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Transport in Silicon-Germanium Heterostructures

D. Chrastina∗

Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom

The work presented here describes the electrical characterization of n- and p-type strained silicon-
germanium systems.

Theories of quantum transport in low magnetic fields at low temperature are discussed in terms of
weak-localization: the traditional theory is shown not to account for the dephasing in a 2-dimensional
hole gas behaving in a metallic manner and emergent alternative theories, while promising, require
refinement. The mobility as a function of sheet density is measured in a p-type pseudomorphic
Si0.5Ge0.5 across the temperature range 350 mK–282 K; it is shown that calculations of the mobility
based on semi-classical scattering mechanisms fail below 10 K where quantum transport effects
become relevant. A room temperature Hall scattering factor has been extracted.

A new functional form has been presented to fit the resistivity as a function of temperature, below
20 K: traditional theories of screening and weak localization appear not to be applicable.

It is also demonstrated that simple protection circuitry is essential if commercial-scale devices are
to be meaningfully investigated.

Mobility spectrum analysis is performed on an n-type strained-silicon device. Established analysis
methods are discussed and a new method is presented based on the Bryan’s Algorithm approach
to maximum entropy. The breakdown of the QHE is also investigated: the critical current density
compares well to that predicted by an existing theory.

Finally, devices in which both electron and hole gases can be induced are investigated. However,
it is shown that the two carrier species never co-exist. Design rules are presented which may allow
more successful structures to be created. Results are presented which demonstrate the success and
the utility of implanted contacts which selectively reach different regions of the structure.
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2. INTRODUCTION TO TRANSPORT IN
SILICON-GERMANIUM

With low power dissipation, high integration levels,
good noise immunity, high cost-effectiveness and re-
liability, silicon CMOS (Complementary Metal-Oxide-
Semiconductor, see Chapter 7) technology occupies a
dominant position in microelectronics. However, the low
mobilities† of electrons and holes in silicon limits its ap-
plication to relatively low frequencies, leaving III–V ma-
terials such as Gallium Arsenide (and related materials)
to fulfil roles in mobile communications and the like.1–3

Strained layers of silicon and silicon-germanium alloy
offer scope for dramatic improvements in mobility, and
therefore performance. New technology may possibly
be incorporated into standard silicon CMOS processing,
making the transition favourable to industry.1–3

Room temperature mobilities in silicon MOSFETs

† Mobility is a figure of merit for semiconductor materials and is
defined and explained in Chapters 3 and 4. The conductivity of
a device is proportional to the product of the density of charge
carrying particles (number per unit area of material) and their
mobility, but the maximum frequency at which a MOSFET can
be operated is related to the minimum transit time of carriers
through the device and therefore to the mobility of the carriers.3



(Metal-Oxide-Semiconductor Field-Effect Transistor)
tend to be around 300 cm2V−1s−1 for electrons, and
less than 100 cm2V−1s−1 for holes, for sheet densities
of the order of 1013 cm−2.1 The advantage of CMOS mi-
croelectronics is its very low power consumption (which
facilitates higher packing densities) compared to bipo-
lar or NMOS technologies: ideally, a CMOS circuit only
dissipates power as it is switching state and it is there-
fore desirable to equalize the switching time of n and p
channel devices, and minimize the switching time overall.
In practice this currently means that p-channel MOS-
FETs in CMOS integrated circuits must be made wider
than corresponding n-channel MOSFETs for their con-
ductances to match, and there is a trade-off between
channel width and packing density.

It would be advantageous to match the mobilities of
electrons and holes, and to increase the mobilities of
both electrons and holes overall. This will facilitate
higher packing densities, higher operational frequencies
or lower-power operation, depending on the requirements
of the application.

In addition to this desire to contribute directly to
the semiconductor industry, silicon-germanium alloy
strained-layer systems can be studied from the perspec-
tive of the fundamental physics of semiconductors. The
results of these studies (often at liquid-helium tempera-
tures or employing large magnetic fields, on devices with
relatively poor characteristics) can then be considered
when optimizing the design of industry-level devices for
room-temperature operation.

In the field of silicon-germanium research, the highest
mobilities have been observed in systems with relatively
low sheet carrier densities, meaning that the overall con-
ductivity of the system is not necessarily impressive.4–6

The relationship between mobility and carrier density
is fundamental to characterizing the mechanisms which
limit the mobility and will be explored throughout this
thesis, especially in the realm of higher sheet densities of
both electrons (Chapter 6) and holes (Chapter 5). This
should lead, in conjuction with respectable mobilities, to
the production of high conductivity devices with poten-
tial for high frequency operation.7 Additionally, research
is traditionally carried out on devices which may be up
to the order of a millimetre in length and measured pa-
rameters may or may not scale down to integration-scale
devices on the scale of a few microns in length. A device
of this scale will be investigated in Chapter 5. Regard-
ing a new approach to integrating and balancing electron
and hole channels, a device which features both will be
investigated in Chapter 7.

3. GENERAL THEORY OF TRANSPORT IN
SILICON-GERMANIUM ALLOYS

Ignoring doping for the moment, there are two ways
in which an alloy layer may be incorporated within a
heterostructure. In a pseudomorphic structure (such as

that described in Figure 3.1) a silicon-germanium alloy
is grown directly on pure silicon. (It is normal practice
not to grow the alloy directly onto the silicon substrate
but to deposit a few hundred nanometres of pure silicon
first.) The alloy layer is then generally capped by more
pure silicon (there are issues regarding the oxidization of
a silicon-germanium alloy8). The alloy layer will match
its lattice constant to that of the pure silicon, provided
it is not too thick, the germanium concentration is not
too high, or the growth temperature is not too high. For
this reason, whilst pseudomorphic structures are gener-
ally simple to grow, they are generally limited to low
germanium concentrations and thin alloy layers.

2-Dimensional Carrier Gas
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FIG. 3.1: A schematic band profile of an inverted, pseudo-
morphic structure which shows how a 2-dimensional carrier
gas (in this case, of holes) is formed. When brought together,
dopant atoms ionize and charge accumulates at the nearest
heterointerface.

Alternatively, to allow for greater flexibility regarding
thicker alloys with higher germanium concentrations or
pure silicon under tensile strain (for electron channels, see
Chapter 6) a virtual substrate may be grown. A buffer
layer of alloy is grown and allowed to relax, and then
the active channels are grown on this. The germanium
concentration within the buffer may be graded to increase
upwards, but is generally constant for the few hundred
nanometres below the active channel. It is important to
ensure that the buffer layer is fully relaxed (by growing it
at a high enough temperature) and that the defects are
not migrating up into the active channel.9

3.1. Principle Advantages In Using A
Silicon-Germanium Heterostructure

There are three principle advantages to using a silicon-
germanium heterostructure as opposed to a plain silicon-
silicon dioxide (Si/SiO2) system, arising from the lower



effective mass, the possibility of band-structure engineer-
ing, and the energy band splitting in strained layers.

3.1.1. Effective Mass

The mobility of electron and holes is inversely pro-
portional to their effective mass (Equation 3.3) and the
effective mass of holes is generally greater than that of
electrons: some bulk properties of common semiconduct-
ing materials are summarized in Table 3.1.

TABLE 3.1: Transport properties of some bulk semiconduc-
tors at 300 K10

Ge Si GaAs

me*/me 0.22 0.33 0.067

mh*/me 0.29 0.55 0.62

µe/cm2V−1s−1 3900 1500 8500

µh/cm2V−1s−1 1900 450 400

However, the effective mass of holes in bulk germa-
nium is smaller than in almost any other semiconducting
material and in fact at room temperature the mobility of
holes in bulk germanium (1900 cm2V−1s−1) exceeds that
of electrons in bulk silicon (1500 cm2V−1s−1). There-
fore, it might be expected that sandwiching a layer of
germanium, or at least a layer of germanium-rich alloy,
between layers of silicon to use as a p-channel would be
advantageous.11–14

3.1.2. Band-Gap Engineering

The band-gap of germanium is smaller than that of
silicon and so, by varying the concentration of germa-
nium in the strained (active) layer∗ relative to that of
the material it is lattice-matched to (either pure silicon
in the case of a pseudomorphic system or an alloy in
the case of a virtual substrate system) then offsets in
the valence and conduction bands arise.vii The valence-
band maximum is always in the material with the higher
germanium concentration independently of which is the
strained layer; for pseudomorphic systems where pure
silicon is the substrate then the valence band offset is
predicted to rise almost linearly to over 0.7 eV for an ac-
tive channel of pure, fully strained germanium.3,14 The
conduction-band offset is less certain: if the active chan-
nel contains less germanium than the substrate (and is
therefore under tensile strain) then the minimum in the
conduction band will be in the active channel: a maxi-
mum offset of over 0.5 eV is reached for pure silicon on
a virtual subtrate which is 85% germanium. However,
if the active channel contains more germanium than the
substrate then the conduction-band offset is almost al-
ways less than the error in the calculations.3,14 If the
conduction-band minimum and the valence band maxi-
mum are both located within the strained layer then the

band alignment is designated Type I, if one or the other
resides in the substrate material then the band alignment
is designated Type II.3,14

If a layer of material either above (“normal”) or below
(“inverted”) the active layer is doped, then the impurities
supply carriers which diffuse into the active channel and
are confined there in the triangular quantum well defined
by the band offset and their own electrostatic potential
to form a 2-dimensional carrier gas. The carriers are
then free to move without being directly scattered by
the ionized dopant impurity atoms.1,3,5,15 A schematic
example of a band profile for an inverted, pseudomorphic
structure (such as will be investigated in Chapters 5 and
7) at T ≪ TF is shown in Figure 3.1.

3.1.3. Strain

The in-plane strain itself generates an anisotropic
structure which breaks the conduction and valence band
directional degeneracies. In silicon the 6 degenerate con-
duction band ∆ minima are split into a set of 2 in the
growth direction and a set of 4 in the plane. Under tensile
strain, the former are at the lower energy, which greatly
reduces intervalley scattering.3 In compressively-strained
Si1−xGex the light and heavy hole bands are split, sub-
stantially lowering the heavy hole mass to below that of
the light holes with the heavy hole band lying lowest in
energy. This reduces both the intersubband and intra-
subband scattering.3 Generally, when band profiles are
drawn, as in Figure 3.1, the “Valence band” and “Con-
duction band” energies each show only the point of the
band which is lowest in energy.

3.2. The 2-Dimensional Carrier Gas

Figure 3.1 is a schematic band profile of a pseudo-
morphic, inverted p-channel heterostructure. The upper
panel shows the components of the system (from right to
left as grown: boron-doped silicon, intrinsic silicon, fully
strained alloy) and the lower panel shows how the en-
ergy bands arrange when an equilibrium is reached. Ac-
ceptor atoms at the edge of the dopant slab ionize,† and
these free holes form a 2-Dimensional Hole Gas (2DHG)
at the heterointerface. (In this system, there are no
free charges in the system from, for example, contami-
nation of the supposedly undoped layers. Such “deple-
tion charge” NDepl will be incorporated if necessary, in
later chapters.) The 2DHG is examined more closely in
Figure 3.2. The electric field between the heterointerface

∗ The band structure remains silicon-like (six conduction-band
minima) for concentrations of germanium up to 85%, and is
germanium-like (eight conduction-band minima) beyond this as
far as the bulk unstrained alloy is concerned.



and the dopant slab is directly proportional to the charge
density in the 2DHG:

F =
e

ǫ0ǫr
(ns + NDepl) =

ens

ǫ0ǫr
if NDepl = 0 (3.1)

Carrier Gas in k-space (k
x
,k

y 
)

Fermi level

Valence Band

E
0

Si:BSiSi1-xGex

Growth Direction (z)

E
1

E
F

�
0

�
z ���b3

2�
1�2

z exp(�bz
2 �

E
0

E
F

E��2 k2

2m*

kF � 2�nS

States filled up to Fermi Level

FIG. 3.2: The upper panel gives a closer view of the heteroin-
terface, where the 2DHG forms. E0 and E1 represent the two
lowest quantum energy levels of the triangular potential well
formed by the valence band. The simple Fang–Howard wave-
function is shown, which assumes that the vertical potential
barrier is effectively infinite. The lower panel shows how the
Fermi Energy EF depends on the sheet density in the simplest
case of constant, isotropic effective mass.

The system is drawn with flat bands in the cap layer
effectively meaning that there is no free charge anywhere
else. Often, as will be seen in later chapters, the forma-
tion of an inversion layer at the top of the silicon cap
layer is an important consideration. A triangular quan-
tum well is formed in the valence band. Motion of carri-
ers is constrained completely in the growth direction but
free (within the usual effective-mass assumption) perpen-
dicular to the growth direction. It is generally the case
that only the ground state of this quantum well is popu-
lated (up to the Fermi Energy EF , as shown in the lower
panel of Figure 3.2) since the spacing between the en-
ergy levels is of the order of tens of electronvolts for sheet
densities (∼1012cm−2) comparable to those discussed in
later chapters. (In fact, the quantum well ceases to be
approximately triangular on these energy scales.) The
Fang-Howard approximation to the wavefunction in the
ground state of this triangular well is shown16

ψ0(z) =

(

b3

2

)
1
2

z exp

(

−
bz

2

)

(3.2)

† It is assumed that the dopant depletion width is small enough to
be neglected. For typical modulation doping doses, it is roughly
2 nm.

where b is a variational parameter. This wavefunction
assumes that the band offset at the heterointerface is
infinite, so the probability density is zero at the interface
itself. A realistic finite valence band offset would lead
there to be a small, finite component to the wavefunction
across the heterointerface, and this has implications for
some of the scattering mechanisms which are discussed
in the following section.

3.3. Scattering

By considering the rate of change of momentum of the
charge carriers, the mobility (as defined in equation 4.1)
is found to be related to the transport scattering time τ
by17

µ =
eτ

m∗
(3.3)

Matthiesen’s rule says that the total scattering rate is
the sum of the scattering rates due to each of the pro-
cesses operating within the material:17

τ−1 =
e

µm∗
=

∑

i

τ−1
i (3.4)

At finite temperature, Equation 3.3 becomes an inte-
gral which takes into account the energy dependence of
the relaxation rates τ−1

i .18 However, the qualitative re-
sult is the same: the mobility is essentially limited by the
scattering mechanism with the highest relaxation rate.
Scattering rates are generally calculated by considering
the reaction of a charge-carrying particle to some sort of
potential. This approach necessarily incorporates screen-
ing: a particular carrier sees not the potential itself, but
rather the potential screened to some extent by the rest
of the carrier gas.18–20 Some typical scattering mecha-
nisms will be mentioned here, with more specific (and
mathematical) details to be presented in later chapters.

3.3.1. Impurities

Charge carriers may be scattered by impurities lo-
cated at or close to the interface at which they are con-
fined. This interface impurity scattering depends mainly
on density of impurities at the interface and is stronger
when the sheet density of the charge carriers is lower.
(At the lowest sheet densities, multiple scattering be-
comes relevant and eventually the carrier gas becomes
strongly localized.20) As sheet density increases, impuri-
ties are increasingly screened and the scattering effect is
reduced.18,21,22

3.3.2. Interface Roughness

The roughness of the interface at which the charge
carriers are confined leads to scattering which depends



on the depth of the fluctuations, and their characteristic
correlation length. The strongest scattering occurs for
deep fluctuations when the carrier density is such that
the Fermi wavelength coincides with the fluctuation cor-
relation length.18,23

3.3.3. Alloy Effects

Alloy scattering and scattering from strain fluctua-
tions may be blamed for the poor performance of het-
erostructures where the active channel is an alloy with
roughly equal germanium and silicon concentrations.The
first mechanism exists because even though the silicon-
germanium alloy has a crystalline structure, whether a
silicon or germanium atom occupies a particular lat-
tice site is random. There is controversy regarding the
strength of this mechanism.18,24 (Poor performance of
structures which feature intermediate germanium con-
centrations may not be due to alloy scattering directly
but due to issues regarding the growth of the heterostruc-
tures: low growth temperatures are needed to avoid the
relaxation of the alloy as it is grown but lead to poor ma-
terial with high crystal defect densities. Higher growth
temperatures lead to the formation of germanium-rich
islands on the growth surface and eventually result in a
material with uneven germanium distribution and an un-
dulating interface.25) The second mechanism is induced
by deformation associated with interface roughness.

3.3.4. Phonons

The acoustic phonon scattering relaxation rate is di-
rectly proportional to temperature and is related to ma-
terial and physical constants rather than electronic pa-
rameters. In a confined geometry, optical phonon scat-
tering should be considerably weaker provided that only
a single subband is occupied.11,24 In any case, phonon
scattering is not relevant unless the lattice temperature
is greater than the Fermi temperature and the carrier gas
becomes nondegenerate,11 which for a 2-dimensional car-
rier gas with a circular Fermi line and a constant effective
mass is:

TF =
EF

kB
=

1

kB

~
2k2

F

2m∗
=

~
2π

kB

ns

m∗
(3.5)

These analyses have generally neglected the interac-
tions between carriers in the gas, and other effects which
are most relevant at very low temperatures or high mag-
netic fields, and will be introduced in Chapter 4.

4. EXPERIMENTAL DETAILS

This chapter explains some of the general principles
behind the characterization of the devices detailed in the
following chapters.

4.1. Standard Characterization Methods

The simple process of attaching a pair of leads to either
end of a piece of semiconductor material, passing a cur-
rent through them, and measuring the voltage developed
across them, is generally not sufficient for any accurate
characterization. The value of the resistance of the leads
and contacts is an unknown variable, but if it is known to
be small compared to the resistance of the sample, then
meaningful qualitative results can be obtained from this
2-terminal approach.

For quantitative results, it is necessary to use a 4-
terminal approach: current is passed along the sample
between two contacts, and the voltage across two other
contacts is measured. The simplest arrangement for per-
forming this measurement involves having a bar-shaped
sample, with the current passing along the long axis:
if the aspect ratio is sufficiently large, and the voltage
probes are not too near the ends, then the resistivity
can be found very easily.26 It is important to make sure
that the contact resistances are not too high, that the
impedance of the voltage measurement equipment is as
high as possible.

4.1.1. Drift Mobility

Reference has been made in the introductory chapters
to the mobility of the charge carriers within the mate-
rial in terms of the rate at which they undergo scattering
events. In terms of the measurement process, however,
the mobility is defined by the drift velocity that the car-
riers reach when subjected to a given electric field, and
is therefore sometimes explicitly referred to as the drift
mobility:

µ =
|v|

|E|
(4.1)

where v is the drift velocity of the carriers and E is the
applied electric field. If the applied current is I, the
measured voltage is V , the sheet charge density is qns,

∗

the distance between the voltage probes is l and the width
of the sample is w, then

µ =
I

V qns
(4.2)

In simple cases, the sheet charge density can be calcu-
lated using the Hall effect.

∗ Since we are concerned with a 2-dimensional carrier gas, it is
convenient to refer to a “sheet carrier density” ns (with dimen-
sions of number per area) rather than a volume carrier density.
The use of ns for the carrier density does not necessarily imply
n-type conduction.



4.1.2. Classical Hall Effect

The most widely used test of electrical quality of semi-
conductor materials is the Hall measurement.27 The sim-
plest case concerns a material in which a single carrier
is responsible for passing the current through a mate-
rial with isotropic energy bands and energy-independent
scattering mechanisms.

Single Carrier Classical Hall Effect

Using Ohm’s law, we define the resistance along the
direction of current as

Rxx =
Vx

Ix
(4.3)

For a 2-dimensional system, this is converted into a
“sheet resistivity” by correction for the aspect ratio of
the device:

ρxx =
Vx

Ix

w

l
(4.4)

Even though w/l is dimensionless, sheet resistivity is
generally specified as Ohms per square. The scalar ρxx

(= ρyy) is the diagonal component of the resistivity ten-
sor defined by E = ρJ , and the off-diagonal element
ρxy (=-ρyx) becomes non-zero in the presence of a mag-
netic field B as summed up in the Lorentz force law
F = q(E + v × B). In the Hall bar under consideration
(with B = (0, 0, B) and v = (v, 0, 0)) a stable condition
is eventually reached (F = 0) when Ey = vB. Then, the
velocity v of the carriers is related to the current I by
I = nqvA = nqvwt = nsqvw.

The voltage produced across the Hall bar by the elec-
tric field is the Hall Voltage, VH = Eyw, which can be
related back to the magnetic field and current:

VH =
I

nsqw
B (4.5)

Finally, the off-diagonal component of the resistivity
tensor can be found, and the Hall coefficient RH can be
defined.

ρxy =
VH

I
=

B

nsq
= RHB (4.6)

From this, an expression for finding the sheet carrier
density in terms of known or measured quantities can be
deduced:

ns =
IB

qVH
(4.7)

Since the mobility of the carriers (Equation 4.1) relates
back to the conductivity by σ = nqµ then in low magnetic
field where µB ≪ 1:

ρxx =
1

nsqµ
(4.8)

So, finally:

µ =
1

nsqρxx
=

ρxy

Bρxx
=

1

B

VH

VX

l

w
(4.9)

Based on these simple calculations, the sheet resistiv-
ity ρxx and Hall coefficient RH are functions of carrier
density and mobility and are constant with respect to
the magnetic field. However, it is rarely the case that
this simple model is directly applicable. In cases where
this simple model has been applied without considera-
tion, the properties calculated can be referred to as the
Hall sheet density and mobility, sometimes denoted as
nH (or pH for hole-like conduction) and µH .

Generalized Classical Hall Effect

The resistance ρ and Hall coefficient RH vary with
magnetic field if there are two or more distinct carrier
gases present in the material, or if the carrier gases fea-
ture a spread of mobilities. In general,28

σxx(B) =

∫ ∞

−∞

s(µ)

1 + µ2B2
dµ (4.10)

and σxy(B) =

∫ ∞

−∞

µBs(µ)

1 + µ2B2
dµ (4.11)

where s(µ) = ns(µ)qµ (4.12)

is a generalized conductivity function, and ns(µ) repre-
sents the mobility spectrum of carriers throughout the
material. The experimentally measured parameters are
related to the elements of the conductivity tensor by:

ρ(B) = ρxx =
σxx

σ2
xx + σ2

xy

(4.13)

RH(B) = −
ρxy

B
= −

1

B

σxy

σ2
xx + σ2

xy

(4.14)

The variation of resistance with magnetic field is
known as magnetoresistance. In general, classical mag-
netoresistance is always positive, meaning that the resis-
tance increases with magnetic field.

Assuming a single, ideal carrier gas is equivalent to
using an ns(µ) of the form of a single delta function, and
the result of the previous section is recovered. By using
a function for ns(µ) whose form comprises a pair of delta
functions, the two-carrier Hall coefficient can be found.
The Hall coefficient for a two carrier system at low fields,
µB ≪ 1, is given by

RH =
±n1µ

2
1 ± n2µ

2
2

q(n1µ1 + n2µ2)2
(4.15)

which becomes RH =
1

q(±n1 ± n2)
(4.16)



at high fields, where µB ≫ 1, unless n1 ∼ −n2 (when
the condition that σxy ≫ σxx breaks down). Positive
and negative signs refer to hole and electron transport
respectively. Hence, a single carrier model calculation
based on the measurement of a two carrier system at low
field would yield µH and nH such that

µH =
| ± n1µ

2
1 ± n2µ

2
2|

n1µ1 + n2µ2
(4.17)

and nH =
(n1µ1 + n2µ2)

2

±n1µ2
1 ± n2µ2

2

(4.18)

Even single carrier systems with an isotropic effective
mass can exhibit magnetoresistance, and this is most
commonly due to energy-dependent scattering mecha-
nisms. The Hall scattering factor r is given by

r =
〈τ2〉

〈τ〉2
(4.19)

where τ is the scattering time, and the angle brackets
refer to averaging over energy.

at low fields RH =
r

nsq
(4.20)

but at high fields RH =
1

nsq
(4.21)

as before. Equations 4.16 and 4.21 are essentially the
same: at high fields, the Hall coefficient depends only
on the total charge density in the system. If two car-
rier gases are present, each with some sort of anisotropy
or energy dependent scattering mechanisms, then at low
fields both Equations 4.15 and 4.20 apply, and the prob-
lem becomes intractable. In fact, the distinction between
the existence of multiple carrier gases and the existence of
a single carrier gas with a range of properties can become
a matter for convention rather than physics in real ma-
terials; this distinction may be obvious when considering
spatially separate carrier gases but not if, for example,
multiple subbands are occupied within the same spatial
region of the device at finite temperature.

Computationally intensive methods must be employed
to invert Equations 4.10 and 4.11 without making as-
sumptions regarding the form of ns(µ) provided at least
that µ itself is not a function of magnetic field.28,29

In the low temperature degenerate limit there is no
broadening of the Fermi-Dirac occupation function in
terms of energy, so the Hall scattering factor r ∼ 1. As
temperature increases, the carriers’ energy spreads so the
effects of energy-dependent scattering become apparent.
In this case, the Hall factor tends to be greater than
unity.

Alternatively, the Hall factor can deviate from unity if
the energy bands are anisotropic, leading to anisotropy
in the effective mass. This consideration is especially
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FIG. 4.1: Magnetoresistance calculated for four different sys-
tems. They are (a) a single carrier gas with a large mobility
width, (b) two carrier gases with large width, (c) two “ideal”
gases and (d) two gases, one of which contains carriers of the
opposite charge (represented by a “negative” mobility and
sheet density).

relevant in strained layers, such as a silicon-germanium
alloy grown epitaxially on a silicon substrate, where the
strain breaks the symmetry of the energy bands. In this
case, the Hall factor is not necessarily greater than unity.

Figure 4.1 shows magnetoresistance calculated for a
number of systems, summarized in Table 4.1. The carrier
gases are represented by Gaussians ns(µ) of full-width
∆µi centred at µi normalized such that:

∫ ∞

−∞

ns(µ)qµdµ = niqµi (4.22)

Magnetoresistance features appear on a scale of B ∼
1
B , so the presence of multiple high-mobility gases gives
rise to magnetoresistance effects at low fields, whereas a
range of mobilities within a single gas causes effects at
much larger field scales.

Also, the presence of two carrier gases with opposite
charge (that is, electrons and holes) causes very large
magnetoresistance and the eventual reversal of the sign
of RH .

4.1.3. Quantum Effects at High Magnetic Fields

In a perfect (that is, non-scattering) semiconductor in
the zero temperature limit, the application of a perpen-
dicular magnetic field would cause the carriers to execute
cyclotron orbits. The conductivity of the sample would
be zero. Current will only flow if the cyclotron motion is
interrupted by scattering events.

Expressing this more formally, the presence of a per-
pendicular magnetic field such that ~ωc ≥ kBT where



TABLE 4.1: Parameters used to generate the magnetoresistance curves of Figure 4.1.

µ1 ∆µ1 n1 µ2 ∆µ2 n2

[cm2V−1s−1] [cm2V−1s−1] [cm−2] [cm2V−1s−1] [cm2V−1s−1] [cm−2]

(a) 5000 1000 4.0

(b) 2000 1000 5.0 5000 1000 2.0

(c) 2000 10 5.0 5000 10 2.0

(d) -2000 1000 -5.0 5000 1000 2.0

ωc is the cyclotron frequency qB
m∗

leads to the forma-
tion of Landau levels. Landau levels are eigenstates of
the Schrödinger equation for a 2D carrier gas in a per-
pendicular magnetic field, essentially the quantum ex-
pression of the semi-classical concept of cyclotron orbits.
Ideally the sub-band structure created by Landau levels
takes the form of a series of delta functions at energies
En = ~ωc(1 + 1

2 ), but in a real system in the presence
of scattering the energy can only be defined to within
∼ ~

τq
, where τq is the quantum lifetime, leading to broad-

ened Landau levels which are only distinct if ~ωc ≥ kBT .
Essentially, this means that for these effects to be rele-
vant, each carrier must have enough time to execute at
least one cyclotron orbit between scattering events,30 ie.
τq > 2π

ωc
.

As the magnetic field increases, the separation between
Landau levels grows, and so does the number of states
each contains,30 eB

h . The position of the Fermi level will
move away from its zero-field value, so that the density of
the carrier gas remains constant as the number of avail-
able Landau levels decreases. The filling factor ν is a
measure of the number of filled Landau levels. At integer
values of ν the Fermi level is half way between two Lan-
dau levels and there can be no scattering. For a constant
carrier sheet density, ν ∝ 1

B . In an imperfect system,
impurities and crystal defects lead to random potential
fluctuations which cause states at the edges of each Lan-
dau level to be localized so that they do not contribute
to the conductivity of the device.

However, if a carrier begins an orbit very close to the
edge of a spatially finite device, then it will hit the edge of
the device (a potential barrier) and be scattered; this will
lead to a net drift velocity which will be higher the closer
the carrier is to the edge. The presence of an edge effec-
tively bends the subband structure upwards in energy.
These “edge states” behave as one-dimensional quantum
wires and mean that there is conduction even when the
Fermi level is positioned between Landau levels in the
bulk of the device.

These considerations lead to a completely revised pic-
ture of magnetotransport, compared to behaviour in the
classical regime.

Figure 4.2 shows data from the sample studied in
Chapter 6, a 2-dimensional electron gas confined within
a quantum well of pure silicon, sandwiched between re-
laxed Si0.75Ge0.25 layers. The temperature is 350 mK;
the carriers have a mobility of around 25,000 cm2V−1s−1
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FIG. 4.2: A 2DEG showing Shubnikov–de Haas and Quantum
Hall Effects at a temperature of 350 mK. The dotted line is
the transverse resistivity and is associated with the y-axis
on the right. Minima in resistivity are labelled with their
corresponding filling factors. Conduction is dissipationless at
ν = 4.

and a sheet density of 8.1×1011cm−2. For fields around
1 or 2 Tesla, Shubnikov–de Haas oscillations (which are
periodic in inverse magnetic field) appear. Minima in
resistivity appear at filling factors of 4n, where n is an
integer. For larger fields, the oscillations first become
“spin-split” and then “valley-split,” eventually showing
minima for all integer n.

The spin degeneracy is lifted (spin-splitting is ob-
served) when the Zeeman energy between spin states is
greater than the broadening of the Landau Levels. In
Figure 4.2 spin-split resistance minima can be seen at
ν = 10 and ν = 6. Thus at higher magnetic fields min-
ima appear at 2n.

Since the electron has spin 1
2 , in an applied magnetic

field they can take a low energy orientation along the field
or a high energy orientation against it. The energy differ-
ence between these two states is EZeeman = gµBB, with
g = 2.0023 for a free electron.31 In the 2DEG the charge
carriers are not free electrons, but rather the electron-
like quasiparticles that result from the interactions of the
electron with other electrons and the silicon lattice. The
Landé g-factor of electrons in bulk silicon is 1.9932 but



in a 2DEG it is larger and is in general anisotropic33–36

and a function of magnetic field and sheet density.37–39

(Values of between 2.6 and 4.2 are reported in Reference
38, found by tilting the magnetic field but ignoring pos-
sible anisotropy.) The Zeeman splitting energy can be
compared to the Landau level separation ~ωc and it is
found that

ELandau =
2

g

me

m∗
EZeeman (4.23)

The appearance of a minimum in ρxx for an odd filling
factor (ν = 5 at 7.4 T) shows that the two-fold valley
degeneracy has also been lifted: there is additional de-
generacy factor of 2, because in silicon the electrons in
the 2DEG occupy two [001]-valleys. The precise origin
of valley splitting is not entirely understood, but may be
related to the strength of the electric field at the interface
which defines the 2DEG.38

As the magnetic field reaches 9 T, ρxx drops to zero,
but since ρxy remains finite (and large) then σxx is also
(counterintuitively, but clearly from Equation 4.13) zero
and conduction is dissipationless, in accordance with the
theory given above which asserts that the conductivity
drops to zero when the Fermi level is halfway between
two Landau levels. The ρxy data show classical ρxy ∝
B behaviour for low fields, and integer quantum Hall
effect plateaux where the transverse resistance is pinned

at ρxy = h
νe2 over a finite magnetic field range, for higher

fields.

For holes, where both m∗ and g are larger than for
electrons,33 the up-spin state of one Landau level can be
closer in energy to the down-spin state of the next. Since
there is no valley degeneracy (there is a single minimum
in the band at |k| = 0) then minima which are not spin-
split would appear at odd filling factors.

Shubnikov–de Haas oscillations are very useful, be-
cause their period in inverse magnetic field can be used
to determine the true carrier sheet density, in contrast
to Hall measurements which may be invalidated by the
anisotropy of the band structure, for example. Their de-
cay with increasing temperature can be used to deter-
mine the effective mass of the carriers, and their am-
plitude with respect to magnetic field can be used to
determine the ratio α between the quantum lifetime τq

(the time taken for a particle to scatter elastically to any
other state) and the transport lifetime τ (which recog-
nises that small angle scattering has little bearing on the
drift velocity, whilst large angle scattering does; referred
to explicitly as τtr when necessary for clarity).

If the Landau levels are assumed to be broadened into
Lorentzians each with a width ~

2τq
then the resistivity

of a 2-dimensional carrier gas subject to a perpendicular
magnetic field at low temperatures is given by:40

ρxx(B, T ) = ρ0(T )

[

1 + 4
∞
∑

s=1

sξ(B, T )

sinh[sξ(B, T )]
e

−παs
Bµ(T ) cos

(

2sπ2 ~ns

qB
− sπ

)

]

(4.24)

with ξ(B, T ) =
2π2kBTm∗

eB~
(4.25)

and α =
τtr

τq
(4.26)

provided that the oscillations are small. The s > 1 terms
in the summation are only relevant for very high mobility
samples, so only s = 1 will be considered. The cosine
term represents the oscillations themselves, and if their
period in inverse magnetic field is ∆(1/B) then the sheet
density ns can be extracted using

ns =
q

π~∆(1/B)
(4.27)

The exponential term controls the amplitude of the os-
cillations with respect to magnetic field (in the zero tem-
perature limit) depending on how many cyclotron orbits
each carrier executes between scattering events.

The term sξ(B, T )/ sinh[sξ(B, T ] thermally damps the
oscillations.

In order to find m∗ and α, first it is necessary to pick
out the maxima and minima of the oscillations (using
magnetic fields values between the onset of oscillations
up to spin-splitting) for a number of temperatures, and
subtract the slowly varying classical magnetoresistance
background. This leaves a set of amplitudes of the oscil-
lations themselves, δρmm(B, T ).

Assume a value (for example, unity) for α and then
consider δρmm(T ) at a particular B: A plot of

ln(δρmm) vs. ln

(

ρ0(T )ξ(m∗, T )

sinh ξ(m∗, T )

)

−

(

πα

µ(T )B

)

(4.28)

will have a gradient of unity and an intercept of ln(4)
if the choice of m∗ is correct. ρ0(T ) is the Boltzmann
resistivity: the value of ρxx(B = 0, T ) may be used, or
the value of ρxx(T ) at the field just before oscillations be-
come visible. If no temperature dependence is assumed,
then

ln(δρmm) vs. ln

(

ξ(m∗, T )

sinh ξ(m∗, T )

)

(4.29)



is plotted instead. Data from maxima and minima at
many magnetic fields should be averaged.

This effective mass can then be used in a plot of

ln

[(

sinh ξ

ξ

) (

δρmm

ρ0

)]

vs.
1

µB
(4.30)

for δρmm(B) at a particular temperature. These points
should lie on a line with a gradient of −πα and an inter-
cept again of ln(4). This α should be used to determine a
better value for m∗, and iterations should continue until
satisfactory fits for both parameters are found.41

Since τq considers all elastic scattering events to be
equally important but τtr considers that the most im-
portant events are those that lead to the greatest change
in the direction of the wavevector, it is generally the
case that τq < τtr and thus that α > 1. For exam-
ple, scattering from remote impurities is predominantly
small-angle so leads to a value of α greater than unity
(in GaAs/Ga1−xAlxAs heterostructures the value of α
can be of the order 10) whilst scattering from a rough
interface tends to lead to α ∼ 1.42

4.1.4. Quantum Effects at Low Magnetic Fields

In a disordered semiconductor where kBT ≪ EF , the
transport properties of a 2-dimensional carrier gas may
reflect the quantum nature of the charge carriers even
in the absence of a field strong enough to form Landau
levels. (These effects can usually be generalized to other
dimensionalities).

Weak localization

Figure 4.3 shows a particle which is scattered around
in a loop, due to disorder in the system: each scattering
event corresponds mainly to a change in the direction
of the momentum with only a small change in energy.
By definition, these happen on a timescale of the elastic
scattering time (or quasi-particle lifetime) τ . In quantum
mechanical terms, this means the wavefunction of the
particle interferes with itself at the intersection point.
The wavefunction must be single valued at this point,
so the probability current cannot cross itself. Instead,

three paths are possible; part of the current will ignore
the loop entirely and continue unscattered, part of the
current will travel around the outside of the loop, and
the remaining part will remain trapped within the loop.

If a scattering event occurs which changes the energy of
the particle significantly (and therefore breaks the time-
reversal symmetry of the loop) then the phase coherence
of the wavefunction will be broken, the quantum mechan-
ical constraint will be relaxed, and the particle will no
longer be localized. Events like this occur on a timescale
of the dephasing time τψ which is related to the inelastic
scattering time.43 The maximum loop size is therefore set
by τψ whilst the minimum loop size is set by τ .

A magnetic field applied perpendicular to the plane
of the carrier gas will serve to change the phase of the

FIG. 4.3: A schematic representation of weak localization. On
the left, a classical trajectory featuring a loop is shown. How-
ever, in quantum-mechanical terms the wave-function must
be single valued at the intersection point (shown on the right:
fine lines represent equal-probability contours) and part of
the probability current (shown by arrows) becomes localized
in the loop. Inelastic scattering will destroy the time-reversal
symmetry and break this coherence, whilst a magnetic field
through the loop will change the phase of each of the paths
relative to each other.

wavefunction around the loop. Larger loops will be the
most affected since they will enclose more flux.

The correction to the Boltzmann conductivity in the
diffusive limit τ ≪ τψ is given by44

δσloc
xx (B) = −

e2

2π2~

[

Ψ

(

1

2
+

~

4eBDτ

)

− Ψ

(

1

2
+

~

4eBDτψ

)]

(4.31)

with the diffusion constant D = EF µ
e and the digamma

function (related to the Gamma function Γ(x)) Ψ(x) =

(ln[Γ(x)])′ = Γ′(x)
Γ(x) . In the limit of low field, this reduces

to45

δσloc
xx (0) = −

e2

2π2~
ln

(τψ

τ

)

(4.32)

The transverse component of the conductivity tensor is



then found to be

δσloc
xy (B) = −2µBδσloc

xx (B) (4.33)

and this result is assumed to hold for all B.46

Weak localization is quenched when µB ∼ ~/EF τ : the
magnetic flux through the loop described by the weakly-
localized carrier is such that the phase change around the
loop reaches the order of π even for the smallest allowed
loops.

Interactions and Spin-Splitting

Corrections also arise from particle-hole interactions
(which are not directly dependent on magnetic field) and
the manner in which these interactions are effected by
the Zeeman splitting of spin states. The former is given
by43,45,47,48

δσint
xx =

e2

2π2~

(

1 −
3

4
F ∗

)

ln

(

kBT

~/τ

)

(4.34)

Here, F ∗ is a renormalized screening parameter

F ∗ =
8

F

(

1 +
1

2
F

)

ln

(

1 +
1

2
F

)

− 4 (4.35)

where F itself comes from considerations of the exchange
and Hartree contributions to the self-energy correction
(representing the interaction of a given eigenfunction
with the nonuniform electron density in the ground state)
and is given by43,45

F =

∫ 2π

0

dθ

2π

[

1 + 2kF
2πǫ0ǫr~

2

m∗e2
sin(θ/2)

]

(4.36)

The − 3
4F ∗ Hartree term in Equation 4.34 was initially

calculated to be simply −F , under the assumption that
and the addition of this first-order term was therefore
valid.45 The realization, however, that triplet and singlet
states should feature in the considerations of particle-
hole scattering lead to the replacement of F with − 3

4F ∗

in each of the formulae in which it appears. F ∗ is actually
a different function of F depending on which kind of cor-
rection one is calculating and the dimensionality: Equa-
tion 4.36 is appropriate for 2-dimensional conductivity.48

Since F can in theory only take values between 0 and 1
(decreasing with increasing sheet density) then F ∗ can
only take values between 0 and 0.866.

The correction to the conductivity due to the Zeeman
splitting of spin states (provided that this is greater than
their broadening due to very high spin-orbit scattering
or spin-flipping rates) is given by43

δσspin
xx (B) = −

e2

2π2~

(

F ∗

2

)

G

(

gµBB

kBT

)

(4.37)

Here, µB is the Bohr magneton, g is the Landé g-factor
of the carriers and may in general be anisotropic or field
or density dependent. The function G has been evaluated
numerically.49

Inversion and implicit differentiation of the conductiv-
ity tensor leads to the following expression for the mag-
netoresistance ∆ρxx(B) = δρ(xx)(B) − δρ(xx)(0) which
incorporates the corrections described above:46

∆ρxx(B) = ρ2
0[(µ

2B2 − 1)δσloc
xx (B) + δσloc

xx (0) − 4µ2B2δσloc
xx (B)] + ρ2

0[(µ
2B2 − 1)δσspin

xx (B) + µ2B2δσint
xx (B)] (4.38)

Interaction effects should also lead to corrections in
the Hall signal, whereas weak localization effects should
not. Also, if the magnetic field is applied parallel to the
plane of the 2-dimensional carrier gas then all magnetore-
sistance terms incorporating µB apart from the Zeeman
term should vanish.46 However, calculations and mea-
surements of the anisotropy of the Landé g-factor sug-
gest that it too vanishes in a parallel magnetic field.33,34

Applications of this theory will be presented in Chapter5.

4.2. Measuring Equipment

4.2.1. Room Temperature IV Measurements

Making Contact to Unmounted Samples

It is possible to characterize a semiconductor device at
room temperature without disecting a wafer or mounting
the chip into a package, by using a needle probing station.
The chip is positioned on a stage under a stereoscope.
The stage can be moved in both the x and y directions
so that the intended device can be brought into view.

Needle probes, which feature a needle that can be
moved in the x, y and z directions mounted on a heavy
magnetic base, can then be gently (and very carefully)
lowered onto the contact pads of the chip. Each probe
needle can then be connected to the measurement elec-
tronics and the device can be characterized.

IV Measurement with the Hewlett-Packard HP4145
Parameter Analyzer

A HP4145 Parameter Analyzer, specially designed for
the characterization of electrically sensitive semiconduc-



tor devices, was employed extensively throughout. Ap-
plied currents and voltages were limited (generally to the
order of microamps and millivolts drain-source, although
higher voltages and smaller currents were necessary for
gate terminals) so as not to subject the device under test
to harmful extremes, whilst the high input impedance (at
least 1012Ω) ensured that voltages were measured accu-
rately. Gate voltages were only applied once the source
and drain voltages were set: this was particularly relevant
to the sensitive Siemens devices described in Chapter5.

4.2.2. Low Temperature Measurement Issues

Sample Mounting

Initially, small, thin packages with a very small lead
spacing were used for the low-temperature characteriza-
tion of these samples. However, this led to problems with
the connection of wires to the sample. Securing the pack-
age to the cryostat cold-finger was also unsatisfactory,
and since space was not an issue within the closed-cycle
cryostat larger 14-pin DIL (Dual InLine) packages were
employed instead. These were based on the industry-
standard 0.1” pitch, so cheap sockets were available from
electronics suppliers. The device could be mounted into
its socket once wires were already soldered and all the
test equipment connected, so that the device was less at
risk from stray and potentially damaging electrical sig-
nals. A cryostat block incorporating a 14-pin DIL socket
was fabricated, which also solved physical mounting is-
sues.

The process of electrically connecting the sample’s con-
tacts to the leads of the package, using an ultrasonic
gold-wire ball-bonder, was not entirely reliable. As will
be apparent in Chapter 7, not every contact worked at
low temperatures. The bonding process may have been
responsible for altering the IV characteristics of the con-
tacts. However, provided that the resistances of the con-
tacts remained reasonable any non-linearities should have
been corrected for by the 4-terminal method.

Lock-In Amplifiers and Automated Computer Record-
ing.

Lock-in amplifiers were employed mainly for low-
temperature, low signal measurements. Computer pro-
grams existed for automating the measurement pro-
cess and recording the lock-in values via the IEEE-488
General-Purpose Interface Bus (GPIB). Also, a configu-
ration was developed where the HP4148 Parameter Anal-
yser reliably modulated the gate voltage and recorded
the analogue output voltages of the lock-in amplifiers,
which were measuring the other voltages and currents
in the system. This system was both more efficient and
safer (for the device) than applying gate voltages manu-
ally with a standard Keithley voltage source. Also, when
many devices are connected in an IEEE system, one tem-

peramental device can halt the whole measurement and
human intervention is required.

Current Heating

Care was taken at every stage to ensure that the cur-
rent drive through the devices was not causing any sig-
nificant heating, either of the carriers in relation to the
lattice (bringing them out of thermal equilibrium with
each other) or of the whole lattice. In general this was
performed by checking for Ohmic behaviour in the IV
characteristics, but considerations of, for example, the
energy loss rates per carrier will be presented where es-
pecially relevant.

Cryostats

Two cryostats were employed for the experimental
work presented in Chapters 5, 6 and 7. Initially, Hall-
effect and low-temperature IV measurements were per-
formed in a closed-cycle cryostat with a base temperature
of 10 K and a permanent magnet with a field of 0.41 T.
The permanent magnet was replaced by an electromag-
net with a maximum field of 1.2 T during the course of
these investigations.

More detailed Hall-effect, magnetoresistance and
temperature-dependance measurements were made using
an Oxford Instruments 3He cryomagnetic system, which
allowed more-or-less stable temperatures to be reached
between 350 mK and ∼300 K and fields of up to 11 T.

5. P-CHANNEL DEVICES

5.1. Abstract

It is desirable, as explained in Chapter 2, to increase
the performance of holes to match electrons at room tem-
perature within a semiconductor system, and strained
silicon-germanium heterostructures are promising in this
regard. However, this promise is not always fulfilled. It
would be useful to be able to find out how to optimize the
design and growth of such structures rather than rely on
trial and error, and low-temperature characterization of
the p-type silicon-germanium system is investigated with
this in mind. Even though the results in terms of funda-
mental 2-dimensional carrier gas physics may not seem
directly applicable to room-temperature electronics (de-
spite being interesting in their own right) information
about scattering mechanisms and localization may lead
to higher quality material for commercial device produc-
tion.

5.2. Introduction

Two contrasting p-channel devices are investigated in
this chapter: the first is a research-scale device grown by



MBE with a Si0.8Ge0.2 active channel and inverted dop-
ing; the second is a commercial-scale device grown by
CVD with a Si0.5Ge0.5 active channel and n-type dop-
ing throughout. Both have gates so that the sheet car-
rier concentration can be modulated, and are in standard
Hall-bar geometries.

5.3. Structure of Devices

5.3.1. Research Scale Device on Wafer 55/53

This device is a simple heterostructure with doping
below the alloy and a metal gate. In contrast to the
Siemens device (below) its large size makes it relatively
uncomplicated to handle and measure. The structure of
this device is shown in Figure 5.1.

Ti/Al gate

Si cap layer 150 nm

Si
0.8

Ge
0.2

 channel 17 nm

Si spacer 20 nm

Si:B 30 nm (N
A
: 2x1018cm-3)

Silicon buffer 200nm

Silicon n- substrate 8-12 Ωcm

FIG. 5.1: The structure of sample 55/53, a research scale
p-channel device featuring inverted doping and a pseudomor-
phic alloy layer.

This device is a heterostructure with the same alloy
composition as the coupled-channel devices that will be
considered in Chapter 7. The buffer layer was grown
at 700◦C, the dopant layer and the spacer were grown at
575◦C, and the alloy and cap layers were grown at 610◦C.
Contacts were formed by Al sputtering and annealing at
470-520◦C in a nitrogen atmosphere. There is a Ti/Al
sputtered Schottky gate contact: the device is an inverted
structure (there is modulation doping below the active
channel) so the sheet density in the channel can be varied
with gate bias.15

5.3.2. Commercial Scale Siemens Device

The common length scale of devices created for re-
search is of the order of at least a few hundred microns
(as with 55/53, and the devices investigated in following

chapters) but devices fabricated in commercial integrated
circuits are at most a few microns in size (depending on
the application)10,50 so it is important to investigate such
small devices in a research context. Also, this second de-
vice was grown with a commercial reduced-pressure CVD
process, not a research-laboratory MBE system.

The device is very sensitive, due to its small size, both
in terms of the geometry of the Hall bar and the thick-
ness of the heterostructure layers: there is a high degree
of strain associated with a Si0.5Ge0.5 layer grown pseudo-
morphically on silicon which limits the thickness of the
alloy layer.

Oxide 3.8 nm

Si cap layer 5 nm

Si
0.5

Ge
0.5

 channel 5 nm

Silicon

Phosphorus (n-type) doping throughout at 
2×1017cm-3

FIG. 5.2: The structure of the Siemens device.

The structure of this device is shown in Figure 5.2.
The samples used to obtain the results presented here
were grown using CVD, by Siemens, and took the form
of gated Hall bars. A 5 nm layer of Si0.5Ge0.5 was grown
pseudomorphically on Si, capped by 5 nm of Si. Whilst
this alloy thickness exceeds the Matthews-Blakeslee equi-
librium critical thickness of ∼4 nm,51–53 and the pres-
ence of the cap stabilizes the epitaxial alloy only slightly
against strain relaxation,9 accounting for interactions be-
tween dislocations more correctly gives an equilibrium
critical thickness of 8 nm.54

An n-type (phosphorus) dopant level of 2×1017cm−3

is present throughout: the structure is not modulation
doped but the donor concentration may be higher than
this deep below the active channel. The gate oxide is
3.8 nm thick. The Hall bars were created on a commer-
cial device scale; they are 2.5 µm wide and 12.4 µm long
overall, with the terminals spaced 6.6 µm apart symmet-
rically. This means that there is no appreciable correc-
tion to the Hall potential due to the device geometry.26

5.4. Experimental Considerations

5.4.1. Current Heating

Measurements of the Hall effect at currents of 20 nA,
50 nA and 100 nA (at 350 mK) were performed on de-
vice 55/53 (see Figures 5.8 and 5.9) and the results are



discussed in section 5.4.2. IV measurements showed no
change in resistance of the device as a function of cur-
rent, up to at least 100 nA, implying that there was no
heating effect from the current.

During measurements on the Siemens device, a cur-
rent of 10 nA was generally used, to avoid heating the
carriers above the lattice temperature. The small size
of the device implies a high current density. The energy
loss rate per carrier was calculated to be of the order of
10−17W, but this should be low enough that thermal car-
rier diffusion to the contact regions equalises the carrier
and lattice temperatures.55

5.4.2. ESD Protection

The breakdown field of silicon dioxide is of the order
of 108Vm−1.56 This means that the gate oxide of the
Siemens devices, which is a few nanometres thick, is in
danger of being compromised when subject to potential
differences of just a few tens of volts. Not only must
great care be taken to protect the devices from electro-
static discharge (by storing the devices with the pins of
the 8-pin DIL packages embedded in conducting foam
or aluminium foil-wrapped polystyrene, for example, as
is common practice with CMOS integrated circuits) but
experimental procedures must be designed so as to keep
voltages at safe levels at all times.

It is not sufficient merely to short-circuit the gate and
a single other contact: since the devices operate in en-
hancement mode, when VGS is zero all the Hall termi-
nals are electrically isolated from each other, and a large
enough potential between any one Hall terminal and the
gate will destroy the device. Protection was also consid-
ered necessary during the measurement procedure, since
otherwise devices were surviving no more than a few
days.

The protection circuit shown in Figure 5.3 was built
and incorporated into the junction box between the cryo-
stat system and the measurement electronics. The gate
was protected with a pair of Zener diodes (each rated
at 2.7 V wired back-to-back) and a low-pass filter circuit
with a cut-off frequency of around 200 Hz; each of the six
Hall terminals was protected by a pair of silicon diodes
wired in opposed parallel. The IV characteristics of the
gate circuit are shown in Figure 5.4, and the IV charac-
teristics of a sample contact circuit are shown in Figure
5.5. For voltage levels considered reasonable in terms of
normal device operation and measurement (a few mil-
livolts for each Hall terminal, and up to 2.5 V on the
gate) the protection circuitry should have no bearing on
the results. The gate protection circuitry does, however,
prevent measurement of gate leakage current.

Additionally, all terminals were short-circuited to
ground between measurements.
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FIG. 5.3: The circuit diagram of the ESD protection system:
the gate is protected from short spikes and sudden changes by
a low-pass filter (with a time constant of the order of a few
milliseconds) whilst the back-to-back Zener diode arrange-
ment ensures that VGS is limited to a safe value. The two
current and four voltage contacts are each protected by a
pair of silicon diodes in anti-parallel which prevent potentials
of more than a few hundred millivolts from building up.
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FIG. 5.4: The direct-current transfer characteristic of the gate
protection circuit in Figure 5.3. It can be seen that as increas-
ing gate voltages are applied, current (dashed line) begins to
flow to earth through the Zener diodes, and the voltage pre-
sented to the gate of the device (solid line) is reduced. For
small applied voltages, the leakage current is negligible.

5.5. Results from 55/53

As this device uses a Schottky gate contact, its op-
eration relies on the silicon cap behaving as a non-
conducting dielectric. However, at temperatures above
around 60 K current can flow more or less freely between
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FIG. 5.5: The direct-current transfer characteristic of the con-
tact protection circuit in Figure 5.3. As the applied volt-
age reaches a few hundred millivolts the current (dashed line)
through the silicon diodes quickly reaches the 1 mA compli-
ance limit of the HP4148 performing the measurement and
the voltage presented to the device (solid line) saturates.For
small applied voltages, the leakage current is negligible.

the gate and the active channel restricting the useful mea-
surement range to below this temperature. At temper-
atures below 60 K the gate system behaves as a Schot-
tky diode so the range of gate voltages is limited. The
350 mK characteristics of the gate are shown in Figure
5.6.
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FIG. 5.6: The IV characteristics of the gate of the device on
wafer 55/53 at 350 mK, showing leakage similar to that shown
by a Schottky diode. At 2.7 V, the current reaches the set
compliance limit of the HP parameter analyzer. Operation
was limited to gate voltages in the range -1 V to +1 V.

On the basis of this, gate voltages were kept within
the range -1 V to +1 V. The relationship between gate

voltage and sheet density was roughly linear, as will be
seen.

5.5.1. Resistivity as a Function of Temperature

A summary of the ρ(T) characteristics of this device
(in the absense of magnetic field) is shown in Figure 5.7.
For larger, ”metallic” sheet densities, ρ(T) weakly satu-
rates as the temperature goes to zero, but features a local
maximum at TF /3, where TF is the Fermi temperature
as defined in Equation 3.5. However, as will be discussed
in terms of similar data from the Siemens device, current
theories of the behaviour of ρ(T) are based on screen-
ing and interactions which should lead to a minimum in
resistance at a temperature of the order of 1 K, and a
divergence at zero temperature.21
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FIG. 5.7: A summary of the temperature dependence of the
resistance of the device on wafer 55/53, at varying sheet den-
sity. High sheet densities (greater than 3×1011cm−2) are
“metallic” in that the resistance increases with temperature,
and in these cases the resistance seems to saturate as temper-
ature decreases. At the lowest density (of 1.83×1011cm−2)
the resistance is increasing weakly as temperature decreases.

5.5.2. Mobility

Hall measurements were performed, and the single-
carrier analysis described in Chapter 4 was applied.
There should be no complications from multiple carrier
gases since, for the device’s gate to operate, the un-
strained silicon layers must be frozen out and this in-
cludes the doped layer. The only free carriers available
for conduction should be those in the 2DHG. Results
for the sheet density as a function of gate voltage at
350 mK are shown in Figure 5.8. A field of 0.5 T was used
throughout: this was deemed large enough to produce a



useful Hall signal whilst also minimizing the quantum
effects which will be discussed in a following section.

Figure 5.9 presents the (Hall) mobility as a function of
the (Hall) sheet density at 350 mK. Lower current drives
yield results which are noisier but apparently better: this
may be due to current heating effects. However, since this
is a DC measurement with the current only flowing in one
direction along the Hall bar, there may be an absolute
offset in measured voltages which remains uncorrected
and therefore leads to a systematic error.
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FIG. 5.8: The gate voltage dependence of the sheet carrier
density in device 55/53, from the Hall effect at 350 mK, using
a field of 0.5 T. Results from three different drive currents
are shown: lower currents are noisier since voltage signals are
smaller.

Since mobility is increasing with sheet density for the
sheet density range explored, it is to be expected (from
Chapter 3) that the dominant mobility-limiting scatter-
ing process is interface impurity scattering, with sur-
face roughness beginning to have an impact towards the
higher end of the range. However, the analysis described
in Chapter 3 does not take into account the quantum
corrections which are described in the following section
so detailed calculations based on this are out of the ques-
tion.

The 50 nA and 100 nA mobility results in Figure 5.9,
for sheet densities greater than 2.0×1011cm−2, seem to
show slight oscillations. (The noise in the 20 nA results
presumably masks them.) This may be a feature of the
quantum nature of the charge transport which can only
be seen at millikelvin temperatures, when the mobility
has been measured at a high number of sheet density
values.57,58 Oscillatory features can also be seen in Figure
5.8.
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5.5.3. Low-Field Magnetoresistance

As described in Section 4.1.4, at low temperatures
(such that kBT ≪ EF ) weak localization, particle-hole
interactions (including the Zeeman effect) should gener-
ate characteristic low-field magnetoresistance behaviour.

In the absense of magnetic field, quantum interference
effects will lead the path of a charge carrier to form a
closed loop provided that the rate at which its direc-
tion changes around the loop (the elastic scattering rate
τ−1) is much greater than the rate at which its energy
and therefore quantum phase changes (the dephasing rate
τ−1
ψ ) and the coherence which leads to the quantum in-

terference is broken. Part of the probability current of
the charge carrying particle is localized in this loop, so
the conductivity of the material is reduced.

The largest localization loops (essentially those which
take a carrier τψ to circumscribe) cannot form in the pres-
ence of a small magnetic field, since the flux enclosed by
the loop leads to a phase shift which ruins the construc-
tive quantum interference. As the magnetic flux density
is increased, the maximum feasible loop size decreases
until even the smallest localization loops (limited by the
carrier requiring a few τ to scatter around the whole loop)
enclose too much flux. This causes the conductivity of
the material to increase with magetic field. Tempera-
ture is not an explicit feature of Equation 4.31 but the
dephasing and elastic scattering times and also the trans-
port scattering time (which features in the mobility, and
therefore the diffusion constant) have temperature de-
pendences which will be explored as the data is analyzed.



As the field continues to increase, the interaction cor-
rection due to Zeeman splitting between up and down
spin states becomes comparable to kBT (the up-spin and
down-spin levels are resolved over thermal broadening)
and the conductivity is reduced (Equation 4.37) by scat-
tering between them.

Particle-hole interaction corrections to the conductiv-
ity (Equation 4.34) are temperature rather than field
dependent, but would contribute slightly to the magne-
toresistance when the corrected conductivity tensor is in-
verted. However, as seen from the data in Figure 5.7 and
its discussion in a Section 5.5.1, interaction effects are
not expected to be important.
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FIG. 5.10: Low-field magnetoresistance of 55/53 at a sheet
density of 1.8×1011cm−2, offset by the zero-field value of the
resistance (15 kΩ at 0.35 K falling to 13 kΩ at 1.46 K imply
kF l ∼ 1.7). The noisy lines are data, the smooth lines are
fits to Equation 4.38 produced with the parameters given in
Figure 5.11.

Some results in this regime are shown in Figure
5.10. The gate voltage is such that the sheet density
is 1.8×1011cm−2. At the lowest temperatures, the sup-
pression of weak localization by the magnetic field causes
the resistivity to fall to a minimum before other effects
cause it to rise again. As temperature increases, the min-
imum in resistivity becomes weaker and moves to higher
fields, and then is lost.

The zero-field resisitivity ρ0 for this sheet density
ranges from 15 kΩ at 0.35 K to 13 kΩ at 1.5 K: the fact
that ρ0 is falling as temperature increases, coupled with
its high value, means that the system is in a non-metallic
regime. This can be characterized by

ρ0 =
h

e2

1

kF l
(5.1)

where h/e2 is the von Klitzing quantum resistance stan-
dard (25812.8 Ω) and kF l is the product of the Fermi
wavenumber and the mean free path of the carriers.

Here, kF l ∼ 2 but the truly metallic regime requires
kF l ∼ 10.59 The solid lines on Figure 5.9 represent con-
stant resistivity values such that µ = n e

psh where n is an

integer. The dotted line is for n = 1
2 . This can be related

to the metallic or insulating behaviour of the 2DHG, as
described in Equation 5.1.

The zero-field resisitivity has been subtracted from
each of the datasets in Figure 5.10 so that the correction
to the resistance (as a function of magnetic field) can be
clearly seen for each temperature. Noisy lines are actual
data, and smooth lines are fits generated using Equation
4.38 which encapsulates corrections to the zero-field resis-
itivity due to weak localization, carrier interactions and
the Zeeman effect at low fields. The fitting parameters
which result are shown in Figure 5.11. (An effective mass
of 0.2 me has been assumed throughout, on the basis of
the Shubnikov–de Haas analysis in section 5.5.4. Gener-
ally, an increase in the assumed effective mass will lead
to a proportional increase in the resultant relaxation rate
from Equation 3.3.)
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FIG. 5.11: Fitting parameters used to create the smooth lines
in Figure 5.10.

Four fitting parameters are shown in Figure 5.11, but
τtr is actually found from the Hall mobility. The low-
field negative magnetoresistance is caused by suppression
of weak localization, so τ and τψ are found from fitting
this part of the curve. F ∗ is found from the positive
magnetoresistance contribution (mainly due to the effect
of Zeeman splitting on interactions) which can be seen
when weak localization is suppressed. The Landé g-factor
is fixed at 4.5.33

This fitting has been repeated at other sheet densities,
and the results are summarized as follows: Figure 5.12
shows how the dephasing time τψ is roughly proportional
to T−p, where p ∼ 1 as can be seen in Table 5.1.21

Figure 5.13 shows how, for most sheet densities, the
elastic scattering time τ decreases with temperature.
However, for the lowest sheet density (the pink curve)
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FIG. 5.13: A summary of the elastic scattering times from
data similar to that presented in Figure 5.10.

where kF l ∼ 1 and the 2DHG is on its way to becoming
strongly localized, τ decreases sharply with decreasing
temperature. The mobility of the hole gas was found at
each sheet density and temperature, employing the Hall
effect as described in the preceeding section. Using Equa-
tion 3.3, the transport scattering times τtr were obtained
and plotted in Figure 5.14.

Lastly, the screening parameter F ∗ (defined in Equa-
tions 4.35 and 4.36) is shown in Figure 5.15. It is a cause
for concern that F ∗ appears to vary with temperature: it
is clear from its definition that it should only be a func-
tion of the sheet density (assuming factors such as the
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FIG. 5.15: Values of the renormalized screening paramter,
summarized from data similar to that presented in Fig-
ure 5.10. According to its theoretical derivation, F ∗ can only
take values between zero and ∼0.866.59

effective mass remain constant). In fact, its value should
be at most 0.866 (in the limit of no carriers and therefore
no screening) so the values returned from the fitting, be-
ing often greater than unity, are a sign of some deficiency
in either the theory itself or its application.

The parameter F ∗ appears in both the temperature-
dependent conductivity correction from interactions
(Equation 4.34) and the magnetoconductivity correction
from Zeeman splitting (Equation 4.37). Since these are
both conductivity corrections, there is no reason to sug-
gest that the forms used for F ∗ in each case should not



TABLE 5.1: Dephasing times obtained from fits (similar to
those shown in Figure 5.10) were plotted against temperature
for each sheet density in Figure 5.12. Fits to these data yield
the index p which should be close to unity.21

ps p

[ 1011cm−2] [τψ ∝ T−p]

3.79 1.0±0.2

3.09 1.0±0.2

2.53 0.9±0.1

1.83 0.8±0.1

1.41 1.1±0.1

be the same. (The conductivity screening parameter is

sometimes referred to explicitly as F̃σ whilst the form of
the screening parameter used to calculate, for example,
corrections to the specific heat F̃c is different).43 How-
ever, inconsistencies between the values of F ∗ produced
by fitting different conductivity corrections to different
results have been noted.21,49

Analysis of the Dephasing Time, τψ

For a 2-dimensional system, theory predicts that τψ ∝
1/T and that this should be generally independent of
any other specific device parameters.60,61 This is demon-
strated in Table 5.1 and represented by the grey ~/τψ =
kBT line in Figure 5.10.

This result is more usefully expressed as ~/τψ ≃
kBT/(kF lψ) where kF lψ is the dimensionless conductiv-
ity of the system if limited by dephasing alone (in the
absence of magnetic field). However, since lψ =

√

Dτψ

then a self-consistent solution is:62

~/τψ =
kBT

kF l
ln(2kF l) (5.2)

Dephasing times predicted in this case are larger than
those in Figure 5.12 and if this were true then the data
in Figure 5.12 for each sheet density should lie above
the grey ~/τψ = kBT line, generally further above it the
greater the sheet density.

In any case, these forms predict a divergence in τψ as
temperature decreases suggesting that at zero temper-
ature there would be no dephasing at all, and no true
metallic behaviour. Experimental results seem to sug-
gest that this is not the case, and τψ in fact saturates as
temperature decreases.63 Evidence for this can be seen
most clearly in the results in Figure 5.12 for a sheet den-
sity of 3.8×1011cm−2 (in black) where the data point at
the lowest temperature value spoils the fit. This could be
due to heating or external electromagnetic noise effects,62

or it may be the case that a finite dephasing rate even at
zero temperature is fundamental and results in the famil-
iar (but theoretically forbidden according to traditional
scaling theories of localization) metal-insulator transition
in two-dimensional systems.64

Carrier Interactions

Two kinds of scattering are expected to contribute
to the dephasing rate: (a) direct carrier-carrier interac-
tion involving energy transfer of the order of kBT and
large momentum transfer, and (b) the interaction of one
carrier with the time-fluctuating electromagnetic field
(Nyquist noise) of all the other carriers, involving small

momentum transfer.65 The carrier-carrier relaxation rate
is given by66

1

τcc
=

F 2π(kBT )2

2~EF
ln

(

EF

kBT

)

(5.3)

where the term inside logarithm is replaced by EF

~/τ if the

carrier energy around the Fermi line is smeared by disor-
der rather than by temperature. The Nyquist relaxation
rate is given by67

1

τN
=

kBT

4EF τ
ln

(

2kBT

~/τψ

)

(5.4)

(compare Equation 5.8) and in this case the term inside
logarithm is replaced by EF

~/τ in the special case that τψ =

τN . Mathiesen’s rule (Equation 3.4) would then suggest
that:∗

1

τψ
=

1

τN
+

1

τcc
(5.5)

When ps=3.8×1011cm−2 at 1 K, Equation 5.3 gives a
carrier-carrier scattering time of 63 ps. (The thermal en-
ergy kBT is greater than the level broadening ~/τ so the
relevant cutoff is the thermal energy.) Equation 5.4 gives
a Nyquist scattering time of 330 ps. The total dephas-
ing time from Equation 5.5 is 53 ps, much greater than
the measured dephasing time of 7.2 ps. Calculations of
the dephasing rate at other temperatures and sheet den-
sities confirm that carrier-carrier and Nyquist scattering
do not account for most of the dephasing.

This suggests that the actual, measured dephasing
time τψm is given by

1

τψm
=

1

τN (τψ)
+

1

τcc
+

1

τx(τψ)
(5.6)

where (τx)−1 represents the dephasing rate (which in
general depends on the overall dephasing time due to
lifetime broadening effects) from other processes. These
other processes would seem to dominate in this device,
contradicting the traditional theories which state that
carrier-carrier scattering (in particular, electron-hole pair
production) is the only way in which a carrier can lose
energy at low temperatures in a semiconductor.

Two alternative theories follow, in which the dephasing
rate is finite even at zero temperature.

∗ It may be argued that since the dephasing time is a function of
itself then Mathiesen’s rule should not strictly have meaning.



Zero Point Fluctuations

It has been suggested that this saturation of the de-
phasing time in the limit of zero temperature is not due to
heating effects or magnetic impurities (as had previously
been suggested) but rather due to zero-point fluctuations
of phase coherent electrons. This leads to63,68

τψ = τ0 tanh



απ

√

~/τ0

kBT



 (5.7)

where α is a constant of order unity and τ0 is the
zero-temperature saturation value of the dephasing time,
which has so far been calculated only for the one-
dimensional case.68 Equation 5.7 apparently produces
successful fits to data from a wide range of one and two-
dimensional systems (with relevant modifications) once
electron-phonon scattering is added τψep = [τ−1

ψ +τ−1
ep ]−1

with a form τep = Aeq/T 3.63

This fits well to the ps=3.8×1011cm−2 (in black)
data in Figure 5.12 with the values τ0=16.5±1.3 ps,
α=0.35±0.05 and Aep=25±3 psK3. This value for the
strength of the electron-phonon interaction is anoma-
lous: at the temperatures discussed here (∼1 K) electron-
phonon scattering is not important in silicon or silicon-
germanium.† The fact that in the limit of temperatures
greater than ~/(kBτ0) (0.4 K in this case) τ0 ∝ T− 1

2 un-
less an extra term is added to Equation 5.7 would seem
to be a problem. Fits to data at other sheet densities
are less successful: the uncertainties on the returned pa-
rameters are greater than the values of the parameters
themselves.

High Frequency Fluctuations

Alternatively, the dephasing rate can be calculated
within existing weak localization theory but incorporat-
ing high frequency (ω ≫ kBT/~) quantum fluctuations
to give:69

τψ =
e2

2hστ

[

1 + 2
kBT

~/τ
ln

(

kBT

~/τψ

)]

(5.8)

The saturation value of the dephasing time in this
case is therefore (from Equation 5.1) simply τ0 = 2kF lτ .
For ps=3.8×1011cm−2, inspection of Figure 5.13 suggests
that a zero temperature elastic scattering time of 1.2 ps
is reasonable, and since kF l = 8 at this sheet density
then τ0 is found to be ∼20 ps. At other sheet densi-
ties, though, a good value for τ(T = 0) seems less ob-
vious. The temperature dependence of Equation 5.7 is
weaker than 1/T and, as with Equation 5.7, electron-
phonon scattering could be explicitly added. However,
as noted below, since the dephasing time is a function

† See, for example, the acoustic-phonon limited mobility at 25K in
Figure 5.28

of itself in Equation 5.8 then Mathiesen’s rule (Equation
3.4) may not strictly be applicable. Equations 5.2, 5.7
and 5.8 are compared in Figure 5.16.
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Whether it is necessary to modify the fundamentals of
weak localization theory is controversial.70–73 It is argued
that the zero-point fluctuations which lead to Equation
5.7 (or the unoccupied high-frequency modes which lead
to Equation 5.8) cannot cause any dephasing, since the
energy of a harmonic oscillator may not be available to
be transferred in situations where the level spacing is
much greater than kBT , and that the saturation of the
dephasing time is due to external electromagnetic noise
of microwave frequencies.72 It is further suggested that
only particle-particle scattering is relevant to dephasing
(the Coulombic interaction being an elastic process) and
any finite dephasing at zero temperature predicted theo-
retically is based on a profoundly incorrect calculation.62

Alternatively, it is argued that the zero-temperature de-
phasing time is lost in calculations which are performed
incorrectly.73

The form of the mobility as a function of sheet density
(Figure 5.9) and the calculations described in Chapter 3
suggest that the scattering that limits the transport is
due to screened interface impurities (at low sheet densi-
ties) and surface roughness (as sheet density increases)
plus quantum effects which will be discussed in Section
5.6.2.

These contribute only to elastic scattering, and there-
fore momentum relaxation, rather than the dephasing
through inelastic processes. (It is puzzling, though, that
the elastic scattering times seem to be 2 or 3 times larger



than the momentum relaxation (transport) time). Re-
cent experimental studies confirm that in high mobil-
ity silicon-germanium systems, scattering is dominated
by potential fluctuations and the loss of screening rather
than by carrier-carrier interactions.74

With finite elastic scattering rates but no dephasing,
at zero temperature a 2D system would be completely
localized. The tendency of the resisitivity to saturate at
a finite value as temperature decreases, for large enough
sheet density, contradicts this. (One caveat is that insu-
lating behaviour could set in at a temperature an order
of magnitude lower than has been explored in this study.)

The implication is that the dephasing rate is propor-
tional to the sheet density: in high density systems which
remain metallic as temperature decreases, the dephasing
rate must be prevented from continuing to increase as
T−1. In Equations 5.3 and 5.4, the dephasing time is
proportional to the Fermi energy, meaning that high den-
sity systems would have longer dephasing times than low
density systems. The Nyquist scattering rate (Equation
5.3) also incorporates the elastic scattering time which
increases as impurities are screened by an increasingly
dense carrier gas. The carrier-carrier scattering rate
(Equation 5.4) incorporates the screening parameter F
which decreases as sheet density increases, increasing the
carrier-carrier scattering time further.

The alternative theories presented, which give a finite
dephasing rate at zero temperature from either zero-point
or high-frequency quantum fluctuations, do not seem to
reproduce the T−1 result in any limit. The density de-
pendence of the dephasing time (due to zero-point flucu-
ations) in Equation 5.7 is presumably incorporated into
τ0 which remains uncalculated for 2D systems. Equation
5.8 does ensure that the dephasing time (due to high-
frequency fluctuations) increases with the conductivity
of the system.

5.5.4. High-Field Magnetoresistance

The magnetoresistance of the device in the high-field,
low temperature regime (where µB ∼ 1 and ~ω ∼ kBT as
described in section 4.1.3) is shown in Figure 5.17. The
former shows conventional Shubnikov-deHaas oscillations
and the Quantum Hall effect. A filling factor of unity
is reached at the highest available fields. At low fields,
minima in resistivity appear at odd values of the filling
factor. Spin splitting occurs at around 5 T, so ν = 2 is
also a minimum for all sheet densities but ν = 4 only
features a weak minimum at the highest sheet density.

For lower sheet densities than Figure 5.17, where the
2DHG is insulating in character, Figure 5.18 shows how
a high resistance state appears between filling factors 1
and 3. This can be compared with the last ρxx maxi-
mum visible in Figures 5.17 and 5.18 (where the 2DHG
is metallic) which is not particularly pronounced. The
horizontal scale is linear in applied field but scaled so
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FIG. 5.17: Magnetoresistance of 55/53 in the low tempera-
ture, high field regime where Shubnikov–de Haas oscillations
and the Quantum Hall Effect are visible. Sheet densities (cal-
culated from the Hall effect) are such that the 2DHG is metal-
lic in character. In general, the sheet density calculated from
the positions of the minima and maxima in the oscillations
will not exactly match that from that from the Hall effect.

that the low-field oscillations coincide:

1

ν
=

eB

nSdHh
(5.9)

where ν is the filling factor described in section 4.1.3.
In general, the sheet density nSdH found through Equa-
tion 5.9 will not perfectly match that found from the
low-field Hall effect. This can be seen in Figure 5.19.

The magnetic-field-induced metal-insulator transition
is well known in bulk semiconductors where it is caused
by squeezing of the electronic wavefunction at localiza-
tion centres.75 In a 2-dimensional system the off-diagonal
conductivity σxy is proportional to the filling factor but
a divergence in ρxx implies vanishing σxy. This means
that the large maximum in ρxx at a filling factor of ∼1.6
cannot be explained in terms of the Quantum Hall Effect.

This has been taken as evidence for Wigner crystal-
lization, but if ν > 1 then at least one totally occupied
magnetic level should exist below the Fermi level with a
band of delocalized states located at the magnetic level
centre, giving a non-zero σxy.75,76

The insulating phase between filling factors of 1 and 2
has been seen in p-type silicon-germanium systems77–80

but is not predicted in the global phase diagram for
2D systems.81 Magnetic-field-induced phase transistions
have been observed in the GaAs/AlGaAs system, but
insulating states only tend to form at ν ≪ 1.82–85 The
unusual energy level degeneracy in p-type silicon germa-
nium may be central to its formation.80

More recently, it has been suggested that the similar
transition from the insulating state to the metallic state
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in silicon MOSFETs at zero field has a percolation na-
ture, indicating electron localization to be the origin of
the former state.75,77,86,87

Figure 5.20 shows how Shubnikov–de Haas oscillations
(in the region where the field is low enough to avoid spin-
splitting) decay with temperature. As described in Sec-
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FIG. 5.20: Shubnikov–de Haas oscillations as a function of
temperature, for fields low enough to avoid spin-splitting.
Sheet density from the Hall effect is 3.79×1011cm−2 but from
the period of the oscillations is 4.22×1011cm−2. The drive
current is nominally 50 nA.

tion 4.1.3, this data can be used to find the effective
mass m∗ of the carriers, and also the ratio between the
quantum and transport scattering lifetimes, α = τtr/τq

(from Equation 4.26). However, analysis of these results
(or results at other sheet densities) does not yield self-
consistent values for m∗ or α. With α ≈ 1 the plot de-
scribed in Equation 4.28 gives m∗ ≈ 0.3me. The gradient
of the plot described in 4.30, however, yields α ≈ 0.7 and
if the iterative process is continued then the values of
both m∗ and α diverge.

5.6. Results from the Siemens Device

5.6.1. Room-Temperature IV Characterization

Room temperature measurements of this device, shown
in Figure 5.21, demonstrate p-channel MOSFET-like be-
haviour at drain-source voltages generally small enough
to avoid pinch-off. The threshold voltage VTS is around
-1.0 V: in this region, at higher VDS , the drain current in-
creases quadratically as the gate-source voltage becomes
more negative. Away from the threshold, the drain cur-
rent is linear with both gate-source voltage and drain-
source voltage.

5.6.2. Mobility as a Function of Sheet Density and
Temperature

The results shown in Figure 5.22 and Figure 5.23 were
taken during preliminary tests of a device, using the
HP parameter analyzer and closed-cycle cryostat. (A
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constant drain-source potential of 10 mV was applied,
whereas the usual method is to apply a constant drain
current. This means that the drain current was of the
order of a few microamps at times, which is rather high.)
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FIG. 5.22: Early Hall-effect results at low temperature: sheet
density increases linearly as the gate voltage becomes more
negative, but the linearity breaks down eventually. (The gate
capacitance is ∼0.2 pF).

Later results are worse in terms of the actual peak
mobility value as can be seen from the 350 mK results
shown in Figure 5.24 and Figure 5.25: 1700 cm2V−1s−1

at 1.3×1012cm−2 as opposed to 3300 cm2V−1s−1 at
1.2×1012cm−2 at 10 K in Figure 5.23. (A current of
10 nA was used for these measurements, to avoid heat-
ing the carriers above the lattice temperature.55) Whilst

0.0 1.0 2.0 3.0 4.0 5.0
0

500

1000

1500

2000

2500

3000

3500

µ=20e/(p
S
h)

µ=10e/(p
S
h)

µ=e/(p
S
h)

 10K
 20K
 30K

µ H
al

l/c
m

2 V
-1
s-1

p
Hall

/1012cm-2

FIG. 5.23: More early Hall-effect results, showing typical be-
haviour for the mobility as a function of sheet density.
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FIG. 5.24: Hall-effect results at 350 mK (with a drain cur-
rent of 10 nA) showing the dependence of sheet density on
gate voltage. The good agreement between the results at two
different values of magnetic field suggest either that the Hall
results are very close to the true (“drift”) results, or that the
mobility of the 2DHG is very small. From this, the capaci-
tance of the gate is ∼0.3 pF. (The gate voltage was swept in
both directions, and the results averaged, for each field.)

this mobility does not seem impressive compared with
some of the best in p-type strained silicon-germanium
alloys (for example, 15000 cm2V−1s−1 at 1.8×1012cm−2

at 0.35 K in a normally-doped Si0.87Ge0.13 alloy grown
at 950◦C)4 it is worth noting the relatively high sheet
density (giving a sheet resistivity of 2.6 kΩ/¤) and high
germanium content of the pseudomorphic alloy layer.

A 4K mobility of 2500 cm2V−1s−1 at 6.2×1011cm−2
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from gate voltage to sheet density using a straight-line fit
to Figure 5.24, but the data clearly show anomalous quasi-
oscillatory features. Importantly, these features appear not
to depend on the magnetic field.

(and therefore a sheet resistivity of around 4kΩ/¤)
has been reported in a high-quality pseudomorphic
Si0.64Ge0.36 p-channel device,25 77K hole mobilities of up
to 3500 cm2V−1s−1 at 3×1012cm−2 have been reported
in a system with a Si0.2Ge0.8 channel grown on a virtual
substrate.7

Some sort of noise can be seen in Figure 5.24, espe-
cially at the low and high sheet density ends of the ±1 T
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FIG. 5.27: Hall mobility as a function of sheet density, using
magnetic fields of ±1 T, at temperatures from 350 mK up
to almost room-temperature. Lines are shown at µ = 2n e
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with solid lines at n=0,1,2,3 and 4 and dotted lines at n=-1
and -2.

data. This may be related to the oscillations seen in Fig-
ure 5.8 and Figure 5.9, discussed in Section 5.5.2. The
off-diagonal component of the resistivity tensor, ρxy, is
shown in Figure 5.26 as a function of sheet density (as-
suming a linear dependence on gate voltage as in Figure
5.24). The relationship should be ρxy = B

psq (Equation

4.6) but quasi-oscillatory features can be seen. These fea-
tures clearly do not depend on the magnetic field (so are
not, for example, due to the formation of Landau levels)
and are repeatable (so are fluctuations as a function of
gate voltage, not time). These fluctuations in ρxy may
be a sign of fluctuations in ρxx;57,58 no fluctuations were
visible in the ρxx data, but this may be because the ab-
solute value of ρxx tended to be much larger than the
scale of the fluctuations, drowning them out. These os-
cillations are largely suppressed in Figure 5.24 since they
cancel out when positive and negative field results are
combined.

Comprehensive results for the mobility as a function
of sheet density from 350 mK to 282 K are presented in
Figure 5.27. (There is essentially no variation between
350 mK and 1.4 K.) These are the subject of the following
calculations.

Calculations of Mobility as a Function of Sheet Density

In Chapter 3, the mobility of a 2-dimensional carrier
gas as a function of sheet density is discussed in terms
of the mechanisms which may limit it. Calculations have
been performed in similar studies.18,24

Experimental data at 25 K is presented in Figure 5.28,
along with calculated values for the mobility produced
using a C program written by A. I. Horrell∗ using the
forms presented in References 18 and 24. The mobility
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limit set by each scattering process is shown (apart from
optical phonons, which are off the scale at this temper-
ature) so that it is clear how interface impurities limit
the mobility at low sheet densities and interface rough-
ness becomes dominant as sheet density increases. At
the lowest sheet densities, where the carriers are becom-
ing increasingly localized, multiple scattering may need
to be taken into account.20
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FIG. 5.29: Comparison of mobility calculated and measured
across the whole temperature range. The parameters used for
the calculation are those from the fit at 25 K, shown in Table
5.2.

The parameters used to produce these calculated mo-
bilities are shown in Table 5.2. Those in italics were
taken from the literature and held constant whilst those
in normal type were varied to create a fit to the experi-
mental data, based on reasonable initial values from the
literature.

The fit was performed at 25 K because this tempera-
ture is well below TF in this sheet density range (mean-
ing that the carrier gas is degenerate and therefore that
the Hall mobility needs no correction due to energy-
dependent scattering mechanisms) but should be high
enough that the transport is not be influenced by any of
the factors described in Section 4.1.4.

The fit in Figure 5.28 is quite successful, demonstrat-
ing that the factors which limit the mobility are those
which are open to improvement through better growth.
Fundamental limits on mobility set by alloy scattering,
for example, are several times greater than those mea-
sured. However, Figure 5.29 shows how calculations of
the mobility at other temperatures measure up (with
these same parameters) against experimental data and
the agreement is less successful.

Using Equation 3.5 and the value of effective mass
quoted in Table 5.2, the Fermi temperature in Kelvin
is given by:

TF = 93ps (5.10)

with ps in units of 1012cm−2.
This means that, for example, at 152 K the carrier gas

would become non-degenerate as the sheet density de-
creases below 1.6×1012cm−2 and the mobility and sheet
density measured with the Hall effect would become in-
creasingly affected by energy-dependent scattering and
band-structure anisotropy.

The data and calculated values in Figure 5.29 at 152 K
do indeed coincide reasonably well at high sheet densi-
ties (bearing in mind that no attempt has been made
to fit any of the parameters in Table 5.2 which directly
relate to the temperature dependence of the mobility)
but diverge as the sheet density drops below around
2×1012cm−2. At 282 K, where the carrier gas is more
or less non-degenerate throughout the whole (Hall) sheet
density range (for a TF of 282 K, according to Equa-
tion 5.10, ps would have to be 3.0×1012cm−2) the Hall
scattering factor can be found. From Equation 4.8,
σ = pHallqµHall = pDriftqµDrift so

r =
pDrift(σ)

pHall(σ)
(5.11)

This analysis yields a Hall scattering factor at 282 K
of 0.68±0.04, averaged over the sheet density range. The
influence of energy-dependent scattering can only lead

∗ Electronic Device Engineering Group, Department of Electronic
& Electrical Engineering, Loughborough University.



TABLE 5.2: Table 5.2 Parameters used in the calculations presented in Figures 5.28, 5.29 and 5.30. Those in italics were taken
from the literature and held constant whilst those in normal type were varied to create a fit to the experimental data, based
on initial values from the literature.

Depletion charge density18,21 ND 20.0 ×1011cm−2

Interface impurity charge density18,21 ni 2.8 ×1011cm−2

Effective mass in the growth direction14 mz 0.3 me

Effective mass for in-plane transport14 m∗ 0.3 me

Relative permittivity14 ǫr 14.0 ǫ0

Interface roughness height18 ∆ 0.46 nm

Interface roughness correlation length18 Λ 1.20 nm

Alloy scattering interaction strength18,24 δE 0.6 eV

Lattice mismatch factor18,88 f 0.0125

Poisson’s ratio18 ν 0.28

Acoustic phonon deformation potential18,55,89 Ξu 4.5 eV

to Hall scattering factors greater than unity (Equation
4.19); this value is consistent with other work in the field
and is suggestive of an anisotropic Fermi surface as is be-
lieved to be the case for hole transport in strained silicon
germanium alloys.90–92

The value found in this work is actually slightly larger
than values found elsewhere, but this may be due to ad-
ditional contributions from energy-dependent scattering
mechanisms. In Reference 92 the Hall scattering factor
is found to generally increase with sheet density from
around 0.4 at 3×1011cm−2 to 0.8 at 4×1012cm−2. (This
behaviour is independent of the composition of the alloy
layer.) The tendency of the Hall factor to unity as sheet
density increases is unsurprising, since the Fermi tem-
perature is directly proportional to the sheet density; as
sheet density increases (at any given temperature) the
carrier gas will gradually become degenerate. The Hall
scattering factor is unity when TF ≫ T .91

From Equations 4.20 and 5.11, the 282 K drift mo-
bility of this device is therefore around 350 cm2V−1s−1

at 1012cm−2. A drift mobility of 330 cm2V−1s−1

at 5×1011cm−2 has been measured in a 6 nm-
thick modulation-doped p-type Si0.6Ge0.4 alloy layer at
295 K;92 for comparison, in a pure germanium chan-
nel grown on a Si0.3Ge0.7 virtual substrate a mobility at
room temperature of 1700 cm2V−1s−1 at 2.3×1012cm−2

has been recently reported.93

At 10 K and 0.35 K, once again the calculations fail
to fit to the experimental data for mobility as a func-
tion of sheet density. In Figure 5.30 experimental data
for the resistivity as a function of sheet density is com-
pared to calculations at certain sheet density values, and
the form fits quite badly. Clearly, there are effects which
augment the mobility of metallic carrier gases and di-
minish the mobility of insulating carrier gases, which are
not included in the method and limit its application at
low temperatures where these effects are significant. This
will be explored in the following section.
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FIG. 5.30: Resisitivity as a function of temperature, com-
paring experimental data with calculations similar to those
demonstrated in Figure 5.28 and Figure 5.29.

5.6.3. Resistance as a Function of Temperature and Sheet
Density

Figure 5.31 shows how the resistivity of the Siemens de-
vice varies as a function of temperature at a few different
sheet carrier concentrations around the peak in mobility.
The resistivity appears to be saturating as the tempera-
ture decreases; for low sheet densities resistivity increases
with decreasing temperature (insulating behaviour) but
for higher densities it decreases (metallic behaviour).

Resistivity (or conductivity) at ∼1 K is usually dis-
cussed in terms of weak localization, interactions (Sec-
tions 4.1.4, 5.5.3 and 5.6.4) and screening.19,21 Equation
5.12 is based on finite-temperature screening theory, if
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(The behaviour changes little as sheet density continues to
increase.)

kBT ≪ ~/τ and T < TF :94

σ(T ) = σ(0)

[

1 − β

(

T

TF

)2
]

+
Ae2

πh
ln

(

kBT

~/τ

)

(5.12)

And Equation 5.13 on the temperature dependence of the
static dielectric function:95

σ(T ) = σ(0)

[

1 − C
T

TF

]

+
Ae2

πh
ln

(

kBT

~/τ

)

(5.13)

The second term in Equations 5.12 and 5.13 is the
correction to the conductivity due to interactions, Equa-
tion 4.34;48 τ is the elastic scattering time which in this
system should be roughly equal to the momentum relax-
ation (transport) lifetime and A =

(

1 − 3
4F ∗

)

. The con-
stants β and C should be of order unity, and σ(0) is the
zero-temperature Boltzmann conductivity. If the low-
field magnetoresistance showed any evidence for weak-
localization, then a term for the temperature dependence
of the dephasing would be incorporated in A.19,21

However, for sheet densities of the order of 1012cm−2

and an effective mass of the carriers around 0.3 me the
Fermi temperature TF (Equation 3.5) is over 100 K, a
factor of three greater than in Reference 21.

For temperatures which are high (but still such that
T < TF ) the interaction term contribution weakly in-
creases with temperature but the first term in both Equa-
tions 5.12 and 5.13 dominates, causing the conductiv-
ity to decrease. As the temperature decreases toward
zero, however, the interaction term dominates and the

conductivity decreases. Hence, there should be a maxi-
mum in the conductivity and this is indeed seen in Ref-
erences 21 and 19 (at 2 K and 0.8 K respectively) where
forms similar to Equations 5.12 and 5.13 are successfully
applied. (Eventually the interaction term in Equations
5.12 and 5.13 breaks down, tending to negative infinity:
in this limit, kBT must be replaced by a temperature-
independent upper cut-off.47 This avoids an unphysical
negative overall conductivity.96)

A maximum in conductivity (that is, a minimum in
resistivity) may be seen in Figure 5.31 in the data at a
sheet density of 1.07×1012cm−2 but not at other sheet
densities, and the resistivity is clearly not increasing as
temperature decreases further. Analogous data in device
55/53 (Figure 5.7) also fail to clearly show a minimum
in resistivity at metallic sheet density values. Another
approach is needed to evaluate these data.

Work on the metal-insulator transition in 2-
dimensional samples suggests that the resistivity can be
approximated by the following expression:59,97

ρ(T ) = ρ0 + ρ1 exp [−(T0/T )n] (5.14)

ρ0, ρ1 and T0 are dependent on sheet density but not
temperature. In p-type silicon-germanium heterostruc-
tures, good fits have been acheived with n ≈ 0.5. The ex-
ponential term becomes decreasingly important as sheet
density increases.97,98

In order to fit the data in Figure 5.31, the following
form for ρ(T ) is introduced:

ρ(T ) = ρ0 +ρc exp [−(T/T0)
n]+ρl ln

[

1 +
kBT

~/τ

]

(5.15)

The first term, which is constant with respect to tem-
perature, represents elastic scattering from impurities43

and can be estimated using ρ0 = (psqµ0)
−1 − ρc where

µ0 = µ(T → 0). (The possibility of metallic transport
at zero temperature is discussed in section 5.5.3, in the
context of quantum dephasing mechanisms at zero tem-
peratures which may play a role in the metal-insulator
transition.64,99)

The second term represents a thermally activated pro-
cess which enhances the conductivity as temperature in-
creases. An exponential form is used, but since the resis-
tivity does not vary by more than an order of magnitude
this may not be necessary (and the very high conductiv-
ity state which may feature a re-entrant insulator-metal-
insulator transition as seen in gallium arsenide100 is never
reached). In any case, 1 ≤ n > 2 keeps this term well
behaved as T → 0.

The third term appears superficially similar to the in-
teraction correction discussed above, but in this case
causes the resistance to rise weakly with temperature.
The use of the ln(1 + x) form again ensures good be-
haviour as T → 0, and ln(1 + x) ≈ x for low x.

Fitting parameters are summarized in Figure 5.32: n
is fixed at 1.5. At low sheet densities, for the tempera-
ture range considered, the third term in Equation 5.13
becomes redundant and Equation 5.14 is recovered.
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FIG. 5.32: A summary of parameters for fitting Equation 5.15
to the data in Figure 5.31: at low sheet densities the third
term does not contribute at these temperature so ρl → 0 and
τ is undefined.

While this form successfully fits the data, it has no
direct theoretical justification and the behaviour of at
ρ(T → 0) high sheet densities remains unresolved. Low-
field magnetoresistance may clarify the influence of quan-
tum corrections to the conductivity,101 as it has in the
case of the previously discussed devices.

5.6.4. Magnetoresistance

For temperatures between 25 K and 300 K, magnetore-
sistance data (taken across the sheet density range shown
in Figure 5.24) shows an essentially constant ρxx and RH

up to 11 T. This makes it clear that, firstly, no weak lo-
calization or Landau level formation is present at these
temperatures (which is to be expected) and secondly that
there is no parallel conduction in, for example, an inver-
sion layer at the interface between the silicon cap layer
and the silicon dioxide gate dielectric.

The form of the 350 mK magnetoresistance data in
Figure 5.33 constrasts strongly with that of Figure 5.17
and Figure 5.18. The magnetoresistance is always posi-
tive, showing no evidence of the low-field negative mag-
netoresistance that is the signature of weak localization.
Features at high field in some of the data at lower sheet
densities may be related to the formation of Landau lev-
els (at 1012cm−2, 8 T corresponds to a filling factor of
5) but ρxy (not shown) does not show signs of Quantum
Hall plateaux. High field magnetoresistance may be due
mainly to the effect of Zeeman splitting on interactions.
Spin-orbit scattering gives rise to positive magnetoresis-
tance at low fields.74,102 Data taken by other workers on
another device from the same Siemens wafer is shown in
Figure 5.34. Shubnikov–de Haas oscillations are clearly

visible, but the device was destroyed before more data at
other temperatures and gate voltages could be obtained.
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FIG. 5.33: Magnetoresistance data at 350 mK, with the zero
field value of the resistance subtracted in each case. The
magnetoresistance is always positive, in contrast to Figure
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FIG. 5.34: This magnetoresistance data was obtained during
an early phase of device characterization by other workers.
There are clear Shubnikov–de Haas oscillations at this tem-
perature (1.47 K) but the device was destroyed before further
measurements could be performed.

It is not strictly possible to apply the analysis de-
scribed in section 4.1.3 when data at only one temper-
ature are available; the effective mass is normally found
from the temperature decay of the oscillations. How-
ever, the variation of amplitude of the oscillations with
respect to magnetic field can be used to find α if an effec-
tive mass is assumed. In fact, if Equation 4.28 is plotted



as described then the data points representing the min-
ima and maxima at this temperature should all lie on the
line y = x + ln(4) if the choices of m∗ and α are correct.
It was found that the best fit to a line of unity gradient
from a plot of Equation 4.28, with a consistent value of
α from the gradient of the plot of Equation 4.29, was
produced with m∗ = 0.3 me and α = 3. However, the
intercepts of both of these plots was much greater than
the value ln(4) and attempts to correct this destroyed the
consistency between the two plots. In other words, the
oscillations are much larger in amplitude than the the-
ory allows: the numerical factor before the summation in
Equation 4.24 would have to be several times larger and
there is no theoretical reason for this to be the case.

5.7. Conclusions

5.7.1. 55/53

This device has proved to be an interesting and useful
testbed for aspects of 2-dimensional physics. Its resistiv-
ity as a function of temperature weakly saturates at finite
(sheet density dependent) values as temperature drops to
zero, which would seem to contradict conventional theo-
ries of 2-dimensional transport based on scaling described
in terms of the results from the Siemens device.

Whilst the mobility values measured were themselves
impressive, fluctuations can be seen in Figure 5.8 and
Figure 5.9 which as yet remain unidentified: they may
or may not be related to the effects seen in the Siemens
device described in section 5.5.2 and References 57 and
58. Generally, data for the mobility as a function of sheet
density is not as detailed as that presented in Figure 5.9
so subtle features will not be seen.

The low-field magnetoresistance seems to be explained
well within the framework of weak-localization; the con-
tribution from interactions and Zeeman splitting, how-
ever, is less clear due to the anomalous values of the
screening parameter F ∗ returned by the fitting pro-
cess. The temperature dependence of the dephasing time
was considered in terms of traditional weak-localization,
where the dephasing rate drops to zero at zero tempera-
ture, and controversial new ideas which suggest that the
dephasing rate remains finite at zero temperature. The
results are inconclusive, in that the traditional theory
tends to predict dephasing times which are too long but
the newer ideas do not fit the data very well unless un-
reasonable freedom is given to their free parameters. The
question of finite dephasing at zero temperature is impor-
tant and fundamental.103 It is suggested that the theory
most needs modification so that the dephasing rate in-
creases with increasing carrier density, leading to metallic
behaviour at high densities and low temperatures.

The behaviour of the elastic scattering time at low tem-
peratures, however, does not appear to be of such theo-
retical interest even though it is of more direct relevance
to the momentum relaxation time and therefore the mo-

bility. From Figure 5.13, the elastic scattering time seems
to be generally increasing with decreasing temperature in
all but one case.

High-field magnetoresistance in the metallic regime is
conventional, but for lower sheet densities a magnetic-
field-driven transition from the quantum Hall effect state
to an insulating state with a very high resistivity oc-
curs at a filling factor ∼1.6. This is often seen in sili-
con and silicon-germanium systems, and is related to the
zero-field metal-insulator transition seen in gated devices.
Both this and the results of low-field magnetoresistance
characterization may contribute to the understanding of
localization and interactions in 2-dimensional semicon-
ductors, and therefore the metal-insulator transition and
the nature of mobility-limiting scattering mechanisms.

5.7.2. Siemens Device

It is clear from the long term characterization of
Siemens devices that results during the earliest phases
were more promising than those from the main investiga-
tion detailed in this chapter. However, during these early
phases devices would last no more than a few days before
they would be destroyed by stray voltages; only the pro-
tection circuit described in section 5.3.2 has made it pos-
sible to perform systematic and detailed characterization
of a single device. As research focus moves towards the
characterization of devices for commercial applications
such considerations will become increasingly important.

It may be the case that the drop in performance be-
tween Figure 5.23 and Figure 5.25 is due to the full or
partial relaxation of the active channel. Results obtained
by H. E. Fischer at Siemens104 at 4 K show a peak mobil-
ity of 1800 cm2V−1s−1 at 5×1011cm−2 (the peak mobil-
ity in Figure 5.25 is 1700 cm2V−1s−1 at 1.3×1012cm−2).
The fact that this peak is at a lower sheet density in the
data of H. E. Fischer than in Figure 5.25 suggests that
interface impurities are a comparatively serious issue in
the device studied here.18

The peak mobility in Figure 5.25 is consistent with cal-
culations for a relaxed Si0.5Ge0.5 alloy.105 On research-
scale devices this can be verified by X-ray or micro-
Raman measurements, or transmission electron mi-
croscopy. However, the small scale of the devices makes
such analysis impossible in this case.

Degradation of the oxide may instead be the cause of
the drop in performance. Since the carrier gas exists in
the alloy layer only a few nanometres away from the oxide
interface, the quality of this interface can limit the hole
mobility in the strained channel.106 Experience suggests
that ESD damage is catastrophic rather than progres-
sive, so this is not the cause. Ionic contamination (with,
for example, Na+) would lead to shifting of the thresh-
old voltage and possibly changes in the transconductance
characteristics,10 which were not seen. A remaining pos-
sibility is that the oxide interface has been degraded by
hot charge carriers.107–109



It is possible, also, that the small size of the device
is itself the issue: a 5 nm Si0.5Ge0.5 alloy grown on and
capped with pure silicon should remain fully strained (up
to at least 500◦C)9 but the small lateral scale of the mesa
(the Hall bar is 2.5 µm wide) may have lead to signifi-
cant relaxation towards the edges of the device.110 This
would have the strongest implications for high-field quan-
tum magnetotransport and may explain the absence of
Shubnikov–de Haas oscillations in Figure 5.33 (since con-
duction is concentrated towards the edges in the regime
where ~ωc ∼ kBT ) but leave the room-temperature
propeties almost unscathed. The calculations of mobility
as a function of sheet density, and the extracted value for
the Hall scattering factor at room temperature, should
therefore not be invalidated. Further investigations into
the long-term stability of micron and sub-micron scale
devices with a high level of grown-in strain is certainly
necessary.

The resistivity as a function of temperature has been
analyzed, and shown not to agree with existing theories of
weak-localization and screening. A new functional form
has been proposed as an empirical fit, but now needs
theoretical justification.

6. TRANSPORT IN AN N-CHANNEL
STRAINED SILICON DEVICE

6.1. Abstract

Previous chapters have stressed the importance of
silicon-germanium in terms of improving the mobility
of holes in semiconductor materials. However, it is also
important to study the characteristics of electron gases
in strained silicon-germanium heterostructures if both n-
and p-channel devices are to be integrated. The physics
of 2-dimensional electronic systems is also simpler and
more fully understood in some respects than it is for
holes. Additionally, the mobility of electrons is generally
better than that of holes, in a given system, so trans-
port in a more metallic regime can be investigated and
classical magnetoresistance is more easily analyzed.

6.2. Introduction

Pure, unstrained silicon has 6 conduction band min-
ima. Tensile strain (perpendicular to the growth direc-
tion, as occurs when pure silicon is grown on relaxed
silicon-germanium alloy) causes the two minima in the
growth direction to lie at a lower energy than the four
minima in the plane. This greatly reduces intervalley
scattering.3

Since the structure of the device (Figure 6.1) is “nor-
mal” the heterointerface at which the 2DEG is defined
should be of high quality, the electron channel should
have a high mobility.15 Quantum effects which rely on
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FIG. 6.1: The structure of the n-type device. There is a thick,
graded layer followed by an alloy buffer layer. There is heavy
n-type doping above the active channel and there is no gate.

disorder and impurities (for example, weak localization)
should not visibly influence the transport.

6.3. Structure

The structure of the n-channel device is shown in Fig-
ure 6.1. It was grown by Gas Source Molecular Beam
Epitaxy at Imperial College, by R. Ferguson. The dopant
layer is above the active channel making this a “normal”
structure and so there is no gate and the electron concen-
tration is not variable. The active channel of pure silicon
was grown on a “virtual substrate” of relaxed Si0.75Ge0.25

and capped by the same material, causing it to be under
tensile strain and creating a quantum well for electrons.
(This is in contrast with the p-channel devices considered
in Chapters 5 and 7, in which the active Si1−xGex chan-
nels are pseudomorphically grown on pure silicon leading
them to compressively strained, forming quantum wells
for holes.)

Calculations for this heterostructure yield a band gap
in the active channel of 0.90 eV (compared to 1.17 eV
for unstrained silicon or 1.09 eV for the unstrained
Si0.75Ge0.25 alloy) and an effective mass for the electrons
in the two ∆ out-of-plane minima of 0.199 me. The con-
duction band offset between the active channel and its
surrounding layers is 250 meV and the valence band is
60 meV lower in the active channel making this a Type
II structure. The splitting between the in-plane and out-
of-plane conduction band minima is 200 meV.14

Calculations similar to those described for a p-type
system in Equation 3.1 and Figure 3.1 suggest that the
sheet carrier concentration of electrons in the active chan-
nel (at the upper heterointerface) will be ∼1012cm−2 at
T ≪ TF ; for this sheet density and effective mass (and



taking into account the double valley degeneracy) the
Fermi temperature will be ∼70 K.

6.4. Classical Magnetoresistance and Mobility
Spectrum Analysis

Data for the variation of resistivity with magnetic field,
at various temperatures, are shown in Figures 6.2 to 6.4.
Chapter 4 describes both the utility of measurements of
magnetoresistance in the classical regime and the prob-
lems associated with their interpretation. Equations 4.10
and 4.11 show how elements of the conductivity tensor
σ(B) can be found in terms of the function s(µ) (Equa-
tion 4.12) through integral transformation. (Equations
4.13 and 4.14 relate σ(B) to the more usually measured
quantities of the longitudinal resistivity ρ(B) and the
Hall coefficient RH(B).)
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FIG. 6.2: Magnetoresistance at 294 K. It is clear from the
gradient of the ρxy data that the Hall coefficient is decreasing
as magnetic field increases.

This function s(µ) is known as the mobility spec-
trum. This gives the contribution to the conductivity
of the system due to carriers with mobility µ. It is as-
sumed in this investigation that this function does not
change with magnetic field; this will not be true when
~ωc ≥ kBT (Landau levels are formed) or when the car-
riers become weakly localized since both these conditions
involve magnetic-field dependent mobility. Under this as-
sumption, magnetoresistance is always positive; negative
magnetoresistance can be analyzed using the assumption
of a magnetic-field dependence of the mobility.111 Sig-
nificant intersubband scattering can also invalidate this
method.112

To find the magnetoresistance given a form for the mo-
bility spectrum is straightforward. Finding the mobility
spectrum from magnetoresistance data, however, is an
inverse transform problem and therefore more difficult
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FIG. 6.3: Magnetoresistance at 91 K. the scales of the vertical
axes have changed from Figure 6.2, but the forms of the curves
are similar.
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FIG. 6.4: Magnetoresistance at 26 K. The Hall coefficient
is effectively constant with respect to magnetic field. For
fields up to 4 T, there is little longitudinal magnetoresistance:
this corresponds to the limit of ~ωc ∼ kBT . Eventually, as
temperature decreases, Shubnikov–de Haas oscillations will
appear.

and the subject of much investigation.28,29,113–116 Some
of these approaches will now be briefly reviewed, before
considering the method of maximum entropy in more de-
tail.

(i) Reference 28, which first introduced the concept of
the mobility spectrum, involves a mathematically com-
plicated solution method, the numerical details of which
will not be explored. The number of data points used
to create a solution is equal to the number of distinct



carriers gases within the sample, plus one. The solution
method may either proceed by searching for an imposed
number of carrier gases or be free to start by attempting
a fit for a single gas, and then a two-gas system, and so
on. For each search for n gases, the method must try each
combination of n+1 data points from the whole data set,
keeping the sets which lead to “physical” solutions, and
from these sets generate an “envelope function” within
which the mobility spectrum is found.

Once a set of carrier gases has been found, a least-
squares fit on the original data is performed with the
carrier gas parameters as variables. If this fit is satisfac-
tory and the parameters emerge virtually unscathed then
the results of the original analysis can be considered rea-
sonable.

If only a limited number of data points (∼10) are avail-
able and the system is expected to contain only two or
three distinct carrier gases, then this method is quite ef-
ficient. However, the data collected in this part of the in-
vestigation generally comprises resistivity data at about
500 magnetic field values and the system simply cannot
cope; to choose points or create averaged data by hand
is to impose artificial constraints on the final solution.
Also, this method does not respond well to errors in the
experimental data.29

(ii) Reference 113 introduces and describes the Re-
duced Conductivity Tensor method for extracting the
carrier concentration and mobility of each component of a
multilayer semiconductor system. Assumptions are made
that the carrier gases are essentially degenerate and that
the effective mass is isotropic, but nevertheless, agree-
ment between theory and experiment is good.

(iii) In Reference 114, it is assumed that the mobil-
ity for a mixed scattering can be approximated by the
phenomenological expression:

µ = µ0x
α where x =

E

kBT
(6.1)

and that the mobility spectrum of non-degenerate carri-
ers in a spherical band can be approximated by:

s(µ) = S0e
x(µ)x(µ)2.5 (6.2)

where S0, µ0 and α are coefficients depending on the den-
sity of states and on the parameters of all the scattering
mechanisms. Then, the integration over the whole mo-
bility spectrum in Equations 4.10 and 4.11 is converted
to summation of discrete spectra for electrons and holes
and an iterative transformation procedure is performed.
The results are decomposed into high-mobility carrier
and low-mobility carrier contributions, the division cho-
sen arbitrarily, with results for the former seeming much
more satisfactory than results for the latter.

(iv) References 115 and 116 describe the “quanti-
tative mobility spectrum technique” (QMSA) and the
“improved quantitative mobility spectrum technique” (i-
QMSA) respectively. These, again, are iterative tech-
niques but with no initial assumption about the solution

(although the method from Reference 28 is used to create
the first trial solution to iterate, and conductivity data
is extrapolated to higher magnetic field values to extend
the available mobility range). The i-QMSA method in-
troduces a few extra tricks for improving the fits whilst
smoothing the spectra and making them more physically
reasonable.

A serious issue (regarding inverse transformation prob-
lems in general) is that while a particular spectrum s(µ)
may, upon the action of an integral transform over the
“kernel function” K(B,µ), produce a magnetoconductiv-
ity σ(B), the inverse problem is ill-conditioned and the
solution obtained for s(µ) by inverting the kernel is ex-
tremely sensitive to small changes or errors in the σ(B)
data. Also, a particular s(µ) is not a unique solution,
within the uncertainty bounds of the original noisy and
incomplete σ(B) data.

6.4.1. Maximum Entropy Method of Mobility Spectrum
Analysis

The technique of “Maximum Entropy” has been em-
ployed to solve this and other problems involving in-
verse integral transformation where the result is a pos-
itive, additive function.29,117–119 Generally, if two solu-
tions (found by any means) are of equal merit (in terms
of, for example, their least-squares fits to the original
results) then the solution with the larger entropy is to
be favoured, since it is maximally noncommittal with re-
gard to missing (unmeasured) information in the original
data.29,120 In other words, the solution favoured by the
maximum entropy method extracts the most information
out of the original data without making unreasonable as-
sumptions about information which is unavailable.

This method embodies Bayes’ theorem: the probabil-
ity of a particular hypothesis given some data (and any
background assumptions) is proportional to the probabil-
ity of that data given the hypothesis and the assumptions
and the probability of the hypothesis given the assump-
tions alone.117

The entropy S of a discrete mobility spectrum {s} can
be defined as:29

S{sj} = −
n

∑

j=1

pj ln pj (6.3)

pj =
sj

σ0
(6.4)

where pj is the probability of sj and σ0 is the conductivity
at zero magnetic field. This imposes the condition that
the mobility spectrum is non-negative and normalizable,
which is physically realistic. However, if any prior infor-
mation about the form of the spectrum is available then
this may be incorporated as a so-called default model
{m}:118,119



Fitting is now a matter of minimizing the function
Q:119

Q = χ2 − αS (6.5)

where χ2 =
∑

i(σ(Bi) − σc(Bi))
2/δ2

i ; σc(B) is magne-
toconductivity calculated from the fitting mobility spec-
trum, δ2gives a measure of the error in the data (this
parameter is conventionally referred to as σ2 but here is
renamed to avoid confusion with conductivity) and α is a
hyper-parameter which controls the relative importance
of the least-squares and entropic constraints.119 Full tech-
nical details are given in Reference 118 and Chapter 5 of
Reference 119. Equation 6.6 can be meaningfully com-
pared to the free energy, F = E − TS, which is often to
be minimised to find the solution in thermodynamic or
statistical-mechanic systems.120

There are various flavours of the maximum entropy
method, which differ in the way in which they approach
the hyper-parameter α. In the case of Historic maximum
entropy, α is set so that at the minimum of Q (Equation
6.6) χ2 = M where M is the number of “observations”
or data points. In the case of Classic maximum entropy,
the most probable value of α is found, given the data
and the default model.121,122 Alternatively, the method
described in Reference 120 does not use Bayesian infer-
ence but treats the maximization of the entropy as a
natural starting-point for derivations of other results of
statistical mechanics.

The approach of Bryan’s algorithm is to calculate so-
lutions for a range of α values and evaluate the prob-
ability of each being correct given the data and the de-
fault model. These solutions are then averaged, weighted
by their probabilities.119 However, this method does not
work very well if α is very small: in the method developed
in Reference 119 a solution produced by Bryan’s algo-
rithm maximum entropy is used as the default model for
the next solution. This procedure is repeated until the
the most probable solution corresponds to an α value well
within the range of applicability of Bryan’s algorithm.

Since the integral transform from s(µ) to σ(B) actually
involves two integral equations (Equations 4.11 and 4.12)
then we work with29

σ(B) = σxx(B)+σxy(B) =

∫ ∞

−∞

1 + µB

1 + µ2B2
s(µ)dµ (6.6)

and since the forms for s(µ) and σ(B) are discrete, then
Equation 6.7 can be rewritten σi = Kijsj . The mobility
spectrum may be computed as:

sj = K−1
ji σi (6.7)

Since the magnetoconductivity σ(Bi) is relatively in-
sensitive to the details of the mobility spectrum s(µj)
then the kernel contains a large amount of repeated in-
formation; many of the linear equations described by the
kernel will be (almost) identical.119 In addition, elements
of the kernel matrix which are dominated by small sig-
nal noise or computational rounding errors will invert to

very large values which will be overpowering in Equa-
tion 6.8. If the kernel is an M × N matrix written as
K = UWV T with U an M × N column-orthogonal ma-
trix, W as an N × N diagonal matrix with nonnegative
values (the “singular values”) and V

T the transpose of
an orthogonal N × N matrix V , then the inverse of the
kernel can be written as K

−1 = V W−1UT .123

If one of the elements of W is zero then the corre-
sponding element of W

−1 will be infinite and the matrix
will be singular. However, by invoking the concepts of
nullspace and range for singular matrices an element of
W

−1 is set to zero if the corresponding element of W

is zero (or smaller than some set noise floor). This tech-
nique of singular value decomposition effectively reduces
the dimension of the space that must be searched for a
solution and discards noise which would corrupt the so-
lution. It is therefore a very important feature of the
following analysis. A widely available algorithm for per-
forming singular value decomposition in the C program-
ming language is svdcmp, from Numerical Recipes.123

A simple, powerful and successful maximum-entropy
method for finding a mobility spectrum is described in
Reference 29, based on the method of Reference 120.
The described procedure does not, however, use sin-
gular value decomposition to remove overspecification
and noise and so the calculation time increases with the
square of the product of the number of mobility and mag-
netic field points, (NM)2; nor does it make explicit a
hyper-parameter (α in Equation 6.6) which controls the
relative importance of a result which fits the original data
versus a result with the maximum the entropy or deal
with error in the data in an obvious way.

In the Bryan’s Algorithm Mobility Spectrum method
described below, the calculation time scales as NnM
where n falls from unity to around 0.7 as N increases.
This is a direct result of the singular value decomposi-
tion; the time to perform this scales as N2M but tests
and calculations suggest that the number of input points
would have to exceed tens of thousands before the SVD
was taking as long to perform as the actual maximum en-
tropy inversion. For input data at 500 magnetic field val-
ues, and an output spectrum of 1000 points, the BAMS
result is produced in 7 hours on a Solaris 360 MHz Ultra
SPARC-IIi or 3 hours on a 450 MHz Pentium III running
Linux.

6.4.2. “Bryan’s Algorithm Mobility Spectrum” Results

In Chapter 5 of Reference 119, the techniques of singu-
lar value decomposition and iterated Bryan’s algorithm
maximum entropy are employed to extract a spectral
function (related to the density of states) from a static
correlation function. The computer code used to perform
this task was written by J. P. Hague and then modified
in collaboration with the Author to extract a mobility
spectrum from magnetoconductivity data.

Mobility spectra produced by application of this



-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

 

 294K

s(
µ

)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

 282K

s(
µ

)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

 231K

s(
µ

)

µ/m
2
V

-1
s

-1

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

 

 194K

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

 

 164K

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

µ/m
2
V

-1
s

-1

 130K

FIG. 6.5: Mobility spectrum results produced using maximum
entropy analysis. The temperature is shown on each plot. In
five of the spectra there are two peak; the low mobility peak is
ascribed to conductino in the arsenic dopant slab, the higher
mobility peak to the 2-dimensional electron gas itself, in the
strained silicon active channel. The mobility of the 2DEG
peak generally increases as temperature decreases. The third
peak in the 130 K result will be discussed in the text. The
vertical scale in each case is irrelevant: it is the area under
each peak that is of importance, not their heights.
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FIG. 6.6: (continuation from Figure 6.5) As temperature de-
creases further, the mobility of the 2DEG peak continues to
increase while the dopant slab peak diminishes.

method are shown in Figures 6.5, 6.6 and 6.7. Summaries
of the mobilities and sheet densities found from these
spectra are shown in Figures 6.8 and 6.9 along with val-
ues obtained by simple application of Equations 4.7 and
4.9 at low (±0.5 T) and high (±10 T) magnetic fields.
The manner in which these results have been extracted
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FIG. 6.7: (continuation from Figure 6.6 but with an extended
x-axis scale) The 2DEG peak reaches a high mobility, and only
faint vestiges and artifacts remain in the rest of the spectrum.
The exception is the 4.5 K result, which features a signif-
icant peak in the “negative mobility” region. If this were
genuine (see text) it would signify high-quality p-type con-
duction. Data used for these low-temperature results were
limited to lower magnetic fields so as to avoid the Shubnikov–
de Haas regime.

from the spectra will be explained in the following sec-
tion. Results for 4.5 K, 1.5 K and 0.35 K are not shown;
the 4.5 K result is discussed below, the 1.5 K and 0.35 K
result agree on a mobility of 23,000 cm2V−1s−1 at a sheet
density of 9.0×1011cm−2.

Figure 6.10 shows how the 2DEG and dopant layer
contribute to the overall resistivity of the device, as a
function of temperature. It can be seen that, since the
resistivity of the dopant layer is several times larger than
that of the the 2DEG, it makes little contribution even
at high temperatures. The temperature dependence of
the resistivity of the 2DEG is the subject of section 6.4.

The Dopant Layer

The carrier concentration n0 in the dopant layer as a
function of temperature is:17

n0(NA + n0)

ND − NA − n0
= βNC exp

(

−ED

kBT

)

n0 ≪ NC (6.8)

where ND and NA are the concentrations of donors and
acceptors, NC is the effective density of states in the
conduction band and β is the degeneracy. NC is given
by:10

NC = 2

[

2πm∗kBT

h2

]
3
2

(6.9)

If the T 3/2 dependence of NC (and the temperature
variation of the width of the ionized region of the dopant
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FIG. 6.8: A summary of results extracted from magnetoresis-
tance measurements. The mobilities of the two main peaks in
the spectra are shown (ascribed to the 2DEG and the dopant)
as are the effective sheet densities obtained by their integra-
tion. Mobilities and sheet densities measured directly using
assumption of the single-carrier Hall effect at low magnetic
field are also shown. At low temperatures, the low-field Hall
effect gives the correct 2DEG parameters; at high tempera-
tures where there is parallel conduction there is a slight dis-
crepancy. The mobility spectrum analysis yields unphysically
high sheet densities for the 2DEG at high temperatures.

layer) is assumed to be much less important than the
exponential temperature dependence in Equation 6.9,
n0 ≪ ND and ND ≫ NA (as is likely since the concentra-
tions used in modulation doping are very high compared
to traditional device doping levels)10 then Equation 6.9
reduces to:

n0 ≃ AT 3/4 exp

(

−
ED

2kBT

)

(6.10)

The temperature dependence of the sheet carrier den-
sity of the dopant layer (the red circles in Figure 6.8)
in the region of 60–100 K∗ suggests an activation energy
of the arsenic donors of the order of the accepted value
in pure silicon of 54 meV,124 but since only a few data
points are available a rigorous analysis is not possible.
Since the dopant slab is only significantly ionized in the
region nearest the active channel at these temperatures,21

this analysis cannot necessarily be used to infer the donor
concentration.

The 2-Dimensional Electron Gas

∗ Data between 100 K and 300 K do not fit Equation 6.11 and can-
not be used, for reasons which will be explored in the remainded
of this chapter.
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FIG. 6.9: A summary of results extracted from magnetore-
sistance measurements. Mobilities and sheet densities mea-
sured directly using assumption of the single-carrier Hall ef-
fect at low magnetic field (where Equations 4.15, 4.17 and
4.18 should apply) and at high magnetic field (where 4.16
should apply, not applicable in the quantum limit) are shown,
alongside results from the derived analyses of the spectrum,
Equations 6.17, 6.18, 6.20 and 6.21. The calculated drift mo-
bility should not be larger than the measured high field value:
this is another sign that something may be wrong.

Some variation of sheet density with temperature of
the 2DEG is to be expected:29 when T ≪ TF the Fermi
level is pinned in the dopant slab and the occupied
quantum-well subband, similar to the case for p-type
conduction shown in Figure 3.1. The charge density in
the channel must be consistent with the gradient of the
energy bands between the channel and the dopant slab
(as discussed in section 6.3). At higher temperatures,
the spreading of the Fermi occupation function means
that the conduction band does not need to cross below
the Fermi level to be significantly populated. However,
such a large increase in 2DEG density as temperature
increases may be a cause for some concern, and will be
discussed in sections 6.5 and 6.8.2.

In strained silicon, the conduction band minimum is
doubly degenerate. These two conduction valleys have
identical mobilities and occupation densities, so in each
case the 2DEG peak in the mobility spectra represents
both sets of electrons. However, the density according to
Shubnikov–de Haas oscillations will be half this, as will
be seen.

“Mirror” Peaks

A very strong peak can be seen in the 4.5 K spec-
trum, at a mobility of around -14,000 cm2V−1s−1. The
effective sheet density of this peak is (-)3.4×1011cm−2.
This compares to the 2DEG peak, which has a mobility
of 22,000 cm2V−1s−1 at 6.8×1011cm−2. It can be seen



1 10 100

102

103

104

105

 ρ
0
 of 2DEG

 ρ
0
 of dopant layer

 ρ
0
(T) measuredρ 0/Ω

T/K

FIG. 6.10: Dependence on temperature of the resistivity of
the n-type device; directly measured data (at 150 nA) is the
solid line, symbols are results from mobility spectrum anal-
ysis. The Fermi temperature of the electron gas (calculated
from its zero-temperature carrier concentration) is 70 K, and
it can be seen that the resistance is changing dramatically in
this region. As the temperature decreases to a few Kelvin,
the resistivity saturates. Freeze-out of the dopant layer can
clearly be seen.

immediately that this density for the 2DEG is too low
(there is no reason for it to deviate from its value at other
low temperatures of 9.0×1011cm−2) and that the miss-
ing conductivity is provided by the “mirror peak” which
would, if it were genuine, represent p-type conduction.
Spectra at 130 K and 99 K show very small peaks at low,
negative mobilities; at other temperatures, similar peaks
are present but with areas (that is, effective sheet den-
sities) between two and four orders of magnitude lower
than the genuine peaks. In fact, such very small mirror
peaks result even from synthetic data generated to test
the software.

Mirror peaks (normally at exactly the opposite mobil-
ity value, unlike the peak seen in the 4.5 K spectrum)
are a general feature of mobility spectrum analysis, and
have been described either as a computational artefact,
a sign of band anisotropy or a result of inaccuracies in
the measurement or processing of the ρxx signal.29,116,125

Only the first suggestion is consistent with mirror peaks
even being present in spectra generated from synthetic
data, but Reference 125 notes that they are a feature of
analysis performed with different computational meth-
ods. Consider a mobility spectrum similar to the 4.5 K
result, with a well-defined and sharp real peak at µ1 (with
a total integrated conductivity of σ1 and an effective car-
rier concentration of n1) and a mirror peak at µ2 = −µ1.
The magnetoconductivity is then given by

σxx =

∫ +∞

−∞

s(µ)dµ

1 + µ2B2
=

σ1

1 + µ2
1B

2
+

σ2

1 + µ2
2B

2
=

σ1 + σ2

1 + µ2
1B

2
(6.11)

σxy =

∫ +∞

−∞

µBs(µ)dµ

1 + µ2B2
=

µ1Bσ1

1 + µ2
1B

2
+

µ2Bσ2

1 + µ2
2B

2
=

(σ1 − σ2)µ1B

1 + µ2
1B

2
(6.12)

If n2 ≪ n1then the conductivity, and therefore the re-
sistivity, reverts to the single-carrier model. However,
if n2 ∼ n1 then the transverse component is reduced
greatly. Since the longitudinal component is always nor-
malized to match the data at zero field, the result of the
mirror peak is to change the scale of σxy in relation to σxx

without changing its form. This suggests that the mirror
peak is a consequence of mis-match between the numer-
ical values of the longitudinal and transverse elements of
the conductivity tensor. In the case of real data, this
may arise due to mis-calibration between the equipment
that measures the longitudinal and transverse resistivi-
ties, numerical errors when inverting this to generate the
conductivity, or rounding errors (data was exported as
tab-separated text, with numbers in standard form to 6
significant figures). This latter applies even if the data is
synthetically generated.

In conclusion, the presence of mirror peaks is a sign of

suspect data that must be treated with care: calibration
of experimental equipment and the methods in which the
data is processed should be checked.

6.4.3. Obtaining Semiconductor Properties from a Mobility
Spectrum

Sheet Density and Mobility

Traditionally, the extraction of semiconductor proper-
ties from the magnetoresistance is treated in terms of
simple analytical functions such as are described in sec-
tion 4.1.2. The Hall sheet density, for example, is defined
as:

nHall =
1

qRH(B → 0)
(6.13)



where RH(B → 0) is the Hall coefficient (Equation 4.14)
at low magnetic field. It is acknowledged that the Hall co-
efficient at low fields is at the mercy of energy-dependent
scattering within a carrier gas, or the presence of multiple
carrier gases with differing mobilities.126 In the limit of
high magnetic field, however, the Hall coefficient should
reflect only the total number of carriers within the system
(Equations 4.16 and 4.21):

∑

|n| = nDrift =
1

qRH(B → ∞)
(6.14)

The zero-field conductivity is σ0 = nHallqµHall =
nDriftqµDrift and so the Hall and drift mobilities can
be found.

A mobility spectrum s(µ) generally comprises one or
more peaks. The centre of a peak i can be simply inter-
preted as the mobility µi of the carrier gas represented
by the peak, and the concentration of carriers within the
gas ni can be found by integrating over the peak:

niqµi = σi =

∫

s(µ)dµ (6.15)

with the normalization of the spectrum is such that σ0 =
∑

i σi =
∫ ∞

−∞
s(µ)dµ. The total number of carriers found

by this method is the drift concentration:

nDrift =
∑

i

|ni| (6.16)

And so the drift mobility is then:

µDrift =
σ0

nDriftq
=

∫

s(µ)dµ

q
∑

|ni|
(6.17)

However, since the Hall coefficient in the limit of zero
magnetic field (from Equations 4.11 and 4.14, assuming
σ2

xy ≪ σ2
xx and µB ≪ 1) is:

RH(B → 0) ≃ −
1

B

σxy

σ2
0

≃ −
1

σ2
0

∫

µs(µ)dµ (6.18)

then the Hall concentration as defined in Equation 6.14
is found to be

nHall =
σ2

0

q
∫

µs(µ)dµ
=

(∫

s(µ)dµ
)2

q
∫

µs(µ)dµ
(6.19)

The Hall mobility is then

µHall = σ0RH(B → 0) =
1

σ0

∫

µs(µ)dµ =

∫

µs(µ)dµ
∫

s(µ)dµ
(6.20)

Hall Scattering Factor

The Hall scattering factor r is defined such that

RH(B → 0) =
1

nHallq
=

r

q
∑

|ni|
(6.21)

which leads to:

r =
nDrift

nHall
=

q
∑

|ni|
∫

µs(µ)dµ
(∫

s(µ)dµ
)2 (6.22)

In fact, a scattering factor can now be defined for each
peak in the spectrum by limiting the integration to only
the peak in question, rather than the whole spectrum:

ri = qni

(∫

peak

µs(µ)dµ

) (∫

peak

s(µ)dµ

)−2

(6.23)

Using the definition of ni (Equation 6.16) this becomes:

ri =
1

niqµ2
i

∫

peak

µs(µ)dµ (6.24)

Alternatively, since at high fields σ2
xy ≫ σ2

xx and
µB ≫ 1:

RH(B → ∞) ≃
1

Bσxy
=

1

B

[∫

µBs(µ)dµ

1 + µ2B2

]−1

≃

[∫

s(µ)

µ
dµ

]−1

(6.25)

from Equation 6.15 the drift concentration may be
described as

nDrift =
1

q

∫

s(µ)µdµ (6.26)

provided that s(µ = 0) = 0, as it physically should be.
The drift mobility is now

µDrift = q

(∫

s(µ)dµ

) (∫

s(µ)

µ
dµ

)−1

(6.27)

and the Hall scattering factor is:

r =

∫

s(µ)

µ
dµ

∫

µs(µ)dµ
(∫

s(µ)dµ
)2 (6.28)

(The integrals in Equations 6.27, 6.28 and 6.29 may be
performed over individual peaks rather than the whole
spectrum, as before.)

A Hall scattering factor greater than unity in a carrier



gas is the result of energy-dependent scattering mecha-
nisms, and according to Equation 6.25 a peak at µi will
have ri greater than unity if

∫

µs(µ)dµ > µi

∫

s(µ)dµ.
This will be the case for a symmetric, broad peak in the
mobility spectrum. In order for a peak to have a Hall
scattering factor less than unity, it is necessary for it to
be asymmetric with most of its weight towards the ori-
gin. However, anisotropy in the energy band which leads
to r < 1 is expected to produce “harmonics” in the mo-
bility spectrum and Equation 6.25, which only considers
a single peak, is not applicable.28

All of the significant peaks in the spectra shown Fig-
ures 6.5, 6.6 and 6.7 have a scattering factor of unity;
small peaks which are thought to be artefacts tend to
have unphysical values of r which are far from unity and
sometimes even negative (and divergent between values
calculated from Equations 6.25 and 6.29). Experience
suggests that the shape of the peak in a mobility spec-
trum may owe as much to the quality of the data as
to the scattering processes and band shape of the ma-
terial, so while the mobility of the 2DEG can be found
despite parallel conduction in the dopant slab, little can
be said about the link between energy-dependent scat-
tering and mobility-dependent conductivity and there-
fore about the scattering mechanisms in non-degenerate
semiconductors.

6.5. Resistivity and Mobility as a Function of
Temperature

Figure 6.10 shows how the resistivity of the n-type de-
vice varies as a function of temperature at zero magnetic
field, which should be compared with the variation of
mobility and sheet density shown in Figure 6.8. The re-
sistivity at room temperature is just over 60Ω/¤; at first
the resistivity decreases slightly as temperature decreases
from 300 K, reaching a minimum around 200 K, and then
increases by almost an order of magnitude in the region
of TF to a peak at 30 K. Resistivity then decreases to sat-
uration at just under 300Ω/¤ as the temperature reaches
350 mK. This data was obtained using a drive current of
150 nA: the behaviour of the resistivity as a function of
current at low temperatures is the subject of Figures 6.13
and 6.14 which are discussed in the next section.

Information from the mobility spectrum analysis (Fig-
ure 6.8) of the previous section suggests that the dom-
inant contribution to the conductivity in this device is
the 2DEG, even at high temperatures where the dopant
slab has not frozen out.

There is a minimum in the resistivity at 160 K which,
since the sheet density is only increasing slowly in this
range, corresponds to a maximum in the mobility. The
decrease in mobility with temperature from here to 300 K
can be ascribed to acoustic phonon scattering: µ ∝ T−γ

with γ ∼ 1.127 The room temperature value of the mo-
bility in the 2DEG is 4,500 cm2V−1s−1 (better than the
room temperature electron mobility of bulk silicon of

1,400 cm2V−1s−1)124 but the sheet density is unphysi-
cally high at 1.7×1013cm−2. The Hall scattering factor of
the 2DEG (from Equations 6.25 and 6.29) is 1.0, so noth-
ing can be inferred regarding scattering mechanisms.128

Whilst some variation of sheet density with temperature
is to be expected,29 such a large variation may be a sign
of a problem with the magnetoresistance data, mobility
spectrum theory, or the computer code performing the
calculation. These possibilities will be discussed in sec-
tion 6.8.2.

The change in resistivity between 160 K and 40 K is
associated with the change in sheet density as the 2DEG
becomes degenerate (and conduction in the dopant layer
freezes out). However, inspection of the mobility spec-
trum results in Figure 6.8 shows how the mobility is at a
minimum at 100 K; the change in resistivity seen in Fig-
ure 6.10 appears to be, for temperatures between 100 K
and 160 K, the result of changing mobility with a roughly
constant sheet density. As the temperature falls below
100 K, the mobility increases but the sheet density de-
creases such that the resistance variation is maintained:
there is no significant feature visible in Figure 6.10 to
mark the minimum in mobility. This minimum in mobil-
ity may be a real physical effect due to the temperature
dependence of screening in the 2DEG,129 but is more
likely to a sign that some part of the experimental pro-
cedure is awry. The mobility should probably continue
monotonically decreasing as µ ∝ T−1; the mobility and
the density of the 2DEG are overestimated whenever the
density in the dopant layer is significant.

The low temperature behaviour of the resistance is the
subject of Figure 6.11. The mobility enhancement as
the temperature decreases below 20 K is most likely to
be a quantum transport effect: the carrier gas is fully
degenerate and the phonon scattering rate is very low.

1 10
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ρ 0/
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FIG. 6.11: Calculated and measured resistivity as a function
of temperature, to be compared with similar results in the
previous chapter. Fitting parameters are given in the text.



There is little variation in the ∼1 K region and no
suggestion that the resistivity would tend to either zero
or infinity at absolute zero. This can be compared with
Figure 5.31 and the analysis in Section 5.5.3: ρ(T ) in a
2DHG with a sheet density of 1.07×1012cm−2 also de-
creases as temperature decreases below 20 K, reaching a
minimum and then increasing slowly and saturating.

Equation 5.15 was introduced to fit the ρ(T ) data
shown in Figure 5.31: the results of fitting Equation
5.15 to the data in Figure 6.11 with n fixed at unity are
ρ0 = 116± 1 Ω/¤, ρc = 179± 1 Ω/¤, ρl = 164± 2 Ω/¤,
T0 = 4.91± 0.04 K and τ = 1.65± 0.04 ps. This scatter-
ing rate corresponds to a mobility of 15,000 cm2V−1s−1

which is close to the value of the mobility of the 2DEG at
the peak in resistivity at 30 K. Whether these fitting pa-
rameters relate to those shown in Figure 5.32 for a 2DHG
is a subject for debate and investigation: the values of T0

and τ from this 2DEG (at a density of 0.90×1012cm−2)
would not look out of place in the lower panel of Figure
5.32, but the resistivity parameters are clearly at least
an order of magnitude smaller. Further discussion is pre-
sented in the conclusions of this chapter, section 6.8.2.

The low temperature maximum value of the mo-
bility is 23,000 cm2V−1s−1 at a sheet density of
9.0×1011cm−2. This is typical for n-type strained sili-
con, not superlative.127,130 Possible low-temperature mo-
bility limiting mechanisms are discussed throughout the
remainder of this chapter.

6.6. Quantum Hall Effect

6.6.1. Shubnikov–de Haas

Figure 6.12 shows a set of Shubnikov–de Haas oscilla-
tions at various temperatures, using a current of 150 nA.
For comparison, two additional results are shown at
350 mK with different currents. Since the amplitude of
Shubnikov–de Haas oscillations is the same at 150 nA
(black solid line) as at 30 nA (black dotted line), there
is no heating effect at 150 nA. A current of 5 µA (blue
dotted line) heats the electron gas to over 2 K. Using
Equation 4.27 to extract the sheet density from the pe-
riod of the oscillations in inverse magnetic field gives a
result of 4.7×1011cm−2 which is half the true value, found
from the classical magnetoresistance, due to unresolved
valley degeneracy.

A set of oscillations at 350 mK at various currents is
shown in Figure 6.13. There is a large y-axis offset be-
tween the 3 nA and the 150 nA data, but no major reduc-
tion in the amplitudes of the oscillations until the current
reaches 1 µA. The oscillation amplitude as a function of
current can be compared with the oscillation amplitude
as a function of temperature to estimate the effective
electron temperature as a function of current at a lattice
temperature Tl of 350 mK: at 1 µA, Te ∼1.2 K and at
5 µA, Te ∼2.3 K. The energy loss rate per electron as a
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FIG. 6.12: Shubnikov–de Haas oscillations as a function of
temperature, at a current of 150 nA. For comparison, two re-
sults at 350 mK using different currents are shown. The sheet
density found from the period of the oscillations in inverse
magnetic field is 4.7×1011cm−2, which must be multiplied by
two because of valley degeneracy. Spin degeneracy also ap-
plied at these field values, which is why the minima are at
filling factors that are multiples of four. (See Section 4.1.3
and Figure 4.2)

function of electron temperature can be calculated:65

〈

dE

dt

〉

=
kB(Te − Tl)

τe
=

ρxxI2

l2ns
(6.29)

From this, the energy relaxation time τe and
thence electron-phonon interaction strength can be
found.55,65,127,131,132 Though this will not be pursued
here, the energy relaxation time is relevant to the break-
down of the Quantum Hall state investigated in section
6.6.2. The data of Figure 6.13 reassures us that electron
heating has not affected the Shubnikov–de Haas oscilla-
tion amplitudes in Figure 6.12.

The zero-field value of the resistivity as a function
of current is plotted in Figure 6.14, which should be
compared with Figure 6.11. Even though the resistiv-
ity seems lower at lower currents (which might suggest
a heating effect) the fact that the variation in resistivity
with temperature at these lower currents matches that
shown in Figure 6.11 refutes this; the effect is more likely
due to the difficulties with measuring such small signals.
There is no variation of the low-field Hall coefficient with
current.

The effective mass found from the temperature decay
of the Shubnikov-deHaas oscillations in Figure 6.12 (us-
ing the method described in Section 4.1.3, particularly
Equations 4.28 to 4.30) is 0.2me which is in agreement
with the value of 0.199me from the calculations in Refer-
ence 14, presented in Section 6.3. The ratio of transport
and quantum lifetimes, α, is 3.1.
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FIG. 6.13: Shubnikov–de Haas oscillations as a function of
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of the resistivity as a function of current is shown in Figure
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oscillation is related to the temperature of the carrier gas
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FIG. 6.14: The zero-field value of the resistivity as a function
of current. When compared to Figure 6.11 it is clear that the
forms for the current and temperature dependent resistivity
do not obviously map to each other.

In p-type silicon-germanium where interface impuri-
ties limit the mobility (commonly to around an order
of magnitude less than the mobility of this 2DEG at
a comparable sheet density, as seen in Chapter 5) the
value of α tends to be around unity, indicating that scat-
tering is short-range.133 In heterostructures where the
heterointerface is of very high quality and mobilities are
over an order of magnitude higher than the mobility of

this 2DEG, the value of α can be much larger: this
indicates that most of the scattering in the system is
small-angle, caused by ionized impurities which are re-
mote from the 2DEG.133 α values of up to 20 have been
reported in very high mobility n-type silicon-germanium
systems,6,134 comparable to that seen in high-quality het-
erostructures fabricated from other materials.135

This value of α of 3.1, then, intuitively indicates a
system where impurities both at and remote from the
interface influence the mobility. Calculations in Refer-
ence 134 suggest that for a spacer of 15 nm between the
dopant slab and the active channel the value of α should
be over 10 if interface impurities and roughness are ig-
nored, which supports this conclusion. Calculations of
the temperature dependence of the mobility, also from
Reference 134, show that mobility increases slowly with
decreasing temperature in the presence of interface impu-
rities but that interface roughness causes the mobility to
decrease with decreasing temperature. Figure 6.8 shows
that therefore, interface impurities are limiting the mo-
bility at low temperatures in this system.

Figure 6.15 (repeated from Figure 4.2) shows magne-
toresistance data at 350 mK up to 11 T, which reaches a
dissipationless state at the ν = 4 quantum Hall plateau.
A full discussion is presented in Section 4.1.3. At around
3 T the Shubnikov-deHaas oscillations with minima at
ν = 4n begin to break down. A minimum appears at
ν = 10 as valley degeneracy is lifted, and a minimum
appears at ν = 5 as spin degeneracy is lifted.
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FIG. 6.15: Shubnikov–de Haas and Quantum Hall Effects at
a temperature of 350 mK. The dotted line is the transverse
resistivity and is associated with the y-axis on the right. Min-
ima in resistivity are labelled with their corresponding filling
factors. Conduction is dissipationless at ν = 4. The feature
at ν = 4 corresponds to valley splitting, that at ν = 10 corre-
sponds to spin splitting.



6.6.2. IV at a Quantum Hall plateau

In Figure 6.16, data are presented which explore
the current-voltage characteristics of the quantum Hall
plateau state at 350 mK, around the filling factor of 4.
The dissipationless conduction (ρxx = 0) makes this seem
superficially similar to a superconducting state (in fact,
there are similarities with the phase diagram of a Type II
superconductor)136,137 but since the transverse element
of the resistivity tensor has a finite value, ρxx = h/(νe2),
then σxx = 0 also. At the centre of this region, the dissi-
pationless conduction breaks down at a critical current of
around 3 µA (the device is 1.75 µm wide so the current
density is 1.7 Am−1). For the highest filling factor shown,
where the behaviour is almost Ohmic, the resistivity is
around 500Ω/¤.
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FIG. 6.16: IV data taken close to the dissipationless state
at the ν = 4 quantum Hall plateau. At ν = 4 itself, there
is essentially no voltage drop (that is discernable above the
noise floor) along the sample until a critical current of 3 µA
is applied. At higher filling factors (lower fields) there are
decreasing deviations from perfect Ohmic behaviour.

The general characteristics and breakdown of the (in-
teger) Quantum Hall Effect have been studied (mainly
in n-type gallium arsenide and related systems) since it
is exploited as quantum standard of resistance for use in
metrology, and is also a system in which quantum phase
transitions and interactions can be explored.138–144

In Reference 142, the breakdown current density in
n-type GaAs/AlGaAs at ν = 2 is around 0.5 Am−1 (a
current of 210 µA through a Hall bar of width 0.4 mm).
Reference 141 finds that at ν = 4 the breakdown current
density is 1.7 Am−1 (60 µA through 35 µm) decreasing
to half this at ν = 3.9 and ν = 4.1. (Reference 144 finds
that the breakdown current density in an InAs/GaSb
crossed-gap electron-hole system is smaller by three or-
ders of magnitude). The breakdown current decreases
with filling factor and temperature in a manner similar

to the phenomenological Gorter-Casimir two-fluid model
for superconductivity.136,137

There is no clear consensus on the mechanism for
the breakdown of the Quantum Hall Effect. Indeed,
it may be the case that there are two or more unre-
lated mechanisms.138,139,142 Breakdown can occur as a
sequence of regular steps in longitudinal voltage, with
heights of a few millivolts, and this has been linked to
tunnelling between Landau level edge states.142 No such
steps were observed in this system. A “bootstrap” self-
heating mechanism is proposed in Reference 139, where
the Quantum Hall Effect undergoes avalanche break-
down when the transverse electric field reaches a criti-

cal value of Eb =
√

2~

m∗τe
B. Using (from section 4.1.3)

ρxy =
Vxy

I =
Eyw

I = h
νe2 and ns = νB/h the breakdown

current density is:

Ib

w
= nse

√

2~

m∗τe
(6.30)

The energy relaxation time τe (Equation 6.30, found
by comparing the temperature and current dependence of
the amplitude of Shubnikov–de Haas oscillations in Fig-
ures 6.12 and 6.13) is ∼10−8s so the breakdown current
density is estimated to be 0.5 Am−1. To obtain the mea-
sured value of 1.7 Am−1 τe would need to be less than
10−9s. Nevertheless, this agreement is good and may be
improved by more rigorous determination of τe.

6.7. The Effects of Infra-Red Radiation

6.7.1. Shubnikov–de Haas

Figure 6.17 demonstrates the effect of illuminating the
sample with a gallium-arsenide infra-red light emitting
diode at 350 mK. It can be seen that the illumination
increases the resistance at zero field, and changes the
Hall coefficient and the period of the oscillations. The
amplitude of the oscillations does not decrease, showing
that there are no heating effects. The ratio of quantum
and transport lifetimes, α, is 3.6 during the illumination
(slightly larger than before) and the changes in sheet car-
rier concentration are summarized in Table 6.1. While
the sample is being illuminated, carriers appear to be
driven out of the conducting channel. Following illumi-
nation some, but not all, return. The mobility appears
to change in line with the density.

The low-field magnetoresistance (before oscillations
begin: high-field magnetoresistance can not be used to
explore the mobility spectrum in the presence of Lan-
dau levels) does not suggest that any parallel conduc-
tion channels are formed by the action of the light: even
though the zero-field value of the resistivity is changed,
the form of the magnetoresistance is identical. Parallel
conduction would be apparent as a change in the gradient
of ρxx(B) with magnetic field, as can be seen in Figure
4.1.
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FIG. 6.17: Magnetoresistance results at 350 mK, showing the
effects of illumination by infra-red radiation.

TABLE 6.1: A summary of the changes in carrier concen-
tration in response to infra-red light, from Figure 6.17. The
Hall results are calculated from the gradient of ρxy(B) using
Equation 4.7 and the Shubnikov–de Haas results are calcu-
lated from the period of the oscillations of ρxx(B) in inverse
magnetic field using Equation 4.27, including a factor of 2 for
valley degeneracy.

Sheet Density [ 1011cm−2 ] Hall Shubnikov–de Haas

Before: 8.8 9.4

During: 8.0 7.6

After: 8.5 8.8

6.7.2. Resistance as a Function of Temperature

Two results are presented in Figure 6.18: the continu-
ous set shows how the resistivity varies with temperature
for the device under illumination compared to the device
in the dark, as it was cooled. The points joined by lines
were taken at stable temperatures, with the device sub-
jected to periods of illumination to observe how its resis-
tivity changed with time. The transient at the beginning
of the period of illumination was always very sharp, but
the fall-off at the cessation of illumination showed a finite
decay time, particularly at low temperatures. As Figure
6.19 shows, at 4.2 K a decay time of the order of 100
seconds was identified, this falls rapidly to the order of
10 seconds at 10 K and then becomes too short to dis-
cern behind the 3 second time constant of the measuring
equipment. The energy involved is therefore roughly the
value of kBT at 10 K, ∼1 meV.

At temperatures less than 10 K, the irradiation simply
increases the resistivity of the device by reducing both the
sheet carrier concentration and the mobility. Since there
is no evidence from the magnetoresistance for the forma-
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FIG. 6.18: The resistivity as a function of temperature,
demonstrating the effects of infra-red radiation. The contin-
uous traces were taken by cooling the device under constant
(illuminated or dark) conditions; the points joined by lines
show results taken at stabilized temperature values with in-
termittent illumination.
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FIG. 6.19: The resistivity as a function of time, demonstrat-
ing the effects of infra-red radiation. At time zero, illumina-
tion ceases, and the value of resistivity decayse back to its
dark value. At 4.2 Km the decay is much more persistent
than at 10K.

tion of a parallel conduction channel of a mobility com-
parable to that of the 2DEG, and such a channel would
tend to decrease the resistivity of the whole device, then
the simplest interpretation is that the radiation causes
10% of the carriers to become unavailable for transport.
The energy from the radiation clearly perturbs the equi-
librium position (which then takes of the order of at least
a few hundred seconds to become re-established) so it is



possible that carriers are caused to move out of the quan-
tum well and into the alloy spacer layer, where they are
drawn towards ionized donor atoms. Upon cessation of
the radiation, equilibrium is re-established.

The associated slight reduction in screening may be
the cause of the increase in scattering rate. The slight
increase in α suggests that the screening effects are more
effective for the remote impurities than the local (inter-
face) impurities, since large α values suggest remote im-
purity scattering, whereas α ∼ 1 is characteristic of scat-
tering from impurities at the heterointerface where the
2DCG is defined.

Above 20 K, the radiation tends to reduce the resis-
tivity. The sharp fall-off which begins at around 40 K
parallels that which occurs in the device, in the dark,
around the Fermi temperature; this is consistent with
the reduction in the 2DEG carrier concentration and the
consequent reduction in TF .

The region between 15 K and 40 K is more interesting,
showing what appear to be local minima and maxima
in resistivity, and may be worthy of more investigation,
particularly since the formation of Landau levels will be
suppressed at this temperature so that mobility spectrum
analysis may discover a low-mobility parallel conduction
channel. At room temperature, there is no noticeable
response to illumination.

6.8. Conclusion

6.8.1. Mobility and Resistivity

The mobility of the electrons in the 2DEG of this n-
channel device is understandably superior to that of the
holes in the p-channel devices discussed in the previous
chapter. At room temperature, their mobility is also
superior to the electrons in an n-channel MOSFET or
indeed in bulk silicon, according to both low-field Hall
effect and mobility spectrum analysis.

Since the effective mass difference alone cannot account
for this (that of the electrons here is 0.2me whereas the
holes in the previous chapter were found to have an ef-
fective mass of around 0.3me) the scattering time must
be mainly responsible.

The low resistivity of the device at low temperatures
leads (via Equation 5.1) to a very high kF l value of almost
100, which (via Equation 5.2) suggests a dephasing time
at 1 K of over 100 ps. The low-field magnetoresistance
at very low temperatures shows no evidence for weak-
localization (as seen in Figure 5.10) which suggests that
τpsi ∼ τ .

An elastic scattering time as long as this could only
be the result of an extremely low impurity density in the
active channel, and a very smooth interface, compared
to characteristic p-channel devices. This is backed-up by
the ratio of quantum and transport lifetimes found from
the field dependence of the amplitudes of the Shubnikov–
de Haas oscillations being larger than one. Also, the fact

that when infra-red radiation is used to reduce the sheet
carrier density the mobility also decreases, suggests that
the mobility is limited by screened interface impurities
rather than by interface roughness.

The high quality of the interface may be due to the nor-
mal structure of the device, with the dopant slab grown
after the active channel and therefore with less time to
diffuse into it compared to inverted structures. However,
a gated HMOS device would either be inverted or not be
modulation doped at all.

The form of the resistivity at low temperature, shown
in Figure 6.11, is similar to the result in Figure 5.31 for
the Siemens device at a sheet density of 1.1×1012cm−2

(which is the closest sheet density to the 2DEG). There
is a weak minimum in resistivity at 2 K but as temper-
ature continues to decrease the resistivity appears to be
saturating. Equation 5.15 has been fit to the data, but
with n = 1. Much more work would be necessary to es-
tablish any physical justification for the applicability of
Equation 5.15 to the data in Figure 6.11.

6.8.2. Mobility Spectrum Analysis

Methodology

Mobility spectrum analysis is a general technique that
should be applicable to any system where the mobility
of the charge carriers is not a function of magnetic field.
The lower limit of mobility than can be reliably found
is roughly the reciprocal of the maximum magnetic field
that the data extends to; the upper limit is the recip-
rocal of the spacing between the data points in inverse
magnetic field.

In semiconducting samples and cryomagnetic systems,
the upper limit is practically set so that the resulting
mobility spectrum is detailed enough in the region where
carriers are expected to be found but does not waste
points elsewhere. However, the lower limit is often a
serious issue. Hence, this analysis method is much easier
to test on an n-channel device such as this, compared to
a p-channel device which may have a mobility smaller by
a factor of 5 or 10.

Many mobility spectrum analysis methods do not re-
spond well to large numbers of data points (requiring
human choices of which data points to keep and which to
discard) or employ tricks, assumptions, interpolations or
extrapolations in order to recondition the data or guide
the solution. A new method is presented here (Bryan’s
Algorithm Mobility Spectrum: BAMS) which uses singu-
lar value decomposition to remove noise and overspecifi-
cation from the data set and the principles of Bayesian in-
ference and Bryan’s-algorithm maximum entropy to find
a mobility spectrum. (It is quite distinct from the max-
imum entropy mobility spectrum method in Reference
29).

Singular value decomposition carries out two essential
task: firstly, by removing overspecification from the data



(that is, by finding lines within the matrix which are
linear combinations of each other) the basis space which
must be searched for a solution is reduced dramatically.
Secondly, by discarding elements of the matrix which are
smaller than the noise floor, the inversion is protected
against the tendency to fit very well to features of the
data which are noise at the expense of the underlying,
physical data.

The maximum entropy method also performs two func-
tions. Firstly, since the use of a default model allows
information about the expected solution to be added in,
setting a positive and normalizable default model which
has a constant value across the whole spectrum ensures
(due to the logarithmic form of the entropic regulariza-
tion) that the resulting mobility spectrum will be posi-
tive and normalizable. Secondly, the hyper-parameter α
nominates the relative importance of a very good least-
squares fit to the data versus a physically reasonable
spectrum which contains as much information as it is
reasonable to extract from the data without introducing
spurious artefacts.

Bryan’s algorithm chooses solutions which are the most
probable regarding the value of the hyper-parameter, and
the refinement of this method by Hague (use of a solution
as the default model to find a better solution) ensures
that the final value of the hyper-parameter is well within
the bounds of the applicability of Bryan’s algorithm.

One drawback with the maximum entropy technique is
that it is very important to have an accurate estimation
of the error in the experimental data. Tests with syn-
thetic data, however, lead to the conclusion that overes-
timation of the error acts on the solution in an intuitive
way, broadening peaks and washing out fine detail; un-
derestimation of the error leads to solutions which can
be rejected due to their obvious unphysicality. Whilst
this is clearly not satisfactory (we would like to always
achieve the best result possible and trust what we find)
there has been no cause to worry that results which ap-
pear physical but are wrong are likely to be produced by
mistakenly assuming a certain error level. A more ana-
lytical treatment of the level of error is an important line
for further work, but the human process of rejecting data
which is errant because of equipment mis-calibrations or
failures will always be necessary.

Methods of obtaining classically measured quantities
from a mobility spectrum have been described, and al-
though mobility spectra are rarely of such good resolu-
tion that the Hall scattering factor can be unambigu-
ously found, these analyses at least provide a check for
unphysicality. It has been argued that a common feature
in mobility spectra, the “mirror peak,” is an artefact due
to discrepancy between the relative values of the longi-
tudinal and transverse values of the conductivity tensor.

Results

The results produced by the mobility spectrum anal-
ysis, shown is Figures 6.5 to 6.10, are feasible at low
temperature but seem to become anomalous as tempera-

ture increases. The low temperature 2DEG sheet density
agrees with calculations (see section 6.3) but the room
temperature sheet density (nearly 20 times greater than
this) is not supported by simulation of the band pro-
file using a numerical solution of the Poisson equation.
In fact, the room temperature 2DEG density should be
much closer to its low temperature density.29 However, to
maintain the same conductivity at such a density would
require ridiculously high mobility.

The sheet density of the dopant layer was found to
reach 1.5×1013cm−2 at room temperature. Since the
doping slab is 30 nm thick, this corresponds to an aver-
age carrier concentration of 5×1018cm−3 and this value
is typical for the donor concentration in modulation dop-
ing. However, the mobility of the dopant layer was found
to be 1000 cm2V−1s−1 meaning that overall its resistance
was 400 Ω/¤. For a 30 nm thick layer, this corresponds
to a resistivity of 10−3Ωcm. To achieve such low resistiv-
ities the donor concentration must be almost 1020cm−3

since the mobility of a doped semiconductor generally
decreases with the doping dose.10,124,145 In other words,
the mobility of the dopant layer returned by this mobility
spectrum analysis is probably too high.

However, to ascribe less of the device’s conduction at
room temperature to the dopant layer (by reducing its
mobility without increasing its sheet density) means that
either the mobility or density of the 2DEG must be in-
creased and these two parameters are already worryingly
large. According to BAMS there are no other conducting
channels within the range |µ| ≤ 10 m2V−1s−1.

Other established analyses yield similar results for mo-
bility and sheet density of the 2DEG and dopant layer;
BAMS analysis of other magnetoresistance data from p-
channel systems yields more reasonable results, with the
2DHG density varying by less than 20% between 50 K
and 300 K. This means that it is unlikely that there is a
problem with the BAMS code. Also, even though mobil-
ity spectrum theory is possibly not as useful in a quanti-
tative way as was originally hoped28 (since it says little
about the energy dependence of the relaxation time) it
has proved its worth in a qualitative or semi-quantitative
way, finding feasible mobility and sheet density results in
many cases.

The issue seems to be that the room temperature re-
sistance of the device is only 70 Ω/¤, and the only way
in which the resistance can be so low is for there to be
a large number of mobile carriers. Since the low temper-
ature results are feasible it is unlikely that the measure-
ment system itself is at fault, and so there is no reason
to suspect that the observed drop in resistance of almost
an order of magnitude between 30 K and 100 K is not
real. Also, BAMS tends to reject unphysical data out-
right, without returning any solution.

There may be, then, bulk conduction throughout much
of the substrate through current paths which undermine
the simple conversion of Vxx and Vxy to elements of the
resistivity tensor of the device.

As for finding the energy dependence of the scatter-



ing time, more directly related to the scattering mecha-
nisms limiting transport than the mobility on its own, a
method based on the sheet density and/or temperature
dependence of the mobility (obtained by BAMS if neces-
sary) may probably be more promising than attempting
to analyze the mobility spectrum peak shape.

6.8.3. Other Results

The IV characteristics of a dissipationless ρxx = σxx =
0 quantum Hall state have been briefly investigated. At
exactly ν = 4 the dissipationless state breaks down at a
current of 3 µA; as ν is increased linear Ohmic behaviour
is eventually recovered. The response of the device to
infra-red radiation is also explored: at very low temper-
atures the free carrier density is reduced, the mobility
drops, and α increases. This correspondence is seen as
evidence that it is screened interface and remote impuri-
ties that limit the mobility, not interface roughness.

7. COUPLED CHANNEL DEVICES

7.1. Abstract

Chapters 5 and 6 explored the transport properties
of holes and electrons respectively in silicon-germanium
heterostructures. In this chapter, devices are presented
in which electron and hole gases can both be induced by
suitable gate bias conditions. The electron gas is formed
in an inversion layer at the interface between silicon and
silicon dioxide in the conventional n-channel MOSFET
manner; the hole gas is formed by inverted modulation
doping of a quantum well of pseudomorphically-grown
Si0.8Ge0.2 alloy.

The heterointerface at which the hole gas forms is ei-
ther approximately 100 nm (on wafer 50/51) or 40 nm
(on wafer 50/53) away from the oxide interface at which
the electron gas forms. The electron and hole systems are
contacted separately by sets of n+ and p+ contacts, the
former being implanted to a depth of around 25 nm and
the latter essentially reaching down through the whole
heterostructure.

These devices were initially conceived and designed
to explore the novel transport phenomena which in-
teractions between co-existing electron and hole gases
in silicon-germanium may invoke. The discussion will
show that the structures investigated cannot support co-
existing electron and hole gases, and alternative designs
will be presented.

7.2. Introduction

There are two contrasting aims behind attempts to cre-
ate a semiconductor structure that features spatially sep-
arated, interacting, 2-dimensional charge carrier gases.

There is the desire to study the fundamental interaction
between carriers, in order to develop a better understand-
ing of the physics of semiconductor materials. Then,
there is also the desire to create a device with operation
analogous to a CMOS integrated circuit, but with p-type
and n-type channels arranged vertically rather than lat-
erally.

7.2.1. Interactions

Lozovik and Yudson suggest a new mechanism of su-
perconductivity based on the pairing of spatially sep-
arated electrons and holes due to their Coulombic
attraction.146 Their calculations indicate that the crit-
ical temperature may be as high as a few hundred
Kelvin for reasonably realistic experimental parameters.
This possibility has been considered in more detail since
then.147–150 Thakur, Neilson and Das estimate that the
superconducting transition temperature for experimen-
tally accessible carrier densities and layer separations is
100 mK.150

Electrons and holes, when they are both present in a
semiconductor, can pair up by way of their Coulombic
attraction. A bound electron-hole pair (an exciton) is
boson-like, since electrons and holes are both fermions.
In analogy with Cooper pairs in a superconductor (boson-
like pairs of electrons, bound together by phonons)
a collection of excitons is expected to undergo Bose-
Einstein condensation under appropriate conditions.149

One of these conditions is that the recombination life-
time of the electron-hole pair is longer than the ther-
mal energy relaxation time (see Equation 6.30) so that
the condensed state can form and be observed, usually
by photoluminescence.151,152 In indirect-gap semiconduc-
tors, such as bulk silicon and germanium, the recombi-
nation lifetime satisfies this condition but it has been es-
tablished that the exciton condensate can not exist due
to competition with a more stable electron-hole plasma
droplet phase.149

Heterostructures provide a method of extending the
recombination lifetime: by suitably arranging the mate-
rials of the structure (and if necessary applying an ap-
propriate electric field) the valence and conduction bands
can be bent into a profile which localizes electrons and
holes seperately in their own quantum wells, as shown in
Figure 7.1. Coulombic interaction can still lead to the
formation of bound electron-hole pairs but, provided the
potential barrier between the carrier gases is high and/or
wide enough to prevent significant tunnelling, recombi-
nation is prevented.

Experimental work on interacting, spatially separated
carrier gases has been performed using GaAs/AlGaAs
heterostructures, using photoluminescence techniques to
directly probe for the presence of excitons.151,152 How-
ever, the transport properties of the interacting electron-
hole layers are of the most interest and there is experi-
mental work of this nature on GaAs/AlGaAs154,155 and
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FIG. 7.1: Proposed band profile of coupled-channel
devices.153 Electron and hole gases co-exist within ∼100 nm
of each other.

InAs/GaSb/AlSb156 structures (interesting because the
conduction band of InAs falls at a lower energy than
the valence band edge in GaSb) but not Si/SiGe. These
structures must be designed so that independent electri-
cal contact to the electron and hole gases can be made.

7.2.2. Vertical CMOS

A device which features vertically separated 2-
dimensional electron and hole gases, where their carrier
densities can be modulated, presents itself as an alterna-
tive to the standard CMOS architecture which features
modulated electron and hole gases arranged laterally as
MOSFETs as part of a silicon integrated circuit.10,157

The use of silicon-germanium technology within conven-
tional CMOS architecture would seem to require com-
plicated heterostructure design in any case (if the full
benefits of compressively strained germanium rich layers
for p-channel conduction and tensile-strained pure silicon
for n-channel conduction are to be reaped)1,2,158–161 so
it is worth investigating the possibility that novel design
may find additional benefits to silicon-germanium CMOS
technology.

An inverter is shown in Figure 7.2, in terms of cir-
cuit schematics, conventional CMOS structure and pro-
posed vertical CMOS structure. In this case, interaction
between the two carrier gases is not desired but this is
unlikely to be a problem for a device working at room
temperature. As the band profiles in Figure 7.3 show,
suitable gate bias causes either an electron gas or a hole
gas to form, but the two gases do not co-exist as in Figure
7.1.
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FIG. 7.2: Conventional CMOS versus vertical CMOS: the
case for a simple inverter is shown, with the circuit schematic
at the top right. In the case of familiar conventional CMOS,
the p-channel and n-channel devices sit side by side and the
conducting channels are formed at the interface between the
silicon and the oxide.157 In the case of vertical CMOS, a pos-
itive gate bias forms an n-channel at the oxide interface and
a negative gate bias forms a p-channel at the upper heteroin-
terface, as the band profiles in Figure 7.3 show.

7.3. Structure and Fabrication

The heterostructure and device design and processing
work was completed by Dr. C. J. Emeleus, in conjunction
with Dr. M. A. Sadeghzadeh.15

The heterostructures, described by Figure 7.4, were
grown by MBE on three 4” silicon n− 8-12 Ωcm sub-
strates. 300 nm of intrinsic silicon (at 830◦C) was fol-
lowed by 40 nm of silicon (at 500◦C) doped with boron
to a concentration of 2?1018cm-3 giving an integrated
dose of 8×1012cm−2. A 34 nm intrinsic spacer layer was
then grown (at 500◦C) followed by 15 nm of Si0.8Ge0.2

alloy at 650◦C. This is double the equilibrium critical
thickness of this alloy concentration but well below the
metastable thickness for this growth temperature.9 The
intrinsic cap layer was either 90 nm (for wafers 50/51 and
50/52) or 30 nm (for wafer 50/53).

The 2-dimensional hole gas (2DHG) areas were defined
at this point by etching this heterostructure away be-
tween devices on each chip, and the wafers were subject
to an RCA clean which grows 1 or 2 nm of oxide.

A 9 or 10 nm native oxide was further grown on wafers
50/51 and 50/53, consuming 4 or 5 nm of the cap layer.
300±50 nm of low temperature oxide (LTO) was then
deposited using a CVD gas-flow technique at Southamp-
ton University. The native oxide should provide a bet-
ter silicon-oxide interface compared to that formed when
LTO is deposited directly onto silicon. However, the na-
tive oxide process required one hour at 720◦C which may
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silicon dioxide interface. Negative gate bias (upper profile)
forms a hole gas at the top of the Si1−xGex alloy and positive
gate bias (lower profile) forms an electron gas at the oxide
interface. The gases do not co-exist, as in Figure 7.1. If the
gate bias in the upper panel becomes slightly more negative,
then the valence band will reach the Fermi level and a hole
gas will form at the oxide interface.
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FIG. 7.4: The heterostructure as grown on wafer 50/51. 50/52
and 50/53 differ in the manner shown.

cause some relaxation of the strain in the alloy layer or
diffusion of boron dopant atoms. The relative perfor-
mance of 50/51 and 50/52 should make this clear.

Shallow n+ contacts were made using low energy
(10 keV) implantation of arsenic ions before the na-
tive oxide was grown, in a process developed by
Dr.C.P.Parry.153 Deep p+ contacts were made using

70 keV implantation of BF+
2 through the native oxide, be-

fore the LTO deposition process. Simulations (using the
TRIM program of J. F. Zeigler and J. P. Biersack)162 con-
firm that the n+ implantations reach a depth of 20 nm,
and the p+ implantations reach a depth of over 200 nm,
well beyond the Boron doping layer. Windows were pat-
terned through the oxide and Ti+Al/Si metal contacts
were made.

FIG. 7.5: The pattern of a double Hall bar, a typical device.
Metal (for contact pads and the gate) is shown in blue. Black
areas are windows through the oxide. Red areas show the
extent of the heterostructure (Figure 7.4) itself. Shallow n+

implants ar green, deep p+ implants are pink. The Hall bar
itself is 20 µm wide.

Most of the devices are Hall bars, many with gates
and full sets of n+ and p+ contacts as shown in Fig-
ure 7.5. The aim of the design was to realize the band
profile shown in Figure 7.1.153 Two cap layer thicknesses
are available: devices on wafer 50/53 with its smaller cap
thickness of 30 nm should be more likely to show interac-
tion effects than devices on wafer 50/51 or 50/52, but are
also more likely to suffer from possible problems caused
by the shallow n+ contacts reaching the 2DHG.

Expected Electronic Properties

An estimate of the expected sheet density can be found
by considering Figure 3.1 and Equation 3.1. If E0 and EA

are ignored and the field created by the sheet of carriers
is equated with the field required to change the potential
by the heterojunction valence band offset ∆EV over the
length d:

psq

ǫ0ǫSi
=

∆EV

d
(7.1)

Assuming an offset value of 140 meV for Si0.8Ge0.2
14

results in an expected sheet density of 3×1011cm−2 as
designed by Dr.M.A.Sadeghzadeh using a self-consistent
Poisson–Schrödinger calculation.15,21,153,163



Applying a positive bias to the gate should produce
an inversion layer of electrons at the silicon/silicon diox-
ide interface and form a band profile as in Figure 7.1.
A key feature is that the p+ implants should exclusively
contact the 2DHG in the alloy, and the n+ implants the
2DEG inversion layer. Each system of n+ or p+ contacts
and gating should form a MOSFET-like device and this
should be readily visible in room-temperature IV charac-
terization.

7.4. Results of IV Characterization

The simplest way of characterizing the structures was
to connect suitable gated Hall bar devices in a MOSFET
configuration at room temperature. Contacts at either
end of the bar were designated (arbitrarily) as source
and drain, and voltages were measured relative to the
source. The shallow contacts are expected to contact to
the inversion layer induced by application of a suitable
gate voltage, in exactly the way an n-channel MOSFET
operates.

7.4.1. Basic 2-Terminal Characterization at 300 K

Shallow Contact Results

Figure 7.6 shows the drain current characteristics of a
gated Hall bar from wafer 50/51. The drain-source volt-
age, VDS , was applied along the Hall bar via n+ contacts,
so the drain current ID should be being passed through
the device mainly by electrons in an inversion layer at the
silicon/silicon-dioxide interface. The characteristics are
similar to those of an n-type MOSFET: As the gate volt-
age is made more positive, the drain current increases.
The gradient (that is, the conductivity) of the curves in
Figure 7.6 changes when VDS is approximately 0.5 V.
However, as VDS continues to increase to over 1.0 V, it
can be seen that drain current increases for all gate volt-
ages. This is similar to punch-through, which arises in
short-channel MOSFETs when the depletion layer cre-
ated by large VDS extends all the way from the drain to
the source.157 However, the effect seen here is unlikely to
be related directly to punch-through since the Hall bar
is 160 µm long, over a hundred times longer than the
channel of a “short channe” MOSFET.157

Figure 7.7 shows that the drain current has a clear
threshold voltage (VTS=15 V) at which ID ∝ (VGS −
VTS)2. The gradient of the ID vs. VGS lines (the
transconductance) becomes smaller again as VGS in-
creases further and the channel saturates. No signifi-
cant current flows for gate bias values between zero and
-100 V. (These gate voltages are two orders of magnitude
greater than those for typical MOSFET device operation
since the gate oxide is very thick.)

Deep Contact Results
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FIG. 7.6: Drain current characteristics of a gated Hall bar on
wafer 50/51, as measured using shallow n+ contacts. Char-
acteristics are similar to those of an n-type MOSFET.
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FIG. 7.7: Transfer characteristics of a gated Hall bar, as mea-
sured using shallow n+ contacts. Characteristics are similar
to those of an n-type MOSFET.

Figure 7.8 and Figure 7.9 should be compared to Fig-
ure 7.6 and Figure 7.7 respectively. Figure 7.8 shows that
the (2-terminal) resistance as measured between deep p+

contacts depends very little on the magnitude of VDS but
is influenced by the gate voltage VGS . This can be seen
more clearly in Figure 7.9. At positive gate voltages,
there is very little variation of ID with VGS , for a given
drain-source voltage but as VGS becomes more negative,
ID increases. Figure 7.7 shows that no current flows be-
tween the shallow n+ contacts for gate voltages smaller
than 15 V, provided VDS is below 1.0 V. It does not
seem to be possible to prevent conduction between the
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FIG. 7.8: Drain current characteristics of a gated Hall bar, as
measured using deep p+ contacts. Characteristics bear little
resemblance to those of a p-type MOSFET.
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FIG. 7.9: Transfer characteristics of a gated Hall bar, as mea-
sured using deep p+ contacts, following on from Figure 7.8.

deep contacts with suitable gate bias, so either it is im-
possible to turn the p-channel off or there is conduction
through the boron doping layer at all times.

Interpretation of Room Temperature Results

The n-type MOSFET-like behaviour seen in the shal-
low contact characterization implies that at gate voltages
more positive than 15 V an inversion layer forms at the
silicon/silicon dioxide interface. If there was some way
in which the shallow contacts were providing a current
path through the hole gas (which is presumably buried
deep in the structure) then there would be no way of pre-
venting drain current flow through the shallow contacts

with gate bias: if the deep contacts are contacting the
hole gas then Figure 7.9 shows that the hole gas is never
depleted to the extent that it does not conduct. This im-
plies that the shallow contacts do indeed only contact to
the electron inversion layer for VDS smaller than 1.0 V.

However, as the drain-source voltage across the shal-
low contacts is increased it can be seen that drain current
flows even for sub-threshold gate voltages. Since it is un-
likely that there is a direct path between shallow contacts
(which are very far apart by usual MOSFET standards)
then it is probable that the current is somehow passing
through the hole gas. The non-zero VDS needed to invoke
this conduction path implies that there is some kind of
barrier, probably a depletion zone, between the shallow
contacts and the hole gas.

All the above results are from wafer 50/51. By con-
trast, devices on wafer 50/52 showed very little increase
in drain current between p+ contacts as gate bias was
made more negative. This may suggest that the increase
seen in Figure 7.9 is due to the formation of a hole gas
at the oxide interface; the difference in quality of this in-
terface between 50/51 and 50/52, due to only the former
having a native oxide, may account for the increase in
conductivity in 50/51 but not in 50/52, for large nega-
tive gate bias.

Reduced Separation Between 2DEG and 2DHG

Figure 7.10 shows the drain characteristics of a device
on wafer 50/53. This wafer differs from 50/51 (as pre-
sented in the structure shown in Figure 7.4) in that the
thickness of silicon between the alloy layer and the oxide
is only 30 nm in 50/53, where in 50/51 it was 90 nm. Fig-
ure 7.10 should be compared to Figure 7.6: quite a high
current passes almost regardless of VGS unless VDS is less
than half a Volt where the modulation of the inversion
layer varies the current.
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FIG. 7.10: Drain current characteristics of a gated Hall bar
device on wafer 50/53, as measured using shallow n+ contacts.
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FIG. 7.11: Transfer characteristics of a gated Hall bar on
wafer 50/53, as measured using shallow n+ contacts. The
anomaly at VGS=-100 V is caused by the limited compliance
of the gate voltage source and the capacitance of the device.

This is not surprising if it is assumed that in 50/53 at
room temperature, the shallow n+ contacts reach close
enough to the hole gas in the alloy layer to allow signif-
icant conduction at lower VDS values than were needed
to cause similar effects in 50/51.

Figure 7.11 shows this same effect more strikingly: in
contrast to Figure 7.7, it is almost impossible to prevent
current flowing between the shallow n+ contacts unless a
very small VDS is applied.
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FIG. 7.12: Drain current characteristics of a device on wafer
50/53, as measured using deep p+ contacts under the influ-
ence of a positive gate bias.

If it is possible to pass current between the shallow n+

contacts via holes, it should be expected that it will be
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FIG. 7.13: Transfer characteristics of a gated Hall bar on
wafer 50/53, as measured using deep p+ contacts. The
anomaly at VGS=-100 V is caused by the limited compliance
of the gate voltage source and the capacitance of the device.
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FIG. 7.14: Transfer characteristics of a (different) gated Hall
bar on wafer 50/53, as measured using deep p+ contacts.
Smaller VDS has been applied in order to minimize conduc-
tion through the electron inversion layer, so that this figure
can be compared in form with Figure 7.9.

possible to pass current between the deep p+ contacts
via electrons and Figure 7.12 demonstrates this: for VDS

less than 1.5 V, the current between the deep p+ con-
tacts is not influenced by the application of a positive
gate bias. An inversion layer of electrons is forming at
the silicon/silicon-dioxide interface but the resistance be-
tween the deep contacts is only visibly changed as VDS

increases past 1.5 V.

The resistance between the deep p+ contacts is de-



creased by positive gate bias, for large enough VDS . Since
it is unlikely at this temperature that depleting the hole
population would lead to an increase in current flow then
this effect must be caused by conduction through the
electron inversion layer. This can be seen in Figure 7.13
(VDS up to 1 V) but not Figure 7.14 (VDS up to 100 mV):
Figure 7.14 is similar in form to Figure 7.9 with roughly
constant drain current at all positive gate bias values, but
Figure 7.13 shows that drain current increases slightly as
VGS becomes more positive.

Room temperature measurement serves two purposes:
firstly, it demonstrates the device as if it were a com-
ponent in an everyday circuit (good performance in
this context being the bottom line for efforts in silicon-
germanium research) and also it demonstrates that it is
worth performing characterization at low temperatures
where device parameters can be extracted more easily.

7.4.2. 2-terminal Characterization at Low Temperature

Contact Issues

Making reliable electrical contacts to semiconductor
material has always been an issue. In the simplest case
of metal on extrinsic non-degenerate silicon, there are
two alternatives. If an n-type semiconductor is contacted
with a metal and the work function of the metal is greater
than of the semiconductor, or if a p-type semiconductor is
contacted with a metal such that the work function of the
metal is less than of the semiconductor, a depletion layer
will form in the semiconductor at the junction, resulting
in a rectifying Schottky contact.

However, if an n-type semiconductor is contacted with
a metal and the work function of the metal is less than of
the semiconductor, or if a p-type semiconductor is con-
tacted with a metal such that the work function of the
metal is greater than of the semiconductor, there will be
no depletion layer and the contact will be Ohmic. Ohmic
contacts are necessary for the passage of current of ei-
ther polarity through a device, whilst Schottky barrier
contacts are useful as gates for biasing purposes.

A device that features both n-type and p-type regions
presents a problem as far as this approach goes, because
different metals must be used for each type of contact
if they are to have Ohmic characteristics. This problem
is made worse if a significant density of semiconductor
surface states are involved, since their effect is to generate
a depletion layer at the junction by ‘piniggn’ the Fermi
surface in the middle of the band gap.

A way of avoiding this problem is to use very heav-
ily doped contact regions, as these devices do. When
a very heavily doped semiconductor is contacted with a
metal, it may well form a Schottky contact. However,
the heavy doping will result in the depletion layer be-
ing narrow enough that carriers can tunnel between the
semiconductor and the metal to a useful degree.

To create such a heavily doped contact region, the
semiconductor must be implanted with a high density of
the relevant ions. This high density implantation causes
damage to the crystalline structure of the semiconductor
which spoils its electrical properties. In order to acti-
vate the contacts and restore the crystalline nature of
the heavily-doped contact region, the wafer must be an-
nealed. In the case of the wafers under current discussion,
the implants were activated with 30 minutes at 530◦C,
in a nitrogen atmosphere. If the anneal is too long or
hot dopants may significantly diffuse or the alloy layer
may relax, but this step is insignificant compared to the
native oxide growth, which required one hour at 720◦C.

A contact created by implantation and annealing will
not be truly Ohmic: the resistance of the contact will
vary slightly with the voltage across the contact. How-
ever, this is not an issue if a 4-terminal method is used for
measuring quantitative characteristics of the device pro-
vided that the resistance is never as high as, for example,
the input impedance of the voltage measuring equipment
(typically more than 10 MΩ). However, it is possible that
even if a contact is (approximately) Ohmic at room tem-
perature, at temperatures lower than around 100 K the
contact will ‘freeze o”t and be useless. The IV curve of
such a contact at 10K is shown in Figure 7.15. (This
was a two-terminal measurement, and only one of the
contacts used was frozen.)

-2 -1 0 1 2

-6

-4

-2

0

2

4

6

I D
/µ

A
V

DS
/V

FIG. 7.15: IV curve at 10 K showing a deep, p+ contact
‘frozen out.’ The resistance at 0 V VDS is almost 100 MΩ,
making the contact useless.

For a Hall bar to be measurable, both of the cur-
rent contacts and at least three out of the four voltage
probe contacts must remain Ohmic. Unfortunately, it
was found that only a small fraction of the contacts on
each wafer remained Ohmic at low temperature. This
is why no Hall mobilities will be presented for devices
on wafer 50/53, and why many of the other structures
fabricated on the wafers were not characterized.



Hysteresis

Figure 7.16 demonstrates how, as temperature de-
creases, hysteresis develops in the transconductance char-
acteristics of the p-channel. When the gate voltage is in-
creased the drain current decreases, and as temperature
drops the drain current at positive gate voltages clearly
saturates at lower and lower values. However, when the
gate voltage is decreased there appears a peak in drain
current. This hysteresis effect is present no matter how
quickly the gate voltage is swept, but the high mobility
peak does not persist for more than one hour at 10 K if
the gate voltage is held constant.
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FIG. 7.16: Temperature dependence of transconductance of
a device on wafer 50/51 as measured using deep p+ contacts,
showing the development of the hysteresis. The drain voltage
is 100 mV.

Figure 7.17 shows transconductance characteristics of
the n- and p-channels of a (different) device on wafer
50/51 at 10 K. Hysteresis is visible in the n-channel but
is not as striking as in the p-channel. Also, the con-
ductance of the n-channel is generally inferior to the p-
channel. Hopefully, Hall effect measurements (section
7.5) will help begin to explain the hysteresis phenomenon.

Conduction Between Deep and Shallow Contacts

It would be fascinating to compare these results with
similar results for a device with a much smaller separa-
tion between the electron and hole systems. However,
no devices existed on wafer 50/53 which had a sufficient
number of Ohmic contacts at 10 K, so systematic studies
and Hall effect measurements (as will be presented in the
following section) were out of the question.

However, Figure 7.18 shows how the vertical field
within the device can induce a small current between
the deep and shallow contacts: with the drain connected
to the deep p+ contacts and the source connected to the
shallow n+ contacts, VDS was held at 0 V whilst VGS
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FIG. 7.17: The transconductance characteristics of the n- and
p-channels of a device on wafer 50/51 at 10 K, showing hys-
teresis. The drain voltage is 100 mV, the n-channel threshold
voltage is around 30 V, greater if the gate voltage is decreasing
rather than increasing.
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FIG. 7.18: With the drain connected to the deep p+ contacts
and the source connected to the shallow n+ contacts, VDS

was held at 0 V whilst VGS was swept. The bending of the
bands in reponse to the gate potential induces a small current
between the deep and shallow contacts. A feature can be seen
at +20 V which corresponds to the formation of the electron
inversion layer.

was swept. The bending of the bands in response to the
gate potential induces a small current between the deep
and shallow contacts. A feature can be seen at +20 V
which corresponds to the formation of the electron inver-
sion layer. A similar spike was seen at VGS=40 V when
measuring a device on wafer 50/51 in the same way. As
the gate voltage is decreased from 100 V to 0 V, a dip can



be seen is this area. A small spike can be seen at around
-15 V as VGS is decreased further, which may correspond
to the formation of a hole gas at the oxide interface. The
data is discontinuous at 0 V due to hysteresis.

The IV characteristics of such a “tunnelling” arrange-
ment (with current passing vertically through the device
between deep and shallow contacts) are interesting but
inconclusive. It is clear, though, that there is more to the
behaviour than the interaction of the shallow contacts
themselves and the hole gas in the alloy layer because
there is a dependency on the gate bias, and therefore the
electron density in the inversion layer. Such behaviour is
probably worthy of detailed study at very low tempera-
tures, in a device with a full set of Ohmic contacts.

7.5. Hall Effect Results

Data in this section was mainly obtained using a d.c.
method employing the HP parameter analyzer (described
in section 4.2.1) and a differential amplifier developed by
R. J. P. Lander (although some results were previously
obtained using an a.c. lock-in amplifier method). This
meant that potentials between contacts of 0.1 µV could
be resolved, increasing the sensitivity by a factor of 1000
over the HP alone.

The Hall effect shows that the system enters a high
resistivity phase at a Hall sheet density (Equation 4.7) of
8×1011cm−2. This is seen as the gate voltage increases
past -10 V, and also as the gate voltage decreases past
70 V. The Hall effect calculation ceases to be applicable:
it yields zero mobility and undefined sheet density in-
dicating non-metallic, ‘hopping’ transport.164,165 These
points have been removed from Figure 7.19 for the sake
of clarity. This could be interpreted as a metal-insulator
transition; the longitudinal resistivity at this transition
is roughly h

2e2 .
Figure 7.19 shows fairly conventional behaviour for

gate voltages in the range -100 V to -10 V. Sheet density
increases as the gate voltage is made more negative, and
the mobility correspondingly decreases. (Mobility versus
sheet density is shown in Figure 7.20). However, in the
gate bias region between -10 V and +100 V the density
and mobility are subject to the same hysteresis as the
transconductance: in fact, there is a mobility peak at
the (decreasing) VGS of 25 V of 2,100 cm2V−1s−1 (cor-
responding to a sheet density of 1×1012cm−2; a similar
sheet density is seen at a VGS of -25 V, but here the
mobility is only 1,500 cm2V−1s−1) which suggests that
the conducting channels are of different natures. This
suggests that single-carrier Hall calculations will be mis-
leading. In fact, since the heterostructure was designed
to produce a 2DHG with a sheet density of 3×1011cm−2,
and consideration of the discussion in Chapter 3 suggests
that a sheet density as high as that measured in the alloy
layer is physically impossible, either the Hall scattering
factor is less than unity even at 10 K, additional conduc-
tion channels are present, or the structure itself deviates
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FIG. 7.19: Single carrier Hall calculations (from Chapter 4)
applied to ρXX and ρXY data from the deep p+ contacts of a
Hall bar device on wafer 50/51 at 10 K. The solid line is data
taken as the gate voltage decreases from +100 V to -100 V,
the dotted line is data taken as the gate voltage increases.
This should be compared with the low temperature data in
Figure 7.16.
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FIG. 7.20: The same data as in Figure 7.19 but plotted as
(Hall) mobility against sheet density. The data represent-
ing decreasing gate voltage (leftward-pointing triangles, solid
line) stand out as a high mobility peak at a sheet density just
over 1×1012cm−2.

from specifications.
As Chapters 4 and 6 make clear, this is the sort of

problem that magnetoresistance and mobility spectrum
analysis would be well-equipped to address. However, in
this case there is the additional complication that the
state of interest (induced by bringing the gate voltage
down from 100 V to 25 V) decays significantly in the



time taken to acquire magnetoresistance data. A solu-
tion, involving a gate bias which is cycled between 100 V
and 25 V for every measurement (of which there are typ-
ically 512 or 1024) would add considerably to the time
and complexity of the experimental procedure.

Interpretations of Hall Effect Results

As Figure 7.16 shows, at large positive gate biases (par-
ticularly for the case where the gate voltage is increasing)
the conductivity through the device drops with temper-
ature. This, along with the disappearance of the Hall ef-
fect mentioned above, is consistent with the behaviour of
conduction through boron-doped silicon in which trans-
port is freezing out.165

At the negative bias limit, it assumed that hole gases
exist both within the alloy and at the oxide interface, as
is usual in gated heterostructures.90 If free charge exists
within the cap layer, the gate and the alloy layer are
screened from each other.

Simulations of the band profile which solve the Poisson
equation in one dimension (or even solve the Poisson and
Schrödinger equations self-consistently) are not strictly
applicable to this hysteresis effect at low temperatures,
since it is evidence of a system out of equilibrium. Some
results of simulation at higher temperatures will be pre-
sented in the following section.

Possible Causes of Hysteresis

Hysteresis effects are seen in MOS systems where traps
exist in, or ions are moving through, the gate oxide in re-
sponse to the gate bias.10,166 Consider that mobile pos-
itive ions (for example, Na+) exist in the oxide of a de-
vice with a certain threshold voltage for electrons. Upon
application of a strong positive gate bias, these charges
will be forced away from the gate, towards the oxide in-
terface. If the positive charges remain at the interface
when the bias is removed then effectively a fraction of
the positive bias is stored at the interface. Therefore, a
slightly more negative voltage is now required (compared
to before the charge was moved by the strong bias) to
counteract this stored charge. The threshold voltage for
inversion is therefore moved to a more negative gate bias
due to the application of a strong positive bias. This is
the opposite of the observed behaviour in Figure 7.17, so
cannot be the correct explanation.

The hysteresis in Figure 7.17 is also in the oppo-
site sense to that seen in n-channel silicon-on-insulator
MOS transistors.167 Hysteresis has been observed in the
ID versus VDS behaviour of silicon MOS transistors at
4.2 K168,169 where it is discussed in terms of self-heating
(not thought to be important and not relevant in this
system where the hysteresis is in the ID versus VGS be-
haviour) and field-induced dopant ionization.170

The fact that the hysteresis effect grows in signifi-
cance on the same temperature scale that transport in
the boron doping slab freezes out (around 60 K, related
to the energy of the acceptor level in boron) would sug-

gest that ionization of the dopants induced by changes in
bias conditions may be relevant. The transients seen in
Figure 7.18 which show charge moving vertically through
the device back this up.

7.6. Analysis

Carrier Gas Formation

Simulations were performed using the FISH1d software
package, running on the public-access Purdue University
Network Computing Hub, PUNCH. This software nu-
merically solves the one-dimensional equilibrium Poisson
equation in a semiconductor heterostructure at a given
temperature, under specified bias conditions.171,172
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FIG. 7.21: Results of simulations of 50/51 which solve the
one-dimensional Poisson equation. The temperature is 300 K.
The x-axis scale is arbitrary, since it does not take into ac-
count the oxide thickness or interface charge. The two im-
portant features are that the electron and hole gases never
coexist, and that the density of holes in the alloy reaches a
relatively small value before the cap layer begins to populate.

Figure 7.21, featuring results from simulating the
structure of wafer 50/51 at 300 K, shows that the elec-
tron gas at the oxide interface does not co-exist with a
hole gas in the alloy of roughly equal density at any gate
bias, and therefore that the band profile in Figure 7.1 is
never realized in this heterostructure: the band profile is
closer to the lower panel of Figure 7.3. The x-axis scale
is arbitrary since the thickness of the oxide and the pos-
sibility of interface charge is ignored. (The positions of
the electron and hole thresholds, which can be compared
to Figure 7.7 and Figure 7.9 respectively, suggests that
experimental zero bias corresponds to a simulation bias
of around -0.3 V.)

The density of free holes in the dopant layer, not
shown in Figure 7.21, varies from 4.7×1012cm−2 at the
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FIG. 7.22: Results of simulations of 50/51 similar to Figure
7.21 but with a temperature of 77K. Again, the electron and
hole gases never coexist.
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FIG. 7.23: Results of simulations of 50/53 which solve the
one-dimensional Poisson equation. The temperature is 300 K.
The alloy population reaches a slightly larger value than in
Figure 7.21 before the cap layer begins to populate, but oth-
erwise the important features are the same.

most negative bias to 4.6×1012cm−2 at the most positive.
Since the Fermi level is pinned close to the valence band
by the dopant, a small number of carriers are present in
the region un-doped silicon spacer layer.

Figure 7.21 should be compared with Figure 7.9: drain
current varies very little for gate voltages larger than
20 V, since current flow is almost entirely through the
dopant layer. The slight increase in current flow as VGS

decreases from 20 V to -5 V corresponds to the region
in Figure 7.21 where the population of holes in the al-

loy and spacer layer is increasing; the large increase in
current flow from -5 V to -100 V corresponds to the for-
mation of a hole gas at the oxide interface. This means
that most of the variation in conductance between p-type
contacts is due to the gate bias modulating the density
of a hole gas formed at the oxide interface.

Figure 7.22 shows results of simulations of wafer 50/51
at 77 K: the gate bias does not go negative enough to
induce a hole gas at the oxide interface, and the problem
of the electron and holes gases not co-existing is worse
than at room temperature.

Simulations of wafer 50/53 at 300 K are shown in Fig-
ure 7.23. The thin cap (30 nm rather than 90 nm as in
50/51 or 50/52) essentially increases the capacitance of
the device (increases the number of holes in the cap layer)
but does not change the fact that significant numbers of
electrons and holes never co-exist.

Issues with the Original Design

The above results of simulation make it clear that Fig-
ure 7.1 is inaccurate; in fact, it is fundamentally unphys-
ical. In one dimension, Poisson’s equation can be written
as

d2V

dz2
=

−en(z)

ǫrǫ0
(7.2)

where n(z) represents the number density of free charges
at a depth z within a semiconductor of relative permittiv-
ity ǫr.

10,157 Integration of Equation 7.2 with a constant
n leads to:

V (z) =
−en

2ǫrǫ0
z2 + Az + B (7.3)

The constants A and B describe, respectively, the ex-
ternal electric field and the external potential. If the
system is treated as closed, with only changes in poten-
tial through the device being relevant, then only the first
term in Equation 7.3 is important.

The implications of Equation 7.3 are that the gradient
of the bands (that is, the electric field) within a semicon-
ductor changes where, and only where, free charges are
present. Further, the gradient of the bands is propor-
tional to the difference between the total amount of free
charge to be found in either direction. It is assumed that
the background (unintentional) impurity level within
typical heterostructures is at most 1015cm−3, four or-
ders of magnitude lower than the level of intentional
doping,21,153 so the scale on which ionization of uninten-
tional dopants leads to significantly curved energy bands
is at least 100 times longer than the scale on which the
energy bands curve in regions of ionized intentional dop-
ing or the width of the wavefunction of a 2-dimensional
carrier gas, which is the order of 10 nm.21,22,157

This band bending can be seen in Figure 3.1: the gra-
dient of the bands changes only where ionized dopant or
the carrier gas itself exists. In the setback region, the
presence of ionized dopant atoms (negative free charges)



below and the carrier gas (positive free charges) above
results in an electric field, and therefore a sloping energy
band. Since the carrier gas and ionized dopant densities
exactly cancel, there is no electric field above the alloy
layer and so the bands are flat.

Thus Figure 7.1, reproduced exactly from Reference
153, is misleading since the slope of the energy bands
implies that the electric field between the 2DEG and the
2DHG is exactly the same as the field between the 2DHG
and the dopant layer. This is only possible if the 2DHG
density is actually zero.

There are examples in the literature of hand-drawn
band profiles used to justify and illustrate heterostruc-
ture designs2,159,161 which clearly violate Poisson’s equa-
tion. In some cases, it is possible that a proper con-
sideration of the band profile would show the structure
to be of little use for its intended purpose. Whilst a
full Poisson-Schrdinger solution is overkill when a device
is being sketched out within a proposal or review, it is
hoped that consideration of the following discussions of
device design will lead to a greater intuitive sense of the
band profile in a semiconductor heterostructure.

Calculation of the Expected Sheet Density

The following is assumed to be valid for “zeo” temper-
ature, whichin this context means that T ≪ TF where
TF is given by Equation 3.5. The effective mass m∗ is
taken to be 0.3 me (based on the results in Chapter 5)
giving a TF of 30 K (from Equation 3.5) if the simple
calculation given in Equation 7.1 is assumed to be valid.

Firstly it is assumed that the Fermi level is pinned
in the bulk of the Boron doping slab, at a level of
EA ∼30 meV relative to the band edge, and that the
width of the depletion region at the edge of the doped
region is much less than the setback d, which is reason-
able considering the high Boron concentration. It is then
assumed that the confining potential in the alloy is tri-
angular, with energy levels:21

En =

(

~
2

2m∗

)1/3 (

3

2
πqF0

)2/3 (

n +
3

4

)2/3

(7.4)

where F0 =
psq

ǫ0ǫSi
and n = 0, 1, 2 . . . (7.5)

Only the n = 0 level is significantly occupied when
T ≪ TF so the picture in Figure 3.2, which shows the

Fermi level at
~
2k2

F

2m∗
from the E0 subband, holds. E0 cal-

culated with the sheet density value obtained from Equa-
tion 7.1 is 32 meV, and the Fermi energy EF from Equa-
tion 3.5 is 2 meV. Equation 7.1 can now be modified to
take these into account, assuming flat bands everywhere
else in the structure and that the dopant depletion region
is narrow:21

psq

ǫ0ǫSi
=

∆EV − E0 − EA − EF

d
(7.6)

The sheet density consistent with this field in the set-
back is 1.4×1011cm−2, around half that of the value
found from Equation 7.1. Further iteration around the
system of Equations 3.5, 7.4, 7.5 and 7.6 leads to conver-
gence on a sheet density of 1.7×1011cm−2. This analy-
sis ignores background doping of the supposedly intrinsic
layers of the structure and charged interface impurities.∗

Typical values for these parameters are of the order of
magnitude of the calculated sheet density but essentially
unpredictable, so their incorporation into Equation 7.5
(see Equation 3.1) would introduce a significant degree
of arbitrariness.21

However, as made clear by Figures 7.21, 7.22 and 7.23,
any application of positive gate bias in order to form an
inversion layer of electrons will first deplete the hole gas
in the alloy layer, leading to a band profile similar to
Figure 7.3. The designed-in hole gas density must be
much greater than that which is intended to be present
when the electron gas is formed, if they are to co-exist.

7.7. Specifications For New Structures

7.7.1. Vertically Integrated MOSFET

It is generally true that for hetero-MOSFETs to op-
erate usefully, the cap layer must be thin enough that
the gate bias modulates the hole density in the alloy
layer without forming an inversion layer at the oxide
interface.90 Figures 7.21 and 7.23 show that this is not
the case when the cap layer is 90 nm or even 30 nm thick.
In fact, cap thicknesses of less than 10 nm are under con-
sideration for current HMOS research devices.106

Devices on 50/53 showed serious leakage between the
shallow (25 nm) n+ contacts and the alloy channel (at
a depth of 30 nm) so in a thin-cap structure, the n+

contacts must be very shallow indeed.

Another issue with these devices is that, at room tem-
perature, there is always conduction between the deep
p+ contacts through the boron doping layer. This dop-
ing layer is important to ensure that a hole gas forms
in the alloy layer under the application of negative gate
bias, well before the oxide interface becomes significantly
populated with holes, although this may be accomplished
by much weaker doping than is used here. However, if
the deep contact implantation is performed at such an
energy that the alloy is contacted but the boron dop-
ing slab is not, then the depletion region in the setback
should ensure that conduction is only possible through
the hole gas in the alloy layer.

∗ It is possible that a setback of 34 nm was chosen to allow for seg-
regation of boron dopant atoms. This would mean that the true
setback would be much smaller. However, to achieve a carrier
concentration in the alloy of 1012cm−2, the setback would need
to be less than 5 nm.



7.7.2. Co-existing Electron-Hole Gas Systems

Si1-xGexSi

E
V

E
C

E
F

2DEG 2DHG

Growth Direction

Si Si:B

d

s

t

E
-

0+E
-

F
E

+

0+E
+

F

∆EV

E
G

E
A

FIG. 7.24: Proposed (low-temperature) band profile of a
device which will feature co-existing electron and hole 2-
dimensional gases.

The calculation presented above can be adapted to
consider co-existing electron and hole gases. A proposed
band profile is shown in Figure 7.24 which can be com-
pared to Figure 7.1. Assuming that a consistent solution
exists, that background doping ionization and interface
impurities are negligible, and that the dopant depletion
width is small (since the dopant dose is very high) the
electric field in the setback between the dopant layer and
the alloy is:

Fd =
(pM − ns + ps + n−

A)q

2ǫrǫ0
=

n−
Aq

ǫrǫ0
(7.7)

where n−
A is the sheet density of ionized dopant atoms,

ns is the electron carrier concentration in the 2DEG, ps

is the hole carrier concentration in the 2DHG and pM is
the concentration of positive charges on the metal gate.
The electric field in the cap layer is:

Fs =
(pM − ns − ps + n−

A)

2ǫrǫ0
=

(n−
A − ps)q

ǫrǫ0
(7.8)

Equations 7.7 and 7.8 explain that the presence of
these charges create sloping bands, and make use of over-
all charge neutrality: pM = ns − ps + n−

A. However, in
order for the charges to be present, the fields must be
such that the bands cross the Fermi level as shown in
Figure 7.24 and this condition can be summarized such
that

qFdd = −EA + ∆EV − E+
F − E+

0 (7.9)

qFs(s + t) = EG −∆EV + E+
F + E+

0 + E−
F + E−

0 (7.10)

where EA is the acceptor level in the dopant layer, EG is
the silicon band gap, ∆EV is the valence band offset, E+

F
is the Fermi level and E+

0 is the subband ground state
energy for holes in the 2DHG (see Equations 3.5 and 7.4,
and Figure 3.2) and E−

F and E−
0 are the corresponding

quantities for the 2DEG. The relative permittivity of ger-
manium is higher than that of silicon, but in considering
a thin layer of an alloy with a low germanium content
this is ignored.

From charge neutrality it can be seen that if ns = ps

then pM = n−
A. Substitution of Equations 7.7 and 7.8

into 7.9 and 7.10 gives:

ps = ns =
ǫrǫ0
q2

[

1

d
(−EA + ∆EV − E+

F − E+
0 ) −

1

s + t
(EG − ∆EV + E+

F + E+
0 + E−

F + E−
0 )

]

(7.11)

If the two largest energies in Equation 7.11 are ∆EV

and EG (for a 20% germanium alloy ∆EV =140 meV
whereas EA ∼ E0 ∼30 meV and EF ∼3 meV)14 then

ps = ns ≃
ǫrǫ0
q2

[

∆EV

d
−

EG − ∆EV

s + t

]

(7.12)

A setback d of 34 nm and a gas separation s + t of
105 nm leads to an unphysical negative result for ps and
ns. For a positive solution to Equation 7.12 to exist in
a 20% germanium alloy system, the spacing between the
gases must be more than 7 times the setback. If the set-
back were 10 nm, carrier gases may co-exist according to
this approximation. However, once the zero-point energy
of each triangular quantum well is taken into account, it
becomes non-trivial to find a solution. A self-consistent

solution may not exist at all unless very germanium-rich
alloys (which are hard to grow pseudomorphically)9 are
used. For a fully-strained pure germanium channel on
pure silicon, with a 10 nm setback and 100 nm between
carrier gases, Equation 7.12 suggests coexisting gases,
each with a density of more than 4×1012cm−2.

From the starting points described above, a true
Poisson-Schrödinger solution method may be used to find
the electron and hole gas sheet densities. However, it
is not guaranteed that there will be a solution featur-
ing matched and coupled-channels for a given carrier gas
spacing or hetero-offset, even if Equation 7.12 is fulfilled;
the device specifications themselves must be part of the
iterative process. A method of genetic algorithms may
be suited to finding a viable device structure.

It is also possible that more exotic structures (involv-



ing n and p-type modulation doping, a virtual substrate
or a strained-silicon electron channel) would lead to co-
existing electron and hole gases which are closer together
and each have a high enough sheet density to be metallic.

8. CONCLUSIONS

Aspects of transport in both n- and p-type strained
silicon-germanium heterostructures have been investi-
gated, with a view to device applications as well as fun-
damentals of physics.

In a p-type device with a relatively high mobility, fun-
damentals of quantum transport have been investigated
at millikelvin temperatures and it is shown that conven-
tional theories do not account for the rate at which the
quantum phase breaks. New theories are considered and
the work is related to theories of the metal-insulator-
transition in 2-dimensional systems. It is suggested that
there at high sheet densities where the behaviour of the 2-
dimensional hole gas is metallic the dephasing rate may
saturate at a finite value as the temperature drops to
zero. (Traditional theory predicts an infinite dephasing
rate at zero temperature).

At a filling factor of ∼1.6, a transition from the QHE
state into an insulating phase is seen. The resistivity
of this phase increases dramatically as the hole gas is
depopulated. This transition has been observed in sili-
con MOSFETs and p-type silicon-germanium, but not in
gated heterostructures. Again, it is related to the metal-
insulator transition in 2-dimensional systems.

A contrasting p-type device has also been investigated.
Here, the work stresses the issues commensurate with
such small-scale devices where stray voltages can quickly
destroy a whole batch. The device features a pseudo-
morphic Si0.5Ge0.5 alloy channel: there is a possibility
that the channel has relaxed to some degree since it was
grown, and if this were the case then the implications
for electronics incorporating such structures is serious.
The possibilities of lateral relaxation, oxide degradation
or contamination are also considered.

A room temperature Hall scattering factor of
0.68±0.04 has been extracted by comparing the measured

and calculated mobility at 282 K, based on parameters
found by fitting the mobility at 25 K.

Traditional theories of the resistivity as a function of
temperature in the ∼1 K regime are based on weak lo-
calization, interactions and screening. The temperature
dependence of this device, however, is not satisfactorily
explained in this manner, and a new functional form for
the resistivity as a function of temperature has been pro-
posed, but now needs theoretical justification.

A new method of mobility spectrum analysis has been
applied to magnetoresistance data from an n-type device,
at temperatures between 350 mK and 294 K. The results
highlight both the strengths of mobility spectrum anal-
ysis and its shortcomings: in systems where transport
takes place in both a quantum well and a dopant layer,
two peaks are resolved. However, the peak shape (which
should contain information regarding the energy depen-
dence of the scattering time) owes more to the quality of
the data than to scattering mechanisms.

It is also possible that the results in this particular
device are invalidated at temperatures above 100 K, due
to conduction through the substrate.

Other mobility spectrum analysis methods are briefly
reviewed. The common “mirror” peak artefact is inves-
tigated and an explanation is suggested. It is believed
that whilst the program code used here could be refined
slightly, significant improvement to the analysis is un-
likely. It may be possible to apply the maximum entropy
inversion method to find the energy dependence of the
scattering time from the mobility as a function of sheet
density or temperature.

Lastly, devices where both n-type and p-type conduc-
tion can be induced are investigated in terms of the
physics of coupled carrier gases, and the possibilities of
vertical CMOS integration. It is shown that carrier gases
do not co-exist in this structure, and it is shown that
the design of a silicon-germanium heterostructures which
may support co-existing electron and hole gases is non-
trivial and not necessarily possible.

These ideas are important not only to the growth of the
next generation of silicon-germanium devices, but also to
the ways in which they are characterized.
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107 M. Nafria, J. Suñe, D. Yelamos, and X. Aymerich, IEEE
Trans. Electron Devices 43, 2215 (1996).

108 P. M. Lenahan, J. F. C. Jr, and B. D. Wallace, J. Appl.
Phys. 81, 6822 (1997).

109 S. Lombardo, A. L. Magna, C. Gerardi, M. Alessandri,
and F. Crupi, Appl. Phys. Lett. 75, 1161 (1999).

110 A. Zaslavsky, K. R. Milkove, Y. H. Lee, B. Ferland, and
T. O. Sedgewick, Appl. Phys. Lett. 67, 3921 (1995).

111 Z. Dziuba, T. Przeslawski, K. Dybko, M. Górska, J. Mar-
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