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OPTIMAL CO-ADAPTED COUPLING FOR THE

SYMMETRIC RANDOM WALK ON THE HYPERCUBE

By Stephen Connor and Saul Jacka

University of Warwick

Abstract Let X and Y be two simple symmetric continuous-time

random walks on the vertices of the n-dimensional hypercube, Zn
2 .

We consider the class of co-adapted couplings of these processes, and

describe an intuitive coupling which is shown to be the fastest in this

class.

1. Introduction. Let Zn2 be the group of binary n-tuples under coordinate-

wise addition modulo 2: this can be viewed as the set of vertices of an n-

dimensional hypercube. For x ∈ Zn2 , we write x = (x(1), . . . , x(n)), and

define elements {ei}n0 by

e0 = (0, . . . , 0) ; ei(k) = 1[i=k], i = 1, . . . , n ,

where 1 denotes the indicator function. For x, y ∈ Zn2 let

|x− y| =
n∑
i=1

|x(i)− y(i)|

denote the Hamming distance between x and y.

A continuous-time random walk X on Zn2 may be defined using a marked

Poisson process Λ of rate n, with marks distributed uniformly on the set

{1, 2, . . . , n}: the ith coordinate of X is flipped to its opposite value (zero
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2 S. CONNOR AND S. JACKA

or one) at incident times of Λ for which the corresponding mark is equal

to i. We write L (Xt) for the law of X at time t. The unique equilibrium

distribution of X is the uniform distribution on Zn2 .

Suppose that we now wish to couple two such random walks, X and Y ,

starting from different states.

Definition 1.1. A coupling of X and Y is a process (X ′, Y ′) on Zn2×Zn2

such that

X ′
D= X and Y ′

D= Y .

That is, viewed marginally, X ′ behaves as a version of X, and Y ′ as a version

of Y .

For any coupling strategy c, write (Xc
t , Y

c
t ) for the value at t of the pair of

processes Xc and Y c driven by strategy c, although this superscript notation

may be dropped when no confusion can arise. (We assume throughout that

(Xc, Y c) is a coupling of X and Y .) We then define the coupling time by

τ c = inf {s ≥ 0 : Xc
s = Y c

s } .

For t ≥ 0, let

U ct = {1 ≤ i ≤ n : Xc
t (i) 6= Y c

t (i)}

denote the set of unmatched coordinates at time t, and let

M c
t = {1 ≤ i ≤ n : Xc

t (i) = Y c
t (i)}

be its complement. A simple coupling technique appears in (1), and may be

described as follows:
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• if X(i) flips at time t, with i ∈ Mt, then also flip coordinate Y (i) at

time t (matched coordinates are always made to move synchronously);

• if |Ut| > 1 and X(i) flips at time t, with i ∈ Ut, also flip coordinate

Y (j) at time t, where j is chosen uniformly at random from the set

Ut\ {i};

• else, if Ut = {i} contains only one element, allow coordinates X(i) and

Y (i) to evolve independently of each other until this final match is

made.

This defines a valid coupling of X and Y , for which existing coordinate

matches are maintained and new matches made in pairs when |Ut| ≥ 2. It is

also an example of a co-adapted coupling.

Definition 1.2. A coupling (Xc, Y c) is called co-adapted if there exists

a filtration (Ft)t≥0 such that

1. Xc and Y c are both adapted to (Ft)t≥0

2. for any 0 ≤ s ≤ t,

L (Xc
t | Fs) = L (Xc

t |Xc
s) and L (Y c

t | Fs) = L (Y c
t |Y c

s ) .

In other words, (Xc, Y c) is co-adapted if Xc and Y c are both Markov

with respect to a common filtration, (Ft)t≥0. Note that this definition does

not imply that the joint process (Xc, Y c) is Markovian, however.

In this paper we search for the best possible coupling of the random walks

X and Y on Zn2 within the class C of all co-adapted couplings.

2. Co-adapted couplings for random walks on Zn
2 . In order to

find the optimal co-adapted coupling of X and Y , it is first necessary to



4 S. CONNOR AND S. JACKA

be able to describe a general coupling strategy c ∈ C. To this end, let Λij

(0 ≤ i, j ≤ n) be independent unit-rate marked Poisson processes, with

marks Wij chosen uniformly on the interval [0, 1]. We let (Ft)t≥0 be any

filtration satisfying

σ

⋃
i,j

Λij(s),
⋃
i,j

Wij(s) : s ≤ t

 ⊆ Ft, ∀ t ≥ 0 .

The transitions of Xc and Y c will be driven by the marked Poisson processes,

and controlled by a process {Qc(t)}t≥0 which is adapted to (Ft)t≥0. Here,

Qc(t) =
{
qcij(t) : 1 ≤ i, j,≤ n

}
is a n×n doubly sub-stochastic matrix. Such

a matrix implicitly defines terms
{
qc0j(t) : 1 ≤ j ≤ n

}
and {qci0(t) : 1 ≤ i ≤ n}

such that

n∑
i=0

qcij(t) = 1 for all 1 ≤ j ≤ n and t ≥ 0 ,(2.1)

and
n∑
j=0

qcij(t) = 1 for all 1 ≤ i ≤ n and t ≥ 0 .(2.2)

For convenience we also define qc00(t) = 0 for all t ≥ 0.

Note that any co-adapted coupling (Xc, Y c) must satisfy the following

three constraints, all of which are due to the marginal processes Xc(i) (i =

1, . . . , n) being independent unit rate Poisson processes (and similarly for

the processes Y c(i)):

1. At any instant the number of jumps by the process (Xc, Y c) cannot

exceed two (one on Xc and one on Y c);

2. All single and double jumps must have rates bounded above by one;

3. For all i = 1, . . . , n, the total rate at which Xc(i) jumps must equal

one.
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A general co-adapted coupling for X and Y may therefore be defined

as follows: if there is a jump in the process Λij at time t ≥ 0, and the

mark Wij(t) satisfies Wij(t) ≤ qij(t), then set Xc
t = Xc

t− + ei (mod 2) and

Y c
t = Y c

t− + ej (mod 2). Note that if i (respectively j) equals zero, then

Xc
t = Xc

t− (respectively, Y c
t = Y c

t−), since e0 = (0, . . . , 0).

From this construction it follows directly that Xc and Y c both have the

correct marginal transition rates to be continuous-time simple random walks

on Zn2 as described above, and are co-adapted.

3. Optimal coupling. Our proposed optimal coupling strategy, ĉ, is

very simple to describe, and depends only upon the number of unmatched

coordinates of X and Y . Let Nt = |Ut| denote the value of this number at

time t. Strategy ĉ may be summarised as follows:

• matched coordinates are always made to move synchronously (thus N ĉ

is a decreasing process);

• if N is odd, all unmatched coordinates of X and Y are made to evolve

independently until N becomes even;

• if N is even, unmatched coordinates are coupled in pairs - when an

unmatched coordinate on X flips (thereby making a new match), a

different, uniformly chosen, unmatched coordinate on Y is forced to

flip at the same instant (making a total of two new matches).

Note the similarity between ĉ and the coupling of Aldous described in Sec-

tion 1: if N is even these strategies are identical; if N is odd however, ĉ seeks

to restore the parity of N as fast as possible, whereas Aldous’s coupling con-

tinues to couple unmatched coordinates in pairs until N = 1.
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Definition 3.1. The matrix process Q̂ corresponding to the coupling ĉ

is as follows:

• q̂ii(t) = 1 for all i ∈Mt and for all t ≥ 0;

• if Nt is odd, q̂i0(t) = q̂0i(t) = 1 for all i ∈ Ut;

• if Nt is even, q̂i0(t) = q̂0i(t) = q̂ii(t) = 0 for all i ∈ Ut, and

q̂ij =
1

|Ut| − 1
for all distinct i, j ∈ Ut .

The coupling time under ĉ, when (X0, Y0) = (x, y), can thus be expressed

as follows:

(3.1)

τ̂ = τ ĉ =


E0 + E1 + E2 + · · ·+ Em−1 + Em if |x− y| = 2m

E0 + E1 + E2 + · · ·+ Em−1 + Em + E2m+1 if |x− y| = 2m+ 1 ,

where {Ek}k≥0 form a set of independent Exponential random variables,

with Ek having rate 2k. (Note that E0 ≡ 0: it is included merely for nota-

tional convenience.)

Now define

(3.2) v̂(x, y, t) = P [τ̂ > t |X0 = x, Y0 = y]

to be the tail probability of the coupling time under ĉ. The main result of

this paper is the following.

Theorem 3.2. For any states x, y ∈ Zn2 and time t ≥ 0,

(3.3) v̂(x, y, t) = inf
c∈C

P [τ c > t |X0 = x, Y0 = y] .

In other words, τ̂ is the stochastic minimum of all co-adapted coupling times

for the pair (X,Y ).
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It is clear from the representation in (3.1) that v̂(x, y, t) only depends on

(x, y) through |x− y|, and so we shall usually simply write

v̂(k, t) = P [τ̂ > t |N0 = k] ,

with the convention that v̂(k, t) = 0 for k ≤ 0. Note, again from (3.1), that

v̂(k, t) is strictly increasing in k. For a strategy c ∈ C, define the process Sct

by

Sct = v̂ (Xc
t , Y

c
t , T − t) ,

where T > 0 is some fixed time. This is the conditional probability of X

and Y not having coupled by time T , when strategy c has been followed

over the interval [0, t] and ĉ has then been used from time t onwards. The

optimality of ĉ will follow by Bellman’s principle (see, for example, (5)) if it

can be shown that Sct∧τc is a submartingale for all c ∈ C, as demonstrated

in the following lemma. (Here and throughout, s ∧ t = min {s, t}.)

Lemma 3.3. Suppose that for each c ∈ C and each T ∈ R+,

(Sct∧τc)0≤t≤T is a submartingale.

Then equation (3.3) holds.

Proof. Notice that Sc0 = v̂(x, y, T ) and ScT∧τc = 1[T<τc]. If Sc· ∧τc is a

submartingale it follows by the Optional Sampling Theorem that

P [τ c > T ] = E [ScT∧τc ] ≥ Sc0 = v̂(x, y, T ) = P [τ̂ > T ] ,

and hence the infimum in (3.3) is attained by ĉ.
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Now, (point process) stochastic calculus yields:

(3.4) dSct = dZct +
(
Act v̂ −

∂v̂

∂t

)
dt ,

where Zct is a martingale, andAct is the “generator” corresponding to the ma-

trix Qc(t). Since the Poisson processes Λij are independent, the probability

of two or more jumps occurring in the superimposed process
⋃

Λij in a time

interval of length δ is O(δ2). Hence, for any function f : Zn2 ×Zn2 ×R+ → R,

Act satisfies

Actf(x, y, t) =
n∑
i=0

n∑
j=0

qcij(t)
[
f(x+ ei, y + ej , t)− f(x, y, t)

]
.

Setting f = v̂ gives:

Act v̂(x, y, t) =
n∑
i=0

n∑
j=0

qcij(t)
[
v̂(x+ ei, y + ej , t)− v̂(x, y, t)

]

=
n∑
i=0

n∑
j=0

qcij(t)
[
v̂(|x− y + ei + ej | , t)− v̂(|x− y| , t)

]
.

In particular, since v̂ is invariant under coordinate permutation, if N c
t =

|x− y| = k then

(3.5) Act v̂(x, y, t) =
2∑

m=−2

λct(k, k +m)
[
v̂(k +m, t)− v̂(k, t)

]
,

where λct(k, k+m) is the rate (according to Qc(t)) at which N c
t jumps from

k to k +m. More explicitly,

λct(k, k + 2) =
∑

i,j∈Mt
i 6=j

qcij(t) , λct(k, k + 1) =
∑
i∈Mt

(qci0(t) + qc0i(t)) ,(3.6)

λct(k, k − 2) =
∑

i,j∈Ut
i 6=j

qcij(t) , λct(k, k − 1) =
∑
i∈Ut

(qci0(t) + qc0i(t)) ,(3.7)
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and

(3.8) λct(k, k) =
∑

i∈Ut,j∈Mt

(
qcij(t) + qcji(t)

)
+

n∑
i=1

qcii(t) .

It follows from the definition of Q and equations (3.6) to (3.8) that these

terms must satisfy the linear constraints:

λct(k, k − 2) +
1
2
λct(k, k − 1) ≤ k , and

λct(k, k − 2) +
1
2
λct(k, k − 1) + λct(k, k) +

1
2
λct(k, k + 1) + λct(k, k + 2) = n .

Denote by Ln the set of non-negative λ satisfying the constraints

λ(k, k − 2) +
1
2
λ(k, k − 1) ≤ k , and

(3.9)

λ(k, k − 2) +
1
2
λ(k, k − 1) + λ(k, k) +

1
2
λ(k, k + 1) + λ(k, k + 2) = n .

(3.10)

Returning to equation (3.4):

dSct = dZct +
(
Act v̂ −

∂v̂

∂t

)
dt .

We wish to show that Sct∧τc is a submartingale for all couplings c ∈ C. We

shall do this by showing that Act v̂ is minimised by setting c = ĉ. This is

sufficient because S ĉt∧τ̂ is a martingale (and so Aĉt v̂−∂v̂/∂t = 0). Now, from

equation (3.5) we know that

Act v̂(k, t) =
2∑

m=−2

λct(k, k +m)
[
v̂(k +m, t)− v̂(k, t)

]
.

Thus we seek to show that, for all k ≥ 0 and for all t ≥ 0,

(3.11) max
λ∈Ln

2∑
m=−2

λ(k, k +m)
[
v̂(k, t)− v̂(k +m, t)

]
≥ 0 .
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For each t, this is a linear function of non-negative terms of the form

λ(k, k + m). Thanks to the monotonicity in its first argument of v̂, the

terms appearing in the left-hand-side of (3.11) are non-positive if and only

if m is non-negative. Hence we must set

(3.12) λ(k, k + 1) = λ(k, k + 2) = 0

in order to achieve the maximum in (3.11).

It now suffices to maximise

(3.13) λ(k, k − 1)
[
v̂(k, t)− v̂(k − 1, t)

]
+ λ(k, k − 2)

[
v̂(k, t)− v̂(k − 2, t)

]
,

subject to the constraint in (3.9).

Combining (3.9) and (3.13) yields the final version of our optimisation

problem:

maximise λ(k, k − 1)
([
v̂(k, t)− v̂(k − 1, t)

]
− 1

2

[
v̂(k, t)− v̂(k − 2, t)

])(3.14)

subject to 0 ≤ λ(k, k − 1) ≤ 2k .

(3.15)

The solution to this problem is clearly given by:

(3.16)

λ(k, k − 1) =


2k if

[
v̂(k, t)− v̂(k − 1, t)

]
> 1

2

[
v̂(k, t)− v̂(k − 2, t)

]
0 otherwise .

These observations may be summarised as follows:

Proposition 3.4. For λ ∈ Ln, the maximum value of
2∑

m=−2

λ(k, k +m)
[
v̂(k, t)− v̂(k +m, t)

]
,
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is achieved at λ∗, where λ∗ satisfies the following:

λ∗(k, k + 1) = λ∗(k, k + 2) = 0 ;

λ∗(k, k − 2) +
1
2
λ∗(k, k − 1) = k ;

λ∗(k, k − 1) =


2k if

[
v̂(k, t)− v̂(k − 1, t)

]
> 1

2

[
v̂(k, t)− v̂(k − 2, t)

]
0 otherwise .

Our final proposition shows that λ∗(k, k − 1) = 2k if and only if k is odd.

Proposition 3.5. For any fixed t ≥ 0,

2
[
v̂(k, t)− v̂(k − 1, t)

]
−
[
v̂(k, t)− v̂(k − 2, t)

]
≥ 0 if k is odd, and

(3.17)

2
[
v̂(k, t)− v̂(k − 1, t)

]
−
[
v̂(k, t)− v̂(k − 2, t)

]
≤ 0 if k is even.

(3.18)

Proof. Define V̂α by

V̂α(k) =
∫ ∞
0

e−αtv̂(k, t)dt

=
1
α

(
1− E

[
e−ατ̂

])
.

We also define d(k, t) = v̂(k, t)− v̂(k − 1, t), and for α ≥ 0 let

Dα(k) =
∫ ∞
0

e−αtd(k, t)dt

be the Laplace transform of d(k, ·). Given the representation in equation (3.1)

of τ̂ as a sum of independent Exponential random variables, it follows that

(3.19) V̂α(k) =


1
α

(
1−

m∏
i=1

2i
2i+ α

)
if k = 2m

1
α

(
1− 2(2m+ 1)

2(2m+ 1) + α

m∏
i=1

2i
2i+ α

)
if k = 2m+ 1 .
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To ease notation, let

φα(m) =
m∏
i=1

2i
2i+ α

.

The following equality then follows directly from consideration of the tran-

sition rates corresponding to strategy ĉ:

for all α ≥ 0 and m ≥ 1,

1− αV̂α(2m) + 2m
[
V̂α(2m− 2)− V̂α(2m)

]
= φα(m) +

2m
α

[φα(m)− φα(m− 1)]

= φα(m) +
2m
α
φα(m)

[
1− 2m+ α

2m

]
= 0 .(3.20)

Similarly,

1− αV̂α(2m− 1) + 2(2m− 1)
[
V̂α(2m− 2)− V̂α(2m− 1)

]
= 0 .(3.21)

Now suppose that k = 2m, and hence is even. We wish to prove that

d(2m− 1, t)− d(2m, t) ≥ 0 for all t ≥ 0 ,

which is equivalent to showing that Dα(2m − 1) − Dα(2m) is totally (or

completely) monotone (by the Bernstein-Widder Theorem; Theorem 1a of

(3), Ch. XIII.4).

We proceed by subtracting equation (3.21) from (3.20):

0 = −α
[
V̂α(2m)− V̂α(2m− 1)

]
+ 2m

[
V̂α(2m− 2)− V̂α(2m)

]
+ 2(2m− 1)

[
V̂α(2m− 1)− V̂α(2m− 2)

]
= −αDα(2m)− 2m [Dα(2m) +Dα(2m− 1)] + 2(2m− 1)Dα(2m− 1) ,

and so

(3.22) Dα(2m− 1)−Dα(2m) =
2 + α

2m− 2
Dα(2m) .
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It therefore suffices to show that (2 + α)Dα(2m) is completely monotone.

Now note from the form of V̂ in equation (3.19), that

(2 + α)Dα(2m) = 2Θα(2m) ,

where Θα(2m) is the Laplace transform of

θ(2m, t) = P
[
m∑
i=0

Ei > t

]
− P

[
m−1∑
i=0

Ei + E2m−1 > t

]
,

where {Ei}i≥0 form a set of independent Exponential random variables,

with Ei having parameter 2i. But since θ(2m, t) is strictly positive for all

t, it follows that (2 + α)Dα(2m) is completely monotone, as required. This

proves that, for any fixed t ≥ 0,

(3.23) 2
[
v̂(k, t)− v̂(k − 1, t)

]
−
[
v̂(k, t)− v̂(k − 2, t)

]
≤ 0

whenever k is even. Thus inequality (3.18) holds in this case.

Now suppose that k = 2m + 1, and hence is odd. In this case we wish

to show that inequality (3.17) holds, which is equivalent to showing that

Dα(2m+ 1)−Dα(2m) is completely monotone. Now, substituting m+ 1 for

m in equation (3.21) yields

(3.24) 1− αV̂α(2m+ 1) + 2(2m+ 1)
[
V̂α(2m)− V̂α(2m+ 1)

]
= 0 .

Proceeding as above, we subtract equation (3.20) from (3.24):

0 = −α
[
V̂α(2m+ 1)− V̂α(2m)

]
+ 2(2m+ 1)

[
V̂α(2m)− V̂α(2m+ 1)

]
+ 2m

[
V̂α(2m)− V̂α(2m− 2)

]

= −αDα(2m+ 1)− 2(2m+ 1)Dα(2m+ 1) + 2m [Dα(2m) +Dα(2m− 1)] .

(3.25)
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Then it follows from equation (3.22) that

(3.26) (2m− 2)Dα(2m− 1) = (2m+ α)Dα(2m) .

Substitution of equation (3.26) into (3.25) gives

0 = (4m+ 2− α) [Dα(2m)−Dα(2m+ 1)] + 2 [Dα(2m− 1)−Dα(2m)] ,

and so

(3.27) Dα(2m+ 1)−Dα(2m) =
2

4m+ 2 + α
[Dα(2m− 1)−Dα(2m)] .

But, since we have already seen that Dα(2m − 1) − Dα(2m) is completely

monotone, the right-hand-side of equation (3.27) is the product of two com-

pletely monotone functions, and so is itself completely monotone (3), as

required.

Now we may complete the

Proof of Theorem 3.2. Thanks to Lemma 3.3 and Proposition 3.4,

Proposition 3.5, along with equations (3.12) and (3.16), shows that any

optimal choice of Q(t), Q∗(t), is of the following form:

• when Nt is odd:

q∗i0(t) = q∗0i(t) = 1 for all i ∈ Ut, (and so λ∗t (Nt, Nt − 1) = 2Nt) ,

q∗ii(t) = 1 for all i ∈Mt ;

• when Nt is even:

q∗i0(t) = q∗0i(t) = q∗ii(t) = 0 for all i ∈ Ut, (and so λ∗t (Nt, Nt − 1) = 0) ,

(3.28)

q∗ii(t) = 1 for all i ∈Mt .
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This is in agreement with our candidate strategy Q̂ (recall Definition 3.1).

From equation (3.28) it follows that the values of q∗ij(t) for distinct i, j ∈ Ut

must satisfy ∑
i,j∈Ut
i 6=j

q∗ij(t) = |Ut| ,

but are not constrained beyond this. Our choice of

q̂ij(t) =
1

|Ut| − 1

satisfies this bound, and so ĉ is truly an optimal co-adapted coupling, as

claimed.

Remark 3.6. Observe that when k = 1, equation (3.1) implies that

v̂(1, t) = v̂(2, t) for all t. The optimisation problem in (3.14) and (3.15)

simplifies in this case to the following:

maximise λ(1, 0)v̂(1, t)(3.29)

subject to
1
2
λ(1, 0) + λ(1, 1) +

1
2
λ(1, 2) ≤ n .(3.30)

As above, this is achieved by setting λ(1, 0) = 2. Note from equation (3.30),

however, that when k = 1 there is no obligation to set λ(1, 2) = 0 in order

to attain the required maximum. Indeed, due to the equality between v̂(1, t)

and v̂(2, t), when k = 1 it is not sub-optimal to allow matched coordinates

to evolve independently (corresponding to λct(1, 2) > 0), so long as strategy

ĉ is used once more as soon as k = 2.

4. Maximal coupling. Let X and Y be two copies of a Markov chain

on a countable space, starting from different states. The coupling inequality
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(see, for example, (6)) bounds the tail distribution of any coupling of X and

Y by the total variation distance between the two processes:

(4.1) ‖L(Xt)− L(Yt)‖TV ≤ P [τ > t] .

(4) showed that there always exists a maximal coupling of X and Y : that

is, one which achieves equality for all t ≥ 0 in the coupling inequality.

However, in general such a coupling is not co-adapted. In light of the results

of Section 3, where it was shown that ĉ is the optimal co-adapted coupling

for the symmetric random walk on Zn2 , a natural question is whether ĉ is

also a maximal coupling.

This is certainly not the case in general. Suppose that X and Y are once

again random walks on Zn2 , with X0 = (0, 0, . . . , 0) and Y0 = (1, 1, . . . , 1):

calculations as in (2) show that the total variation distance between Xt

and Yt exhibits a cutoff phenomenon, with the cutoff taking place at time

Tn = 1
4 log n for large n. This implies that a maximal coupling of X and

Y has expected coupling time of order Tn. However, it follows from the

representation of τ̂ in equation (3.1) that

(4.2)

E [ τ̂ ; |X0 − Y0| = n = 2m] = E [E1 + E2 + · · ·+ Em−1 + Em] ∼ 1
2

log(n) .

It follows that ĉ is not, in general, a maximal coupling.

A faster coupling of X and Y was proposed by (7). This coupling also

makes new coordinate matches in pairs, but uses information about the

future evolution of one of the chains in order to make such matches in

a more efficient manner. This coupling is very near to being maximal (it

captures the correct cutoff time), but is of course not co-adapted.
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