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Abstract

Background: Uncovering complex network structures from a biological system is one of the
main topic in system biology. The network structures can be inferred by the dynamical Bayesian
network or Granger causality, but neither techniques have seriously taken into account the impact
of environmental inputs.

Results: With considerations of natural rhythmic dynamics of biological data, we propose a
system biology approach to reveal the impact of environmental inputs on network structures. We
first represent the environmental inputs by a harmonic oscillator and combine them with Granger
causality to identify environmental inputs and then uncover the causal network structures. We also
generalize it to multiple harmonic oscillators to represent various exogenous influences. This
system approach is extensively tested with toy models and successfully applied to a real biological
network of microarray data of the flowering genes of the model plant Arabidopsis Thaliana. The
aim is to identify those genes that are directly affected by the presence of the sunlight and uncover
the interactive network structures associating with flowering metabolism.

Conclusion: We demonstrate that environmental inputs are crucial for correctly inferring
network structures. Harmonic causal method is proved to be a powerful technique to detect
environment inputs and uncover network structures, especially when the biological data exhibit
periodic oscillations.

Background
One of the main topics in system biology is to uncover
the complex network structures in a biological system
[1,2]. In comparison with simple systems, nowadays the
researchers always face larger and more complex
dynamic interactive systems (e.g., neural networks and
gene networks). Traditional techniques, such as the
cross-correlation and partial coherence analysis [3-7],

are inadequate to clearly and explicitly reveal the true
network structures for such a complex system. These
techniques neither take time dimension into considera-
tion nor reveal the directional interactions, thus they
cannot configure a dynamic interactive system with time.
Over the past few decades several advanced techniques
such as dynamic Bayesian networks [8] and Granger
causality [9-13] have been developed to identify network
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structures in dynamic systems. Granger causality only
reveals direct causality between pairwise units with linear
interactions, thus conditional and partial Granger
causality [14,15] and kernel Granger causality [16]
have been proposed to deal with indirect causal
interactions among multiple variables.

In multivariable (more than two) situations, one time
series can be connected to another time series in a direct
or an indirect manner, raising the important question of
whether there exists a (direct) causal influence between
two time series when the influence of other time series
are taken into account. In such cases, repeated bivariate
analysis can be misleading. For example, one time series
may falsely appear to cause another if they are both
influenced by a third time series but with different time
delays. The conditional Granger causality [14,15] aim to
deal with the causal interactions among multiple
variables. However, the applicability of the kernel
Granger causality or the conditional Granger causality
largely depends on the experimental ability to measure
all relevant variables in the system, but it is usually not
feasible in the biological recordings. Environmental
inputs, including exogenous inputs from external
sources and unmeasured endogenous variables, cannot
be all captured by experimental techniques, but such
environmental inputs can confound the accuracy of
causal influences and thus degrade the credibility of the
uncovered network structure. For example, in our
experimental data recorded from the inferotemporal
(IT) cortex of sheep, every measured neuron receives
common exogenous inputs from the visual cortex and
feedbacks from the prefrontal cortex [7,15]. Even with
advanced multielectrode array (MEA) techniques, it is
only able to record a tiny subset of interacting neurons in
a single area [15,17] and there are bound to be
endogenous variables. Hence controlling environmental
inputs is a critical issue when applying Granger causality
to experimental data. Recently, partial Granger causality
[15,18] is developed to eliminate the influences of
exogenous inputs and latent variables, but a full
elimination is only possible if all common inputs have
a more or less identical influence on all measured
variables. It is generally not realistic that all measured
variables can receive an almost identical and common
influence in experimental recordings. In fact, the
common influence degrades due to spatial increment.
In such cases, it is critical to identify which measured
variables received environmental inputs, and what is the
impact of the environmental inputs on configuring
network structures?

We take a system biology approach to answer the
questions above. Most current techniques largely ignore
the natural dynamical characteristics of the biological

data, which usually exhibits highly rhythmic (periodic)
oscillations, especially under periodic environmental
influence, e.g. light-dark condition [19-23]. Such natural
periodic dynamics of experimental data can provide
important information in model fitting and error
estimation. To overcome the limitations of current
causality techniques and make full use of harmonic
oscillation characteristic of experimental data, we con-
sider a harmonic oscillator, or a set of harmonic
oscillators, to represent the environmental inputs. The
harmonic oscillators can be mathematically formulated
by the hidden periodic model [24,25]. We extend the
current linear Granger causality model (Autoregressive
model) by inclusion of the typical harmonic oscillators
embedded in the experimental recordings. If the inclu-
sion of harmonic oscillators can significantly reduce the
variance of the prediction error, then the environmental
causal influence can be reduced or eliminated. The
mathematical representation of a harmonic oscillator
model is derived in Method section and the application
of the harmonic Granger causality approach is elucidated
in Result section. Although the techniques of Granger
causality are based on time series data, additional useful
information can be revealed when the analysis is
performed in the frequency domain [14,18,26,27].
Investigating the causal interactions between different
frequencies adds another dimension to the already
complex identification of spatiotemporal and fre-
quency-specific rhythmic oscillations. Conventional
cross-frequency interactions are characterized by the
synchrony of phase, recognized as ‘n:m phase synchrony’
[28,29]. Phase synchrony indicates amplitude-indepen-
dent phase-locking of n cycles of one oscillation to m
cycles of another oscillation, however, this method
largely ignores the information carried by the amplitude
and the coupling effects between phase and amplitude.
Importantly, phase information can be sensitive to
random noise [30], while in most experimental data
the true signal is heavily masked by random noise. In
this study, as a by-product, we also assess whether it is
reliable to use the phase information between two
(oscillating) units to estimate the causality. Our simula-
tion results clearly demonstrate that it can be very
insufficient and inaccurate to use only the phase
information to characterize a causal interaction, but the
approach developed in the current paper works. We first
apply the harmonic oscillator idea to a toy model and
validate it by comparing with the conventional Granger
causality. Then we investigate the effect of multiple
oscillators by employing a small sparsely connected
network. Finally we apply the harmonic Granger
causality to a real biological network of microarray
data of the flowering genes of the model plant
Arabidopsis Thaliana. We aim to identify which genes
are directly affected by the presence of the sunlight, and
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uncover the causal interactions among genes. Although
tens of thousands of known genes within Arabidopsis are
collected with Microarray, only those genes known to be
involved in the flowering of the plant (8 genes in this
case) are analyzed by our harmonic Granger causality.
The method successfully reveals the genes that most
possibly receive environmental inputs. We finally com-
pare our causal network with other candidate models in
the literatures [31-33]. With this system biology
approach, our causal network depicts all possible
connections reported in the literatures [32,33], and
also reveals two more connections that do not exist in
the known candidate models.

Results
Toy Model & Validation
In this simple toy-model example, we compare the
performance of traditional Granger causality and har-
monic Granger causality on four simple model config-
urations. We show that the traditional Granger Causality
analysis is not sufficient to describe the influence of one
time series upon another in the presence of an external
driving force. The full simulated model under considera-
tion is described as follows:
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Y X Y
t t t x x x t

t t t

= − + + +
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− −
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Within this model we consider four configurations,
firstly where both node Xt and Yt experience an
environmental input, secondly where Xt experiences the
environmental input and Yt does not, thirdly where Yt
experiences the environmental input and Xt does not,
and lastly where neither Xt or Yt undergo the influence
from the external driving oscillation. Despite the external
driving oscillation exerted on either X or Y, there is a
coupling frequency of 34 Hz between X and Y for all four
configurations. In each of the simulations, fx and fy are
equal to 10 Hz, the input phases, jx and jy are set to
zero, and the variances of inherent noises, εt and ht, are
set to 0.1. In all the following simulations, the values of
Cx and Cy are 0.07 and 0.05, respectively.

In the first case where both nodes experience the
environmental inputs, Fig. 1Bi and 1Ci shows that
both X(ω) and Y(ω) have components at the driving
oscillation frequency of 10 Hz. The causal link known to
be present from X to Y should mean that there is a spike
in the causality spectra at the driving frequency.
Fig. (1Di) and (1Ei) show that the normal Granger AR
method can only detect the causality spectra at the
intrinsic coupling frequency around 34 Hz, but the
Harmonic method is capable of detecting the causal

influence at the external driving frequency at 10 Hz. The
reason is that the driving force from X to Y comes from
the factor 0.3Xt - 2 (Eq. 1), which contains both intrinsic
coupling frequency and external driving frequency.
Harmonic method can better fit and predict the data at
external driving frequency such that it can detect the
external driving frequency at 10 Hz better than normal
Granger AR method.

The second case is where Xt receives the driving input
and Yt does not. Fig. 1Bii shows that the peak in the
spectra can be seen in the X-channel at 10 Hz
representing the external driving oscillation, and
although there is no inherent 10 Hz oscillation in the
Yt channel, the spectra of Y (ω) (Fig. 1Cii) shows that
there is an induced oscillation at this frequency, hence
one would expect that the causality of FXÆY will show a
large component at the driving frequency. Fig. (1Dii)
and 1Eii show the causality, FXÆY calculated using both
AR and harmonic methods. The AR method shows little
peak at the driving frequency, while the harmonic
method produces a large spike in the causality at the
frequency 10 Hz. In third case where Yt receives the
external input, Fig. (1Ciii) shows that the peak in the
spectra can be seen in the Y-channel at 10 Hz
representing the external driving oscillation. We would
expect that in this case the causality shows no peak at the
driving frequency as Xt contains no driving oscillation:
Fig. (1Diii) and (1Eiii) show the causality, FXÆY

calculated using AR (panel Diii) and harmonic methods
(panel Eiii). In this model configuration, both the AR and
the harmonic methods produce similar results. However
there is a drastic decrement in the spectra of the
harmonic method at the driving frequency in the
causality, qualitatively, this cannot be the case, so in
this instance it is preferable to use the AR method to
calculate the causality spectra as Xt contains no driving
oscillation. The causality decrement near the driving
frequency may be caused by the inclusion of the
harmonic term, which may extract the intrinsic power
of the signal Y at the driving frequency of 10 Hz. The
decrement means that signal Y was mainly driven by the
harmonic term at 10 Hz and signal X did not contribute
much at this frequency. For other frequency range,
harmonic term did not influence signal Y and the driving
force mainly came from signal X. The final model
configuration considered is where neither Xt or Yt has the
driving input. Fig. (1Div) and (1Eiv) show that in this
case there is very little difference in the causality spectra
obtained using the two methods.

Through this simple toy model we have demonstrated
that the normal Granger Causality in the frequency
domain is not sufficient to detect interactions at all
frequencies in the presence of an environmental input.
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Figure 1
Validation of the hidden harmonic methodology. Four different model configurations are considered. In each
configuration node X has a causal influence of node Y. In (i) both of the nodes have environmental inputs, in (ii) and (iii) the
simulation has just node X or node Y have an external input, in (iv) neither X or Y have external inputs. (A) shows the
connection configurations. In (B) and (C) the power spectra of each configuration are shown in frequency domain, node X is
shown in blue, node Y is shown in green. (D) and (E) show the causality spectra from X to Y, fXÆY, the causality calculated
using the normal Granger AR method is shown in column (D), the harmonic causal method is shown in column (E).
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Furthermore we have demonstrated that the causal
method with the additional harmonic term produces
more consistent and accurate results than the traditional
Granger causality method at most instances. The
harmonic causal method and the traditional Granger
causality method can be a good complement to each
other when applying to the time series with or without
oscillatory environmental influences.

Investigating the Effects of Phase
It is a common scenario in physics to determine the
driving relationship between two oscillators. The phases
of the two oscillators can be interleaved throughout the
time, thus phase may not be an accurate indication of
the causal interactions between the two oscillators. One
of the main motivations of introducing the harmonic
term is to investigate the effects of phase and to
determine whether it can be used as an indication of
the amount of causal interactions between oscillatory
signals. Consider again the case where Xt drives Yt, Eq. 1
shows that the influence of the time series Xt upon Yt is
encapsulated in the oscillatory and noise terms. How-
ever, the amplitude of the resultant oscillation will
depend on the phase difference of the two harmonic
terms. This can be seen by considering the addition
of the two oscillatory terms. Let Oy = Cycos(2πfyt + jy)
and the ha rmoni c componen t f rom X t be
ˆ ˆ ( ˆ )O C cos f tx x x x= +2π φ , then in the case that the
frequency of the oscillations are equal, fx = fy = f, the
two oscillation terms can be combined as follows:

C cos ft C cos f t Scos fty y x x x( ) ( ) ( )2 2 2π φ π φ π φ+ + + = +

(2)
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It is able to analyze the effect of input phase upon the
level of influence of one time series upon another. Eq. 3
reveals that the magnitude of the resultant harmonic
term is indeed a function of both φ̂x and jy. The

oscillating term, ( ( ) ( ) ( ) ( ))cos cos sin siny x y xφ φ φ φ+ , oscil-
lates sinusoidally and can take values in the range [-1, 1].

The relative effect of this oscillation upon Ŝ depends on
the values of Cy and Ĉ x . The extremes of S are given by
ˆ ˆ ˆS C C C Cy x y x= + ±2 2 2 , and it can be shown that the
maximum effect of the phase differences happens when
Cy = Ĉ x and the minimal difference happens when
either Cy or Ĉ x equals zero.

In order to demonstrate the effects of phase changes, the
same model as Eq. 1 is used. Fig. 2 shows the enormous
consequences of the magnitude of the resultant signal by
simply varying the phase of the environmental input, jx

and jy. Fig. 2A shows that the configuration of the model
with both nodes of the system receiving external
environmental inputs and a causal link from X to Y.
Fig. 2B shows two examples in the time domain traces
obtained in the absence of environmental noise. The
upper panel Fig. 2B1 shows the time domain traces when
the phase difference of the external inputs is zero (jx = jy)
and the lower panel Fig. 2B2 shows the scenario when
jx - jy = π. In each of these diagrams the blue trace, which
is the node Xt, is unchanged, however the time series
associated with Yt change considerably. The difference of
the maximum amplitudes of the two time series is
denoted by Δ. The colourmap figure shown in Fig. 2C
plotted the value of Δ against the values of the input noise
and the input phase differences. It can be seen that the
effects of the phase differences is lessened by increasing
the noise in the system. Fig. 2D reveals the interdepen-
dence between noise and phase in this system. The upper
panel Fig. 2D1 shows the amplitude difference against the
phase differences in the absence of noise. The reason why
the peak does not happen at p is because Cx and Cy are
different, and there is a phase difference. If Cx = Cy, then
the peak would be exactly at p. The lower panel Fig. 2D2
shows how a measure of the difference varies with
increasing noise. The measure of the difference is defined

as log max min
max min

2Δ Δ
Δ Δ

−
+( ) . As the noise increases the measure

difference tends to zero, confirming that the noise levels
can mask the phase effects.

We have shown that the phase of the external driving
oscillation has an effect on the amplitudes of the
resultant time series, then the real question is if this
effect can be detected as a difference in the level of
causality. Recall that the actual level of causal interac-
tion is not varying and the influence that Xt exerts over
Yt does not alter throughout the simulations. The
investigation into the effects of phase continued with
a series of calculations determining the level of
causality. Fig. 3 shows the causality detected in the
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Figure 2
The Effects of Varying Input Phase. A): shows the model configuration where X has a causal influence upon Y and there is
no feedback. Both X an Y have an external, environmental oscillatory input. B): shows approximately 1 sec of simulated time
domain plots the blue trace is Xt, the green trace is Yt. In B1 jx = jy and in B2 δj = jx- jy = π, in both B1 and B2 the X trace is
identical, yet the trace of Y is shown to be greatly changed simply by altering the phase difference. The difference in the
magnitude is denoted by Δ. As the inherent noise will mask the effect of the phase differences, C) shows the effect on Δ by
varying both input noise and δj. D1 shows how this Δ changes by varying δj in the absence of noise. D2 shows how the effect
of noise in the system lessens the effect of the phase differences.
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Figure 3
Each colourmap shows the causality calculated whilst varying noise and input phase difference. A1 shows the
causality calculated using the AR method in the time domain, A2 shows the causality calculated by integration of the AR method
frequency domain causality. B1 shows the causality calculated using the harmonic method in the time domain, B2 shows the
causality calculated by integration of the harmonic method frequency domain causality.
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system obtained by four different methods. Fig. 3A1
shows the time domain causality detected using the
normal Granger method, Fig. 3B1 shows the time
domain causality detected using the harmonic method,
Fig. 3A2 and 3B2 show the causality detected using the
AR and harmonic methods in the frequency domain.
For consistency we require that:

F f dX Y X Y→ →
−

= ∫ ( )ω ω
π

π
(6)

where FXÆY is the causality on the time domain and
fXÆY(ω) is the causality at frequency ω. Eq. 6 is the
Kolmogorov condition that indicates the equivalence
of the causality in time and frequency domain.

Comparing the AR and harmonic causality results, the
amplitude differences influenced by the phase differ-
ences are represented in the AR method but not in the
harmonic causality results, which imply that the harmo-
nic approach must be used for a true indication of the
level of causal interaction as it is robust in presence of
the external driving oscillation.

Comparison of Fig. (3A1) and Fig. (3A2) shows that the
Eq. 6 holds for the AR method and there is a high level of
correspondence between the causality calculated in the
time domain and frequency domain. Similarly, compar-
ison of Fig. (3B1) and Fig. (3B2) shows that to a large
extent the harmonic method is consistent with the
Kolmogorov condition in Eq. 6. The causality calculated
by harmonic method does not depend on the phase
difference no matter it is in the time domain or
frequency domain.

We further investigated the relationship between the phase
difference of input and output signals, and the influence of
noise level. The same configuration model presented in
Fig. 2A was used to demonstrate this interrelation. The
phase difference between two input signals varied from 0
to 2p and the noise level (variance of the white noise)
increased from 0 to 0.2. The phase difference of signal X
and Y was plotted as a function against the phase difference
of the input signals and the noise level. Fig. 4A shows the
colourmap of the interrelation. The color intensity
represents the phase difference for the output signals.
Fig. 4B and Fig. 4C show the averaged intensity along noise
level and the input phase difference, respectively. It is clear
that the phase difference of the output signals does not
depend on the phase difference of the input signals and the
noise level. The results indicate that the phase information
cannot be used alone to accurately determine the causal
relationship between any two signals. The interpretation of
the causality based on phase should be cautious as the
causality may not reflect the true relationship.

Investigating Effect of Multiple Oscillators
In experimental recordings, the measured variables are
usually influenced by many environmental inputs, thus
multiple oscillators have to be considered. In order to
reveal the power and limitations associated with the
additional oscillators, a simple system was considered
and the errors of seven different connection schemes
was compared. The schematic plot for seven connec-
tion schemes is displayed in Fig. 5A, and the error
terms corresponding to each schemes are described as
follows:

i) ΣNC: AR + harmonic oscillations, no causality

ii) ΣC1: AR + harmonic oscillations, influence from
causal node

iii) ΣC2: AR + harmonic oscillations, influence from non-
causal nodes

iv) ΣNAR: harmonic oscillations only

v) ΣARNC: AR only

vi) ΣARCA1: AR, influence from causal node

vii) ΣARCA2: AR, influence from non-causal nodes

To investigate the effect of multiple oscillators on the
goodness of fit, we consider a simple network consisting
of five nodes in various random configurations. The
variances are estimated for each of the connection
scheme in Fig. 5A, and the number of harmonic
oscillators varies from 1 to 11. The results of this
simulation are shown in Fig. 5B. Inspection of Fig. 5B
reveals some of the issues involved in using the
harmonic oscillators to provide a full description of the
time domain evolution. Firstly looking at those variance
estimates with no harmonic oscillatory components
(ΣARNC, ΣARCA1 and ΣARCA2), as expected in Fig. 5B that
these are constants for increasing numbers of oscillators
(invariant as they are independent of oscillators). The
estimates of ΣARNC and ΣARCA2 are very similar, because
the non-causal nodes do not provide useful information
for fitting the target node. The causal estimate (ΣARCA1) is
the best estimate when no harmonic oscillators are
considered.

Inspection of estimates in which oscillations are
included reveals an important trend; one would expect
that as the number of oscillators increases, the estimates
become more and more accurate. Theoretically speaking
this should be the case, however realistically it is shown
not to be the case as in Fig. 5B. When the number of
oscillators goes beyond seven, the estimated variances
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drastically increase. The reason for this situation is the
overfitting problem. The total number of parameters
needed to be estimated depends on the number of
oscillators (three extra parameters per oscillator), and the
known data cannot fit the model if the parameters go
beyond the amount of data. As expected, the causal
estimate (ΣC1) provides the best estimate for small

number of oscillators (minimum at oscillators = 3). This
simulation reveals that the number of oscillators does
not exceed certain value (seven in this case) if we do
indeed obtain a good estimate far surpassing the
accuracy of the estimate using only AR. We have to
perform goodness of fit test to determine the number of
oscillators that can help to fit the data best.

Figure 4
Investigation of the interrelation between the phase difference of input and output signals and noise level.
A): a colourmap plot of the phase difference of output signal against the phase difference of input signal and noise level. The
phase difference of output signal is almost uniformly distributed for varying noise level and the phase difference of the input
signal. B) and C) demonstrate the averaged phase difference of the output signal against noise level and the phase difference of
the input signal, respectively.
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Gene Data & Network
Having shown the necessity of applying the harmonic
approach to identifying causality in data sets where it is
known that an external environmental oscillation is
driving the time series, it is necessary to apply this system
approach to real experimental data. The microarray gene
data pertaining to the flowering clock cycle of the
Arabidopsis is one such example where this methodol-
ogy may prove enlightening. The plants (Arabidopsis)
are grown in laboratory conditions, where they are
subjected to 12 hours of artificial daylight followed by
12 hours of no light representing night time. Gene
microarray data is collected at regular intervals (twice a
day) throughout the experiment. Inspection of the time
series of this gene expression data reveals that there is a
clear periodic oscillation which corresponds to day/night
time periods, suggesting that the expression levels of the
genes depend upon the amount of sunlight present (see
Fig. 6 panel A).

We consider the time domain change of eight genes
involved in the flowering system of the Arabidopsis,
namely CCA1, ELF4, GI, LHY, PRR5, PRR7, PRR9 and
TOC1. The time domain trace of the expression of these

genes is shown in Fig. 6 panel A. Each of the genes with
the exception of GI exhibits highly oscillatory beha-
viour with period of one day. This periodicity is
attributed to the presence of incident sunlight during
the day time and its absence during the night. Some of
the genes are directly affected by the light and are
expressed to a greater or less extent during the day. The
experimental data used for this analysis is over a period
of 11 days with two measurements per day, hence data
for each gene consists of 22 data points and there are
16 repetitions of each time point (4 biological
repetitions and 4 technical repetitions for each mea-
surement).

The task regarding this data set is twofold, firstly we wish
to identify which of the genes are driven by the external
oscillation. And secondly, we wish to determine how the
genes are connected to form the causal network
governing flowering of the plant. The method to
determine environmental input and network connectiv-
ity is as follows. There are 56 pairwise combinations
possible with eight genes; for each of these 56 gene pairs
the parameters of four candidate models were calculated.
These models are presented below:

Figure 5
Schematic connection plots and estimated variance for different number of oscillators. A): Seven connection
schemes for causal and non-causal influence when there are or not harmonic oscillators. B): Using a simple small
sparsely connected network consisting 5 nodes. The number of oscillators was increased and various fitting algorithms
are applied.
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Figure 6
Time domain traces of gene expression of eight genes under scrutiny and possible environment input. A): The
time domain plots, in blue is the 16 repetitions of the experimental data and in red is the parameterized fitted data (Causal
harmonic fitting). With the exception of the gene GI, each of the gene exhibits high periodicity and high levels of repeatability.
B): The 8 genes and the oscillation metric, those with a larger metric are more likely to contain an external oscillatory input.
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where M is the number of genes in the network, p is the
number of lagged observations used in the model. p can
be determined by a quantity called Akaike Information
Criteria (AIC) [34]. The four candidate models are
descriptions of an estimation of Xg used to determine
the effect of Xh with or without the external driver. The
variance of the errors associated with each of the models
are: Σ1, Σ2, Σ3, Σ4 respectively.

The errors (Σi) - associated with each model were
estimated for each gene pair. Using these errors we can
infer both the presence of an external environmental
driver and the possibility of a connection between the
pair of genes.

Comparison of Σ1 and Σ3 and comparison of Σ2 and Σ4
reveal that whether particular gene may have an external
input as these estimates differ only by the presence of the
oscillatory input. If the estimate is improved appreciably
by the addition of the harmonic term, then it is possible
that this gene receives an environmental input. Therefore
for each gene, a measure of the likelihood of input

presence is obtained as follows: M log log= + ∑Σ
Σ

Σ
Σ

1
3

2
4
.

Fig. 6B shows the oscillation metric for each of the 8
genes in the network. This method merely states which
of the genes is more likely than others to have an input,
so a decision must be made as the value of the
oscillation metric is the cut-off point. At a first estimate,
the value of M = 0.5 has been selected. Figure 6B shows
that selecting a cut-off value of 0.5 for the oscillation
metric leads to the following genes having an external
oscillatory input; ELF4, PRR7, TOC1, LFY.

Having calculated whether the genes have an external
input, it is possible to obtain the causality of each pair of
genes. Consider the causality between gene X and Y. If
gene X has an external input, then the causal influence X

exerting upon Y is: F logX Y→ = Σ
Σ

1
2
. Whereas there is no

external input to gene X, then the causality will be given

by: F logX Y→ = Σ
Σ

3
4
. The errors (Σi) - and hence the

causality associated with each model were found for
each pair of genes and then sorted in descending order.
Those with the highest level of causality deemed more
likely to have a connection.

The table of errors (Σi) shown in Fig. 7 is used to find the
most likely connection in the gene network. One such
candidate network is shown in Fig. 8A.

To validate the gene network generated by harmonic
Granger causality, we compare it with other candidate
network in the literature of circadian clock cycle by Ueda
[31,32]. The candidate network is reproduced in Fig. 8B.
The three loop model was first proposed by Locke [31] and
then modified by Ueda [32,33]. In Ueda’s model two
hypothesized unnamed genes are omitted in our model
and the genes LHY and CCA1 are treated as one entity. Our
analysis reveals that four of the genes in this network
receive external inputs: PRR7, CCA1, CCA1 and ELF4. The
first two of these agree with Ueda’s network. The Ueda’s
network states that TOC1 does not receive external
influence but the hypothesized gene does. It is possible
that this influence has been included in the time series of
TOC1. The structure of the two networks also are very
closely related, both showing a high level of connectivity.
Perhaps the biggest difference is that our method shows
that there are connections between PRR7/PRR9 and TOC1,
while Ueda’s model does not reveal such connections.

In addition to finding the likely connections between the
genes, the frequency domain analysis allows us to
investigate the frequencies at which one gene drives
another. Fig. 8C shows the causality spectra calculated for
each of the 15 connections believed to exist in the gene
network shown in Figure 8. fXÆY (ω) is shown on
frequency domain between [0, 0.5]/day-1, whether this is
calculated using the harmonic or AR method depends
upon whether Gene X is thought to have a external input, i.
e., those with an external input are calculated with the
harmonic method, and those with no external input are
calculated using the AR method. It is often the case that the
two methods produce very different causality spectra, so
selecting the correct method is essential, in many instances
the AR method predicts a causal influence at the driving
frequency, yet the harmonic method does not.

Discussion
Although harmonic causal method has greatly
improved the performance of causal connection detec-
tion, there are several issues that harmonic causal
method cannot answer or infer at this stage. First, the
application of harmonic Granger causality has a
precondition that the signal is influenced by harmonic
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environmental inputs. Most biological data exhibits
harmonic oscillatory behavior, while there may also
exist other form of nonlinear exogenous input other
than harmonic form. The harmonic method cannot
deal with such nonlinear interactions, and its applica-
tion to nonlinear exerts would depend on specific
problems. Second, harmonic causal method is devel-
oped to detect the directional causal interactions
between any two elements, but it has no ability to
determine the influence is positive or negative. For
example, one neuron can exert an excitatory or
inhibitory effect on another neuron; or one gene can
cause another gene’s expression level up or down. It is
not possible at this stage to figure out the positive or
negative effect by only determining the directional
causal interactions. Third, one should take extra
caution when applying multiple harmonic causal
method as the overfitting problem can easily happen.

Excessive number of harmonic oscillator will generate
inaccurate model estimations and predictions.

Conclusion
We have presented a system biology approach to study the
impact of environmental inputs on recovering network
structures. The harmonic modification of the Granger
causality is essential if we want to have the complete
picture of causal interactions between elements in a system
in the presence of a periodic environmental oscillation. The
toy model example demonstrated that the conventional
Granger causality was not sufficient to reveal the level of
causal influence in the presence of an oscillatory driver.
Furthermore, the toy model was able to validate the
estimates used in the definition of the frequency domain
harmonic causality. One of the motivations for the
introduction of the driving oscillation was to investigate

Figure 7
The errors associated with each of the gene pairs for each of the four candidate models, the causality, FXÆY is
calculated either with log

Σ
Σ

3
4

or log Σ
Σ

1
2

depending upon whether the gene has an external input.
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whether it is feasible to use phase differences between
oscillatory signals to assess the causality. We also showed
that the apparent level of influence on the conventional
Granger causality was tightly related to the phase difference
and noise intensity, and this artefact was enough to render
the estimation of the conventional Granger causality. The
harmonic Granger causality was not sensitive to these
phase effects and produces more accurate estimate of the
true causality. We also applied the harmonic method to
detect external drivers and causal connections in a gene
network. We were able to predict which genes receive an
environmental input from the sun and these results are in
agreement with the experimental results to a large degree.
Furthermore, we were able to reproduce the network,
which not only reveals known connections but also
predicts new connections comparing with classical candi-
date models.

Our approach clearly demonstrates that by including
appropriate environmental (oscillatory) inputs in a

conventional reverse-engineering approach could signif-
icantly improve its accuracy. Obviously the same idea
could be applied to other approaches such as the
Bayesian network inferences and information theory
approach.

Methods
Causality in the Time Domain
In order to infer the connections between the elements of a
system constituting a network, we propose an extended
Granger Causality whereby a harmonic oscillatory term is
added to the normal autoregressive (AR) and error terms of
the conventional Granger analysis, and such simple
modification can yield surprising and useful results. To
appreciate the effect of the proposed modification and the
power of the addition of the harmonic oscillation to the
Granger causality analysis, we provide the conventional
Granger causality in the supplementary material (Addi-
tional file 1) and proceed directly to the formulation of
harmonic Granger Causality.

Figure 8
A): Candidate gene network calculated using the both the harmonic and non-harmonic schemes. B): reproduced
Ueda’s candidate model [32,33]. C): Causality spectra for 15 connections inferred from the network.
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Consider two time series Xt and Yt, a general form of an
autoregressive model with environment inputs (sinusoi-
dal form) has the following vector autoregressive
representation:

X a X C f t

Y b Y C f

t j t j x x x t
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= + + +
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A joint autoregressive representation having information
of past measurements of both time series Xt and Yt can be
written as
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(8)

where p is the maximum number of lagged observations
in the model. εit, i = 1, 2, 3, 4, are prediction errors with
variance Σi, which are uncorrelated over time. The value
of Σ1 measures the accuracy of the autoregressive
prediction of X based on its previous values and the
harmonic term, whereas the value of Σ3 represents the
accuracy of predicting present value of X based on
previous measurements of both X and Y and the
harmonic term. According to the causality definition of
Granger, if the prediction of one process is improved by
incorporating past information of the second process,
then the second process causes the first process. In other
words, if the variance of the prediction error for the first
process is reduced by the inclusion of the past histories
of the second process then a causal relation from the
second process to the first process exists. This causal
influence is quantified by

FY X→ = log
Σ
Σ

1
3

(9)

It is clear that FYÆX = 0 when there is no causal influence
from Y to X and FYÆX > 0 when there is. Similarly, define
causal influence from X to Y as

FX Y→ = log
Σ
Σ

2
4

(10)

Due to the natural rhythmic dynamics of the experi-
mental recordings, the environmental inputs (denote as
E) are represented by the harmonic terms. While the
inclusion of the harmonic terms can exclude the periodic
influence caused by the environmental inputs, thus the
prediction error can be better estimated and truly reflect
the interaction between two processes. We can quantify

the influence of environmental inputs (E) by recalling
the joint autoregressive model of Xt and Yt.
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By definition of Granger causality, the causal influence
from E to X or Y can be defined as

F

F

E X

E Y

→

→

=

=

⎧

⎨
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⎩
⎪
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log

log

Σ
Σ
Σ
Σ

5
3
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4

(12)

Causality with multiple Oscillators
In many aspects, the addition of a single oscillator is a
generalization of the Granger causality, however the
application of the adaptation to the normal autoregres-
sive approach is limited to only one external driving
force. A further generalization considered here consists
of adding more oscillators to the AR model. The
interpretation of this approach is as follows: the first
and most simple interpretation is that the additional
oscillators represent more external oscillatory driving
forces, thus being a mere extension of the single
oscillator case. A more enlightening and more useful
interpretation is that multiple oscillators represent a
‘field’ of unknown influences upon the network. We
know from Fourier theory that any function or signal can
be represented by a (possibly infinite) summation of
sinusoids, therefore the addition of multiple oscillators
in this fashion can, in theory, account for any incident
influence upon each of the variables within the system.
This interpretation has some rather useful applications.
Consider a large sparsely connected network. It is a
typical scenario that due to some experimental limita-
tions, we can only record a small proportion of
information in the network as a whole. Ideally we wish
to reconstruct the structure of the subnetwork for which
we have recorded. Hopefully by considering multiple
oscillators, this Fourier-like method will provide an
avenue to recover the structure of the subnetwork.

By analogy with the single oscillator case, in multiple
oscillator scenario there exist a number of unknown
external inputs about which we can obtain no informa-
tion. These unknown inputs and their influences are to
be approximated by the summation of many oscillators.
In order to calculate the interaction from Yi to X with
many external oscillators and known variables, we can
write the equations as
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In Eq. 14, all known variables (Y) are included in the AR
terms, while in Eq. 13, the variable Yi is excluded in the
AR terms. M is the number of known variables, p is the
total number of previous time steps included and N is
the number of oscillators considered in the estimation.
The errors associated with noncausal and causal estima-
tions are εnc and εc respectively.

The level of causality from Yi Æ X is quantified as:

F log
var nc
var c

Y Xi → =
⎛
⎝⎜

⎞
⎠⎟

( )
( )
ε

ε
(15)

If FY Xi → = 0 then there is no causal influence from Yi
to X. If FYÆX > 0 then there is a causal influence from
Yi to X.

Causality in the Frequency Domain
The key of information extraction is to switch from
temporal domain to frequency domain in which their
information content can usually become more obvious.
Fourier transform provides spectral power that identifies
the amplitudes of sine functions of various frequencies
that exist throughout the entire duration of the signal.
The time domain Granger causality and the harmonic
modification can be transformed into the frequency
domain, whereby we can obtain the causality spectra
showing the frequencies at which the influence of one
variable is exerted on another. Expressing the harmonic
time series approximations in matrix format leads to the
following expression:
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where the summation of over the time lags is implied

such that a L X a Xj t jj
( ) = −=

∞∑ 1
. L is the lag operator. And

the zeroth terms of the coefficient matrix are such that a
(0) = 1, b(0) = 0, c(0) = 0 and d(0) = 1. Ox and Oyare the
harmonic terms. Take the Fourier transform on both
sides of this matrix equation and then multiply by the
inverse of the matrix, then express X(ω) and Y(ω) in
terms of the error and harmonic oscillations, we can
obtain the transfer function:
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Now the spectra of X(ω) and Y (ω) can be can be derived
as
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Thus the spectra are given by:
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It is instructive to investigate the components which
constitute the spectra of X(ω) and Y(ω). Expanding the
expression for Sxx and Syy yields an equation with 16
terms dependent upon the errors terms, (Ex(ω), Ey(ω)),
the harmonic terms, (Ox(ω), Oy(ω)), the transfer func-
tions, Hxx, Hxy, Hyx, Hyy, and their complex conjugates.
For the X channel, these components are as follows:
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Each element of the spectra of Sxx can be thought of as
either intrinsic (caused by the Xt), causal (caused by Yt)
or cross terms (caused by Xt and Yt). Thus

S S S Sxx intrinsic causal cross= + + (21)

where
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In the absence of the harmonic oscillators, there are only
four terms in the expression for Sxx and Syy, and the cross
term can be eliminated using the transformation
proposed by Geweke [35,36]. Eliminating the cross
term is essential for a consistent definition of the
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frequency domain causality, however the addition of the
harmonic terms makes the prospect of removing the
cross term rather troublesome. In the harmonic case, it is
not possible, in general to eliminate the cross terms by
means of transformation due to the presence of Ox and
Oy terms. The oscillation terms Ox, y are sinusoidal
indicating that the Fourier transforms of these functions
are delta functions, and the discontinuous nature of
the delta functions makes it impossible to find a
transformation eliminate all the cross terms. The method
we use to eliminate the cross terms is as follows:
firstly we apply the approximation of the Geweke
transformation:
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where g2 is the covariance matrix between X and Y, S is
the variance of either error Exor Ey.

The step from Eq. 22 to Eq. 23 suggests that the transfer
matrix H is an approximate to the true value. This estimate
is necessary to ensure that the causality has a consistent
definition. The transfer equation is now as follows:
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We combined Eq. 18 and Eq. 24 to define X(ω) as
follows:
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Where H H H H Hxx xx xy xy xy= + =γ
Σ , and E E Ex x y= − γ

Σ .

This has the effect of nullifying the cross termswhich contain
the element of error. Then the cross terms (components of
Scross) are reallocated either toScausalorSintrinsic in the following
fashion:
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After the reallocation of the components of the spectrum
the resultant causality is an approximation rather than a
precise calculation, yet it can be shown to yield
convincing and consistent results. Using these two
methods to approximate the spectrum, we have obtained
the spectrum in such a format S S Sxx intrinsic causal= + as
the Scross term is negligible. In the case where the
harmonic term is not present, the causality is defined as:
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Yet, it is essential that the causality in the harmonic case
is defined in terms of both Sintrinsic and Scausal. Therefore,
by analogy to the normal frequency domain causality
(without harmonic terms), the frequency domain
causality in the harmonic case is defined as:

f log
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In the Results section, we will show through examples
that this approximation produces an excellent estimate
of the frequency domain causality.
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