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Abstract

We study the asymmetric atomic selfish routing in ring networks, which has diverse practical ap-

plications in network design and analysis. We are concerned with minimizing the maximum latency

of source-destination node-pairs over links with linear latencies. We obtain the first constant upper

bound on the price of anarchy and significantly improve the existing upper bounds on the price of sta-

bility. Moreover, we show that any optimal solution is a good approximate Nash equilibrium. Finally,

we present better performance analysis and fast implementation of pseudo-polynomial algorithms for

computing approximate Nash equilibria.

1 Introduction

Recent trends in the analysis and design of network routing take into account rational and selfish behaviors

of network users. Selfish routing [23] models network routing from a game-theoretic perspective, in which

network users are viewed as independent players participating in a non-cooperative game. Each player,

with his own pair of source and destination in the network, aims to establish a communication path

(between his source and destination) along which he experiences latency as low as possible, given the link

congestion caused by all the players. In the absence of a central authority who can impose and maintain

globally efficient routing strategies on the network traffic [19], network designers are often interested in a

(pure) Nash equilibrium that is as close to the system optimum as possible, where the Nash equilibrium

is a “stable state” among the players, from which no player has the incentive to deviate unilaterally. The

notion of price of anarchy (PoA) (resp. price of stability (PoS)) was introduced in [17] (resp. [2]) to capture

the gap between the worst (resp. best) possible Nash equilibrium and the globally optimal solution. They

respectively quantify the maximum and minimum penalties in network performance required to ensure a

stable outcome.

The PoA and PoS of selfish routing depend on, among others, the network topologies, the number

of players, the latency functions on network links, as well as the system and individual objectives. In
∗Supported in part by the NSF of China under Grant No. 10531070, 10771209, 10721101, and Chinese Academy of

Sciences under Grant No. kjcx-yw-s7.
†Corresponding author: xchen@amss.ac.cn.
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this paper, we are concerned with selfish routing in ring networks with multiple players and linear load-

dependent latencies, whose PoA and PoS are evaluated against the social objective of minimizing the

maximum latency. We denote such a selfish ring routing model as the SRR for short.

Motivations and related works The SRR model under consideration falls within the general frame-

work of network congestion games, which are guaranteed to admit at least one Nash equilibrium [14].

In contrast to the symmetric setting of one single strategy set for all the players [10, 13, 15, 17], the

congestion game of the SRR is asymmetric (equivalently, it is a multi-commodity game) and models

more realistic and difficult scenarios where multiple players may have different locations in the network

and thus different sets of strategies to choose from [10, 16]. As splitting the traffic usually causes the

problem of packet reassembly at the receiver and thus is generally avoided [4], the SRR model is atomic

and unsplittable [4, 7] in the sense that the unit traffic demand from a source to a destination must be

satisfied by choosing a single path between the source and the destination.

Our motivation of studying selfish routing on the ring topology is threefold. Firstly, the PoS (hence

the PoA) of selfish routing with respect to minimizing the maximum latency in general networks can be

unbounded even if all latency functions are linear, which can be demonstrated in the following example of

an undirected network illustrated in Figure 1. An example of directed network has been provided in [9].

Figure 1. Unbounded PoS in undirected networks.

Example In the selfish routing on the undirected graph G in Figure 1, there are in total k = h3 + 1

(h ≥ 2) players 1, 2, . . . , k. Each player i (1 ≤ i ≤ k) sends one unit of flow along a path Pi between

node si and node ti, where s(j−1)h2+1 = s(j−1)h2+2 = · · · = sjh2 = sj and t(j−1)h2+1 = t(j−1)h2+2 = · · · =
tjh2 = tj for j = 1, 2, . . . , h, meaning that players 1, 2, . . . , h3 are evenly partitioned into h groups, and

all h2 players in the jth group (1 ≤ j ≤ h) have (sj , tj) as their source-destination pair. Let e be a link

of G, and x be the number of players who use e in sending their flows. The latency on e is hx if e = ej

for some 1 ≤ j ≤ h, and x if e = e′j for some 1 ≤ j ≤ h, and 0 otherwise. Player i experiences a latency

equal to the sum of latencies on edges of path Pi, 1 ≤ i ≤ k. It is easy to see that the maximum latency

among all players is minimized when all players experience an identical latency of h2 in such a way that

all Pi, i = 1, 2, . . . , k − 1, avoid using e1, e2, . . . , eh except Pk, which uses all of these links. On the other

hand, at any Nash equilibrium of the selfish routing, every ej (resp. e′j), 1 ≤ j ≤ h, must be contained

by at least h − 1 (resp. h2 − h + 1) paths in P1, P2, . . . , Pk; otherwise some player i could experience a

latency at least h2 − h + 3 on e′j (resp. a latency at least h2 + h on ej), and would strictly lower his own

latency by using ej in stead of e′j (resp. e′j in stead of ej) in his path. Thus player k always experiences

a latency greater than h(h2 − h) in every Nash equilibrium. It follows that the PoS of the selfish routing
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on G is greater than h− 1, which turns to infinity as h→∞. In light of this negative example, practical

(undirected) network design has to pay much attention to selecting suitable topologies so that small PoS,

as well as small PoA, can be guaranteed.

Secondly, rings have been a fundamental topology frequently encountered in communication networks,

and attract considerable attention and efforts from the research community [3, 5, 6, 8, 24, 25], especially

in design of approximation algorithms for combinatorial optimization problems. Our study of selfish

routing on the ring topology attempts not only to provide a good starting point for evaluating the PoA

and PoS in asymmetric network congestion games, but also to enhance the diversity of network topologies

amenable to the minimax criterion.

Thirdly, even in a ring, the problem of routing in response to communication requests is not trivial.

It has not been known until the present work whether the SRR admits a constant PoA. Upper bounds

of 6.83 and 4.57 on the PoS respectively with linear latency and homogenous linear latency have been

established in [9]. The authors have also proved the existence of an optimal solution which approximates

a Nash equilibrium by a factor of 54. Improving these bounds or showing their tightness is very desirable

for better quantifying the PoS and the instability of efficient solutions, which in turn will provide improved

guidelines for achieving a good balance between stability and efficiency in the SRR network design.

Main contributions With new ideas and techniques in addition to more elaborate analysis, we con-

tribute to the study of the SRR and of atomic selfish routing in multi-commodity networks [4, 20] by prov-

ing four groups of main results: (1) The PoS is at most 3.9, which reduces to 3.5 for homogenous latency;

(2) The PoA has a constant upper bound of 16; (3) Any optimal solution is a 9-approximate Nash equi-

librium (see Definition 2.2); (4) A polynomial-time combinatorial algorithm and pseudo-polynomial-time

convergence combined compute a (1, 11.7)-approximate Nash equilibrium (see Definition 2.2). In sum-

mary, our work provides a strong justification on more attractive features of the ring topology compared

with general networks [12], apart from simplicity and fault-tolerance of rings in real-world applications.

Paper organization The SRR model is formally defined and some basic properties are presented in

Section 2. After evaluation of the PoS in Section 3 with improved bounds, we show in Section 4 a constant

bound on the PoA. Then we prove in Section 5 the existence of (9, 1)-approximate Nash equilibria. In

Section 6 we provide algorithms for finding good approximate Nash equilibria in pseudo-polynomial time.

Finally, we conclude the paper in Section 7 with computational study of the PoS in the SRR of 2 players

and 3 players, respectively, which shows that the corresponding PoSs are 1.25 and 1.26, respectively.

2 The selfish ring routing model

This section introduces the problem formulation, as well as concepts and notation to be used in the paper.

The basic properties of Nash equilibria established will play an important role in our theoretical proofs

and algorithm design.
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2.1 The model

Our selfish ring routing (SRR) model is specified by a triple (R, l, (si, ti)k
i=1), usually called an SRR

instance. As illustrated in Figure 2, the underlying network is a ring R = (V, E), an undirected cycle,

with node set V = {v1, v2, . . . , vn} of n nodes and link set E = {ei = vivi+1 : i = 1, 2, . . . , n} of n links,

where vn+1 = v1. By writing P ⊆ R, we mean that P is a subgraph of R (possibly R itself) with node set

V (P ) and link set E(P ). Each link e ∈ E is associated with a load-dependent linear latency (function)

le(x) = aex + be, where ae, be are nonnegative constants, and x is an integer variable indicating the load

on e.

Without loss of generality, all ae and be, e ∈ E, are assumed to be integers. (2.1)

The latency l is said to be homogeneous if be = 0 for all e ∈ E. There are k source-destination node

pairs (si, ti), i = 1, 2, . . . , k, corresponding to k players 1, 2, . . . , k. Each player i (1 ≤ i ≤ k) has a

communication request for routing one unit of flow from his source si ∈ V to his destination ti ∈ V , and

his strategy set consists of two internally disjoint paths Pi and P̄i in ring R with ends si and ti satisfying

V (Pi) ∩ V (P̄i) = {si, ti} and Pi ∪ P̄i = R, i = 1, 2, . . . , k. (2.2)

We set ¯̄Pi := Pi for i = 1, 2, . . . , k. Different players may have the same source-destination pair, and

vertices si, ti, i = 1, 2, . . . , k are not necessarily distinct. On the other hand, k ≥ 2 and si ̸= ti, i =

1, 2, . . . , k, are assumed to avoid triviality.

Figure 2. The SRR instances.

A (feasible) routing f for the SRR instance is a 0-1 function f on multiset P := ∪k
i=1{Pi, P̄i} such that

fPi + fP̄i
= 1 for every i = 1, 2, . . . , k. In view of the correspondence between f and player strategies

adopted for the SRR instance, we abuse the notation slightly by writing f = {Q1, Q2, . . . , Qk} with the

understanding that, for each i = 1, 2, . . . , k, the one unit of flow requested by player i is routed along

path Qi ∈ {Pi, P̄i}, and correspondingly f(Qi) = 1 > 0 = f(Q̄i). Also we write Qi ∈ f for i = 1, 2, . . . , k.

Each link e ∈ E bears a load with respect to f defined as the integer fe :=
∑

P∈P:e∈E(P ) f(P ) = |{Qi :

e ∈ E(Qi), i = 1, 2, . . . , k}| equal the number of paths in {Q1, Q2, . . . , Qk} each of which go through e.

Every P ⊆ R is associated with a nonnegative integer lP (f) :=
∑

e∈E(P ) le(fe) =
∑

e∈E(P )(aefe + be),
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which indicates roughly the total latencies of links on P experienced in f . (The wording “indicates

roughly” changes to “equals” when every link of P is used by some player in the routing f .) Naturally,

the maximum latencies experienced by individuals and the system are

Mi(f) := lQi(f) for i = 1, 2, . . . , k, and M(f) :=
k

max
i=1

Mi(f), (2.3)

where Mi(f) is the (maximum) latency of player i with respect to f (the “maximum” can be dropped in

view that the routing is unsplittable), and M(f) is the maximum latency of the routing f . A routing f∗

is optimal if M(f∗) is minimum among all routings for the SRR instance.

2.2 Approximate Nash equilibria

A Nash equilibrium is characterized by the property that no player has the incentive to change his strategy

unilaterally. A routing f = {Q1, Q2, . . . , Qk} is a Nash equilibrium or simply a Nash routing if

lQi(f) ≤
∑

e∈E(Q̄i)

le(fe + 1) for all i = 1, 2, . . . , k. (2.4)

As a network congestion game [14], the SRR possesses at least one Nash routing whose existence can be

proved by using potential function Φ, defined as follows:

Φ(f) =
∑
e∈E

fe∑
x=1

le(x). (2.5)

The domain of the potential function is the set of routings for the SRR instance. For routing f =

{Q1, Q2, . . . , Qk}, reversing the summations, the potential of f becomes

Φ(f) =
k∑

i=1

∑
e∈E(Qi)

le
(
|{Qh : h ≤ i, e ∈ E(Qh)}|

)
,

from which one can easily derive the following well-known result [21, 18].

Lemma 2.1 Let routing f̃ result from routing f due to a single player i changing his adopted strategy

(path). Then the following hold:

(i) Φ(f)− Φ(f̃) = Mi(f)−Mi(f̃).

(ii) f is a Nash routing if and only if Φ(f) is a local minimum of Φ. 2

Definition 2.2 Let f∗ be an optimal routing and α, β ≥ 1 be two real numbers. A routing f =

{Q1, Q2, . . . , Qk} is called an α-approximate Nash routing if

lQi(f) ≤ α
∑

e∈E(Q̄i)

le(fe + 1), for all i = 1, 2, . . . , k.

If additionally M(f) ≤ βM(f∗), then f is called an (α, β)-approximate Nash routing.
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When α = 1, routing f is a Nash equilibrium, and thus also referred to as a (1, β)-Nash routing. In

the SRR instance (R, l, (si, ti)k
i=1), the price of stability (PoS) is defined as the minimum β for which

(1, β)-Nash routing exists; and the price of anarchy (PoA) is defined as the minimum β for which every

Nash routing is a (1, β)-Nash routing. The notions of the PoS and PoA extend to the SRR problem of

all SRR instances, whose PoS (resp. PoA) is set to be the supremum of PoS (resp. PoA) over all SRR

instances.

As an example, for the SRR instance depicted in Figure 2(c), where 0 < ε < 1/2, enumeration

of all four feasible routings shows that its unique optimal routing f∗ = {s1s2t1, s2t1t2} has maximum

latency M(f∗) = 4 − ε, and is a ( 4−ε
4−2ε , 1)-approximate Nash routing, while its unique Nash routing

f = {s1s2t1, s2s1t2} has maximum latency M(f) = 5 − 3ε. Hence the PoA and PoS of this instance

both tend to 5/4 as ε approaches 0. In addition, the example suggests a small improvement on the lower

bound of the PoS ≥ 8/7 for 2-player SRR stated in Theorem 2 of [9].

Remark 2.3 The price of stability is at least 5/4 for the SRR problem with k = 2 players.

2.3 Basic properties

We investigate Nash routings for an arbitrary SRR instance I = (R, l, (si, ti)k
i=1). For any P ⊆ R and

any routing f for I, we often consider

lP (f) :=
∑

e∈E(P )

le(fe) =
∑

e∈E(P )

(aefe + be)

as the sum of

laP (f) :=
∑

e∈E(P )

aefe and lbP (f) :=
∑

e∈E(P )

be.

Define notation:

||P ||a :=
∑

e∈E(P )

ae, ||P ||b :=
∑

e∈E(P )

be, and ||P || := ||P ||a + ||P ||b.

It is worth noting that the equation lbP (f) = ||P ||b always holds, though in contrast the integer laP (f)

may be smaller or bigger than or equal to ||P ||a. So for any routing f we particularly have

lP (f) = laP (f) + lbP (f) = laP (f) + ||P ||b. (2.6)

When P (⊆ R) is a path, complementary to it is the other path P̄ ⊆ R whose edge-disjoint union with P

forms R. In particular, we will make explicit or implicit use of the following equations in our discussion:

||P ||a + ||P̄ ||a = ||R||a, ||P ||b + ||P̄ ||b = ||R||b, and ||P ||+ ||P̄ || = ||R||. (2.7)

Throughout the paper, we denote by f▽ = {Q1, Q2, . . . , Qk} a given non-Nash routing for the SRR

instance I = (R, l, (si, ti)k
i=1) in which players 1, 2, . . . , k are named such that for a minimum j with
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1 ≤ j ≤ k,

fN = {Q̄1, . . . , Q̄j , Qj+1, . . . , Qk} is a Nash routing for I, and

γ := maxj
i=1

||Q̄i||a
||Qi||a = ||Q̄1||a

||Q1||a ; so laR(fN ) ≤ max{γ, 1} laR(f▽).
(2.8)

If Q̄p = Qq for some p, q with 1 ≤ p ̸= q ≤ j, then without loss of generality {p, q} = {j − 1, j}; it follows

that Qj−1 = Q̄j ∈ fN , Qj = Q̄j−1 ∈ fN , and we can express fN as fN = {Q̄1, . . . , Q̄j−2, Qj−1, . . . , Qk}.
This contradicts the minimality of j, and gives

{Q̄1, . . . , Q̄j} ∩ {Q1, . . . , Qj} = ∅. (2.9)

By (2.7), we see from ||Q̄1||a = γ||Q1||a in (2.8) that

||Q1||a =
||R||a
γ + 1

. (2.10)

Since R is the edge-disjoint union of Qi and Q̄i for every i = 1, 2, . . . , k, from (2.6), with R in place of P ,

we derive

lQ̄i
(fN ) + lQi

(fN ) = lR(fN ) = laR(fN ) + lbR(fN ) = laR(fN ) + ||R||b for i = 1, 2, . . . , k. (2.11)

Applying (2.4) to the Nash routing fN = {Q̄1, . . . , Q̄j , Qj+1, . . . , Qk}, we obtain

lQ̄i
(fN )≤ lQi(f

N )+||Qi||a for i=1, 2, . . . , j;

lQi(f
N )≤ lQ̄i

(fN )+||Q̄i||a for i=j+1, j+2, . . . , k.
(2.12)

With the definition of M(fN ) given by (2.3), an easy case analysis on (2.12) shows that M(fN ) is bounded

above by

1
2

(
lQ(fN ) + lQ̄(fN ) + max{||Q||a, ||Q̄||a}

)
, for Q ∈ fN with lQ(fN ) = M(fN ),

which, in combination with (2.11), gives

M(fN ) ≤ lR(fN ) + ||R||a
2

=
laR(fN ) + ||R||a + ||R||b

2
=

laR(fN ) + ||R||
2

. (2.13)

Note from (2.11) and (2.12) that lR(fN ) = lQ̄i
(fN ) + lQi(f

N ) ≤ 2lQi(f
N ) + ||Qi||a for i = 1, 2, . . . , j.

Thus the leftmost inequality in (2.13) implies

M(fN ) ≤ lQi(f
N ) +

||Qi||a
2

+
||R||a

2
, for i = 1, 2, . . . , j. (2.14)

These inequalities suggest an approach to upper bounding M(fN ): getting an estimation of the smallest

lQi(f
N )+ 1

2 ||Qi||a among i ∈ {1, 2, . . . , j}. Observe from (2.8) that ||Q1||a = minj
i=1 ||Qi||a. It is desirable

that lQ1(f
N ) is not large, which constitutes the essence of the following lemma.
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Lemma 2.4 If positive numbers β and ρ satisfy β = M(fN )/M(f▽), lR(f▽) ≤ 2ρM(f▽), and β > ρ,

then the following hold:

(i) β ≤ ρ max{γ, 1}+ ||R||a/(2M(f▽)).

(ii) (βγ − β − 2ρ) lQ1(f
N ) ≤ 2ρ(βγ − ρ)M(f▽) + (β + ρ)||Q1||a + ρ||R||a − (β − ρ)||R||b.

Proof. From (2.13) we have M(fN ) ≤ 1
2 (laR(f) + ||R||a), which in combination of (2.8) implies (i):

β =
M(fN )
M(f▽)

≤ max{γ, 1}lR(f▽) + ||R||a
2M(f▽)

≤ max{γ, 1}ρ +
||R||a

2M(f▽)
.

To prove (ii), we deduce from (2.13) that laR(fN ) ≥ 2M(fN ) − ||R|| = 2βM(f▽) − ||R||. Thus

laR(fN ) ≥ β
ρ lR(f▽)− ||R|| which can be expressed using (2.6) as

j∑
i=1

||Q̄i||a +
k∑

i=j+1

||Qi||a ≥
β

ρ

j∑
i=1

||Qi||a +
β

ρ

k∑
i=j+1

||Qi||a +
β

ρ
||R||b − ||R||a − ||R||b.

By applying (2.7) and substituting ||R||a − ||Q̄i||a for ||Qi||a, i = 1, 2, . . . , j, in the above inequality we

obtain

j∑
i=1

||Q̄i||a ≥
β

ρ

(
j · ||R||a −

j∑
i=1

||Q̄i||a
)

+
(

β

ρ
− 1

) k∑
i=j+1

||Qi||a +
(

β

ρ
− 1

)
||R||b − ||R||a.

Rearranging terms in the above inequality yields

(
β

ρ
+ 1

) j∑
i=1

||Q̄i||a ≥
(

β

ρ
j − 1

)
||R||a +

(
β

ρ
− 1

) k∑
i=j+1

||Qi||a +
(

β

ρ
− 1

)
||R||b.

Since β/ρ > 1, ignoring the nonnegative middle term on the right-hand side and dividing both sides by

positive number β/ρ + 1, we derive from the above inequality that

j∑
i=1

||Q̄i||a ≥
βj − ρ

β + ρ
||R||a +

β − ρ

β + ρ
||R||b. (2.15)

Let us now consider sum
∑j

i=1 ||Q̄i∩Q1||a, which equals the total contributions of paths Q̄1, Q̄2, . . . , Q̄j

in the Nash routing fN to the value of laQ1
(fN ). Clearly, the sum of the contributions is at least

laQ1
(fN )−

k∑
i=j+1

||Qi||a ≥ laQ1
(fN )− laR(f▽),

and thus at least laQ1
(fN )− lR(f▽) + ||R||b by (2.6). It follows from lR(f▽) ≤ 2ρM(f▽) that

j∑
i=1

||Q̄i ∩Q1||a ≥ laQ1
(fN )− 2ρM(f▽) + ||R||b. (2.16)
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On the other hand, since R is the link-disjoint union of Q1 and Q̄1, we have

laQ̄1
(fN ) ≥

j∑
i=1

||Q̄i ∩ Q̄1||a ≥
j∑

i=1

(
||Q̄i||a − ||Q1||a

)
.

In turn, using (2.15) and ||R||a = (γ + 1)||Q1||a in (2.10), we can lower bound la
Q̄1

(fN ) as follows:

laQ̄1
(fN ) ≥

j∑
i=1

(
||Q̄i||a − ||Q1||a

)
≥ βj − ρ

β + ρ
||R||a − j · ||Q1||a +

β − ρ

β + ρ
||R||b

= j

(
β(γ + 1)

β + ρ
− 1

)
||Q1||a −

ρ

β + ρ
||R||a +

β − ρ

β + ρ
||R||b

≥ βγ − ρ

β + ρ

j∑
i=1

||Q̄i ∩Q1||a +
(β − ρ)||R||b − ρ||R||a

β + ρ
.

Furthermore, it follows from (2.16) that

laQ̄1
(fN ) ≥ βγ − ρ

β + ρ

(
laQ1

(fN )− 2ρM(f▽) + ||R||b
)

+
(β − ρ)||R||b − ρ||R||a

β + ρ
. (2.17)

Applying (2.12) and (2.6), we have

lQ1(f
N ) + ||Q1||a ≥ lQ̄1

(fN ) = laQ̄1
(fN ) + ||Q̄1||b.

Combining the above inequality with (2.17) and using ||R||b = ||Q1||b + ||Q̄1||b ≥ ||Q1||b, we deduce that

lQ1(f
N ) + ||Q1||a ≥ βγ − ρ

β + ρ

(
laQ1

(f)− 2ρM(f▽) + ||R||b
)

+
(β − ρ)||R||b − ρ||R||a

β + ρ
+ ||Q̄1||b

≥ βγ − ρ

β + ρ

(
laQ1

(fN )− 2ρM(f▽) + ||Q1||b
)

+
β (||Q1||b + ||Q̄1||b)− ρ||R||a − ρ||R||b

β + ρ

≥ βγ − ρ

β + ρ

(
lQ1(f

N )− 2ρM(f▽)
)

+
β ||R||b − ρ||R||a − ρ||R||b

β + ρ

=
βγ − ρ

β + ρ

(
lQ1(f

N )− 2ρM(f▽)
)

+
(β − ρ)||R||b − ρ||R||a

β + ρ

Thus we obtain

(β + ρ)
(
lQ1(f

N ) + ||Q1||a
)
≥ (βγ − ρ)

(
lQ1(f

N )− 2ρM(f▽)
)

+ (β − ρ)||R||b − ρ||R||a,

which is equivalent to the inequality in (ii). The lemma is then proved. 2
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Lemma 2.5 If lR(f▽) ≤ 8M(f▽) and ||R||a ≤ 3.5M(f▽), then β = M(fN )/M(f▽) ≤ 16.

Proof. Assume to the contrary β > 16. With ρ = 4, we deduce from Lemma 2.4 that

γ = max{γ, 1} ≥ β

ρ
− ||R||a

2ρM(f▽)
>

16
4
− 3.5

8
= 3.5625, (2.18)

(βγ − β − 8) lQ1(f
N ) ≤ 8(βγ − 4)M(f▽) + (β + 4)||Q1||a + 4||R||a − (β − 4)||R||b.

Note from (2.18) that βγ − β − 8 > 0, and from (2.10) that

||Q1||a =
||R||a
γ + 1

≤ 3.5
M(f▽)
γ + 1

.

With (2.14) we get

M(fN ) ≤ lQ1(f
N ) +

||Q1||a
2

+
||R||a

2

≤ 8(βγ − 4)
βγ − β − 8

M(f▽) +
(

β + 4
βγ − β − 8

+
1
2

)
||Q1||a +

(
4

βγ − β − 8
+

1
2

)
||R||a

≤ 8(βγ − 4)
βγ − β − 8

M(f▽) +
β(γ + 1)

2(βγ − β − 8)
· 3.5M(f▽)

γ + 1
+

β(γ − 1)
2(βγ − β − 8)

· 3.5M(f▽)

=
19.5βγ − 64

2(βγ − β − 8)
M(f▽).

As γ > 0 by (2.18), the derivative of 19.5βγ−64
2(βγ−β−8) with respect to β is negative for all β > 0. So, using

β > 16, we obtain

16 < β =
M(fN )
M(f▽)

≤ 19.5βγ − 64
2(βγ − β − 8)

≤ 19.5(16γ)− 64
2(16γ − 16− 8)

=
312γ − 64
32γ − 48

.

Now 312γ−64
32γ−48 > 16 implies γ < 3.52, a contradiction to (2.18), proving the lemma. 2

3 Tighter bounds on the prices of stability

This section is devoted to the establishment of the following theorem.

Theorem 3.1 The price of stability of the SRR problem is at most 3.9 and is at most 3.5 if the linear

latency functions are homogenous.

To establish Theorem 3.1, we are to use a number of lemmas and theorems. Suppose we are given a

routing f▽ = {Q1, Q2, . . . , Qk} for an SRR instance I = (R, l, (si, ti)k
i=1) and f▽ is not a Nash routing.

Therefore, some player h ∈ {1, 2, . . . , k} can benefit from unilaterally changing his strategy provided

10



strategies of other players remain the same. It follows that the SRR instance admits a routing f ′ =

{Q1, . . . , Qh−1, Q̄h, Qh+1, . . . , Qk} for which we have

0 ≤ lQ̄h
(f▽) + ||Q̄h||a = lQ̄h

(f ′) < lQh
(f▽) ≤M(f▽), (3.1)

laR(f▽) ≤ lR(f▽) = lQh
(f▽) + lQ̄h

(f▽) < 2M(f▽)− ||Q̄h||a. (3.2)

Since lQ̄h
(f ′) ≥ ||Q̄h|| and lQh

(f▽) ≥ ||Qh||, it follows from (2.7) and (3.1) that

||Qi||+ ||Q̄i|| = ||R|| = ||R||a + ||R||b = ||Qh||+ ||Q̄h|| < 2M(f▽) for i = 1, 2, . . . , k. (3.3)

In the rest of this section we denote by fN an arbitrary Nash routing for the instance I. Let β =

M(fN )/M(f▽). We are to show β ≤ 3.9 for general linear latencies and β ≤ 3.5 for homogeneous

latencies. To this end, we assume that

β :=
M(fN )
M(f▽)

> 3.5, (3.4)

on which we derive a contradiction in either case. Since fN ̸= f▽, we may assume that fN and f▽ are

as described in Section 2.3. Observe from (3.2) and (3.4) that Lemma 2.4 applies with ρ = 1, yielding

β ≤ max{γ, 1}+
||R||

2M(f▽)
, (3.5)

(βγ − β − 2) lQ1(f
N ) ≤ 2(βγ − 1)M(f▽) + (β + 1)||Q1||a + ||R||a − (β − 1)||R||b. (3.6)

The combination of (3.3), (3.4), and (3.5) implies

γ > 2.5. (3.7)

Lemma 3.1 laR(fN ) ≤ 2γM(f▽)− (γ − 1)||R||a.

Proof. Recall that player h has the incentive to change his strategy Qh in f▽ to Q̄h (see (3.1) and the

paragraph preceding it). The linearity of the latency functions and (3.2) give

laR(fN ) = laR(f▽) +
j∑

i=1

(
||Q̄i||a − ||Qi||a

)
≤ 2M(f▽)− ||Q̄h||a +

j∑
i=1

(
||Q̄i||a − ||Qi||a

)
,

from which laR(fN ) can be bounded above by using the maximality of γ defined in (2.8), and by distin-

guishing between two cases: h ≤ j or h > j. Note from (3.7) that γ > 1. If h ≤ j, then

laR(fN ) ≤ 2M(f▽)− ||Qh||a + (γ − 1)
j∑

i̸=h,i=1

||Qi||a

≤ 2M(f▽)− γ||Qh||a + (γ − 1)laR(f▽)

≤ 2M(f▽)− γ||Qh||a + (γ − 1)
(
2M(f▽)− ||Q̄h||a

)
= 2γM(f▽)− (γ − 1)||R||a − ||Qh||a

≤ 2γM(f▽)− (γ − 1)||R||a.
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If h > j, we can similarly obtain

laR(fN ) ≤ 2M(f▽)− ||Q̄h||a + (γ − 1)
j∑

i=1

||Qi||a

≤ 2M(f▽)− (γ − 1)||Qh||a + (γ − 1)
( j∑

i=1

||Qi||a + ||Qh||a
)

≤ 2M(f▽)− (γ − 1)||Qh||a + (γ − 1)laR(f▽)

≤ 2M(f▽)− (γ − 1)||Qh||a + (γ − 1)(2M(f▽)− ||Q̄h||a)

= 2γM(f▽)− (γ − 1)||R||a.

The proof is then finished. 2

Based on (3.1)–(3.7) and Lemma 3.1, we establish Theorem 3.1 with two stronger statements in

Theorems 3.2 and 3.3 below, the former dealing with the case of homogeneous latencies, and the latter

general linear latencies.

Theorem 3.2 Given any routing f for an SRR instance with homogeneous linear latency functions,

either f is a Nash routing, or M(fN ) ≤ 3.5M(f) holds for all Nash routings fN for the SRR instance.

Proof. In the case of homogeneous linear latency functions, || · || = || · ||a holds, subscript and superscript

a can be dropped, and everything with subscript or superscript b is 0. If the theorem is not true, then

we must have f = f▽ as a non-Nash routing, and a Nash routing fN as studied above. From Lemma 3.1

and M(fN ) ≤ (lR(fN ) + ||R||)/2 in (2.13), we derive

M(fN ) ≤ γM(f▽)− γ − 2
2
||R||. (3.8)

Recall from (3.7) that γ > 2.5. Thus the combination of (3.8) and (3.4) implies

γ ≥ β > 3.5. (3.9)

So βγ−β− 2 > 0 is a positive number. Using it to divide both sides of the inequality in (3.6), we obtain

lQ1(f
N ) ≤ 2(βγ − 1)

βγ − β − 2
M(f▽) +

β + 1
βγ − β − 2

||Q1||+
1

βγ − β − 2
||R||,

which implies

lQ1(f
N ) +

||Q1||
2

+
||R||

2

≤ 2(βγ − 1)
βγ − β − 2

M(f▽) +
(

β + 1
βγ − β − 2

+
1
2

)
||Q1||+

(
1

βγ − β − 2
+

1
2

)
||R||

=
2(βγ − 1)
βγ − β − 2

M(f▽) +
β(γ + 1)

2(βγ − β − 2)
||Q1||+

β(γ − 1)
2(βγ − β − 2)

||R||.
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Since M(fN ) ≤ lQ1(f
N ) + ||Q1||

2 + ||R||
2 by (2.14) and ||Q1|| = ||R||

γ+1 by (2.10), we obtain

M(fN ) ≤ 2(βγ − 1)
βγ − β − 2

M(f▽) +
βγ

2(βγ − β − 2)
||R||. (3.10)

By (3.9), both βγ and (γ− 2)(βγ− β− 2) are positive numbers. Observe that the coefficients of ||R||
in (3.8) and (3.10) are negative and positive, respectively. Let us multiply both sides of (3.8) by βγ,

multiply both sides of (3.10) by (γ − 2)(βγ − β − 2), and put the two resulting inequalities together. As

a result, we can cancel the terms involving ||R||, and get

M(fN )
M(f▽)

≤ 3βγ2 − 4βγ − 2γ + 4
βγ2 − 2βγ − 2γ + 2β + 4

,

which is true since both βγ2 − 2βγ − 2γ + 2β + 4 and M(f▽) are positive as implied by (3.9) and

(3.1) respectively. Observe that the right hand side of the above inequality has both numeration and

denominator positive. Plugging M(fN )/M(f▽) = β in (3.4) into the above inequality, we have

(γ2 − 2γ + 2)β2 − (3γ2 − 2γ − 4)β + 2γ − 4 ≤ 0.

Notice from (3.9) that γ2 − 2γ + 2 > 0, we obtain

β ≤
3γ2 − 2γ − 4 +

√
(3γ2 − 2γ − 4)2 − 4(γ2 − 2γ + 2)(2γ − 4)

2(γ2 − 2γ + 2)
.

Consider the expression on the right hand side of the above inequality as a function λ(γ) of variable

γ ∈ (3.5,∞) (recalling (3.9)). The unique root of λ′(γ) = 0 in (3.5,∞) is γ
.= 4.4562, at which λ(γ)

attains a local maximum 3.4959. It follows that β < 3.496, a contradiction to (3.9). The theorem is then

proved. 2

Theorem 3.3 Given any routing f for an SRR instance, either f is a Nash routing, or M(fN ) ≤
3.9M(f) holds for all Nash routings fN for the SRR instance.

Proof. Suppose f = f▽ is not a Nash routing, and there exists a Nash routing fN such that the

(in)equalities in (3.1)–(3.7) and Lemma 3.1 are all satisfied. From (2.13) and Lemma 3.1, we obtain

M(fN ) ≤ γM(f▽)− γ − 1
2
||R||a +

1
2
||R||.

Using ||R|| < 2M(f▽) in (3.3), we get an analogue to (3.8):

M(fN ) ≤ (γ + 1)M(f▽)− γ − 1
2
||R||a. (3.11)

Since γ > 1 by (3.7) and β = M(fN )/M(f▽) by (3.4), the inequality in (3.11) further enables us to work

on the following (from which we will derive a contradiction):

γ + 1 > β > 3.9. (3.12)
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Hence βγ−β− 2 is positive, which allows us to divide both sides of the inequality in (3.6) by βγ−β− 2,

and obtain

lQ1(f
N ) ≤ 2(βγ − 1)

βγ − β − 2
M(f▽) +

β + 1
βγ − β − 2

||Q1||a +
||R||a − (β − 1)||R||b

βγ − β − 2
.

It follows from (2.14) that

M(fN ) ≤ lQ1(f
N ) +

||Q1||a
2

+
||R||a

2

≤ 2(βγ − 1)
βγ − β − 2

M(f▽) +
(

β + 1
βγ − β − 2

+
1
2

)
||Q1||a +

||R||a − (β − 1)||R||b
βγ − β − 2

+
1
2
||R||a

=
2(βγ − 1)
βγ − β − 2

M(f▽) +
β(γ + 1)

2(βγ − β − 2)
||Q1||a +

β(γ − 1)
2(βγ − β − 2)

||R||a −
β − 1

βγ − β − 2
||R||b.

Notice from (3.12) that β−1
βγ−β−2 ||R||b ≥ 0, which implies

M(fN ) ≤ 2(βγ − 1)
βγ − β − 2

M(f▽) +
β(γ + 1)

2(βγ − β − 2)
||Q1||a +

β(γ − 1)
2(βγ − β − 2)

||R||a.

Recalling ||Q1||a = ||R||a
γ+1 in (2.10), we have

M(fN ) ≤ 2(βγ − 1)
βγ − β − 2

M(f▽) +
βγ

2(βγ − β − 2)
||R||a. (3.13)

Let us multiply both sides of (3.11) by positive number βγ, multiply both sides of (3.13) by positive

number (γ − 1)(βγ − β − 2), and then add the resulting inequalities together. The terms involving ||R||a
vanish, so we arrive at

βγM(fN ) + (γ − 1)(βγ − β − 2)M(fN ) ≤ βγ(γ + 1)M(f▽) + (γ − 1) · 2(βγ − 1)M(f▽).

Since M(fN ) = βM(f▽) by (3.4), the above inequality is equivalent to

(βγ2 − βγ − 2γ + β + 2) · βM(f▽) ≤ (3βγ2 − βγ − 2γ + 2)M(f▽).

Dividing both sides of the inequality by the positive number M(f▽) (recall (3.1)), we get

(γ2 − γ + 1)β2 − (3γ2 + γ − 2)β + 2γ − 2 ≤ 0.

By (3.12), γ2 − γ + 1 > 0, which enforces

β ≤
3γ2 + γ − 2 +

√
(3γ2 + γ − 2)2 − 4(γ2 − γ + 1)(2γ − 2)

2(γ2 − γ + 1)
=: λ(γ).

The unique root of λ′(γ) = 0 in interval (2.9,∞) (recalling (3.12)) is γ
.= 2.46, at which λ(γ) attains a

local maximum 3.89. It follows that β < 3.9, a contradiction to (3.12). The theorem is established. 2

Putting an optimal routing in place of f in Theorems 3.2 and 3.3, we immediately obtain the following

corollary, which strengthens Theorem 3.1.
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Corollary 3.4 Given any SRR instance, either every optimal routing is a Nash routing, or the price of

anarchy of the instance is at most 3.9, and at most 3.5 if all linear latency functions are homogeneous.

4 A constant upper bound on the price of anarchy

Further to Corollary 3.4, a universal constant upper bound on the PoA of all SRR instances is established

in this section.

Theorem 4.1 The price of anarchy of the SRR problem is at most 16.

Proof. Consider an arbitrary Nash routing fN for an SRR instance I = (R, l, (si, ti)k
i=1). For any

subgraphs P and Q of the ring R, by P ∪ Q (resp. P ∩ Q) we mean the subgraph of R with node set

V (P ) ∪ V (Q) (resp. V (P ) ∩ V (Q)) and link set E(P ) ∪ E(Q) (resp. E(P ) ∩ E(Q)). Clearly I admits

an optimal routing f∗ that is irredundant in the sense that any two paths P,Q ∈ f∗ with P ∪ Q = R

are link-disjoint. Set β := M(fN )/M(f∗). It suffices to show β ≤ 16. To this end, we may assume

f∗ = f▽ ̸= fN as described in Section 2.3, as otherwise β = 1 and we are done.

If some Q̄g and Q̄h with 1 ≤ g < h ≤ j are link-disjoint, then Qg ∪ Qh = R, and since f▽ is

irredundant, it must be the case that Q̄g = Qh and Q̄h = Qg, a contradiction to (2.9). Hence

E(Q̄g) ∩E(Q̄h) ̸= ∅ for all 1 ≤ g < h ≤ j. (4.1)

With (2.11), we may assume

lQi(f
N ) + lQ̄i

(fN ) = lR(fN ) > 16M(f▽) for all i = 1, 2, . . . , k, (4.2)

as otherwise (2.3) implies M(fN ) ≤ lR(fN ) ≤ 16M(f▽) giving β ≤ 16. By definition, ||Qi|| ≤ lQi(f
▽) ≤

M(f▽) for all i = 1, 2, . . . , k. For the Nash routing fN , we deduce from (2.12) and (4.2) that

lQi(f
N )≥ lQ̄i

(fN )−M(f▽) and lQi(f
N )≥

lQ̄i
(fN )+lQi(f

N )−M(f▽)
2

>7.5M(f▽) for 1≤ i≤j. (4.3)

If some Qg with 1 ≤ g ≤ j is link-disjoint from ∪j
i=1Q̄i, then lQg (fN ) ≤ lQg (f▽) ≤ M(f▽) indicates a

contradiction to (4.3). So we have

E(Qg) ∩
(
∪j

i=1E(Q̄i)
)
̸= ∅ for all 1 ≤ g ≤ j; in particular j ≥ 2. (4.4)

It is not difficult to see from (4.1) and (4.4) that one of the following three cases (illustrated in Figure 3)

must be true:

Case 1: There exist p, q, and r with 1 ≤ p < q < r ≤ j such that Q̄p ∪ Q̄q  R, Q̄q ∪ Q̄r  R,

Q̄r ∪ Q̄p  R, and Q̄p ∪ Q̄q ∪ Q̄r = R.

Case 2: There exist p and q with 1 ≤ p < q ≤ j such that Q̄p ∪ Q̄q = R.

Case 3: There exist p and q with 1 ≤ p < q ≤ j such that ∪j
i=1Q̄i ⊆ Q̄p ∪ Q̄q  R.
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-Qp

Qq-

-Qp

Qq-

Case 3

-Qp

-
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Qr-

-Qp

Case 2

Qq

Figure 3. Possible configurations of fN when lR(fN ) > 16M(f▽).

Our case analysis goes as follows:

Case 1. It is easy to see that Qp ∪Qq ∪Qr = R, which implies

||R||a ≤ ||R|| ≤ lR(f▽) ≤ lQp(f▽) + lQq (f
▽) + lQr (f

▽) ≤ 3M(f▽).

Hence Lemma 2.5 guarantees β ≤ 16 as desired.

Case 2. Notice that Q̄p ⊇ Qq and Q̄q is the link-disjoint union of Q̄p ∩ Q̄q and Qp. It follows from (4.3)

that lQp(fN ) ≥ lQ̄p
(fN )−M(f▽) ≥ lQq (f

N )−M(f▽) ≥ lQ̄q
(fN )− 2M(f▽), yielding

lQ̄p∩Q̄q
(fN ) = lQ̄q

(fN )− lQp(fN ) ≤ 2M(f▽). (4.5)

Observe that R is the link-disjoint union of Qp, Qq and Q̄p ∩ Q̄q, implying

||R||a ≤ ||Qp||a + ||Qq||a +
1
2
lQ̄p∩Q̄q

(fN ) ≤ 3M(f▽).

When lR(f▽) ≤ 8M(f▽), Lemma 2.5 gives β ≤ 16 as desired. When lR(f▽) > 8M(f▽), we have

lQ̄p∩Q̄q
(f▽) = lR(f▽)− lQp(f▽)− lQq (f

▽) > 8M(f▽)− 2M(f▽) = 6M(f▽).

Let S := {Q ∈ f▽ : Q ⊆ Q̄p ∩ Q̄q} denote the set of paths in f▽ all contained in Q̄p ∩ Q̄q. Then

∪Q∈SQ ⊆ Q̄p ∩ Q̄q. Note that

l∪Q∈SQ(f▽) + 4M(f▽) ≥ lQ̄p∩Q̄q
(f▽) > 6M(f▽),

so we have

l∪Q∈SQ(f▽) > 2M(f▽),

which, together with lQ̄p∩Q̄q
(fN ) ≤ 2M(f▽) in (4.5), enforces Q ̸∈ fN for some member Q ∈ S. So

Q = Qi belongs to S for some i with 1 ≤ i ≤ j. However, it follows from (4.5) that lQi(f
N ) ≤

lQ̄p∩Q̄q
(fN ) ≤ 2M(f▽) contradicting to (4.3).

Case 3. In this case ∪j
i=1Q̄i ⊆ Q̄p ∪ Q̄q implies lQp∩Qq (f

N ) ≤ lQp∩Qq (f
▽) ≤ lQp(f▽) ≤M(f▽). Since Qq

is the link-disjoint union of Qp ∩Qq and a subpath of Q̄p, we derive from (4.3) that

lQp(fN ) ≥ lQ̄p
(fN )−M(f▽) ≥ lQq (f

N )− lQp∩Qq (f
N )−M(f▽)

≥ lQq (f
N )− 2M(f▽) ≥ lQ̄q

(fN )− 3M(f▽),
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yielding

lQ̄p∩Q̄q
(fN ) = lQ̄q

(fN )−
(
lQp

(fN )− lQp∩Qq
(fN )

)
≤ 3M(f▽) + lQp∩Qq

(fN ) ≤ 4M(f▽). (4.6)

Notice that

||R||a ≤ lQp(f▽) + lQq (f
▽)− lQp∩Qq (f

▽) +
1
2
lQ̄p∩Q̄q

(fN )

≤ 2M(f▽)− lQp∩Qq (f
N ) +

1
2
(
3M(f▽) + lQp∩Qq (f

N )
)
≤ 3.5M(f▽).

Similar to Case 2, when lR(f▽) ≤ 8M(f▽), Lemma 2.5 ensures β ≤ 16. When lR(f▽) > 8M(f▽), we

have lQ̄p∩Q̄q
(f▽) > 6M(f▽), and set S := {Q ∈ f▽ : Q ⊆ Q̄p ∩ Q̄q}. Thus l∪Q∈SQ(f▽) + 2M(f▽) ≥

lQ̄p∩Q̄q
(f▽) > 6M(f▽) gives l∪Q∈SQ(f▽) > 4M(f▽), which implies Qi ∈ S for some i with 1 ≤ i ≤ j

since lQ̄p∩Q̄q
(fN ) ≤ 4M(f▽) by (4.6). Now lQi(f

N ) ≤ lQ̄p∩Q̄q
(fN ) ≤ 4M(f▽) contradicts to (4.3).

We are now able to conclude that β ≤ 16 in all cases, which establishes Theorem 4.1. 2

5 Better evaluation of instability

The instance in Figure 2(c) with 0 < ε < 0.5 has the property that its unique optimal routing is a
4−ε
4−2ε -approximate Nash routing. This instability ratio approaches 7

6 as ε → 0.5. One natural question

is: Shall the instability ratio grow infinitely when all SRR instances are taken into account? A negative

answer has been provided in [9] that every SRR instance possess an optimal routing that approximates a

Nash routing within a factor of 54. The gap between 7
6 and 54 is large, and it is substantially narrowed

down by the following theorem.

Theorem 5.1 The SRR problem admits a (9, 1)-approximate Nash routing.

Proof. Consider an arbitrary instance I = (R, l, (si, ti)k
i=1) on ring R = (V, E). For any two ordered nodes

u, v ∈ V , let R[u, v] denote the clockwise path in R from u to v. To simplify description, let us shrink

any e ∈ E with ae + be = 0 into a node, which obviously has no effect on our result. The preprocessing

reduces us to the setting in which

(C1) ae + be > 0 for all e ∈ E.

Let f∗ = {Q1, Q2, . . . , Qk} be an optimal routing for I such that its potential Φ(f∗) is minimum

among all optimal routings. Swapping si and ti if necessary, we assume

(C2) Qi is the clockwise path in R from si to ti, i.e., Qi = R[si, ti], for every i = 1, 2, . . . , k.

If E(Qi) ∪ E(Qj) = E and E(Qi) ∩ E(Qj) ̸= ∅ for some 1 ≤ i < j ≤ k, then the routing f , obtained

from f∗ by replacing Qi with Q̄i and Qj with Q̄j , is optimal, and it can be deduced from condition (C1)

and the definition of Φ in (2.5) that Φ(f) < Φ(f∗), a contradiction to the minimality of Φ(f∗). Hence
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(C3) For all 1 ≤ i, j ≤ k, either E(Qi) ∩ E(Qj) = ∅ or E(Qi) ∪ E(Qj)  E holds.

For each player i ∈ {1, 2, . . . , k}, let routing f i be obtained from f∗ by replacing Qi with Q̄i. Suppose

without loss of generality that

(C4)
M1(f∗)
M1(f1)

=
k

max
i=1

Mi(f∗)
Mi(f i)

.

To prove the theorem, we are to show that f∗ is a (9, 1)-approximate Nash routing for I. To this end,

we assume to the contrary that f∗ is not. By definition 2.2, we see from (C4) that M1(f∗) > 9M1(f1),

which yields

(C5) lQ̄1
(f∗) ≤ lQ̄1

(f1) = M1(f1) < 1
9M1(f∗) ≤ 1

9M(f∗).

It follows from inequality (C5) and Theorem 2.1 that 0 < M1(f∗) − M1(f1) = Φ(f∗) − Φ(f1).

The minimality of Φ(f∗) enforces M(f1) > M(f∗). Since M1(f1) < M1(f∗) ≤ M(f∗) < M(f1), we

have some i ∈ {2, 3, . . . , k}, say i = 2, such that M2(f1) = M(f1) > M(f∗) ≥ M2(f∗). Note from

lQ̄1
(f1) = M1(f1) < M(f1) = M2(f1) = lQ2(f

1) that E(Q1) ∩ E(Q2) ̸= ∅, and from M2(f1) > M2(f∗)

that E(Q2) ∩ E(Q̄1) ̸= ∅. If E(Q1) − E(Q2) = ∅, then E(Q2) ∩ E(Q̄1) ̸= ∅ implies Q2 ! Q1, in

turn condition (C1) implies M2(f
∗)

M2(f2) > M1(f
∗)

M1(f1) , contradicting (C4). Hence E(Q1) − E(Q2) ̸= ∅, which

along with E(Q1) ∩ E(Q2) ̸= ∅ implies that Q2 has one end in V (Q1) − {s1, t1} and the other in

V (Q̄1) − {s1, t1}. Symmetry allows us to assume without loss of generality that s2 ∈ V (Q1) − {s1, t1}
and t2 ∈ V (Q̄1)− {s1, t1}. Thereby we arrive at the following configuration.

(C6) Nodes s1, s2, t1 and t2 are distinct, and located on R in clockwise order (see Figure 4(a)). Hence

lR[t2,s1](f
∗) ≤ lQ̄1

(f∗) < 1
9M(f∗) by the string of inequalities in (C5).
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......
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Figure 4. Evaluation of instability.

As Figure 4(a-b) shows, the intersection of Q1 and Q2 is the path R[s2, t1] bearing a latency lR[s2,t1](f
1)

with respect to f1, which equals M2(f1) − lR[t1,t2](f
1) by (C6). Since M2(f1) = M(f1) > M(f∗) and

lR[t1,t2](f
1) ≤ lQ̄1

(f1) < 1
9M(f∗) by (C6) and (C5), we see from (C1) that

(C7) 8
9M(f∗) < M2(f1)− lR[t1,t2](f

1) = lR[s2,t1](f
1) < lR[s2,t1](f

∗) < M1(f∗) ≤M(f∗) and

lR[s1,s2](f
∗) = M1(f∗)− lR[s2,t1](f

∗) < 1
9M(f∗).
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Let two sub-multisets S and T of the multiset {Qi : i = 1, 2, . . . , k} be defined as follows (see Figure

4(a) for illustrations of positions of si, ti, sj , tj):

S := {Qi : R[s1, s2] ⊆ Qi, lR[s2,ti](f
∗) > 2M(f∗)/3, 1 ≤ i ≤ k},

T := {Qj : R[t1, t2] ⊆ Qj , lR[sj ,t1](f
∗) > 2M(f∗)/3, 1 ≤ j ≤ k}.

It is clear from property (C6) and lR[s2,t1](f
∗) > 8

9M(f∗) in (C7) that

(C8) Q1 ∈ S − T and Q2 ∈ T − S.

Consider Qi ∈ S and Qj ∈ T . Observe from (C2) and (C6) that Qi ⊇ R[s2, ti] and Qj ⊇ R[sj , t1].

Furthermore from lR[s2,ti](f
∗) > 2

3M(f∗), lR[sj ,t1](f
∗) > 2

3M(f∗), and lR[s2,t1](f
∗) < M(f∗) in (C7), it

can be seen that

(C9) lQi∩Qj (f
∗) ≥ lR[s2,ti]∩R[sj ,t1](f

∗) > 1
3M(f∗), lR[ti,t1](f

∗) < 1
3M(f∗), and

lR[s2,sj ](f
∗) < 1

3M(f∗) holds for all Qi ∈ S and Qj ∈ T .

Suppose some Qp (1 ≤ p ≤ k) contains R[s2, t1] as a subpath. If Qp ∈ S, then Q1 ⊆ Qp, which along

with (C1) and (C4) enforces Qp = Q1 (though possibly p ̸= 1); if Qp ∈ T , then Q2 ⊆ Qp, which together

with (C1) and M2(f1) = M(f1) ≥Mp(f1) implies Qp = Q2 (though possibly p ̸= 2). To summarize, we

have shown that if Qp ∈ S ∪ T and R[s2, t1] ⊆ Qp for some p ∈ {1, 2, . . . , k}, then Qp = Q1 or Qp = Q2.

This fact, in combination of (C8), (C9), (C3) and (C6), implies

(C10) S∩T = ∅, and for any paths Qi ∈ S and Qj ∈ T , their intersection Qi∩Qj is a subpath of R[s2, t1],

and R[tj , si] is a subpath of R[t2, s1].

By (C10), and the nonemptyness of S and T stated in (C8), we can take Qg ∈ S and Qh ∈ T such

that si ∈ R[sg, s1] for all Qi ∈ S and tj ∈ R[t2, th] for all Qj ∈ T (see Figure 4(c)). Properties (C9) and

(C10) give rise to

(C11) Qg ∩Qh (⊆ R[s2, t1]) bears a latency lQg∩Qh
(f∗) > 1

3M(f∗), R[th, sg] (⊆ R[t2, s1]) is link disjoint

from all paths in S ∪ T , lR[tg,t1](f
∗) < 1

3M(f∗), and lR[s2,sh](f∗) < 1
3M(f∗).

Let routing f be obtained from f∗ by replacing Qg with Q̄g and Qh with Q̄h (see Figure 4(d)). Using

properties (C11) and (C6) and comparing among routings f , f∗ and f1 (cf. Figure 4(d-c-b)) lead to

lR[t1,s2](f) ≤ lR[t1,s1](f
1) + ||R[th, sg]||a + lR[s1,s2](f

∗)

≤ lQ̄1
(f1) + ||R[t2, s1]||a + lR[s1,s2](f

∗)

≤ 2lQ̄1
(f1) + lR[s1,s2](f

∗).

Due to (C5) and (C7), both lQ̄1
(f1) and lR[s1,s2](f

∗) are smaller than 1
9M(f∗). Thus

(C12) lR[t1,s2](f) < 1
3M(f∗).
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With (2.5), it is not hard to see from Figure 4(b-c-d) that

Φ(f∗)− Φ(f) = 2lQg∩Qh
(f∗)− ||Qg ∩Qh||a −

(
2lR[th,sg ](f1) + ||R[th, sg]||a

)
≥ lQg∩Qh

(f∗)− 3lR[th,sg ](f1).

Then the first inequality and the second inclusion stated in (C11) yield

Φ(f∗)− Φ(f) > M(f∗)/3− 3lR[t2,s1](f
1).

Then from lR[t2,s1](f
∗) < 1

9M(f∗), implied by the inequalities in (C6), we see Φ(f∗) − Φ(f) > 0. The

minimality of Φ(f∗) asserts that f is not an optimal routing, so M(f∗) < M(f) = Mq(f) for some

q ∈ {1, 2, . . . , k}. We distinguish between two cases, depending on whether q belongs to {g, h} or not.

Case 1: q ∈ {g, h}. Symmetry allows us to assume q = g. Then from R[t1, sg] ⊆ R[t1, s2], as properties

(C11) and (C6) guarantee, we derive

M(f∗) < Mq(f) = Mg(f) = lQ̄g
(f) = lR[tg,t1](f) + lR[t1,sg](f)

≤ lR[tg,t1](f) + lR[t1,s2](f) = lR[tg,t1](f
∗) + lR[t1,s2](f).

By the second inequality in (C11) and inequality (C12), both lR[tg,t1](f
∗) and lR[t1,s2](f) are smaller than

1
3M(f∗). Thus the string of inequalities implies M(f∗) < 2

3M(f∗), which is absurd.

Case 2: q ̸∈ {g, h}. Then player q adopts the same strategy Qq in both f∗ and f . Comparing f and

f∗, we see le(fe) ≤ le(f∗
e ) for all e ∈ E − E(R[th, sg]). Since lQq

(f∗) ≤ M(f∗) < Mq(f) = lQq
(f), we

must have E(Qq) ∩ E(R[th, sg]) ̸= ∅. Hence the second statement in (C11) claims Qq ̸∈ S ∪ T , implying

lQq∩R[s2,t1](f
∗) ≤ 2

3M(f∗). Notice from property (C6) that E(R[s2, t1]) ⊆ E − E(R[th, sg]). So we have

M(f∗) < lQq (f) = lQq∩R[s2,t1](f) + lQq∩R[t1,s2](f)

≤ lQq∩R[s2,t1](f
∗) + lR[t1,s2](f) ≤ 2M(f∗)/3 + lR[t1,s2](f).

Again a contradiction M(f∗) < M(f∗) arises from lR[t1,s2](f) < 1
3M(f∗) in inequality (C12).

The contradiction in either case disproves the assumption that f∗ is not a (9, 1)-approximate Nash

routing. The theorem is established. 2

6 Fast search for good Nash routings

Given an SRR instance I = (R, l, (si, ti)k
i=1) as an input, there is no loss of generality in assuming

n ≤ 2k, and W = maxe∈E(ae + be) is an integer at least 2 (recall (2.1)). The number of bits in the

binary representation of I is Ω(k + n log W ), which is considered as the input size of the instance. Let

opt denote the maximum latency of an optimal routing for I. We first device an O(nk3) time algorithm

to find a routing f̃ for I with M(f̃) ≤ 3 opt, then from f̃ we reach a Nash routing f in O(nk3W ) time.

This convergence time improves upon the one in [9] by a factor of n, and is achieved by exploiting the

unique structural property of the ring topology.
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6.1 Data structure and subroutines

In our algorithmic implementations, the nodes v1, v2, . . . , vn of R = (V,E) are ordered in cyclic order.

The source si and destination ti, 1 ≤ i ≤ k, are input in terms of v1, v2, . . . , vn. Fix the clockwise

direction of R to be the one along which v1, v2, . . . , vn can be encountered in this order. Recalling (2.2),

suppose without loss of generality that Pi (resp. P̄i) is a clockwise (resp. counterclockwise) path in R

from si to ti, i = 1, 2, . . . , k. We associate (record) each path P in the multiset P = ∪k
i=1{Pi, P̄i} with a

unique integer π(P ) ∈ {1, 2, . . . , 2k} by putting π(Pi) := 2i− 1, π(P̄i) := 2i, i = 1, 2, . . . , k. In this way,

given π(P ) with P ∈ P, we can deduced that

P is a clockwise (resp. counterclockwise) path in R

from s⌊π(P )+1
2 ⌋ to t⌊π(P )+1

2 ⌋, when π(P ) is odd (resp. even). (6.1)

A routing f = {Q1, Q2, . . . , Qk} for the instance I is recorded by ordered sequence π(Q1), π(Q2), . . . , π(Qk)

of integers in stead of the node-sequence representations of these paths.

We call a path in R with end nodes s and t an s-t path. A link in E is often considered a path in

R. A path in R is nontrivial if it has at least one link. Let P ⊆ R be a nontrivial vi-vj path, where

1 ≤ i < j ≤ n. Set σ(P ) be the ordered quadruple (vi, v
′
i, v

′
j , vj) satisfying viv

′
i, v

′
jvj ∈ E(P ). Note that

the vi-vj path P with i < j has σ(P ) either (vi, vi+1, vj−1, vj) or (vi, vi−1, vj+1, vj), where the additions

and subtractions on subscripts are taken modulo n. In the former case, P does not contain the link

vnv1 ∈ E, |E(P )| = j− i, and P is said to be of type I. In the latter case, vnv1 ∈ E(P ), |E(P )| = n−j + i,

and P is said to be of type II. Hence,

Given σ(P ) for any path P in R, both |E(P )| and the type of P are determined in O(1) time. (6.2)

Moreover, given σ(P ), the node-sequence representation of P can be produced in O(n) time.

From (6.1) it is easy to see that, given π(P ) for P ∈ P, it takes O(1) time to produce σ(P ). So, by

preprocessing, we obtain in O(k) time all σ(P ), P ∈ P. Clearly, this O(k) time does not count in the

time complexity O(nk3) and O(nk3W ) to be established in Sections 6.2 and 6.3. Particularly, array Σ

has been set up to bind π(P ) and σ(P ) together for P ∈ P in way of

Σ[π(P )] = σ(P ), P ∈ P. (6.3)

Given π(P ) for P ∈ P, from either (6.1) or (6.3) we see that ||P ||a is computable in O(n) time. Thus, in

O(nk) time array Θ with

Θ[π(P )] = ||P ||a, P ∈ P, (6.4)

has been constructed for providing data needed in future computation. Similarly, the O(nk) time can be

ignored.

Lemma 6.1 Let Q1 and Q2 be nontrivial paths in R. Given σ(Q1) and σ(Q2), it takes O(1) time to

determine whether Q1 ⊆ Q2 or not, and to determine whether E(Q1) ∩E(Q2) = ∅ or not.
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Proof. Suppose σ(Q1) = (vi, v
′
i, v

′
j , vj) and σ(Q2) = (vp, v

′
p, v

′
q, vq). When Q2 is of type I, Q1 ⊆ Q2 if and

only if p ≤ i < j ≤ q. When Q1 and Q2 are of type II, Q1 ⊆ Q2 if and only if i ≤ p < q ≤ j. When Q1 is

of type I and Q2 is of type II, Q1 ⊆ Q2 if and only if j ≤ p or i ≥ q. Hence, by (6.2), a subroutine can

be devised for determining whether Q1 ⊆ Q2 or not in O(1) time.

From σ(Q2) one easily obtains σ(Q̄2) in O(1) time. Note that E(Q1) ∩ E(Q2) = ∅ if and only if

Q1 ⊆ Q̄2. The above subroutine runs in O(1) time to determine whether Q1 ⊆ Q̄2 or not, and hence

E(Q1) ∩E(Q2) = ∅ or not. The conclusion follows. 2

Lemma 6.2 Given i with 1 ≤ i ≤ k, vpvq ∈ E with 1 ≤ p < q ≤ n, and π(P ) with P ∈ P, it takes O(1)

time to determine whether {si, ti} ⊆ V (P ) or not, and to determine whether vpvq ∈ E(P ) or not.

Proof. Note that {si, ti} ⊆ V (P ) if and only if Pi ⊆ P or P̄i ⊆ P . Using array Σ in (6.3) and using

σ(vp, vq) = (vp, vq, vp, vq), Lemma 6.1 implies the result. 2

Lemma 6.3 Given routing f for I represented by π(Q1), π(Q2), . . . , π(Qk), and e = vpvq ∈ E, it takes

O(k) time to compute fe, and takes O(nk) time to compute all Mi(f), i = 1, 2, . . . , k. So M(f) is

derivable in O(nk) time.

Proof. By (6.3) and Lemma 6.2, for every j ∈ {1, 2, . . . , k}, either e ∈ Qj or e ̸∈ E(Qj) is checked in O(1)

time. Thus in O(nk) time we get all fe′ , e′ ∈ E, which enables us to compute Mi(f) = lQi(f) in O(n)

time for every i ∈ {1, 2, . . . , k}. The lemma follows. 2

Lemma 6.4 Given π(Q1) and π(Q2) for Q1, Q2 ∈ P, it takes O(1) time to either verify E(Q1)∩E(Q2) =

∅ or compute σ(P ) for every nontrivial maximal subpath P of Q1 ∩ Q2. So ||Q1 ∩ Q2||a is derivable in

O(n) time.

Proof. Checking with array Σ in (6.3), we get σ(Q1) = (vi, v
′
i, v

′
j , vj) and σ(Q2) = (vṗ, v

′
ṗ, v

′
q̇, vq̇). In view

of Lemma 6.1, it remains to consider the case where E(Q1) ∩ E(Q2) ̸= ∅, Q1 * Q2 and Q2 * Q1. So we

can denote all of nontrivial maximal subpaths of Q1 ∩Q2 as X1, Xg with g = 1 or 2. By Lemma 6.2 in

O(1) time we can find {viv
′
i, v

′
jvj}∩E(Q2) and {vṗv

′
ṗ, v

′
q̇v

′
q̇}∩E(Q1), where both sets have size g. Clearly

in O(1) time we can write {ı, ȷ} = {i, j} and {p, q} = {ṗ, q̇} such that vıv
′
ı ∈ E(Q2), vpv

′
p ∈ E(Q1),

v′
ȷvȷ ∈ E(Q2) if and only if g = 2, and v′

qvq ∈ E(Q1) if and only if g = 2. Then σ(X1) turns out to be

(vı, v
′
ı, v

′
p, vp) if ı < p and (vp, v

′
p, v

′
ı, vı) otherwise. In case of g = 2, we have σ(X2) = (vȷ, v

′
ȷ, v

′
q, vq) if

ȷ < q and σ(X2) = (vq, v
′
q, v

′
ȷ, vȷ) otherwise. 2

6.2 3-approximation to the optimal routing in O(nk3) time

For i = 1, 2, . . . , k, let {Oi, Ōi} = {Pi, P̄i} satisfy ||Oi|| ≤ ||Ōi||. The routing f◦ := {O1, O2, . . . , Ok} has

the minimum ring latency lR(f◦) among all routings. In order to find a routing of maximum latency at

most 3 opt, we use lR(f◦) as a criterion to distinguish between two cases. When lR(f◦) ≤ 3 opt, the routing
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f◦ has its maximum latency M(f◦) ≤ lR(f◦) not more than thrice the optimal, and therefore is the 3-

approximation as desired. When lR(f◦) > 3 opt, we aim to find an optimal routing f∗ = {Q∗
1, Q

∗
2, . . . , Q

∗
k}

by enumerating in polynomial time.

Consider lR(f◦) > 3 opt. If f◦ is optimal then we are done by taking f∗ := f◦. So assume f∗ ̸= f◦,

and therefore

Q∗
h = Ōh ∈ f∗ and ||Ōh|| = max

P∈f∗
||P || > ||R||/2, for some h ∈ {1, 2, . . . , k}. (6.5)

Note that, given h, both Q̄h and Oh are determined in view of ||Ōh|| > ||R||/2. The path Ōh partitions

{1, 2, . . . , k} into two sets:

S := {i : {si, ti} ⊆ V (Oh) or V (Ōh), 1 ≤ i ≤ k} and T := {1, 2, . . . , k} − S. (6.6)

Since lR(f∗) ≥ lR(f◦) > 3 opt, we see that

O ∪ P ∪Q  R for any O, P, Q ∈ f∗. (6.7)

Hence for any i ∈ S, if {si, ti} ⊆ V (Ōh) then Q∗
i ⊆ Ōh = Q∗

h by (6.7), else {si, ti} ⊆ V (Oh) and

Q∗
i ⊆ Oh = Q̄∗

h by the maximality in (6.5). In short,

Q∗
i is uniquely determined by Ōh (in essence by h) for any i ∈ S. (6.8)

Now for any i ∈ T , we observe from (6.6) that Q∗
i uses links from both E(Q∗

h) = E(Ōh) and E(Q̄∗
h) =

E(Oh). Write {sh, th} ∪ [∪i∈T ({si, ti} ∩ V (Oh))] = {u0, u|T |+1} ∪ {ui : 1 ≤ i ≤ |T |} in way that

u0, u1, . . . , u|T |, u|T |+1 are encountered in order in a traverse of Oh from sh to th. (6.9)

If E(Q∗
i )∪E(Q∗

j ) ⊇ E(Q̄∗
h) for some i, j ∈ T then Q∗

h∪Q∗
i ∪Q∗

j = R contradicts (6.7). So E(Q∗
i )∪E(Q∗

j ) +

E(Q̄∗
h) for all i, j ∈ T , which assures the existence of a maximal subpath Λ of Q̄∗

h = Oh that is nontrivial

and link-disjoint from all path Q∗
i , i ∈ T . By (6.9) we see that

Λ is a uj-uj+1 path in Oh for some 0 ≤ j ≤ |T |, and all Q∗
i , i ∈ T , are determined by Λ. (6.10)

Thus the combination of (6.8) and (6.10) gives f∗.

To summarize, we make a number of “guesses”, and pick the best outcome as an approximation to

the optimal routing. Our guesses, held in a set F , include f◦ = {O1, O2, . . . , Ok}, and routing f (as a

guess of f∗) with respect to every h ∈ {1, 2, . . . , k} and every possible Λ ⊆ Oh, in view of (6.5), (6.6),

(6.8) and (6.10). In total we have at most 1 + k(k− 1) ≤ k2 guesses, each of which is a routing put in F
as specified in the following pseudocode.

Approximate Efficient Routing Algorithm (ApxER Alg)

Input: An SRR instance I = (R, l, (si, ti)k
i=1) with minimum maximum latency opt.

Output: A routing f̃ for I with M(f̃) ≤ 3 opt.

1. Determine Oi and Ōi for all i = 1, 2, . . . , k
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2. f◦ ← {O1, O2, . . . , Ok}, F ← {f◦}

3. for h = 1 to k do

4. S ←
{
i : {si, ti} ⊆ V (Oh) or V (Ōh), 1 ≤ i ≤ k

}
, T → {1, 2, . . . , k} − S

5. Let u0, u1, . . . , u|T |, u|T |+1 be as defined in (6.9)

6. for every i ∈ S do

7. if {si, ti} ⊆ V (Ōh) then Q∗
i ← the si-ti path in Ōh

8. else Q∗
i ← the si-ti path in Oh

9. end-for

10. for j = 0 to |T | do

11. Λ← the uj-uj+1 path in Oh

12. Q∗
i ← the si-ti path link-disjoint from Λ, for all i ∈ T

13. f ← {Q∗
1, Q

∗
2, . . . , Q

∗
k}, F ← F ∪ {f}

14. end-for

15. end-for

16. Take f̃ ∈ F such that M(f̃) is minimum

17. Output f̃

Clearly, Step 1 finishes in O(kn) time. In turn, the construction of f◦ in Step 2 takes O(k) time. By

Lemma 6.2, Step 4 obtains S and T with |S| ≤ k and |T | ≤ k in O(k) time. It is not hard to see that

Step 5 can be accomplished in O(k log k) time with the help of merge sorting [11]. Subsequently, a single

implementation of Steps 7–8 uses O(1) time by Lemma 6.1. In practise, the setting in Step 11 is realized

in O(1) time by defining σ(Λ), as given {uj , uj+1} ⊆ {v1, v2, . . . , vn}, the set {σ(Λ), σ(Λ̄)} is derivable in

O(1) time, and by Lemma 6.2 the selection of σ(Λ) from the set takes O(1) time. Consequently, Step 12

finishes in O(k) time by Lemma 6.1 and |T | ≤ k. Evidently, Step 13 takes O(k) time. Therefore, in O(k3)

time we have all O(k2) guesses put in F when the for-loop (Steps 3–15) finishes. Recall from Lemma

6.3 that computing M(f) for an f ∈ F takes O(nk) time. It follows that algorithm ApxER Alg runs

in O(nk3) time and outputs routing f̃ ∈ F with M(f̃) minimum. In particular M(f̃) ≤ M(f◦) since

f◦ ∈ F . If M(f◦) ≤ 3 opt, then M(f̃) ≤ 3 opt, else by the above argument some optimal routing f must

have been put to F in Step 13 since all possibilities have been enumerated. In conclusion, we have the

following theorem.

Theorem 6.1 Algorithm ApxER Alg finds in O(nk3) time a routing f̃ with maximum latency M(f̃) ≤
3 opt. 2
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6.3 Convergence to Nash routing in O(nk3W ) time

To obtain a Nash routing for the SRR instance I, we make use of the fact in Lemma 2.1(ii): Starting from

f̃ , the potential of the current routing is decreased iteratively by changing the strategy of a player who has

incentive to deviate, until the potential attains a local minimum. This is accomplished in O(k2opt) time,

and hence in O(nk3W ) time by the following Nash Routing Algorithm (NR Alg), which provides

a more efficient way to identify deviating players, and update the routing data (description) accordingly.

To facilitate our presentation, for any routing f for the instance I and any player i (1 ≤ i ≤ k), we

use Qf
i to denote the strategy in f of player i, and use f i to denote the routing obtained from f by only

changing the strategy of player i to Q̄f
i . Note that deriving f i from f takes O(1) time, as Qf

i ∈ P and

Qfi

i (= Q̄f
i ) ∈ P are presented by integers π(Qf

i ) and π(Q̄f
i ), respectively.

Nash Routing Algorithm (NR Alg)

Input: An SRR instance I = (R, l, (si, ti)k
i=1).

Output: A Nash routing f for I.

1. Apply ApxER Alg to find a routing f̃ for I with M(f̃) ≤ 3 opt

2. Compute ||Pi ∩ Pj ||a and ||Pi ∩ P̄j ||a for all 1 ≤ i ̸= j ≤ k

3. f ← f̃ , Compute fe for all e ∈ E, and Mi(f) for all i = 1, 2, . . . , k

4. d←
∑

e∈E [ae(fe + 1) + be], i← 1

5. repeat

6. if d < 2Mi(f) + ||Qf
i ||a

7. then Mj(f)←Mj(f)− ||Qf
j ∩Qf

i ||a + ||Qf
j ∩ Q̄f

i ||a for all j ∈ {1, 2, . . . , k} − {i}

8. Mi(f)←Mi(f i), f ← f i, Update fe for all e ∈ E

9. Go to Step 4

10. i← i + 1

11. until i = k + 1

12. Output f

Theorem 6.2 Nash Routing Algorithm finds in O(nk3W ) time a (1, β)-Nash routing with β ≤ 11.7,

and β ≤ 10.5 if the latencies are homogeneous.

Proof. By Theorem 6.1, in O(nk3) time, Step 1 finds a routing f̃ such that

M(f̃) ≤ 3 opt and Φ(f̃) ≤ kM(f̃) ≤ 3k opt ≤ 3nk2W. (6.11)

The computations in Steps 2 and 3 take O(nk2) time and O(nk) time, respectively, as guaranteed by

Lemmas 6.4 and 6.3. Then NR Alg spends O(n) time getting value d in Step 4. Observe that

Mi(f) + ||Qf
i ||a + Mi(f i) =

∑
e∈E

(
ae(fe + 1) + be

)
= d
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holds for all routings f for I and all players i = 1, 2, . . . , k. The observation shows

d < 2Mi(f) + ||Qf
i ||a ⇔Mi(f i) < Mi(f), for all i = 1, 2, . . . , k.

Therefore, it follows from (2.3) and (2.4) that f under investigation is not a Nash routing if and only if

NR Alg finds (by implementing Step 10 a certain number of times) some i ∈ {1, 2, . . . , k} for which the

condition in Step 6 is satisfied, where by (6.4) searching for this i accomplishes in O(k) time. In addition,

recalling (2.1) and Lemma 2.1(i), the integrality of Mi(f) and Mi(f i) implies

Φ(f i) = Φ(f)−
(
Mi(f)−Mi(f i)

)
≤ Φ(f i)− 1. (6.12)

When f is not a Nash routing, Steps 7 and 8 are implemented in O(k) time and O(n) time, respectively,

to reset f as f i, and update Mj(f) for all j = 1, 2, . . . , k and fe for all e ∈ E correctly, where the O(n)

time is enough as f and f i differ only by the strategy player i adopts. Subsequently, NR Alg goes back

to Step 4. From an implementation of Step 4 till the next, O(k) time elapses as n ≤ 2k, and Φ(f) reduces

by at least 1 as (6.12) states. Thus, starting from f̃ as Step 3 sets, it takes NR Alg time O(nk +k Φ(f̃))

to reach a Nash routing f as Step 12 outputs. The correctness of NR Alg follows directly. By (6.11),

the time complexity O(nk3 + nk2 + nk + k Φ(f̃)) turns out to be O(nk3W ). The performance ratios β

are guaranteed by applying (6.11), and Theorems 3.3 and 3.2 with f▽ = f̃ . 2

The pseudo-polynomial runtime of NR Alg is complemented in some sense by the PLS-completeness

[1] of the problem of finding a Nash equilibrium in an asymmetric congestion game with linear latencies

and undirected links. Also useful is the observation that the SRR model does not possess the matroid

structure [1] which can guarantee polynomial time convergence to a Nash equilibrium by best response

dynamic.

The proof of Theorem 5.1 translates algorithmically to a modification of NR Alg, which we call

ApxNR Alg and finds a (9, 3)-approximate Nash routing in O(nk3+k2opt) time. Similarly, ApxNR Alg

first finds a routing f̃ that satisfies (6.11). Then with initial setting f := f̃ , ApxNR Alg lowers the

potential of f iteratively by changing in each iteration strategies of one or two players under the condition

that the maximum latency of f does not increase. Finally, at the time the potential cannot be reduced

any more, the routing f turns out to be a (9, 3)-approximate Nash routing, as otherwise a contradiction

in Case 1 or 2 of the proof of Theorem 5.1 would occur with f in place of f∗.

7 Empirical study and concluding remarks

In this section we undertake some empirical study on the SRR, and then conclude the paper with remarks

on future research.

7.1 Empirical study

Our empirical investigations on the SRR of two and three players algorithmically lead us to the following

more accurate evaluation of the PoS.
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Theorem 7.1 (i) The price of stability is 1.25 for the SRR problem with k = 2 players. (ii) The price

of stability is approximately 1.2565 for the SRR problem with k = 3 players, where the absolute error is

no more than 0.0001.

To validate the values, our task here is to come up with an SRR instance I = (R, l, (si, ti)k
i=1) for k ≤ 3

whose PoS is as large as possible. Clearly, we may assume that the node set of R is {si, ti : i = 1, 2, k}
(otherwise two links with a common end outside {si, ti : i = 1, 2, k} can be merged), and further that

the |{si, ti : i = 1, 2, k}| = 2k (otherwise insertion of links with constant zero latency function(s) can

split identical si and sj or si and tj with i ̸= j). The links of R are accordingly labeled as e1, e2, . . . , e2k

in cyclic order. For i = 1, 2, . . . , 2k, we write the nonnegative numbers aei and bei , which define the

latency function lei(x) = aeix + bei on ei, as ai and bi, respectively. In illustration, let us indicate

s1, t1 (resp. s2, t2) by disks (resp. squares), and indicate s3, t3 by solid pentagons when k = 3. Figure 5

exhausts all combinations of positions of source-destination pairs on the ring R (up to renaming players

and swapping source and destination of the same player): cases (a’) and (b’) for 2-player SRR, and cases

(a)–(d) for 3-player SRR.

Figure 5. The SRR of 2 or 3 players.

The 2-player SRR When k = 2, it is not hard to see that case (a’) gives a PoS of 1 for all nonnegative

ai, bi, i = 1, 2. In dealing with case (b’), we label all 2k = 4 routings as fj , j = 1, 2, 3, 4, and suppose

without loss of generality that f1 and f2 are as depicted in Figure 5, and that changing the route of

player 1 in routings f1 and f2 gives routings f3 and f4, respectively. The latency of player i in routing fj

can be expressed as a linear function χij = χij(a1, b1, . . . , a2k , b2k) of variables a1, b1, a2, b2, . . . , a2k , b2k ,

that is

χ11 = a1 + b1 + 2a2 + b2, χ21 = 2a2 + b2 + a3 + b3, . . . , χ24 = a1 + b1 + 2a4 + b4.

The functions χij are then used to describe whether or not a player has an incentive to deviate. For

example, let us consider a sample scenario when it happens that routings f1 and f2 are an optimum

routing and the unique Nash routing, respectively; M(f1) = χ21 and M(f2) = χ12; and in f3 player 2

wants to deviate. We are to maximize the PoS = χ12/χ21 subject to the constraints χ21 ≥ χ11 (saying
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M(f1) = χ21), and χ21 > χ22, χ23 > χ24, χ14 > χ12 (saying player 2 in f1, player 2 in f3, player 1 in f4

wish to deviate). Recalling (2.1), this amounts to finding the largest constant p such that the system of

linear inequalities:

(S) =



χ12 − p · χ2,1 ≥ 0,

χ21 − χ11 ≥ 0,

χ21 − χ22 ≥ 1,

χ23 − χ24 ≥ 1,

χ14 − χ12 ≥ 1,

a1, b1, a2, b2, a3, a4, a4, b4 ≥ 0

has a feasible integer solution (a1, b1, a2, b2, a3, b3, a4, b4). The task is accomplished by a binary process of

narrowing down the interval [pl, pr) that contains this largest value of p. More specifically, the system (S)

is always feasible when p = pl and infeasible when p = pr, meaning that the PoS cannot be greater than

pr in the sample scenario. By checking the middle point of the interval, the interval could be replaced

with either its left half or its right half. The process terminates when the final interval has a length

pr − pl ≤ 0.0001.

Enumerating all scenarios, we similarly construct the corresponding systems of linear inequalities and

intervals [pl, pr). For all final intervals, we find no pr greater than 1.2500. It implies that the PoS of the

SRR with k = 2 players is bounded above by 1.25. In turn, the PoS of exact value 1.25 in Theorem 7.1(i)

follows as a corollary of Remark 2.3.

The 3-player SRR When k = 3, more complicate enumerations and computations in the same spirit

provide the results summarized in Table 1 below, where (a)–(d) refer to the cases in Figure 5 and ∗
represents any nonnegative number.

the setting realizing PoS = pl
[pl, pr)

a1 b1 a2 b2 a3 b3 a4 b4 a5 b5 a6 b6

(a) PoS = 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(b) PoS = 1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
(c) [1.2499,1.2500) 19 770351 256748 73 256746 37 10 31 256746 37 256739 84

(d) [1.2499,1.2500) 19 26 0 33 260258 31 19 780892 260252 71 520558 21

(e) [1.2564,1.2565) 1152663 21 3227324 32 8 3457818 691582 61 5 4841017 1383109 49

Table 1. The PoS in the SRR of 3 players.

The table gives a universal upper bound 1.2565 on the PoS for all SRR instances with 3 players. From

the setting realizing PoS = 1.2564 in case (e), we draw the conclusion (ii) of Theorem 7.1.

7.2 Concluding remarks

On future research, in addition to the challenges of obtaining the exact PoS in general SRR, the upper

bound 16 on the PoA of the SRR (Theorem 4.1) leaves much room for improvement. Also, it remains

an interesting problem to explore the possibility of finding efficient (approximate) Nash equilibria for
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the SRR in polynomial time. Another intriguing direction is suggested by the small PoS in the SRR

(Theorem 3.1) and the unbounded PoS in general selfish routing (Figure 1): Characterizing network

topologies of constant PoS deserves further research efforts.
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