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SUMMARY 

This thesis consists of two parts, which deal with different topics 
in dynamical systems. 

Part I (DYNAMICS FROM GAMES) is the main scope of the work. There we 
study a family of flows which are often applied in studies of some game 
dynamics in animal competition and evolutionary biochemistry. These flows 

are the solutions, on simplexes, of cubic differential equations determined 
by "pay-off" matrices. The main result in this part is a proof for a classi- 
fication of stable flows in this family, in dimension 2, first conjectured by 
Zeeman in 1979 (stability under small perturbations in the pay-off matrix). 
We add necessary and sufficient conditions for stability, which decide the 

exact class for each stable flow in the family. We also give as preliminary 
properties some simple expressions to calculate eigenvalues at fixed points 
and prove that hyperbolicity of these is necessary for stability, in all 
dimensions. 

In order to complete Zeeman's classification we had to adapt, in 
dimension 2, some techniques of structural stability for flows not satisfying 
the usually required transversality condition. 

We discuss some aspects and difficulties present when one attempts to 

study cases in dimension i3 .. 
One important three-dimensional example, involving a Hopf bifurcation, 

is discussed in detail. 

In the final chapter, we present some three-dimensional cases to which 
a discussion of stability is feasible. 

Part II (LIAPUNOV FUNCTIONS FOR DIFFEOMORPHISMS) has as its purpose 
the construction of Liapunov functions for diffeomorphisms. A local con- 
struction is presented in neighbourhood of compact isolated invariant sets. 
A globalization is obtained for Axiom A diffeos with no cycles. 



NOTE 

PART II of this thesis was first presented as f4. Sc. 

dissertation at Warwick University. It is not related to PART I 

and it is here included in its original form. It has its own 

separate bibliography and pagination. For easy handling, PART II 

is presented after a coloured partition page. 

11 



ACKNOWLEDGEMENTS 

I am extremely grateful to my supervisor, Professor E. C. Zeeman, 

for his constant advice and encouragement, without which I would not have 

come back to Warwick University to work on this thesis. It has been an 

honour to work with him. 

My gratitude must be expressed to the Universidade Federal de Minas 

Gerais, Brazil, for exempting me from all academic duties for the last two 

years. 

I am also indebted to Coordenacäo de Aperfeicoamento de Pessoal de 

Navel Superior (CAPES), MEC, Brazil, for its financial support. 

Special thanks are due to my parents for their confidence and to my 

husband for his encouragement and endurance. 

I extend my thanks to Elaine Shiels for her friendship and Peta 

McAllister for the efficient typing. 



PART I 

DYNAMICS FROM GAMES 

Tb 

Drvaldo, Daniel, David 

for their love 



IN I 

CONTENTS - PART I 
.I 

INTRODUCTION 1 

CHAPTER 1: DEFINITIONS AND STATEMENTS OF MAIN RESULTS 

1.1 Presentation of the problem 7 

1.2 Applications to game theory 9 

1.3 Some definitions and notations 11 

1.4 Classification for n 2 13 

1.5 Conditions for stability 15 

1.6 Quasi-gradient flows in dimension two 22 

1.7 Example with limit cycle for n 3 23 

1.8 Study of some combinatorial classes for n-3 25 

CHAPTER 2: PRELIMINARY PROPERTIES 

2.1 Introduction 28 

2.2 Characterisation of fixed points in Ä 29 

2.3 Flows "A without fixed points in e 42 

2.4 Fixed points of 4A on 3A 46 

2.5 Equivalence to Lotka-Volterra equations 55 

CHAPTER 3: CLASSIFICATION FOR DIMENSION 2 

3.1 Introduction 59 

3.2 Non-existence of periodic orbits for stable classes (n = 2) 60 

3.3 Phase portraits of "A . when fixed points are hyperbolic 68 

3.4 Proofs of Theorem I and III 91 

CHAPTER 4: A CLASSIFICATION FOR QUASI-GRADIENT FLOWS IN 
DIMENSION TWO 

4.1 Introduction 95 

4.2 Phase diagrams 98 



4.3 Circular distributions 99 

4.4 Some handle lemmas 107 

4.5 Proof of Theorem IV 116 

4.6 Application to gradient-like flows 125 

4.7 Application to 2-dim. manifolds with boundary 126 

4.8 Application to game dynamics 128 

CHAPTER 5: NOTES ON THE HOPF BIFURCATION THEOREM 

5.1 Introduction 130 

5.2 Statements 131 

5.3 Comments 136 

5.4 Proofs 137 

5.5 Example 143 

CHAPTER 6: -'EXAMPLE WITH LIMIT CYCLE FOR n-3 
6.1 Introduction 147 

6.2 Local behaviour at the barycentre 150 

6.3 The basin of attraction for L 158 
E 

6.4 Flow 
e restricted to as 167 

6.5 About stability for 0e for small c j& 0 180 

CHAPTER 7: FURTHER RESULTS AND COMMENTS ON FUTURE WORK 

7.1 Introduction 190 

7.2 Questions 190 

7.3 Combinatorial classes 193 

7.4 Study of some combinatorial classes of Z4 194 

BIBLIOGRAPHY 208 



-1- 

INTRODUCTION 

The aim of this part is to state and prove some results in dynamical 

systems, mainly refering to a family of differential equations which are 

often studied for applications in game theory, chiefly games of animal 

conflicts and biochemistry. More specifically, we want to study a family 

of cubic differential equations which give a flow on an n-simplex a, 

each element of this family being determined by an (n+l) x (n+l) matrix A 

which (as will be seen in 1.5.1) can be assumed to have zero diagonal. 

Explicitly, we take 

-em {x   (x09..., xn) E ]Rn+1 
n 

; xt i0, F. x, =1} 
0 

and equations 

(*) xi - x1 ((Ax)i - xAx) 

(where x represents ambiguously both row and column matrices of elements 

x0. xl'..., xn). 

In game theory language, xi is interpreted as the proportion of the 

population playing strategy i, A is the pay-off matrix and x represents 

the distribution of strategies in the population, which can evolve with time 

(see e. g. [393, [41] or 1.2 in this work). 

The link between game theory and animal conflicts was proposed by 

Maynard Smith and Price [20], but as a game static in time. They 
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proposed to seek a distribution of strategies that is stable under 

natural selection called an "evolutionary stable strategy" or EES. 

Taylor and Jonker [39] introduced the idea of dynamics to this type of 

game by assuming the hypothesis that the growth rate of population playing 

each strategy is proportional to the advantage to that strategy. In 

mathematical words they introduced system (*) above. Then they proved 

that an EESis a stable equilibrium (or attractor) to the dynamic. Studies 

and applications of (*) were presented by Schuster, Sigmund, Wolff and 

Hofbauer in [32,33,17], and Zeeman [42]. Later, both Zeeman [41] and 

Hofbauer, Schuster, Sigmund [15] argued that the concept of EES was too 

restrictive, because although an EES is an attracting point of the game 

dynamics, not all of these are qualified to be an EES. Consequently, 

Zeeman [411 proposed the idea of equivalence between two dynamic games of 

type (*) more in the line of the mathematical theory of structural stability 

of dynamical systems. This led to the notion of "stable games" whose 

dynamics (or flow) are topological preserved by small perturbations in 

the pay-off matrix A (see definition 1.3.3). The stable equilibrium 

points for such stable games must then be, generically, the distribution of 

strategies in real life applications. This is the line of work that we 

will pursue in this thesis. So we will try to describe topologically the 

flow associated to (*), looking for conditions for stability, not for EES 

points. 

Later, Hofbauer [13] proved that system (*) is equivalent to equations 

in R+ I called the Lotka-Volterra equations (see also 2.5 in this work). 
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This equivalence opens a whole range of applications and also unifies 

two different approaches since the Lotka-Volterra equations are, too, 

often applied to the study of competition of species and biochemistry. 

For other applications of this system, either in form (*) or in the 

Lotka-Volterra form, we refer to works by Schuster et. al. (34,35,363, 

Eigen [9], Rescigno [30], May, Leonard [19], Maynard-Smith [21,22], 

Hofbauer et al. [16,17], Zeeman(42], Akin [1,2], Fujii [111, Coste et 

al [8]. 

After proposing the new notion of stability, as above mentioned, 

Zeeman [41] proved a number of general and basic properties for system (*) 

(some of these will be stated in chapter 2), and also conjectured a 

classification for the two-dimensional case (n=2) with the existence of 

19 stable classes, up to flow reversal. One of our main results here is 

to finish the proof of his classification (Theorem I in 1.4.1. Proof is 

in Chapters 3 and 4). We also give a test on the elements of A which 

is easy to carry out and decides if A is stable or not and which stable 

class it belongs to. (This is in Theorem II, stated in 1.5.2, proved in 

Chapter 3. ) In [41], Zeeman has also conjectured the non-existence of 

limit cycles for n=2 for systems (*). This was later proved by Hofbauer 

[13] as a consequence of the equivalence to Lotka-Volterra equations, which 

do not admit limit cycles in dimension two. (See discussion in 3.2. ) 

Also in [41], stability was proved in detail for some cases but for most 

of them it was suggested that stability would follow from the standard 

structural stability techniques of Palis-Smale or Peixoto (as in [24]. 
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[25] or [27]). In fact, this does not work since those standard 

techniques always rely on the hypothesis of transversality of all the 

saddle connections (hence no such connections should occur for dimension 2). 

But this hypothesis does not hold in most of the cases to be studied. 

However, we noted that the non-transversal connections occur on the 

boundary of the simplex and are "robust" in the sense that they are preserved 

for all systems (*) with sufficiently near pay-off matrices. So, in Chapter 

4, we have digressed from our main line of work, in order to adapt some 

techniques of structural stability in dynamical systems, given by Fleitas 

[10], in order to apply them to our equations. (So, conclusion of proof 

for the classification is given as an application at the end of Chapter 4. ) 

The only class to which this modified technique would not apply is the one 

that presents a cycle of saddle connections in its phase-diagram, but this 

was exactly the class that Zeeman studied in detail in [411, proving stability. 

Therefore, the classification for n=2 is now complete. 

For dimension 3 or more, a classification seems still a long way off. 

There ire many questions that should be answered before any attempt to a 

classification is made. Some of the questions that we think are important 

for a better understanding of (*) for n=3 we have listed in Chapter 7. 

In Chapter 6, one example (in fact a one-parameter family of examples) 

is studied in detail. This is an important example which has already 

appeared in [41] or [17] and which has practical applications, being a 

generalization of the hypercycle of [9.14,32]. Theoretically it is also 

important because this family presents a Hopf bifurcation giving rise to a 
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limit cycle. Our intention was to prove that such limit cycles can occur 

for stable classes for n=3. (They do not occur for n=2 .) In 

fact, we could only prove that, near the bifurcation point, the flow is 

globally stable in the interior n of the simplex and stable in the 

boundary ae , but we could not prove stability on the closed simplex, 

though we kept this as a conjecture. Even so, we tried to give the most 

complete picture we could for the flows in this one-parameter family. 

In Chapter 7, besides a discussion about the difficulties that are 

present for n-3, we choose some cases having special properties that 

allow answers to be given to the proposed general questions and, for these, 

we give description of the possible flow diagrams, and draw the flows on a 

Some'of the questions we put in Chapter 7 have to do with the under- 

standing of possible periodic orbits occurring for (*) in the interior 

of o. So we ask: for stable cases, are periodic orbits hyperbolic? 

unique? These questions are suggested by the fact that similar ones for 

fixed points have affirmative answers. 

Another main difficulty for nz3 is the possible existence of 

"strange attractors". This was claimed (supported by computer drawings, 

but not proved mathematically) by Arneodo, Coullet, Tresser [4,5] for 

Lotka-Volterra equations. A better understanding of such a possibility 

should be attempted before one aims at a classification for ni3. 

It is our intention to answer, in the future, some of these questions. 
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Remarks (1) All along this work we will use established concepts and 

usual notations of dynamical systems, as e. g. flows, topological equiva- 

lence (ti) , hyperbolic fixed points or orbits, stable (- inset) and 

unstable (a outset) manifolds of x (denoted by 14sx , Wux resp. ), 

attractor (= sink), repellor (= source), saddles, a- and w-limits, 

non-wandering points, asymptotical stability, phase diagrams, etc. For 

these we refer to general texts on dynamical systems like, for instance 

[26], [38] and many others. 

(2) In Chapter 5 we have also digressed from the main line of 

work in order to present a statement and some general remarks about the 

classical Hopf bifurcation theorem. We do this because, surprisingly, we 

could not find, in the vast literature about this theorem, references about 

the basin of attraction of the periodic orbit. Some information about it 

was needed for our study of example in Chapter 6. In fact, the property 

we wanted was contained in some known proofs for that theorem, but not 

explicitly stated. The verstop of Hopf theorem that we finally state is 

more general than we really need for the application in mind, but it 

contains all the information we need for it. 

(3) In Chapter 1 we give some basic definitions and statements 

for all our main results to be proved and discussed in the subsequent 

chapters. 



-7- 

CHAPTER 1 

DEFINITIONS AND STATEMENT OF MAIN RESULTS 

1.1 Presentation of the problem 

As we observed in the introduction, our purpose here is to study a 

family of differential equations in ]Rn+l which give rise to a family 

of flows on the n-dimensional simplex 

e {x = (xO,..., xn) E ýn+l 
n 

xi i0, E xi = 1} 
0 

Let Mn+l be the space of real (n+l) x (n+l) matrices. For each 

AE Mn+l we define a vector field XA 0 (X0990. IXn) on ]Rn+l , given by 

4(x) 
- xi((Ax)i - xAx) VxE ýn+1 

then we consider the system of differential equations 

(*) Xi - 
4(x)" 

1.1.1 Remarks (1) In order not to make notation too heavy, x above 

represents either the point xs (x0,..., xn) of Btn+l or the column or 

row matrices with elements x0,..., xn . The meaning of x is usually clear 

on the text or expression. 

(2) Equation (*) is sometimes referred to as the 
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replicator equation (e. g. in [131). We will use this name, when 

necessary for clarity in the text. 

Equation (*) leaves o and all its faces (see 1.1.2 below) invariant. 

Since e is compact, equation (*) determines a global flow OA on o 

for vectorfield XA , i. e. OA: 2 xo "* o such that t "' "A(t, x) is 

the solution for (*) with initial point x. OA leaves all faces 

invariant. 

1.1.2 Notations (1) Generally, a face of n-dimensional simplex e means 

any i-dimensional sub-simplex of e (i - 0,1,..., n) determined when (n-i) 

x-coordinates are fixed to be zero, while the others vary, keeping x in A 

For instance, if xi -0 for all i. k (hence xk @ 1) we get a 0- 

dimensional simplex, which is a point of d called vertex Xk . If xi =0 

for all ii {r, s} (hence xr + xs a 1) we get a 1-dimensional simplex, 

which is the, straight line segment with Xr and Xs as end points, called 

the edge Xr Xs of A. A is considered as its own n-dimensional face. 

We denote by a the interior of a, and by ae its boundary, which is 

the union of all (n-1)-dimensional faces. If F is an i-dimensional 

face, 9 will represent F minus its (i-1)-dimensional faces. 

(2) We think of A with n 3 as a tetrahedron 

immersed to üt3 and, when necessary, we will draw it as such. See figure 1 

ixt Xt 

n a2 

----- ------ xi 

ný3 
X3 

figure 1: representation of e for n-2 and n 3. 
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(3) When necessary we will denote by An the family of 

flows as above, i. e. An = (mA ;Ac Mn+l) . 

1.1.3 Remark For general properties of this family of flows we refer 

mainly to Zeeman [41], Hofbauer [13,14,17], Akin [1], Taylor, Jonker 

[39]. Some of these properties we present here either in the rest of this 

chapter or in the next chapter. The literature on studies of particular 

cases of these equations, or their applications, is vast. So we refer 

only to a few, e. g. Schuster, Sigmund, Wolff [32,33,34,35,36], 

Eigen [9], Maynard Smith [20,21,22] and Zeeman [42]. 

1.2 Applications to game theory 

The equations (*) presented in 1.1 have been widely applied, as we 

referred in the introduction, in game theory, in cases where the game is 

of a evolutionary dynamic type. The dynamic depends usually not only on 

the individual strategy, but also on the strategy of the population of 

players as a whole, and the future distribution of strategies in the 

population is determined, at all times, by the initial one. 

Given such hypotheses for a game, of course this is not a play or 

parlour game. But these are approximately the conditions found by studies 

of animal evolution and conflicts between species or between different 

behaviour in a single specie. These conflicts or evolutions can be 

interpreted as gamesin animal society (e. g. in [8,20,21,22,34,39,423). 

In these studies, it is supposed that: 
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1. pay-off to any strategy depends, at all times, on the dis- 

tribution of strategies in the population; 

2. behaviour is influenced genetically. This influence varies 

from almost complete genetic determination like in insect societies to 

partial determination like in mammals; 

3. growth-rate for any strategy is proportional to the net advantage 

to that strategy in the population. 

We show here how equations (*) represent the dynamic of a game 

satisfying 1,2,3. 

Suppose that individuals in a population can play n+l strategies, 

labelled ia0,1,..., n and let xi be the proportion of the total 
n 

population playing strategy i. Then E xi =1 and xi z0 and 
0 

xa (x0 ..., xn) represents the distribution of strategies in the population. 

(Then xce. ) 

Let A- (aij) be the matrix where aij measures the "expected gain" 

or "pay-off" of strategy i against strategy j 

Then we have: 

pay-off to i, against jQ aij 

pay-off to i, against x-E aijxj - (Ax)t 
Ii 

pay-off to x, against x E xi(Ax)i   xAx   
i 

  average pay-off to x. 
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Then the advantage to strategy i is (Ax)i - xAx 

Then, hypothesis (3) is that growth rate of xi ti advantage to i 

xi 
i. e. X- (Ax)i - xAx (by incorporating the proportionality constant 

in 
into the time unit). Hence we have xi i0 Exi =1 and 

0 
xi = xi ((Ax)i - xAx) . 

1.2.1 Remark The language used above refers'to application in animal 

competitions mainly. When applied in studies of biochemistry, or molecular 

biology, where self-replication and competition occur, e. g. as in [9,16, 

32,33,353 element of matrix A will measure the catalytic effect of 

one chemical upon the production of another. 

The aim of the rest of our work is to study equations (*), with 

associated vectorfield XA and flow mA , without much more reference 

to applications to game theory. 

1.3 Some definitions and notations 

In this paragraph we will establish the language necessary to state 

the main results we have about the replicator equations (*) of I. I. 

Further definitions, notations and properties will be presented when 

necessary. 

As noted in the introduction, we will follow here the line of investi- 

gation started by Zeeman [41], where he proposed to study how the flows 

mA change when A is perturbed in Mn+l " and, finally, when possible, 
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classify all possible flows in this family An using the following 

concepts of equivalence and stability. 

1.3.1 Definition AAB e Mn+l are equivalent (write A ti B) if there 

exists a face-preserving homeomorphism of o onto itself taking +A-orbits 

onto 06-orbits, preserving orientation of orbits. 

1.3.2 Remarks (1) The face preserving homeomorphism of 1.3.1 may 

permute the faces, but each k-dimensional face is taken onto itself or 

onto another k-dimensional face by the homeomorphism. 

(2) Definition 1.3.1 could be written simply by saying 

A'B <_> OA ti $B (i. e. OA and m6 are topologically equivalent in 

the usual sense of dynamical systems as in e. g. (26,381. ) 

(3) A -- B is an equivalence relation in Mn+1' 

1.3.3 Definition AE Mn+l is stable if it has a neighbourhood N. in 

Mn+l . such that BeN implies BNA. 

1.3.4 More remarks (4) A stable means, in terms of flow OA , that 

dA is structurally stable inside family An , i. e. in the space F 

of all flows on there is a neighbourhood ý of OA s. t. 

-m ßc 
ý nAn "> OB" A, 

(5) When A is stable, we will say, following remark 

above, that mA is stable in An 



- 13 - 

1.4 Classification for n-2 

In [41], Zeeman gave a full description of stable classes in 

M2 (n=1) with only 3 possible classes (or 2, up to flow reversals). 
He also conjectured a classification of stable matrices in M3 (n=2) 

(stability by definition 1.3.3) with 35 stable classes (or 19, up 
to flow reversals). 

One of our main tasks here is to complete. Zeeman's proof of this 

conjecture, i. e. we announce: 

1.4.1 Theorem I For n-2, stable matrices are dense in M3 and 
there are 19 stable classes, up to flow reversals. Each of these is 

represented below by a matrix in the class and a drawing of its phase 

portrait in a (in figure 2 below). 

1.4.2 Remarks (1) Proof of Theorem I will be done mainly in Chapter 3, 

but only completed in 4.8 using the technique of Chapter 4. 

(2) In figure 2 (taken from [41]) attractors are marked 
by a solid dot, repellors by an open dot and saddles by their stable (inset) 

and unstable (outset) manifolds. All other orbits flow from a repellor to 

an attractor, except in class(l), where a-limit can be the cycle on ae 

(3) The numbers denoting each stable class 

(as (1), (2),..., (5l), (52),..., (102)) will be explained later. Roughly 

speaking they mean, for instance, that (51) and (52) are two classes 

whose flows are, on an, topologically equivalent. Classes denoted by a 

single number, like (1), (2), (3), (8), mean that there is no other with the 

same topological type on an . 
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(4) The reversal of flow mA in An (denote reversal 

of "A by -¢A) is also in An with -OA a +-A (-XA = X-A) . To 

give all stable classes of Mn+l up to flow reversal means to give some 

stable classes in Mn+l so that all stable classes will be one of these 

or a reversal of one of these. This is equivalent to giving classes in 
Mn+l by a weaker equivalent relation given by 

OA "' OB or +-A "' OB ' 

The advantage to work "up to flow reversals" is that we have a much 

smaller number of classes and since all classes of Mn+l can be easily 

retrieved from this, there is no loss in the process. 

(5) Theorem I shows that no stable matrix A in M3 will 

present a periodic orbit for its associated flow OA . In fact this 

property is needed for the proof of the theorem. This was proved by 

Hofbauer (13]. Here we discus's this property in Chapter 3 (3.2). 

1.5 Conditions for Stability 

We will announce here some necessary conditions for A to be stable. 

In 1413 we find many of such conditions. 

We now want to state (Theorem III below) precise conditions on 

elements of A which allow us to decide stability (or not) of A and 

exactly to which class of Theorem I. stable matrix A belongs to. But 

before announcing this theorem we need some more definitions and notations 

from [411. 



- 16 - 

Let Zn = (A c Mn ; with zero diagonal) 

Zn = {A c Zn ; with no zeros off the diagonal) 

Kn   (A c Mn ; all rows are identical). 

So, all columns of Kn are multiples of the transpose of u= (1,1...., 1). 

Then, clearly Mn - Zn 0 Kn and we have: 

1.5.1 Properties (from (411) 

(1) A, B E Mn+l : 4A 0 OB <`> XA = XB <_> A-B e Kn+1 

ti (2) VAE 14n+l , there exists Ac Zn+l s't' mA ýÄ 

(A is, obtained by subtracting ajj from all elements aij of 

column j of A. i. e. A  '(aij). äij - aij-ajj) 

(3) (equivalence class in Mn+l) = Kn, 
)® 

(equivalence class in Zn+l)' 

Consequently, in order to. give all classes in Mn+l I or to obtain 

conditions for stability, we can always assume Ae Zn+l if convenient. 

(4) Ac Mn+l stable => OA has at most one fixed point in the interior 

of each face (including n). 

(5) Ac Zn+l stable -> AE Z+ 
n+l 

(6) Ac Zn+l  > the eigenvalues for +A at vertex Xj (j " 0...., n) 

are exactly the elements aid of column j of A off the diagonal. 
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Consequently, Ac Zn+l -> vertices are hyperbolic fixed points 

and, by (5), this is true for all Ac Zn+l stable. 

We will prove in Chapter 2, by combining Propositions 2.2.15 and 

2.4.4 (see remark 2.4.9) the following: 

1.5.2 Theorem II Ac Mn+l stable => all fixed points of mA are 

hyperbolic. 

1.5.3 Remark We remember that hyperbolicity of fixed points is a 

necessary condition for structural stability of a flow (among all vector- 

fields). In An we can only make perturbations on the matrix A. so 

there are no local perturbations. Therefore Theorem II really has to be 

proved and is not a consequence of the similar property for structurally 

stable flows. 

1.5.4 Definition A, ß c Zn+l are sign equivalent if aij bij >0ViiJ. 

A, ß c Zn+l are combinatorially equivalent if there exists permutation 

Q of {O, l,..., n} such that oA and B are sign equivalent. 

1.5.5 Remark cA represents the matrix obtained from A by permuting 

both rows and columns by permutation a. 

1.5.6 More Properties (from [41]) 

(7) A'ß c Zn+l :ANB => A, ß are combinatorially equivalent. 

Iience, stable classes of Zn+l refine combinatorial classes. So, 

to find stable classes we first must find combinatorial classes. Each of 
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these is represented only by the signs of elements off the diagonal, 

up to permutations. 

(8) The number of combinatorial classes is always finite, and for 

ns3 we can give: 

n 11 23 

number of combinatorial classes 3 16 218 

(up to sign reversal) 2 10 114 

(9) A, 6 are combinatorially equivalent <_> OA , Oß , restricted to 

the edges of are topologically equivalent, by an "edge-preserving" 

homeomorphism. 
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1.5.7 Combinatorial classes of Z3 (up to sign reversal) ([41]) 

For each Ae Z3 , either A or -A belongs to one of 10 

combinatorial classes C1,..., C10 . Here we represent each one by a 

representing matrix of signs Ar plus a drawing of phase portrait 
on 20 . 

ci 

XI 

10+- 
A1 1-0+ 

+-0 

C2 C3 C4 C5 

1++ 
A2ý(o 

-0+ 0 

1o + +` A3ý +0+) 
o+-1 

A4. +0-J 
++0 f0+- A5= +0+ 

+-0 

CO C7 C8 C9 X10 

%0++ 0+- 0-- 0-+ 0++ 
AG (-0+ A7 s(-0+ A m(+0+ q9° 

(-0+ 
A10= +0+ 

++0 +08+0 1++ 0 ++0 

figure 3: the combinatorial classes of Z3 (up to sign reversal) 

Now we are able to state necessary and sufficient conditions for 

Ac M3 to be stable. From such conditions, density in Theorem I will 

be clear. -in the following theorem we take each of the combinatorial 

classes Cr ,r-1,..., 10 , above and give conditions on elements 

aij for A to be stable, specifying which class of Theorem IA belongs 

to. When Cr contains only one stable class (up to reversal) we denote 
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this class by (r). If Cr "contains more than one stable class (up to 

reversal), these are denoted by (rl), (r2),... . This justifies notation 

in figure 2 as we said in remark 1.4.2 (3). 

To simplify statement in Theorem III below we let Sr be the sign 
TU- 

class where matrices have signs exactly like Ar above. Let S=U Sr 
1 

Now, for each Ae Z3 , by permutation of vertices, and reversing 

signs if necessary, we find that A has an equivalent matrix, up to 

reversal, in S. Consequently, we may give our necessary and sufficient 

conditions only for A in S. 

And we have: 

11.5.8 Theorem III Let AeS- S1 u... u S10 and 

ka 
a01 

+ 
a02 

k= 
a10 

+ 
a12 

k 
a20 

+ 
a21 

-1 '- -1 ,- -1 0 a21 a12 1 a20 a02 2 a10 a01 

Then 

1) VAe S1 'A is stable <=> det A'0. Here tAc (1) <_> det A, > 0 

A f-(1) <=> det A<0 

2) V Ae S2 ' A is stable and Ac (2) 

3) V Aa S3 , A is stable and Aa (3) 

4) VAe S4 ' A is stable <_> k2 i0. Here A£ I (4l) <_> k2 <0 

Ac (4 2) <=> k2>0 

ýý5) VAc S5 ,A is stable <_> k2 /0. Here tAe (5l) <_> k2 >0 

Ac(52)<_>k2<0 
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6) VAc S6 ,A is stable <_> k0, kl '0. Here Ac (61) <=> k0, kl >0 

Ac (62) <_> k0, kl <0 

AE (63) <_> k0>O, kl<O 

Ac (64) <=> k0<O, kj>0 

1 7) VAc S7 ,A is stable <_> k0. kl J0, and det A#0 in case k0. k1 > 0. 

Here Ac (71) <_> k0. kl >0, det A>0 

AE -(71) <_> k0, kl >0. det A<0 

AE (72) <_> k0, kI <0 

Ac (73) <_> k0 <0 ký >0 
Ac -(73) <_> k0 >0, k1 <0 

8) VAE S8 0A is stable and Ae (8) . 

9) VAe S9 'A is stable <_> k0, kl #0. Here Ac (9l) <_> k0kl > 0 

AE (92) <_> k0kl < 0 

10) VAc S10 ,A is stable <_> k0, kl, k2 1 0. Here Ac (101)<=>k0, kl, k2>0 

AE (102)<=>k0 or k1 

or k2 <0 

1.5.9. Remark It will be clear, when we prove above Theorem III (in 

Chapter 3) that k0 /0 is necessary and sufficient condition for fixed 

point (if it exists) in the interior of edge X1X2 to be hyperbolic. 

Similarly kl g0 and k2 10 for fixed points in XOX2 and XOX1 
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1.6 Quasi-gradient flows in dimension two 

As we have mentioned in the general introduction, in order to prove 

Theorem I, we have developed a technique for dealing with flows with some 

non-transversal saddle connections. We want to give a simple instrument 

with which to decide when two flows are topologically equivalent. Such 

an instrument was given by Fleitas [10] for gradient-like flows by means 

of some circular distributions. We will adapt his technique. 

We recall ([10], [23], [37]). 

1.6.1 Definition A flow " on a compact manifold M is said to be 

gradient-like if: 

a) " his only a finite number of fixed points, which are all hyperbolic; 

b) 0= Fix 0 '(where Fix 0 is the set of fixed points); 

c) all intersections of stable and unstable manifolds for fixed points 

are transversal. 

Condition (c) in dimension 2 excludes the possibility of saddle 

connections. 

We want to allow some saddle connections. So we modify definition 

above and give 

1.6.2 Definition " is quasi-gradient if it satisfies (a), (b) and 

(c*) has no cycles, i. e., there is no sequence pO'pl'..., pn of 
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fixed points (saddles) with p0 - pn and Wupi-1 n Wspi A0- 

Now we restrict ourselves to compact, connected M, with dim M=2. 

To each quasi-gradient " on M we will associate a collection of 

circles with some points and arrows attached which we will call circular 

distribution V(O) associated to m. We do not give precise definition 

here since this would take too long. This will be presented in Chapter 4 

(4.3.1). There we will also define isomorphism (ti) between two dis- 

tributions and will prove that V(O) determines the topological type of 

m, i. e. we announce 

1.6.3 Theorem IV If 0 and ' are quasi-gradient flows, 

m ti <-> V(O) N D(*) 

1.6.4 Remark Gradient-like flows are particular cases of our quasi- 

gradient flows. When ¢ and g are gradient-like, D(ý) N V(g, ) is 

equivalent to isomorphism between Fleitas' circular distributions 1101 

for these flows. Hence Theorem IV is a generalization of Theorem lb of 

[107. 

1.7 Example with Limit Cycle for n"3 

In Chapter 6 we will discuss a family of flows in A3 for which a 

Hopf bifurcation occurs. This is given by a one parameter family of 

matrices AE in Z4 . Specifically, we let 
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0 y -e -a 

A   4 -d 0 Y -e E 
-e -d 0 Y 

Y -e -d 0 

with y>d>0. 

The same family has been presented before by Zeeman [41] (for 

1,0) and by Hofbauer et al. [17] (where this is called a 

"circulant" matrix). In both these papers, the existence of an attracting 

periodic orbit in e, for small c>0, is pointed out as the result 

of a Hopf bifurcation at cs0. However, neither of these discuss the 

flow mA globally on a for such small values of E, nor do they 

attempt to discuss stability of AE for small c#0. Our main con- 

tribution here was to prove that the periodic orbit (call it LE e> 0) 

is unique in n and has as its basin of attraction e 
minus a straight 

line which is the inset (i. e. stable manifold) of the saddle at the 

barycentre e }(1,..., 1) of. e. 

We also describe OA on ae , and prove that OA 
E 

is globally 

stable (inside family A3) in the interior e and on ae 

We collect some of these properties(to be proved in Chapter 6) in 

the following: 

1.7.1 Theorem V For A as above, we have 
e 

(i) for -(y-6) <<0, the barycentre e is hyperbolic attracting 

s with basin of attraction We  a; 
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(ii) for e-0, e is asymptotically attracting (not hyperbolically) 
0 

with basin of attraction -e; 

(iii) for e>0 sufficiently small, e is a hyperbolic 1-saddle and 

OA has a hyperbolic attracting periodic orbit L. in n, 
with 

e 
0 WSLe =a- Wse ; 

(iv) for sufficiently small cj0, A. has a neighbourhood NE in M4 

such that VBeN. there exist homeomorphisms h: n 
+n, hi : Fi + Fi 

I-0,..., 3 (where Fi is face xi - 0) taking +B-orbits onto 

OA -orbits; 
E 

(v) drawings for OA in ö and ae are given in figure 4 below. 
E 

1.7.2 Remark Property (iv) above does not say that A. is stable for 

small c00, according to Definition 1.3.3. By (iv) we say that OA 
s 

is-stable (inside family A3) if restricted to n 
or to ae . The 

difficulty in constructing homeo h: e -º e taking $B-orbits to "A -orbits 

is mainly due to the cycle of saddle connections X3 -º X2 -º XI + X0 + X3 

on as which occur for OA and for 0B VB near A. 
C 

1.8 Study of some combinatorial classes for na3 

For n 3 the classification problem is still unsolved. In Chapter 7 

we discuss some of the many difficulties that arise in any attempted study 

of stable matrices of M4 . The problem is even more bedevilled by the 

conjectured occurrence of strange attractors (see [4,5]). 
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Eco s 

X, 

X. 

F- =o 

Xý 

. xo 

E>o small Tý 

xi Xa 

XI 

xi 

X. 

"I 

xo v x1 

figure 4: phase portraits for mA (small c) in n and ae . 
e (ae is represented by two faces. Other faces are analogous. ) 

x, 

Xe 

Xe 

Ai 
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We will, however, take all combinatorial classes of Z satisfying 

the condition that for all of their matrices A, "A has no fixed point 
0 

in e. We have exactly 18 such combinatorial classes (up to sign reversal) 

among a total of 114 classes. These are characterized by the fact that all 

their matrices have one negative row and one positive row (off the diagonal). 

We call Dl, D2,..., D18 these classes. 

Then we prove 

1.8.1 Theorem VI For each k 1,..., 18 , Dk has an open dense subset 
ti 
Dk , and open subsets Dk (r - 1,..., r(k)) such that 

ti 
1) Ac Dk - Dk  > A is not stable 

ti 
2) Dk - Dk u... u Dk(k) 

3) each stable class in Dk is contained in Dk for some r (1 srs r(k)) 

4) A, B c Dk -> OA and 0B have isomorphic phase diagram and are topo- 

logically equivalent on the two-dimensional faces of 

Furthermore, we will prove (in 7.4.8 ) that some of these sub- 

sets Dk are in fact stable classes of Z4 , i. e., in these cases, 

V A, B c Dk ,A and 8 are stable with A ti B 

Then we conjecture that in fact all the sets Dr of Theorem VI are 

stable classes. The difficulty in proving this conjecture is the presence 

in most Dr's of non-transversal intersections of invariant manifolds for 

saddles. We will discuss this problem further in 7.4. 
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CHAPTER 2 

PRELIMINARY PROPERTIES 

2.1 Introduction 

During this chapter we intend to collect some properties of equations 

(*) of 1.1, which are valid in any dimension n. These properties will 

be needed for the rest of this work. Many of these are taken from [41], 

[13], [14] and [1]. We will only state some, but will present the proofs 
for others, mainly when the proof itself (or some detail in it) gives us 

any information or technique needed later. 

Other properties, which we proved, are mainly technical, but useful 

in the tackling of later proofs. We also believe that some of these 

properties may prove useful for future studies of our family of flows. 

In this category are, for instance, the properties which help us to calculate 

eigenvalues at fixed points of- +A (2.2.16 to 2.2.19 for fixed point in 
e 

when n 2,3 or 4; 2.4.2 and 2.4.3 for fixed points on ae) or to 

decide their topological types (as 2.2.20) without solving characteristic 

equation. 

Among the known results, it will be important to mention those giving 

conditions on A for existence, or not, of fixed points of OA in a (in 
0 

2.2), and also the non-existence of non-wandering points in a in case 

where mA has no fixed points in 2 (in 2.3). 
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We will also include in 2.5 a proof by Hofbauer [131 of equivalence 

between the replicator equations (*) of 1.1, in e minus one (n-l)-dim. 

face, and the equations in IRn known as Lotka-Volterra equations. This 

property will be useful in Chapter 4 (4.2) when we discuss existence of 

periodic orbits of mA for n 2. 

2.2 Characterization of fixed points in 9 

We want to study here properties of fixed points of OA in e, 

when existing. Zeeman [41] proved that for A stable, any fixed point 
0 

of mA in o is unique. We will prove (in 2.2.15) that it must be hyper- 

bolic. For n 2,3 or 4 we give expressions for its characteristic 

equation. 

Many of the following properties are in [41] and are here included 

in a series of lemmas. In all the statements below we will be considering 

matrix Ae Mn+l (or Ac Zn+l when convenient) and associated flow OA 

and vectorfield XA . When we-say that p is fixed point we mean that p 

is fixed for mA 

First we note that peö is fixed if, and only if, Ap is a 

multiple of u  (1,1,..., 1). This is clear from expression for XA 

Then we have: 

2.2.1 Lemma [41] 

(i) If there are two fixed points in the line joining them is 

pointwise fixed. 

0 (ii) If p is isolated fixed point in e. then it is unique. 
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(iii) Existence of isolated fixed point in ö is a robust property. 

0 (i. e., if OA has isolated fixed point p in a, there is 

neighbourhood N of A in Mn+l such that BcN => OB also has 

isolated fixed point in ö, 
and this is near p). 

(iv) If p is fixed point in e, then: 

p is isolated < > det Aj0. or 

Ap  0' rank A n' (adj A)u ,&0 

0 In either case p an [(adj A)u] 

where [(adj A)u] is the subspace of D2 n+1 generated by (adj A)u . 

(v) $A has isolated fixed point in 04 
<=> (adj A)u has all com- 

ponents positive (or all negative). 

Hence, if (adj A)u has both positive and negative components, there 

are no fixed points in ö 
and this property is robust. 

(vi) - If there are no fixed points in there are also no periodic 

orbits in e 

2.2.2 Corollary If all fixed points on ae are isolated (in e), then 

a fixed point in e, if it exists, is unique. 

Proof In the proof of 2.2.1(1) (in [41]), it was shown that if there are 

0 P1, P2 Ea both fixed, then pt   tpl + (1-t)p2 is also fixed for all t 
° o 

with pt cn. But there are tt" such that pt cnVte (t', t") 

and pt,, pt" E ao . Then pt,, pt", would be non-isolated fixed points 
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in 3A . Therefore conclusion must hold. 
0 

Corollary above, though simple, is helpful when we impose condition 

that fixed points in ae are hyperbolic (as in 3.3). 

2.2.3 Remark In 2.3 we will discuss the property that if OA has no 
0 

fixed points in n, it also has no non-wandering points in This 

generalizes property 2.2.1 (vi) above. 

2.2.4 Lemma [41] A stable  > OA has at most one fixed point in the 

interior of each face of o (including n) 
. 

2.2.5 Remark By lemma above, A stable, with fixed point in n implies 

that this fixed point is isolated and by 2.2.1 (iv) rank A2n. We want 

here to note that A may be stable with rank A<n as long as OA has 

no fixed point in e. This can be seen by taking 

0 -1 -1 -2 
A - 1 0 1 1 

1 -1 0 -1 
2 -1 1 0 

for which adj A-0. rank A 2. 

A is stable. (This will be seen in 7.4, where A& combinatorial class 

DI of 7.4.1, so stability of A is given by Proposition 7.4.8. ) 

P 
2.2.6 Lemma [411 If p0, p],.... Pn >0, let P-0 Pl 0 

0 *Pn 

Then, VAc Mn+l , AP ti A. 
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2.2.7 Remark In the proof of this lemma, in [41), the homeomorphism 

of e giving the topological equivalence between +Ap and OA is denoted 

by p and given by (px)i -1 pixi ,i-0,..., n , where 
n(x) 

n 
n(x) 0E pkxk 

0 

So, p is in fact a diffeomorphism of e onto e, (its inverse 

being of the same form relative to numbers 1/pO,..., 1/pn ) preserving 

faces. 

It was then shown that 

(Dp) 
x 

XAP(X) 0 n(x) XA(PX) 

From this we can take the following properties: 

2.2.8 Corollary Let x be a fixed point of OAP . Then 

(1) eigenvalues at x (for OAP) are the eigenvalues at pi (for "A) 

multiplied by n(x) ; 

(ii) z is hyperbolic for OAP <E> px is hyperbolic for OA . 

In this case, x and px have the same index. 

Proof Oifferentiatin9 (Dp) 
x 

XAP(x) " n(x) XA(px) at point z and using 

that XAp(x)   XA(px)  0 we get (Dp)X(DXAP)X - n(z)(DXA)pX(Dp)X from 

where (i) follows. 

(ii) is consequence of (i). 
0 
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Unlike for topological equivalence by a homeomorphism, by substituting 

AP for its equivalent A, we lose no information about local behaviour 

of the flow. 

2.2.9 Corollary If 0p' (pp, pl "" 'pn) eo is fixed for OA then 

A  (n+l)AP is equivalent to A and OA has the barycentre 

e nu (u (1,..., 1)) as fixed and the eigenvalues at e, for 

mA , are equal to the eigenvalues at p, for Oa . 

Proof A ti A by 2.2.7, and p(e) `p 
n 

Also n(e) E Pk. n+T a n-1- k=0 

Conclusion about eigenvalues follows, then, by 2.2.8. 
0 

2.2.10 Definition [41] A is central if the barycentre of o is an 
isolated fixed point for +A . 

Corollary 2.2.9 says, then, that if OA has isolated fixed point p 

in 2, A is equivalent to a central matrix A- (n+l)AP , called the 

centralization of A, and the eigenvalues at e for A are exactly 

the eigenvalues at p for A. 

Because of this property, whenever we want to obtain eigenvalues at 

an isolated fixed point in n for A we suppose A is central (or take 

its centralization). 

2.2.11 Lemma Barycentre e is fixed for mA ,A  (aij) <_> 3ScR 

n 
s. t. E ai4 =S for all ia0,..., n (i. e. all rows of A have the 

j=0 
same sum). 
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Proof e is fixed <_> (Ae)i - eAe i-0,..., n . 

Take S  (n+1)eAe . Then 

n 
e 'is fixed <_> (Ae)i  E aid na eAe = n-, - 

S 
j 0 

n 
<_> E 

j-0 
aiJ 

0 

2.2.12 Proposition If barycentre e is fixed for OA , taking 

yi   xi - x0 i 1,..., n as coordinates, the linear part of XA , at 

e, is 
n, - By where B is the nxn matrix given by bij   aij-a0j 

i, j   1.... ,n 

n 
Proof Since E xi 1, 

i=0 

Y' (Yll... lyn) - 0.4"' x= (x0, xl,..., xn) -e 

yi  xj-x0 " x{((Ax)i-xAx) - x0((Ax)0-xAx) 

(xi-x0)((Ax)i-xAx) + x0((Ax)i-(Ax)0) 

But, for i 1,.... n 

nn 
(Ax)t-(Ax)o aE ai4x4 -E ap4xi 

izo j=0 

nn 
ai0x0 + 

Jr 
ajj(Yj+x0) - a00x0 -JE a0J(Yj+x0) 

nnn 
- 

JE 
(aij-a0j)yj + x0( 

jE 
a- 

JsOaoj) 
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%I 

nn 
Using E aij E a0j aS 

isO js0 

(Ax)i - (Ax)0   (ßY)1 

Also, 

(by 2.2.11) we get 

iR1,..., n . 

n 
(Ax)i - xAx   

kEOxk((Ax)i-(Ax)k) 

n 
" x0((Ax)i-(Ax)0) +E xk((Ax)i-(Ax)o-(Ax)k + (Ax)0) a 

k=1 
n 

" x0(By)i +k1 xk((BY)i - (BY)k) 
= 

n 
s (BY)1 - 

kt 
(Yk+xO)(BY)k 

n 
- (By)i - yBy - xo 

ksl(By)k 

n1n 
From 

itoxi 
 1, we get xO s -n-+T (1 - kE 

Yd . Then 

Yý ° Yi((BY)i - yßy -nT (1 - 
kElyk) kz 

(BY)k) 

ksI 
Ykl(BY) 

n 
0n (By)i + yi(By)i - ný - 

(Yikn s1BY)k + (By)ikslyk) 

n 
+ yi ( 

n+T k'L 
Yr(BY)k - YBY )" 

r 
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Linear part is Yi ' n+j' 
(BY)i 

{. @. Y' R+ 
BAY 

2.2.13 Remark Proposition above will be useful to calculate eigenvalues 

at e and to prove that A stable  > fixed point in e, if it exists, 

is hyperbolic. (See remark 1.5.3. ) 

We also note property in 2.2.13 could be derived after showing 

equivalence to Lotka-Volterra equations (see remark 2.5.2 (2)). 

2.2.14 Lemma If barycentre e is fixed for mA , with eigenvalues 

{ai; i 1,:.., n} , then e is also fixed for OA+EI , VE , with 

eigenvalues {x+ i 
ý} 

. 

Proof Let A- (aij) and B  (bi3) as in Proposition 2.2.12. 
n 

i. e. bij   aij-a0j 'i, j - 1,:.., n . Let S= 
JE 

aij 

Denote A.  A+ cl - (ail + edij) (sii =1, dij =011 j) . 
n 

Then (a11 + edij) s S+c Vi-0,..., n , so, by 2.2.11, e is fixed 
Ja 

for mA 
E 

By Proposition 2.2.12, eigenvalues at e for ýA are zeros of 

det(xI -n BE) a0 where 

Bc   (bij), bij - (aij + edij) - (a0j + c50j) " bij + cd ii 

I . e. ßE -ß+ eI . 
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So det(XI - +T 
B) -0 <_> det((A + nom- 

)I - n+ 
BE) =0 

and 

x is eigenvalue at e for mA <_> a+ is eigenvalue, at e 

for +A+EI 
11 

2.2.15 Proposition Suppose mA has fixed point peo 

Then: A stable  > p is hyperbolic. 

Proof A stable with pf 40 fixed => (by 2.2.4) p is isolated => 
(2.2.10) centralization A is stable with e fixed and by (2.2.9) 

(eigenvalues at p for "A1 . (eigenvalues at e for OÄ) 

So it is now enough to show that e is hyperbolic fixed point of OA 

Suppose'it is not, then OA has eigenvalue a at e with real 

part Re(x) =0. 

By Lemma 2.2.14, "A+ I has eigenvalue a+ nom- , 
Ye . So, for 

all sufficiently small e>0, A+ el and A- cl are not equivalent, 

since OA+EI and OA_EI are not topologically equivalent, locally at e 

(because e has index for OA+EI < index for OA_EI if c> 0) . 

Therefore e must be hyperbolic fixed point for "A , and p must be 

hyperbolic fixed point for OA , if A is stable. 11 

2.2.16 Remark In [411, Zeeman gave a simple expression for the 

characteristic equation at e for a central matrix, when n=2 , as follows: 
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if A is central in Z3 ,A can be written as 

0 O+a0 8-a0 

A 0-al 0 0+a1 

9+a2 0 -a2 0 

and, then, the eigenvalues at e -u for OA are the roots of 

2e a+1, + 0 where p0 anal + a0a2 + ala2 

Letting S be as in 2.2.11, then Se 2e . 
We take PaE aijaji - a01a10 + a02a20 + a12a21 0sisjs2 

So P= (9+ao)(A-al) + (A-a0)(8+a2) + (A+aß)(9-a2) 

2 
=30 -p 0 

Then the characteristic equation is written as 

a2+ S (S P) -0 . 

In the next Proposition, we give a similar expression for the 

characteristic equation for central matrix in Z4 (i. e. n" 3), at 

fixed point e. 

2.2.17 Notation Below, and in many other places in this work, we will 

use the following notation: 
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�{'s, a 

Fi   the (n-l)-dimensional face of e, given by xi =0. 

If Ac Mn+l , Ai is the matrix in Mn obtained by eliminating in 

A row i and column i. Then XAIF = xA 
ii 

2.2.18 Proposition If AE Z4 is central, then the characteristic 

equation at e for mA is 

a3 +} Sat + 1(S2-P)a 
+ -(S(S2-P)-D) 

=0 

where 

n3E"Ss 
P  Eas D- ED 

J Oaiý 0: 51 <J: 53 
iý ýi ie0 i 

with Di - det A10 

Proof Using Proposition 2.2.12 we have that characteristic equation 

is det(xI -I B) =0 where B= (bij) E M3 where bij - aij-a0j 

Making a= 4x we have det(aI-B) -0, i. e. 

a'+a01 -a12+a02 a13+a03 
det -a21 + a01 a+ a02 -a23 + a03 s0. 

-a31 + a01 -a32 + a02 a+ a03 

Then, by calculating this determinant, and simplifying, using 

n 

JEOai4 
 S, and aii  0V1=0,..., 3 we arrive at 

e 

a3 +S a2 + (S2-P)a + S(S2-P)-D  0 

This proves our assertion. 0 
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2.2.19 Remark Ai is the matrix determining f 

to the 2-dim face Fi (opposite to vertex Xi) 

determinants on 2-dim faces. An edge XiX, is 

it OA is determined by matrix 
0 aij 

aji 0 

is -aijaji . So, -P - sum of determinants on 

low OA restricted 

So 0= sum of 

a 1-dim face, and on 

whose determinant 

1-dim faces. 

Following analogous procedure for a central matrix A in ZS 

(i. e. n- 4) , we can show that characteristic equation at e for 

mA is 

a4 +. a3 + I(s2-P)A2 +, 5(s(s-P)-o)a +I (s(s(s2-P)-o)-n) =0 

n 
where S= 

iZ 
aij 

-P   sum of determinants on 1-dim faces 

D- sum of determinants on 2-dim faces 

-n   sum of determinants on 3-dim faces . 

To prove this expression involves long calculations which we do not 

show here, since it is not relevant for the rest of the work. However, 

these expressions (for n-2,3,4) give a hint on how such character- 

istic equations probably look like for greater values of n. 

On the next proposition we give conditions (depending only on the 

values of S. P and D) for e to be hyperbolic attractor, repellor, 

1- or 2-saddle for OA for central Ac Z4 . This is useful since 
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(unlike for Ac Z3) eigenvalues are not always easily obtained by 

solving characteristic equation. 

2.2.20 Proposition Let Ac Z4 and S, P and D be as in 2.2.18. 

Then barycentre e is hyperbolic fixed point <=> D# S(S2-P) and 

S2 <P if De0. In this case 

i) e is an attractor <-> S>0, S2 >P, S(S2-P) >D>0 

ii) e is repellor <_> S<0, S2 >P, S(S2-P) <D<0 

iii) e is saddle <_> conditions on (i) and (ii) fail. Then 

e is 1-saddle (i. e. dim Wse - 1) <_> S(S2-P) >D 

e is . 2-saddle (i. e. dim. Wse   2) <_> S(S2-P) <D 

Proof The conditions above are simple, based on the fact that a cubic 

polynomial equation 

x3+Ax2+Bx+C=. 0 

has zero root <_> C 0 

complex conjugate pair of imaginary roots <_> Aß  C, B>0 

When C10 and B<0 if Aß -C, denoting ai the real parts of 

roots Ai ,i-1,2,3, we have 

i) all ai <0 <_> A, B, C >0 and AB >C 

ii) all ai >0 <"> A, C <0, B>0 and AB <C 

iii) if ai do not all have the same sign, then 
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one is <0, two are >0 <_> C>0 

one is >0, two are <0 <_> C<0 

Applying this to 

a3 + Wal + .. (S2-P)a + 
Z(S(S Z-P)-D) 

e0 

we obtain conditions as asserted. 

0 
0 

2.3 Flows A without fixed points in e 

The aim of this paragraph is to present the important property 
0 that flows "A having no fixed points in a, have all their non- 

wandering points on ae . This property is in Theorem 2.3.1 below 

which was first proved by Hofbauer [141, and later by Akin [1]. tie will 

include below (in 2.3.3) Hofbauer's proof, which is short and elegant, 

and also (in 2.3.6) a sketch of Akin's proof that, though longer, gives 

us an explicit expression for function V of the theorem, allowing more 

precise conclusions to be taken. 

0 2.3.1 Theorem (C14], C1]) If OA has no fixed points in n. then 

there exists a Cm function V: n 
-*]R which is strictly decreasing on 

orbits of mA in n. 

2.3.2 Remark A function decreasing on orbits is usually called a 

Liapunov function for the flow. o 
Consequently, "A has no non-wandering points in a 

2.3.3 ist Proof of 2.3.1 ([14]) 

The convex set C  (Ax ;xe ö} c 1tn+} is disjoint from subspace M 
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generated by vector u (1,1,..., 1) because pcn is fixed <_> Ap cM 
n 

Hence there exists linear functional f: ütn+l + D2 , f(x) = 
iEocixi 

such Opt fIM "0 and f(x) <0VxEC. 

n 
But f IM  0  > E ci s0. So, function V: n 

-o-IR , given by 
I0 

n ci 
V(x) sn xi , is well-defined, positive and has no equilibrium point 40 

0 in e 

Also, 

V(x) - ad't' V(OA(t+x)) ° V(X) E Ci Xi 
"I t=0 i0i 

nn 
= V(x)( s ci(Ax)i - (E ci)xAx) _ 

i=0 i=0 

= V(x)f(Ax) <0Vxeä. 
0 

The second proof is longer, so we present here only a sketch. 

But first we need some new definitions, which we also take from [1]. 

2.3.4 Definition Let g1, q2 Eo, AE Mn+l " We say that ql 

dominates q2 if (g1A)j k (g2A)j vj=0,1,..., n with strict 
n 

inequality for at least one j. (Note (qA)j s 
iE0aijgi .) 

Also, ql strictly dominates q2 if (g1A)j > (g2A)j Vj=0,..., n 
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2.3.5 Definition For xee , we call support of x denoted by 

supp(x) , the set {t c {0,... , n}; xi > 01 . 

2.3.6 2nd Proof of 2.3.1 (C1]) 

This consists of a series of steps. We state what is proved 

in each step, without the actual proofs. 

ti Step 1: For pce. ApE Eu)<->Ap-0 

ti n 
where Aij = a, j - n+T k= 

E0aka 

(Remember: pc °p is fixed for OA <_> Ap c Cu). ) 

Step 2: Äx 
e0 has no solution in n (o) 

<_> there exists q+ , q- eo, with disjoint support such that q+ 

dominates q- (or q+ strictly dominates q, respectively). 

(This is the crucial step*in the proof. ) 

Step 3: If q+ dominates q, let I+ = supp(q+) ,I= supp(q) 

If I+ nI=0, we define 

V(x)   
in _(xi)gi 

/ IT +(xi)gi 
for xcQ 

EI icI 

Then V is positive, with no equilibrium points in a, and 

V(x) <0 Vx(n . 

Steps 1,2 and 3 complete proof of 2.3.1. a 
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In 11)ß the proof goes on with two further steps, which we here 

present as propositions 2.3.6 and 2.3.7. 

Let D (SD) be the subset of Mn+l consisting of the matrices A 

for which there are q1, q2 cA with ql dominating 'q2 (resp. ql 

strictly dominating q2) . Let D' aD- SD . 

2.3.61 Proposition 111 SD is open in Mn+l , D' c D(SD) and VAc 

there exists a continuous one-parameter family Ac c Mn+l with A° =A, 

Ac c SD for c>0 and Ac LD for small c<0 
0 

(hence for c<0, +A has fixed point PC c n) . Furthermore 

- PC -" pcm as c -+ 0 where p is fixed for OA 

2.3.7 Proposition f1] Let q+q- cA with disjoint support. If q+ 

strictly dominates q- (for A) then: 

lim n- (xi(t))9i a0 
t-º+ W Id 

"q+ 

and lim n+ (xi(t)) I=0 
t-*-- id 

0 
(where x(t) _ Wt, x) for xF n) . 

Hence, Vxcn we have 

w(x) cU_ Fi , a(x) cU+ Fi 
idI ici 

(where a- and W-limits are taken for flow "A ). 
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So we can also take: 

2.3.8 Corollary 

(i) AE D'=> A is not stable 
0 

(ii) A stable with no fixed points in o => Ac SD 

(iii) Ac D' -> +A has fixed point pe ae which is not 

hyperbolic. 

Proof (i) and (ii) follow clearly from 2.3.6.. (iii) is also a con- 

sequence of 2.3.6, by taking p- lim pe an . If p was hyperbolic, 
E-º0- C 

there would exist neighbourhoods V of p in n and N of A in Mn+l 

such that VBEN, mB has only one fixed point in V, which must 

be on ae . This would contradict AE -º A with pE fixed for OA 

and pC fp. So p is not hyperbolic. 

2.4 Fixed points of OA on ae 

Our main purpose in this paragraph is to prove that A stable 

implies that all fixed points of OA on ae are hyperbolic (in 2.4.4) 

and also to give explicit expressions for calculating eigenvalues at 

these points (in 2.4.2 or 2.4.3). 

We already know (see 1.5.1 (6)) that A stable => vertices are 

hyperbolic, and eigenvalues at Xi for "A are {aij-aii ;jA i) . 
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Now we will deal with fixed points q for mA qc as-vertices. 

So Iq = supp(q) {0,1,.... n} and Iq contains at least two 

indices i. Let k Iq -1. Then 1sks n-1 . We will 

denote by F the k-dimensional face of e, given by F= {x eo; 

xi a0ViI Iq} . Then qc interior of face F (denoted by ý) 
. 

Let AF be the (k+l) x (k+l) matrix obtained from A by 

eliminating all rows and columns with indices not in Iq . 

Then flow OA restricted to face F is the flow OAF on 

k-simplex F. 

We know that A stable => AF stable in Mk . Hence, using 

Proposition 2.2.15 we get 

2.4.1 Lemma A stable => q is hyperbolic for restriction of "A to 

face F. 

Now we calculate eigenvalues at q, i. e. 

2.4.2 Proposition {eigenvalues of +A at q} 

  {eigenvalues of OA at q} u (xi = (Aq)i-gAq; i Iq) 
F 

Proof To simplify notation, we can suppose that a permutation of vertices 

was made so that Iq 0 {0,1,..., k} .k So xe F<=> xi =0Vi= k+l,..., n 

and q= (g0, ql,..., qk, 0,..., 0) , iä0 
qi "1 and qi >0 for 0sisk 
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Let us take coordinates yl,..., yn where 

(YOºYlº"""ºYn) =x-qºi. e. f Yi = xi - qi 0s1sk 

Yi=xi k<isn 

0 Since q is fixed (and qc F) _> (Aq)i = qAq for 0s1sk 

n 
Also y=0 <_> xq , i=t 0 

yi =0 Vy , 

and yi = xi = xi ((Ax)i - xAx) i=1,..., n . So, 

1s15k => yi - (Yi+q j) ((AY) { -(A/i-YAY-4AV-YAq-9A) 
k<isn => Yi ' Yi((AY)i-(Aq)i-YAY-gAY-YAq-qAq) 

n 
Since y0 -E yi , (Ay)i , qAy and yAq are linear in 

i-l 

(yl,... tyn) and yAy is of second order. Therefore Zinearization 

at q is 

qi ((AY)i - qAy - yAq) 1sisk 

IYi ° Yi ((Aq)i - qAq) ° Aiyi k<isn 

Hence Xi = (Aq)i - qAq for iI (0,..., k) = Iq are eigenvalues 

of OA at q with eigenvectors in the yi-directions (respectively) 

which are transversal to face F. 

So our assertion is proved. 
11 
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2.4.3 Corollary For any iI Iq , Ai (as above) can also be cal- 

culated by xi n (Aq)i - (Aq) j where j is any index in Iq . 

Proof This follows from xi   (Aq)i - qAq plus the fact that 

0 
qcF => (Aq)j - qAq Vjelq 

13 

2.4.4 Proposition A stable  > fixed point q for +A, in the 

interior of any k-dimensional face F of a *, is hyperbolic. 

Proof Take notations as before. By lemma 2.4.1 A stable => q is 

hyperbolic for restriction to F. So it is sufficient now to prove 

that ai 0Vij Iq 

Suppose Ar -0 for some rI 1q rc {0,1,..., n} . We construct, 

below, a continuous one-parameter family Ar- c Mn+l such that A° =A 

and q is fixed point for ýAc with Ai+e (i 4Iq) as eigenvalues-in 

directions transversal to F ." Then ar =0 (for some ri Iq) would 

imply that A -c and Ac are not equivalent for all sufficiently 

small c>0, and, so, A would be not stable, contradicting the 

hypothesis. 

Therefore Xi #0Vie Iq , if A is stable, and q is hyper- 

bolic fixed point. 

For the construction of family Ac we suppose (as in 2.4.2) that 

Iq   (0,1,... , k) and we take 
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1/q0 

0 

and let Ac -A 
0 

qcF -fixed for 

n 

=> (A`q)i =E( J-0 

'qA`q 

0 
1/ql 

1/Gk 

1 

.1 

- cc 

OA " (Aq)i s qAq for ic Iq = (0,..., k} 

3ij-ccij)gj   (Aq)i -c= qAq -c 

for 0si sk 

x> q is fixed for 
At 

Also for k+l :isn 

nn 
(A`q)i - (ACq)p = 

JE(aij-ccij)gj 
- 

JEo(a0j-ec0j)gj 
= 

(Aq)i - cC11. gi - (Aq)0 + cC00. g0 
of u 

0 1/q0 

Ai +e 

Then, by 2.4.3, ai+E is eigenvalues at q for " 
Ac . and this con- 

cludes the proof. 0 
We know by 2.2.1 (v) and 2.2.4 that A stable with fixed point p 

0 in e => ß-(adjA)u has ßi >0 V05i sn (or Bi <0 V05i sn). 
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But in remark 2.2.5 we showed that A may be stable (with no fixed point 

in ö) 
with Bi =0V0sisn. Corollary 2.4.5 below is related 

to these properties. 

2.4.5 Corollary Let o  (adj A)u . 

If ßi 20 (or Bi s 0) for all i 0,..., n with Bi =0 for some i 

but not all, then A is not stable. 

Proof By permutation of vertices, we may suppose ßi >0 (or ßi < 0) 

for 0sisk and Si =0 for k<isn (where 0s k< n) 
k 

Let c=tEsi q= 
fig 

and F=(xcp; xi =0 for k<i sn} 

0 Then qcF and q is fixed for OA with 

(Aq)i ' 
j= 
E0aijoj _ 

j= 
E0aid 

k= 
E0 (adj A)jk 

in 1 ao 
k=O(A. 

adj A)ik det A for 0sisn 

So. by 2.4.3. ai -0Vi' 1q i. e., all eigenvalues for OA at q 

in directions 'transversal to F, are zero. Therefore q is not hyper- 

bolic and, by 2.4.4, A is not stable. 0 

In the next proposition, we treat the special case of a fixed point q 

in the interior of a (n-1)-dimensional face F of e. So, there exists 

(unique) vertex Xk opposite to F, i. e. F- {x E A; xk   0} 

i. e. F  Fk of 2.2.17. 
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0 
2.4.6 Proposition If q is fixed point in Fk , then: 

q is hyperbolic <_> q is hyperbolic for restriction to 

Fk and ßk 0 (adj A u)k ý0 

Proof By Proposition 2.4.2, it is enough to prove that ak = (Aq)k-qAq 

is equal to Bk multiplied by a non-zero constant. 

For simplification of notation, we suppose a permutation of vertices 

was made so that k 0. We write Fs Fo . 

Then q- (O. gl,..., qn with qi >0 for 1s1sn and 
n 

itlgi 
 1. We denote q (ql. """+qn) 

If Iq is hyperbolic fixed point for OAF , then q is isolated 

fixed point in F, and, by 2.2.1(v), (adj AF u)i >0 (or < 0) for 
n 

all i 1,..., n . We let ceE (adj AF 0)1 . Then cj0, and 
i=1 

o 
qa [adj AF uJ nF (see 2.1.1(1v)) 

qi 
1 (adj AF u)i Vi=1,..., n . 

Also (Aq)i - (AFq)i   qAq i' It .... n implies det AF   c(qAq) 

By Proposition 2.4.2, the eigenvalue for +A at q in direction 

transversal to F  Fo is aO _ (Aq)O - qAq . Now we will prove that 

(adj A u)0   -c ap and this implies the assertion. 

We denote by Ars the matrix obtained from A by eliminating 

row r and column s. (Then AF   ADO) 
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nn 
= (adj A u) oE(, adj A) Or E (-1)r det ArO 0 

r=0 
Or 

r=0 

= det AF +E (-1)r s a0s(-1)5' det(, Ar°)Os = 
r=1 s-1 

= det Ann F-E a0s E (_1)r+s det(AF)rs 
s=1 r=1 

nn 
  det AF -E a0s 

r  
E1 (adj AF)sr   

s 1 

n 
= det AF - 

s=1a0s(adj 
AF u)s = 

n 
c(qAq) -c 

SEIaos 
qs 

-c((Aq)p - qAq) 

_ -C A0 1 

So (adj A u)0 = -cao and 

a0 .0 <_> (adj A W0 10. 

This completes the proof. 

2.4.7 Remarks 

0 

(1) Proposition above will be useful in next Chapter 3 (in 3.3), where 

we use corollary 2.4.8 below. 

(2) When det AF J0, also qAq ¢0 and, then, c- det AF/qAq 

But we may have det AF - qAq a0 even for stable A. 
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2.4.8 Corollary If Ac Z+ and aijaj1 >0, then edge X1Xi has 

fixed point q in its interior with eigenvalues -aijaji / (aij+aji) 

and ßk/(aij+aJi) (where, B  (adj A)u and kji, j) and 

ßk a akiaij + akiaji - a1jaji . 

Proof Suppose i 1, ja2, k 0. Then aijaji >0 

 > q  (0, a12, a21) / (a12+a21) is fixed in X1X2 , with eigenvalue 

aa/ (a +a ) for restriction to edge XX, with A0 
a12 

12 21 12 21 120 a21 0 

Also a0   (Aq)0 - qAq --1 ß0 (for ß0 - (adjAu)0) 

where c"q dot AO " -(a12+a21) 

hence a0 a ß0/(a12+a21) 

Here adj A is easily obtained so we get expression for B0 as 

stated. 11 

2.4.9 Remark We know that A stable => 

vertices are hyperbolic fixed points, by 1.5.1 (3), (6) 

fixed point in Q, if it exists, is unique and hyperbolic, 

by 1.5.1(4) and 2.2.15 

fixed points in interior of faces on ae are hyperbolic, 

by 2.4.4. 

This completes proof of Theorem II, stated in 1.5.2. 
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2.5 Equivalence to Lotka-Volterra equations 

The following property was proved by Hofbauer 113 ] in order to 

prove Zeeman's conjecture of non-existence of periodic orbits for mA , 
when A is stable, for n=2 . 

As noted in the introduction, the equivalence between the "replicator 

equations" (*) of 1.1 and the equations known as "Lotka-Volterra" is 

interesting since both are often applied to the same kind of studies, 

independently. 

The equivalence to be shown is valid for any dimension n. So, we 

include it here in our preliminary properties, but we postpone the property 

of non-existence of periodic orbits in stable cases (for n=2) to next 

Chapter 3 where we deal exclusively with the two-dimensional case. 

Given any nx(n+l) matrix (aij) ia1,..., n j=0,1,..., n , the 

quadratic differential equation 

n 
(**) yý = yi(aip + 

JE 
aijyj) 

defined on B2+   {y . (yl,..., yn) E stn ; yi 2 0} is known as a Lotka- 

Volterra equation, or simply a Volterra equation. 

2.5.1 Theorem ([13]) Letting a0j  0 for all j 0,1,.... n 

equation (**) above is equivalent to the replicator equation 

(*) xi 
- xi( E ai xý -E akjxkx, ) xi((Ax)i-xAx) XA(x) 

ja0 k, j=0 

n 
where Aa (aij) , txi  1 , xi i0 1  1,..., n, x0>0 

is0 
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Proof Let, then, a01 -0 for 0sjsn, and make y0 =1 

Then (**) can be written as yi ° yi(Ay)i 

where y  (y0. Y1.... , yn )eP= (y e Itn+l ; y0 -1, yji01=1,..., n} . 

(Note that y0  0 .) 

Define transformation h: P +a by 

n 
h(y) sx with xi   yi /Ey 

j=0 J 

So h(P) -e- FO , FO face x0 -0. Inverse of h (defined on 

e-FO) is given by yi xi/x0 . Then 

Eyi - 
yi 

E yi a Eyi E aikyk - 
yi 

ajkyjyk 
j yJ (Eyi) Ji yj k (Eyj) 3+k 

X0 Xi(k aikxk 
j, k 

ajkx? k) 

which is replicator equation (*) above but for a change in time. 

yo 

6 

�i 
kf 

figure 5: the transformation h: P ye- FO 
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2.5.2 Remarks 

(1) Given nx(n+1) matrix a10 

.. 

an0 

all a12 "' ain 

and an2 ... ann 

for (**), to obtain matrix Ae Mn+l for the equivalent replicator 

equation (*) we added a first row of zeros. 

So 

00 
A= a10 all 

\a0 
and 

00 
a12 ... aIn 

ant ... ann . 

For the reversal process, having any Ac Mn+l ,Ae (ai j) i, j = 0...., n 

for (*) , if we want the equivalent Lotka-Volterra equation (**), we sub- 

tract the first row from all rows, obtaining 

0 
A a10-a00 

an0-a00 

00 
atn-aQn 

an1-a01 ann-a0n 

and by 1.5.1 (1) we have XÄ   XA . Eliminating, then, the first (zero) 

row of A we get the nx(n+l) matrix for the equivalent (**). 
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(2) When, for Ae Mn+l , barycentre e of e is fixed for "A 

we saw in 2.2.12 that B° -n+-lT (aij - a0j) (i, j - 1,..., n) is the 

matrix for linear part of XA(x) at e (for coordinates yi = xi-x0 

i=1,..., n) . 

This is consistent with (aij-a0j)i, j=1..., n 
being matrix for the 

linear part of the equivalent Lotka-Volterra equation at fixed point 

(1,1,..., 1) The factor 
n+ agrees with the factor X in the 

0 
equivalence, at the point e  n+ 

(1,1,..., 1) a h(1 , 1,..., 1) 

0 (3) Equivalence obtained in 2.5.1 is useful for studying "A in e 

but not if we want to study stability of A as defined in 1.3.3 since, 

even if flow ýA associated to (**) in m+ is stable (inside its class 

of Lotka-Volterra equations), we may have A not stable. This may 

occur because to obtain the equivalence we had to remove one of the 

(n-l)-dimensional faces of and flow "A may be unstable on this 

face. 
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CHAPTER 3 

CLASSIFICATION FOR DIMENSION 2 

3.1 Introduction 

The aim in this chapter is to give most of the proofs of theorems 

I and III, stated in 1.4.1 and 1.5.8, respectively. But part of the 

proofs will be here only stated (in 3.4.1), and only proved in 4.8 as 

application of techniques presented in chapter 4. 

During the whole of this chapter we will consider only cases with 

n=2 . 

We will take the following steps: 

Step 1: Ac M3 stable => OA has no periodic orbits in a. We 

prove this fact by finding conditions on A for OA to have periodic 

orbits and noting that these are not met for stable A's . This is done 

in 3.2. 

Step 2: Description of phase portraits of "A depending on elements 

of Ac Z3 . By this we mean a description of all fixed points and of 

a" and w"limits of all orbits of mA in a 

So we establish a finite collection of open subsets of Z3 . with 

union dense in Z3 , s. t. AAB in one of these, then OA and have 

"similar" phase portraits (meaning of this will be clear when we carry 

Step 2 out). This is done in 3.3. 
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Step 3: We will state, in 3.4.1, that V A, B in one of the subsets 

of Step 2, we have that OA and 0B are topologically equivalent in 

hence A ti B. This is the Step whose proof is in 4.8. We then 

conclude that each of these subsets is in fact a stable class in Z3 

Then Theorem I gives a geometrical description of these classes and Theorem 

III is the statement of conditions found in Step 2. 

3.2 Non-existence of periodic orbits for stable classes (n=2) 

This property was conjectured by Zeeman in [41]. When Hofbauer [131 

proved equivalence to the Lotka-Volterra equations (see also 2.5 above), 

he noted that the non-existence, generically, of periodic orbits of OA 

in n follows from Dulac's test in JR2 applied to the Lotka-Volterra 

equations. 

Here we repeat this process in order to find conditions on elements 

of A for existence, or not, of periodic orbits. 

3.2.1 Dulac's test ([31 pg. 205, [7]) 

Let (I) -rt 
V- P(x, Y) = Q(x. Y) be 

a Cl dynamical system in a simply connected region G of It2 . If 

there exists a Cl function B(x, y) in G such that 

äX BP) + äy(BQ) does not change sign in G, then system (I) has no 

periodic orbit in G. (Furthermore, if (I) is analytic, there is no 

simple closed curve in G which is a (finite) union of, orbits of (I) .) 
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3.2.2 Application to Lotka-Volterra equations ([3) pg. 213, or [7]) 

Consider G- ((x, y) c2; x, y > 0) and system 

(**) x- x(a, x + bey + ci) 

y  y(a2x + b2y + c2) 

where 6  aI b2 - a2b, #0. 

We take B(x, y) . xk-1 yh-1 in G where k- b2(a2-al)/d , 
h-a, (b1-b2)/d . Then, äx (BP) + ay (BQ) _ (clk + c2h)B(x, y) 

Letting c- (c1k + c2h)d - cIb2(a2-a1) + c2a1(b1-b2) , we see that, 

generically, the system (**) above has 6A0 and aA0, and, in 

this case äX (BP) +y (BQ) does not change sign in G 

So, generically, system (**) has no periodic orbit in the positive 

quadrant of 1R 2 

(Note: In fact, the same argument can be applied analogously to any 

quadrant. Also, since x- and y- axis are invariant, we have 

that (**) has no periodic orbit in IR2 .) 

Now, if we use this property above, plus the equivalence discussed 

in 2.5, we have that: arbitrarily near any Ae M3 there is Bc M3 

for which ýB has no periodic orbit. So, we have: 

O 

3.2.3 Proposition A stable in M3 => "A has no periodic orbit in e 

Moreover, 3.2.2 also shows that periodic orbits of. (**) in lft2 may 

only occur in cases where 8=0 or a 0. We want now to find out 
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what these conditions mean in terms of the elements of A, in the 

equivalent system 

(*) xeXA(x) 
, AEM3, xEo I 

Our intention is, finally, to prove that non-existence of periodic 

orbits for OA is implied by condition of hyperbolicity of fixed point 
0 in e. 

Let A  (aij) 4 M3 . By 2.5, the system 

(*) xj - xi((Ax)i-xAx) for xce 

is equivalent (in a-F0) (up to a change in time) to 

yl ° yl «a10-a00) + (a11-a01)y1 + (a12-a02)Y2) 

y2 0 y2 « a20-a00) + (a21-a01)y1 + (a22-a02)Y2) 

for yI , y2 >0. 

To simplify notation, without loss in generality, we may suppose 

that Ac Z3 'i. e. aii =0. Then 

a- C-a01)(a02)-(a12 aO2)(a21 a01) - a01a12+a02a21 a12a21 ' (adi Au)0 

a  a10(-a02)a21 + a20(-a01)a12 -- det A. 

We know, then, that a  (adj Au)0 10, o  -det AJ0 imply 

that mA has no periodic orbit in e. We want to discuss cases a=0 

and a 0, aA0. 
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3.2.4 Discussion for d-0 or d#0, a=0 

a=0, or a-0, do not imply in general that A is not 

stable. For instance, when "A has no fixed point in n then it 

certainly cannot have periodic orbits in n (see 2.2.1 (vi) or 2.3). 

In this case a, or a, or both can be zero with A stable. 

01 2+e 
Example: A -1 01 has d= -e , a= 0 

-(2+c) -1 0 

A is stable for all e> -2 (A E stable class (2) of Theorem I). 

However for e=0, 'we have d=c-0 and for e#O, d #0aa=0. 
0 But, if A has fixed point pe taking centralization 

O e+a0 O-CIO 

Ä e-al 0 e+a, the characteristic equation 
A+a2 0-a2 0 

2 
at e for is ++ 

2e 
a+ -0 (see 2.2.16). 

Here d= (©+a0)(e+a1) + (0-00)(0-02) - (e+al)(e-a2) 

= A2+p 

a= -det A 20(02+p) 

Then d=0 -> e is not hyperbolic for "A (hence also p for mA). 

By Theorem It, A is not stable. 

If e2+p/0, but a-0. Then ©-0, p=d/0. So, 

characteristic equation at e for is a2 +p 0 
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By considering A or -A there are only two cases where this can 

happen. 

Case I a0, alta2 >0. Here A is in combinatorial class C1 (see 

1.5.7) where OA has a cycle of saddle connections on ae . But 

Zeeman in [41] proved that det A"0(a= 0) implies A not stable. 
(n-p is filled by periodic orbits of "A) . Here p>0 and p is 

not hyperbolic. 

Case II a0, al >0, a2 <0. Here A is in combinatorial class C7 

(see 1.5.7), and we have two subcases. 

(1) P>0 => A is not stable, since p is not hyperbolic. In [41], 
0 it was' shown that a region of e is filled by periodic orbits of OA 

(ii) P<0 => p is hyperbolic saddle and OA has no periodic orbit 

in a. In fact, Ae stable class (72) of Theorem I (conditions 

may be checked byTheorem III). 

3.2.5 Remark One of the purposes of the discussion above is to point 

out a mistake-in [3) pg. 213 (also in [71) where it is asserted that 

610, a-0 always imply a region around a center filled by periodic 

orbits. This does not happen either when there is no fixed point in n 

or, when there is, if a<0 (Case II(11) above). 

. 
Moreover this discussion allows us to state the following property: 

3.2.6 Proposition For Ac M3 suppose pEe is fixed point for 

OA . Then: 

p hyperbolic  > mA has no periodic orbit in ö 
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3.2.7 Remark We can say, therefore, that non-existence of periodic 

orbits in e is implied either by non-existence of fixed point in ö 

(2.1.1 (vi)) or by such a fixed point being hyperbolic (3.2.6 above). 

This is a stronger property than 3.2.3, and will be useful in the next 

paragraph (3.3), where we describe flow "A imposing condition of 

hyperbolicity of fixed points (not stability of A). 

3.2.8 Remark In [3]pg. 213 it also asserted that, since system (**) 

is analytic, Dulac's test (as in 3.2.2) also implies non-existence of 

"closed contours" (i. e. union of orbits forming a simple closed curve) 

in I22 . In fact the test fails when k<1 or h<1 (see example 3.2.9 

below). However, we will show that such "closed contours" can only occur 

with a non-hyperbolic fixed point in its interior, hence never in stable 

cases. 

We will prefer, though, to prove this property using our systems 

mA in e (A E M3) instead of their equivalent Lotka-Volterra systems. 

So, we postpone this proof till 3.3.8 and 3.3.10. 

Now, we present an example that justifies remark 3.2.8. 

3.2.9 Example Take system (**) with 

a, - -2 ß b1 - -4 , a2 -4 , b2 .I, cl "6, C2 a -5 

x(-2x - 4y + 6) 

y  y(4x +y -5) 
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which has fixed points 0= (0,0) , q0 = (3,0) , ql = (0,5), p= (1,1) 

whose eigenvalues are, respectively, 6 and -5, -6 and 7, -12 and 5, 

-} (1 ±i V57) 

Hence 0, q0 and ql are hyperbolic saddles, p is hyperbolic 

attractor (focus) (see figure 6(a) below). Also 

a=a, b2 - a2b1 = 14 '0 

v= alc2(b1-b2) + b2c1(a2-al) = -14 #0 

k= 
b2(a2-al) 6 

6= T-4 <1 

h=a, 
(bl-b2) 10 1 

I- -- a 
1T 

Hence, Dulac's test, as in 3.2.2, does not exclude the possibility of an 

orbit y going from q0 to ql , forming, together with segments 0ql 

and 0q2 ,a closed contour, like in figure 6(b) below. 

9, '(05) 

ox 9o=(3,0) 

figure 6 (a) (b) 

(a) the fixed points in example 3.2.9 

(b) a cycle of saddles forming a'closed contour for (**). 
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In order to help the proof of 3.3.8, we here establish the following 

lemmas. 

3.2.10 Lemma If system (**) has a closed contour in G, then the 

associated flow has a fixed point pcG and p is either a centre or 

a focus (i. e. eigenvalues at p are distinct complex conjugates). 

Proof If there is a closed contour in , and 6#0, there is 

exactly one fixed point p in G and, exchanging x and y axis if 

necessary, we must have a situation as described in figure 6(b) above. 

Since (**) is quadratic, we must have that p is centre or focus. This 

can be proved exactly like Theorem 6 of [7]. (The proof there is for 

a fixed point in the interior of a periodic orbit of a quadratic system 

in R2 , but, by careful inspection, we see that the property holds in 

our situation. ) 11 

0 
3.2.11 Lemma For AE M3 , 4A has , an isolated fixed point p in n <_>. 

(**) has an isolated fixed point p in G. Also x is eigenvalue at p <_> 

is eigenvalue, at p (for respective systems). 

Proof For simplicity, suppose Ae Z3 and is central 

does not alter eigenvalues, by 2.2.9). Write A=0 
0-al 

A+a2 

so eigenvalues at p are given by 

taking centralization 

e+a0 B-a0 

0 O+al 
0-a2 0 

x2 +T 
20 a+2 °- =0, p= a0al+a0a2+aIa2 (see 2.2.16). 

-l 
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The corresponding Lotka-Volterra system (**)is (see 2.5.2): 

5x x(e-a, + (-8-a0)x + (a0+al)y) xz0 

Y' Y(O+a2 + (-a0-02)x + (-e+a0)y) yt0 

where p= (1,1) has eigenvalues given by 

a2 + 2ex + (62+p) -0. 

This finishes the proof. 0 

We note that a similar property can be proved for fixed points of 

Oa and its equivalent Lotka-Volterra system, because the equivalence 

shown in 2.5 was given by a diffeomorphism between P and e minus one 

face. The factor -y multiplying eigenvalues in 3.2.11 results from the 

factor X in 2.5 interpreted as a change in the time scale. But we 
0 

do not need here this more general property. 

From 3.2.10 and 3.2.11 we take 

3.2.12 Corollary For AE M3 , if "A has a cycle of (hyperbolic) 

saddles not intersecting one of the edges of o, then mA has a fixed 

point p in 2 
with distinct complex conjugate eigenvalues. 

3.3 Phase portraits of OA , when fixed points are hyperbolic 

We know already that if Ae Z3 is stable, then 

1) Ac Z3 (hence vertices are hyperbolic) 
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2) mA has at most one fixed point in the interior of each face 

3) all fixed points are hyperbolic 

4) "A has no periodic orbits. 

In 1.5.7, we described all the combinatorial classes (up to sign 

reversal) C1, CZ,..., C10 of Z3 which contain (up to flow reversal) 

the stable classes of Z3 . 

Now we will establish, in terms of elements of A, for each Cr 

conditions for fixed points to be hyperbolic. And we will prove that 

each Cr has an open, dense subset which is the union of open subsets 

Cso that A, B E Cm  > A ti B. So, subsets Cm will rrrr 

be the stable classes of Z3 (up to flow reversal). But before proving 

AAB E Cr => A"B we will prove that A and B are "equivalent" in 

a weaker sense than that of 1.3.1 (see 3.3.4 below). 

First we have: 

3.3.1 Proposition For each r=1,..., 10 there exists M(r) s1 and 

disjoint open-subsets Cr,..., Crýr) of Cr such that 

N A(r) 
(a) C U Cm is open, dense in C 

r m, 1 rr 

(b) Ae Cr <_io all fixed points of mA are hyperbolic. 

(c) AE Cr - Cr => A is not stable. 

, (d) Any stable class in Cr is contained in one of the subsets Cm 

r 1,..., 10 m=1,..., M(ß)" 
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(e) Number f(r) of subsets in Cr is given by 

r123456789 10 

A(r) 2112245122 

(f) Taking M(l) -1, M(7) -3, M(r) - M(r) if r#1,7 then 

any stable class of Z3 is contained, up to flow reversal, in 

Cr for some r-1,..., 10 , some m 1,..., M(r) 

3.3.2 Remarks 

(1) Subsets Cr will be described along the proof. 

(2) We already know (1.5.6 (7)) that any stable class of Z3 must be 

contained, up to flow reversal, in one of the combinatorial classes Cr 
M 

Along the proof of 3.3.1 presented below it will be clear that if AeC,, 

BE CM2 9 mý j m2 , then AAB because OA and 0B will have different 

type of fixed points. Hence (d) will be valid by the construction (of 

Cr's) itself. 

After proving 3.3.1 we will improve the result by describing the phase 

portrait of OA for A in each Cr r 1,..., 10 m=1,..., M(k) . 

i. e. we wi ll prove: 

3.3.3 Proposition 

(a) If A, B e Cr then there exists a face-preserving homeomorphism 

h: e o such that 

(i) h takes fixed point of mA to fixed point of 0B , of the 

same topological type. 
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(ii) If pca is fixed point for "A , then h(Wsp )= Wsh(p). 

(b) The phase portraits of mA , up to homeomorphism, can be described 

by figure 7 below. 

3.3.4 Remark We note that homeomorphism h of 3.3.3 (a) is not 

required to take +A orbits to "B-orbits, although this will be true 

for some orbits. So, h is not a topological equivalence between OA 

and $B , and 3.3.3 (a) does not imply A ti B as in definition 1.3.1. 

This is the weaker form of equivalence we mentioned before the statement 

of Proposition 3.3.1. In 3.4.1 we will state that actually A, B E Cr => A ti B 

in order to complete proofs of Theorems I and III. However the proof of 

this fact depends on the construction of a topological equivalence between 

mA and 0ß ' and this property will be taken as an application of the 

methods developed in the next Chapter 4. 

C1 C2 C3 C4 C4 

1 C5 C5 C6 C2 Cs 

4 C6 C7 C8 

21 C9 ý9 C10 10 

figure 7: Phase portraits for OA for Ac Cr ' where fixed 
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points are all hyperbolic, attractors are marked by solid dots, 

repellor by open dots and saddles by their invariant manifolds 

(insets and outsets). All other orbits flow from a repellor to 

an attractor, except in Cl where the boundary ae is the a-limit 

for all regular orbits in n 

3.3.5 Some useful facts 

Under this heading we collect some known results but we arrange 

them in a form directly applicable during our proof of 3.3.1 below. 

(1) First we remember that an edge XiXi of e (i # j) has an isolated 

fixed point q for OA , in its interior, if and only if aijaji >0 

and, in this case, the eigenvalues at q are: 

aijaji i C° eigenvalue at q for "AIX X)'0 ij ji i 

and 
Bak 

+a where B (BCºB1ý62) a (adj A)u and kAi, j 
ij ji 

(by Corollary 2.4.8). 

So q is hyperbolic <s> ßk j0. And q is hyp. attractor (repellor 

or saddle) <_> aii, aj, >0, gk <0 (aij, aji < 0, ßk <0 or 0k >0 

respectively). 

(2) "A has isolated fixed point p in ö < > ß0, B1, ß2 all have the 

A (by same sign (by 2.2.1 (v)). In this case, Av centralization 2.2.9) 

and 
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0 O+a0 A-a0 
Ä= 0-a1 0 O+al (by 2.2.16) 

e+a2 0 -a2 0 

Eigenvalues at p for OA are the roots of equation 
2 2o 0 2+ a+=0 where p= a0al + a0a2 + ala2 (by 2.2.9 and 2.2.16) 

62+p =0 or 
Hence p is not hyperbolic <_> 

(3) A- 3AP where P= 
PO 

P1 
0P= 

(PO'PI'P2) 
0 P2 

So e(e2+p)-= det A- 3(p0plp2)det A and det A#0bp is hyperbolic. 

(4) ßs (adj A)u -> ßo   ßi u'2 06 
2+P 

" 

(5) If XiXi has fixed point q, for OA I then (by 2.2.8) XiXi 

also contains fixed point q for OA . being q and q of same 

topological type. Then for kAi. j ßk and gk have the same sign. 

(6) By direct calculation we see that: 

ß0 ° a01a12 + a02a21 - a12a21 

ßl a a10a02 + a12a20 - a02a20 

ß2 a a20a01 + a21a10 - a01a10 

During proof below we use these facts and will examine signs of 8i's 

depending on the signs of elements aij of A. 
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Proof of 3.3.1 

Z ti 
First we take (b) as definition of Cr . Then Cr is open and 

N 
dense in Cr . (c) is implied by Theorem II, since Ac Cr - Cr `_> OA 

has non-hyperbolic fixed point -> A is not stable. 

When necessary we will take permutation of vertices so as to throw 

A into a particular sign class (which we indicate by a matrix of signs) 

in Cr . This is done for simplification when we want to indicate which 

edges have fixed points and their types. 

From now on the proof is a study, case by case, of combinatorial 

classes Cr . 

Case by case discussion 

Case 1: AcC, 

There are no fixed points on edges since aijaji <0 for all iij 

We have ß0,6l, 82 >0 always so OA has isolated fixed point p 
0 in a. Taking centralization A, we must have a0, a11a2 >0 => p>0 

e2 +p>0. (This can also be seen by Bi = e2 +p>0 since Bißt >0 .) 

Now 0=0 <"> det A 0 and, in this case, p is not hyperbolic (since 

p>o) . ti 
So AEC <_> detA/O 

Take Cl   {A c C, ; det A> 0} 

Cý . {A c C2 ; det A< 0} . 
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So AcC => p is an attractor 1 

Ac C2 => p is a repellor. 1 

We also note that AcCý <=>-AcC, 

Case 2: Ae C2 

There are no fixed points on edges, and, also, no fixed point 

in n since A has positive and negative rows. (So, one vertex 

strictly dominates another vertex; see 2.3.4. ) Hence, the only fixed 

points are the vertices (which are hyperbolic). 
N 

We take C2 C2-C2. 

Case 3: A EC3 

There is no fixed point in o (as in case 2). 

By permutation of vertices we may suppose that A is in sign class 

S0++ 

+0+ 

-0 

-> OA has fixed point q in XOXI with BZ <0 

=> q is hyperbolic attractor (always). 

I #%P 
= C3 = C3 We take C3 
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Case 4: Ac C4 
0+- 

By permutation, suppose AcS+0- 

++0 

_> OA has fixed point q in XOXI and det A<0 

a> fixed point in n (when it exists) is hyperbolic. 

ti Then Ac C4 <e> g2 ý0 

We take C4 = (A c C4 ; ß2 < 0} 

C4-(Aa C4 02 >0). 

If Ac C4 (ß2 < 0) -> q is hyp. attractor and 

0` a20a01 + a21a10 < a01a10 

=> a21 < a0l => g0 - a12(a01-a21) + a02a21 <0 

a20 < a10 -> gl - a02(a10-a20) + a12a20 <0 

o 
_> Oa has isolated fixed point p in n with 

e>0 because A (hence A too) has positive row 

e2+P = gi <0 because 01 <0 

_> p is hyp. saddle. 

If Ac C2 (ß2 > 0) => q is hyp. saddle, we can see that 

gl i0 a> a10a02 + a12a20 2 a02a20 a> a12 > a02 => 00 ° a01a12+a21(a02-a12) < 0- 

Similarly ß0 =0 -> Bl <0. 
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Hence, always either BO or B1 is <0. Being ß2 >0, OA 

has no fixed point in a (see 2.2.1 (, v)). 

Case 5: Ac C5 
10 +- 

By permutation we suppose AeS+0+ 
+-0 

_> "A has fixed point q in XOXI which is hyperbolic if and only if 

ß2A0. 

We always have ß0 >0 and det A>0. So fixed point in a (if 

it exists) is hyperbolic. 

Then, Ac C5 <_> g2 $0 

We take C5 - (A c C5 ; B2 > 0) 

C5 . (A c C5 ; 82 < 0}. 

If Ae C5 (ß2 > 0) _> "q is hyp. saddle 

and a20a01 > (-a21)a10 + a01a10 a20 > a10 > 

ßl = (a10-a20)a02 + a12a20 >0 

So 00101,82 >0 and mA has hyp. fixed point p in 

with 50>0 (since A has positive row) 

e2+p = ßi >0 (since ß1 > 0) 

a> p is hyp. attractor. 

If Ac C2 (ß2 < 0) _> q is hyp. attractor and OA has no fixed 

point in a, because 00 >0,02 40 (by 2.2.1 (v)). 
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Case 6: Ac C6 
0++ 

By permutation, we suppose AcS-0+ 
++0 

a> OA has fixed points q0 in X1X2 and ql c XOX2 and q0 (ql) is 

hyperbolic < > ß0 #0 (01 # 0) . It will be seen by process below that 
ti 8061 #0  > Ac C6. 

We take define C6,..., C4 by 

AcC6 <">ß0, ß1 >0 AcC6 <"> 00901 <0 

AEC6 <">ß0>0, $1 <0 ; Ac C6 <">00<0, ß1>0. 

If A C6 (ß0'ß > 0) _> q0 and ql are hyp. saddle. 

To show that B2 >0" we write BO " a12a21 
C 

awl + a02 -1) 21 12 
) 

a10 a12 
"aa 

a20 
+ 

a21 
-1 ßl a02a20`a20 + a02 - 

1ý and 82 01 10 
l 

al0 a01 

and, to simplify notation, we take 

a`801 >0' ß_a10>0 p y. 
a, 2>0 

a21 a20 a12 

then 00 >0 a> a+y>1 a> a> 1-y 

gl >0 <a> - g+ 1>1 
.>Y>1  > 1-Y >0 

5o 
ä4 

and 
ß> 

 > 
ä-ß<1 

`'ß2 a01a10( ß- 1) >0 
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Hence ß0,6l, 62 >0 and OA has isolated fixed point p in 

with 50>0 (because of positive row) 

l A2+psßi>0 

_> p is hyp. attractor. 

If A C2 (ß0, ßl < 0) a> q0 and ql are both hyp. attractors. 

Similarly to what was done in C6 we can show that ß2 <0, hence OA 

has isolated fixed point p in n with 0>0 

e2+p = gi <0 

 > p is hyp. saddle. 

If "A e C6 (B0 >0, gl < 0) , q0 is hyp. saddle, q, is hyp. 
0 

attractor, and there is no fixed point in n. 

If Ac C6 (BO <0, ßl > 0) , q0 is hyp. attractor, q, is 
0 hyp. saddle, and there is no fixed point in e. 

Case 7: 'A c C7 
10 + 

By permutation we suppose AcS-0+ 
+0 

_> "A. has fixed points q0 in XlX2 and ql in XOX2 which are 

hyperbolic <-> ß0"ßl 10. 

If 00901 >0. q0 and ql are hyperbolic saddles and similarly 

to case 6 we can show that we must have 02 >0. 'Hence ýA has an 

isolated fixed point p in n with 0 
2+p 

  ßi >0 
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If det A>0  > 0>0 => p is hyp. attractor. 

If det A<0 -> e<0 a> p is hyp. repellor. 

If det A-0 a> 0 0, p>0 -> p is not hyperbolic 

 > A is not stable. Zeeman [41] has proved that, in this 

case, p is a centre and there is a region of n filled by periodic 

orbits of OA . This corresponds to case II(1) in our discussion in 

3.2.4. 

If 80.81 <0, then q0 is hyp. attractor, q1 is hyp. repellor. 

and in similarly to case 6 we can show that 82 <0 . Hence OA has 

isolated fixed point p in ö with 02+p <0 

 > p is hyp. saddle (even when det A"0, which corresponds to 

case II(ii) in 3.2.4). 

If ß0 <0, Bl >0, q0 is hyp. attractor, ql is hyp. saddle, 

0 
and there is no fixed point in 

If B0 >0, ßl <0, q0 is hyp. saddle, ql is hyp. repellor 

and there is no fixed point in a. 

We define Crr-1,..., 5 by 

AECl «>ß0, ßl >0, detA>0 

Ac C2 < > g0, ß1 >0 

A Cý <">00<0, ß1>0 . 
5 

Then C7 
 U Cr 7 

r 1 

AEC4<<> 00>0. ßl <0 

AcC5<=> 0', o1 >0, detA<0 
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But now we note that if A is in sign class S as indicated 

then, taking a as the, pe 
012 

rmutation 1021 then A= a(-A) cS with 
W0   Bl Wl ° 

N 
ß0 , det A  -det A. 

Therefore A c C5 <"> -Ac Cl 

A cC4 <_> 7 -AcC3 7 

(A E C2 C. > -A E C2) 
. 

Case 8: AcC8 
f0 

-- 
By permutation, we suppose that AcS+0+ 

-+0 
mA has fixed point q0 in X1X2 , ql in XOX2 

We always have ß0 <0, B1 <0, B2 >0. So q0 is hyp. attractor, 

q1 is hyp. repellor and OA has no fixed point in o. Then C8 = C8 

and we make C8   C8 1 too. 

Case 9: Ac C9 
0-+ 

By permutation, we suppose that AeS-0+ 

+0 

 > mA has fixed points q0 in YZ , q, in XOX2 , q2 in XOXI 

which are hyperbolic < > 00901,82 $0 

But 82 <0 and det A<0 always. So, q2 is hyp. repellor, 
0 

and fixed point p in e (when it exists) is hyperbolic. 

Then Ac C9 «> ß0#01 ý0. 
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If 80, ß1 <0, then q0 is hyp. attractor, ql is hyp. attractor 

and ýA has isolated fixed point p in n 

with 5e>0 (because of positive row) 

e2+p"ßi <0 

a> p is hyp. saddle. 

If 00 >0 "> a02 > a12 `> 01 ` a10a02 + a20(al2-aO2) `0 

So, q0 is hyp. saddle, ql is hyp. attractor and ýA has no fixed 
0 

point in a 

If B1 >0 => al '02 -> ß0 ° a0lal2 + a21(a02-a12) <0. 

So, q0 is hyp. attractor, ql is hyp. saddle and ýA has no fixed 
o" 

point in -, & . 

In this last situation we note that we can take permutation 

a  (0 Ö 2) (exchanging vertices X0 and Xl ' and points q0 and 
ti 

ql) obtaining A= cA still in the same sign class S with 
Wo  fi owl  g0  > W0>0,0 

l <0 

Hence 86 >0, ßl <0 and ß0 <0. Bl >0 are really equivalent 

possibilities. 

We also note that we have shown that we cannot have 90 and Bl 

both positive. 

We let C9 (A c C9 < 0) 

C9"(AcC9; 00 6 <0) 
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Case 10: Ac C10 

OA has fixed points q0 in X1X2 , ql in XOX2 , q2 in 

XOXI , which are hyperbolic <_> 00,01,02 10. Since det A>0 
fixed point p in n (when it exists) is hyperbolic. 

Then Ac ý10 
<_> 00,61962 j0 

If 00,01082 >0, g0, ql and q2 are all hyp. saddles and OA 
has isolated fixed point p in with e> 0 and 

1 
e2+p = gi >0 

-> p is hyp, attractor. 

Now we see that 

s2 <0 => a01 > a21 a> g0 = a12(a01-a21) + a02a21 >0 

a10 > a20 -> gl = a02(a10-a20) + a12a20 >0 

and, similarly, ß0 <0 -> ß1,02 >0 

and 61 <0 a> 80962 >0 

In case ß0 <0 (or 81 < 0) we can permute vertices XO and X2 

(or XI and X2 , respectively) so that we obtain (in same sign class 

ds A) with W2 <0 WO 
1>0 

So these three cases are equivalent. 

We put C10   {A c C10 ; 00901162 > 0} 

C2  '{A c C10 ; B0 <0 or ß1 <0 or 10 ß2 < 0} . 

For Ac C10 , +A has no fixed point in e and of the fixed points 

g0, ql'q2 I one is hyp. attractor, two are hyp. saddles. (qi is the 

attractor if 0i<0 .) 



- 84 - 

We know that any stable class of Z3 is contained, up to reversal, 
in Cr for some r"1,..., 10 (see 1.5.6(7)). Considering that 
Cý _ _Cl , C4 77_ -C3 , Cý  - Cl we can then disregard Cý, C4, C5 

i. e., taking M(l) =1, M(7) =3, M(r) - h1(r) for rj1,7 , then 
(d) implies that any stable class of Z3 is contained up to flow 

reversal in Cr for some r-1,..., 10 ;m"1,..., M(r) . i. e. 
(f) is. valid. 

11 

3.3.6 Lemma Let A=0 e+a0 O-a0 

A-al 0 A+al 

e+a2 0-a2 0 

where a0, al > let 0 a2 < -1e1 

and p= a0al + oOa2 + a1a2 

Taking points Y 
(: 

a2 ,)EX0X2 a0-a2 

and Z= ( 0, 
a1 a2 

EX1X 2 al -a2 al -a2 

then flow OA is transversal to segment YZ if and only if e'0 

Denoting by el and e2 the components of e-YZ , containing 

X0X1 and X2 respectively (see figure 8 below) then, for p>0 we have: 

if e>0, flow ý crosses YZ from al to e2 

if 0 <0 , flow A crosses YZ from o2 to Al 

if e =0 YZ is invariant, with Y and Z being fixed for mA and 
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an orbit along YZ goes from Z to Y (so there is a cycle of saddles 

Z-ºY+X2-ºZ) . 

Also, barycentre e of a is fixed for OA , hyperbolic 

<=>e=0; and p>0  > eao2 . 

Proof For x- (x0, xl , x2) co, let 

f(x)=2x0+a2x, +x 
01 

So xc YZ <_> f(x)  0. 

Take i,   {x t ä; f(x) < 01 ; e2   {x c e; f(x) > 0} 

We have 

f(x) :2 XO + 
a? 

xl + x2 IxcYZ 
O1 

+ x2(Ax)2 - f(x)(xAx) _ CIO 
x0(Ax)o + 

aý 
x, (Ax), 

0 

  äo x0((9+a0)xl + (8-a0)x2) + 
ai 

xß((8-aI)x0 + (O+al)x2) + 

+ x2((e+a2)xp + (9-a2)xl) + 

o((12-x0x1 + 
a2xOx2 

+ ý2xOx1 + 
a? xlx2 + x0X2 + xlx2) + 

0011 

+ a2 (x xpýc2 x+xýc2+xx, ýc; ) s 

a2 2 a2 22 
g- 

a0 x0 - al 
X1 - x2) 

2 

. -o(a? (1+ 2)x2 + 
a2(1+ a? 

)x2 + 2a2 xx) 
CIO a0 0 a1 al 1 a0a1 01 

=ke g(x) 
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-a 
where K= --Z-2 >0 

a0a1 

and g(x) = aý(a0+a2)XO + a0(a1+a2)xý + 2a0ala2x0x1) 

But p= a0a1 + a0a2 + ala2 >0 

al (a0 + a2) > -a0a2 >0 => a0 + a2 >0 

a0(al + a2) > -ala2 >0 => al + a2 >0 

2 
and (a0al a2) -aý(aO+a2)a02 

2 (al+a2) _ -p a0aý <0 

a> 9(x) >0Vx. 

So, e>0 => i(x) >0VxE. YZ -> orbits of OA are transversal 

to YZ , going from el to e2 

Analogously, e<0 => f(x) <0VXE YZ E> OA crosses YZ 

from a2 to a1 

If e =-0 , YZ is invariant, and clearly Y and Z are fixed, 

both saddles of OA 

Also f(e) -1 (a? + 
a2 

+ 1) 
a 01 Ol 

 >eca2 for p>0. 

Then, for 0 0, there is an orbit of +A (on YZ) going from Z to Y. 

X1 

90 
P. p"i I 

VYD 
9+ 

Xf 

a 

(a) O>0, p>0 (b) 0=0, p>0 (c) 9<0, o>0 

figure 8: illustration of Lemma 3.3.6. 
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3.3.7 Remark The proof of 3.3.6 above, although quite different in 

style, was inspired by the proof of Theorem 7 of [41]. 

Let CI and 
C be the subsets of Z3 given in the proof of 

proposition 3.3.1. Then if Ae Cl or 
C. 

mA has an isolated fixed 

point p in and by taking centralization and permuting vertices 

if necessary we can suppose 

0 Pao 9-a0 
A 0-01 0 O+a1 

0+a2 0 -a2 0 

(as in 3.3.6) with a0, al > fei , a2 < -lei and g, - adj Au  > ßt   e2+o >0I 

Then, X0, X1 and X2 are, respectively, attractor, repellor and 

saddle. Also mA has fixed points q0 c X1X2 , ql t XOX2 , with 

WSg0 c XIX2 , W1 0 
g0-q0 ce 

0 
cD W'2q, c XOX2 , Wsg1-q, 

Also, OA has fixed point p in ö, and 

Ac C7 <_> det A>0 (<_> e> 0) <= p is attractor 

Ac C5 <_> det A<0 (<_> A< 0) <_> p is repellor. 

Now we prove: 

3.3.8 Proposition 

Ac Cý => Wugo-q0 c WSp , Wsql-gl cWux 

AE Cý a> Wug0-q3 c WSXO , Wsql-ql c 11up 
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Proof Take Ac Cl . Fixed point p for OA in ö is a hyperbolic 

attractor. Without loss in generality we can suppose A is central and 

can be written as above indicated. 

so ßi a e2+p >0 and det A- 2e(02+p) >0 (i. e. e> 0) and 

eigenvalues at p are given by 

a2+T 20 +e-"0. 

Let y' 0  Wug0-q0 and Yl - Wsgl-ql . YO and Y1 are orbits of 

OA in X. We claim that YO n Yl -0. 

In fact, if this was not so, then YO - Yl . Then y0 u glX2 u g0X2 

would be a closed contour for +A (i. e. we would have a cycle of saddles 

q0 + ql +. X2 + q0) not intersecting edge X0XI. ByCorollary 3.2.12, p 

would have distinct complex conjugate eigenvalues and, so, 

(2e)2 - 4(02+p)   -4p <0I. e. p>0. 

Then, taking Yc XOx2 ,zE XlX2 as in Lemma 3.3.6 we have that flow 

crosses YZ transversally from el to A2 . Since, clearly, q0 c ZX2 

and qlI E YXO 'then orbit yo   Yl cannot flow from qO to ql because 

it would cross YZ from A2 to al (see figure 8(a)). 

Then yo = Yl is absurd. Consequently y0 n yl -A and 

14(y0) -p, a(Yl)   X2 (see figure 9(a)). 

Case Ae C5 can be treated analogously. (With help of Lemma 3.3.6 

and figure 8(c). ) p 
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ý' 

x. 

Xo xl 

(d) ACCT (b) AcC7, O. O, p> O (c) ACC 7 

figure 9: illustration for 3.3.8 and 3.3.9. 

3.3.9 Remark For case as above but with os0 (hence det A= 0) 

then 01 =a>0. 

So. we have a cycle of saddles 

qO sZq, =Y X2 qO and region 
0 
2 

is filled by periodic orbits of mA and all orbits in äl flow from Xl 

to X0 (see figure 9(b)). This corresponds to Case II(i) of discussion 

in 3.2.4 and was also discussed in (41]. 

3.3.10 Corollar Taking (Lotka-Volterra) system 

(**) x x(a, x + bey + c, ) 

ya y(a2x + b2y + c2) 

let a and a be as in 3.2.2. 

If a closed contour for mA (as in 3.2.8 and figure 6(b)) exists, 

then fixed point p inside it is not hyperbolic. 

This corollary is related to remark 3.2.8. 

Proof of 3.3.3 Again, this is mainly a case by case discussion. However, 

practically all the information needed to draw phase portraits of figure 7 



- 90 - 

. are contained in the case by case description during the proof of 3.3.1. 

The only case where further discussion was necessary was Cl and this was 

here discussed in proposition 3.3.8 above (see figure 9(a)). With this 

case discussed, all others are done by a simple inspection of where insets 

(and outsets) of saddles must come from (go to, respectively), and all phase 

portraits as in figure 7 are obtained with the information available. 

To obtain homeomorphisms h as required in (a), we simply define h 

on all fixed points, extend it first. to insets and outsets of saddles then 

to e. This should be done case by case. Just to Illustrate, we choose 

one case (Ci) 

Let A, B Cl . By permutation of vertices, if necessary, we can 70+- 

suppose A. and B are in the same sign class S-0+ as in proof 
+0 

of 3.3.1. 

Then X0 is attractor, Xl is repellor and X2 is saddle, for both 

mA and 0. . 

0A has saddles q0 E X1X2 , ql XQXZ and attractor p in ö 

0B has saddles q0 E XIX2 , 
ql c XOX2 and attractor 5 in e 

Let YD - wug0-q0 Y1 - 14sgl-q1 

YO ' Wug0-q0 Y1 ° wsg1-q1 

then IA(YO)  P c*(y) a XI 

WB(YO) ` aß(Yl) ` XI 

by Proposition 3.3.8 (see figure 9(a)). 

I 

Define h(X1) = Xi for i=0,1,2 
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h(q0) - qo . h(ql) ° q, . h(p) aP 

Now extend h to C= ao u YO u y, up taking YO onto YO 

y, onto Yl 
, XOql onto X0 , etc. This can easily be done by 

choosing points ye yo ,c 
;0, making h(y) =y and extending time- 

wise. (Similarly for yl and Yl 
9 XOgl and X0 1, etc. ) 

Now A-C- Rl u R2 where Rl, R2 are open, disjoint and wA(Rl) =p 

WA(R2) = XO . Similarly A-h(C) - Rl u R2 
, w(Rl) =Pw B(R2) - XC 

We extend h to homeomorphism of A taking RI onto R1 and R2 onto 
RZ This completes construction of h as in 3.3.3(a) for A, 6 e C' 

All other cases are done similarly. 13 

3.4 Proof Of Theorems I and III 

First we state 

3.4.1 Proposition If A, 6 Cr rm-1,..., M(k) (as in 

3.3.1) then A ti B. 

This property is much stronger than that in 3.3.3(a). We leave proof 

of 3.4.1 to be done as application of techniques developed in next chapter 4 

(in 4.8). 

However, assuming Proposition 3.4.1 as true we can easily finish proofs 

for Theorems I (stated in 1.4.1) and III (stated in 1.5.8). 

3.4.2 Proof of Theorem I 

By 3.3.1 and 3.4.1 we have that each Cr is open and A, B c Cr -> A ti B. 

This implies that AE Cr => A is stable and Cm e stable class of A in 

Z3 . By 3.3.1(d), we have that each stable class in Z3 is contained (up 
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to flow reversal) in Cr for some r, m . Hence Cr is the stable 

class, in Z3 , of all its matrices. Then, by 1.5.1(3), all stable 

classes of M3 are, up to flow reversal, exactly Cr 0 K3 for some 

r, m, and this we denote in 1.4.1 (figure 2) by (rm) (or just (r) 

when M(r) =1). 

Since Z3 is dense in Z3 , Z3 =r10 
l(Cr 

U-Cd (by 1.5.7), and 
e 

MÜr) 
(Cr U-Cm) is dense in Cr U-Cr (by 3.3.1) stable matrices are 

m=l 
dense in M3 . 

This concludes Theorem I. 13 

3.4.3 Proof of Theorem III 

Conditions for AcS  S1 ... S10 to belong to each Cr were 

established during the proof of Proposition 3.3.1. 

We have, for ß- (adj A)u 
a 

ß0 a a01a12 + a02a21 - a12a21 ° 
ao 

+ a02 - 
1) ` a12a21k0 

21 12 

ßl - a02a20k1 

ß2 ° a01 a 10k2 *' 

So, edge X1X2 has fixed point <_> a12a21 >0 and, in this case, 

00 and k0 have the same sign. Similarly for Bl and kl , ß2 and 

k2 when edges X0X2 or XOX1 , respectively, have fixed points. Now 

conditions in (1) to (10) of Theorem III are exactly the conditions 

established in 3.3.1. This finishes the proof. 
0 
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3.4.4 Corollary Let Ac M3 . Then: 

A is stable <_> all fixed points of OA are hyperbolic. 

Proof This is a consequence of the construction for subsets Cr 

3.4.5 Remark (about Proposition 3.4.1) 

Since we have only 19 cases to consider, we could try to find 

homeomorphism giving topological equivalence between OA and 0B , where 

A, 6 c Cr , case by case. 

Instead, we prefer to split the 19 cases into three groups: 

(1) Cl was treated by Zeeman in [41]; 

(2) for A. in C21 C3, C41 C41 C61 C6, C7, C9, C10 or C10 

OA has no saddle connections and is, therefore, a gradient-like flow in a 

Gradient-like flows were classified by Peixoto [28] by means of "distinguished 

graphs" and by Fleitas [10] by "circular distributions of points around 

attractors". Either classification can be used to give conclusion in 3.4.1 

for these cases; 

(3) for A in Cl. 5C. C6, C6, Cl, C8 or C9 , "A presents saddle 

connections, hence neither of the classifications mentioned above can be 

applied. If we tried to adapt Peixoto's technique we would have to work 

with lots of different types of "distinguished sets" and could not make it 

in a general way. 

Fleitas' technique uses the idea of compatible tubular families of 

Palls-Smale [24,25] and so relies on transversality of saddle connections, 

which is not valid in our cases. 
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It is, hence, mainly to deal with group (3) that we develop the 

technique in next Chapter 4. There we give a classification of a family 

of flows (on two-dimensional manifolds) which can be roughly described 

as "gradient-like with saddle connections". We adapt Fleitas' technique 

of [101. We think, however, that the classification may be useful in 

other situations besides the flows in our group (3) above. 
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CHAPTER 4 

A CLASSIFICATION FOR QUASI-GRADIENT FLOWS IN DIMENSION TWO 

4.1 Introduction 

Usually (as in [10], [23], [28], 137]) a gradient-like flow " on 

a compact manifold M is described as a "Morse-Smale flow without periodic 

orbits" meaning that 0 satisfies: 

(a) " has a finite number of fixed points, all hyperbolic. 

(b) n  Fix e. 

(c) Wspi and Wup2 are transversal V pl02 en (where st is the non- 

wandering set for " and Fix $ is the set of fixed points). 

Condition (b) excludes the possibility of periodic orbits. Also, for 

gradient-like flows there is no cycle of saddles, where we remember that a 

"cycle" is a sequence of saddle points po, pl.... 'pn with p0 = pn and 

wspi-1 n Wupi /0Vi 1,..,, n (see [26]). 

If dim M=2, condition (c) excludes the possibility of any saddle- 

connection, i. e., if pl and p2 are saddles, then Wspl n WUp2 =0. 

Hence, for dim M-2, (c) is equivalent tosayin9 that "there are no saddle- 

connections". 

4.1.1 Remark Such flows are called gradient-like because it is possible 

to construct C°-functions f: M +IR such that the critical points of f 

are the fixed points of f and the regular orbits of " are transversal 

to the level hypersurfaces of f (f decreasing on the regular orbits). 

See [23] and [37). Such functions can be called Liapunov functions for ", 
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and they make " to look like a gradient flow * (i. e. s has associated 

vectorfield X in the form of a gradient; X= grad f ). In fact, Smale 

[371 proved that any gradient vectorfield is C1 approximated by a vector- 

field whose flow is gradient-like. 

We want now to consider the following condition (c*) which is weaker 
than (c) : 

(c*) has no cycle. 

4.1.2 Definition Flow 0 is quasi-gradient if it satisfies (a), (b) 

and (c*). 

Our aim in this chapter is to give a process of deciding when two 

quasi-gradient flows are, or not, topologically equivalent, for dim M 2 

This process will be defined in 4.3 by means of what we call "circular 

distributions". These are adapted from similar distributions defined by 

Fleitas [10] for gradient-like flows. The main theorem is stated in 

4.3.6 and proved in 4.5. In 4.7 and 4.8 we give applications aiming to 

complete the proof of Theorems I and III. First, in 4.2, we will recall 

the concept of "phase diagrams" to show that these are not sufficient to 

decide (topological) equivalence class of quasi-gradient flows. 

We note that quasi-gradient flows may have non-transversal saddle 

connections. Hence, for dim M-2, saddle-connections are not excluded, 

only cycles of saddles are. 

4.1.3 Remark In the construction of a "Liapunov" function for a gradient- 

like flow (see 4.11 above) in [37] or [231, the transversality of condition 

(c) is used to build a partial order on the fixed points of " like in [38] 
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(putting pl < p2 if Wspl Wup2 # 0) in order to construct a filtration 

for 0 (Lemma 2.1 of [37]. Also in [38] or [26]). However, if we replace 

condition (c) by (c*) we can still give a partial ordering for the fixed 

points (by putting pl < p2 if there are fixed points g0,..., qk of 0 

with Wsqi-1 n WUgi #0i-1,..., k and q0 - pl qk = p2 " See also 

Step 1 in 4.5). This ordering still allows the construction of a filtration 

for " (with a process similar to the construction of MO C M1 c... c Mu CM 

in Step 3 of 4.5). This filtration, together with a construction of local 

Liapunov functions near the fixed points (as in Meyer [23] or Wesley Wilson 

[40]), gives a global Liapunov function for flows satisfying (a), (b) and 

(c*). So we say that these flows are also similar (like in 4.1.1) to 

gradient flows, justifying the name "quasi-gradient" of Definition 4.1.2. 

We do not intend to present here any more details for the construction 

above indicated, but we claim that it can be successfully carried out. 

Also, if we look carefully at the constructions in (37] we can see 

that any gradient flow can be C1-approximated by a quasi-gradient flow. 

Note that a gradient flow ma present non-transversal saddle connections, 

but it has no-cycles. Hence, our quasi-gradient flows of 4.1.2 are, in 

fact, much more "like" gradient-flows than the usual gradient-like flows, 

and these are particular cases of quasi-gradient flows. Condition (c), 

instead of (c*), is usually imposed to aim for structural stability of 

the flow. 

4.1.4 Convention From now on. M will indicate a compact connected 

manifold with dim Me2, and 0 will be quasi-gradient flow on M 
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4.2 Phase diagrams 

For each fixed point x of ", we denote by Wsx and Wux 

respectively the stable and unstable manifolds (inset and outset). 

When either x or y is a saddle, and Wux n Idly j0 this inter- 

section. since dim M 2, consists of: 

- just one orbit (then we write x\ y) , or 

- two orbits (then we write x y) 

When x is repellor and y attractor, WuxnWsy is either empty 

or an open subset of M, and if there is saddle p with x ti py, 

then the latter must happen. 

4.2.1 Definition To each quasi-gradient flow m, we associate a 

graph G (or G(O)) called the phase diagram of 0 as follows: 

- take fixed points of ý as vertices 

- for fixed points x, y , where either x or y is saddle, we put 

one edge (or two edges) from X to y if x '. y (or xy, respectively) 

- for repellor x, attractor y with tiux n Wsy #A we put one edge 

from x to y (and write x y) if there is no saddle p with 

x ý. p ý. y . (If p exists, this edge is not necessary. ) 

4.2.2 Remark In Palis [26]. Peixoto [28]. Smale [38], phase diagrams 

are considered but always with condition (c) imposed. 

Let G and 6 be graphs obtained as phase diagrams for flows ý 

and I. 

4.2.3 Definition We say that G and a are isomorphic (write G- G) 
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if there is a bijection ,r taking vertices (edges) of G to vertices 

(edges) of a and such that: y is edge from x to y <_> n(y) is 

edge from n(x) to , r(y) . 

Hence x\y <s> n(x) \ n(y) 'xy <_> n(x) n(y) 

4.2.4 Lemma If ý ti 0 _> G(m) a G(f) . 

Proof This is standard, 7r being induced by the homeomorphism h 

giving topological equivalence between the flows. 

4.2.5 Remark For gradient-like flows, Peixoto [28] gave example showing 

that G(O) a G(ip) does not imply $ ti *. Hence the same is valid for 

quasi-gradient flows. But, allowing saddle connections to exist, we can 

give, in 4.3.8, a simpler example than that in [28]. 

4.3 Circular distributions 

To each quasi-gradient flow + in two-dimensional M, we will 

associate a "circular distribution" of points (Definition in 4.3.2) 

which, roughly speaking, gives us information on how outsets of saddles 

flow to attractors or to other saddles of m. In 4.3.6 we will state 

theorem saying that such distributions characterize classes of top. 

equivalence of quasi-gradient flows. 

The idea of such circular distributions was taken from Fleitas [10], 

where he worked with gradient-like flows. In [107, the circular dis- 

tributions are constructed considering, around each attractor Ai of a 

gradient-like flow 0, a small circle Si transversal to 4$ taking 

S- USi , and considering on S pairs of points Pl, P2 which are the 
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intersection of W UPn with S for each saddle Pn of ". To each 

such pair, arrows must be attached indicating how a neighbourhood of the 

arc EPn, P2] on WuPn rejoins S. Then the family of circles Si 

pairs Pl, P2 and their arrows are the "circular distribution of points 

associated to gradient-like 0 ". Two such distributions in [10] are 

said to be isomorphic if there exists homeomorphism between the unions 

of the circles taking pairs to pairs and compatible with arrows. Then 

theorem lc of [10] says that two gradient-like flows are top. equivalent 

<_> their circular distributions are isomorphic. 

One of the problems when we try a similar construction for quasi- 

gradient flows is that not all saddles will determine pairs of points on 

S. Some saddles determine just one point, some will have no associated 

points on S (when one, or two, of their unstable separatrices flow, not 

to attractors, but to other saddles). Even if we try to join the information 

retained by this construction with the information given by phase diagrams 

(as in 4.2), we are still not able to characterise equivalence class, as 

can be seen in example 4.3.8 below. 

Therefore, we will extend the idea of circular distributions on circles 

around attractors to a circular distribution of points around attractors 

and saddles. 

4.3.1 The distribution 

Let m be a quasi-gradient flow, with attractors A19A2..., Aa 

repellors B1, B29..., Bß and saddles P19P290009P11 . 

Around each attractor Ai we take a small circle Si , transversal 

to 0, limiting a ball Di where Ai is the only fixed point. 
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(So Di c WSAi .) See figure 10. 

Around each saddle Pn we take a small circle Cn , limiting a 
ball En where Pn is the only fixed point. Also we can always take 

Cn small enough for each separatrix of WuPn (and WSPn) to cut Cn 

just once and transversally, and, also, all points in En-WsPn U WUPn 

must flow from a repellor to an attractor (i. e. separatrices of other 

saddles Pm will only intersect Cn either if Pm ti Pn or Pn Pm) 

See figure 10. 

au 
Now we take S. U S, C. U C. 

1=1 i 
n=1 n 

For each saddle Pn we will consider the points of WuPn n (S u C) . 
There are always four points on this intersection, being two necessarily 

on Cn (points where WuPn crosses Cn from inside to outside), and 
the other two not on Cn . These last two we will denote by PI 

n, 
Pn 

The points of WuPn n Cn we denote by -P1 , -P2 where we take 

-Pn c b(Pn) k-1,2,. See figure 10. 

To each of the points Pn ' Pn " -Pn ' 'P2 we will attach an arrow, 

whose orientation must indicate the way these points rejoin in a neighbour- 

hood of arc [Pl, P2] on WuPn . Hence we choose arbitrarily the orient- 

ation of the arrow at any one of these points, then the other three arrows 

are determined by this choice (arrows at -Pn , -Pn always having 

opposite orientations on Cn) in the following way: taking small trans- 

versal E to one of the stable separatices of Pn , for all sufficiently 

large t>0, Otz must intersect SuC at four points near Pn , -Pn 

-P2 Pn all at the tip side of the arrows, or all at the bottom side of 

the arrows. See figure 10. 
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4.3.2 Definition The family of circles SI,..., Sa , C1,..., Cu 

with their distinguished points {P11P21-P1v-P2 ;1enc u} plus the 

arrows attached to each of these points is a circular distribution of 

points associated to flow 0. We denote it by V(O) 

4.3.3 Remark The choice of orientation for the arrows at the 4 points 

associated to Pn is of no particular importance, and we can reverse it, 

if convenient, as long as we reverse the orientation at the 4 points to 

keep them compatible in the way explained above. 

4.3.4 Definition Let ", q be quasi-gradient flows and V- D(+) , 
i+ V(4, ) their circular distribution of points, with circles Si , Cn 

and Si ' 
En 

respectively, and S  USi ,Ce UCn a Uli ,C= UCn 

We say that D and Ü are isomorphic (write Va D) if there is a 

homeomorphism h: S uC -º SuC such that: 

(i) h takes S onto S, C onto C 

(ii) h is compatible with the points of V and D 

i. e. h takes the 4 points in V, associated to a saddle Pn of ", 

figure 10: circles {Si}, {Cn} , points (0'-Pn, -Pn, Pn} and arrows 
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onto the 4 points in V, associated to the corresponding (by (i)) 

saddle of p (which we denote by h(Pn)) , and 

h(-Pk -h(Pn k=1,2 

(iii) h is compatible with the arrows. 
i. e. h is orientation preserving (or reversing) at Pn in relation to 

local orientation given by arrows at Pn and h(Pn) if, and only if, 

the same is valid at -Pn , Pn , -Pn 

4.3.5 Remarks 

(1) Considering remark 4.3.3 we note that if V and D are isomorphic, 

we can always suppose, without loss in generality, that the isomorphism h 

of 4.3.4 preserves orientation (reversing, whenever necessary, all arrows 

at points associated to h(Pn)) . 

(2) The circular distribution of points of " does not depend on the 

actual choice of circles Si and Cn (as long as conditions in the con- 

struction are satisfied) because for any two choices, the flow itself 

induces an isomorphism between the distributions. 

(3) V  V(O) a U(ff) -U induces a bijection between attractors (saddles) 

of 0 and attractors (saddles) of q, by condition (i). We call h also 

this bijection, and, without loss in generality (permuting indices if 

necessary) we can write: 

h(Si)   51 
, h(Cn)   

En 
, h(Ai)   Al , h(Pn)   Pn 0 

4.3.6 Theorem (this is theorem IV announced in 1.6.3) 

If 0 and p are quasi-gradient flows on two-dimensional manifolds, 

then m ti ý <. > NO - V(') 
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The proof of this theorem will take the whole of paragraphs 4.4 and 

4.5. In 4.4 we prove some lemmas, in 4.5 we give the. construction of the 

topological equivalence between m and p. But the part  > of 4.3.6 

is easier so we prove it here, in the next Lemma. 

4.3.7 Lemma " ti *  > V(o) " U(p) 

Proof Let H be a homeomorphism giving top. equivalence between " and 

Certainly " and 0 must have the same number of attractors and 
M 

saddles. (Denote these by AI,..., Aa PI,..., Pu for A1,..., Aa 

Pl1.009P11 for *, indexed in such a way that H(Ai)   Ä. 
, H(Pn) . Pn 

Let Si , Cn be small Cl-circles around Ai , Pn satisfying con- 

ditions for a distribution V(m) .H may, or may not, be differentiable 

on these circles. 

For attractor Ai we take any C1-circle Si inside H(Si) , trans- 

versal to '. The flow * induces a homeomorphism pi: H(Si) + Si by 

putting pi(y)   e(y) n Si for yc H(Si) . where e(y) R (4(t, y), t a 0), 

since ß+(y) is inside H(S1) and must cross Si exactly once. See 

figure 11 (a). 

For saddle Pn we take any C1-circle 2n , inside H(Cn) , and 

satisfying conditions for a distribution for ip . Following orbits of 

we get local homeomorphisms at the points where W5n U 6n intersect 

H(Cn) and Zn . See figure 11 (b). Let En: H(Cn) f Cn be a homeomorphism, 

extending these local ones. 
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(a) 

H(Si) 
S 

- e, (y) 

A; 
Y  14 (x) 

ul. %. v 

"-----+ 
(b) 

ý. (y) 

Cnl 

figure 11: construction of isomorphism h in 4.3.7. 
rr 

Let S, C be the unions of these circles. Define 

h: SuC + SuC by 

pi o H(x) if xe Si 
h(x) " 

gn o H(x) if xc Cn 

Since any points of a distribution D(*) on En are on En n (Win u WSPn) 

we have that, h takes points of V(+) to points of V(ý) . It is easily 

checked that h is compatible with arrows. Hence h is an isomorphism 

between V(+)' and V(q) . 

4.3.8 Example We give here two quasi-gradient flows " and p which 

have isomorphic phase diagrams, but whose circular distributions D and 

V(p) are not isomorphic. 

However, we note that if we were to consider only the distributions 

around attractors, these would be isomorphic. 
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(b) circular distributions 
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(c) phase diagrams for $ and ' 
figure 12 

(a) phase portraits of $ and p 
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Here " and p are supposed to be constructed on S2 , with 

attractors Al, A2, repellors B1, B2, B3, B4 and saddles M, N, P, Q. 

These flows are given by their phase portraits in figure 12 (a). Their 

circular distributions and phase diagrams are in figure 12 (b) and (c) 

respectively. 

0 Y. 0: This can be seen in 2 ways: 

(1) Noting that D(+) ¢ D(tp) in figure 12(b). In 4.3.5 (1) we noted 
that if DaV we can suppose that isomorphism h preserves orientation. 
Fixing arrows at Ml so that Pl is at positive side of Ml for both 

D(+) and D(i) , then, for circles around M, Nl is at positive side 

of -M1, -M2 for 0 and at negative side for 4. Hence, point NI 

of D(m) cannot be taken to N1 of D(qi) for any homeomorphism pre- 

and -M serving orientations at -M 
12 

(2) Directly, by noting that points xc W'83 n WSAI will have orbit 
e (x) intersecting Sl (around Al) between Ml eA and Pl EWuP 

for $, and between Ml E WEM and Ql EWuQ for 0, and P and 

Q are not interchangeable in the phase diagram. 

4.4 Some handle lemmas 

During the proof, in 4.5 next, of theorem 4.3.6, we will need the 

process of attaching handles to a given positively invariant (relative to 

flow ") submanifold Mn_1 of M, where each handle is a neighbourhood 

of a saddle Pn containing the arc of WuPn outside Mn_l . Also, the 

union of Mn_1 with this handle must form a new positive-invariant sub- 

manifold. Then a topological equivalence between + and 0 (with 

DW a fl(y)) will be constructed taking handles to handles. This process 
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will be made clear in 4.5 but, in order to make the proof there clearer, 

we will establish here some technical lemmas, giving standard ways of 

constructing such handles and homeomorphism between them taking "-orbits 

to p-orbits. 

In the first lemma (4.4.1) we give a standard homeomorphism between 

standard handles for a standard flow. In the second (4.4.3) we show how 

handles are obtained for any flow $ (or *). In the. third (4.4.4) we 

combine 4.4.1 and 4.4.3 to give topological equivalence between 0 and p 

restricted to the handles of 4.4.3. 

Also, we note that in 4.4.3 the handle for saddle P will be constructed 

so that its boundary intersects WSP in 2 previously (arbitrarily) given 

points. This is not necessary for the construction itself, but it will be 

useful in'Step 3 of 4.5. 

For the first lemma, let us consider the (standard) flow 0 on IR2 

induced by the linear vectorfield Y given by matrix (0 
_l) . Let R 

be the'unit square '((x, y) cIR2 ; jxI, jyI s 1) . The boundary 3R consists 

of 4 -segments I1 , I2 , J1 , J2 given, respectively, by intersection of 

R with lines x  -1 ,x 1, y= -1 ,y 1. We will denote by gi 
, 

ji 

the interiors of Ii , Ji (1   1,2) as subsets of aR . Let I- Il u I2 

J- Jl u J2 . See figure 13 (a). 

The flow 0 (given by e(t, (x, y)) " (xet, ye-t)) has origin 0 as 

a hyperbolic saddle with WSO   y-axis, 00 - x-axis. Let pl a (-1,0) E I1 

P2 = (1,0) e I2 , ql = (0, -1) e J1 , q2 = (0,1) c J2 . We consider segments 

I1 ,12 (J1, J2) naturally oriented by increasing y (x) . 

4.4.1 Lenma (Standard handle) 

Any homeomorphism h0 :I*I sending Ii onto Ii 9 pi to pi 
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i=1,2, preserving orientations, can be extended to homeomorphism 

h: R .+R sending Ji onto Ji (qi to qi) , preserving orientations, 

and such that h is topological equivalence (in R) of e to itself. 

Proof For any ae C-1,1] consider the subset 

Da - ((x, y) cR; (1+a)x2 -(1-a)y2 = 2a} . 

So D_1   J, DI a I, D0 = diagonals of R (jxi _ jyI) and C=InJ 

corners of Rc Da Vae C-1,17. See figure 13 (a). 

D is a "continuous" family of subsets of R. To extend h to R 

we will use the following facts: 

(1) Vp= (x, y) E R-C , 3! aa a(p) s. t. pc Da , and a(p) 

depends continuously on p 
22 

In fact p- (x, y) ED <_> a  a(p)   Da 
2-x -y2 

(2) Vpe R-0 , the flow is transversal to family Da 

In fact, putting fa(x, y) (l+a)x2 - (1-COY 2-2a 
, we have 

Da f-1(0) and V (x, y) 1 (0,0) ,ac C-1,1] 

axa + aya 
y= (l+a)2x2 + (1-a)2y2 >0 

(3) Vpe R-Ws0 , 3! ts(p) z0 such that f(p)   e(ts(p), p) eI. 

Also ts(p) and f(p) are continuous in R-W50 . 

In fact, if p= (x, y), xA0, jxj, jy) s1 then ts(p)   -loglxl 

f(p) (Ix . ylxl) EI 

Now we define h: R +R by 
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p, if p6C or pcl4SO 

h(p) 

Da(p) n 0(h0 o f(p)) , if pcR-Cu WSO 

See figure 13 (b). 

(a) 

Cc) 
i 

19 

,f 
(1) 0 

Nl' 
h(ro 

'. h( pes) 

Pe 

figure 13: (a) family D. transversal to flow 0 

(b) construction of h 

(c) continuity of h on C and Ws0 

h (p1 

(f(Fý) 

We have to show that h is homeo, extends h0 and takes orbits 

to orbits: 

I) h1I   h0 because, if pcC, h(p)  p  h0(p) , and if pcI, 

then a(p) =1. ts(p) -0, f(p) "p hence h(p)   0, n O(h0(p)) h0(p) 

II) h takes orbits to orbits, by construction. since if p, p' t R-C u WSO 

with p' c 0'(p) , then f(p')   f(p) so h(p') c O'(h(p)) . The same 

is clear for p. p' c Us0 . 

(b) 

'1 
-'- 
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III) Continuity of h on points of R-C u WSO is clear by the construction. 

If pcWs0, let pn +p with pn c R-W50 . Then a(pn) . a(p) s0 
Pn = (xn+Yn) xn '0'P= (O, Y) " If xn >0, xn "' 0+ , then 

f(Pn) -" P2 . ts(Pn) "+o and h0(f(Pn)) - P2 . So h(pn)   

_ Da(Pn) n 0, (h0(f(Pn))) => h(pn) + Da(P) nWs0 {p, -p} . Since h0 

preserves orientation, h(pn) +p= h(p) . 

Analogously for xn <0. So h is continuous on Ws0 . See figure 

13 (c). 

If p0 cC=InJ, V neighbourhood U of h(p0) = p0 3 interval 

N, on I s. t. p0 e f4l ' and Vpc N1 . 0(p) nRcu. By continuity 

of h0 interval U2 , p0 c N2 cIs. t. pc N2 -> h0(p) E N1 

Taking V =. {p e R; f(p) e N2} we have that V is a nbd. of p0 in R 

and VpcV, p' p0  > h(p)   Da(p) n b(h0(f(p))) cU. So h is 

continuous on C. See figure 13 (c). 

Hence h is continuous on R 

IV) h is homeo. because h(R)  R and h is injective since 

h(p) ` h(p') <-> a(p) - a(p') and f(p) - f(p') < > p- p' . The inverse 

of h can be constructed by the same process starting with h Ö: I -0.1 

4.4.2 Remark When h0: I .I reverses orientation, an analogous lemma 

holds, with h taking Jl to J2 , if we put h(p) . -p if pe Ws(0) 

h(p)   h0(p) if pcC. 

Now we considera 2-dim manifold M, and flow m on M with 

hyperbolic saddle P. Let El, E2 be Cl-arcs on M transversal to m, 

intersecting %I'P at points PlP2 respectively, each on one of the two 

separatrices of WuP . 
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We denote by r P11P2] the arc of WuP with P1 and P2 as end- 

points. In the following lemma, R and e are as in 4.4.1. 

4.4.3 Lemma (Existence of handles) 

Let Q1 and Q2 be any two points one on each separatrix of WSP 

Then, there exists a connected, compact neighbourhood N of P and homeo- 

morphisms T: N-R such that: 

(a) [Pl, P2] cN 

(b) aN - El u E2 u Ll u L2 where Ll and L2 are Cl-arcs transversal 

to ", intersecting WSP at Ql and Q2 , respectively. 

(c) Vpc N-WSP , orbit B(p) leaves N at a point of El u E2 

Vpc. N-WuP , orbit 0(p) enters N at a point of Ll u L2 

(d) T is top. equivalence between restrictions of 0 to N, and e 

to R. 

(e) T takes Pl, P2, Ql, Q2, El, E2, Ll, L2 respectively onto pl, p2, gl, q2, 

Il'i2, Jl'12 

Proof This construction uses standard techniques of dynamical systems. 

Since 1, 
E2 are transversals to " intersecting WUP on P1, P2, 

W= WSPu (U ft(E1 u E2)) is a neighbourhood of l15P . fibrated over 
ts0 

[Pl, P2] by WSP and the iterates mt(Ei) as in [24], [25] or [26]. 

At Qr (r   1,2) we take small C -arc Sr transversal to " 

Qr Sr Sr cW and such that Vxc Sr-Qr ,3 t+ (X) >0 with 

f(t+(x), x) c 
il 

u i2 , $(t, x) cU for 0sts t+(x) . See figure 14. 

(Li denotes Ei without endpoints. ) 
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/ 

sý L 

T 

figure 14: construction of N and T: N +R 

We now extend Sr to a C1-arc Lr whose end points are also end 

points, one of E1 , other of E2 (take smaller Sr if necessary) with 

Lr transversal to ", not intersecting [Pl, P23 and Lr cW. See 

figure 14. 

Now arcs E1, E2, L1, L2 bound a region Fl connected, compact containing 

P in its interior and satisfying (a), (b) and (c). 

Now we define T: N-R 

N is fibrated over CPl, P2J with fibers FX xe CPl, P2] , 

where Fu 
X= 

WSP nN- CQl, Q2J , if x-P 

¢(-t+(x), Er) nN, if $(t+(x), x) - pr 

Similarly, N is fibrated over CQ1, Q2] , with fibers Fy, ye CQ1, Q2] 

where Fs WUP nN= CPl, P2] if x=P 

mit (Y), br) nN, if +(-t (Y), Y) Qr 

(This is the process of tubular families of Palis-Smale [24,25]. ) 

Let fu (fs) be the projection of N onto [P1, P2] (IQl, Q2J) 

sending a Fu-fiber (FS-fiber) to its intersection with [P1, P2j ([Q11Q2]). 

%I 9's ) 
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Similarly, R can be fibrated by WsO plus iterates of I (fibers 

are vertical) and, also, by Wu0 plus iterates of J (fibers are hori- 

zontal). Then T must be constructed taking Fu-fibers to vertical 
fibers of R, and Fs-fibers to horizontal fibers of R. This can 
be achieved by taking homeomorphisms Tu : CPl, P2] { Cpl, p2] and 

Ts : CQl, Q2] - Cql, g2] given by: 

Tu(P) s0' Tu(pr) s pr 

Tu(x) - e(-t+(x), pr) if . (t+(x), x) - pr 

f TS(P) °0. TS(Qr) s qr 

TS(y) ` e(t (x). qr) if 4(-t (Y). Y) = Qr 

Now define T: N -R by 

T(P) - (Tu(fu(P)) . TS(fs(P))) 

See figure 14. 

T is a homeomorphism and takes "-orbits to 9-orbits, since 

pe N-CPl. P2] u CQl, Q2] with q  q(t0, p) implies fu(q) - O(t0fu(p)). 

fs(q) ' 0(tp"fs(p)) ' t+(q) ' t+(p)-t0 and t -(q) -t -(p) + to . 

so Tu(fu(q)) ' ©(tp. Tu(fu(P))) 

TS(fs(q)) - o(tp"TS(fS(P))) 

T(q) " ©(tp"T(p)) 

Hence, T is top. equivalence (in fact, a conjugacy i. e. time is 

preserved) between flows 0 and 0 restricted to N and R, i. e. 

(d) holds. (e) follows by the construction. 
0 
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Now we will combine lemmas 4.4.1 and 4.4.3 to obtain a topological 

equivalence between two flows 0 and p restricted to neighbourhoods 
N, N of saddles P, P like in 4.4.3, the homeomorphism being 

previously fixed on arcs rl , E2 (taking them onto gl , 
-2) 

So, take N as in 4.4.3 for 0 and P with 3N = E1 u E2 u L1 u L2 

and suppose that compatible orientations of E1, E2 are given. By com- 

patible we mean that arc Lr (r=1,2) intersects both El and E2 at 

positive side (or both at negative side). 

Similarly, take N as in 4.4.3 for 0 and P with aN a El u i2 u Llu 1Z 

and il 
, 

i2 have compatible orientation. 

4.4.4 Lemma (Equivalence on handles) 

Given neighbourhoods N, R of P as above, and any homeo- 

morphism g0: El u E2 + El u i2 taking Er onto Er (r = 1,2) , preserving 

orientation with g0(Pr) = Fr (where pr   Er n WUP , 
pr   Er n %UP) , 

then go can be extended to hömeomorphism g: N -º N which is a top. 

equivalence between flows 0 on N and p on N, with g(LluL2) = Ll 
u L2 

4.4.5 Remark Re-indexing Er if necessary we can make g(Lr) s Cr 
. 

Proof, Let T: N -+ R and T: N -R be given by 4.4.3, for " and 

respectively. 

Exchanging Ql with Q2 , if necessary, we can suppose, in 4.4.3, 

that xc S2-Q2 => +(t+(x), x) E positive side of El u E2 (relative to 

given orientations). This makes T to take Er onto Ir preserving 

orientation (orientation of Ir being the usual). 
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Analogously, we suppose f takes Er onto Ir preserving orientation. 

Let h0  T go T-11i : I1 u IZ _0. I1 u I2 . h0 satisfies hypothesis 

of 4.4.1, so it can be extended to homeomorphism h: R R taking Jr to 

ir 

4T 
% 

I 

9 s 

T(x) 

TI 
J` 

(Tcxý) 

J. 

figure 15: construction of g: N -º N in 4.4.4. 

Take g- Y-1 hT: N -* 
N. See figure 15. g is homeomorphism 

taking "-orbits to *-orbits because T takes "-orbits to e-orbits, 

which are taken to e-orbits by h, and these are taken to *-orbits by 

i-1 
. 

'Also T(Lr)   jr , T(Er) s Jr so g(r) - Lr . 

Hence g satisfies the lemma. 0 

4.5 Proof of Theorem IV (stated in 1.6.3 and 4.3.6) 

Let 0 and * be quasi-gradient in 2-dim manifolds M and 

Let a, Ü be their circular distributions as in 4.3. 
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ti Vº  > DaD was proved in 4.3.7. 

Now, let us suppose DaD, with isomorphism h: S uC -S u 

where (S 1 lsisa , Cn lsnsu} and '(S lsiso , 
Cn 1snsu} are the 

M 

circles of D and D and S, C, S, C are their unions. (We recall 
definition 4.3.4 and use notation as in 4.3.5 (3) so that h(Si) = Si 

, 
h(Cn) ®tn , and denote by Ai " Pn(A1. ) the fixed points of 0 (0) 

inside Si , Cn(Si, Cn 
; respectively). Write h(Ai) - Al 

9 h(Pn) ° Pn 0 

As noted in 4.3.5(1) we can suppose that h preserves orientation 

of arrows at all points of the distributions. 

Before going into the details we give here an idea of the construction 

of homeomorphism H: M fM which will give equivalence of 0 and 0 
This will be done in 4 steps: 

Step 1: Re-indexing of saddles P19.... Pu of f so that each separatrix 

of W'Pn will always flow either to an attractor or to a saddle of smaller 

index. The same will be valid, then, for correspondent (relative to, h) 

saddles Pl,... 
'Pu of 'p . This process is equivalent to a partial 

ordering of the saddles as referred in Remark 4.1.3. 

Step 2: Call Di . Di the discs in M, M containing Ai, Äi 
, bounded 

by Si respectively. Extend h to NO: MO s UDi -* 
MO - U5i , taking 

$-orbits to *-orbits. 

Step 3: Inductively construct (MI, MI),... (MP, Mu) as subsets of (M, M) 

with M0 C Ml c... c Mu CM 1M0 C Ml c... c Mu cM and homeomorphisms 

Hn: Mn f Mn 
, Hn extending Hn-1 , and Hn taking "-orbits to *-orbits. 

Also, +-orbits (p-orbits) will cross 2Mn(aAn) going into the interior 

of Mn (Mn) . 
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Step 4: Extend H1: Mu f Mu to H: M +M where H is the required 

top. equivalence of 0 and !. 

Step 1: Ordering saddles 

First we note that there must be at least one saddle (which we 
a 

re-index as P1) such that WuPI - Pl c W0 U WSAi (i. e. both 
i=1 

separatrices of WuPI flow to attractors). In fact, if there was no such 

saddle, for every Pn there would be another Pm with Pn ti Pm . Since 

the number of saddles is finite, there would be a sequence of saddles 

forming a cycle, which is not allowed by (c*) of 4.1.2. 

Let Wl - Wo u WSPI . By similar argument, there exists saddle 

( Pl) which we re-index as P2 such that WuP2 - P2 C W1 0 

Inductively, take Pn s. t. WuPn - Pn C Wn_I and put Wn 0 Wn_1 u WSPn. 

Therefore, saddles are put in order PI, P2,..., Pu so that 

pn\ pm u> n>m. 
" to - 

Now, re-index PI, PZ'..., Pu by Pn - h(Pn) 

Without loss in generality we can suppose that h(Pn) = Pk k=1,2 

(so, h(-Pn)   -Pk , too) by exchanging Pn , -Pn with P2, -Pý if 

necessary. (This convention simplifies notation. ) 

By compatibility with points (4.3.4 (ii)) we have Pk = h(Pk) E Si 

or Cm <_> Pn c Si or Cm respectively. Hence Pn Pm  > n>m 

(i. e. separatrices of WuPn-Pn flow either to an attractor or to a 

saddle of smaller index). 

Step 2: Construction of HD 
ara 

Let M0  U Di . 110  U Di where Di , Di are bounded by 
i l ial 
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- 

Si , S. containing A. Ai, respectively. Flows $ and * are 
- transversal to aM0 and 3M0 , respectively. For xe Di-Ai , 

3 t(x) 20s. t. f(x) - $(-t(x), x) c Si . t(x) and f(x) depend 

continuously on x, and t(x) + +'. as x+ Ai . Define H0: M0 0 
by 

I Ai ifx= Ai 
Ho(x) 

, y(t(x) , h(f(x)) if xc Di-Ai 

See figure 16. 

f (x1 
He 

(f (x)) 

figure 16: construction of HO 

Then, Jim N0(x) = Jim ý*(t, h(f(x)) a Ai 
x-ºA i t++- 

since lim ý(týSi) Ai 
t++° 

H0 is homeomorphism and takes $-orbits to *-orbits by construction. 

H  hI 
SS 

Step 3: Construction of Hn: Mn I. Mn 

Consider the points Pk (k - 1,2, n=1,..., u) of V. If 

Pn cS, we take a small arc En on S containing Pk in its interior. 
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These arcs can be taken sufficiently small to be all disjoint. The 

arrow of D at Pn induces an orientation for Ek 

Now take En k= h(E) = H0( 
n Ek) . So, Ek n 

is an arc on i containing 

Pk = h(Pk) in its interior, and the arcs Ek (for Pk c i) are disjoint. nnnn 

For saddle Pn (n 1'" "u) of $' WuFn-Pn consists of two 

orbits (separatrices) which we denote by Yn Yn , where Pn, -Pn e Yn 
p2 E 

Now Now we will construct, inductively on n-l,.., 1, , Mn, Mn and 

Hn: Mn -* Mn , satisfying: 

I) Mn is a compact, positively "-invariant neighbourhood of 
an 

(UA)u(. UWUP) with P IM for m>ni 
nj 

iý 
m=1 mmn 

Analogously for Mn . relative to p. 

II) aMn is'piecewise-C1 one-dimensional submanifold, transversal to 

$. By transversal here we mean that orbits of $ cut 3Mn going from 

M-Mn into int Mn (i. e., Vxc aMn , m(t, x) / Mn for t<0 and 

"(t, x) c int M for t> 0) and the intersection of orbit with 3Mn is 

C1-transversal at point where aMn is Cl 

Analogously for An relative to 4º 

III) Hn is homeomorphism, Hn (aMn) - aMn and Hn takes positive $-orbits 

onto positive , y-orbits. 

IV) For n<ms if WuPm has separatrix y (k  1 or 2) 

flowing into Mn , then 
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Pm c amn and Hn(Pm) - h(Pm) - Pm c aMn 

r 

V) For all Pm c 3Mn (as in IV), Pm e eMn , there are (small) 

C -arcs Em , Em contained in aMn, An respectively, and containing 
pm Pm , respectively, in their interiors, with Hn(Em) - Em preserving 

orientations given by arrows of V and i 
at Pm and Pm . Also, all 

such intervals on aMn are disjoint. 

We see that conditions (I)-(V) are valid for M0, MD and H0 , where 
(I)-(III) follow from Step 2, (IV) follows from Step 1, and (V) from 

choice of arcs at beginning of this step, and compatibility of h with 

arrows. 

By induction, let us suppose (I)-(V) are valid for Mn_l , 
Mn-l 

Hn_1 , for some n21. 

By order established in Step 1, and condition IV of induction we must 

have Pk c 3Mn_1 Pk   h(Pk) a Hn_l(Pn) c eMn_1 for k 1.2 and, by 

(V), Hn_1(En) En preserving orientation of arrows at Pk and Pk 

We denote by Ql . Q2 the points of Cn n WSPn with Q2 at positive 

side of -Pn . -Pn , relative to arrows at these points. Then Qý " h(Q1) . 

Q2   h(Q2) are the points of 
En 

n WSPn and, since h preserves orient- 

ations of arrows, Q2 is at positive side of -P   h(-Pl) 9 -Pý - h(-Pn) 

See figure 17. 

Now, we use lemma 4,4.3 to construct Nn and Nn containing, 

respectively, [Pn, Pn] ,t Pn, P2 1 with aNn   En uz2u Ll u L2 , L1, L2 

as Cl-arcs transversal to 0 (Ql) Ll'n WSPn "{Q 2}  L2 n WSPn and, 

analogously, aNn   El u EZ u Ll u 
[2 

, Ll, [2 as Cl-arcs transversal 

to *, {Ql)   
11 n WsPn 0 {Q2}   

[2 n WsPn 0 
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figure 17: construction of Nn and arc Lm 

By lemma 4.4.4, Hn-l Ir 12 can be extended to FIn: Nn -. Pln 
nuLn 

m-orbits to ý-orbits and Fn(Qr) " Qr 
'r-1,2 

"y 

We take M  M uN M An uN and H"M -ºýt n n-1 nn -1 n n' nn 

by Hn( x) 
Hn_1(x) if xe Mn-1 

An (x) if xc Nn 

We have now to prove that (I)-(V) hold for these. 

I) Vxc Nn . either xc WsPn (hence e (x) c Nn) or 

f(t, x) cN for 0stst 
+(X) 

m(t+(x), x) cEuEc amn-1 

taking 

given 

Since Mn-1 is positively 0-invariant, it follows that Mn is positively 

0-invariant, too. 
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Also, Mn_1 is neighbourhood of (U Ai) u (n U1l4'Pm) containing 
iml m=1 

positive orbits of Pl and P2 ' and Nn is neighbourhood of CP11P21 
C9 n It follows that Mn is neighbourhood of (U Ai) u(U t4uPm) 

i-l m=1 
Analogously for Mn 

II) at4n (aMn-1-fin u r2) u Ll u L2 . So, aMn is formed by a finite 

number of Cl-arcs, all Cl-transversal to flow $, aMn only fails to 
be Cl at the points joining two of these arcs, but by construction 

+-orbits cross these points from M-Mn into int Mn . 

Analogously for aMn . 

III) By induction, Hn_l is homeomorphism of Mn_l onto Mn_l taking 

"-orbits onto p-orbits, and, by construction Hn is homeo of Nn onto 
Nn also taking "-orbits to p-orbits. Since Hn_l and Hn coincide 

on rl u E2 (  Mn-1 n Nn) , we get that Hn is homeomorphism and takes 

(positive) "-orbits to (positive) tp-orbits. 

IV) Suppose Pm , with m>n, has separatrix Ym (k i or 2) flowing 

into Mn . Then, either Ym flows into Mn_l or yk c WSPn . In the 

first case, by induction 
aPm c 3Mn_1 and interval rm is disjoint of 

En U En , then Pm c Em c aMn . Hence Pm ̀  h(Pm) 0 Hn-1(Pm)   Hn(Pm) e aMn, 

and, by induction Hn(Em)   Em preserving orientations. In case 

Ym c WSPn , ym must intersect aMn at Ql or Q2 . Hence 

Pm - Qr E Lr c amn for r 1 or 2. See figure 17. 

So, Hn(Pm) a Hn(Qr)   
Qr . h(Qr) - 

Pm by construction of Hn on 

ýýn Then (IV) holds. 
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V) Now we take a small Cl-arc Em containing Pm (as in IV above) 

in its interior, with Lm c Lr c amn . Hence rk is transversal to 

Take Em   Hn(Em) c Lr c eMn then Pm a Em 

At Pk and Pm we have arrows given by the circular distributions. 

Because h: SuC + SuC preserves orientation of arrows, we have that Hn 

(by construction in 4.4.4) takes positive side of .m (relative to arrow 

at Pm) to positive side of Em (relative to arrow at Pm) . Hence Hn 

takes rk onto ik preserving orientations given by V and Hence 

(V) holds. 

Therefore Step 3 is complete. 

Step 4: Extending H :M -º Mto H: M t4 

First we note that Step 3 implies that Mu(M) is a compact 

positively q- (i, -) -invariant neighbourhood of U WuPn (TITU ) 
n=1 n-l 

Let V= M-MU ,V- M-Mu . Then V is negatively 0-invariant, 

containing all the repellors B1,..., Ba and no other fixed point of 0 
8 

Hence V= 
iU1Vi 

where Vi is a negatively "-invariant neighbourhood 

of Bi . So Vi c WuBi , and the Vi's are disjoint and aVi is 

homeomorphic to a circle and "-orbits cross aVi from int Vi to M-Vi 

Also aV - aM =Ü aV 
u and the "circles" aVi are disjoint. 

Analogously is negatively p-invariant containing all repellors 

ß1,..., 6ß and no other fixed point of 0. Similarly to above, 

BB 
V= 

3U1 
Vj Bý 

E 
Vý 

, aV = aMu = 
jUIaV4 . 

W. M 

Since HU(3V) - 3V we must have that aV and aV have the same 
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number of connected components, i. e. g=g. Hence " and 0 have 

the same number of repellors. Re-indexing, if necessary we can suppose 
that H11 (aVj) = iii j=1,..., ß . Let gi = Hula Vi : Vi ; iii 

J=1,..., ß . (g3 is homeomorphism) 

g3 can be extended to homeomorphism 

G3: Vj Vi by making 

Gj(Bj) = Bi , and 

Gj(x) _ p(-t+(x), gj(+(t+(x), x)) if xc Vj - Bj where t+(x) >0 is 

such that m(t+(x), x) e aVj . (This process is similar to Step 1. ) 

Now, we define H: M +M by 

Hu (x) if xc Mu 
H(x) 

Gj(x) if xc Vj j= 19496eß 

H is continuous and bijective. Since M. M are compact, H is 

homeomorphism. 

H takes m-orbits to *-orbits by construction. Therefore H is a 

topological equivalence between 0 and 0. 

So V(o) ° V(p) -> 0 ti 0. 

a 

4.6 Application to Gradient-Like Flows 

As noted in 4.1, gradient-like flows are a particular case of quasi- 

gradient flows. 
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Since gradient-like m has no saddle connections for dim M-2, 

D(+) has, on every circle Cn (around saddle Pn), only the points 

-Pl , -P2 and no Pk for min. The arrows at -Pl and -P2 nnmnn 
always have opposite orientations on Cn . So, the information of how 
"handles" Nn of 4.5 Step 3 are attached is given only by arrows at 

Pn and Pn , which are in S u Si . This means that all information 

given D(+) is carried by the circles S1,..., Sa with their distinguished 

points and arrows (and we can disregard all circles CI...., Cu around 

saddles). This coincides with the circular distributions for gradient-like 

flows as defined by Fleitas £10]. 

However, the equivalence H constructed in 4.5 does not agree in 

general with the equivalence constructed in [10] because there Fleitas 

has given a conjugacy (i. e. time preserving equivalence). But, in 4.5, 

we could not hope for a conjugacy because we were allowing saddle 

connections. 

4.7 Application for 2-dim manifold with boundary 

We are interested in applying Theorem 4.3.6 to a quasi-gradient flow 0 

on a compact smooth 2-dim, manifold M with piecewise smooth boundary 

am , where am is +-invariant. We will consider cases where M can be 

"extended beyond 3M" i. e. we want M to be a submanifold (with boundary) 

of another 2-dim manifold M, with 2M c int M and also 0 must be a 

restriction to M of a flow j of M, with invariant on am . We 

could lessen such conditions, but then we would have to worry about what 

hyperbolicity of fixed points of 0 on 3M means. Having such conditions 

we say that fixed point pc am is hyperbolic for 0 if it is so for m. 
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For such p, the invariant manifolds Wsp, Wup, relative to flow $, 

are the restrictions to M of Wsp, W up, relative to j, respectively. 

Suppose now that ý is quasi-gradient flow on M (i. e. 0 satisfies 
(a), (b), (c*) of 4.1 where everything considered is restricted to M) , 
invariant on 3M .A circular distribution of points, V(+) is defined 
for 0, exactly as in 4.3, where the "circles" are restrictions to M 

of circles of A. We note here that if saddle Pn of 0 is on 3M , 
then any sufficiently small neighbourhood of Pn will intersect aM on 
subsets of the invariant manifolds of Pn . So, near Pn ,M is diffeo- 

morphic to one of the possibilities (a) to (d) of figure 18. 

-6 Zm 

pl, 
",. /. ' ", /_? : // /. IM 

(a) (b) (c) (d) 

figure 18: Neighbourhood of saddle Pn on aM 

Then every saddle Pn has at least one associated pair (Pn, -Pn) 

on V(+) but it may or may not have the second pair (p2, _p2) 

Defining isomorphism (s') of distributions exactly as in 4.3.4 

(remembering that some "circles" will be closed arcs of circle), we can 

go along proof in 4.5, step by step and noting that some "handles Nn 

will be "half-handles" which can be extended to handles on , then we 

have, without giving more details: 
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4.7.1 Theorem For quasi-gradient flows $ and 0 on manifolds as 

above 

0 ti0 <-> V(f) -fl(o) 

4.8 Application to Game Theory 

2 
We consider here, with notation as in 4.7, M as the plane Ex-1 

1-0 
of R3 and flow mA associated to vectorfield XA given by 

XÄ(x) = xi((Ax)i-xAx) as in Chapters 1,2 and 3 and let M"e- {x E tý , 
xi 2 0} with OA as restriction of mA to 

We want to prove Proposition 3.4.1. First we note that for AE Cr 

k-2,..., 10 r 1,..., r(k) (as in 3.3) , flow "A is quasi-gradient 
in e, invariant on ae . (Note: Ac C1 => fA is not quasi-gradient. ) 

Proof of Proposition 3.4.1 

If A, BE Cý , Zeeman [411, proved that A'B 

Now let A, B c Ck k-2,..., 10 r-1,..., r(k) . In 3.3.3 we have 

described the phase portraits of OA ,Ac Ck (see also figure 7). From 

there we can extract sufficient information to determine circular dis- 

tribution DA = V($A) which we give in table of figure 19. We then have: 

A, B e Cr (k a 2,..., 10)  > PA a UB => $A ti 00  > A ti 8 

as we wanted. r 

a 
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figure 19: circular distribution for OA with Ac Ck .ki2 
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- 130 - 

CHAPTER 5 

NOTES ON THE HOPF BIFURCATION THEOREM 

5.1 Introduction 

Our intention here is to present a statement of, and some remarks 
on, the important theorem known as the Hopf bifurcation theorem. 
Historically, the kind of bifurcation involved, was already used by 
Poincare, but the theorem was precisely stated and proved by Hopf in 1942 

for a 1-parameter analytic family of differential equations. We have 

used, for reference, the translation of Hopf's original paper in Section 5 

of [18]. The more modern proof, using center manifolds, is due to Ruelle 

and Takens [31] but more detailed versions can be found in books like 

Marsden, McCracken [18] or Hassard, Kazarinoff, Wan [12]. 

However, when we wanted to apply the theorem, using statements as in 

[12] or [18], to the particular family we had in mind (in next Chapter 6) 

we noted that some information we needed, about the local behaviour of the 

flow near the bifurcation point, was not included in the usual statements. 

Still we thought that the questions we asked were naturally linked to the 

theorem. Mainly, we asked this: if a I-parameter family of vectorfields 

XP with fixed point 0 suffers a "Hopf bifurcation", resulting in the 

existence of attracting periodic orbits AP near 0, what can we say 

about the basin of attraction of Au 7 Does Au attract all points in a 

neighbourhood of 0, except for those in WSO ? We would like to have 

this information included in the statement of the theorem, and, hence, did 

so in our statement presented in 5.2.1 below. 

1ý 
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Also, the uniqueness of the periodic orbits as stated in [181 p. 65 

does not imply uniqueness of periodic orbit for each X11 . We think 

that this is a relevant information and we included it in 5.2.1. (This 

is also done in [12] p. 17. ) 

Mainly, in what follows, we will use notation of C18] and refer to 

the proof found in there. 

We note that, in fact, the statement in 5.2.1, is much stronger than 

we really need for our application in Chapter 6 (where our family is 

analytic), but we give the statement in the way we think is best for 

applications in general. 

Although most proofs we give are only sketched, the discussions and 

remarks we make have the intention of giving a full comprehension of Hopf's 

theorem. This chapter can be, therefore, considered as a small expository 

essay on the Hopf theorem and its proof, as in [18), with some additional 

properties. 

5.2 Statements 

5.2.1 Hopf's Theorem (Ck_ version) : Let n22, ki2. 

Let XP be a Ck+3-vectorfield on Rn such that Xu(0)  0Vu and 

X(x. u)   (Xu(x), 0) is also Ck+3 . Let dXu(0) have two distinct complex 

conjugate simple eigenvalues x(u) and a u) where Re X(0) -0 

Im X(O) /09d Re a(u)Iu=0 >0 and all other eigenvalues have negative 

real parts. 

Then: 

(A) There are ac>0, a Ck_function u: [0, c) It with u(0) = u'(0) =0 
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and a continuous family L- (Ar ;rc (O, c)) of closed simple curves 

in ]R" , such that, for each rc (O, c) , Ar is a periodic orbit of 

Xu(r) 9 with period ti 2n/IX(O)) and radius growing like r 

(See remark 5.2.2(I)) 

(B) There are a neighbourhood U of 0 in Btn and y0 >0 such that 

for any µE (-v0. u0) all periodic orbits of X- in U must belong to 

the family L of (A) , i. e., if A is a periodic orbit of X- in 
F 

U, then rc (O, c) s. t. u(r-) and A-A 

(See remark 5.2.2 (II) and. (111) and figures 20-21 for comments 

and diagrams. ) 

(C) If there is psks. t. u(0) = u'(0) _ ... = u(p-1)(0) =0 and 

b u(p)(0) j0, then p is even. 

Moreover, if b>0, then p(r) >0Yre (0, c) (taking smaller 

c, if necessary) and, also, there exists y0 >0s. t. 

(i) ue (-u0,0] _> XP has no periodic orbit in U; 

(11) 0 is Liapunov (i. e. asymptotically) attracting for X0 

(Iii) uc (°'p0) _> Xu has one unique periodic orbit in U 

(i. e. 3 unique re (0, c) with p(r) =u .) In this case we will 

denote Ar by Au ; 

(iv) orbit Au is hyperbolic attracting; 

l/p 
(v) radius of Au grows like (v/b) 

(D) With same conditions of (C), there exists a positively invariant 

neighbourhood U of 0 (V uc (-v0, u0)) in mit such that 
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w(u) -0 
uE (-u0,0] -> 

aµ(U-0) c ]Rn -U 

(O, uO) 
wuW - Au for xEU- W50 

uc ý> 

a(x) cjtn -U for xcu- Au u Wu0 

(i e. Uc basin of attraction of 0 for us0. and 
U- WSO c basin of attraction of Au for u>0). 

5.2.2 Remarks 

(I) "Radius of Ar growing like r" means that 

Br) .1 where 1 ar) - lnmm+ 
r +r 

a(r) = maxCixl ;xa r} ; B(r) - min{Ix) ;xE Ar} . 

(II) After (A) and (B), without further assumptions we don't 

have much information about function p(r) or family L. We could 

have the periodic orbits in L either (a) all for Xu with 0 

or (b) all for u<0; or (c) all for 0; or (d) for some 

u>0, some u<0 even for arbitrarily small u's . These possibilities 

correspond to u(r) as in figure 20 below. In (C) and (0), conditions on 

p(r) are imposed. These conditions are further discussed in 5.2.3 and 5.2.4. 

(a) 
v 

r 

v 

(h) (c) 

r 

(d) 

figure 20: possibilities for the graph of u(r) near 0. 
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(III) For n=2 , we can draw the diagram in figure 21, where the 

periodic orbits Ar appear on a two-dimensional surface S in 

R3 = ((xl, x2, u)) . The intersection of S with horizontal plane of 

height u gives the periodic orbits of Xu . The parameter r is 

taken on the positive xl-axis (justificative in 6.3.2). 

r.. 

figure 21: family L of periodic orbits (n=2) 

If v(r) is not injective, some XP will have more than one 

periodic orbit in U. 

For n=3 ,a diagram like this can be interpreted as being inside 

the center manifold for X- (Xu, 0) (which is 3-dimensional). 

Next propositions give us some situations where conditions of (C) 

above are met, in order for the conclusions there to hold. 

For the first of these we recall that in Platen, McCracken's book 

[18], for conclusions in (C), to be taken, a condition of 0 to be a 

vague attractor for X0 is imposed, and later those authors prove that 

they can relax that condition (using higher order derivatives) and still 

conclusions will hold. This relaxed condition we will call here weak vague 
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attractor condition. The problem with this condition is that it refers 

to derivatives of a function V(xl, u) which is constructed during the 

proof of the theorem in [18]. In our statement, we have replaced this 

condition by the one about derivatives of u(r) which we think it is 

easier to express at that stage. However, in the next proposition we 

say that in fact weak attractor condition for X0 is equivalent to the 

condition about u(r) in (C) and (D). 

Proofs, or comments on proofs, of these will be given after we 

comment on the proof of 5.2.1. 

5.2.3 Proposition For function u: CO, c) -, -IR as in 5.2.1 (A) we haye 

that 

U(O) " v'(O) ° ... s u"p-1)(0) s0 and ba U(P)(O) >0 

if and only if 

0 is a weak vague attractor for X0 (in the sense of [18] p. 78 or 92). 

5.2.4 Proposition Suppose X in 5.2.1 is analytic and all other 

conditions on-the eigenvalues are met. Then u(r) (as in 5.2.1 (A)) 

is analytic and in a sufficiently small interval (O, c) we have: 

either u(r) =0Vr; or u(r) >0Vr; or u(r) <0Vr. 

If 0 is asymptotically attracting for X0 . the first alternative does 

not happen and, so, 3p as in (C). 

Therefore, if X is analytic and 0 is attractor for ti, s0, then 

conclusions of (C) and (D) hold. 
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5.3 Comments 

5.3.1 Remark In [18] p. 93, it is said that vague attractor condition 

(hence our conditions on existence of p and b>0 in (C), by 5.2.3) 

can be replaced simply by the condition of 0 being Liapunov attractor 

for XO , and still conclusions (C) (iii) and (iv) will hold. This is 

not true, unless X is analytic. (And for X analytic, p as in (C) 

must exist, because uA0 .) 

Below, in 5.5, we will give an example which shows that even in r 

cases we may have that X11 (for arbitrarially small u> 0) has more 

than one periodic orbit in U and these are not attracting. Hence the 

conditions of item (C) are really necessary for the conclusions. 

5.3.2 Remark (See [183) (1) if n=2, the variable r is taken 

as xl for any local coordinate (xl, x2) , and A1 contains point 

(x1,0) . (ii) if n13, choosing coordinates (xl, x2, x3) with 

xl, x2 ED, x3 e 'Rn-2 , where x3 =0 corresponds to the eigenspace 

relative to x(0) ,', then a center manifold M of X at 0 is 

represented locally by (xl, x2, f(xl, x2lu), u) . Then variable r is 
x 

taken as xl , and A1 must be contained in the section M of M 

with u= u(xl) ; and must contain point (xl, 0, f(xl, O, u(xl)) . 

This is clear when one follows the proof of 5.2.1. 

5.3.3 Remark In 5.2.1 (C), if we have b<0, then y(r) <0 for 

rc (0, c) (taking smaller c if necessary). Then all periodic orbits 

in L will be for Xu with u<0. Also, for all u<0 small enough 

X11 has unique periodic orbit AP in -U with (C)(v) still valid. 
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However, Au will be repelling on Mu (Mu = intersection of center- 

manifold M of X  (Xu, O) with horizontal plane of height u; dim M. = 2. ) 

and Au is attracting on a (n-l)-submanifold transversal to Mu . That 

is, A is a periodic orbit of saddle type. 

5.4 Proofs 

Here, for most items in the propositions to prove, we will just make 

some comments, referring the reader to existing proofs. Our main reference 

is Marsden, McCracken's book [18] whose notation and proofs we will 

follow whenever possible, with the necessary adaptations. 

Proof of 5.2.1 

(A) and (B) We have nothing to add to the proof in [18] of existence and 

uniqueness of family L of periodic orbits. We will just note how 

function u is obtained. 

First, a suitable coordinate system is chosen (as noted in remark 5.3.2). 

Then X is "reduced to two dimensions" 
11 

5 X, (xl x2) if n 2 
i. e. take X (x *x)   

u2 (Xµ. XÜ2 )(xl, x2, f(xllx2lu)) if ni3 

then "transform to polar coordinates", i. e. take 

Xu(r, e) - (p*)-1 Xu where ý(r, e) - (rcoso, rsine) 

allowing r to take negative values, too. Interpret i= (Xu, O) as a 

flow in a thick cylinder (identifying planes e-0 and e  -2n )" 

has a periodic orbit y along o-axis with period 2n/jX(0)) 
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Taking plane e-0 as cross section, the Poincare map P for y is 
M 

P(r, 0, u) = (P(r, u), -2n. u) . 

Then one takes the "displacement function" V(r, u) = P(r, u) -r. 

The diagram in figure 22 (taken from [181) helps us to visualise 
function P. 

*u I 

(r, o, i) d 
de 

, 

lo( 

(01010) 

e 
dan, oin of 

M 

OYLlt 0; X-, 
' 

t 

y7 range of P (r A, F+1 ----M 

P(r, )4 to, 
-iR, 

o) 6" -ý, rr 

figure 22: construction of P(r, u) 

Then, p(r) is given by the implicit function theorem as satisfying 

V(r, p(r))  0. Hence P(u, u(r))  r and orbit of i through 

(r, 0, u(r)) is periodic (period ti 2, r/fa(0)I) . Since the r-axis for 

e"0, or e  -2Tr , can be identified with xl-axis, the point 

(xl, 0, u(xl)) is on a periodic orbit for Xu(x1) . This justifies 

remark 5.3.2. 

In what refers to the rate of growth of Ar we think that the 

authors of [181 have not stated it precisely. Without further conditions 
(such as vague attractness or that in (C)) we can prove that radius of Ar 
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grows like r (as we stated) not like / as stated in [18]. Growth 

like " (better said like kv ) only is valid with (strong) vague 

attractness i. e. if u"(0) #0. 

Proof that lim CI(r) e lim O(r) -1 is technical and involves 
r-+ r r*O r 

writing the orbit of i passing through (r0.0, u0) as 

i (t) - (rt(rp. u0) . et(ro. uo) . uo) 

and then noting that if 0(t) - (xl(t), x2(t), f(xl(t), x2(t), u0)) is the 

corresponding orbit in IRn for Xlj0 , then 1(xi(t), x2(t))) _ Irtl 

After this, it must be shown that lim 
rt(r0. u0) 

e1 for t taken 
r0-. O r0 

in any compact interval. If n 2, this completes the proof. If na3 

we must take into account that Mu a ((xl1x2, f(x,, x2, u))} is tangent to 

(xl, x2)-plane at (0,0,0) . We will not give more details here, since 

this is not our main purpose. 

Proof of (C): The fact that the least i, for which u(i)(0) j0, 

must be even is proved in 118] Section 3B, resulting from the fact that 

all periodic orbits A1 must cross the xl-axis twice, once on its 

positive side, once on its negative side. Hence u(xl) cannot be >0 

on one side of 0 and <0 on the other side. (Note that function 

is defined on a neighbourhood of 0 .) 

When b>0, u(r) has a local minimum at ra0, hence u(r) >0 

for all small is , and is injective on some interval [0, c0) 

Take PO   u(c0) and (iii) follows. 
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Proof of (iv) is in [18] p. 79 for n-2 and p. 109 for ni3. 

This proof depends on u(r) having a minimum point at r=0, and, 

hence, är (r. u(r)) having a local maximum at r-0. So, for small 

r>0'r (r, u(r)) <0 and (är (r, u(r))) <1 

But xl f P(xl, u(r)) is a Poincare return map for Ar , so its 

eigenvalues are inside the unit circle. 

For (v) we write u(r) - brp + Op+l(r) (where Op+l(r) is a 

function of order p+l ). Since lim c( r- lim O(r)  1, writing 
r-*O r r- *O r 

ä(u)   a(r) and ß(u) - ß(r) for u(r)  u. (i. e. ä(u) a max{Ixl; xCA } 

and similarly for ß(u)) , we get: 

tim (°LU Pmuim (°`r P 
s1 

11m+ar)P 

u-º0+ p r-º0+ brP+Op+ (r) r+0 r`b 

a> üü u) " Pb 
I/p 

Similarly for ß(u) " 

(i) follows immediately from p(r) >0 for r>0 plus (B). 

For (ii) we have to show that for every neighbourhood U of 0 there 

is neighbourhood W of 0 with 06(W) cU and w0(W) -0 (where 0 

and w0 denote. respectively, positive orbit and w-limit for X0 ). 

This property is not usually stated, so we here sketch a proof. 

First, u(0) - u'(0)   ...   u(P-1)(0) n0 and b= u(P)(o) >0 

implies V(0.0)   
3V (0,0) _ ... 

1-PV 
P 

(0,0) -0 and 
pp+V 

(0.0) <0 
1 axe axl 
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(this is obtained by differentiating V(xl, u(x1)) =0 (p+l) times 

and using 
I 

-V 
V (0,0) - e- 

2w/Ix(O)) 
-1 >0 as in [18] p. 92). 

axIau 

Then, for u"0, the displacement function V(x1,0) for X0 is 

negative for xl >0 and positive for xl <0. 

Also, X0 (- restriction to two-dimensional cross-section MO of 

center manifold M) has eigenvalues a(0) ., A-CDT , hence all orbits in 

any sufficiently small neighbourhood U of 0, starting at (x1,0) 

must go round 0 (transversally to all radius) crossing xl-axis again, 

on the same side of 0 as xl , at point P(x1,0) . Taking a zl 

sufficiently small, positive orbit of (x1,0) up to point P(z1,0) must 

be inside U. Taking W as the region bounded by this arc of orbit plus 

segment [P(x1,0), x1] on xl-axis, W is positive invariant, hence 

0,6(W) cU. Also w0(W) -0 since in W there are no other critical 

elements of X0 . See figure 23 (a). So, (ii) holds for n-2. 

Y_ 

Xi 

figure 23: (a) n- 2 (b) nZ3 

I 

Xl 

If n23. on the x3-direction all eigenvalues of X0 have 

negative real parts. Since all neighbourhoods U of 0 contain a 
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product of a neighbourhood Ü of 0 in M0 and a disc (x3l <a 

we can get 9c0 as in the case n 2 and a' c (0, d) such that 
i Wx {x31 < aI has 0''6(W) c Ui and w0(W)  0. See figure 23 (b). 

Proof of (D): There are two ways to take this property. 

First, this is a consequence of a theorem by Chafee C6] (also 

mentioned in (18] Section 3A). This theorem gives us, for small u>0 

two periodic orbits Yl(u) . Y2(u) for Xu , bounding a 2-dimensional 

annular region Ru on Mu which contains all c-limits of a neighbourhood 

of 0, except for orbits tending to 0. See figure 24 below. 

stable manifold of x'0 

two closed orbits 

I 

figure 24: Region Ru in Chafee's theorem. 

But (C) (iii) gives us that y1(u) ° Y2(1')   AU . Taking U and 

vo sufficiently small with u is positively invariant for all 

uc (-PO, uO) 9 the assertion follows. 
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On the other hand, we can conclude the same property without using 

Chafee's theorem, by noting that (C) (ii) implies the existence of a 

Cl-Liapunov function f: U + IR + for flow ý0 of XO , i. e. f is Cl 

on U, f-l(0) -0 and iff f(ý0(t, x))It=0 <0Vxc -0 . (As in 

[40] or [23]). Taking a>0 small, W-f -110, a] cU and W is 

connected and positively invariant for 00 with aW transversal to X0 

Then for sufficiently small u0 , 3W will be transversal to X11 , 
Vuc (-u0, µ0) , and, so, w, (W) c Mu nW. But the only critical 

elements of XP on Mu are 0 and Au (when u> 0) . So. 

us0  > wif (W)  0 and aµ(W-0) c Rn-W 

u>0  > wu(W-W50)   Au and au(W-Wu0 uAc Rn-W 

This finished the proof. 11 

Proof of 5.2.3: Although not stated as an equivalence this property is 

really proved in (18] Section 3B by successive derivations of V(xl, u(xl)) =0 
D 

Proof of 5.2.4: The fact that p(r) is analytic when X is analytic is 

part of the original proof by Hopf (as in (18] Section 5). Then, either 

u=0 on an interval round 0. or there is ap such that 

u(0) - uß(0) _ ... = v(P-l)(0) =0 and b  v(P)(0) '0. 

If b>0 (<0) -> p>0 (<0) on interval (0, c) with small c 

So the rest of the proposition is clear. 11 

5.5 Example 

Here we want to show how to construct an example which contradicts 

a property stated in (18). (See also remark 5.3.1 above. ) It is said 
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there (p. 93) that under conditions for Hopf's theorem (as in 5.2.1) 

if 0 is Liapunov attracting for XO then orbits Au (for u>0) 

are attracting. We show that this is not true in general, without more 

conditions. 

5.5.1 Lemma For any Ck_function f: [O, +m) +IR (k i 4) with f(O) =0 

there is a family XP of vectorfields in R2 , satisfying: 

1) X= (X 0) is Ck in ER3 and Xu(0) =0Vu. 

2) dXu(0) has eigenvalues X(p) , a(u) with Re X(0) =0, 

Im A(0) ý0, d Re a(u)lu=0 >0 

3) Function p(r) of Hopf's theorem (as in 5.2.1(A)) is given by 

u(r) _. f(r2) . 

4) If f(r) >0 for ri (O, r0) , the origin is Liapunov attracting 

for X0 . 

Proof Take f as in the hypothesis. Define g: It+ x It -. m by 

g(r. u) " u-f(r) . Then, let Xu be given by: 

X(x. y) ° (X1, Xü)(x, y) - (xg(x2+y2, u) +y0 yg(x2+y2, u) - x) 

So, dXu(0)   (_ý Ü) 
, hence dX(0) has eigenvalues a(u)  u+i 

and a(u)   u-i . Then Xµ satisfies (1) and (2). and Hopf's theorem 

(5.2.1) gives function p(r) ' such that Xp(r) for r>0 has a periodic 

orbit Ar crossing positive x-axis at (r, 0) . 

Transforming system (x'y) = Xu(x, y) to polar coordinates (r, o) 

we get rg(r2, u) 

1e  -1 . 
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For r>0, let Cr be the circle x2+y2 = r2 . Then Cr is 

periodic orbit for Xu whenever u= f(r2) because, on Cr , system 

(i, y) = Xu(x, y) has r(u-f(r2)) =0 Hence u(r) = f(r2) 

and (3) holds. 

To prove (4), suppose f(r) >0 for rc (0, r0) . If u=0, 
(x, y) - Xu(x, y) is represented by r- -rf(r2), e- -1 . So, <0 

on all points with I(x, y)l 
2< 

r0 . Hence, (4) holds. 
11 

For the example we want, it is now sufficient to choose any function 

f(r) , as in 5.5.1, so that f is not injective in any interval (0, r0) 
(no matter how small r0 is), with f(r) >0 for rc (O, r0) . Of 

course, f(r) (and p(r)) must have f(i)(0) =0 for 0s1sk and, 

so, the same construction cannot be made analytically. 

We can even choose f to be 

small intervals where f is const 

for arbitrarily small values of u 

ponding to region R14 of Chafee's 

Cý and having arbitrarily near 0, 

ant. In this case, the family X11 has, 

, bands of periodic orbits, corres- 

theorem. See figure 25 below. 

5.5.2 Conclusion The condition really necessary for uniqueness as in 5.2.1 

(C) (iii) is that p(r) be injective in some interval (O. c) . 
The existence of p with u(P)(O) 10 is sufficient (but not 

always necessary). Even in example above. f can be constructed to be 

C, injective on (0, x0) and yet f(i)(0) -0Vi. Only when X is 

analytic, condition u(p)(O) g0 is really necessary for (iii). 
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ýN 

(a) 
x 

(b) 

figure 25: graph for function f(x2) and its associated 

family of periodic orbits for X11 ., 
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CHAPTER 6 

EXAMPLE WITH LIMIT CYCLE FOR n 3 

6.1 Introduction 

The aim in this chapter is to study a family of matrices A in Z4 

for which OA (as in Chapters 1.2.3) present a Hopf bifurcation, resulting 
0 in the existence of an attracting periodic orbit in o. The intention 

is to give a global description of the flow "A for values of the para- 

meter near this bifurcation point, in order to show that this periodic 
0 

orbit attracts "almost all e" , i. e., we will show that it attracts 

minus a line of points attracted to the fixed point at the barycentre e 

of e . -' 

The matrices A in this family depend on three parameters which we 

denote by y, d and c. We will take y and a as fixed and consider 

A. as a one-parameter family on c, given by 

0Y -E -3 
A4 -d 0Y -E 

E -E -d 0Y 

(_6 

-E -d 0 

For simplification we write mA also as 0E 
E 

This family was presented by Hofbauer, Schuster, Sigmund, Wolff [17] 

as a case presenting cyclic symmetry, and also by Zeeman [41], (for 

y 1, a= 0) . This is also related to the studies of hypercycles as 

in [9,16,32,331. 
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In [17] and [41] it was pointed out that for e=0, a Hopf 

bifurcation occurs at the barycentre e so that, for small 
0 

positive values of c, ýý has a periodic orbit Le in n 

6.1.1 Remark In chapter S. we have presented a discussion about Hopf 

bifurcations, to which we will refer when necessary. 

In [17] and [41], the fact that the periodic orbit LE is attracting 

is taken from the fact that has e as Liapunov (i. e. asymptotically) 

attracting for small es0. As we have noted in chapter 5, this is valid 

because the system is analytic (see 5.2.4). Below, in 6.3, we also show 

that LE is hyperbolic attracting by means of the "vague attractor" 

condition of [18] p. 65,78. (See also 5.2.3. ) In 6.4, we will prove that 

Le has its basin of attraction as n-Wse , where Wse (= stable manifold 

of e) is a segment with endpoints on 3t . We emphasise that this is a 

global statement, as opposed to the mere local statement of the Hopf 

theorem in the last chapter. 

Also, for all values of e, we will describe, in 6.5, the flow " e 
on ao . This is not done in [17] or [41]. 

In [17] we find a description of this flow in the interior a for 

various values of but for the most interesting of all cases 

(e >0, y-d > 0) where the periodic orbit L occurs, the description 

is not complete. Also, we think that a complete, global description of 

me , at least for small values of e, is important because many 

applications (e. g. [9,16,32,33]) use the case e-0a-0, as a case 

presenting a hypercycle. Since this case is not stable we should look at 

all possible cases in a neighbourhood. ' 
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Therefore we declare that our main purpose during this chapter will 

always be to give a global description of flow 0E. for small e's , so 

proving Theorem V stated in 1.7.1 and gathering information to draw phase 

portraits of figure 4 in Chapter 1 (on p. 26). 

In what follows we will always keep figure 4 in mind. 

6.1.2 Remark Before tackling the problem we note that in statement of 

Theorem V we supposed r>a>0. We want to justify this hypothesis. 

When y, d >0 we have a cycle of saddles on ao as: 

X3 .. X2 ". XI ti XO "º X3 . If -y, a<0, the same cycle occurs going on 

the opposite direction, and we can consider the reverse flow which is 

given by -AE , so we have a case equivalent to y, 5 >0. But if y 
and a have opposite signs, the cycle no longer exists, so we are not 

interested in this case. If a>Y>0 we can permute vertices X0 with 

X2 , and XI with X3 obtaining an equivalent matrix oAe , and by 

reversing signs we have 

0d "e, -y 0 y' e' -d' 
-QAý a4 -y 06 -E -4 -d 

i0y1e1 

-c -y 0d EI -dl 0 y. 

d -c -y 0 yl c' -dl 0 

where "y  6>y-6'> 0. 

Therefore, in everything that follows, we will always take y>a>0. 

6.1.3 Remark The vertices, the barycentre e, and points 

q0   1(1,0,1,0) e XOX2 , q1- 1(0,1,0,1) E X1X3 are fixed points of 

for all values of c 
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The vertices are hyperbolic saddles if c#0 with eigenvalues 

Y. -6, -e 

In 6.2 we will discuss the local behaviour of ýe near e. In 

6.3 we find the basin of attraction for the periodic orbit L. of OE 

that occurs for small e>0. In 6.4 we study "C restricted to the 

boundary as . In 6.5 we discuss stability. 

6.2 Local behaviour at the barycentre 

e is a fixed point for me ,Ve, since all rows of 

A. have sum S  4(y-d-c) . (See 2.2.11. ) 

det Ac   (E2-(Y-8)2)(f2+(Y+8)2) °0 <"> c- ±(Y-d) 

and for these values of c' rank AE -3. and 

AE es 4(y-B-e)e - (Y-d-e)u  0 <"> cs Y-d 

(adjAE)u - -(e+Y-6)(e2+(Y+8)2) '0 <`> E° -(Y-6) 

Then, using 2.2.1(1v), we get: 

6.2.1 Lemma e is isolated fixed point <s> c$ -(Y-d) . 

6.2.2 Lemma e is hyperbolic fixed point if e#0 and 

Also, e is 

(i) attractor if -(y-d) <c<0 

(ii) 1-saddle if e>0 

(iii) 2-saddle if c< -(y-6) 

I 
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Proof For ej -(Y-d) ,A is central. So, Proposition 2.2.18 says 

that the eigenvalues at e, for ýe , are given by: 

A3 + IS a2 +I (S2-P)x + IT (S(S2-P)-D) -0 where 

S-3 
3 

aid = 4(Y-a-e) .P E aijaji = 16(2e2-4y6) 
j'0 0si<Js3 

3 
and D- 

tEODi 
where Di - det(AE)i - -64 e(? 

2+d2) 
and, we have 

a3+(Y-d-e)A2 + ((Y+d)2-c2-2E(y-6))X + (Y-d+e)(E2+(Y+a)2) a0 

i. e. (, X+(Y-6+e))((, X-e)2 + (Y+6)2)  0 

giving eigenvalues 

X- -(Y-8+c) and a+0 ßi -c t(y+a)i . 

Hence e is hyperbolic if ct0, - (y-d). 

c>0  > aE <0, aE >0  > e is 1-saddle 

0>c> -(Y-d)  > le <0. aE <0 a> e is attractor 

E< -(Y-6)  > ae >0, a. <0  > e is 2-saddle. 
0 

It is clear from lemma above that conditions for the Hopf bifurcation 

theorem (as in 5.2.1) are met since aC <0 for small e's) a0  0 

d1. So by 5.2.1(A) we have: IKE ac Ie 
Ic0 

f 
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6.2.3 Corollary There is a continuous family of simple closed curves 

in e, near e, each of these being a periodic orbit for 
E 

for 

some small value of c. 

This Hopf bifurcation occurring at e-0 will be studied in more 

detail in 6.2.7. 

6.2.4 Coordinates We want to take, at e, a suitable system of 

coordinates, as in (41], given by (z, y) - ((zl, z2), y) where zl = xO-x2 

z2 = X1-x3 ,y= XC+x2-X1-X3 (so 4X0 - 1+y+2z1 , 4x1 6 1-y+2z2 , 
4x2 = l+y-2z1 , 4x3 a 1-y-2z2). 

X2 

(4nq 
ysO 

figure 26: coordinates (zl, z2, y) as in 6.2.4. 

We have that: 

(zl, z2, y)  0 <a> x=e and system 

x  XA (x) is, then, represented by equations 
c 
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zl (e(1+y2)-(Y-d)y(1-y)-2e(zý+z2))z1+(Y+d)(1+y)z2 

6.2(*) 2= -(Y+6)('-Y)zl+(E(1+y2)+(Y-d)y(l+y)-2e(zý+z2))z2 

- -(Y-6+e)y(1-y2)+4(Y+6)z z +2e(z2-z2)-2e(z2+z2)y 121212 

which will be used in what follows. 

6.2.5 Lemma For -(y-d) <cs0. e is Liapunov attracting with 
ö 

as its basin of attraction. 

Proof As in [41] or [17] we make use of function V: n +1R given by 

V(x) - x0x1x2x3 , which is zero on an positive in' n and has e as 
its only stationary (maximum) point in Then, Vxco, 

L) 
n3Xi3 

V(x) 1E0 x  iE 
(AEx)i - 4xAýx   4(Y-d-E) - 4xAEx 

i 
and xAex a 4(y-6)(xp+x2)(xI +x3)-8c(x0x2 + xI x3) . 

Using coordinates of 6.2.4, we get 

xAX (y-d+c)y2 + 2e(zý+z2) 

and, so, }y- (Y-d+e)y - 2elz1 22 

0 
For -(y-S) <E <0 V(x) >0 Vxce -e 

"> V increases (strictly) along $c-orbits in e-e, 

 > all orbits in ö-e have e as w-limit, 

and a-limit contained in at (V is a Liapunov function for q). 

For c 0. } y(x) - (Y-d)y2 >0 V' xce-e 
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and e(x) -0 <_> ya0 <=> x0+X2 - X1 +x3 

So V increases (strictly) along $0-orbits out of plane y=0. 

If y-0, equations 6.2(*) gives y  4(y+d)zlz2 

If y-0, zl =0, z2 #0" il   (Y+d)z2 #0 

If y-0, zl j0, z2  0 s> z2 = -(y+d)zl #0 

This means that, at points of n-e 
, on plane y=0, their p0-orbits 

cross this plane (though not transversally if zlz2 a 0). Hence we can 

say that, even in this case, V increases (strictly) along orbits. 

Then for cs0, 
o  basin of attraction of e 

0 

6.2.6 Le mna Y  q0ql is invariant Vc and 

Y Wse for c>0, Y  Wue for c< -(y-d) , 
Yc Wse  ö for -(Y-8): 50 

Y is pointwise fixed for c- 

Proof Points of segment Y- gOql corresponds, in (zl, z2, y) coordinates 

to y-axis (z1 - z2 0 0) with jyj s1. But 6.2(*) gives: 

zl   z2 -0 => 
zl 

a i2  0 -> Y is invariant. 

On this axis, we have, yn -(y-d+c)y(1-y2) . 

Hence yg0 -> y>0 
if c< -(y-d) ,y<0 if c> 

Together with 6.2.2 and 6.2.5. this implies the lemma. 
13 

Now we apply Hopf's theorem as in 5.2.1 to get: 

0 
6.2.7 Proposition There exist a neighbourhood U of e in a, co >0 
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and a function e: [O, c) f]R with e(0) - E'(0) -0, c(r) >0 for r>0, 

such that 

A) Vrc (O, c) de(r) has a periodic orbit Lr in U of period 
ti 2, r/ (1r+a) 

B) Vcc (0, e0) , 0E has exactly one periodic orbit L. in 0, and 

3! rc (O, c) s. t. c" c(r) and LE " Lr ; 

C) Le is hyperbolic attracting, with radius growing like k�e where 

k2 - (4(Y+d)2+(Y-5)2)/2 (y-8)(Y+a)2 ; 

D) VCE (O, c0) , Wse =Y"U is me-positively invariant U-Y r- basin 

of attraction of LE and xc U-lzu Woe => a(x) e-U 

(See figure 27 below. ) 

x. 

XI 

X, 

X2 

11 V XIXtUX1X3 vXJX0 

figure 27: flow fc ' small c>0, near e. 

Proof Existence of U and c: [O, c) f Lt with e(0) a c'(0) -0 
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satisfying (A) is a direct application of 5.2.1. Since, by 6.2.5, OE 

for small cs0 has no periodic orbit in e, 
we must have e(r) >0 

Vr>0. We will check, below, the (strong) vague attracting condition 

for e 0, as in (18] p. 78. By Proposition 5.2.3 this will imply that 

b" c"(0) >0 and then (by 5.2.1 (C)(iii)-(v)), there exists co >0 

S. t. CE (0, e0) _> OE has exactly one periodic orbit Le in U 

L. is hyperbolic attracting with radius growing like k�e where 
k2 - 1/b . Then (C) will hold, and (D) follows from 5.2.1(D) plus 
lemma 6.2.6. 

To check condition of vague attractor for m0 we follow procedure of 
Sections 4 and 4A of [18]. The calculations involved are lengthy and we 

just indicate some few steps. 

At c 0, equations 6.2(*) give 

zi ' -(Y-8)y(I-Y)z1 + (Y+a)(t+y)z2 a Z1(zI , z2, Y) 
6.2(**) z2 ' -(Y+8)('-Y)zl + (y-d)Y(1+Y)z2 ' Z1 zl"z2, Y) 

-(y-6)y(1-Y2)+4(y+d)zIz2 = Z3(zI , z2, y) 

We have that b  e"(0)   -Vlil(0) / 3.32V (0,0) where V is the 
1 

displacement function of 1181 (see also 5.4). 

Taking aE + Oci as in 6.2.2, from C18]we get: 

2 a2V (0,0)  d aelEýO - Y+6 " and in [181 p. 133 we find an acazl ß0 0) 

expression for V" '(0) in terms of the derivatives of Z1, Z2 and Z3 
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up to third order always calculated at (zl, z2, y) _ (0,0,0) . Using 

that 

3 23 23 23 äy- (Y-a) -°0. aZ- 4(y+a) 
az1 az2 az1 z2 

a2Zl s a2ZI a2zi s s a2Z2 Q s a2z2 a2z2 
-z 

az1 
=- 

az. 1az2 az2 
0z 

azi 
s 

=- sQ 

azIaz2 z2 

32ZI 
a 

_ 
a2Z2 32ZI 

- -(Y-a) ayaz2 " e 
32Z2 
ayazý ' Y+d 

az Yl a Yaz2 

a3Zi 
3 az 

a3Zi a3Zi 
30 az az az 

a3Zi 0 -2 
az az 

1-1.2 

1 2 2 I 2 1 

after a long calculation we get 

2 Voll(0) ,- 
12n -d +d)< 0 
4(Y+d) ±(Y-d) 

Since V" '(0) <0. vague attracting condition is satisfied at c-0 -> Le 

is hyperbolic attracting. 

Also we get b. 2 'a +a 
4(y+6) +(y-a )2 

and the proof is complete. 
11 

6.2.8 Remark The expression V  4V((Y-$+e)y2 - 2cIz12) . obtained 

in 6.2.5, is in fact valid for all values of c and in 6.3 it will be 
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helpful in studying flow in ö for e>0 

For e>0, xc e-e , 
11(x) -0 <_> (y-d+e)y2 - 2c(zý+z2) 

These points form a cone in e. Inside the cone, V increases on 

orbits, outside it, V decreases on orbits. Hence the periodic orbit 
L. (for small c>0 as in 6.2.7) must cross the cone at least twice. 

In fact, since the system is invariant under any cyclic permutation of 

vertices of e, we can say that L. must, then, cross the cone at 
least four times (once in each quadrant). This justifies the way we have 

drawn L. on figure 4 (p. 26) and figure 27. 

6.3 The basin of attraction for L 

In 6.2.7 we showed that U-Y c basin of attraction of L- WsL 
Ce 

We want now to determine that, in fact, WSLE   $-Y for small values of c>0. 
Let co be as in 6.2.7. 

6.3.1 Proposition There ex 

WC(x) 
Vcd (O, C)  > 

W '(X) 

(where w, (x) w-limit of x 

1 is E (O'EO) : t. . 

 L if xce-Y E 

-e if xcY 

by flow mE) , 

6.3.2 Remark In the following proof of 6.3.1 we will make use of some 

facts about the behaviour of m, on ao (in lemma 6.3.5). These facts 

will be really proved in the next paragraph 6.4 but we do not want to 

postpone the property in 6.3.1 to after 6.4. since this is really more 

relevant than the study of 0E restricted to ae 
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After proving 6.3.1 we will show 

0 
6.3.3 Proposition For cc (0, e) (e as in 6.3.1), and xeA- Le 

we have either a, (x)  e (i. e. xe Wue) or mc(x) - q0 or q1 (i. e. 

xc Wug0 or xc Wuq, ) or ac(x) -L- X0X1 u X1X2 u X2X3 u X3X0 . 

Note that L is the union of the outsets for the vertices, forming 

a cycle of saddles. See figure 27. Points qO and q, are hyperbolic 

repellors, for c>0. 

6.3.4 Corollary nE  eu q0 u q, uLu Lc . 

Proof of 6.3.1 Taking co and U as in 6.2.7 we have that, for ce (O, c0) 
xc U-Y then bo(x) cU and wE(x)   LE . We want now to show that all 

orbits of points in e-U will, eventually in time, enter U 

We take, similarly to 6.2.5, function V: e - Lt given by 

V(x) . 256(xOxlx2x3) , for which V(3)  0, V(e) -1, V(a-e) - (0,1) 

(The factor 256 was only introduced in V to make V(e) _ [0,1]. ) Now, 

for any sc [0,1] we let Ns = {x ce V(x) s s} (hence NO = ae , 
Nl .a). Ns is a compact neighbourhood of 2e and ej Ns if s<1 

At this point, we interrupt the proof in order to establish three 

lemmas (in 6.3.5,6.3.6 and 6.3.7), 'after which we return to the main proof. 

In these lemmas, we will take coordinate system (zl, z2, y) as in 6.2.4. 

6.3.5 Lemma Fix ß (0,1) and let Nß * (points of ae with jyj s ß) . 
Then, for all ci0' mE satisfies the following properties on 11 ß 

(i) "E has no fixed points; 

(ii) every orbit crosses Nß in finite'time. and finite length; 
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(iii) every orbit has at most one point where 0, and at such a 

point y* j0. 

(iii) means that orbits on (Jß c 3A intersect lines y= constant 

either transversally or parabolically, and parabolic contact can occur 

with at most one such line. 

Proof First we note that Nß is the union of 4 strips, one on each 

face of ao , which are parallel to XOX2 on faces F1 and F3 , and to 

X1X3 on FO and F2 (Fi Is given by xi -0 as in 2.2.17). See figure 

28 (a). Since 0. restricted to one of the faces gives the flow on any 

other face by a cyclic permutation of the vertices of e, it is sufficient 

to show (i), (ii), iii) for just one face (e. g. X0X1X2 = F3) . This will 

be done in 6.4 where we detail the study of Oe restricted to this face. 

Particularly the properties we want here are in 6.4.8. 
11 

6.3.6 Lemma There exists sc (0,1) and sl >0 such that for all 

cc (0, el) and xc Ns-ae , there is t  tE(x)>O, for which V($E(t, x)) > V(x) 

(i. e. for small c, and x near ae ,3 x' EO (x) with V(x') > V(x)) 

y=o 

X -- f 

i 

vxi 

xi 

(a) (U) (c) 

figure 28: (a) Na (b) section of Ns (c) section of Ns 
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Proof Take ße (0,1) and fix it. Let Ns   Ns n (points of e with 
jyj s g} . (Note that Nß " Nß of previous lemma. ) See figure 28. 

So, properties (i), (ii), (iii) of Lemma 6.3.5 hold for N0 . By 

compactness of Nß we can choose se (0,1) sufficiently small for these 

properties to hold in NB , for all E with 0scs co . Let vM and 

vm be, respectively, the maximum and minimum speeds of "E-orbits in Nß 

for all cc [0, c0] . (By speed we mean the norm of the vector 

By property (i) of 6.3.5, plus compactness-of Ns and [O, eO1 

0< vm s vM < For every ac (00) we denote by tE the length of 

the longest orbit in Ns for all ec [O, c0]. Again, to is finite due to 

property (ii) plus compactness. Observe that by an "orbit in Nä" we mean 

a connected piece of a me-orbit (for some cc [O, c0]), this piece being 

contained in Ns . Clearly, t. decreases if a decreases. Property (iii) 

above implies that no piece of orbit can stay on any plane y  tonst. Then, 

all orbits intersecting plane y 0, must do so either transversally or at 

a point for which y(t) has (strict) local maximum or minimum. See figure 

29. In any of these possibilities, making a tend to zero forces the length 

to become arbitrarily small. So t. -º 0 as a -º 0 of any orbit in N. + 

y=o ` N. -e oC < ýý 

figure 29: orbits in Ns 

Hence, we can choose some a>0 (with a< 8/2) for which 

to < 10 vm/vM and then take cl < min {c0, }(y-&)a2} 9 cl >00 
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Let ee [O, EI] . Now we show that function V increases (strictly) 

along +E-orbits in Ms - NS - NS u ae . Take xe Ms . In (z, y) 

coordinates we must have jyI >a. As in 6.2.5 we have 

iV 
(x) ° (Y-Ö+E)y2 - 2c z2 

Using -y-6+c k -d , y2 z a2 , Izi s1 and cs el < I(Y-6)02 

we get 

G. 3(*) Q (x) > (Y-6)(a2-21a2) . }(Y-ö)a2 >0Vxe Mä 

and since V(x) >0 => 
V(x) >0. 

Hence for xc Ms , and sufficiently small t>0, we have 

V(ýE(t, x)) >, V(x) . So conclusion holds for xe MS 

We have now to show that it also holds for xc Ns For 

such points we have 

6.3(**) 1. (X) - (Y-6+e)y2. - 2c1z12 2 -2E1zl 
2> -1(Y-&)a 2 

since lzi <1 and c< }(Y-d)a2 . 

By the choice of s, no 0,: -orbit (for ec [O, c0]) stays in 

Nß for all positive times. Remember Ns C Nß, 2 c NB. Taking x- x0 e Ns-a, & 

we must then have some i>0 such that 

0 (t, x) E Ns for 0sts 

ýE(t+t, x) I Nß for small t>0 

, 
i. e. x 0 (t, x) is the first point of OE (x) at which this orbit leaves 

No . 
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Denoting by y0 and y the y-coordinate at x= x0 and x 

respectively, we must have 1y0j sa and at x, either y=ß or 

-8 or V(x) =s. We will consider three cases of how be(x) leaves 

Nß . See figure 30 below. 

-6 -04 0 ot 0 
-ß -a 0 oC p 

a 

-ß -a 0 of ß 

Case I Case II Case III 

figure 30: How the orbit of x0 e Ns leaves Ns . 

Case I: y#± (hence V(x) = s) . 

Case II: y= ±B (x) , leaves N at xl , does not re-enter Ns 
O ä 

before leaving Ns at x2 = x. 

Case III: ±6 , 6E(x) leaves Ns at xl , re-enters it at x2 

before leaving N , leaves Nä again at x3 , then gets ß 

to x4 =x. 

We note that 6.3.5(iii), plus choice of s, implies that O'E(x0 

cannot re-enter Ns again after x3 

Now we study each of these cases: 

Case I This is simple. <g => ýE(t+t, x) j Ns for small t>0 

and this point has y-coordinate < g, 'too, if t is small enough. Then 
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v(ýC('t+t, x)) >si V(x) . 

So, conclusion holds for x in this case. 

Case II Let Vi - V(xi) i-0,1.2 

speed along arc x0xl is z vm >0 

length of arc x0xl is s za 

So, if xl = "E(tl, x) we have 

R 
tl s ya <} g/vM by the choice of a 

m 

Since arc xOxl c Ns , inequality 6.3(**) holds for all its points, then 

tV 
(t, x))dt > -2(y-6)a2 t, >- }(Y"ö)a26/vM v 

Jo1 

- - But 
ti e (ýE(t"x) )dt - 

fvo Vl 
7- log VO oo 

So V-> e 
0 

By the other hand 

speed of arc xlx2 s vM 

length of arc xlx2 z (distance between planes y-a, y" B) 

  B-a > is . (Since a< B/2 .) 

Sol if x2 . ýE(t21xl) ' we have t2 i} g/vM 
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Since xlx2 is outside Ns , 6.3(*) holds for all its points, and 

, 
log 

V2 
. 

jt2 y (or(t, xl))dt > (y-d)a2ß/vM 
10 

V2 (Y-6)' 26/vM 

=>41->e 

V2 V2 Vl (Y-d)a2ß/VM -I(Y-a)a2ß/"M 
and >e e- >1 ý' V-1 V0 

Hence V(x2) > V(x0) a V(x) i. e. conclusion holds in this case. 

Case III Let Vi - V(xi) is0,..., 4 

Arcs x0x1 and x2x3 are in Na . So, as in Case II 

VI V3 -i(y-a)a26/vM 
VO V2'e 

nn 
Arc x3x4 is similar to xIx2 of Case II. So, 

V4 Cy-' a2s1vt4 

3 

n 
Arc x1x2 is outside Nä , so 1l(x) <0 for all its points. Then 

v 2>1. Hence 
1 

V4 
s 

V4 V3 V2 Vl 
> e(Y-a)a28/VMe-I(r-a)a2a/vMe-I(y-s)a26lvM vo v3VzT T 

i. e. V(x) s V4 > VO  '4 x) and conclusion holds in this case. This concludes 

the proof. 11 
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6.3.7 Lemma Let s and cl be as in lemma 6.3.6 and take 

Bs = {x c A; V(x) Z s}   clos (e- Ns) . Then, for ee [O, cl] , any 

meets B positive ý. -orbit in es 

Proof Property could only fail for orbit of xcn if o-ý(x) c int Ns , 
hence V(6e(x)) c (O, s) . In this case, wE(x) would be a compact in- 

variant subset of Ns . Let xc wC(x) c Ns be a point where VIw (x) E 

is maximum. V(x) ss. 

Using lemma 6.3.6 we can construct a sequence (tn) strictly increasing 

with 0< to * +o such that, letting xn   fe(tn, x) . we have 

V(x) < V(xl) < V(x2) < ,,, < V(xn) < ,,, , 

This implies that VIwE(x) cannot be identically zero. Hence xj ae 

Applying lemma 6.3.6 to z, 9t>0s. t. V(fe(t, x)) > V(x) 

But (t, x) E wE(x) because wE(x) is invariant, and this gives a 

contradiction to V(x) being maximum of VIw (x) . 
C 

Hence wE(x) ¢ Ns , and, so, 0+(x) must meet Bs , proving the 

lemma. 

Proof of 6.3.1 (continuation) 

a 

Let co >0 and U be as in the beginning of the proof. Take 

sc (0,1) and el c (0, c0) as in lemma 6.3.6 and Bs as in 6.3.7. 

0 
By lemma 6.2.5, e is Liapunov attractor for ý0 with a as basin 

S 
of attraction. Since Bs is compact and Bca, there exists T>0 
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such that ýO(T, Bs) c U, i. e. V xc BS m0(T, x) cU and since U is 

positively invariant m0(t, x) c U Vti T. 

Because Bs is compact and U is open there must exist ee (O, el] 

such that 4E(T, Bs) cU for all cc CO.; ] 

Then, Vxee, e (x) meets Bs (by 6.3.7) and so, it meets u 

having we(x) cU. Using Proposition 6.2.7, we have: either xcY= Wse 

or wC(x) = LE , concluding the proof. 13 

Proof of 6.3.2 For c>0, e is hyperbolic 1-saddle and g0, q1 are 
hyp. repellors, hence Wug0 and Wugl are open, connected subsets of a 

and Wue is 2-dimensional. Let xe 1O°-Le u WUe . The orbit of x always 

meets 3U , crossing it, going inside U in the positive direction. So 

aE(x) c '&-U . But ä-U has no non-wandering points because V x1 E n-U , 
OE(xl) enters U (see proof of 6.3.1). Hence aE(x) c ae . Take face 

F  XOX1X2 . In the next paragraph we will see that F-XOX1uXOX3 c Wug0 

for c>0. See 6.4.1 and figure 31 (c). Similarly to other faces. 

So all points in as-L are either in Wug0 or Wugl so they are wandering 

points and Lc Wug0 n Wugl . There must then be points 
l e-W u g0 u Wu xe gl with ac(xl) cL. In fact, then, for these points 

aE(xl)  L because no proper subset of L can be a-limit of points of 
n, 

since the invariant sets for the vertices (which are all 2-saddles) 

are contained in 3t . 

This finishes the proof. 
0 

6.4 Flow ýe restricted to aA 

We want to describe ýc on eo . Since matrix AE has cyclic 
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symmetry, matrices Ai associated to SEIFi (Fi = face xi   0) are 

equal up to a permutation. So, we will describe restricted to face 

F3 and all others are the same by vertex permutation. 0E _ "eIF3 is 

given by 

xi   xi ((Bx)i - xBEx) ,i 0,1.2 .x- (x0, x1, x2) 

20Y -e 
Ex =1' x i0 where B  4 (-C d0 

1.01 1E 
-d 

Ö 

In the next proposition we give topological description of C. 

In figure 31 we represent the phase portraits of 0elao , for all 

values of c. drawing the flow on two faces. The other two faces are 

obtained just by cyclic permutation of vertices. Drawings will be justified 

during the paragraph. 

6.4.1 Proposition If 

Bc   (Ac)i is stable in 

for c>0, Bc c (5l) 

c< -(y-d). (Classes (5l 

Fi is any 2-dimensional face of a, then 

M3 «> 0 Moreover B. £ -(52) 

for -(y-d) <c<0 and B. E (52) for 

and (52) as in Theorem I stated in 1.4.1. ) 

Proof We note that Be (as above) c Z3 belonging to combinatorial class 

C5 if c<0 or -C5 if e>0 (see 1.5.7). To determine stable class 

of BC we will use Theorem III (1.5.8). Taking a as a suitable permu- 

tation of vertices, we put oBc c S5 or -S5 as in 1.5.8. 

(i) for e<0, 0 -c -d 
D in CB   

1-c 0yE S5 
0 r -6 
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xýý ýýto Xo 

Stables (a) c< -(Y-d) 

XI 

Uns tables 

(b) -(Y-a)<Eco 

Xo 

(C) c>0 

(e) e-0 

figure 31: Phase portraits for 
Elae 

and, for D. k2  ý+ý- 1  -- 1 
10 01 

Hence c< -(y-d)  > k2 <0  > 8e c (52) 

-(Y-a) <c<0  > k2 >0  > Be c (5l) 

by Theorem III (1.5.8). 

For c  -(y-d) , k2  0  > Be is not stable (q0 not hyperbolic). 

XI 

(d) E' '(Y"dý 
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iii) for c>0, 

0 
D= -aB ac Ea 

E 
0 6 E S5 

-Y 0 

and k2 =-8-1<0  > BE E -(52) 

For c"0. BE is not stable (with XOX2 pointwise fixed). 
0 

The next lemmas will give other properties of which, though 

not so important, help us to draw figure 31. 

Taking, in F  F3 , coordinates (zl, z2) with zl - x0-x2, z2 = x1 
(corresponding to x3 -0, and, so, y- 1-2z2 in coordinates (z,, z2, y) 

of 6.2.4) we get 

(e(1-2z2+z2-zý) - (Y-a)(1-2z2)z2)z1 + (Y+a)(1-z2)z2 

} i2 " (e(1-2z2+z2-zý) + (Y-d)(1-2z2 X1-z2) - (Y+a)z1)z2 

where 0s z2 s1, Izl s 1- z2 . 

6.4.2 Lemna For cj0, q0   I(1,0, l) is isolated fixed point, being 

hyperbolic if cj -(y-d) . The eigenvalues at q0 are al   2c (with 

eigenspace on XOX2) and a2 - 2(y-d+c) with eigenspace E given by 

Xi -1 (x0-x2) . 

Proof Taking (z,, z2) as above, (zI, z2) s (0,0) corresponds to point 

q0 . Linearization is 

} ii   eZi + (y+6)z2 

} i2   (y-8+c)z2 
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which has eigenvalues and eigenspaces as claimed. Note that 

e 0 a> (il, i2) 00 on XOX2(z2   0) and e= -(Y-6) _> a2  0. 
0 

(The eigenvalues al. X2 could also be determined using Proposition 

2.4.2, but this would not give eigenspace E .) 

Noting that V egal   2c < 2(? -8+E)   a2 and using known facts 

about "modes of approach" as, for instance, in [3], p. 162-181, we have: 

6.4.3 Corollary 

e (i) for c< -(Y"d) ,VxcF. +E(t, x) -+ q0 as t -º +a" in the 

direction of E; 

(ii) for c>0, Vxcf, ', (-t, x) f q0 as tf +A and, exactly 

one orbit leaves q0 in the direction of E, all others leave 

q0 tangentially to XOX2 

6.4.4 Lemma For - (y-d) <c<0. O has a fixed (isolated) point 

in F (call it pc) such that: 

(i) pc is hyperbolic attractor on F with Wspc 

; 00 pc Y+6 
(y, O. 6) as c -o- 0; pc -º q0 as c -º -(y-6) 

(111) for flow me in 3-dim e" pE is hyperbolic 2-saddle. 

Proof pt is determined as fn [(adjB )u] (by 2.2.1(1v)) and this 

gives p. " v/ks where 

V  (VO, Vl, V2)   (adjBE)u . (i(Y+&)+cS, -t(y-a+c), d(Y+a)-cy) 

and kc   v0 + v, + v2 a (T+d)2 - 2c(y-d)-c2 . 
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Then (i) holds since BE c (51) by 6.4.1, (ii) follows by calculating 
limits of above expression for p. 

By proposition 2.4.2 and corollary 2.4.3, the eigenvalue at pC in 

direction transversal to F is given by Aa (AEpE)3 (Aepe)i i°0,1 or 2. 

0 y -c -d v0 
=4 -d A 0 y -E vi p c7 -d 0 y v2 

Y -c -6 0 0 

Then a- 17 (? v0-ev1-6v2 + SVO-YV2) 
E 

4 (Y-d+e)((Y+d)2 + e2) >-0 since c<0 

So. (iii) holds and the proof is finished. 
11 

For c or c 0, B is not stable (6.4.1) but in order 

to justify figure 31 (d) and (e), we study these cases in the two following 

lemmas. 

6.4.5 Lemma For e= -(Y"6) 4, has not fixed point in F, qO is an 
o 

attractor (not hyperbolic) and VxcF. a(x) - X2 , m(x) * qO 

Proof Let B= B_ýY_6) . det B- (y-&)(y2+d2) /0. Hence, by 2.2.1(iv), 
0 if there was fixed point in F for this would be isolated 

and, by 2.2.1(111), this property is robust. Since for c< -(y-d) , *c 

has no fixed point in F, 
we cannot have fixed points in F for 0. 

Consequently, by 2.3.1,0 has no non-wandering points in ?. In 

fact, proof of 2.3.1 [11, says that there exist points q+, qc aF with 
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disjoint support so that q+ dominates q- (not strictly, by 2.3.6, 

plus existence of fixed point in OF for ce (- (Y-a), 0)) . The only 

possible choice for q and q- for B is q= X0 = (1,0,0) and 
q- (0,1 -Y, Y) E X1X2 with q+B- (O, y, y-6) , q_B = (0, - Y2 

. Y-a) 
0 giving that V(x)  X 

Xl 
(X2)6/Y decreases (strictly) along orbits in F 

01 

(See 2.3.6 Step 3. ) 

Since lim V(x)  0, no orbit of 
F has q0 as a-limit 

x0 

Noting that X0 and XI are hyperbolic saddle with invariant sets (stable 

and unstable) contained in aF , and, also, that X2 is hyperbolic 

repellor, we use Poincare"ßendixson (as in [26)) to conclude that VxeF 

w(x)   q0 , a(x) = X2 

This concludes the lemma, justifying figure 31 (d). 
11 

6.4.6 Lemma For c=0, let B- B0 ' ýs ý0 . 

(1) 0 has no non-wandering points in F, and VxeF x0 
2 

(hence orbits are transversal to straight lines passing through X1 ); 

(ii) VxcF, a(x) and a(x) are single points of X0X2 ; 

(iii) letting p  (a, 0, b) E XOX2 , we have: 

if 
Y+ <as1  > p is w-limit of exactly one orbit in 

and no orbit starts at p; 

if 0sa<Y. "> p is a-limit of exactly one orbit in 

and no orbit finishes at p 
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p0 = Y+6 
(y, O, 6) is not in the limit set of any orbit in F 

Proof Taking q+ m X0 - (1,0,0) and q- - X2 = (0,0,1) we have 

q+B= (0, y, 0) ,q 
-B = (0, -6,0) . So, q+ dominates q, not strictly 

x 
(see 2.3.4). By 2.3.6 V(x)   

x2 
has i(x) <0 (so 2< 

x0) 
. 0 

Therefore, (i) holds. 

Taking equations 6.4(*) at c-0 we get 

_, 2=2cc(+a)(, -Z2) - Y-d)(, -2Z2)Z, ) ( 
6.4(**) 

t =2 ° 2z2((Y-8)(1-22)(1-222) - (Y+6)=, ) 

0 In F we have 0< z2 <1.1z11 < 1-z2 

i2 <0 <-> zl >Y (1-z2)(1-222) 

zl  Y Y-S (1-z2)(1-2z2) is a simple curve (we denote it by C) in F 

intersecting 3F at X, (zI Q, z2   1) and 

p0  - (Y, O, S) (zl   Y' , z2   0) .C is represented in figure 32. 

Zý 

figure 32: flow *0 

1ý1 110 
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For all xce, il - x0 -2>0 (see above). So, all q, 0-orbits 
in e have zl strictly increasing. This means, in figure 32, that these 

orbits go from left to right always and are transversal to curve C. 

We can, then, conclude that orbits in ý must have a-limit in 

X2 p0 , going upwards (i. e. z2 > 0) at the left of C (figure 32) till 

it crosses C transversally, then it goes downwards (z2 < 0) at the right 

of C, and has w-limit in p0X0 . Also, 4 is transversal to lines 

x2 = cx0 (by (i)), so each a(x) or w(x) consists of just one point of 

X0X2 . So (ii) holds. 

To prove (iii) we will show that every orbit approaching (or leaving) 

a point p  (a, 0, b) c XOX2-p0 must do so being contained locally on the 

graph of a'function zl - f(z2) and this function depends solely on the 
0 

point p. This implies that exactly one orbit in F has p as its 

w- or a-limit. 

Suppose ý(t, x) has limit p as t -º +W (or -ce) . We write 

p(t, x) as (zl(t), z2(t)) and p as (r, 0) where r  a-b E C-1,17 . 

Using 6.4(**) and making zi(t) -º r, z2(t) -º 0 we have 

Z2 
, ý, _ 

(Y-a)(1-2z2(t))(l-z2(t)) - (Y+d)z, (. t) 

Z1 
ýyý (. Y+d)(1-Z2(tiý (Y-d)(1-2Z2(t))Zl(t) 

z2 
(t) 

(y-&) (Y+s)r 
ý0 if rLY 

Zý 
+ ar 

(Y+d) - (y-6)r Y+a 

(The denominator is not zero for rc ("10] .) 
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Also ar <0, hence ar decreases (strictly) with r 

a(1) - -1 . 

So, locally at p# p0 , (zl(t), z2(t)) must be contained in the 

graph of a function zl - f(z2) with f(0) -r and f'(0) = 1/ar 

Graph of z, - f(z2) is invariant <-> (f'(z2)i2-il)zI-f(z2) 20 

from where we get 

f'(z2) a 
(Y+d)(1-z2) - (Y-d)(1-2z2)f(z2) 

(Y-d)(1-2z2 X1-z2) - (Y+d)f(z2) 

(which holds even for z2 -0 since f'(O) - 1/ar) 

Defining F( u, y) 
(y+6)(1-u) - (y-6)(1-2u)y 

(y-6)(1-2u)(1-u) - (y+d)y 

(F is well-defined, and differentiable, in a neighbourhood of points (0, r) 
with r# -(y-d)/(Y+d). ) 

Then equation above, for'f'(z2) , can be written as f'(u) = F(u, f(u)) 

and this differential equation has a unique (local) solution f(u) with 

f(O) ar (and consequently f'(0)   1/ar ). Hence (iii) is proved for 

points in X0X2-p0 . 

p0 is the intersection of C with XOX2 . Hence, if we had 

p(t, x) + p0 as t -o- +m (for xc 
0F) g(t, x) should approach p0 from 

the left of C (in figure 32), tangentially to edge XOX2 , because 

for ra (y-d)/(Y+d) , ar  0. But this is impossible because to the 

left of C, i2(t) >0. 
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Similarly p(t, x) - p0 as t- -- would give a contradiction. 
Hence (iii) is proved, completing the lemma. 

6.4.7 Remark The point p0 E XOX2 as in 6.4.6 is the limit of points 

p. of 6.4.4 as f-+ 0. 

For v0, vl. v2 as in 6.4.4 we have that 
vv, vC 02YY 

This justifies P. in figure 31 (b) being drawn at the right of line E. 

So properties in 6.4.1-6.4.6 justify drawings in figure 31. 

In the next proposition, we collect some more properties of flow " 

for k0 which were needed in 6.3 (announced in 6.3.5) in order to 

describe flow in n 

6.4.8 Proposition Let 6E (0.1) and Pßß = (points of F  F3 with jyj s g) .I 

For all ct0 we have 

(i) ýE has no fixed points in Nß 

(ii) the intersection of any orbit of ýe with Nß has finite time and 

finite length; 

(iii) every orbit has at most one point with 0 and at this point 

y, '0. 

Proof We observed (in 6.3.5) that Nß is a strip on F parallel to 

edge X0X2 , not containing X1 or XOX2 . Hence (i) is immediate. (See 

figure 31 (c), (e). ) For ct0 all orbits in F start and end at points 

of XOX2 so they must cross tßß in finite time, and also finite length. 

The same is valid for orbits on XOXI or XIX2 which go from vertex to 

vertex. So (ii) is true. 
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Proof of (iii) is technical. Using (zl, z2, y) -coordinates, 

F(x3 = 0) corresponds to y-1- 2z2 , hence y= -2i2 ,y=- 2i2 . 
Nß (IyI s g) corresponds to 0 1(1-6) s z2 s 1(1+ß) <1. Ile recall 

equations 6.4(*) (in p. 170). Suppose that, at a point (zl, z2) in 
0 (so z2 j 0) we have ya -2i2 -0. Then 

2 
}i2 =3 

(zZ 

2 
?)+ 

z2(-2e(1-z2)i2-2cz1i1 + (y 6)(-3+2z2)z2 - (Y+d)z1) 

So at a point where '"0 (i. e. i2 = 0) we have 

y6 -2 z2 = 4z2i1(2ezj + (r+a)) 

Since in Nß there are no fixed points, i2 =0 => il .0. Then, at 

points where' -0, we get: y*- 0 <_> 2ez, +(Y+a) =0 

For e=0 this is absurd. then y=0 => y g1 0. 

For c>0, note that i2  0 (with z2 # 0) <_> f(z, ) = g(z2) 

f(zl) -e zý + (Y+S)zI 
where 

g(z2) - (I'z2)(E(l'z2) + (y-5)(1 2z2)) 

But g(z2) is-quadratic in z2 with a minimum at 

Z 
3(Y-d) + 2e 

t ti 1) 2 4(y-5) + 2e 

(Y'd)2 
So V z2 " 9(22) z 9('2) - 

8(y-6) + 4c + 

On the other hand 

-c 2) 4c 
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implying that 2ezl + (Y+d) =0 => f(zl) < g(z2) V z2 . 

Hence, in Nß ,Y=0 => i2 =. 0 -> f(z1) ' 9(z2) _> z, # 'ýY+d)/2e 

a>y #0. 

Now we want to see that every orbit in NB has at most one point with 

-0. Let Ec be the line z2 -ce (0,1) . On Ec , 
} i2 = c(g(c)-f(zl)) a0 <_> f(zl) = g(c) . Since f(zl) is quadratic, 

on any line Ec , there can be at most two points where i2 -0. But, 

in fact, there is only one of these in Ec na because on the point of 

intersection with X2Xl we have i2 >0, and on the intersection with 

XOX1 , z2 <0. This, plus the property that z2 =0 => i2 #0, imply 

that on Ec ne there is an odd number of points with i2 =0, hence 

exactly one. * See figure 33 (a). 

Therefore, there is a (continuous) curve CE in a, so that 

i2 -0 on points of Cc , 
i2 >0 on the left of Cc i2 <0 on the 

right of CE . See figure 33 (b). So fixed point q0 must be at the 

left of C 
e 

17 

(A) 

ze 

(1 

-v 

CE 

_z1'1 Na 

0 

figure 33: (a) the curve Cc of points with i2 -0, ez0 

(b) the flow pE crossing Cc 9 ci0 

X1 90 it 
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At points on C. , 
il #0 (hence il > 0) and flow crosses Cc 

transversally from left to right. 

Now we can conclude part (iii): 

Every orbit in ä has q0 as a-limit, X0 as w-limit (see figure 31 

(c), (e)). So, every orbit in d must cross C. exactly once, and no 

orbit can have more than one point with y=0 (i2 - 0) . At this point, 
y1&0. 

This finishes (itt) and the lemma. 
11 

6.4.9 Remark CC , as above, intersects exactly once each line 

Ec(z2 =cc (0,1)) . Hence, C. is the graph of some function zl - Fe(z2) 

where zl   FE(c) is the only root of f(zl)   g(c) with 1zlj s 1-c 

It is not difficult to show that 

FE(1) =0, and 

F(O)   il Q.. ( y+d) +4e(y-d+e) - (Y+d)) c (0.1) for e>0 

F0(0) for c"0 (See figure 33 (b). ) 

In fact for e 0 NCO is exactly the curve C of lemma 6.4.6 and figure 32. 

Also, C. cuts the zl-axis at X1 , plus the point with (O. i2) 

with z2  c 
2(y-a)+c 

6.5 About stability for ýE for small c10 

In the last paragraphs we presented a global description of the 

flow ýE associated to AC at least for small values of e. Our initial 
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intention was to prove that Ac is stable (by definition 1.3.3) for small 

c/0. We wanted to show that limit cycles (like LE) do occur for 

stable A in M4 . (No limit cycles occur for OA , when Ac M3 is 

stable, by 3.2.3. ) 

However, any attempt we made to prove stability for A failed 

because the cycle L (X3 f XZ -1. XI -I. X0 * X3) on ae hindered the con- 

struction of a global homeomorphism h: e -a giving equivalence between 

A and B near it. E 

Nevertheless, we still conjecture that A. is stable for small c#0 

as in definition 1.3.3, though we will not attempt here to prove this. 

But we will show that AE (for small c# 0) is "stable" in a lesser 

sense, meaning that there exists a neighbourhood N of Ac S. t. VBEN, 

there are homeomorphisms h: n .a and hi: Fi -* Fi i-0,..., 3 (where 

Fi is the face xi - 0) all taking +B orbits to O. -orbits. 

The existence of hi: Fi + Fi (1   0,..., 3) follows by Proposition 

6.4.1 ((AE)I is stable in M3 ). 

The existence of h: ä e, 
as required, is the. purpose of proposition 

6.5.3 for small c>0 and of proposition 6.5.8 for small c<0. 

Our conjecture above means that we believe that h could be con- 

structed to a way to be extended continuously to 2s . 

Let us first consider the case E>0. Take c and U as in 

proposition 6.2.7. We remember that U is taken as "E-positively invariant 

for all cc (-c, E) (see (D) of Hopf's theorem in 5.2.1) 
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and U (in 5.2.1) was constructed so that aU is a level surface of a 

C1-Liapunov function f in a neighbourhood of 0 in lft3 for 00 (as 

in [401). So we can suppose, when necessary, that au is a 2-dimensional 

compact surface transversal to "e for all ce (-E, E) . First we prove: 

6.5.1 Lemma Take e and U as above, and cc (0, E) . Then Ae has 

a neighbourhood N1(c) in M4 s. t. VBc N1 ,3 top. equivalence 

h1: G -ü from ýB to ýE . 

Proof We can suppose, as explained above, that OE is transversal to aU 

This implies that aU is also transversal to all flows sufficiently 

Cl-near " 
E 

We note that, inside U, Oe can be thought of as a Morse-Smale 

system 124,25,26] in S3 for which aU playsthe part of a fundamental 

neighbourhood associated to the outset of a repellor [24]. 

oe ¢E 

figure 34: equivalence of +B and ý, in U. 
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By standard methods of structural stability for Morse-Smale systems 

[24], there exists a neighbourhood Nl of A. s. t. VBc Nl , ýB is 

transversal to aU and ýB and 0C are top. equivalent in Ü i. e. 
3 h1 :üfÜ as required. (Note that, in U, 0. has fixed point eB (1-saddle) 

near e and periodic orbit LB (attracting) near Le . See figure 34. ) 

This concludes the proof. 11 

In our next proposition we want to assert the property that, in 

fact, all %B-orbits (B in a neighbourhood of A£) of points in ö-U 

will eventually in time intersect aU , hence having either e6 or L3 as 

w-limit. This is not a trivial assertion since near the cycle L of an 

the behaviour of ýB is not clear. 

6.5.2 Proposition Take e and U as above. Fix cc (0, E) . Then AE 

has a neighbourhood N2(c) in M4 such that VBe N2 ,Vxc 
2-U 

the positive %B-orbit of x intersects 3U 

The proof of 6.5.2 will follow the idea for proof of 6.3.1, 'so we will 

refer to that proof very often, indicating the necessary adaptations. 

But before we do this, we show, as a consequence, "stability" of " E 

in e. i. e. 

6.5.3 Proposition For all ee (0. c) (c as in 6.2.7) Ac has a neigh- 

bourhood N(E) in M4 such that VBeN. there exists homeomorphism 

h: n 
fa (h depending on c and B) such that h takes 4B-orbits onto 

', -orbits. 

Proof Take N1 and N2 as in 6.5.1 and 6.5.2 respectively. Let 

N- N1 n N2 . VB eNc N1 9 by 6.5.1, 3 h1: 5 0 taking +B-orbits to 
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orbits (restricted to Ü) 
. We now extend hl to h: n ä 

0 
By 6.5.2, since BcNc N2 ,Vxc e-U there is tx i0s. t. 

fB(tx, x) e aU . tx is unique and depends continuously on x because 

aU is transversal to fB , by 6.5.1. 

0 by We define h: ö 
+e 

he(x) if xcü 
h(x)  

fE(-tx. h, fB(tx, x)) if xc e-U 

See figure 35. 

h is the required homeomorphism. 

1 

46(tx, x) 

figure 35: construction of h in 6.5.3. 

0 

0 
6.5.4 Corollary For any c ', c" c (0. e) 

. the restrictions to a of 

f., and ýc� are topologically equivalent. 

Proof We can take c' a co < el <"""< Cr - e' such that Vj-1,..., r 

{AE; e c Ccj_1cj]) c Ni where Ni is a neighbourhood of AC as in 6.5.3. 

0 Hence, in a, ýEý s OCO ti mcl ti-.. ti mir = 0Eli 
D 



- 185 - 

In order to prove 6.5.2, we first prove some lemmas analogous to 

lemas in 6.3. 

Take ßc (0,1) and Nß as in lemma 6.3.5, then take se (0,1), 

cl >0 and Ns as in 6.3.6. We recall that properties (i)-(iii) of 6.3.5 

hold in Ns for 
E 

if 0scz co (by choice of s in 6.3.6). Now we 
fix ee (0, e) (remember < el < co) 

6.5.5 Lemma A. has a compact neighbourhood N3(c) in M4 such that 

VBc N3 1 $3 satisfies properties (i)-(iii) of 6.3.5 in Ns , 

Proof 
c satisfies (i)-(iii) in NB . By continuity, plus compactness 

of Nß , we will conclude that (i)-(iii) hold for all B sufficiently 

near Ac as'follows: 

(i) if there were Bn(Bn -o- AE) with fixed point xn in Ns any limit 

point x for (xn) would be fixed for 
E; 

B (xn) c Nß) (ii) if there were Bn(Bn -+ A. ) with &+ 
n6 

(xn) c Nß (or b' 
n 

taking limit xc Ns for (xn) '3 t+, t_ >0s. t. ¢E(t+, x) 

(-t_, x) I NB . So, for all large n. 4B (t+. xn), m6 (-t_, xn) I NB 
nn 

contradicting choice of Bn , xn . 

(iii) To take this property for all sufficiently near B we have to notice 

that B near AE (in metric of M4) implies that associated 

vectorfields XB and XC are Ck-near, for any kk0. (We must 

use that XB, Xc are C2-near at least on the finite pieces of orbits 

in Nß .) Suppose (iii) failed for Bn with 0n AE 
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First, if, for ýB 
n, 

y(xn) = y' (xn) =0, and xn -" xe Ns then 

y(x) (x) =0 for "ý giving contradiction. Second, if, for % 
n 

y(xn) = y(xn) =0 with xn e 0B (xn) , for xn -º x, xn -º x, we would 
n 

have, for "E , either '(x) = y(x) =0 with eo (x) x 

or y(x) =y (x) =0 if x 

resulting to contradiction. 

Therefore a neighbourhood N3 . as stated, must exist. 11 

6.5.6 Lemma For c, s as above, V(x) - 256 x0xIx2x3. There exists 

neighbourhood N4 of AE s. t. VBe N4 ,Vxe NS-ae ,3 x' E bB (x) 

with V(x') > V(x) 

Proof As a first step we claim that for A, B a M4 
0 IIA-BII sE > I VA(x) -trB(x) I s8EV(x) VXC 

3 
(where VA(x) _ V(sA(t, x)) It=0 = 

iso 
axi (x)XA(x) and similarly for %(x)). 

In fact, 4(x) 
- XQ(x) - xi(((A-B)x)i - x(A-B)x) 

so IIA-011 s E.  > IXA(x) - Xä(x)) s2C x1 VxEe 

o Also äXi(x)   
vxi VXEe' then 

3 
IvA(x) - vß(x) I-1Z 1xx) (XÄ (x) - xg(x)) ia0 i 

s V(x) EX2C xi  8E V(x) . i0i 

Then E SA-BI Ist "> 
I. (c) - -ý (x) IS8CVXCA 

(Note that this property is not true in general. ) 
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Now, taking ae (0,1ß) and el < min{e0,1(y-d)a2} exactly as 

in 6.3.6, we have (notation as in 6.3.6) 

1 
VA 

(x) _ (Y-d+e)y2 - 2c1zI2 (where A- Ae) . V 

Hence, for xe Mä = NS - Na u as -> y2 i a2 , Uzi s1 
VA 

(x) i I(y-d)a2 + eat andifor xe Na - an ý V 

i 
VA 

(x) i -2E - -2eß + 2(sß-e) > -}(Y-d)a2 + 2(gß-e) . 

If we take 0<< min{(c1-e) , }eat} ,VB with 118-All s& we have 

1) xc MS. 
V 

a> }B (x) zNA (x) - 2E z }(y-d)a2 + ca2 - 2ý 
VV 

2 
>} (Y-d)a 

18-(X) 
2) xe NS-DA "}a} 

v- 
(x) - 2C >- 1(Y-4)a2 + 2(eß-c-E) 

> 
2 

For any compact neighbourhood N4 of A- Ae . with N4 c N3 of 

6.5.5, we let vM , vm denote, respectively, the length of the longest 

mß-orbit in Na VBc N4 , and the maximum and minimum speeds of "B-orbits 

in Ns 
aVBc 

N4 . If BA, L (B), vM(B), vm(B) will tend to La, vM, vm 

(of 6.3.6) respectively. Since, by construction in 6.3.6 to < Is vm/vM , 

we can take compact neighbourhood N4 c N3 such that Bc N4 a> JAB-All s 

so (1) and (2) hold VBc N4 and (3) Ra < Is vm/iM in N4 . 
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From this point, the proof continues exactly as the proof of 6.3.6 

examining xc Ms and three possible cases for xe Ns-aa . Hence we 

refer to that proof and say that the lemma is valid. 
13 

6.5.7 Lemma Take e, s, N4 as in 6.5.6 and Bs - clos(o-tos) . Then 

VBE N4 , any positive "B-orbit in a meets Bs 

Proof This is exactly like proof of 6.3.7, supposing, that 

for some xen, O(x) c int Ns and then using lemma 6.5.6 for xc c8(x) 

where VIWB(x) is maximum. 

Proof of 6.5.2 Take N4 and Bs as above. Take T>0 as in proof of 

6.3.1 t. e. C(T, 
BS) cU. Now we take neighbourhood N2 of AE 

N2 e N4 such that "B(T, BS) cUVBc N2 . 

But by 6.5.7, Vxeä, 3 tx >0 with sB(tx, x) E Bs , SO 
o+ 

"B(tx+T, x) eU. Then, for xc A-U , OB(x) must intersect aU 
a 

Now we look at case e<0. This is simpler. 

6.5.8 Proposition For any cc (-(y-6), O) , AC has a neighbourhood N 

in ti4 such that 0cN  > fß and fE are topologically equivalent in 60 

Proof Fix cc< 0) . Let A A. Take V(x) = 256 xOxlx2x3 

Then 

} 
VA(X) 

(Y-d+c)y2 - 2c1z12 >0Vxc X-e 
V 

Take any cc (0.1) and U= V-1[0, c] .U is neighbourhood of e and 

mE is transversal to aU . We can take neighbourhood N1 of A such that 

8c N1 implies 
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1) +ß is transversal to au . 

2) % has, inside U, one unique hyperbolic attracting point e6 

and all "B-orbits in U-e6 have e6 as c-limit and cross a(1 (transversally) 

in negative time. So, it is standard procedure to construct homeomorphism 

hl: ü -oü taking "B-orbits to $E-orbits. 

To extend hl to h: n 
-º 

A, we prove that xe 
e-U 

=> 6ýe(x) meets 

DU) VBCNCN1 . 

Let p>0 be such that {x c &; y2 + IzI2 < p2} cU. Take 

KC " min{-2e, (y-6+c)} >0. Then, Vxe e-U 

} 
VA 

(x) s (Y-$+e)y2 - 2clzj2 Z KEp2 >0 
V 

Taking 0<C< JK 
e p2 , we have Vxe e-U 

JIB-Ali sC :>1 
VB 

(X) 2} 
A(X) 

- 2C Z KEp2 - 2C >0 
VV 

Letting Nc NI be such that BcN s> JIB-All sC we get VB(x) >0 

Vxc e-U 
,VBeN. i. e. function V is strictly increasing along 

"B-orbits in s-U, and this implies that these will, in positive time, enter 

W, crossing aU in finite time. 

Now h: ä 
.A can be defined as in 6.5.3, completing the proof. 

0 
6.5.9 Corollary if c', e" 4 (-(Y-d), 0) , the restrictions to a of "C1 

and OE� are topologically equivalent. 

Proof Analogous to 6.5.4. 

6.5.10 Conclusion Propositions 6.5.3 and 6.5.8, plus stability on the 2- 

dimensional faces of e, make us believe that, apart from the difficulty in 

effectively constructing a global equivalence h: e f e, AE must be stable for 

small c#0, so Justifying our conjecture in the beginning of this section. 
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CHAPTER 7 

FURTHER RESULTS AND COI4IENTS ON FUTURE WORK 

7.1 Introduction 

As we noted in the general introduction, we have, in this work, 

completed, for nn2, the classification of the replicator equations 
xi   xi((Ax)i - xAx) i 0,..., n (as in 1.1), by means of Theorems I, 

1.4.1, and III, 1.5.8. 

The next step would be to try a classification for n"3. This is 

not yet possible, since many questions, related to the problem, remain 

unanswered. Some of these questions are presented in 7.2 next. In 7.4, 

we discuss some cases where such questions can be answered easily, but 

we do not intend to present any major results. The cases studied in 7.4 

are chosen by picking, among the 114 existing combinatorial classes (up 

to flow reversal) in Zg , those classes where one vertex strictly 

dominates another vertex (see'[13. or 2.3.4). This domination implies 

that all orbits in n flow from one face to another (see 2.3.6). In order 

to specify these chosen classes in 7.3, we discuss a method of finding, for 

any n. all combinatorial classes of Z++l 

7.2 Questions 

We know that if AE Mn+l is stable (by definition 1.3.3) we have 

that all fixed points for mA are hyperbolic (Theorem II, 1.5.2). Also, 

each fixed point must be unique in the interior of its face (see 1.5.1(4)). 

For n 21 mA has no periodic orbits. Now we ask: 
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7.2.1 Question For Ac Mn+l ni3, stable, are periodic orbits 

of OA : (i) isolated? (ii) unique in the interior of its face? (like 

fixed points) (iii) hyperbolic? 

With respect to (iii) in question above. we note that hyperbolicity 

of periodic orbits is a necessary condition for structural stability of 

a flow among all flows (C25], [263). However, the condition might no 
longer be necessary if, instead of all flows, we consider only a particular 
family, as we had done in this work, by considering the family of flows ma 

as in I. I. 

But, even in this very restricted family, we saw (Theorem II) that 

hyperbolicity of fixed points keeps being a necessary condition for 

stability. 'Does it hold for periodic orbits? We conjecture that it does. 

If this is so, (i) is always answered. But uniqueness as in (ii) is 

not clear and we may ask: 

7.2.2 
-Question 

For Aa Mn+1 (n 2 3) stable, if mA has periodic 

orbit in n, how many can it have? 

Now, we note that among the stable classes of M3 (as in Theorem I. 

1.4.1), some present saddle connections (which in dimension 2 cannot be 

transversal) i. e. 3 fixed p, q co with Wsp and Wuq intersecting 

not transversally. But we also note that all these non transversal saddle 

connections occur on as ' and, still, when restricted to interior of 

faces, they are transversal. We would like to know if this property is 

still true when n23. Since A stable implies that its restriction 

to each face is also stable, it is enough to ask: 
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7.2.3 Question For n23. Ac Mn+l stable. Suppose p, q cA 

are fixed points for ¢A and xcWspnWuqnö. Do Wsp and Wuq 

meet transversally along e(x) ? 

It is also a well-known (e. g. [25], [26]) necessary condition for 

structural stability of flows that all saddle connections are transversal. 

The usual way to prove this is to make small local perturbations on the 

associated vectorfield near a point of non-transversal intersection. 

However, inside our family An of flows mA ,Ac Mn+l " all pertur- 

bations of mA must be made perturbing matrix A. This implies that 

these perturbations are not local. In fact, any perturbation (even at 
0 just one element of A) perturbs vectorfield XA at all points in o 

and also at-all points in some of the faces of ao . This makes question 

7.2.3 more difficult to answer. Still, we conjecture that 7.2.3 has 

affirmative answer. 

7.2.4 Questions Let n23 and Ae Mn+l 

(i) Are there strange attractors for OA ? 

(ii) Can these occur for stable A? 

Arneodo, Coullet and Tresser gave in [4] a 1-parameter family of 

Lotka-Volterra equations with n-3 for which computer drawings of the 

associated flow are presented for several values of the parameter. The 

family goes through a bifurcation of Hopf type, then, so it seems, through 

a series of doubling-period bifurcations after which the drawings seem to 

indicate the existence of a "strange attractor" in R+ . This example was 
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later generalised for n23 in 15]. We saw, in 2.5, that Lotka-Volterra 

equations in IRn are equivalent to our replicator equations in o minus 

a (n-1)-face. So, it seems that the answer to 7.2.4(1) is yes. However, 

this example in [4] would need a better mathematical understanding if we 

want to prove there is really a strange attractor or if we want to answer 

(ii). 

These are some of the questions that need to be answered before a 

classification of stable classes in An .ni3. is attempted. For the 

future, we plan to look at these questions in order to try a classification 

for nZ3. 

Before this can be done, the most we can do is the study of some 

chosen particular cases, or, at most, families of cases. This is exactly 

what we present next. In 7.3 we discuss how to obtain, for each n, a 

full list of all combinatorial classes of Z++1 (like in 1.5.7 for n- 2). 

Then, in 7.4 we choose some of these classes to study. 

7.3 Combinatorial classes 

In [41]. Zeeman indicated the existence of 114 combinatorial classes 

in Z4 up to sign reversal. His method of obtaining these classes 

(personally explained) is geometric. It consists of finding all possible 

. 
combinations of configurations on the edges of e. then checking which 

are equivalent by permutation of vertices. (Each edge having either an 

arrow, a solid dot, or an open dot, representing edge, respectively, without 

fixed point, with an attractor, or with a repellor). 
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This geometric method would not be very suitable for higher 

dimensions. We found the same combinatorial classes by the more algebraic 

method of looking at A as a matrix with zeros on the diagonal and + and 

- signs off the diagonal, and then checking equivalence by permutation. 

For n-3, i. e. Ae Z4 , this consists of finding the number 

(denoted by Ns) of combinatorial classes when A has s minus signs. 

(s   0,1,..., 12. ) By reversing signs Ns = N12_s , so it is sufficient 

to look at s-0,1,..., 6 . We get: 

sj0123456789 10 11 12 

Ns 1115 13 27 38 48 38 27 13 511 

Among the 48 comb. classes for s-6 it is easy to check (having 

the explicit list) that 10 are equivalent to their own reversals, 38 

are equivalent to the reversal of another. This gives, for s 6', 29 

comb. classes up to sign reversal. 
5 

Therefore, up to sign reversal. we have 114 -EN+ 29 combinatorial 
s=0s 

classes in Z4 

7.4 Study of some combinatorial classes of Z+ 4 

As we said in 7.1 we will now choose among the combinatorial classes 

of Z4 those where one vertex strictly dominates another vertex (by 

definition in [1) or 2.3.4) for all matrices in that class. If this 

must happen independently of the actual values for the elements in the 
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matrices we must have i0, i1 c {0,..., 3} , i0 / il , such that 

ai0j s0s ai1' j=0,..., 3 for all A= (ai3) in the class. 

i. e. A must have one positive row and one negative row (off the diagonal). 

By permutation we can suppose that i0 s0, il -1. 

Among the 114 combinatorial classes (up to sign reversal) of Z4 

we find exactly 18 classes satisfying this condition. We will call these 
Dk ,k 1,..., 

18. 

For Ac uDk , "A has no fixed point (hence no-nonwandering point) 

in e, by Theorem 2.3.1 plus 2.3.6 Step 3. We note that in all other 

combinatorial classes of Z4 , there are some matrices A for which OA 
0 has fixed point in e 

What we now intend to do with D1,..., D18 is similar to what we have 

done with the combinatorial classes C1,..., C10 of Z3 in 3.3, i. e., 

we will take in each Dk a dense subset Dk imposing condition of hyper- 

bolicity of fixed points. Then bk will be the union of subsets Dr 

so that each stable class in Z4 must be contained in one of the subsets 

Dr k 

This property was announced as Theorem VI in 1.8.1, which we prove 

here in 7.4.5. 

For k 1,..., 5 we will prove (in 7.4.8) that, in fact, the subsets 

Dk are the stable classes in Dk . For 6sks 18 we believe that the 

subsets Dk are also stable classes, but we will leave this as a conjecture, 

for future work. The difficulty in proving this property is that the phase 

diagrams for mA 9Ac Dk ,k 6,..., 18 , may present non-transversal 
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intersections of invariant manifolds for saddles. For most cases, however, 

these intersections will occur only on 34 , will be robust, and of trans- 

versal type when restricted to the interior of the p-face where they occur. 

So, we think that, in the future, we can produce a technique of 

classification of quasi-gradient flows (definition 4.1.2) for dimension 3, 

similar to the technique in Chapter 4, for dimension 2. We note that 

Fleitas [103 has also given a classification for gradient-like flows in 

dimension 3, by means of "Heegard diagrams" on small spheres around the 

attractors. If we limit the types of non-transversal saddle connections 

that may occur, we will probably be able to adapt Fleitas' technique for 

quasi-gradient flows, so that it can be applied to flows ýA for Ac Dr 

That we plan to try in the future. If we succeed, this technique can be 

applied to a much wider range of cases. 

In what follows, we give, in 7.4.1, the combinatorial classes Dk 

then we prove, in 7.4.2 to 7.4.4, some properties of mA for Ac uDk 

describe subsets Dr in 7.4.5, give phase diagrams in 7.4.7 (figure 38), 

and finally in 7.4.8 we show that some of these are stable classes of Z4 

7.4.1 The classes Dk Here we give, in figure 36, each Dk by a 

representing matrix Sk of signs, plus a drawing of the flow on the 

edges of e. We suppose Sk has first row negative, second row positive, 

hence we indicate only the signs of third and fourth row of Sk . 
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0/ 
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-ý- - Sll 

0\ 
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(+ 00 +) < 
Slk(-++p 

C+-00+1 
/+° 

S6 15+ + 0) 

+-p ++p (. 
y. -0. S7`++-p) s16(+ 

+-p -- 

S8(++0) -"- 

> 
517++0) ". 

-ý- ... S9(- 91 +++0 
S18C-++0 

figure 36: The combinatorial classes Dk .1sks 18 s 

represented by matrices of signs Sk , plus a 

drawing of the flow on edges. 

For the next lemmas we recall that we denote by Fi the face xi =0 

and by A4 the matrix obtained from A by eliminating row i and column i 

So X A  X 
i A Fi 
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7.4.2 Lemma Let Ai (aij) c Z4 have a0j <0 (j / 0) and a1j >0 
UA1) 

(i) Taking V: e-FO u F1 -+ R; V(x) - x0/xl , then i(x) <0 (i. e. 

V is strictly decreasing on orbits). 

(ii)Vxt A-FD U F, _> w(x) c F0 , a(x) c F, . 

(iii) nA c F0 u F, . 

(iv) If XA has fixed point pc FO-X2X3 (resp. pe F1-X2X3) then the 

eigenvalue, X of p in direction transversal to FO (resp. F1) 

is negative (resp. positive). 
0 

(v) If pc XZX3 is fixed, p is either hyperbolic attractor on F1 

(if a23, a32 > 0) or hyp. repellor on F0 (if a23, a32 < 0) . 

(vi) A2 and A3 are stable in Z3 (in classes (2), (3) or (8) of 

Theorem I). 

(vii) AO and Al are not in combinatorial classes Cl or C7 . and, 

therefore, they are stable < > fixed points on edges of a are 

hyperbolic. 

Proof (i) can be taken either directly by differentiating V(x) and using 

hypothesis on signs of A, or from Step 3 of 2.3.6 with q+ = X1 

q- X0 . (ii) and (iii) are consequences of (i). (iv) pc FO-X2X3 

p= (O, xl, x2, x3) with xl >0, x2, x3 20 and xl + x2 + x3 =1. By 

corollary 2.4.3, the eigenvalue transversal to FO , at p, is 

As (AP)O - (AP)B . But (Ap)0 <0 and (Ap)l >0 => A<0 

For pc Fl - X2X3 1 proof is analogous. 
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(v) pc X2X3 => p= (O, O, x2, x3) with x2, x3 >0, x2 + x3 =1 

Denoting by a0 (x1) the eigenvalue at p in direction transversal to 

F0 (F1 , resp. ), we get (by 2.4.3) a0 - (Ap)0-(Ap)2 = a02x2+a03x3 -a a 23x2 

I X1 a (Ap)1-(Ap)2 - a12x2+a13x3 a23x2 . 

So, a23 >0 =>, a0 <0, and a23 <0 =>, xI >0. 

(vi) follows because both A2 and A3 have one negative row and one 

positive row (off the diagonal) so they must belong to C2 , C3 or C8 

of 1.5.7 and by 3.3.1, plus 4.8 we have C2 a (2) , C3 - (3) , C8 = (8) 

(See also Theorem III. ) 

(vii) follows because AO and Al have at least one row either positive 

or negative', so AC, Al / C1 or C7 . 

Other part results from study in 3.3.13 

7.4.3 Remark Properties above mean that all orbits in e-FO u F1 
. -must 

start on F1 . end on FO crossing transversally all planes x0/xl =c 

(These planes contain edge X2X3 and the point qc = (c, 1,0,0)/(c+l) of 

edge X0X1 . 

See figure 37. 

plane 
xo/x, " C. 

xo 

X3 

XI 

figure 37: orbits of mA ,AE uDk going from F, to FO . 
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Now, for each k=1,2,..., 18 we take Dk ='(A c Dk ; all fixed 

points of 0A , on edges of e, are hyperbolic) 
18 

r 

Also, let D=UDk 
k=l 

7.4.4 Lemma Let AcD with signs as in 7.4.2. Then: 

00 (i) Fixed points in FO and F1 are hyperbolic, if they exist, and 

pc FO-X2X3 (resp. pe F1-X2X3) fixed is attractor, saddle or 

repellor for "A0 (resp. "A 
1) 

<-> p is, for XA , attractor, 

2-saddle or 1-saddle (resp. 2-saddle, 1-saddle or repellor). 

(ii) OA a Fix OA . 

Proof (1)-follows from 7.4.2(1v) and (vii), noting that 

AO(A1) e Z3 - C1 u C7 , and, so, fixed points on edges being hyperbolic 

 > fixed point in FO (F1) must also be hyperbolic (see Theorem III or 

Proof of 3.3.1). 

(ii) we have, by 7.4.2 (iii) that nA c FO u Fl . Suppose 

xc FO is not fixed. Examining all possibilities for stable classes for 

AO (/ Cl u Cl) in Z3 (in Theorem I) we have two cases. 

Case 1: w(x) -p where p is attractor for to 
0 

(hence, also for to , 

by (i) above) hence xI nA . 

Case 2: w(x)  s where s is saddle for +A0 (hence s is 2-saddle 

for +A) and x has a neighbourhood UO on FO s. t. 

X1 c U0 - O(x) Q> w(x') is an attractor for OA 
0 

(hence also 

for +A) 
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We can then conclude that x has a neighbourhood U in o s. t. 

x' EU => either m(x') =s or w(x') is an attractor for OA 

Since OA has no cycle of saddles, x must be a wandering point, i. e. 

xenA. ' 

Analogously, xc Fl not fixed  > xi OA . 

Therefore nA a Fix ¢A . 11 
Now in our next proposition, we divide each Dk in open subsets Dr 

7.4.5 Proposition Dk is open and dense in Dk and AE Dk-6k => A is 

not stable. Also Dk   Dk u... u DF(k) where: 

(1) each Dk is open; 

(2) A, B e Dr  > OA and 0B have isomorphic phase diagrams and are 

topologically equivalent on the 2-faces of 

(3) each stable class in Dk is contained in Dk for some r=l,..., r(k) ; 

(4) number r(k) of subsets, as above, for each k is: 

k 11 23456789 10 11 12 13 14 15 16 17 18 

r(k)I 1112222234444784 12 16 

but up to flow reversal r(10) and r(18) can be reduced, respectively, 

to 3 and 10. 

Proof 6k is clearly open by its definition. Also, since +A ,AE Dk , 
has a finite number of fixed points on the edges (in fact, at most 5). Dk 

is dense in Dk . 
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In what follows, whenever we take Ac Dk we will assume that A 

is in the sign class represented by Sk , of figure 36, in order to 

specify stable classes for each Ai ,1=0,..., 3 . 

By 7.4.4(1), AED => all fixed points of "A are hyperbolic. Then 

Ac Dk-Dk => "A has non-hyperbolic fixed point => A is not stable (by 

Theorem II, 1.5.2). 

To describe subsets Dk , in a way that (1)-(4) are satisfied, we 

have to study sets Dk case by case, much as we did with C19..., C10 in 

the proof of 3.3.1. Since we have here too many cases we will present 

below some, but not all, of them. For the ones we present, we characterize 

subsets Dk by giving the stable classes of A0, Al, A29A3 in Z3 . In 

7.4.7, figure 38, we also give the phase diagrams for these cases. All 

other cases can be treated similarly. 

Case 1AE Dl = Dl . There are no fixed points on the edges, or on the 

faces. Also AO, A1, A2, A3 c (2),. We take D= D1 

Case 2AE D2 = D2 . A0, A2 c (3) , A1, A3 c (2) . We take D2 = D2 

Case 3Ac D3   D3 . AO, A2 e (3) , A1, A3 c -(3) . We take D3 = D3 

Case 4Ae D4 . Al (3), A2, A3 c (2) , AO E C4 . Take: 

At D4 <. > AO e (41) ,Ac D4 <a> AO c (42) 

Case 5Ac D5 . A1, A2, A3 a (3) , AD c C10 . Take: 

Ac D5 <_> AO c (101) ;Ac D5 <. > AO e (102) 

Case 6Ac D6 . A1, A3 c (2) , A2(3) , AO e C5 . Take: 

AE D6 <. > AO c (51) ;Ac D6 <a> A0 E (52) 
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Case 7Ae D7 . AD (8) , A2 F (3) , A3 E (2) , AI e -C4 . Take: 

AE D' <=> A, e -(41) ;Ac D2 <=> A, c -(42) 

Case 9Ae D9 . Aj. A3 e (8) , A2 e (3) . AO c C10 . Take 

AE D9 <_> AO c (101) 

AE D9 <_> A0 c (102) with attractor on X1X3 

AE D9 <_> A0 E (102) with attractor on X1X2 or XZX3 

Case 10 AE D10 . A2 e (3) , A3 E -(3) , A0 , -A2 E C5 . Take: 

AE D10 <-> A0, -A1 (51) ;Ac D10 <_> A0, -A1 e (52) 

Ae D10 <_> A0 E (51) Al c -(52) ;Ac D10 <_> A0 E (52), Al c -(51) 

Case 16 Ac D16 . A2, A3 E (3) , A0 c C9 , A, c -C4 . Take: 

Ac D16 <_> A0 c (91) A, c -(41); Ae D16 <_> AO c (92) Al c -(41) 

Ae D16 <_> AQ E (91) Al c -(42) ;Ac D16 <_> A0 E (92), Al E -(42) 

All other cases are similar. 

Phase diagrams are presented in figure 38. Then (1) and (2) hold. 

That each stable class in Dk is contained in one Dk follows from the 
r 

fact that Ac Ck1 ,BE Ck2 , rl # r2 0"' OA and mB have phase 

diagrams not isomorphic. Numbers r(k) in (4) are given during definition 

of subsets Dk We note that AE D10 <"> -A E 010 hence, up to flow 

reversal, we can reduce r(10) to 3 (Case D18 is similar). 

This concludes the proposition. 11 
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7.4.6 Remark Among the cases, we have included above Cases 1 to 5 

because for these we will prove in 7.4.8 that subsets D1 , D2 , D3 

04 , 04 212+ 
, D5 , 05 are stable classes of Z4 . Cases 6 and 7 are the 

first ones in the list where non-transversal saddle connections occur. 

Case 9 is one where subsets D9 are not determined just by given stable 

classes on the faces. Case 10 has D10 and D10 equivalent by flow 

reversal. Case 16 is the first in the list where there exist a possibility 

of saddles occurring in the interior of both faces FO and F1 . So, for 

AE D16 , we have a connected between such saddles, and this connection 

is transversal in n. Similar saddle connections in n occur for 

k= 17 and 18. Transversality of these seems natural, but, mainly in D18 

it is not geometrically clear. This problem is related to question 7.2.3. 

7.4.7 Phase diagrams 

In the diagrams presented in figure 38 below we assume that Ac sign 

class Sk as in 7.4.1. We indicate that fixed points have the same topo- 

logical type (repellor, 1-saddle. 2-saddle or attractor) by putting them 

on a same horizontal level, with repellors at the top. We indicate, in the 

diagrams, the inset for 1-saddles, the outset for 2-saddles, plus all the 

saddle connections. These are indicated by arrows -* or -e- if they are 

transversal, or not, respectively. 

If we were going to deal with top. equivalence between two cases with 

non-transversal saddle connections, it would also be necessary to indicate 

the type of non-transversality occurring. But we will not deal with this 

problem, though we have asserted that we plan to work on this problem, in 

the future. 
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Diagram for D5 could have, equivalently, the attractor as ql or 

q2 (by permuting vertices Xl, X2, X3) . Similarly, in D9 , we can 

permute Xl, X3 , making ql the attractor. 

7.4.8 Proposition Subsets Dl, D2 , D3 , D4 , D4 , D5 , D5 are stable 

classes of Z4 

Proof These sets are open. So we have only to prove that any two matrices 

A, 6 in one of these are equivalent i. e. OA ti O6 . But these flows are 

gradient-like, since all saddle connections are transversal. Topological 

equivalence between OA and 06 is then obtained by standard techniques, 

for instance, by the "Heegard diagrams" of Fleitas [10) 
0 

7.4.9 Remark In other cases D6,..., D18 we cannot as yet prove that all 

subsets Dk are stable classesthough we leave this as a conjecture. 

However by the same argument in 7.4.8 above we see that some of the subsets 

Dk kZ6 are stable classes. Among the ones we have presented above, 

this is clear for D16 and D16 . But for most subsets Dk there are 

non-transversal saddle connections and argument in 7.4.8 does not apply. 

[)Eatkr, I beg thy pardon, if I have kept thec hung 
in reading; this Di(courfc; but I hol'e thou wilt not 

b angry : fur when I put Pen to Riper, I intended to 
tic btirf. 

Andrew Ynrranton, 1677 
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PART II 

LIAPUNOV FUNCTIONS FOR 

DIFFEOMORPHISMS 

t? J 

Zb my parents 



r1U: FAC2 

The study of Liapunov functions for differential 

equations started with Liapunov [4] in 1907, and has been 

much developed since then. Initially, Liapunov tried to 

characterize stability of a singularity for a differential 

equation, given a positive definite continuous real function 

defined on a neighbourhood of the point. The reverse problem, 

that is the construction of continuous Liapunov function, 

given a stable singularity, only appeared later. In [3], 

Lefschetz adapted the ideas for a flow, with a stable compact 

invariant set. In [5], 1assera gives some results on existence 

of differentiable Liapunov functions for differential equations. 

In [16]p Wilson and Yorke took the problem of existence of C°° 

Liapunov function for a flow with a compact invariant set 

(which need not be stable) and gave a solution which is C°° 

outside the set, but (possibly) not on it. 

"` `'" ' The intention of this diooertation is to take the 

problem of existence of Gß'0 Liapunov functions for diffoo- 

aorphisns with a compact invariant set, and we solve it in 

auction It imposing conditions for the set being semi-isolated 

(notion which is there defined). We remark that the concept of 

isolated which we have introduced is different from the one 

used in [10]. we remark, too, that our definition of Liapunov 

function has, -in some way, a more 'global' property. 

Tho initial idea for the definition of the continuous 

Liapunov function in section 1 was taken fron similar definition 

in [10]# which we have here modified. J? owovor, our smoothing 

procecs is quite differont fron the one in that paper. 



Soction 2 treats two particular cace3, applying 

results from section 1, to prove existence of local ell 

Liapunov functions for attractor sots and basic sets. 

In section 3, we deal with the problem of global- 

ization of local Liapunov functions, that is, with certain 

hypothesis, given Liapunov functions defined on neighbour- 

hoods of the basic sets of a diffeomorphism, we can construct 

a global Liapunov function which is an extension of all the 

local ones. Here we note that there are previous results in 

this direction, in the case of flows, e. g. (6"jfor morse-saale 

systems and [9] for gradient flows, but our method is quite 

different from both. 

In section 4, wo treat a particular case, the 

horseshoe, and construct a local Liapunov function for it. 

Throughout this dissertation, we have used many 

concepts-and results, some of which we recall here in the, 

preliminaries of section 1, and which can be found in (7] 

and [8). 

Since we believe we have done some original work, 

we tried to present it in form suitable for publication. 

Most of all, I want to thank my supervisor, Professor 

E. C. Zeonan 0 for tho suggestion of this problem for my 

dissertation, and for his help and encourngc=ent in so many 

wonderful discussions. 
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INTRODUCTION 

We consider a CO° manifold N:, and a diffeo=orphism 

f TAT -ý Y, . 
Let KC1.1 be a closed invariant subset of Tr, relative 

to f (i. e. K is closed and f(K) =K or, equivalently, fk(K)C K 

for all integers k). 

Our objective is to construct a real function V. 

defined on a neighbourhood U of K, satisfying properties : 

(1) V is constant on K 

(2) V(fkx) ý. V(x) for k>1, x, fkx EU 

Such function is callod a Lianunov function for f, 

relative-to set K( or local Liapunov function ). 

Moreover, wo will look for a Liapunov function which 

is differentiable (in fact, C°° ) and which is also strictly 

decreasing on orbits, whenever that is possible, i. e. we want 

(3) V(fkx) < V(x) for k>1, x, fkx EU and 
/- 

w(x)nK=0 or c((x)fK=0. 

Remark : In the case of a flow ?, property (2) is usually 

stated as V(k? (x, t))` V(x) for t0 and )(x, o)E U, sE [0, t] 

or as 
ä, V(q(x, t)) >0. ([1 J, [3], [4], [5], [10] ) 

If we wrnted, simply adapt this condition for the diffeo- 

morphism case, wo would write property (2) with k=1 only. 

But then wo note that ouch condition would permit us to study 

only local, rather than global, behaviour of f. Further, if 

we want to be able to extond V to a global Liapunov function 
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for All (i. e., V defined on V. ), wo nus� allow k to be any 

positive integer. And, in fact, we trill, in this work, extend 

V to a global Liapunov function at least for. tho important 

case where 1.1 is compact and f satisfies Axiom A and no-cycle 

condition. 

Our exposition consists of four sections, which are: 

1. Local Liapunov Functions, 

where we recall some preliminary definitions and results, 

define the new concepts of isolated and semi-isolated 

invariant sets and construct a CPO Liapunov unction 

relative to a semi-isolated compact invariant set for f. 

2. -Liapunov Iunctions for Attractor Sets and Basic Sets, 

where wo apply results from section 1 to these cases. 

Hore specifically, we prove that any attractor set for f 

is isolated and, than, there is C°° positive definite 

Liapunov function relative to it. Also, we prove that, 

if 1.1 is compact and f satisfies Axiom A and no-cycle 

condition, each basic set is isolated and, then, has a 

local CPO Liapunov function. 

3. Globalization, 

where we prove our main theorem, which is: 

Theorem 8: If 11 is compact and f satisfies Axiom A and 

no-cycle condition, there exist a global C°° Liapunov 

function for f, which is constant on each basic set and 

strictly decreasing on orbits outside the non-wandering 

set. 

4. Example: The Horseshoe, 

whore wo construct a local 00° Liapunov function for the 

horseshoe on a two-dimensional manifold. 
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1. ! -. OCAL L : rv OV 'UIIC, 2I01s 

As a motivation, wo first state and prove a theorem 

. le ". 

similar to the case usually studied gor glows ([1] , [3j., [4], [5] ) 

that is, when r is an attracfor set. 

lot S be a closed invariant set for f. We nay that 

: 'tractor sot if the incot of K x"" K is 

is neighbourhood of K, and the semi- w 

-Outset of K equals K. 2ü 

R is an attractor set if, for every neighbourhood U, of I, 

there is a second neighbourhood U2 of E, frith U2C Ul and such 

that, for any point r. in U20 the forward orbit of x is 

contained in Uý and the w -1i=it set of x is contained in i; 

i. e. XC U2C U1 , 0+(x)C Ü, and w(x)C E for any xC U2 ; 

or equivalently, 

(Definitions of w-limits inset and semi-outoot are given a 

after next theorem and equivalence gor definition of attractor 

set is proved in le=a 12, section 2. ) 

Note: The notion of P. ttractor ( rather than attractor set) is 

usually slightly more restrictive, c ely it is required 

u )X = X. In particular, an attractor must be contained in the 

non-wandering set, while an attractor set need not. 
3ip1o: In the following diagram, X is attractor set but not 

attractor. 

If we Zubotituto 0}(z) , gor 0`(x) and w(x) for c(x) 

r 

(or, insot for outset and vicoversa) in above definition, ire 
coy thr. t fi is a rerellor sot for t. (Similarly for re» ell or. ) 
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TIM011-M"i 1: Let X be compact invariant set for f. 

If there exist a neighbourhood U of Z and a continuou rer. 

function VU ----> G2 such that 

(1) V> 0; '1(0) = I: 

(2) V(fI'.. ) < V(x) for k1, xEUn f-y"U - I: 

then X is an attractor set for f. 

Proof: 

let U1 be any neighbourhood o, *AO X. Without loss of 

generality, we suppose Üý is compact and U, CU 

By continuity of V. thero is E >O such that 

U2 = (VIU1 )`1 (-W, E. ) C U1 n ETUI 

U2 is open, KC U2 and wo clam that 0+(U2) C U, and 

w(U2) CF, thus proving that K is an attractor set. 

In fact, let xC U2. 

If xCk,. ," 0'ß'(x) C I. C U1 and w(x) C IC, bocauco X is cloccd 

and invariant. 

IfsCII,, -S, we have fxEU1-IC. By (2), V(fx)<V(x)<£, 

. 
then fx C U2. Repoating the process, we obtain 0+(x) C U. -, for 

e11cEU2 ; i. e. 0+(U2)C"U2CU1:. 

As e consequence w(U2) CCU. To see that w(U2) C 8, we 

first no%o that for all xC U2, VIu: (x) must be constant, 

because if yo zE w(x) with V(y) < V("-)* lot r,: -> +* s 

'3n---> -t', with frn(x) , fon(x) EU and y= li, frn(x) , 

z= lin fsn(x). We can abiways supposo that sn rn >0 and, 

so, by (2).. 

V(fcn(x)) . V(?! n-rn(? rn(Y)))< V(f. rn(v)) Which inplie$ 

V(z) 1 (., sn(. 
&)) 4 lim V(: Crn(x)) = V(y), contradicting, 

V(Y) < 7(z)" 

27o1r, wupposi4'W y E w(x) for ooco tic U2, wo have tyE w(x)-r, 

and V(fy) lz V(Y). But, 1? Y (2), V(fy)< V(y). Hence w(U2) C Ii. 
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3crwr: tis: (I) I: 161 condition (1) is substituted by 

(1), v'0; V-1(0) =K 

and condition (2) in valid as otatod, then X. is roVollor net. 

(II) U$ing only half of tho c. bovo proof, we can zrri to 

tho 'Al'ollo. rirg property: 
I'A V: U-+n satisfies (1) as in Thoore= 1. and 

(2)' V(f )c V(x) gor k> 1, xEU C% i-kU 

then +or any neighbourhood U, of E, thero is a second 

neiC, hbourhood Ii2 of I, frith U2 C U, and 0'ß(U2. ) C Uj 

In the caco of flows, Remark II and Theorem I are 

known as Liarurov theorems for stable and a3y. -ptotically 

stable invariant seta, respectively. 

;, 'hat tre prop ozo to do is a kind oý reverse prows of 

Theorem 1 and Rorer It i. e., givon a compact invariant set E 

for f, wo intend to con:. truct, on a neighbourhood U of I`, a C00 

Liapunov function V rolativo to I:, waticfyini; (2y, and in euch 

a way that V will Satisfy hypothesis of Theorem 1 (or Remark I) 

when i is attractor sot (or ropellor sot) . 

. -I 
P, 

to Hood, : rirot, to otato oo=o proli=in: ry dofinitions, 

and rec. U some results which we will use throughout this work. 
I 

Lot xET: 

w-licit of x=u: (; ) =; yE N; y=1im frn(x) for so--o rn-- + 
(9-limit of z= a(x) =IyE Y;; y=lia frn(x) for some rn---ý - 001 
prolon; ational -pooitivo limit cot of x= J+(x) 

j3'C I!; y= urn frn( ) for some x + 0, } 

ProlonCational negativo limit set of :: = J-(x) 

_ }yC II; q= liW f' n(: cn) +or co=o xn---- x, rn--> - o, } 
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': ý:: o definition of J+(x) and J-(z) 

is an adaptation for diffoo- + 
. 1, u 

=orphicn of similar dofinitionc 

in tho case of flown and which w (z)--' 
rcan 

bo Iownd in [1] 

Fort ;'UCN, wo write w (U) -Uw(:; ) and 

sinilarly for a(U), J+(U), J-(U) . 
Let K bo closod invariant set of NO relative to :. 

Inset of IC = t6-1 L=I xC I"i; w (: c) C IC } 

Outset of I. = 0("11 ={ xE X; of (X) C Y. 

Now we introduce cone now concepts Which we need for 

our exposition. 

Semi-inset of K= S+ =I ÄE 1,1; w (x) meets IC I 

Semi-outset of F= IL- ={ xE I":; a (x) meets KJ 

or any neighbourhood U of b, wo zrrite 

t _Une . and U- =Ulb- . 

Say that r. i3 semi-isolated if there is a neighbour- 

hood U of K, euch that J+ (U - TT') CN-U 

J- (U - U) CN-U 

In this case, we say that U is an isolating neighbourhood of S. 

Say that K is isolated if K is semi-isolated and, 

Arther, t+r1 U- =K, for come isolating neighbourhood U. 

E:: eaplo3 : 1) if i io an attractor set for ', then E is 

isolated. (Proof in Le=a 13, section 2) 

2) If 1.2 is compact and ß satisfies Axioi A and 

no-cyclo condition and IC is a basic sot gor f (coo PollowinG 

dofinition3), then K is icolatod. (proof in Le=a 14, soction 2) 

3} If f is a horsechoe on N (with 1: two-ctimcnciona1) 

with horcooaoo cot 11 (coo definition in section 4) and x ir. 
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ilia : Ci. xod point of r in It, tic hrvo that: 

ii i:; i: lola, Lcd 

x i3 :; cmi-icolatod (but not 

isolated) saddlo point 
x+nU=H+nU=U+ 

U 

We recall that for xE r7, x is non-wandering if for 

any beighbourhood U. of x, there is np0 such that 

fnUx rl Ux p 0. We denote by the set of non-wandering 

points for f in N. fl is cloned and invariant. 

Say that KCN is hyperbolic if the tangent bundle 

over K has an invariant (continuous) splitting under Tf, 

Till, Es o Eu ' such that Tf IEs is contracting and Tf 1Eu is 

expanding. 

Say that* X 13 transitive if K has a'dense orbit. 

Say that a subset KC S1 is a basic set of f, i. -jo K is 

invariant, transitive and it is open and closed in . 
f%. 

Say that f satisfies Axiom A if: 

(a) fl. is hyperbolic ; (b) the periodic points are dense in f). 

The Spectral Decomposition Theorem [8] says that, for 

compact M, if'f satisfies Axiom b, then A% can be decomposed 

(uniquely) in a finite union of basic sets (f. = fl iUf12... VI1r) 

In this case, to be in conformity with the usual nomenclature 

and notation, we observe that 

n3ot ' of f 1i i= W3fli (stable manifold of Ili) 

outset of fi °t-1li = 41ufZi (unstable manifold of ni) 

As a corollary, 1-1 is disjoint union of the insets of the basic 

sets, i. e., N=U1,13(. 1 U; 1i 
i=1 i=1 

Consequently, the notions of inset and semi-inset coincide for 

a basic set flip i. e., Z-Is fi =w1 f1 i= , 
c'1-+ 

Similarly, 1': =U1. lus}, i =i1 of 
1 fl as disjoint union, 

i=1 
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and then ?: u! '1i = Ili =fl . 
i zrthcrnore, wo have [8] that ?! s (Z r1 Iluýi 

If f has a spectral decomposition for f., as abovo, 

wo say that a sequence . 
(Zo, 

. 
f11 

, ... , 1),. 
n+1 of basic sots is an 

n-cycle if 1Z0 = -Rn+1 ' Ri f1j otherwise for iýj , and 

Woni Meets S"JufZi+1 for i 

? 'e say that f satisfies no-cycle condition if f has no 

n-cycles gor n>1 

If f satisfies no-cycle condition, it is possible to 

define a partial order on the basic sets by putting 

fli <. nj < >? 13. (11 poets 1lujZ1 11 

After having stated those do. 1tinitions and results, we 

turn back to our prime intention, that in, the conctruction of 
Lic. punov unctions for certain dififooiorphiwno f with compact 

invariant subset X. And now wo note that if Ir is any Liapunov 

function for set K, defined on U, V =ust be constant on U+l1 U- 

and this loads to restrict . ourselves to 1001: for Liapunov 

functions strictly docreasin& on orbits outside U+r1*_U-, rather 

than outside L only, i. e., condition (2)' can be written as 

(3) V(f'x) < V(x) for L1, xCU !1 f"'" - U+r1 U- 

Our plan is to construct, gor semi--isolated sot Xp 

two C°' unctions V+, V: U> LG euch that V+and V_ are 

non negative, which are zero only on U+ and U- respectively 

and V is strictly increasing on orbits outside U+ and V is 

strictly decreasing on orbits outsido U- 

r irc ý, %,., o will provo tho continuous ca-sop i. o. 
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02=11 2: if h is compact ceýi-iwolated; there exist 

co? tinuouo Lipocliitz -&"unctiono 

-, U ---ý L? on nQifihbourhood U oý Iý, ýýýýý1Vin 

(1)ý; +>o ; +_1(0)_ 
0; ', (o) = U- 

(2) 
+(fk: c) >S4. (x) for 1: >1, YEU (1 f-"U - U+ 

a(fl=x) < a- 00 for lc >1,:: EU (' fýl'''J -U 

Applying some smoothing process, we will got 

T' OR 13 : Iý F- is co=Pact co i-isolated, there exist C°° 

functions V+, V :U>C; on neig bourhood U of 1, 

s 'isfying 

(1) Vý 0; V+-1(0) U+ 

V0; V_ '(O) 
= U- 

(2) V+( x) > V+(x) for ka1xCUn f' r- try 
V (fx)<v (x) for k>I , xCUtl£ U-U 1' 

Thon, tn?: inc V :. U ) Ct defined by V =_, V -' V+ 

V is ae Licpunov function for i, strictly decreasing on 

,. " orbits outside er) U, i. e., we have 

t 

Ti r, ORM-1 4: If Y. i3 compact comi-i3olated, there exist C°' 

function V: U>n on neighbourhood U of X. auch that 

(1) V(r) =0 

(2) V(fkx) < V(x) for k>1, xCU r1 f`ýU - U+C U- 

(3) V (TJ+ -U+nU-)>0 

vI (U- - u+n u-) <o 
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ilotr wo otwrt to carry out tho construction of our 

.. ý` 

yi. punov function. First of all wo define i'unction:. C+ and C_ 

and, in a sequence of lemmas, we prove they satisfy all thq 

prorerties required in Theorem 2. So, let K be a compact 

invariant co i-isolated subset of I. Take noichbourhoods U and 

U' of I, such that T' is compact, XCUCUC U' and U' is 

an isolating neiChbourhood (honco, Co is U) of IC 

U+ and U- are closod subsets of U', thus wo can 

chooso continuous Lipschitz unctions '+, F_ : II > 4ý 

such that ? 
+-1 

(0) c V'ý +, -1 (0) - tJ- 

F+0 Z`>0 

F+-, [0,1 UP_ I([0,1)) U 

P+-'([0#2)) C u' [F_-'([O.. 2)) C Ul 

(To prove F. 
I. exists, we t Le open U1 with 

C U1 CUC U' and continuous Lipschitz. U 
U1 

functions', h1, h2 : 1.1 --> [0,1] 

euch that h1-1 (0) h1-1 (1) = 11 - U1 

h2-1 (0) = U1 ; h2 1(1) 
=M- U' 

Then 
, 
F+ = h1'+ h2 caticfioc above properties. Exictenco of 

F- is provod oinilnrly. ) 

Tako, alsö, Sono real soquonco ( )n3o ''aatisfyins 

so ' c'n+1 < a. ; an >2 

Dofino C+ , a_ :U --ý 

a+(x) = ini' I an r+ '(x) ; 21 0} 

a_(x) = int i an j P-n(: c) ;n>0 

. ",, "ý by 

U 
U' 

Before starting to prove our le=as, let us make 

ooze renarko about our del'initions and =othodo. 
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ýihe on ina1 idea gor deýinition of ý+ and cc-0 

cn similar dofinitions in CIO], which hero were modified to 

porw. it proving property (2) in Theorems 2,3 and 4 for 

for k>1, : c, :cEU rather than 

for k>1, ßix EU (04 14 L) which would be equivalent to 

two k=1 only. 

After proving existence of continuous Liapunov 

function ( hare, consequence of Theorcn 2) tho authors of [10] 

Smoothed it by means of a thooro= in [11] , while we took a 

different smoothing process, given by our lc=as 8,9, and 10. 

=72. I : For isolating neiChbourhood U of %, 

U+ _UOr, * and U-=Ul1E- . 
Consequently, tT and U- are closed in U 

Proof: 

We prove the assertions only for U'+, since proof for U- 

is similar. 

By definition, U'= Un e' CUn F" . 
Supposo xEUnI. rihon x= Zia xn where w (xn)+ aeets Z. 

Zie need to Provo that xE U. There is integer sequence (rte) 
r 

+ and lk f () = Yn EK such that "m r 
k 

Taking subsequences, if necessary, we can suppose 
r 

tim yn =yEK; d(Yn, Y) ; d(ß 0"n) Pyn) 
n; 

r>n 

Then, for rin == ran , we havo 1in sn =+ "' and 

d(fsn(xn), Y) d(fsn("z), Yn) + d(Yn, Y) n+n 

i. e. y=tin? 
On(. )c, +(x)fl 1 CJ'(x)1 U. 

Since xCU and U is ioolating noithbourhood, we must have 

th .txC U+- , as wo wz. ntod. 
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=ü'ý cnd all (0) =T 
ý"ocf: 

g+(U+) =0 by definition of ß+ " 
If g+(x) =0 (xC U) one of two cases ho1dP, (a) or (b) 

(a) There is It Z4 such that alt 0. `_herefore 

(x) CCÜ r1 Ir . This means there is sequence (yn) in 1.1 

with w(yn) r1 ii jr 
-0 and 11n yn x. Lot xn = -1'yn. , 

But i1'x = yn----º .ý inplies x X. then w(xn) n IC 0 

Thus = lin xn with w(ry) r1 S i4 0 i. e. x. CU f1 Z: " _= U+ 
by le=a 1. 

(b) There is intoger sequence (rn), rn > 0, such that rn > == 

crd ar F+f 
rn 

x) -=ý 0. Theroforo n(x) >yC Ir (at 
n 

least in subsequence) and, so, yC w(x) r1 U* C J+(x) r1 V. 

Since U is isolating noighbourhood of K, we have xCU. 

(0) = U- is proved similarly. 

IU3 : lot xEU 

I) (a) J+(x) C I1-1' -? (b) There are neighbourhood V of x 

C U) and integer III such that fnyE iz-U' for yE V} ,n >i 

(c) J +(-. C) Cl -U' 
11)(a) J-(x) C r: -Ü' > (b) There are neighbourhood v; of x 

(V,;, C U) and integer Ty such that f- E for yE V,, n >1 X 

(c) J-(x) C rr-U' 

Proof: 

I) (a b) 

satic-l"yind (b). 

the Prn(} )C 

cuppoco 
rn(Xn 

to hypotroci3. 

(b ý> c) Zuppooa 

Suppose (a) is valid and there are no X, Nt 

Then tie can take n--y- x and n7- - moo, Buch 

U. T ling subsequence, if neceaoary, Wo 

--> yC U-1. 'iahon yC J+(x) r1 Ü' 
, contrary 

(b) i3 valid. If yC J+(x), there are 
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co ucnco -to with f'. )%y. ? or all 

:; aMciontly largo n, wo can cappoce z, ýE 
V and rn >Äad 

t cn (b) iipliec ilý''(xn) E :: -U. Hence the limit y tract be 

in T: -U' . : 'hon J+(z) C X-U' . 
II) is provod similarly. 

4: I) If X EU - Zr}',, tr.. ko V± , It' as in Leta 3(b) 

ý: on, for a11 yE V, g�(y) = min I an F, fn(y) ; 0z n'. Tr, } 

11) EU to VÄ ,I; a3 in le=a 3(b) 

Than, for all yC Vx , 6_(Y) = nin { an r'-fn(y) ; 04 n4 Ii=. } 

PrO Of: 

I) Lot xCU - U+and yCV: =or all n> I+-wo have 

ey C 1"I - ü' 
. By conditions on choice of r+ and (nn) 

p"r L (Y) >2 and o +e(y) >1 for all n>I lt 

But n°, p, f°(y) = F+(y) <1 since yCU. 

Mon, G+(y) = min Ia+ (y) ; 06 n4 rh }. 

II) is proved similarly. 

MM 5: I) g (fsz) > g,, (x) gor k >t x. E Un f-LU - 
II) for k ZA , xC U r1 f-1'U - U- 

' Proof: 

I) ror k:;, > 1, xCUnß-1'U-U+, ` 

ß+ (f 
x) 

= inf { an r+i'n ( x) ;n', 'O} in! tan-k F+inx 

= aj-k +Ojx for oomo finito jh 

> aj F+16Jx 3 ins I an F+ x; n>0}= G+C-{) 

II) For1:; > 1, xEUnf-''U-U-, 

ink { an p- -n ný _ ink i an;: 

g_(x) = aj -J (x) or coma finito i}0 

`j+:: r -1 (x) > in Ian+k '`-ß-n('); n %"1: j = g_(ý''. r) 

I? 
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i^: -ZU 6: e+ and ß_ aro continuous 

Proof: 

If x E U+ , g+(x) = 0. Since F+(U+) = 0, and P..,. is 

continuous, given any E>0, there is neighbourhood V of x 

zach that yEV --> P+ (y) < E. 

Then, yEV => g. *(y) = in { anPtfn(y) ;n O} C, F+(y) <6 
Eenco g+ is continuous at xEU. 

If xcU we have J+(x) C AZ-Ü' . Take 
4 
Ilt and VV as 

in lemma 3(b). By continuity of F+ and f, for each n (O no X) 
the function an +fn : VX --ý IR is continuous. 

Mhoroyore, g+ : Vx >, being the minimum of a finite set 

of continuous functions (by lemma 4), is also continuous. 

Hence g+ is continuous. 

Continuity of ß_ is proved similarly. 

ý' 

LEI A. 7: g+ and g_ are Lipschitz 

Proof : 

We want to prove that g+ is Lipschitz at each xCU. 

If x CU+, g(x) =0 and P+(x) = 0. Since wo'have 

required P+ -to be Lipschitz, there are constant k0 and a 

noighbourhood V. of x such that 
IF+(Y) r+(x)l < kx d(y, x) for all yC Vx. Then 

g+(x)l = g+(Y) 4 F+(Y) = lF+(Y) - F+(x)) < 

G kx d(y, x) for all yC Vx . 
i. o. g+ in Lipschitz at xC U+. 

If xCU- U+, wo have J+(x) C N-UT. Take X and X as 

in Lemma 3(b). Sinco r+ and f are Lipschitz, for each n 
(04 nG Ix) an. tfn :+ ---y ß is Lipschitz at x. 

Thoroforo, g+ :x CZ , boing the minimum of a Minito cc: t 

o. f Zipochitz functiono at x (by Lamina 4), is also Lipschi z 
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at x. Henco. g+ is Lip schitz on U. 

Proof that ß_ is Lipschitz can be done similarly. 

Proof of Theorem 2: 

Take neighbourhood U of X and functions g+ and g_ as 

proviously defined. Then g+ and g_ are continuous, by Lema. 6, 

and Lipschitz, by Lemma 7. Property (1) follows from Lemma 2 

and definition; (2) is given by Lemma 5. 

Now we want to approxirate g+ and g by GC° ± nction3 

Vt and V_ . 
`For our approximation we will make use of a known 

le=a in analysis, which we here state and prove: 

ZI CIA 8 : If h1 and h2 are continuous roal functionc on I'i, with 

lil"_li`, then thor"u ox: L: iI: a G'" runcLIor: It : ouch that hl < It < 112 

Proof: 

For each xEM. there is open neighbourhood V(x) and a 

constant a(x) such that yE V(x) => he(y) < a(x) < h2(y) 

(e. g. take a(x) = 
2(h1(x)+h2(x)) ). 

}V(x)} is'open cover for M. Let {VijiEI be a locally 

finite subcover (with Vi = V(xi) ). Lot ai = a(xi) and 

i} iEI is C°° partition of unity, %? i M----> It such that {ý 

strictly subordinated to the cover {Vi} , i. e. 

iEI i=1 and clos } yE M; kPi(y) >0}C Vi 

Define h: I'I --ý a by h =i Elai qi" Then h is C°°' and 

h(y) =E ai . 4i(y) =E ai "Pi(y) < 
yEVi 

< 
yE 

h2(y) 'Pi(y) = h2(y) 
yý 

ý i(y) = h2(y) 
ii 

since pi(y) >0 for some i with yE Vi and ai < h2(y) for yC Vi 

Then, h< h2. Similarly, h> h1 and, hence, h1< h< h2 0 



16 

Po marl: : In fact, the proof of Lo,. ---a 8 io still valid if wo 

suppose only that h1 is upper semi-continuous and h2 io lower 

sc=i-continuous. I first saw this le=a in lecture notes by 

E. L. Lima. 

" LM-ZIA 9: There exist neighbourhood U1 of IC and continuous 

Lipschitz functions 1-1 1.1 : U1 > lß such that 

(1) ý1+ >0 ; W+-1 (0) += U+ 

t? >0 ; Tvr_-1 (0) = U- 

(2) j1+ (fltx) > 1.1+(x) for k1 ,xc U1r1 -kU1 - Uj 

S! (fkx) < I7 (x) for k1 ,xE U1(1 f-kU1 - U- 

(3) W. is ° on U1 -U; ;U is c°° on U, -U1 

Proof: 

Let g+, g_ :U-R be given by Theorem 2. 

Take Uý .'Un fU n f- U. We have that U ==U+r U1 , Uý =U -n U, 

Then x E, U1 = fx, f-x E U, and by Theorem 2 we have 

X) xE Uý - Uý > e+(fx) > g+(f-1 

xE Ul - U1 .> g_(fx) < g_(f-1x) 

So, xE U1- Uý . -. > (g+(x)+g+W 
Ix)) < (g+(x)+d+(fx)) 

xE Ui- üý (g_(x)+g_(fx)) < l(g_(x)+g_(£-1x)) 

Applying Lemma 8, 'thero is do* function 

4l+ : U, - Uý on satisfying 
L(g+(X)+g+(f-1x)) < W+(x) < (g+(x)+g+(fx)) 

1,10 extend the definition of W+ to Sl+ : U1 ;R 

by putting Scl+(U. ) = 0. Now we prove that W+ satisfies the 

required properties. 
(1) is valid because for xC UI , ; l+(x) =0 by definition, and 

for x C. u1 - UI, V+(x) > r(c+(x)+g+(f-1X)) >0 
(2) Lot k :;, >1 ,xC U1Of-1{U1- U t0 As consoquonco 
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ter' 

x, max, fkx, ßk-1x EU- U+ . Then 

w (x) - tr+( =x) < (g+(x)+$+(ýx) )-z (6t(fýý)+ýT(fý-, x) )= 

=(ý+(x)-g+(ý-ýx)) + z(+(ýx)-+( x)) <o by 
Thooren 2 (2) . Hence W+( 'x) > Wý (x) 

(3) is valid by construction. 

To prove continuity of 51+, we have only to prove it at 

xE U+ . Let xn be cequonce in U1 with lin xn =x. Urnen 

xnE U+. , 11+(xn) = 0. Suppose xn E U1- U. But xnE Uý implies 

f(zn) CU and f-'(xn) C U. Therefore 

xn--4- x implies f (xn) --> f (x)E U+ and f-1 (xn) -ý f-1 (x)E U+ 

Then, g+(xn) ----p g+(X)=0 ; g+(ßr) --0 g+(fx)=O 
g+( f-1xn) -b g+(f-Ix)= 0. 

Since (e+( )+g+(f-1 )) < tl+(xn) < (g+(xn)+g+(fxn)i 

we have W+(xn) 0= W+ (x) 

Hence W+' is continuous. 

To prove 11+ is Lipschitz, we have to prove it only at 

xC U+. , since 1r1+ (U1-UI) is CO0 . do have that g+ and f are 

Lipschitz at x. So, there are neighbourhood Vx of x and 

constants kl, k2 >0 such that 

(Y) = Ig+(y) - g+(=ý)I 4 k1 d(y, x) 

g+(fy) = Ig+(fy) - 8+(fx) 14 k2 d(y, x) 

Taking k= l(k1+k2) wo have that, for all yC Vf1(U1-U1) , 
IW+(y) - tr+(X) I= w+ (Y) < -2(g+(y)+g+(fy)) Q ß(L1+k2) d(y, x) 
and for yC Uj , W+(y) =0 
Then, yCV1U, I. 'r+(y) - ý'ý+(X) 16 k d(y, x) 

Hance : "l+ is Lipschitz. 

For the construction of W_ wo again apply Loa 8 to 

obtain CO function W: Uý - Uý -> R such that 
- 
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and extend 1.1_ continuously to U1 by 1"1_(UT) =0. 
Proof that ti_ oatiofioo roquirod properties can be done 

similarly to the proof for W+ . 

Proof of Theorem 3: 

Lot W+, S'1- :U -> R bo given by Le .a9. Define 

11 (x) exp(- Zt (x)-2) if U-U+ 
VU ---+- Cri by V (x) _+ +Q ifxEU+ 

tr_(x) exp(- ß; _(x)'2) if xC U-U- V_ : U->El 'by V (x) 
0 if xE U- 

V+ is C°° because T, )+ is G°°' on U- U+ and Lipschitz on U+. 

Similarly, V_ is C0° . 
(1) follows fro= definition of V}, V_ and Lorna 9 (1) 

(2) If k1, xcUr f-1`U - U+ , by le=a 9(2), 

: 1+(ýkx)>' W+ (X) 
. Then 

Vt('x) W+(fkx) exp(- . +(f x)-2) > 

> Y1+ (x) exp(- , "l+ (W )-2) = V+ (. 0 

Similarly, V_(fkx) <V 
_(x) 

for k :; ý-1 , xC Un f-kU - U- . 

The idea for the definitions of V+ and V in the 

above proof van taken from (11] 

Theorem 4 is an easy consequence of Theorem 3, taking 
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2. LIAPUNOV rUl. CTICNS rOR ! TT?. ACTO:: SITS AND BASIC 13TE 

In this oection we want to apply Thoorezi 4 to coo 

particular cases, to got the following theorems. 

T}IEOR 15 : If K is a compact attractor set for f, then there 

io a C°O function V: UR on Sono neighbourhood U of b 

auch that 

(1) V Zýr 0 and V-1(0) =K 
(2) V(fkx) < V(x) for k> 1, xCU0 f-kU -x 

Theorem 5 is a converse of Liapunov theorem for 

attractor ootc (i. o. Thoorom 1). Similarly we can got a 

converse for Roark I, i. e. for a compact repellor net of f 

there is CO* Liapunov function an in 2hoorea 5, changing V>0 

for V40. 

' 11EOfI: t1 G: wuppo o 1-1 iu compact and f usti: fio: Axiom A und 

no-cyclo condition. Lot (Ii bo a basic set. Then, there is 

a CPO function Vi : Ui --' R for some neighbourhood U of 

(1i, satisfying 

(2) Vi(f x) < Vi(x) " for k1, xCU r1 ß kU 

(3) Vi J (ü j+ - (1i) >0 (where Ui+ = Uir) Won i) 
Vi (Ui- - ci) <0 (where Ui- = U1fl 11uni ) 

(4) grad Vi(x) =0 for xC .i 

L. 3-1 we need i3 to apply Theorem 4 for each cane. In 

order to be able to do that, we have to prove first that the 

ootc corzidorod aro so--i-isolated. in fact, we will prove that 

0 
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they rro ioolatcd. The proofs aro in Ze. cao 13 and 14 below. 

But wo provo boforo üoro proportion for J+, J- and attractor 
130 'CO, 

10 : :? or any xCI. I. J{ (1) and J'"(r) arc clo:. cd invariznt 

30t3 for f 

Proof: 

to prove tho assertions only for J'u'(x), since proof for 

/. 

J"(x) is similar. 

If YE J+(x), there are sequences (xn) and (rn) with 

1im xn =x; lira rn =+o; 1in frn(xn) =y 

For any integer k,, lin (k+rn) = +c*, then 

ßl{y = "'O'k (lire ? rn (xn) )= lin )k+rn ()E J+ (x) 
. 

Thus fk(J+(x)) C J+(x) for all integer k, i. e., 

J+(x) is invariant. 

Suppoao ynE J+(x) and tin yn =y. Then, there are 

xnl, in Td 'and integers rnk with lira x=x, lim r= .+ 
r 

and imf 6(7k) 
=yn .kk k 

Wo can suppose that d(yn, y) 4n and, for all k, 

d(frnk( ), Yn) r. -1 
; d(x , x) <n; rnk n" 

Consider sequences zn = xnn and to = r. So, 

liaznx lintna+oo and 
d(ftn(zn), Y) ( d(fran(xnn), Yn) + d(y , Y) +n" 
Then y lin ftn(zn) E J+(x). Hence e(x) is closed. 

LMML 11 : Lot 1 be compact invariant cot for f. If IC is 

attractor cot, thou '= cup 
1K 

and ra cat-1E . 
(i. o. scmi- inset of K= inset of K 

and semi-outset of K= outsot of K) i 

0 
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Proof : 

We always have 6L: 
IKC K+ and . of-1 }. C K- . 

Let xE K''+, i. e. w(x) CK ;10. There is sequence (rn) 

such that lin rn = +* and lins frn(x) EK. 

Suppose yE w(x) - X. There is sequence (an) such that 

lin sn = +ýo and lin f 
an(x) 

t: Y. We can suppose sn > rn 

Take open Uý with KC Uý and y Since K is attrcctor 

set, there is open U2 such that KC U2 C U1 and 0'ß(U2) C U. 

ror all sufficiently large n (n :) wo have irn(x) C U2 . 
sn(x) 

= fsn-rn. 0rn(x)) C 0+(U2) C U1 . Thus Then f 

y= him fsn(x) E1, contrary to choice of U, 

Then we must have w(x) -K0i. e. xC "-'K 

Hence K+ Cw -'K, implying IC = w- ix 
. 

Proof that K- C of-1K (hence K- = 0(-IK) is similar. 

Ly "2-ZA 12 .: 
lot K be compact inv.: -iaht for f. Then 

K is attractor set 4==> insot of K is noiahbourhood of K 
lacni-outset 

of K=K 

Proof: 

(__->) Lot K be attractor sot. There is open U with KCU and 

w (U) C K. Than UC w-1K, i. e. W -1K is noighbourhood of K. 

Suppose there is xE K- - K. Then, thorn is sequence (rn) 

with rn >0; li: n rn = 4w and lin f 
rn(x) 

E K. Take open 

U1 with KCU, and xg Ul . There exist open U2, with 

KC U2 CUB and 0+(U2) C Ul. Since 1mn f-rn(x) C K, we can 

supposo f (x) C U2 for all n. Than 

frn(i n(x)) C O+(U2) C U1 , contrary to choice of U1 

Thoroforo K- -K0 and, so, Iý" K. 

(I#-- ) .! o must prove that Given open UI (KC U, ) : hero is open 
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U2 with KC U2 , 0+(U2) C Uý and w(U2) C K. '. "lithout loco of 

Concrality, we assume U7 is compact and U, C w"'SI;, othorwico 

replace UI by a smaller neighbourhood of K caticfying these 

properties. Take open U with KCUC US and f(U) C US. 

Suppose that for all open U2 (KC U2) there is xC U2- K and 

n Zý0, with fnx C I"I - U. Then wo could take (xn) and (rn) such 

that rn>0 ,, linxn xCKand frn(xn) CM - Uand jP'(Yn)CU 

for 04 i< rn ., 
If (rn) is bounded, there is constant subsequence, i. e. 

taking subsequence we can suppose rn =k for all n. Then 

fkrnCN- U implies ftx=lin f xnCN-U 
. But xCK 

n 
and K invariant give fkx CKCU, and we have a contradiction. 

If (rn) is not bounded, at least in subsequence we can 

assume lira rn = -tom. But f rn-1 (x) CU and frn(xn) EM -U 
imply frn(xn) C Uj-U (since fU C Uj) UI 

and being compact, frn(zn) U 

convorges, at load in subsequence, X_ 
; xn 

to yE V-10 For any fixed integer k >0 
fy 

. -1 for all n' oufficien tly largo (n 
-: W(k)) f ye 

. xn) 
wo have rn k and, so, 04 rn-k < rn 

and irn 
k(xn) 

CU, then f-ky = lira frn `ý(xn) CQ". 
" 
For. 

-1 n 
come subsequence (kn), f (y) converges to zCU r)o4(y) 
But in this case, w (z) CK na(y) i. e. yC K7 - S, contrary 
to hypotho3is. 

Honce, wo concludo that thoro is cofe opon U2 such that 

ZC U2 C UI and 071*(U2) CUC U, . Also w (U2) CE sinco 

U2 C U1 C w`Ig . Thoroforo, K is attractor sat. 

A3 consoquonco of lc=as 11 and'12, wo have 

1. A 

0 
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K ±a attrac for cot . __. > incot of K in noighbourhood of K 
tout: sct oi' K =" It 

Wo conjecture that this could also be an equivalence. 

L M, 24-11 13 : Lot K be attractor sot for f. Then, there is 

neighbourhood U of K such that U+ =U, U- =K sid 
J-(U - K) C i'I - U. 

In particular, K is isolated. 

Proof : 

K beinte, attractor, by Le=a 12, K- = Y. and there is open 
Uý with KC U1 CC w-1K . A10000 we can take open U and U2 

with KCUC 'Ü C U2 C U1 and 0+(U2) C U1 . Consequently; 

W(U) C"w(Q1') CK and Uff'=U, U--K. 

Now we want to prove that J-(U-K) C AZ-U . First wo 

prove that c(-(U -K) C I: -Ü1 . Suppooo YC a(x) f1 Ü1 for xE U-K, 

then w(y) C o((x) Ct K i. e. xE K- -K = 0, which is absurd. 
Then ot(U-1. ) C 1.1-U . Nor, if yc J-(x) n. U 

-for xC U-K, 

there are (xn) and (rn) with lim. xn =x, lim rn = -H)o and 
lim f-rn(xn) =yCU. We can suppose f 

rn(xn) 
C U2 for all n. 

But of (x) C ri-ffg implies there is some k>0 with f-kxE Ni ü- 

and, co, for all sufficiently largo n, f-kxnC I. 1-U7 l. Since 

lim rn = -b,, we can tako rn > k. Then 

f-kxn = frn-k(f rn(xn)) E 0+(U2) C U1 , givins a contradiction, 
Hence J-(x) n ý! =0 for all xC U-K, i. e. J-(U K)c r: -U 

14 : Suppo3o N is compact and f satisfies ! xiom A and 

no-cycle condition. Lot . 
Cli be a basic set for f 

Than ft is isolated 
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' 7 

I'rcaof (4:. ) 

Wo I: v« tio>l. ci: d lml. Corc, WmL W: 1), .. (, -ln, . , ýý ý ̀" 
Juni = «-' Ili n. i- and ijc{1i fl Wuni . :. ri i. 

. . 
Than, for any noiChbourhood U of C). i we have UT = fl. 1'1 U, 

U- = tdu fl i r) U and U+ U= fl, " 
We rauet prove now that there is open U (fliC U) for 

which (a) J"'(U-U+) C X-U ; (b) J-(U-U-) C P, Ui 
. 

We will prove hero (a) only, since (b) can be done similarly. 
Let "is fl2- 

... , ni, .. 
indexed in such a way that : 

Denote 11j =Ü Iluf k ands, 
kl 

Ile can tako open U (fi C U) 

r"U !, tiTI , 1. o. 

that d. ( fnx, ; -1i) < E. 

Consoquentiy, if 

d(frn(xn),, V1i) <L 

J+ (U) C tili = t'! i-1n 
i+(U-U+) c jli-l " 

Suppose yC 

so'o xE U-U+. By 

(rn >0) wit: -' frll(xn) , --o y. For, all largo n, f 
rn(xn) 

CD and, 

nr be all the basic sets of f, 
nj <(ik j <k 
then ¶I1 C "12C ... C t"Jr = I-1 

such that Wi_j nUý0 and 

given . >O, there is integer N(t) such 

for all xEU, n>N(E) . 

n--ý xEU and rn---'- -tom, we have 

for all sufficiently largo n. Hence 

tluj?. i. We will prove that, in fact, 

J+(x) f1(ii for 

[21, there exist ! ýý 

open Do C U-U+ With Dort U- ý01NIjr, -I 
1A 

auch that D 
nUo 

f-nDo v Wsf1 ii1 
is noighbourhood of t! s 

i. In [2] 

Do is called a fundamental noighbourhood. 

Do can be chosen in such a way that x ¢, D. In particular, D 

is neighbourhood of f1 (hence of y) and D is negative 

invariant. Since yC J+(x), there are xn--> x, rn> +c 

(*) The idea of this prooA" was sug o tcd to me by L. C. Zoomrn 
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D boin3 nog: tivo invariant, wo havo xnC D and, co, x= lin xn 

ir. 11co xCB, and wo havo a contradiction. 

Honco J+(U-U'+') f1 fl == . 
PTow suppoco yC J+(:. ) t1 (uuni -f i) for :: C U-Uy 

Sirco, by Lern 10, r(x) is closed and invariant, cc(y)C J+(x), 

But yC '"lufji of (Y) C 'T+ (, %) r1 f2 iC J+(U-U) C f1. i= 
0 

which is absurd. Then J+(U-U+) f1 Zlurl i 
Thoroforo J+(tt-U+) C 1-1i-1 C M-U . 

Now vio apply Thooro 4 and Lo=a 13 and 14 to provo 

Thooremo 5 and 6. 

Proof of ihoornm 5 

Lot K bo an attractor not for f. By Lo=a 13, k is 

r' 

iaolatod. Applying Thooromm 4, thore exist Cý° function 

V: U ---ti- GI , for noighbourhood U of K, such that V(I: ) =0; 

V(+1=x) < V(x) fork Zýr 1, xcUn f--U, - U+n U- ; 

vI(uk- U''nr-) >0; vI(U-- U+nU`) <0. 
Also by Zc=a 13 wo can take U, caller if necessary, such 

that U+ =U, 'U-, c X. Then Lin U- =Z and 
(1) V: ý, 0; V-1(0) ßK 

(2) V(fkx) < V(x) for k1, xCUn f'U -K 
Proof of Theorom 6 

Suppose X. ß and fl as in the hypothesis. By Le=a 14, 

ni is isolated. Applying Theorem 4, there exist C° function 

Vi : Ui-> a on neighbourhood Ui of j2 i satisfying properties 
(1) to (3). Property (4) is consequence of (1), (3) and i 
boin3 hyperbolic, since there is, a splitting Trli1 = Es ©Eu 

such that Es =, Tnivsni ; Bu = Tflitfur1i 

4 
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3. GLOLALI ZJ. TIOTT 

The inin objective of this Section io to prove the 

two followinm thoororn , which give cxiotcnco of glob:. ]. G'' 

Ziapunov function for 3ono particular cazoend 

Tii^ORý, i'i 7: Supposo ri is compact and the non-t; andoring set 

for f is hyperbolic, having a deccnposition fl =n IU... Ullr 

in a finite union of basic sets, which satisfy no-cycle 

condition. Then, there exist a global c° L: apunov function 

V for f, which is strictly decreasing on orbits outside ft 
. 

i. 0. v: r2 -> R auch that 

(1) V is constant on nach fZ i 
(2) V(f x) < V(x) for' 2s 1, x¢, iZ 

rr, 

As corollary of Thoorem7and the Spectral Decomposition 

Theorem [8 ] 
,, we have : 

MORE-11,8 : If N is compact and f eatisfiec Axiom A and no- 

-cyclo condition, thoro exist a global Gß'0 Liapunov function 

fo i. ' f, which la cu::: i tart L on a:: clt t)utii c riot cL and UL rJ. c L I. y 

docroaoing bn orbito outoido j2. 

Proof- of Thoorom 7 (*) : 

Each fl ( iz=1, ... , r) is open and closed in f lo then we 

can take open Üi, containing ni and Ui 'o disjoint. 

The no-cyclo condition allows us to partially order the basic 

toto by fl i<f 11u ý'i, 0" 

() Tho idea of this proof wan suggested to wo by E. C. Zoeaan, 

aftor a theorem by P. Purcoll. 
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: hen wo can choose real numbers a1, c2,..., ar such that. 

ai <a if fl < fl . : ý: orcovor we can choose Ui so --mall 

that iýj, k ý1 , *CC Oil fkx` Üi Ci ice, 11 

As consequence of Theorem 4, for each i=1,..., r , there c.: ist 

(local) C0° Liapunov function Vi, defined on neighbour ood of 

(Ii (which wo can suppose to be as above L) and equal to 

ai onfni , i. e. Vi : Ui-' a 

(a) Vi(fli) = ai 

(b) Vi(fkx) < 1(x) for k >1, x£ ÜinflTi- i 
Making Ui oven smaller , if necessary, we can make 
(c) sup V{ < in: Vi, whenever ai <a 

, 
As a consequence, we can define 
V: Ü Ci, for U= U Ui by VIU Vi 

i=1 
Then V is CO° on Ü and satisfy 

(i) v(fli) = ai 
(ii) V(fkx) < V(x) for k >1, xEÜn f-kÜ -, n 

(ii) is a conscquonco of (b) and (c). 

Now wo take open Soto Ui. and Ui such that - 
fliCUi C aiCUiC üiCÜi 

rr 
Lot UaU Ui ;Ul_ iV1 Ui 

i=1 
Wo intend to construct a C°° function U: Ai-U -* lR, 

aa'isfying 
(iii) W(x) m V(x) 

(iv) w(: tkx) < �., (x) 

(v) w(: rkx) < V(x) 

(vi) V(: tkx) < 11(x) 

for xCU' -U 
for kZ; l1 , xE2"i-U , 
for k >1 ,xCU 
for L>1 ,xE I": -U 

fkx E N-U 

fkx E Ti-U 

fsxEU 

! for conotructina such I't, we can define V: I: ---0 R 

by f V(x) V(x) for xC U' 
1 V(x) = W(x) for xC ; I-V 
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Sirco V and 11 ara C°O , wo havo, ac concoqucnco of condition(iii) 

that V i3 well dofinod rind C4O on I:. 

Condition (i) implico 

(1) V(fli) = ai 

Conditions (ii), (iv), (v), (vi) imply 

(2) iT(flcx) < V(x) for k, 1, xc f% 

Now we havo to carry out the construction of Sr1 . 

For every xET,: -U ,x is a wandering point and w(x) C f1 i 

o( (x) C fl for cone fl < fl i2 iý i2 

Than we can take ( and fix) integers k_(x) <0< kt(x) such 

that fkx C Ui1 for all 'k k+ (x) 

fkx C Ui 
2 

for all k :< k_(x) 

and we can take an open neighbourhood Do(x) of x, in such a 

way that,. writing Dk(x) fk(Do(x)) for k_ (x) <k* k+ (x) , 

we have DD C Ui if fkx C Ui 

Lkn D=- -0 if k_<k, a<k+ ,kt 
inf (VijDk) > cup (VjIDD) if k< n and fkX C Ui 

f xCU' 

Such choice of Do(x) is always possible, as consequence of 

(b) and (c) 

0 

U4 vý ýi 
C. 

)t /D D 

iý. 

a 

Now, tako opon 0 
(x) ouch that xCE0CU, 0C Da . Wlriti ti; 

(x) fk, (x) ) far h- Ck ýc k+, it followo 
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,. _k. + 
(x) k (x) 

fx C Llc C El C D1 . Lot Xx =k (�) Dk(x) &x = kU(x) Le(x) 
{ 

x}x( -U 
is open cover of Y. -U . By compactness, there is 

" finite Subcover, i. e., we can take x1 , x2, ..., xla C T. -U such 

that I" -U Cý1V... v ý1 for n=x n" 
met dDn = d'xn and define 

j! 
n :n by defining 1"/n on Dk(3 ) as follows : 

if fkxn C Ui for some i (16 iG r) put t! 
n 

D1. = ViIDk 

fkxn ¢ U' , there are (unique) jt, 12(k_4 jt< k< j24k+) 
2(xn) C U' and such that ff 1(xn) E U' 

J 

fJ(xn) U' for all J1 <j< j2 

Take c2 = sup (VOID J2) ; c1 = inf (VIDJ1) . Then 02 < c1. 

Define 1-ln as constant on Dk by, putting 

"'n(Y) = c1 - 
01 

_C2 
(k - jt) for all y"E Dk(xn) . 

1 

Hence Wn " is well-defined and C' on and sati: °ies 

(iv)n t'ln( Y) < ""n(Y) for k >1 , yC (P: -U)ß'1 JSn , fkyC 114-u 

(v)n V4(f < 1"n(y) for k 31 , yE (m-U)rJDn , fkyC U 

(vi)n I. r (fkY) < v(Y) for ký1 , yE U, fkyE (;. -U). '. Lq 
n 

Let ýn : 1.1 ----r [601] be any C° function such that 

3n(Eo(xn)) =I 
Pn(I: -D0(xn")) =0 

Lot IS 
n: 

IR be defined by 

ön (I: - d9n) =0 
ýn1Dk( )= ßn f-kIDk(xn) for k_(xn) tk k+(xn) 

As consequonccs, wo have 

ihn is C° on 1.1 

Ön( ýd 
fin( fl: y) 7yn(Y) if Y, fky C Y-U 

L1 W (y)>0 for yCI-U 
rý_t n 
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, of ino ýLn : 1.1 R by )-n (Y) =0 for yC i.. -fin 
ýSn(Y) 

%ln(y) _ for yC I: -U Sa(Y) 

Xn is well defined, non-negative and C°° on r:, and zatiof;. es 
N 

; (y) =1 for all yE 1, ' ; -U E 
n 1 

and (fky) = 1. (Y) if y, fly C ,! -U 

Now we can define our wanted W: M-U at by 

N 
W(Y) = )(Y) 1'in(Y) E 

n 1 
W is well defined and C'O on I": -U . We claia that W 

satisfies properties (iii) to (vi) and then our proof is 

complete. 
(iii) Lot YE U' -U 
If yEý, CýA 

, 1.1n(y) = 
V(y) 

, by definition of 'rln 

If yý JDn )n(y) =0. Then 

1'1(Y) E Xn(Y) 1'! 
n(y) _ JD 

an(y) 1-1n(Y) _ 
n 

= y`ý(Y) 
V(Y) 

n(Y) 
) v(Y) v(Y) 

nn 

(iv) Lot k> 1, yE N-U ,fyE N-U 

Ll(fky) =E )(fIY) "ln(f y) =E (Y) Vln(fkY) < 

<E An(y) 11n(Y) = j1(Y) 

since Wn(f1cy) < Un(y) and for ooao n, Xn(y) >0 

(v) Lot k>1 , yEU, flyEM-U 

W(i y) = F. Xn(fLy) 1n(yl'y) _ YE An(f y) lto(fkY) < 
n 

< 
fk ý 

)n(f`'y) V(Y) = 
flsyE ý "(f"-. V) V(Y) V(y) 

nn 

cinco It (f1ýY) < V(y) and for sorao n, X(fky) >0 " 
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(vi) Lot k>, 1, yc ? "I-U , sky EU 

ºi (Y) =E 1n (Y) 'rln(Y) =E )(Y) t in(�) > 
Yý on 

>E 
In (Y) V( Y) =E (Y) y(fkY) _ (fky) 

YC- 4n YC-: "Dn 

since V(. ICY) < I. : 
n(y) 

if yC LQn and, for some, n, ;,. (f) >0. 

If our goal is to construct C°° function V: a 

such that V(fkx) < V(x) whenover this is possible, :: e afirm 

that our results in Thooren 7 and 8 arc the best possible in 

the respective cases. This means that V could never decrease 

on orbits which are inside the. non-wandering Set 1Z,, since 

any orbit in P. must be entirely contained in one of . he basic 

sets and. V oust be constant on each basic cot (this is given 

by the Corollary of next Lemma 15) . 
I. As a consequence of this observation and Theorea 7, 

if M is compact and f has a spectral decomposition in basic 

sets for wo have : 

11 = {x EM ;* V(fx) = V(x) for all Liapunov function V for 

,. on m} 

LMOIA 15 : Let V be Liapunov function for f, defined on 

neighbourhood of fl . Then V is constant on 0x for any xE f1. 

Proof: 

V is constant on :: <> V is constant on 0(x) 

V(i''+'x) = V(fkx) for all intogor 3c . 
Suppose that, for oomo k, V( +lx)< V(fkx). 

Call y= fkx ; thon V(fy) < V(y) . Take a 2(V(y)*V(fy)) 

and open U (yE U) ouch that V(fU)'< a< V(U) 
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For n ,-1 and zC fnU, we have z= fry' for coWQ 

Y' CU. Then V(z) = V(fn'1(fy')) 4 V(fy') <a>z9U 
Hence U () fn- U=0 for all n>1. 

For n1 and zC f-nU , we have z= -ny, =or co--o 

y' CU. Then y' = fnz , and, vinco f'1'J r) U=0, it folloz"'z 

that zU (because zC U= y'C Un `U ). Honco U t'f-'U = 0. 

Then Un fnu =0 for all integer n0i. e. y is a 

Lrardorin, g point for f, contrndictiong hypot40 heoio, oinco 

xC in implies y= fl xE 
. 
(Z 

. 
Thoroforo V(flt+1x) = V(rltx) for all k, and, co, 

V is constant on ÖTf 
. 

COROLLARY : Tot ni be basic sot for f and V be Liap",: r: ov 
function, defined on neighbourhood of 

+hen V 'is constant on C2i. 

Proof: 

Wo romembor that-, by dofinition, ni is trans itivo, 

i. o. thoro i: xC ni such that fl = 0(x j. By Le=a 15, 

'V must bo constant on fl 

Here wo re=ark that previous results on construction 

of global C°° Liapunov function (or similar) for dyn =ical 

systems, in the case of flogs, can be found in [6] for Mor3e- 

-Snale systems and in (91 for gradient flours. However, our 

method of construction is different from both. 
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4. Eý'li: PI, E ß: i3 f: 0°. SEM.: GE, 

?: e Start with a short review on the hor3eohoo. 

Consider I= [ 0,1 ] aid R=IxIC 

iT1 P, -'- I n2 R--: I 

and R1 = 1] ß2 Ti -1[ý] 

Lot F: R1 U R2 - -> ß be such that 

F IR1 to cs -R1 linearl y onto 1? 2 1[5 5] 

Fßß2 takes R2 linearly onto 24 7T2 1[ 
,5] 

'R'I I ýý 
P 

Let A. bo two-dimensional manifold and R ----ý DI 

a e=bedding. 

Let R= q(R) ; RI = Y(RI) ; iT2 (p '2) 
Consider a , 

diffconorphica' f: X auch that" 

(a) RI V R2 'D r2 
is co-nutativo diagram, 

r FI f 

"N 

(b) f %P (R -RI V R2) C t: R 

(c) If pER and fp R then fip R for all i1 

r 

Shen we say that the germ of f at fl(f) f1 R is a 

horroshoe 

CV. 11 H= 11(f) r1 R the horoechoe : yet for f. 

Ari : i. cou : cqucncc of (c) WO li: Lvc 

(d) lý pCR and ß'1p ZR then fip 9 ft for all i1 
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1 

ý'.: i32.. plO 1 H'j i 
i 

..... "1 i ..... ý '...... 7 

Take Fro-1 'R 
bi ß(B1-1) nA; Ik i, -i (B_ 1) rR 
to 

= j> 1j' -1 k äo B-1 

) Lk =B nß°1 s'_to 1 -1 Go 03 

and D=4 -1 (3k ) -16 j eft o0 04 k 600 

Then the intorsection of the non-wc. ndoring sot off with R 

H B" 
. 

'Vo known that H i3 a Cantor sot, i. e., H is perfect 

and totally disconnected. 

See definitions and proofs in [7] und [8] 

We grant to construct a Liapunov function 
Ir yw 

U ---º relative to the sot H i. e. HC and 

(1) V(H) = 
(2) V(fkp) < V(p), for k1, pCÜ l1 f-Y"Ü -H 

Wo will construct first V: U -" n such that 

(1)' V(om) 0 

(2)' V(Px) < V(x) for xC int (R1v P. 2) - g° 

whore U= int R. 

Than wo can dofino V: U ---ý V. for U= int R 

by V(p) = V( (p)) for p. C U 

l: 'o claim that this V in a Liapunov function for ' 

rolctivo to H. 
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In fact, 

(1) pCH (p) C v° > v(p) = v( (1(p)) =0 

(2) Suppose pGÜ r1 f-16. Then, we aunt have 

pC int (R1VP. 2) _ Bö and Y-1(p) C int (=%1v ? 2) 

henco v(fp) 
= V(ý 1 (fp)) = v(- (ý-1 (p) )< (by (2)' ) 

< V( 1(9)) 
= v(p) 

If k>1 and pCU r1 f-1 U, by condition (c), we have 

that f 'p EU for all 0G16k 

Then V(fkp) < v"(f gyp) <... < v"(fp) < v(p) 

Therefore, V is Liapunov function for f, relative to H. 

Now we have to construct V: U ----y Cl satisfying 

(1)' and (2)' 

'tle call Ck a i71 ( Bk1 )_ ?1( Bk ) for any j ý-1 

and C-; Ck . Note that C is a Cantor set contained 
o 

in I, and zihich can be characterized by the following leraa. 

. 3.1k 16 :C{xCR; x= lin 
an 

whore (anýnýo is 

sequenco with ao =0, an =5 an_, + ýln 

und (S 
n) nz%1 auch that 5n =1 or 31 

Proolo: 

C= lT1(r) = n, 1o Tt1 (Bn1) and Bn1 io the union of 2n 

disjoint intervals (In, 
j ; 14 jt 211 ) each of length 1/5n. 

Say Inj cnj cnt + 
I, 

_. 3 Io I [O, 13 In, j 5n ý1 

on, 21-1 = cn-1, j + 
1n ' cn, 2j " cn-1, j + for 04 j62n 55 

Now wo noto that xCC if and only if x is tho limit of a 

aoquonco (cnpJ ) with 2jn-1 -1 4 in ° 2jn-1 

n 
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x= 1i... eng J. lake Sný' j1, iý jn io odd 
nji:; oven n 

and an = 5n cno 
n 

Then ao = 50 co"JU =0 

nnnan- an =5 n#Jn =5 ýcn-l, jn-1 + 
5n 

}=5{ 
5n-1 

+ 
5n 

+5`n-1+ `Sn 
Hence x= lin as wo wanted. 

5 

As a consequonco of Le=a 16, we have that 

rin C4 and max C=4. Then, as C is closed, for 

every xE [4 
,4C, thoro aro uniquo a(x) , b(x) EC 

ouch that 

xE( a(x) , b(x) and ( a(x), b(x) ) r1 C=0 
To detormino a(x) , b(x) wo note that, in this case, as 

xg Cl than 4 Ck for come C1 . Take n= min( k; x% Ck } 

Let a', b' such that a'ECn , b'ECn , (a', b')C1 C=0 and 

xE (a', b') . Than a(x) = a' -. 
1n 

4; 5n 
b(x) = b' t 

" 4.5n - 

We note that"thoro is positive integer k for which 

b' - a' =n. Thoroforo b(x) - a(x) _ 
? c+n 

. 5 2.5 

Now wo Go back to the actual conotruction o., Ap V, and 

for that wo dcfina an auxiliary function ti, Cto ft by 

oxp (-( 4- x)-, ) if x<4 

oxp (-( x -)-1) if x>2 
li(x) 

o: cp (-( (x-3(x))(b(x)-x) xC(4,4) -C 
0 ifxCC 
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U7 is, &'s . on-nogativo, -und f1 (0) =C. 

0 
4 20 2C 4 

Por U= ins R, wo define 

a: U Ua ,V: U0 C'. by 

g+ (x, Y) 

4,; _(x, y) _ (T'1(Y))4 

V=g__g 

Ronark: We take exponent 4 in definition of g_ to be able to 

p--ova (in Le=a 18) that If* is characterized as the only 

points where V and Grad V are zero 3inultanoously. If we had 

taken ß_(ß+, y) = t, W(y) instead all the other properties would 

still be true but not this one. 

1'to have : 

c+(x, y) =o tr(x) =o 'xc c. <= (x0Y) c 
g*-1 (0) -I3_°ß _ t! ~ (ii) nu= tJ 

Similarly, g_-'(O) = Be .= Zlu(H) rU= U- .. 

.I LFI-21A 17 : I) ß+(r (x, Y)) > g+( x, Y) for (x, y)E int(31UR2)- ° 

II) g_(F(r,, Y)) < g_(x, Y) for (x, y)E int(R1UR2)-g° 

Proof : 
int(R1UR2) i(x, Y) ; xE (, ) U 5,5 

, yE (0,1) } 

Write F(x, y) = (x', y') . Wo can ' consider sovor.: l cases 

Case 1 r, E (4,1) U (1 , 
4) Then :o have that x'E {4,4) 

and 25 (x-a(x)). (b(x)-x) . Thus 
g+(F(X, Y)) _ oxp (- ((rý-3(xý)). (b(X')-X'))-i 

oxp (- (25 (x-a(X))"(b(x)-x) )-ý > 

> exp (- (. (x-a(x)) . (b(x)-x) )-' )= g+(ti, y) 
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U (5, ). Than we have a(: c) = C oo 2: xC ( 
2u ,5)5 703 

b(:: ) _3 and x'E (0,1) u 

o+ : c' E (0,4) 

&(( , y)) = exp. (- (! -x)-1) > 

> oxp (- t tx-a(x) ). (b(x)-x))-1) = 6+t%ý, Y) 
g0 r x' E (4,1) , 

G, ( (x, Y) )= e}: p (- (: z- 4)-1) > 

> oxP (- ((x-a(te) ), (b(=ý)-ý))-1) = g+(x, Y) 

Case 3 (xC (3,4) ) and Caro 4( Ä` (5,5) ) can be done 

oiI ilarly. 

II) is also provod similarly. 

As consequence of Le=a 17 and previous renark3, we 

hüvo that. function V= g_ - g+ satisfies conditions (1)', (2)' 

Thore+oro, V is a CO Liapunov function for the diffeor-orphism 

f, rolativo to the horseshoe cot H. 

Now wo want to prove an additional property of the 

function V, which in : 

PEH <> 
v(P) 

=0 and 

grad V (P) =0 
Thin will bo, a corollary of similar property for V, and which 

wo prove in next lo=a 18 

LIA 18 : V(x, y) =0 and (x Y) 
00 , --- grad V (x, y) =0 

Proof: 

(& >) If (x, y) C W4 , then xC C, yC C. Co, V(x, y) =0 

and 
X(x, 

Y) --a, -+(x) -0i 
ýy(X, 

Y) = 
ay 

(Y) =0 
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(<ý ) .; uppo :. o (::, y) CU- I'. ° 

äi x<1 or 4 x>', 4 
w 

wo hcvo `ý='' (. -z) -/ 0. Thon 
Gx 

of (x, y) "A 0 DX 

Iý y. < or y>4, we have y-{y) 
p0. Then (x, y) V0 

Q 
I1 < 31 , 4< 4 

s-. %(x, y) _- 
=(x) 

=- dx oxp (- {(x-a(x)). (b(x)-x))-1) 

- exi{- { {x-a{x)) " (b{x)-x})-ý )_ 
(x-a{x)) (b(x)-x) 

=0x= 
2(a(x)+b(x)) 

It 4<y<4, 
similarly 

y(x, 
y) = 

dy 
exp (- ( (y-a (y) ), (b (y) -y) )-1)=0 

y= (a(y)+b(y)) 

But, V((a(ti)+b(x)) , Z(a(y)+b(y)) )= 

= or-p(-16 (b(y)-a(y))-2) - exp (-4 (b(x)-a(x))-2) =0 

, 
(b(y)-a(y))2 = (b(x)-a(x))2 

b(y)-a(y) 2 (b(x)-a(x)) 

There are integers j, k, a, n such that ". 
b(x)-a(x) = 

2.5n ' b(y)-a(y) = 
2k*n 

, as wo have noted 
5 

before. Then (2k+1) 5n =2 (2j+1) 5n , which is absurd, 

since left-hand side in odd and right-hand side is even. 
Honco, V(x, y) =0 

grad. V (x, y) =0ý Co 
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