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Abstract

We present experimental results for water wave turbulence excited by piston-like
programmed wavemakers in a water flume with dimensions 6 × 12 × 1.5 meters. Our
main finding is that for a wide range of excitation amplitudes the energy spectrum has
a power-law scaling, Eω ∼ ω

−ν . These scalings were achieved in up to one-decade wide
frequency range, which is significantly wider than the range available in field observa-
tions and in numerical simulations. However, exponent ν appears to be non-universal.
It depends on the wavefield intensity and ranges from about 6.5 for weak forcing to
about 3.5 for large levels of wave excitations. We discuss our results in the context of
the key theoretical predictions, such as Zakharov-Filonenko spectrum ν = −4, Phillips
spectrum ν = −5, Kuznetsov’s revision of Phillips spectrum (leading to ν = −4) and
Nazarenko’s prediction ν = −6 for weak turbulence in finite basins. We measured
Probability Density Function of the surface elevation and good agreement with the
Tayfun shape except values near the maximum which we attribute to an anisotropy
and inhomogeneity caused by the finite flume size. We argue that the wavenumber dis-
creteness, due to the finite-size of the flume, prevents four-wave resonant interactions.
Therefore, statistical evolution of the water surface in the laboratory is significantly
different than in the open ocean conditions.

1 Introduction

Understanding statistical properties of the water surface waves is of great importance for a
vast range of applications, from navigation and industrial activities at sea to modelling the
transfer of momentum, heat, gases and aerosols through the air-sea interface. The latter
are an important factor in improving weather and climate modelling and yet they are still
very poorly understood. For example, a number of specialized centres and regional agencies
provide a wave forecast for several days using certain assumptions about the wave statistics.
Besides wave forcing by the wind, the other major ingredients of the models used by these
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centres are the energy dissipation by wave breaking and the nonlinear interaction that takes
place among waves with different length.

This nonlinear interaction is described by a theory called wave or weak turbulence theory
(WT) introduced in the sixties by Zakharov and Hasselman (see [1] for history and details
of WT). WT starts with the Euler equations for water with free surface in gravity field and
derives a kinetic equation (KE) for the wave spectrum [2]. The central prediction of WT is
a steady state energy spectrum obtained by Zakharov and Filonenko (ZF) [3],

Eω ∝ ω−ν (1)

with the index ν = 4. A number of hypotheses are needed in order to derive KE: weak
nonlinearity, random phase approximation, homogeneity of the wave filed. Conditions of
validity of these hypotheses are still poorly understood. In addition, there exist an alternative
approach originated by Phillips which assumed that the wave spectrum is not determined
by weakly nonlinear dynamics but by strongly nonlinear sharp-crested waves which arise
due to wavebreaking. This results in well-known Phillips power-law spectrum (PH) [4] with
exponent ν = 5. Perhaps even stronger uncertainty exists about the mechanisms and the
form of wavebreaking arising in the random wave field.

Thus, there has been a significant effort to study the random waves and to test assump-
tions and predictions via field observations, laboratory experiments, numerical modelling.
There are advantages and limitations in each of these approaches. The field observations
of waves are done using buoys or ships [5] or remotely from aeroplanes [6]. They are ex-
tremely important because they measure the processes directly as they occur in nature.
However, field observations are costly, have somewhat limited accuracy and lack of con-
trol over the observation conditions. This makes smaller-scale laboratory experiments and
numerical modelling valuable parts of research.

Numerical experiments are naturally cheaper and controllable, but at present resolution
they are not able to realise WT setup. Indeed, for the WT approach to be relevant it is
essential that the nonlinear resonance broadening is greater than the spacing between the
neighbouring wavenumbers, - otherwise most of the wave resonances are lost. As estimated
in [7], this implies a condition on the minimal angle of the surface elevation

γ > 1/(kL)1/4, (2)

where L is the size of the basin. This is a very severe restriction meaning, e.g., that for a
ten-kilometer wide gulf and meter-long waves one should have γ > 0.1.

On the other hand, Even for very small excitation amplitudes some resonances survive
[8, 9, 10] and it is possible that they can support the energy cascade through scales even
when condition (2) is not satisfied. Particularly, there have been numerous papers reporting
results of the direct numerical simulations and claiming to confirm ZF spectrum, even though
to satisfy condition (2) at a weakly nonlinear level γ ∼ 0.1 one would have to compute at
minimum 10000× 10000 resolution which is much greater than the resolution of all previous
simulations. Such a case, where the scalings and a qualitative behavior are the same as in
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an infinite system, and yet there is a quantitative disagreement (e.g. in the energy cascade
rate) was called in Ref [9] “mesoscopic turbulence”.

On the other hand, due to necessity of numerical dissipation at high wavenumbers (to
avoid the bottleneck effect) the inertial interval was very modest, - one decade in k i.e. less
than half-decade in ω for gravity waves. This makes it very hard to judge about the exact
value of the slope, particularly deciding between the ω−5 and the ω−4 spectra. Also, the
water surface equations used in computations are truncated at the level of cubic nonlinear-
ity and, therefore, become invalid for describing strongly nonlinear events, particularly the
wavebreaking.

In this situation, performing laboratory experiments realising water wave turbulence looks
especially attractive. Indeed, such experiments are significantly cheaper and controllable
than the field observations and yet they are free form the artefacts of numerical modelling
due to truncation and artificial dissipation, and they allow to resolve a significantly greater
inertial range of scales.

The present paper describes the results of one of such experiments. Let us put our work
in the context of the previous wavetank experiments aimed at studying nonlinear dynamics
of random waves1 Our work differs from the previous experiments in two respects. The
wavetank is larger and has significant sizes in both horizontal directions that provides and
opportunity to observe 2D wave evolution. We use a piston-type wavemaker rather than
wind to produce waves. The wavemakers are more suitable for testing WT theory because
they can force at low frequencies only while the wind forcing is spread over the wide frequency
range. As a result, wavemakers enable to leave a more pure inertial range of scales for with
ZF prediction was made. Larger size is important for minimising the finite-size effects and
the k-space discreteness. Yet, as we will report in the present paper, the size of our tank is
not large enough for WT theory to be applicable, and the wave field statistics was strongly
affected by the finite-size effects.

2 Theoretical background

Below we describe the theoretical background and predictions that will serve us as reference
points in interpretation of our experimental results. First of all, let us consider the predictions
for the wave energy spectrum which is defined as,

Eω =

∫

eiωt′〈η(x, t)η(x, t + t′)〉 dt′, (3)

where η(x, t) is the surface elevation at time t and location in the horizontal plane x. Here,
the the integral is taken over a time window, and angle brackets mean ensemble averag-
ing over realisations (a number of chosen time windows in the entire signal record). For
statistically steady and homogeneous state, Eω is independent of t and x.

1Here we are not concerned with the short-time experiments aimed at testing scaled models of sea instal-
lations or ships where the spectrum was pre-conditioned by wavemakers and the waves life time is not long
enough for the nonlinearity to evolve.
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2.1 Weak turbulence theory, ZF spectrum.

As we already mentioned in the introduction, WT theory considers weakly nonlinear random-
phase waves in an infinite box limit. The central object of WT is KE for the wave spectrum,
which in the context of water gravity waves called Hasselmann equation [2]. This equation
is quite lengthy and for our purposes it suffices to say that ZF energy spectrum

Eω ∝ ω−4

is an exact solution of Hasselmann equation which describes a steady state with energy
cascading through an inertial range of scales from large scales where it is produced to the
small scales where it is dissipated by wavebreaking.

It is crucially important that in deriving KE, the limit of an infinite box is taken before
the limit of small nonlinearity. This means that in a however large but finite box, the wave
intensity should be strong enough so that the nonlinear resonance broadening is much greater
than the spacing of the k-grid (corresponing to Fourier modes in finite rectangular box). This
is precisely the condition which, due to lack of available resolution, has never been satisfied
in numerical experiments. As we will see below, this is also the reason why we never see the
WT regime in our laboratory experiment.

2.2 Phillips spectrum and its relatives.

An easiest way to derive the PH spectrum is to assume that the gravity constant g is the
only relevant dimensional physical quantity. Then the wave energy spectrum is uniquely
determined in terms of g and ω based on the dimensional analysis [4],

Eω = g2ω−5. (4)

It is quite clear that this argument is equivalent to saying that the linear term is of the same
order as the nonlinear one in the water surface equations in Fourier space. Such a balance
of linear dispersion and nonlinear terms is typical for soliton-like nonlinear structures.

Physically, the PH spectrum is usually associated with the sharp crested waves, so that
the short-wave Fourier asymptotics are dominated by discontinuous slopes of such wavecrests.
Assuming first, that such a discontinuity is happening at an isolated point (i.e. in a cone-like
structure) we get for the one-dimensional energy spectrum in wavenumber space

Ek ∝ k−3. (5)

Second, assuming that transition from the k-space to the ω-space should be done according
to the linear wave relation ω =

√
gk, we arrive at the PH spectrum (4).

Kuznetsov [11] questioned both of these assumptions and argued that (i) slope break
occurs on one-dimensional lines/ridges rather than zero-dimensional point/peaks, and (ii)
that the wave-crest is propagating with preserved shape, i.e. ω ∝ k should be used instead
of the linear wave relation ω =

√
gk. This assumptions give Eω ∝ ω−4, i.e. formally the

same scaling as ZF, even though the physics behind it is completely different.
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Finally, it was proposed in Ref [12] that wavecrest ridges may have non-integer fractal
dimension somewhere in the range 0 < D < 2. Assuming, following Kuznetsov, ω ∝ k, we
have in this case

Eω ∝ ω−3−D. (6)

In our experimental results reported below, at large forcing levels we observe the promi-
nent wavebreaking events the role of which in forming spectra is quite apparent. However,
the spectrum exponent appears to be dependent on the forcing intensity. Possibly this could
be due to dependence of wavebreaking morphology and dimension D on the wave turbulence
intensity.

2.3 Discrete wave turbulence.

Here, we will briefly describe the theory suggested in [7] for the case of very weak turbulence
in discrete k-space. As we already mentioned, for the WT mechanisms to work, the four-
wave resonances must be broad enough to cover simultaneously many discrete k-modes, and
this condition in terms of the surface slope γ gives the estimate (2). What happens if the
waves are so weak that this condition is not satisfied? In this case, the number of exact
and quasi four-wave resonances will be drastically depleted [13, 14, 7]. This will lead to
the arrest of the energy cascade from long to short waves and, therefore, there will be an
accumulation of the spectrum near the forcing scale. Such an accumulation will proceed
until the intensity is strong enough for the nonlinear broadening to become comparable to
the k-lattice spacing, i.e. when condition (2) will become marginally satisfied. At this point,
the four-wave resonances will get engaged and the spectrum “sandpile” will tip over toward
the higher wavenumbers. This process will proceed until the whole k-space will be filled by
the spectrum having a critical slope determined by the condition that the wave-resonance
broadening is of the order of the k-grid spacing for all modes in the inertial range. This
condition gives the following spectrum

Eω ∝ ω−6.

2.4 Probability density functions.

Some important information about the wave field statistics, not contained in the spectra, can
be accessed by measuring the probability density function (PDF) of the surface elevation.
We remind for reference that homogeneous isotropic wave fields with random independent
phases of all of its modes are characterized by Gaussian PDF shape. The Gaussian shape
is expected for linear and weakly nonlinear waves, provided the conditions of homogeneity
and isotropy are satisfied. The PDF for stronger nonlinearities was obtained by Tayfun
[15] using a model where the wave field is made of independent weakly nonlinear Stokes
waves whose first harmonics are gaussian. Tayfun distributions where found to be in good
agreement with numerical simulations with wide-angle quasi-isotropic wavefields [16] and to
much lesser extent in narrow-angle distributions [17, 18].
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Figure 1: Numerically obtained PDF of spectral intensity in a small band around ω equal
to the eight minimal wave frequencies [8, 10].

Another interesting statistical object is a PDF of the spectral intensities (squared mod-
ules of the Fourier coefficients) at a particular fixed frequency ω. Based on a generalized
WT approach, it was found theoretically in Ref. [8] that such a PDF may differ from the
Rayleigh distribution (corresponding to Gaussian wave fields) by significantly fatter tails.
This corresponds to a probability to observe strong waves more frequently than for Gaussian
waves (a “freak wave” effect).

A typical form of such a PDF obtained in numerical experiments [8, 10] by applying
band-pass filtering with ∆ω ≪ ω is shown in Figure 1. Indeed, we see a significant deviation
in the tail from Rayleigh shape (straight line in Figure 1). Later in the present paper we
will observe a similar effect in our experimental results.

3 Experimental setup

Our experiments with surface gravity waves were conducted in a rectangular tank with
dimensions 12 x 6 x 1.5 meters filled with water up to the depth of 0.9 meters. The wavemaker
consists of 8 vertical paddles of width 0.75 m covering the full span of one short side of the
tank, see Figure 2. Each paddle can oscillate horizontally in the direction perpendicular
to its face plane. Amplitude, frequency and phase can be set for each panel independently
allowing, in principle, to control directional distribution of the generated waves. A motion
controller is used to program parameters of the generated wavefield by specifying amplitude,
frequency distribution and a number of wavevector directions.

In all experiments described in the present paper, the frequency bandwidth generated
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Figure 2: Experimental setup at “The Deep” flume.

by the wavemaker had a fixed broadband distribution in the range 0.4 to 1.2 Hz, which
corresponds to the wavelengths 1 to 3.9 m. To get more spatially isotropic excitations, the
wavevector directions were chosen within a 90-degree sector enabling the multiple reflections
even for the shortest excited wavelengths. The main control parameter was an excitation
amplitude on the wavemaker, and we performed the experiments at different values of this
parameter to study dependence of the spectrum and PDFs on the average wave turbulence
intensity. The surface elevation was measured simultaneously by two capacitance gauges, A
and B, positioned in the middle part of the tank. A-gauge was fixed while another could move
parallel to the short flume side, so that the distance between the gauges could vary from 0.1
to 2.5 m, see Figure 2. In most of the reported experiments this distance was 40 cm. Each
probe consists of two parallel vertical wires separated by 1 cm distance. Due to the difference
in the dielectric permeability of water and air, the coupling capacitance between the wires
depends on their submergence depth. This capacitance was measured using sinusoidal AC
with different frequencies used for each gauge (60 and 90 kHz) to avoid a crosstalk between
them. Signals from the gauges were amplified by two lock-in amplifiers. The outputs from
the amplifiers were digitized by a multi-functional board (NI6035, National Instruments) and
stored as a waveform using LabView software. Typical parameters of the acquired signals
were as follows. The bandwidth at the lock-in amplifier output was 32 Hz, the sampling
rate was 400 Hz for each channel, the minimum acquisition time was 2000 seconds. The
gauges were calibrated before the measurements in the same tank with a stationary water
surface. The experimental data set contains a number of two-channel waveforms acquired
at different amplitudes of the generated waves and for two different configurations of the
wavemaker paddles. In one configuration all eight paddles were used, in others only seven or
six paddles worked while one or two corner paddles were disconnected. Although using the
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Figure 3: A typical signal for the time evolution of the surface height at one of the gauges.

six and seven paddle configurations were caused by technical reasons, these additional data
enable us to compare results with different wave excitation geometries. The measurement
procedure was the same during the whole experiment and consisted of setting the excitation
wave amplitude, waiting for 15 minutes of transient time, measuring and writing the signals
during the next 30-60 minutes. A typical time signal, the wave elevation vs time, is shown
in Figure 3

Collected waveforms were processed using Matlab. The common initial part for all data
processing procedures included high-pass filtering with the time constant 0.01 s eliminating
a slow drift of signals, decimation to the sampling frequency 50 Hz, and elimination of the
initial transitional part of signals. At the next stage of processing we evaluated the statistical
characteristics of waves: the spectra (by applying the fast Fourier transform), the PDF of
the surface height and the PDF of Fourier modes (by band-pass filtering).

One of the quantities we have used to characterize the wave field strength was the RMS
of the wave height,

A =
√

〈(η − η0)2〉, (7)

where η = η(t) is the water surface elevation at the gauge position and η0 is its mean value.
Here, the angle brackets denote the time averaging over the whole measuring interval. As a
characteristics of nonlinearity, we used the mean slope at the energy containing scale,

γ = kmA, (8)

where km is the wavenumber corresponding the the maximum of the energy spectrum. In
all our experiments km was approximately the same and located in the forcing range, km ≈
4.0m−1 which corresponds to the wavelength λ ≈ 1.6 m. Note that in the same experiment
waves with different frequencies usually have different nonlinearities. Depending on the
spectrum slope ν, the nonlinearity may be smaller at higher frequencies (for ν > 5) or greater
(for ν < 5). One can see that PH spectrum is a borderline case in which the nonlinearity is
the same at all frequencies.

In our experiments we covered the range of excitations from very weak waves with mostly
smooth surface and occasional seldom wavebreaking, A ≈ 1.3 cm and γ ≈ 0.05, to very strong
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Figure 4: Spectrum obtained in the 6-paddle experiment with low wave intensity, A ≈ 1.9
cm (γ ≈ 0.0.074).

wave amplitudes characterized by a choppy surface with numerous wavebraking events, A ≈
5.2 cm and γ ≈ 0.21.

3.1 Spectra

To find spectra we used the Welch algorithm with the Hanning window of length 256 points
(5.12 s) and the averaging performed over about 1000 spectral estimates for each signal
record. Typical results for the spectra for several different levels of nonlinearity is shown in
Figures 4, 5 and 6.

Horizontal lines show an interval where the spectrum slope (index) is estimated using
linear least-square logarithmic fit. The maxima of spectra in all cases are at about 1.2 Hz
which corresponds to the highest frequency in the pumping wave. Lower frequencies have
less power relative to the spectrum maximum due to the dumping of long waves by the
bottom friction. One can see that the scaling behavior is not-so-well formed in Figure 4
which corresponds to the weakest wave field intensity A ≈ 1.85 cm and γ ≈ 0.074, and
this leads to some uncertainty in the value of the slope and its sensitivity to the choice
of the fitting range. On the other hand, the spectra corresponding to the medium and
the strongest intensities, shown in Figures 5 and 6 respectively, exhibit clear scaling ranges
which are up to one decade wide and have well-defined slopes. The results for the slopes
obtained in different experiments, including the cases with six and seven working paddles,
are summarized in Figure 7 with the slope uncertainty indicated by the vertical bars. The
bars were constructed by varying the fitting range and finding the minimal and the maximal
slopes. The x-axis represents the intensity value of the spectrum at 3Hz frequency, E3Hz.
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Figure 5: Spectrum obtained in the 6-paddle experiment with medium wave intensity, A ≈
3.05 cm (γ ≈ 0.12).

Figure 6: Spectrum obtained in the 7-paddle experiment with high wave intensity, A ≈ 3.73
cm (γ ≈ 0.15).
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Figure 7: Plot of spectral slopes ν in the 6-paddle and 7-paddle experiments versus the wave
intensity at 3 Hz, see text for details.

The reason for this choice of measure of the wave turbulence intensity is that this quantity
appears to be more universal than the RMS of the surface elevation, A, or RMS of the slope
parameter γ. This is because the latter two are dominated by the energy containing scale
which appears to be different for the 6-paddle and the 7-paddle series of experiments. On
the other hand, 3 Hz is within the scaling (equilibrium) range of all spectrum data sets, and
the data points for the slope values ν for the six- and seven-paddle experiments collapse
much better on the same curve if E3Hz is used as a measure of intensity.

The general trend, clear in Figure 7, is that the slope ν is much steeper for the weak
wave fields with respect to the strong ones. One can see that at small amplitudes the
data scatter and uncertainty are much greater at low intensities than for stronger wave
turbulence. For experiments with the minimal intensity, A ≈ 1.85 cm and γ ≈ 0.074, we
have ν ≈ 6.3 ± 1.2, which is in good qualitative agreement with the prediction ν = 6 made
in [7] for the critical spectrum where the nonlinear resonance broadening is of the same
magnitude as the mean spacing between the discrete k-modes. Thus, we indirectly confirm
that the k-space discreteness (caused by the finite flume size) plays a defining role in shaping
the frequency spectrum at low wave excitations. We see that the condition (2) is not quite
satisfied,

γ ≈ 0.074 < 1/(kmL)1/4 ≈ 0.4.

Note that (2) is only an order of magnitude estimate so a factor of 5 discrepancy could easily
be an order one coefficient (like π) unaccounted by (2). On the other hand, it might also
mean that an efficient energy cascade may start even at the level or resonance broadening
which remains less than the k-grid spacing. In this case not all of the four-wave resonances
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are equally engaged, and that most of the energy cascades from low to high wavenumbers are
carried by most active quartets of modes which causes extra anisotropy of wave turbulence.
Such an anisotropy could also be a natural reason for deviations from the pure power-law
scaling seen as a significant slope uncertainty and scatter at low intensities in Figure 7.

At large wave field intensities, one can see in Figure 7 much better scaling behavior
with significantly smaller scatter or uncertainty in the slope values. There is a range of
intensities where the PH slope ν = 5 is observed, and we report that wave breaking events
were common for such intensities. At higher intensities, one can see the ν = 4 slope which
is predicted by both ZF and Kuznetsov theories [3, 11]. However, the water surface was
visibly very choppy with numerous frequent wavebreaking and high values of the surface
slope, γ > 0.15, and rules out the weak nonlinearity assumption which is the basis of ZF
theory [3]. Kuznetsov theory [11] is more likely to be relevant to these conditions, because
it derives ν = 4 value from considering strongly nonlinear wavecrests with sharp 1D ridges
and the speed of which is nearly constant while they pass the height gauge. However, there
is no visible plateau in Figure 7 at ν = 4 value and ν takes bigger values at lower intensities
and lower values for greater amplitudes (reaching ν = 3.3 for the maximum intensity of
γ ≈ 0.21). As we mentioned before, such a change of slope could be explained by changing
the fractal dimension of the wavecrest ridges, from D = 0 cone-like splashes giving ν = 3
(this is not PH because ω ∼ k is assumed instead of ω ∼

√
k) at smaller amplitudes, set of 1D

lines giving ν = 4 at larger amplitudes (Kuznetsov) to more complex fractal curves at lower
intensities with 1 < D < 2 giving 4 < ν < 5. Note that Ref. [12] obtained value D = 3/2 by
considering scalings of the higher moments within the wave turbulence formalism.

3.2 Probability density functions.

Our results for PDF of the surface elevation measured for different wave intensity levels, for
different numbers of working paddles (6 or 7) and for different locations (at gauges A and
B) are shown in Figures 8, 9 and 10. One can see good qualitative agreement of PDFs with
the Tayfun distribution at all intensities, - low at Figure 8, medium at Figure 9 and high
at Figure 10. However, one can notice rather irregular deviations, especially near the PDF
maximum corresponding to probability of waves with less-than-mean intensities. We have
checked that these deviations are real and are not fluctuations due to insufficient statistical
data. To do this, we split a long record corresponding to one of experiments into two shorter
sub-sets, and we observed that the resulting PDFs for both sub-sets were identical to the
PDF obtained from the original long record. One can also see that the observed deviations
from Tayfun were different at the same experiment for two different locations (i.e. at gauges
A and B).

Now let us consider PDFs of the spectral intensities obtained by band-pass filtering of
the time signal with a narrow pass window ∆ω around a particular frequency ω (∆ω ≪ ω).
These PDFs for the experiments with low and high mean intensities of the wave field are
shown in Figures 11 and 12 correspondingly. One can see a similar picture as in numerical
results shown in Figure 1, namely much higher with respect to the Rayleigh distribution
probability of strong waves. This is a nonlinear effect and, therefore, it is natural that it is
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Figure 8: Normalized PDF of the surface height at locations of gauges A (dots) and B
(triangles) in the 6-paddle experiment for mean intensity A = 1.85cm (γ = 0.074).

Figure 9: PDF of the surface height at locations of gauges A (dots) and B (triangles) in the
6-paddle experiment for mean intensity A = 3.05cm (γ = 0.12).
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Figure 10: PDF of the surface height at locations of gauges A (dots) and B (triangles) in
the 7-paddle experiment for mean intensity A = 3.73cm (γ = 0.15).

more pronounced for higher intensities (i.e. in Figure 12).

4 Conclusions

One of the main observations derived from our experimental results is that the slope of the
wave spectrum is not universal: it takes high values, around 6.5, for weak wave fields and
gradually decreases as one increases the wave field intensity to the value of about 3.5 when
the wave field is very choppy with a lot of wavebreaking. In the absence of forcing, one
would expect KAM-like behavior for most of the k-space because only a tiny fraction of
modes on the discrete k-latice can satisfy the exact four-wave resonant conditions [13, 14, 7].
However, our system had a continuous forcing and the spectrum can grow until it reaches
a critical slope where the nonlinear resonance broadening becomes comparable to the k-
grid spacing, and the spectrum “sandpile” can “tip over” producing intermittent avalanches
carrying energy from large to small scales. Such a critical spectrum was argued in Ref [7]
to have slope 6, which is in a good qualitative agreement with our observations. For larger
amplitudes, we see a gradual decrease of the slope, possibly due to the sharp wavecrests
whose fractal dimension decreases with increasing wave intensity (from D = 0 for strongest
and most choppy waves, to D = 1 for Kuznetsov spectrum, to 1 < D < 2 for weaker wave
fields. We emphasize that at this point dependence of D on the wave intensity is purely
speculative, and a careful study of the wavebreaking morphology is needed to be done to
measure D in experiments.

Another aspect of our study was the measurement of PDFs of the wave elevations which,
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Figure 11: PDF of the spectral intensity band-pass filtered with a frequency window ∆f =
1Hz centered at f = 6Hz. The signal corresponds to probe B in a low-intensity experiment
with mean elevation A = 1.85cm (γ = 0.074)

Figure 12: PDF of the spectral intensity band-pass filtered with a frequency window ∆f =
1Hz centered at f = 6Hz. The signal corresponds to probe B in a high-intensity experiment
with mean elevation A = 3.73cm (γ = 0.15)
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as expected, agree well with the Tayfun distribution even though the flume finite-size effects
are indeed seen to lead in irregular deviations from the perfect Tayfun shape. We also
observed higher than in Gaussian fields probability of strong wave modes in the way similar
to theoretical predictions and numerical simulations of [8, 10].

The major feature of our experiments was that the WT regime was never achieved: with
increasing wave intensity the nonlinearity becomes strong before the system looses sensitivity
to the k-space discreteness. Particularly, most of the four-wave resonances remained arrested
leading to a depletion of the energy cascade from low to high wavenumbers. Thus, being
interesting in their own way, laboratory waves undergo a significantly different statistical
evolution from the one of their open-sea counterpart. In our future work we will explore
possibilities to “confuse” the laboratory flume and make it “forget” about the finite-size
effects via breaking the regular k-space structure by distorting the perfect-rectangle shape of
the flume boundaries. The goal of such exercise would be to increase realism of laboratory
modeling of the ocean surface processes.
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