B connected to

both an A and a C, which may or may not be connected themselves.

We have continued use of the notation in which a directed arrow on

the right hand side of a differential equation denotes the direction of

transmission for a contact process, as explained above.

The equations (3) are, like (1), exact, but to produce an integrable

system it is necessary to introduce a system of spatial closure. The

standard approximation for a population of size N, with exactly n

links per node and a clustering coefficient of w—defined as the ratio

of triangles to triples in the network—was derived in [19] and is:

½A{B/C�

&
n{1

n
(1{w)

½A{B�½B{C�
½B� zw

N

n

½A{B�½B{C�½C{A�
½A�½B�½C�

� �
:
ð4Þ

For clarity about the definition of w, where the network adjacency

matrix is G~(Gij), then

w~
Trace(G3)

P
i,j

(G2)ij

 !
{Trace(G2)

[½0,1�: ð5Þ

There are two problems with the approximation (4) that are particularly

relevant for the question of contact tracing. The first of these is that we

would like to preserve the pair-level relation
P

b½A{b�~n½A�. For the

dynamical system (3), this pair-level relation will be preserved over time

provided the following triple-level equation holds:

X
a

½a{B/C�~(n{1)½B{C�: ð6Þ

Equation (6) above holds for the standard closure for unclustered

networks, but fails to be satisfied for non-zero clustering. The second

problem with the standard closure is the question of how triangles of

three infected individuals behave during the early asymptotic stage

of an epidemic, where all dynamical variables are governed by the

proportion of the population that is infectious, (½I �=N)%1. While

for pure SIS dynamics these triples are not dynamically important,

when we come to consider contact tracing similar terms will become

relevant. Under (4) and assuming the prevalence of infection is very

low, the proportion of unclosed triples composed of three infected

individuals is proportional to ½I �=N as expected. However, under

(4), the proportion of triangles where all three individuals are

infected is not small (and does not scale with ½I �=N); clearly, this is

inconsistent and should be rectified in any improved closure.

Motivated by these two considerations, we propose an

alternative that respects (6) and has appropriate polynomial

dependence on ½I �=N during the early epidemic.

½A{B/C�

&(n{1) (1{w)
1

n

½A{B�½B{C�
½B� zw

½A{B�½B{C�½C{A�
½A�
P
a

½a{B�½a{C�=½a�ð Þ

0
@

1
A:ð7Þ

This closure breaks the standard symmetry between A and C,

however if contact processes are consistently identified on the right

hand side of ODE systems like (3) using arrows, then this is not

conceptually problematic.

For the rest of this paper, we call pairwise models based on the

closure (7) improved pairwise models; while pairwise models based

on (4) are called standard pairwise models.

Full pairwise system. Putting together all four processes for

our model with tracing, our pairwise system consists of the following

exact equations together with the closure approximation (7).

d

dt
½S� ~{t½S/I �zgT ½T �,

d

dt
½I � ~t½S/I �{r½I/T �{g½I �,

d

dt
½T � ~r½I/T �zg½I �{gT ½T �,

d

dt
½S{S� ~{2t½S{S/I �z2gT ½S{T �,

d

dt
½S{I � ~t ½S{S/I �{½I{S/I �{½S/I �ð Þ

{r½S{I/T �{g½S{I �zgT ½I{T �,
d

dt
½I{I � ~2t ½I{S/I �z½S/I �ð Þ{2r½I{I/T �{2g½I{I �,

d

dt
½S{T � ~{t½T{S/I �zr½S{I/T �

zg½S{I �zgT (½T{T �{½S{T �),
d

dt
½I{T � ~r ½I{I/T �{½T{I/T �{½I/T �ð Þ

zg ½I{I �{½I{T �ð Þ{gT ½I{T �,
d

dt
½T{T � ~2r ½T{I/T �z½I/T �ð Þ

zg½I{T �{2gT ½T{T �:

ð8Þ

We will also consider, for comparison, these equations closed using
(4), and mean-field models.

Contact Tracing in Clustered Populations
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Simulation
A complementary approach to pairwise models comes from

individual-based, stochastic simulation where an explicit network

is generated and dynamical processes are simulated using Monte

Carlo methods.

In order to provide a good comparison between pairwise models

and simulation, we generate explicit networks that are designed to

introduce structure to the population along the lines that we have

been considering, by introducing finite neighbourhood size and

clustering, without introducing other significant structural features.

This enables us to test results derived using pairwise equations against

stochastic results. It also complements our general approach of

looking at the implications of finite neighbourhood size and clustering

ceteris paribus, as an aid to intuitive understanding of the impact of

population structure on disease and intervention dynamics.

While other methods exist to generate networks with significant

clustering coefficients, such as [20–22], and some special clustered

networks have the attractive property of begin easily generated and

analysed [23,24], we use simple rewiring methods that are easily

described and whose implications for global network structure can be

readily understood, but which limit us to a smaller region of network

parameter space. Most importantly, we find that giant component sizes

for networks generated using our methods typically exceed 99%.

Creation of a homogeneous random network. In order to

create a homogeneous random network, we firstly generate a one-

dimensional ring with k -th nearest neighbour links. Since we

consider networks where n is even, we set k~n=2, and then make

five cycles through every node i, and for each of that node’s links

½i{j�, swap with a random link ½k{l� as below,

j l

D D
i k

?

j {{{ l

i {{{ k

: ð9Þ

This generates a homogeneous random network free from

dynamically relevant biases.

Increasing clustering. In order to increase the clustering

coefficient for a network, whilst keeping degree distribution constant,

we use a new rewiring method that we call the ‘big V’. This means

making the following network re-wiring for a ‘V’ of nodes

A{a{O{b{B as below,

A B

\ =

a b

\ =

O

?

A { { { { { { { B

a { { { b

\ =

O

,

ð10Þ

provided the rewiring does not reduce the clustering coefficient

overall. Clearly, such a rewiring does not modify the link distribution,

but does increase the clustering coefficient. Empirically, we find that

at low neighbourhood sizes, this method generates networks with

clustering parameters up to w~0:3 before running out of possible

rewirings. Whether alternative methods could yield larger values of w
without either a significant reduction in the giant component size or

other dynamically relevant biases remains an interesting question,

however the levels of clustering given by this rewiring are sufficient to

demonstrate the qualitative epidemiological effects in which we are

interested. Other recent work making use of this rewiring includes

[25,26].

Stochastic dynamics. We simulate SIS dynamics with

tracing on a network using a standard continuous-time

algorithm [27]. The implementation of such algorithms, and the

differences between them and discrete-time equivalents, in the

context of epidemic models is discussed in [28, Chapter 6]. Since

the two contact processes involved (infection and tracing) both

involve the explicit network, our model is essentially individual

based.

Parameterisation
For our baseline network parameters, we set n~4 to determine

the effects of finite neighbourhood size and clustering. We also

take the network size to be N~105 to produce little variability due

to stochastic effects after the initial stages of an epidemic. Our

main aim is to measure the effects of clustering, w, and this is

varied between 0 and 0:5. The recovery rate, g, can be formally set

to 1 through non-dimensionalisation, and we set gT~103 to

achieve separation of timescales. Our epidemiological motivation

for this separation is the expected difference in the time from

infection to detection and treatment, and the time taken to notify

sexual partners. For emerging respiratory infections, such a

separation of timescales would, of course, not exist.

The other dynamical rates, t and r are fixed indirectly. For the

tracing rate, r, we vary the proportion of contacts successfully

traced, e~
r

rzg
T

, between 0 and 1, which then determines r. For

the infection transmission rate, t, we need methods for fitting to a

given endemic equilibrium, in both stochastic and ODE contexts.

Pairwise transmission fitting. In the case of fitting to an

endemic state, we solve the algebraic equations generated by

setting

d

dt
½A�~ d

dt
½A{B�~0 , ½I �~I�N , ð11Þ

in equations (8), giving a transmission rate t� that yields the default

endemic equilibrium, I�~0:5.

Stochastic transmission fitting. For computational

efficiency, we use the following method to find the transmission

rate t� needed to sustain a given endemic prevalence I� at

constant treatment rate g:

1. Each individual is set as infectious with probability I� (and

conversely, the probability of being set susceptible is 1{I�).

2. A random ½S{I � pair is chosen, and the susceptible individual

is infected.

3. A random infectious individual is placed into the susceptible

class.

4. Steps 2 and 3 are repeated until spatial structure is equilibrated,

and then averages ½I � and ½S{I � of the number of infectious

Contact Tracing in Clustered Populations
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individuals and susceptible-infectious pairs are taken over a

further set of iterations of 2 and 3.

5. The transmission rate is then given by t�~g
½I �
½S{I �

.

While this method is not simply described, it is accurate and,

most importantly, computationally efficient.

Results

Dynamics in the absence of tracing
Figure 2 shows the comparison of stochastic simulation on

networks of the type we have been considering with both mean-field

SIS, standard pairwise, improved pairwise, and also the triplewise

model of [29]. This demonstrates good agreement between

simulation and network ODE models, but poor agreement with

the mean-field model. The inclusion of the triplewise model shows

that disagreements between pairwise models and simulation in the

clustered network are largely due to higher order structure, however

these effects are nowhere near as large as the differences between

mean-field and pairwise models. Since triplewise models involve a

massive increase in computational burden, we do not consider that

in this case their use is justified.

The results of Figure 2 were obtained by fitting the improved

pairwise model to a given endemic state, I�~0:5. The impact of

this fitting on the transmission rate and number of ½I{I � pairs,

while varying the clustering coefficient w, is shown in Figure 2,

panes C and D.

Impact of network structure on contact tracing
The need to incorporate network structure into models that

involve contact tracing is shown by Figure 3. Panes A and B show

predictions of prevalence over time for several models, which

demonstrate that while both pairwise approaches are in good

agreement with simulation, the failure of the mean-field model is

dramatic—and similarly large failures can be observed in several

other regions of parameter space.

For the case of a clustered network in Pane B, the agreement

between pairwise models and simulation becomes slightly worse

than for the unclustered network results of Pane A, with the

improved pairwise model providing a closer fit. Most importantly,

the improved pairwise model is in qualitative disagreement with

simulation—while both mean-field and standard pairwise models

predict a peak in infection before reaching the endemic state, which

is not seen in either the improved pairwise model or simulation. We

therefore use the results of Panes A and B to rule out the use of

mean-field and standard pairwise models. This leaves the improved

pairwise model, which we systematically compare to simulation in

Panes C and D. Since both the improved pairwise model and

simulation depend on underlying parameters in the same way, they

form a complementary pair of approaches to the study of contact

tracing in clustered populations. The only exception to this is the

case of low prevalence of infection, where stochastic effects become

important and the stochastic model predicts extinction at higher

transmission rates than the pairwise model.

Figure 2. Features of SIS dynamics where the transmission rate t is set in the improved pairwise model to give constant endemic
state I�~~~0:5. Other parameters are set at their default values: g~1, n~4, N~105 . The clustering coefficient w is set at either A: 0 or B: 0:3, and
different ODE approaches are compared to simulation. Also shown are the values of C: t� , the transmission rate, and D: ½II ��=N , the relative weight of
infectious-infectious pairs, at the endemic state as w is varied while holding I�~0:5.
doi:10.1371/journal.pcbi.1000721.g002

Contact Tracing in Clustered Populations
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General results
We consider the effects of clustering on the efficacy of contact

tracing using pairwise models by starting the system at the

endemic state in the absence of any contact tracing. We then

introduce tracing at a success probability e, and allow the system to

evolve away from the endemic state for 0.1 and one generations

(time periods 1=(10g) and 1=g respectively, corresponding to

policy evaluation after a number of months and a number of years

for an endemic STI) and measure the numbers infectious. This

gives the results in Figure 4, which show that clustering increases

the efficacy of contact tracing at a given success rate at one

infectious generation, but not at 0.1 generations, depending on the

actual tracing success rate. Pane C shows this variety of responses,

where clustering is more effective for large success rates at this

small time—the very large rates require still smaller times to

demonstrate this effect, since after 0.1 disease generations they

have passed into the regime where clustering leads to less effective

tracing.

The results shown in Panes C and D of Figure 2 provide a

guide to intuition to explain these results. Clustering increases the

number of ½I{I � pairs present at a given endemic state, and

contact tracing can be viewed as hyper-parasitism on the network

of infected individuals. This means that clustering can be

expected to enhance the efficacy of contact tracing by increasing

the neighbourhood size of the infected sub-network. On the other

hand, to explain a constant level of endemic infection as

clustering is increased, a larger underlying rate of transmission

must be present, which will undermine tracing as an individual

left untouched by a wave of tracing will reinfect their immediate

neighbourhood more quickly. Exactly which parameter choices

allow either effect to dominate is not clear, except that lower

levels of tracing success always cause clustering to increase the

efficacy of tracing. Otherwise, it appears that the impact of

clustering on contact tracing needs to be evaluated on a case-by-

case basis.

Individual trajectories
To see the dynamics of infection that generate the results in

Figure 4, we plot stochastic and improved pairwise temporal and

parametric dynamics for two exemplar values of contact tracing

Figure 3. Comparison of infection curves for SIS dynamics with contact tracing. Clustering, w is set to either A: 0 or B: 0:3, with contact
tracing success, e~0:4 and infection rate, t~6. Other parameters are set to their default values: g~1, gT~103, n~4, N~105 . The best agreement is
between simulation and the improved pairwise model, with the mean-field approach qualitatively wrong. Sweeping over p~t=(tzg) and e for
w~0:3, the endemic states predicted by C: the improved pairwise model, and D: stochastic simulation on N~104 nodes, are in good agreement
except where prevalences are low.
doi:10.1371/journal.pcbi.1000721.g003

Contact Tracing in Clustered Populations
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success, e, in Figure 5. For e~0:15, we see in Pane A that the

system settles over time to a different endemic state, and in Pane C

that this involves consistently lower levels of infection in the

clustered system than the unclustered system, meaning that

clustering has enhanced the efficacy of contact tracing.

By contrast, for e~0:65, we see in Pane B that contact tracing

drives infection to extinction, and from Pane D that this

involves firstly higher levels of infection in the clustered system

and then lower levels of infection for both the pairwise and

stochastic models. We see a final reversal of the impact of

clustering in Pane B, which is present in only the pairwise

system: at longer times clustering again reduces the efficacy of

contact tracing. At this point, stochastic variability in simula-

tions has become highly significant and so we would not expect

the two models to agree, since the pairwise equations should

only hold in the limit where stochastic effects are negligible. To

simulate in this regime would require extremely large popula-

tion sizes, perhaps beyond what would ever be considered for

realistic human scenarios.

Discussion

We have provided an intuitive and general framework in which

to study the impact of network clustering on the efficacy of contact

tracing in the control of infectious disease. This has produced three

major results.

Firstly, the effects of contact tracing often cannot be accurately

captured by mean-field models, necessitating a modelling

approach that incorporates network structure.

Secondly, we have demonstrated that due to the increased

number of infectious-infectious pairs seen in clustered networks at

a given pathogen burden, contact tracing at a fixed, relatively low

success rate will be more effective at larger levels of clustering than

at the same fixed success rate without clustering.

Finally, we have demonstrated that this increased efficacy is not

completely general, and is reversed for large tracing success rates

at certain times. This demonstrates the need to be cautious in the

consideration of the epidemiological effects of a network property

as subtle as clustering—unfortunately it is not possible to obtain a

general ‘rule of thumb’ for its impact.

Our approach has been to consider the impact of clustering on a

network with fixed, finite neighbourhood size, in the absence of

other known important dynamical effects such as risk structure

and assortativity. The complexity of even our simplified problem

provides justification for our approach, however it would be of

significant interest to see how these quantities interact with each

other. The full impact of higher order structure than triangles is

also, as suggested by our stochastic results, likely to be important.

Another important difference may manifest itself if we were to

consider a disease with long-lasting immunity, obeying SIR dynamics,

or other compartmental structure, including complex intervention

strategies and comparable tracing and recovery timescales. Our

Figure 4. Impact of clustering on efficacy of contact tracing away from the equilibrium state with half of the population infectious.
The system is started in the endemic equilibrium, and then for A, B: w~0 or C, D: ww0, the level of infection is measured at times A, C: t10~1=(10g)
and B, D: t1~1=g. Results are obtained in the improved pairwise model, with contact tracing success e varied between 0 and 1. Other parameters set
to defaults: g~1, g

T
~103, I�~0:5.

doi:10.1371/journal.pcbi.1000721.g004

Contact Tracing in Clustered Populations

PLoS Computational Biology | www.ploscompbiol.org 7 March 2010 | Volume 6 | Issue 3 | e1000721



preliminary work in this direction suggests that our novel result about

clustering reducing contact tracing efficacy can be extremely significant

in other contexts, however a full consideration of this would take us

significantly beyond the aims of the present work.
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