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ESTIMATING THE WEIGHT OF METRIC MINIMUM SPANNING
TREES IN SUBLINEAR TIME∗

ARTUR CZUMAJ† AND CHRISTIAN SOHLER‡

Abstract. In this paper we present a sublinear-time (1+ε)-approximation randomized algorithm
to estimate the weight of the minimum spanning tree of an n-point metric space. The running time

of the algorithm is Õ(n/εO(1)). Since the full description of an n-point metric space is of size Θ(n2),
the complexity of our algorithm is sublinear with respect to the input size. Our algorithm is almost
optimal as it is not possible to approximate in o(n) time the weight of the minimum spanning tree
to within any factor. We also show that no deterministic algorithm can achieve a B-approximation
in o(n2/B3) time. Furthermore, it has been previously shown that no o(n2) algorithm exists that
returns a spanning tree whose weight is within a constant times the optimum.
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1. Introduction. Despite extensive investigations over the last few decades, the
complexity of the minimum spanning tree problem is still not completely understood.
Although an optimal deterministic algorithm is known [22], no tight bounds on the
running time of this algorithm could be obtained. The best upper bound on the
running time for a deterministic algorithm was obtained by Chazelle [5], who pre-
sented an algorithm that achieves a running time of O(|V | + |E|α(|E|, |V |)), where
α is the functional inverse of Ackermann’s function. In turn, Karger, Klein, and Tar-
jan [19] gave an optimal O(|V | + |E|)-time randomized algorithm. Much research
has been devoted to studying the minimum spanning problem for various classes of
graphs and for variants of the problem. For example, the problem of computing the
minimum spanning tree of a set of points in a Euclidean space and related problems
have been intensively studied (see [10] for a summary of results). Despite this effort,
the fastest algorithm to compute such a minimum spanning tree in the R

d requires
O(n2−2/(�d/2�+1)+ε) time for an arbitrarily small constant ε.

In this paper we present another important step toward understanding the min-
imum spanning tree problem. We consider the classical variant of the minimum
spanning tree problem for metric spaces or, equivalently, in graphs with weights satis-
fying the triangle inequality. The input to the problem consists of an n-point metric
space (P, d), and the goal is to estimate the weight of the minimum spanning tree
of P . In this paper, we show that even though the full description of an n-point
metric space is of size Θ(n2), there exists an algorithm that approximates the weight
of the minimum spanning tree of P to within a (1 + ε)-factor in time Õ(n/εO(1)) (we
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use Õ to hide polylogarithmic factors). This is the first sublinear-time algorithm for
this problem. Our algorithm is randomized, and it achieves the promised approxima-
tion guarantee with the probability of at least 3/4 (using standard techniques, the
probability can be amplified if needed). Furthermore, it was previously shown in [18]
that no o(n2) algorithm exists that returns a spanning tree whose weight is within
any constant times the weight of the minimum spanning tree of P . Therefore, our
result shows that one can approximate the weight of the minimum spanning tree, but
there is no hope of finding a witness for that approximation in sublinear time. Our
running time is essentially asymptotically optimal, because it is easy to show that no
o(n)-time algorithm exists that approximates the weight of the minimum spanning
tree within any factor. Also, randomization is essential for the algorithm. We show
that no deterministic B-approximation algorithm with o(n2/B3) running time exists.

By the well-known relationship between minimum spanning trees, travelling sales-
man tours, and minimum Steiner trees (see, e.g., [23]), our algorithm for estimating
the weight of the minimum spanning tree immediately yields sublinear-time (2 + ε)-
approximation algorithms for two other classical problems in metric spaces (or in
graphs satisfying the triangle inequality): estimating the weight of the travelling sales-
man tour and the minimum Steiner tree. No o(n2)-time algorithms were known for
these problems before. We believe that besides being interesting by themselves, these
approximation results may find applications in bounding the quality of solutions in
subproblems used in branch and cut (bound) algorithms to compute the exact solution
to these problems.

Our algorithms enlarge the ever growing list of problems solvable in sublinear time
that are often required for the analysis of massive data sets. Due to the tremendous
increase in computational power and interconnectivity during the last decade, more
and more often we have to deal with massive data sets, which are sets of size in
the range of several Gigabytes or more. Examples for such massive data sets are
Internet traffic logs, clickstream patterns, sales logs, and call-detail data records in
the telecommunications industry. Massive data sets typically cannot be processed
by algorithms requiring more than linear time, and often even linear-time algorithms
may be too slow. This leads to a natural question of which problems of interest
(if any) can be solved in sublinear time. Some simple results indicating that it is
sometimes possible to solve certain approximation problems in sublinear time are
well known, for example, approximating the median or the average value of a set of
n numbers. More sophisticated results have been obtained in the last few years for
a number of more complex problems, including clustering problems in metric spaces
[1, 6, 17, 18, 20], graph problems [7, 12, 14, 15, 21], geometric problems [6, 8], matrix
approximation [13], and string problems [2, 3, 11]; see also the recent survey in [9].

1.1. Related work. The problem of approximating the weight of the minimum
spanning tree in sublinear time was first addressed for arbitrary graphs in adjacency
list representation in a recent paper by Chazelle, Rubinfeld, and Trevisan [7]. In [7],
a sublinear algorithm is given, whose running time is independent of the size of the
input graph: If the maximum (or average) degree is D and if all edge weights are
known to be in the interval [1, W ], then the algorithm approximates the weight of
the minimum spanning tree to within a (1 + ε)-factor in time Õ(D · W · ε−3) with
probability at least 3

4 . However, if W = Ω(n), then no sublinear algorithm is known.
If we apply their algorithm to the metric version of the problem, then the running

time is O(n ·W · ε−3) because D = n− 1. Therefore, in our setting, their algorithm is
sublinear only if the ratio between the longest and the shortest edge W is sublinear
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906 ARTUR CZUMAJ AND CHRISTIAN SOHLER

in n, which certainly does not have to be the case in general (for example, even in the
case when (P, d) corresponds to the set of points P in a Euclidean plane, it is known
that W must be at least Ω(

√
n) and hence the running time is Ω(n1.5 · ε−3)).

In [8], the authors consider the problem of estimating the weight of the Euclidean
minimum spanning tree of a set P of n points in the R

d. They consider the model in
which the input point set is stored in a sophisticated data structure that supports two
types of access operations, namely, (i) emptiness queries for axis parallel squares and
(ii) approximate nearest neighbor queries for a set of prespecified cones. Additionally,
it is assumed that a smallest axis parallel bounding box of P is given. In this model the
authors give an algorithm that approximates the weight of the Euclidean minimum
spanning tree of P within a relative error of ε. The algorithm has a running time of
Õ(

√
n/εO(1)) assuming that the dimension is a constant and assuming that all access

operations to the data structure can be performed in logO(1) n time. The algorithm
uses Õ(

√
n/εO(1)) queries of types (i) and (ii).

1.2. New contribution. In contrast to both of the aforementioned algorithms,
our algorithm does not make any assumption about the input other than that we can
evaluate the distance between any two points in the metric space in constant time.

The high level approach of our algorithm is similar to that in [7]. We regard the
metric space as a complete graph and we express the weight of its minimum spanning
tree by a formula depending on the number of connected components in certain aux-
iliary subgraphs. In contrast to that of [7], our approach builds on geometric rather
than arithmetic progression. We will assume that the longest edge in (P, d) has length
W = (1 + ε)r for r = �log1+ε(4n/ε)� (as we will see later, this assumption does not
affect the complexity of the problem). We denote by G(i) = (P, E(i)) the graph that
contains an edge between p, q ∈ P if d(p, q) ≤ (1+ε)i. We use a randomized procedure
to approximate the number c(i) of connected components in each subgraph G(i). Us-
ing the approximation mst ≈ n−W +ε ·∑log1+ε W−1

i=0 (1+ε)i · c(i) (see Corollary 2.2),
we obtain an estimator for the weight of the minimum spanning tree of P .

The advantage of geometric progression is that we have to estimate only O(log W )
times the number of the connected components of a certain threshold graph in contrast
to W times in [7]. We achieve this at the cost of an increased variance of the estimator
(which makes it impossible to apply this approach to arbitrary graphs considered
in [7]). Instead of approximating the number of connected components within an
additive error of ε n, as in [7], we obtain an approximation with additive error of
ε·weight(mst); i.e., we relate the error directly to the weight of the minimum spanning
tree.

Our analysis explores the triangle inequality to ensure trade-offs between the
running time, the number of connected components, the vertex degrees, and the size
of the minimum spanning tree.

2. Preliminaries. We consider the problem of estimating the weight of the min-
imum spanning tree in a metric space: Given access to the n × n distance matrix of
a metric space (P, d), |P | = n, the goal is to approximate the weight of the mini-
mum spanning tree of P . Throughout the paper, we denote by mst the weight of
the minimum spanning tree of P . Our main contribution is an algorithm that in
Õ(n/ε7) time computes a (1 + ε)-approximation of mst, i.e., outputs a value M such
that mst ≤ M ≤ (1 + ε) · mst with probability at least 3

4 . For convenience, in the
remainder of the paper we will only require the output value M to be in the interval
[(1 − ε) · mst, (1 + ε) · mst]. We can always achieve the former bound by multiply-
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ing the output by 1/(1 − ε) and replacing ε by ε′ = min{ε/4, 1
2}. Because of this

transformation, we will refer to an algorithm that computes a value M in the interval
[(1− ε) ·mst, (1+ ε) ·mst] as a (1+ ε)-approximation algorithm for the weight of the
minimum spanning tree. We will use ε as the approximation parameter throughout
the paper.

Our result holds for arbitrary metrics (P, d) and assumes only that a constant-
time access to the distance oracle is provided. For our analysis we will also assume
that for every pair p, q ∈ P we have d(p, q) ∈ [1, (1 + ε)r], where r = �log1+ε(4n/ε)�;
i.e., the distance between any pair of points is at most 4n/ε rounded up to the nearest
power of (1+ε). As we will show below, such an assumption may introduce an additive
approximation error of at most ε

2 ·mst, which will not affect the final result. We use
a result of Indyk [18], who showed that in O(n) time one can approximate to within
a factor 1

2 the longest distance in a metric space. (The algorithm picks an arbitrary
vertex and takes the longest incident edge. By the triangle inequality, this edge is
at least half as long as the longest edge in the metric space.) Once we have such an
approximation W ∗, we can rescale the distances such that W ∗ = 2 ·n/ε. Since W ∗ is a
1
2 -approximation of the largest distance, after the scaling all distances are in [0, 4 n/ε].
Furthermore, by the triangle inequality the weight of a minimum spanning tree of a
metric space is at least as large as the weight of the longest distance, and since the
longest distance is at least W ∗, we have mst ≥ 2n

ε . Next, we observe that rounding up
every distance smaller than 1 to the distance 1 will change mst by an additive term of
at most n−1 while preserving the triangle inequality. Since n−1 ≤ ε

2 ·mst, in the so
modified metric the weight of a minimum spanning tree is a (1+ ε

2 )-approximation of
the weight of a minimum spanning tree in the original metric. Hence, we can assume
that all edges are in [1, W ∗]. To simplify the exposition we increase the upper bound
W ∗ to the nearest power of (1 + ε); i.e., we use W = (1 + ε)r. In the remainder of
the paper, we will show how to obtain a (1 + ε)-approximation algorithm under our
assumption. Replacing ε by ε′ = ε/4, this gives an algorithm with approximation
guarantee (1 + ε/2) · (1 + ε/4) ≤ (1 + ε) without changing the asymptotic running
time of our algorithm.

2.1. Approximating MST via counting connected components in auxil-
iary graphs. Our high level approach to approximating the weight of the minimum
spanning tree is similar to the one used in [7]. We express the weight of the minimum
spanning tree in terms of the number of connected components in certain auxiliary
graphs. While the formula from [7] uses arithmetic progression, our formula will be
based on geometric progression. Then we show how to approximate the number of
connected components.

For a given parameter i ∈ N, we define a threshold graph G(i) = (P, E(i)), where
(p, q) ∈ E(i) if and only if d(p, q) ≤ (1 + ε)i. We call the connected components of
G(i) the i-connected components and denote their number by c(i).

Let us first consider the case that the lengths of all edges in the metric space are
powers of (1 + ε). Then the next lemma can be obtained in a similar way as in [7] by
replacing arithmetic progression with geometric progression.

Lemma 2.1. Let (P, d) be an n-point metric space such that for any pair of points
p, q ∈ P we have d(p, q) = (1 + ε)i for some i ∈ {0, . . . , r}. Let W = (1 + ε)r. Then
we can write

(2.1) mst = n − W + ε ·
r−1∑
i=0

(1 + ε)i · c(i).
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Proof. Let us denote by n(j) the number of edges of weight (1+ε)j in a minimum
spanning tree. Then, we can write the weight of the minimum spanning tree as

mst =
r∑

j=0

(1 + ε)j · n(j)

=
r∑

j=0

(
1 + ε · (1 + ε)j − 1

ε

)
· n(j)

= (n − 1) + ε ·
r∑

j=0

(1 + ε)j − 1
ε

· n(j)

= (n − 1) + ε ·
r∑

j=1

(1 + ε)j − 1
ε

· n(j)

= (n − 1) + ε ·
r∑

j=1

j−1∑
i=0

(1 + ε)i · n(j)

= (n − 1) + ε ·
r−1∑
i=0

r∑
j=i+1

(1 + ε)i · n(j)

= (n − 1) + ε ·
r−1∑
i=0

(1 + ε)i ·
r∑

j=i+1

n(j).

Now we use the observation that
∑r

j=i+1 n(j) = c(i) − 1. Hence,

mst = (n − 1) + ε ·
r−1∑
i=0

(1 + ε)i · (c(i) − 1)

= (n − 1) + ε ·
r−1∑
i=0

(1 + ε)i · c(i) − ε ·
r−1∑
i=0

(1 + ε)i

= (n − 1) + ε ·
r−1∑
i=0

(1 + ε)i · c(i) − ((1 + ε)r − 1)

= n − W + ε ·
r−1∑
i=0

(1 + ε)i · c(i).

Corollary 2.2. Let (P, d) be an n-point metric space such that all pairwise
distances are in the interval [1, W ], where W = (1 + ε)r. Then we have

(2.2) mst ≤ n − W + ε ·
r−1∑
i=0

(1 + ε)i · c(i) ≤ (1 + ε) ·mst.

Proof. Let us consider an arbitrary pair of points p, q with (1 + ε)i < d(p, q) ≤
(1 + ε)i+1. Then we have (p, q) /∈ E(k) for k ∈ N with k ≤ i, and (p, q) ∈ E(j) for
j ∈ N with j > i. However, the same property would also hold if the edge weight
d(p, q) were exactly (1+ε)i+1. Hence, by rounding up every edge weight to the nearest
power of (1 + ε), we do not change the sets of edges in any of the threshold graphs.
Thus c(i) is also not affected by this transformation. Let GP be the weighted graph
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obtained by rounding up the edge weights to the nearest power of (1 + ε) (GP is not
necessarily a metric space, since the triangle inequality may become invalid after the
rounding). By Lemma 2.1, the weight of the minimum spanning tree of GP is exactly
n − W + ε ·∑r−1

i=0 (1 + ε)i · c(i). Since we increased only edge weights, the weight of
the minimum spanning tree of GP is larger than that of (P, d), and it follows that
mst ≤ n − W + ε ·∑r−1

i=0 (1 + ε)i · c(i). Since we increased every edge weight by a
factor of at most (1 + ε), the weight of the minimum spanning tree is increased by at
most a factor of (1 + ε). This yields n − W + ε ·∑r−1

i=0 (1 + ε)i · c(i) ≤ (1 + ε) · mst,
which proves the corollary.

Our algorithm is based on computing a randomized estimator ĉ(i) for each c(i).
Using this estimator, we can now phrase our randomized algorithm.

Metric-MST-Approximation (P, ε)
for i = 0 to r − 1 do

Compute estimator ĉ(i) for c(i)

Output M = n − W + ε ·∑r−1
i=0 (1 + ε)i · c(i)

Our main contribution is a sublinear-time randomized algorithm that outputs an
estimator ĉ(i) that with probability at least 1 − 1

4r satisfies the following property:

(2.3) c(i+1) − 1
r
· mst

(1 + ε)i
≤ ĉ(i) ≤ c(i) +

1
r
· mst

(1 + ε)i
.

It follows that with probability at least 3
4 all estimators ĉ(i) simultaneously satisfy

inequality (2.3). Observe now that we have

M = n − W + ε ·
r−1∑
i=0

(1 + ε)i · ĉ(i)

≥ n − W + ε ·
r−1∑
i=0

(1 + ε)i ·
(

c(i+1) − 1
r
· mst

(1 + ε)i

)

= n − W − ε ·mst + ε ·
r−1∑
i=0

(1 + ε)i · c(i+1)

≥ n − W − ε ·mst +
1

1 + ε
· ε ·

r∑
i=1

(1 + ε)i · c(i).

Since c(0) ≤ n, we obtain

M ≥
(

1 − ε

1 + ε

)
· n − W − ε · mst +

1
1 + ε

· ε ·
r−1∑
i=0

(1 + ε)i · c(i)

≥
(

1 − ε

1 + ε

)
·
(

n − W + ε ·
r−1∑
i=0

(1 + ε)i · c(i)

)
− ε ·mst

≥ (1 − 2ε) ·mst.

From Corollary 2.2, we obtain

M ≤ n − W + ε ·
r−1∑
i=0

(
(1 + ε)i ·

(
c(i) +

1
r
· mst

(1 + ε)i

))
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≤ n − W + ε ·mst + ε ·
r−1∑
i=0

(1 + ε)i · c(i)

≤ (1 + 2ε) · mst.

Hence, we have with probability at least 3/4

(1 − 2ε) ·mst ≤ M ≤ (1 + 2ε) ·mst.

In sections 3–7 we describe details of our randomized algorithm that in Õ(n/ε6)
time computes the estimator ĉ(i) that satisfies inequality (2.3). Replacing ε by ε/2
will conclude the proof of our main theorem.

Theorem 2.3. Let 0 < ε < 1 be an approximation parameter. Given access to
the n×n distance matrix of a metric space (P, d), |P | = n, algorithm Metric-MST-

Approximation computes in Õ(n/ε7) time a value M such that, with probability 3
4 ,

(1 − ε) ·mst ≤ M ≤ (1 + ε) · mst.

We remark that this result is almost optimal since it is easy to see that any
constant-factor algorithm requires time Ω(n) even in a randomized setting (see Theo-
rem 8.1 in section 8). Also, no deterministic algorithm can compute a constant-factor
approximation for the weight of a metric minimum spanning tree in o(n2) time (see
section 8), and no algorithm can compute a spanning tree that approximates the
weight of the minimum spanning tree within a constant factor in o(n2) time [18].

3. Estimating the number c(i) of i-connected components: Main ideas.
In this section we recall the approach taken by [7] to approximate the number of
connected components in a graph (not necessarily a metric space). The algorithm
repeats the following procedure until a certain threshold value is reached, to ensure
that the estimation of the number of i-connected components is with high probability
close to c(i):

• Pick a starting vertex p ∈ P uniformly at random.
• Choose a random integer number X according to the probability distribution

Pr[X ≥ k] = 1/k.
• Verify whether the connected component in G(i) containing vertex p has at

most X vertices or has more than X vertices.
With the exception of a minor modification in the probability distribution of X ,

the scheme above has been proposed by Chazelle, Rubinfeld, and Trevisan [7]. We
will run this procedure multiple times, and in each repetition of this procedure we
output βj , that is, the indicator random variable of the event that in the jth trial,
the connected component has at most X vertices. That is, if we denote by n

(i)
p the

size of the connected component in G(i) containing vertex p, then βj = 1 if n
(i)
p ≤ X

and βj = 0 otherwise. Notice that

E[βj ] =
∑

connected component C in G(i)

Pr[p ∈ C] ·Pr[X ≥ |C|]

=
∑

connected component C in G(i)

|C|
n

· 1
|C| =

c(i)

n
.

Therefore, if there are s repetitions of the procedure above, then we define

ĉ(i) =
n

s
·

s∑
j=1

βj .
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Since by the arguments above E[ĉ(i)] = c(i), this motivates the use of ĉ(i) as an es-
timator of the number of connected components; see [7]. The challenging part of
completing the analysis is to show that the random variable ĉ(i) is sharply concen-
trated around its expectation and to show that it can be computed efficiently. In
particular, our algorithm will use a nonstandard graph traversal that exploits the
triangle inequality combined with some randomized algorithm to check whether the
degree of the starting vertex is higher than X (and hence the connected component
contains more than X vertices). Unfortunately, the expected value of our estimator is
not exactly c(i). However, we will show that it is sufficiently close to c(i). Moreover,
we will develop some concentration bounds for ĉ(i) that satisfy the bounds in (2.3).

4. The CLIQUE-TREE-TRAVERSAL. Our method for verifying whether a
given connected component in G(i) has at most X vertices is to traverse the graph G(i)

starting at vertex p. Chazelle, Rubinfeld, and Trevisan [7] used the standard breadth-
first search (BFS) traversal algorithm for this purpose. However, in our setting a BFS
will not suffice to ensure both near-linear running time and sufficient concentration.
We have to develop a new traversal algorithm that exploits the triangle inequality.

Our graph traversal will not necessarily explore the connected components in
G(i). If we denote by V

(i)
p the set of vertices in the connected component of p in

graph G(i), then the graph traversal starting at p will visit a set of vertices Vexp

such that V
(i)
p ⊆ Vexp ⊆ V

(i+1)
p . We will see later in the analysis that this does not

significantly affect our estimator. We now describe our graph traversal algorithm in
detail.

At the beginning all vertices are unexplored. Then the starting vertex p is marked
as explored and representative. In the next step, all neighbors of p that are in distance
less than ε · (1 + ε)i are marked as explored. Then we proceed similarly to Prim’s
algorithm for the computation of minimum spanning trees: We choose the shortest of
the edges in E(i+1) that connect a representative vertex with an unexplored vertex.
This leads us to a new vertex that is again chosen to be explored and representative.
Then, we repeat all steps above until no further point can be explored. We call this
graph traversal the Clique-Tree-Traversal.

We give a pseudocode for the Clique-Tree-Traversal below. The sets Vexp ,
Vunexp , and Vrep denote the sets of explored, unexplored, and representative vertices,
respectively.

Clique-Tree-Traversal (P , p, i, ε)
Vrep = {p}; Vexp = {p}; Vunexp = P \ {p}
while there is an edge e = (p, q) ∈ E(i+1) with p ∈ Vrep and q ∈ Vunexp do

let (p, q) be the shortest such edge
Vexp = Vexp ∪ {q}; Vunexp = Vunexp \ {q}
if d(p, q) ≥ ε (1 + ε)i then Vrep = Vrep ∪ {q}

Properties of the Clique-Tree-Traversal. First, it is easy to see that the
Clique-Tree-Traversal algorithm can be implemented to run in Õ(n · |Vrep |) time,
where here and in the following we use Vrep and Vexp to refer to their final value in
an execution of the Clique-Tree-Traversal. Also, we have that (for ε ≤ 1

2 ) the
points that are assigned to the same representative vertex form a clique in G(i). This
property will be important in the analysis of our algorithm. It may be helpful to
think of the set of vertices explored by the Clique-Tree-Traversal as being the
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connected component in G(i) that contains p (as we have already discussed, this is
only approximately true, but it gives a good intuition).

Since we are considering edges incident to Vrep in increasing order of length, we
make sure that all vertices in Vrep have pairwise distance at least ε · (1 + ε)i. This
will be used later to obtain a lower bound on the cost of the minimum spanning tree
of G.

Finally, we show that V
(i)
p ⊆ Vexp ⊆ V

(i+1)
p . Vexp ⊆ V

(i+1)
p follows immediately

from the fact that the algorithm uses only edges from E(i+1) to explore the graph. To
show V

(i)
p ⊆ Vexp , let us consider an arbitrary vertex q ∈ V

(i)
p and let us assume that q

is not explored by the algorithm. Since q is in V
(i)
p , it is connected to p by a sequence

of edges p = p0, p1, . . . , pk = q such that d(pj , pj+1) ≤ (1 + ε)i for all 0 ≤ j < k. Let
� denote the smallest index such that p� is not explored by the algorithm. Thus, we
know that p�−1 is explored. If p�−1 is a representative vertex, then p� is explored from
p�−1, which is a contradiction to the choice of �. Thus, p�−1 is no representative vertex.
But then there is a representative vertex w with d(w, p�−1) < ε(1+ε)i. By the triangle
inequality we have d(w, p�) ≤ d(w, p�−1)+d(p�−1, p�) < ε(1+ε)i+(1+ε)i = (1+ε)i+1.
But this implies that p� is explored from w, which contradicts the choice of � and hence
our assumption that q is not explored.

We summarize our discussion in the following lemma.
Lemma 4.1. The algorithm Clique-Tree-Traversal satisfies the following

properties. Vrep and Vexp refer to the final value of these sets, i.e., their value at the
end of an execution of the Clique-Tree-Traversal.

(1) The algorithm can be implemented to run in time O(n · log n · |Vrep |).
(2) For ε < 1

2 , the points assigned to the same representative point form a clique
in G(i).

(3) V
(i)
p ⊆ Vexp ⊆ V

(i+1)
p .

(4) The vertices in Vrep have pairwise distance at least ε · (1 + ε)i.
In the analysis of our algorithm we will also use the notion of graph dispersion.

To define this notion, let us first extend the Clique-Tree-Traversal to a full
graph traversal in the following natural way: We start with an arbitrary vertex p and
run the Clique-Tree-Traversal with parameters (P, p, i, ε). If not all vertices are
explored at the end of this traversal, we start the Clique-Tree-Traversal from
one of the unexplored vertices (we never start at the same connected component more
than once). We do this until every vertex has been explored. We call this process the
full Clique-Tree-Traversal.

It is easy to see that the number of representative vertices computed by the
full Clique-Tree-Traversal may depend on the starting vertices. Let U

(i)
rep be

a maximum cardinality set of representative vertices computed by the full Clique-

Tree-Traversal for given P , i, and ε (the maximum is taken over all possible vertex
orderings). One parameter of particular interest for our analysis is the dispersion of
the graph G(i), which is defined as L(G(i)) = |U (i)

rep|; i.e., L(G(i)) is the maximum
number of representative vertices computed by the full Clique-Tree-Traversal

for given P , i, and ε. We will use the dispersion of G(i) together with property (2)
to obtain bounds on the density of G(i). Furthermore, our main use of L(G(i)) is to
obtain a lower bound for mst as stated in the next lemma.

Lemma 4.2. mst ≥ ε · (1 + ε)i · L(G(i))/4.
Proof. By our initial transformation we have mst ≥ 2n/ε. Also, we have i ≤

r = �log1+ε(4n/ε)�. If L(G(i)) = 1, then we have ε · (1 + ε)i/4 ≤ ε · (1 + ε)r/4 ≤
ε(1 + ε) · 4n/(4ε) ≤ ε · (1 + ε) ·mst/2 ≤ mst for ε ≤ 1.
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Next we consider the case L(G(i)) > 1. Representative vertices in distinct con-
nected components have distance more than (1 + ε)i+1. This, together with Lemma
4.1(4), implies that all vertices in U

(i)
rep have pairwise distance at least ε · (1 + ε)i.

Hence, a minimum spanning tree of the subgraph of G induced by U
(i)
rep has cost at

least (ε · (1 + ε)i) · (|U (i)
rep | − 1) ≥ (ε · (1 + ε)i) · L(G(i))/2 if L(G(i)) > 1. It is known

that this minimum spanning tree is a factor 2 approximation of the minimum Steiner
tree of U

(i)
rep (cf. [23]). Since a minimum Steiner tree of U

(i)
rep has cost that is at most

the cost of a minimum spanning tree of G, the lemma follows.

5. Estimating the number of connected components: First attempt.
We now discuss a first version of our algorithm Number-of-Connected-Components

(P , i, ε). The algorithm combines the sampling approach from [7] with the graph
traversal algorithm Clique-Tree-Traversal described in section 4. It is identical
to our final algorithm except for two modifications which with sufficiently high prob-
ability affect only the running time of the algorithm. Also, in this version we assume
that we know the dispersion of the graph in order to determine the number of required
iterations to achieve a sharp concentration of the estimator. This assumption will be
removed in the final algorithm. The algorithm uses the value r = �log1+ε(4n/ε)�
defined earlier as a bound on the logarithm of the maximum edge length. It also
requires a bound T on the number of iterations.

Number-of-Connected-Components-Version-1 (P , i, T , ε)
s = 0
while s ≤ T do

s = s + 1; βs = 0
choose a vertex ps independently and uniformly at random
choose a random integer X according to Pr[X ≥ k] = 1/k
run Clique-Tree-Traversal (P, ps, i, ε) until one of the following events
happens:

(1) more than X vertices are explored
(2) more than 4r

ε representative vertices are explored
(3) the entire connected component in G(i) containing ps is explored

if event (3) happens then βs = 1

output ĉ(i) = n
s ·∑s

j=1 βj

We first show that the expected value of ĉ(i) is close to c(i).
Lemma 5.1 (expectation bound). The random variable ĉ(i) computed in algo-

rithm Number-of-Connected-Components-Version-1 satisfies the following:

c(i) ≥ E
[
ĉ(i)
] ≥ c(i+1) − 1

2r
· mst

(1 + ε)i
.

Proof. The analysis from section 3 says that if we ignore events of type (2) and
if Clique-Tree-Traversal (P, p, i, ε) always explores exactly V

(i)
p (like a BFS),

then the expected value of ĉ(i) is exactly c(i). Now we observe that the fact that the
Clique-Tree-Traversal may explore not only vertices in V

(i)
p but possibly other

vertices (see Lemma 4.1) can only lower the expected value of the βj and hence that
of ĉ(i). Also, the events of type (2) only reduce the expected value of ĉ(i). Hence, the
inequality c(i) ≥ ĉ(i) follows.
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Now, we prove the second inequality, namely, E[ĉ(i)] ≥ c(i+1) − 1
2 r · mst

(1+ε)i . We
partition the (i+1)-connected components in P into two types. An (i+1)-connected
component C is of type (I) if there exists a vertex p ∈ C such that the Clique-Tree-

Traversal with starting vertex p stops with more than 4r/ε representative vertices.
Otherwise, an (i + 1)-connected component is of type (II).

Let K be the number of connected components of type (I). Then mst ≥ K ·
ε (1+ε)i

2 · 4r
ε = 2 K r (1 + ε)i, and hence K ≤ 1

2 r · mst

(1+ε)i . Now observe that, given
an arbitrary (i + 1)-connected component of type (II), if X is at least the number
of vertices in that component, then our algorithm will always output βj = 1. This
implies

E[βj ] ≥
∑

type (II) connected component C

Pr[pi ∈ C] ·Pr[X ≥ |C|] =
c(i+1) − K

n
.

Hence,

E[ĉ(i)] ≥ c(i+1) − K ≥ c(i+1) − mst

2 r (1 + ε)i
.

Our next step is to show that the number of iterations of the algorithm suffices
to achieve sharp concentration around the expectation of ĉ(i). We parametrize the
additive error in terms of L(G(i)). Using the lower bound on mst in terms of L(G(i))
(cf. Lemma 4.2), this bound can be easily transformed into a relative error in terms
of the cost of the minimum spanning tree.

Lemma 5.2 (concentration bound). If T ≥ 210·n·r2

ε2·L(G(i))
, then for the random vari-

able ĉ(i) computed by algorithm Number-of-Connected-Components-Version-1
the following bound holds:

Pr
[∣∣ĉ(i) − E

[
ĉ(i)
]∣∣ ≤ ε

8 r
· L(G(i))

]
≥ 15

16
.

Proof. Similarly to [7], we can provide an upper bound for the variance of any
single βi as follows:

Var[βi] ≤ E
[
β2

i

] ≤ E
[
βi

] ≤ c(i)

n
,

where the first inequality uses the fact that 0 ≤ βi ≤ 1 and the last inequality follows
from our analysis in the proof of Lemma 5.1 and from section 3. Therefore, we obtain
the following inequality:

Var[ĉ(i)] =
( n

T

)2

·
∑

1≤i≤T

Var[βi] ≤
( n

T

)2

· T · c(i)

n
=

n c(i)

T
.

Next, by Chebyshev’s inequality we obtain

Pr
[∣∣ĉ(i) − E

[
ĉ(i)
]∣∣ ≥ ε

8 r
L(G(i))

]
≤ 64 · n · c(i) · r2

T · ε2 · L(G(i))2
≤ 64 · n · r2

T · ε2 · L(G(i))
,

where the last inequality follows from L(G(i)) ≥ c(i), which trivially holds for ε < 1
2 .

With this, we obtain for T ≥ 210·n·r2

ε2·L(G(i))
the bound

Pr
[∣∣ĉ(i) − E

[
ĉ(i)
]∣∣ ≥ ε

8r
· L(G(i))

]
≤ 1

16
,

which in turn yields
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Pr
[∣∣ĉ(i) − E

[
ĉ(i)
]∣∣ ≤ ε

8r
· L(G(i))

]
≥ 15

16
.

Let us summarize the obtained results and outline how to proceed further. Right
now, we know that if the algorithm performs at least 210·n·r2

ε2·L(G(i))
iterations, then our

estimator for the number of connected components is sharply concentrated. Ignoring
the running time and the problem that the number of iteration depends on L(G(i)),
one can show that plugging this approximation into our initial approach will yield a
(1 + ε)-approximation of the weight of the minimum spanning tree.

Therefore, we have to deal only with the number of iterations and the running
time. Right now, the running time of a single iteration of the algorithm is O(nr/ε).
Hence, in the case that L(G(i)) = Ω(n), we can use our algorithm as it is and obtain
linear running time. However, if L(G(i)) � n, then we have to improve the (expected)
running time of a single iteration of the algorithm. This can be achieved as follows.
Recall that the vertices assigned to the sample representative point in G(i) form a
clique. Since the number of representative points is at most L(G(i)), we know that
we have at least L(G(i)) such cliques in G(i). This has certain impact on the degree
distribution in the graph. For example, it implies that the average degree of G(i) is at
least n/L(G(i)). In general, the smaller L(G(i)) is, the more vertices of high degree are
in G(i). This can be used to speed up the algorithm. Recall that our algorithm uses
a random number X as a stopping value in the exploration of connected components,
i.e., the exploration of the graph stops, when the connected component has more than
X vertices. A simple condition to stop the exploration is that the starting vertex
already has more than X neighbors. But in the case when L(G(i)) is small, there are
many such vertices in the graph. So, we just need a way to detect that the starting
vertex has large degree. This can be done using a simple random sampling approach,
whose analysis follows from Chernoff bounds and that is given in section 6. It will turn
out that using this algorithm as a filter to immediately stop exploration of connected
components whose starting vertex has degree larger than X will reduce the expected
running time of a single iteration of the algorithm to O(log2 n · r · L(G(i))/ε). Finally,
we can replace the bound on the number of iterations by a bound on the running time
that ensures that with sufficiently high probability we have enough iterations. This
will lead to our ultimate algorithm, which will be discussed in detail in section 7.

6. Estimating degrees of vertices: DEGREE-ESTIMATE algorithm. In
order to test whether a given vertex p has degree larger than X , we perform a more
general task and approximate the degree degi(p) of vertex p in G(i) within a constant
factor. Note that in our setting finding degi(p) exactly requires Ω(n) time. Our
estimator will run in time O(n log n/(1 + degi(p))); i.e., it will be much faster if the
degree of the vertex is large. Let c be a sufficiently large constant.

Degree-Estimate (P , i, p)
� = 1
repeat

� = 2�
pick a multiset S of N = c · log n · � vertices uniformly at random with
replacement
let Y be the number of vertices in S that are adjacent to p in G(i)

until Y ≥ c log n or � > n

return D̂(p) = Y n/N
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The algorithm increases the size of a sample set until we see at least c · log n
neighbors of p in our sample set. If this is the case, we can be sure that our sample
set is a good approximation.

Lemma 6.1. Let (P, d) be a metric space with |P | = n, and let G(i) be the
threshold graph for a given i. Then, with probability at least 1 − 1

8n2 , algorithm
Degree-Estimate runs in time O ( n log n

1+degi(p)

)
and returns value D̂(p) such that 1

2 ·
degi(p) ≤ D̂(p) ≤ 2 · degi(p).

Proof. For degi(p) = 0 the algorithm outputs 0 in time O(n log n). Hence, it
remains to consider degi(p) > 0.

Fix �. Let Yj denote the indicator random variable for the event that the jth
vertex in S is adjacent to p. Clearly, Y =

∑N
j=1 Yj . Further, we know that E[Y ] =

N · degi(p)/n = c · log n · �·degi(p)
n . Therefore, for � = 1

2 · n/ degi(p) we use a Chernoff
bound to obtain

Pr[Y ≥ c · log n] ≤ Pr
[
|Y − E[Y ]| ≥ 1

2
E[Y ]

]
≤ 2 · e 1

4 ·E[Y ]/3 ≤ 1
16 · �log n� · n2

using our assumption that c is a sufficiently large constant. By majorization, this
implies a similar bound for � < 1

2 · n/ degi(p). In a similar way, we obtain that for
� > 2 · n/ degi(p) we have

Pr[Y < c · log n] ≤ Pr
[
|Y − E[Y ]| ≥ 1

2
E[Y ]

]
≤ 2 · e 1

4 ·E[Y ]/3 ≤ 1
16 · (�log n� + 1) · n2

.

Therefore, the probability that the algorithm terminates with 1
2 · n/ degi(p) ≤ � ≤

2 · n/ degi(p) is at least

1 −
�log n�+1∑

�=1

1
16 · (�log n� + 1) · n2

= 1 − 1
16 · n2

.

Now we consider the case that 1
2n/ degi(p) ≤ � ≤ 2n/ degi(p). In this case, we have

E[Y ] ≥ c
2 log n. Chernoff bounds imply that

Pr
[
E[Y ]

2
≤ Y ≤ 2E[Y ]

]
≤ Pr

[
|Y − E[Y ]| ≥ 1

4
E[Y ]

]
≤ 2 · e 1

4 ·E[Y ]/3 ≤ 1
16 · n2

for c large enough. Hence, the overall error probability is at most 1
8·n2 . If the algorithm

makes no error, the running time is clearly O(n · log n/(1 + degi(p))), which proves
the lemma.

7. A sublinear time algorithm for estimating c(i). In this section we de-
scribe and analyze our Õ(n/ε6)-time algorithm for estimating the number of connected
components c(i) in G(i). The algorithm combines the algorithm from section 5 with
the sampling algorithm Degree-Estimate from section 6 to speed up the running
time.

We now present our algorithm Number-of-Connected-Components (P , i, ε).
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Number-of-Connected-Components (P , i, ε)
s = 0
while the running time is less than T ∗ = Õ(n/ε6) do

s = s + 1; βs = 0
choose a vertex ps independently and uniformly at random
choose a random integer X according to Pr[X ≥ k] = 1/k

D̂(ps) = Degree-Estimate (P, i, ps)
if D̂(ps) ≤ 2X then

run Clique-Tree-Traversal (P, ps, i, ε) until one of the following
events happens:

(1) more than X vertices are explored
(2) more than 4r

ε representative vertices are explored
(3) the entire connected component in G(i) containing ps is explored

if event (3) happens then βs = 1

output ĉ(i) = n
s ·∑s

j=1 βj

We say algorithm Degree-Estimate (P, i, p) works properly if it returns a value
D̂(p) with 1

2 D̂(p) ≤ degi(p) ≤ 2 D̂(p) and its running time is O(n · log n/ degi(p)).
Notice that by Lemma 6.1, every run of algorithm Degree-Estimate (P, i, p) works
properly with probability at least 1 − 1

8n2 . Obviously, we can assume that the over-
all running time is o(n2) because otherwise we can simply compute the minimum
spanning tree directly. Therefore, with probability at least 7

8 , all runs of algorithm
Degree-Estimate (P, i, p) incorporated in Number-of-Connected-Components

(P, i, ε) work properly. Hence, from now on, we condition on the assumption that all
runs of Degree-Estimate (P, i, p) work properly.

Before we proceed with the analysis of the algorithm, we first explain our use
of algorithm Degree-Estimate that is needed to decrease the total running time
of the algorithm and has no influence on the output value. If in the jth iteration
of algorithm Number-of-Connected-Components procedure Degree-Estimate

returns a value D̂(p) > 2X , then we know that degi(p) > X . If degi(p) > X , then
we know that ni

p > X . Hence, our procedure stops the Clique-Tree-Traversal

because of event (1) before event (3) can happen. This would cause βj = 0. Therefore,
we do not have to invoke the Clique-Tree-Traversal in that case and we can
immediately set βj = 0.

For the remaining analysis (besides the running time analysis) we can therefore
ignore the procedure Degree-Estimate. We can assume that for every sampled
vertex pj , we set βj = 0 if algorithm Clique-Tree-Traversal (P, pj , i, ε) stops
because of event (1) or (2), or we set βj = 1 otherwise.

Our next step is to prove a bound on the number of iterations of algorithm
Number-of-Connected-Components. Here we will make use of the dispersion
L(G(i)), and our bound will depend on that value.

Lemma 7.1 (expected running time of a single iteration). Let 0 < ε < 1
2 . In a

single iteration of Number-of-Connected-Components, if the call to algorithm
Degree-Estimate works properly, then the expected running time (over the choice
of X) is O(r · log2 n · L(G(i))/ε).

Proof. Let T denote the random variable for the expected running time of a single
iteration of the algorithm under the condition that algorithm Degree-Estimate

works properly.
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We start our analysis with a partition of P into L(G(i)) clusters according to the
full Clique-Tree-Traversal. There is exactly one cluster for each representative
vertex. If a vertex p is not a representative vertex itself, then it has been explored
from a representative vertex q. In this case we assign p to the cluster containing q.
We observe that each cluster forms a clique in G(i), because the distance between any
two points in the same cluster is at most 2 ε (1 + ε)i and ε < 1

2 . For any vertex p, let
Cp denote the cluster that contains p. Notice that degi(p) ≥ |Cp| − 1.

If all calls to algorithm Degree-Estimate work properly, then the test D̂(p) <
2 X rejects every vertex ps in a cluster of size greater than 4 X . In this case, when
|Cps | > 4 |X |, the running time T of the iteration is at most α · n logn/(1 + D̂(ps)),
where α is a constant used to upper bound the constants hidden in the big-Oh notation
of the running time of Degree-Estimate. Hence we get

T ≤ α · n · log n/(1 + D̂(ps)) ≤ 2 · α · n · log n/(1 + degi(ps)) ≤ 2 · α · n · log n/|Cps |.
For any vertex that is in a cluster of size smaller than or equal to 4 X , we run the
Clique-Tree-Traversal until either we find more than 4r/ε representative vertices
or some other stopping criterion is matched. By Lemma 4.1, the running time of this
call to Clique-Tree-Traversal is O(n log n) times the number of representative
vertices visited, and so we have T ≤ α·n·log n·r/ε for any vertex ps with |Cps | ≤ 4 |X |.

Since the number of clusters is L(G(i)), we clearly have at most 4 X · L(G(i))
vertices in all clusters of size at most 4 X . Now we observe that in the case X > n
the behavior of our algorithm is identical to the case X = n. Therefore, if we define
a random variable X∗ = X for X < n and X∗ = n for X ≥ n, then we get for a
fixed value of X∗ and for a single iteration of algorithm Number-of-Connected-

Components

E
[
T |X∗] ≤ ∑

p : |Cp|≤4X∗
Pr[ps = p] · α · n · log n · r

ε

+
∑

p : |Cp|>4X∗
Pr[ps = p] · 2 α · n · log n

|Cp|

=
∑

p : |Cp|≤4X∗

1
n
· α · n · log n · r

ε
+

∑
p : |Cp|>4X∗

1
n
· 2 · α · n · log n

|Cp|

≤ 4 · α · X∗ · r · L(G(i)) · log n

ε
+ 2 · α · log n

∑
p∈P

1
|Cp|

=
4 · α · X∗ · r · L(G(i)) · log n

ε
+ 2 · α · log n · L(G(i))

≤ 6 · α · X∗ · r · L(G(i)) · log n

ε
.

Since the choice of X∗ is independent of the other choices, the inequality E[X∗] ≤ log n
implies that

E
[
T
] ≤ 6 · α · r · log2 n · L(G(i))

ε
= O

(
r · log2 n · L(G(i))

ε

)
.

Corollary 7.2 (number of iterations). If in all calls algorithm Degree-

Estimate works properly, then for certain T ∗ = O(n · r3 · log2 n · ε−3) the num-
ber of iterations s of algorithm Number-of-Connected-Components is at least
210·n·r2

ε2·L(G(i))
, with probability at least 15

16 .
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Proof. By Lemma 7.1, the expected running time of a single iteration is at most
c·r·log2 n·L(G(i))

ε for some constant c. Therefore, the expected running time for j it-
erations of the algorithm is at most j times the expected running time of a single
iteration. Let T ′ be a random variable for the running time for 210·n·r2

ε2·L(G(i))
iterations

of the algorithm. We have

E[T ] ≤ c′ · n · r3 · log2 n

ε3

for an appropriate constant c′. We apply the Markov inequality to obtain that

Pr
[
T ′ ≥ 16 · c′ · n · r3 · log2 n

ε3

]
≤ 1

16
.

We conclude that for T ∗ = 16 · c′·n·r3·log2 n
ε3 = Θ(n · r3 · log2 n · ε−3) the number of

iterations of the while-loop of algorithm Number-of-Connected-Components is
at least 210 · n · r2 · ε−2/L(G(i)) with probability at least 15

16 .
A consequence of Corollary 7.2 is that if we run algorithm Number-of-Connected-

Components for at least T ∗ steps, it will perform at least as many iterations as
required to apply Lemma 5.2. Hence, it provides a sharply concentrated estimation
of the number of connected components.

We can summarize our discussion with the following theorem which immediately
implies Theorem 2.3.

Theorem 7.3. For any given P , i, ε, algorithm Number-of-Connected-

Components computes in Õ(n/ε6) time a value ĉ(i) that with probability at least 3
4

satisfies

c(i+1) − 1
r
· mst

(1 + ε)i
≤ ĉ(i) ≤ c(i) +

1
r
· mst

(1 + ε)i
.

Proof. Let us first assume that all calls of algorithm Degree-Estimate work
properly. Lemma 5.1 gives us

c(i+1) − 1
2r

· mst

(1 + ε)i
≤ E

[
ĉ(i)
] ≤ c(i).

We use Lemma 4.2 to obtain mst ≥ ε · (1 + ε)i · L(G(i))/4. This together with
Lemma 5.2 and Corollary 7.4 implies that with probability at least 7

8 we have

ĉ(i) ≤ E
[
ĉ(i)
]
+

ε

8r
· L(G(i)) ≤ c(i) +

1
r
· mst

(1 + ε)i
,

ĉ(i) ≥ E
[
ĉ(i)
]− ε

8r
· L(G(i)) ≥ c(i+1) − 1

2r
· mst

(1 + ε)i
− ε

2r
· mst

ε · (1 + ε)r

≥ c(i+1) − 1
r
· mst

(1 + ε)i
.

Finally, since all calls of algorithm Degree-Estimate work properly with probability
at least 7

8 , the theorem follows.
Using standard amplification bounds, we obtain the following corollary.
Corollary 7.4. There is an algorithm that, for given P , i, ε, computes in

Õ(n log(�−1)/ε6) time a value ĉ(i) that with probability at least 1 − � satisfies

c(i+1) − 1
r
· mst

(1 + ε)i
≤ ĉ(i) ≤ c(i) +

1
r
· mst

(1 + ε)i
.
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Proof. We run the algorithm k = 324 ln(�−1) times and choose the median of the
computed output values. Let Xj denote the random indicator variable for the event
that the jth output value is within the bounds from Theorem 7.3. Clearly, the median
is always correct if at least 2

3 of the output values are correct. It follows from Chernoff
bounds that the probability that fewer than 2

3 of the output values are correct is at
most

Pr

[
k∑

j=1

Xj ≤ 2
3k

]
≤ Pr

[
k∑

j=1

Xj ≤
(

1− 1
9

)
·E
[

k∑
j=1

Xj

]]
≤ e−k/324 = 1/�.

8. Lower bounds. Let us first observe that no algorithm with o(n) running
time can approximate the cost of the minimum spanning tree within any factor. To
see this, for a given approximation factor B, let us consider two graphs G1 and G2.
G1 consists of a clique of n− 1 vertices having mutual distance 1 and a single outlier
with distance 2 B n to every other vertex. In graph G2 the distance between every
pair of vertices is 1. Clearly, the minimum spanning tree of graph G2 has cost n− 1,
while the minimum spanning tree of graph G1 has cost n − 2 + 2 B n. In order to
distinguish between the two graphs one has to find the single outlier. This cannot be
achieved in time o(n) with constant confidence probability. This yields the following
easy claim.

Theorem 8.1. No o(n)-time algorithm can approximate the weight of the mini-
mum spanning tree within any factor.

Next, we give another lower bound: We prove that no o(n2)-time deterministic
algorithm can approximate the weight of the minimum spanning tree in a metric space
up to a constant factor.

Let B ≥ 1 be an arbitrary constant, and let λ be a parameter, 0 < λ < 1. We
assume that 4B divides n. Consider the following two metric spaces. The first metric
space, (P, d1), consists of n

2B cliques of size 2B with the pairwise distance within the
nodes in each clique being λ; all other distances in (P, d1) are 1. The second metric,
(P, d2), consists of n

4B cliques of size 2B, where the distance between any pair of nodes
within one clique is λ, and all other distances in (P, d2) are 1. Clearly, the cost of
the minimum spanning tree of (P, d1) is n

2B + λn · (1 − 1
2B ) − 1, and the cost of the

minimum spanning tree of (P, d2) is n
2 + n

4B + λn
2 · (1 − 1

2B ) − 1. Thus, for λ = 1
8B2

and n ≥ 8B, the ratio between the weight of the minimum spanning tree of (P, d2)
and (P, d1) is at least B. Hence, if it is not possible to distinguish between these
two metric spaces using o(n2) time, then no sublinear-time factor B-approximation
algorithm can exist.

We show that, given an arbitrary deterministic algorithm, we can always answer
Ω(n2/B3) queries to the distance function of the input metric space (P, d) such that we
can still construct both (P, d1) and (P, d2) by filling out the remaining (undetermined)
entries in the distance matrix. This immediately implies that no o(n2/B3)-time factor
B-approximation algorithm exists.

We call a point p ∈ P unspecified if fewer than n
4B − 1 of its incident edges have

lengths known to the algorithm at the current point of time. Otherwise, we call a
point specified. If a point is specified, we reveal all distances to its neighbors according
to a process described below. This, in particular, reveals all points that are in the
same clique, and so we can reveal all distances from these points as well.

We show that the algorithm has to have at least n
8B −1 specified points to be able

to distinguish between metric spaces (P,d1) and (P, d2). This will require Ω(n2/B3)
distance queries, because any specified point is in a clique of size (at most) 2B, and
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at least n
4B − 1 − ( n

8B − 1) = n
8B edges must be queried to make a point specified

(we might get some edges for free, because they connect a point to other specified
vertices).

In the following we describe how we answer the distance queries if the number of
specified points is smaller than n

8B − 1. We assume that the algorithm queries every
distance at most once. We answer queries in the following way. Since we assume for
a specified point that the algorithm has queried all distances to its neighbors, any
distance query is always between two unspecified points. We will always answer such
a query with distance 1. Eventually, some point p becomes specified. When this
happens, we group p and the remaining unspecified vertices in groups of 2B points
such that no edge between any pair of points from any group has been queried. To
show the existence of such a grouping we apply the following lemma by Hajnal and
Szemerédi.

Lemma 8.2 (see [16]). Every graph with n vertices and maximum vertex degree
Δ(G) ≤ k is (k+1)-colorable with all color classes of size �n/(k+1)� or �n/(k+1).

Let U denote the set of all unspecified vertices and p. Clearly, |U | is a multiple
of B and |U | ≥ n/2. Now let us consider the graph G = (U, E), where E = {(p, q) :
d(p, q) has been queried}. Clearly, the degree of G is at most k, where we set k =
|U|
2B − 1. Then, Lemma 8.2 implies the existence of a k-coloring such that each color
class contains exactly 2B vertices. This will provide our (preliminary) grouping. We
then reveal all distances to p and all distances to the points that are in the same group
as p to the algorithm. This may cause other vertices to become specified, and we have
to show all distances of these points to the algorithm. We continue this process until
no more vertices have to be specified or we have reached n

2B − 1 specified vertices.
At this point, we still have a valid (k + 1)-coloring such that no distances within a
color class are specified, and so we can end up with metric space (P, d1) and also with
(P, d2). This proves our final result.

Theorem 8.3. There exists no o(n2/B3)-time deterministic B-approximation
algorithm for the cost of the minimum spanning tree in a metric space given as distance
oracle.
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