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ABSTRACT 

Discrete event simulation is now a well established modelling and 

experimental technique for the analysis of manufacturing systems since it was 

first employed as a technique, much of the research and commercial 

developments in the field have been concerned with improving the 

considerable task of model specification in order to improve productivity and 

reduce the level of modelling and programming expertise required. The main 

areas of research have been the development of modelling structures to bring 

modularity in program development, incorporating such structures in 

simulation software systems which would alleviate some of the programming 

burden, and the use of automatic programming systems to develop interfaces 

that would raise the model specification to a higher level of abstraction. A 

more recent development in the field has been the advent of a new generation 

of software, often referred to as manufacturing simulators, which have 

incorporated extensive manufacturing system domain knowledge in the model 

specification interface. 

Many manufacturing simulators are now commercially available, but their 

development has not been based on any common standard. This is evident in 

the differences that exist between their interfaces, internal data 

representation methods and modelling capabilities. The lack of a standard 

makes it impossible to reuse any part of a model when a user finds its 
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necessary to move from one simulator to another. In such cases, not only a new 

modelling language has to be learnt but also the complete model has to be 

developed again requiring considerable time and effort. The motivation for the 

research was the need for the development of a standard that is necessary to 

improve reusability of models and is the first step towards interchangability of 

such models. 

A standard framework for manufacturing simulators has been developed. It 

consists of a data model that is independent of any simulator, and a 

translation module for converting model specification data into the internal 

data representation of manufacturing simulators; the translators are 

application specific, but the methodology is common and illustrated for three 

popular simulators. The data model provides for a minimum common model 

data specification which is based on an extensive analysis of existing 

simulators. It uses dialogues for interface and the frame knowledge 

representation method for modular storage of data. The translation 

methodology uses production rules for data mapping. 
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ABBREVEATIONS 

AI Artificial Intelligence 

AGV Automatic Guided Vehicle 

AS Activity Scanning 

CRMS Common Representation for Manufacturing simulators 

DES Discrete Event Simulation 

DOS Disc Operating System 

EDD Earliest Due Date 
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FIFO First In First Out 

FMS Flexible Manufacturing Systems 

GUI Graphical User Interface 

PI Process Interaction 

SMSF Standard Manufacturing Simulator Framework 

STEP STandard for Exchange of Product model data 

WIP Work In Progress 
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CHAPTER 1. INTRODUCTION 

As manufacturing systems become more complex the greater the effort 

required to plan, operate and improve them. Discrete Event Simulation (DES) 

is a dynamic analysis technique which is extensively used in the evaluation of 

new or existing manufacturing systems, providing support for strategic, 

tactical and operational planning. It provides an insight into the dynamic 

behaviour of the system resulting from the variability in behaviour of its 

components and interactions between them. It is a useful tool employed by 

managers and analysts responsible for the design and operation of complex 

manufacturing systems, for making informed investment decisions about new 

plants and facilities. It allows experimentation with different plant 

configurations and operating parameters before a decision is made on their 

implementation. 

Simulation can be used by decision makers to try out ideas on a computer 

before building a new system or changing the operation of a system. If the 

computer program is a relevant and an accurate representation of the system, 

then experiments can be performed to predict what will happen in the 

manufacturing system under different operating conditions, allowing ideas to 

be evaluated that would be costly, disruptive or impossible to try out on the 

real system. For example, if a company was envisaging an extension to an 

existing facility and was uncertain as to its potential benefits, simulation 
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could be used to study the plant as it currently exists and as it would with the 

extension, to determine the effect. In addition, for existing facilities it can be 

used for evaluating schedules, new policies, decision rules, organisational 

structures and information flow without system disruption. From the 

operational perspective, without simulation it would be difficult to predict the 

effects of congestion caused by changes in production schedule, batch sizes, 

machine breakdowns and labour performance variability. 

In the early days the use of simulation was restricted to the off-line analysis of 

complex systems on a mainframe and required the employment of an analyst 

with a good knowledge of the system and adequate simulation training. 

However, with the advent of PCs and development of a new generation of 

simulation systems its use has proliferated. A variety of people with 

knowledge of the real world system, but with little or no specialist training in 

simulation, are increasingly being involved in the validation of models, 

experimentation and, in many cases, as developers of models. 

1.1 Early developments in Simulation 

Model development is a time consuming and difficult task and much of the 

research in simulation has been concerned with simplifying the task by the 

inclusion of domain knowledge, simulation expertise and easier interfaces in 

simulation systems. However, up until about 1960, before the advent of 

simulation languages, models were developed in general purpose computer 
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languages like FORTRAN. These offered the greatest flexibility, but required 

all tasks in a simulation model to be programmed in a 3rd generation 

computer language making the model development process extremely labour 

intensive. This had the disadvantage of requiring an expert in programming 

and simulation for their development. 

The first simulation language to be developed in the UK was GSP, from which 

followed other general purpose simulation languages like ECSL and SIMON 

since the early 1960's. The development of these general purpose simulation 

languages alleviated some of the model development burden by providing 

facilities for random number generation, sampling from probability 

distributions, automatic collection of output, constructs for modelling various 

elements usually associated with simulation modelling, etc. They still required 

the writing of a simulation program, but this was considerably easier than in a 

general purpose computer language. 

The American research effort also resulted in the development of a number of 

general purpose simulation languages like GPSS, GASP II, SIMSCRIPT and 

SIMAN/CINEMA. A diagram, based on the one given in Carrie (1988), of an 

historical perspective in the development of some of the main simulation 

software, in the UK and USA, is given in Fig 1. 

A major improvement evident in more recent versions of these languages was 

the inclusion of an animation facility, which allowed the visual depiction of the 
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modelled system. This allowed the status of resources to be observed as they 

interacted with materials and, in the process, aided debugging, validation and 

presentation. Animation, although no substitute for exhaustive model 

validation and statistical analysis, allowed validation to be carried out by a 

wider audience with little knowledge of simulation but an in-depth 

understanding of the system being modelled. 

UK I USA 

GSP 
:GP SGPSS SIMS IPT 

SIMS PT II ECSL IMON SLAM 

CODE 

ECSUCAPS SIMON/DRAFf SEEWHY SIMAN LAM II 

AUTOMATIC 
ROGRAMMING 

HOCUS 

S IMAN/ TESS IFSIMFACTORY 

. 

Jý 

Fig 1 The historical development of some of the main Simulation 

Software. 

A research trend that became evident from the mid 60's onwards was attempts 

at making the model specification easier, via some form of Automatic 

Programming. Automatic Programming is concerned with making program 
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specification easier by raising it from the programming to a higher more 

natural level. The early attempts at automatic programming for simulation 

resulted in simulation code generators, which were provided as front ends to 

existing general purpose simulation languages and contained only knowledge 

of the syntax of the target simulation language. They did not contain general 

simulation modelling knowledge, which had to be provided by the user in some 

form of high-level descriptor language. They can be effectively considered as 

simulation language statement generation tools. They were usually written in 

procedural languages like FORTRAN or Pascal, and the specification method 

was usually a questionnaire or interrogation of the user. Examples of code 

generators are CAPS and DRAFT for generating models in ECSL and SIMON 

respectively 

An important development in simulation systems in the early 1980's was the 

advent of SEEWHY as a Visual Interactive Simulation (VIS) system which 

allowed the simultaneous creation of the simulation model and animation. VIS 

provides a means of fine tuning the validity of the simulation without having 

to perform a full length simulation run. In these Visual Interactive Systems 

icons are provided which may be linked together in the form of a network to 

depict the physical entities. This form of Visual Interactive Simulation was 

made possible by advances in graphics and animation and its advent was 

deemed the most important advance in simulation since the development of 

general purpose simulation languages. 
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Also, another important impact on simulation modelling became evident, even 

though the official techniques may not have been used, which was the 

incorporation of Artificial Intelligence. 

1.2 The advent of Al 

Artificial Intelligence (AI) has extended many of the frontiers of computer 

science; it has had uses in pattern recognition, speech processing, robotics, 

expert systems, language processing, etc, and is a means of creating methods 

of programming closer to human thinking compared to the traditional 

programming methods. Its main objective is to capture in a computer program 

behaviour which could be considered intelligent. Al attempts to simulate 

human intelligence via programming with rules, logic, neural nets or 

communicating objects. 

There has always been an important link between Simulation and AI because, 

although using different representations, they attempt to model via a piece of 

software some aspects of the real world. The integration of the two was 

motivated by the increasing complexity of simulation models making it 

desirable to have a new generation of simulation systems which possess 

certain on-line intelligence to assist both the developers and the users. This 

has encouraged modelling based on inferencing, search methods and 

knowledge representation schemes developed in Al. 
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The main impact of AI has been on attempts at automatic modelling systems, 

instead of just simulation code generators, and the appearance of Knowledge 

Based Simulation Environments. The automatic modelling systems, due to 

improved inferencing and knowledge representational methods, enable a 

wider variety of simulation expertise to be represented and applied. They 

contain general simulation modelling and domain knowledge in addition to 

simulation target language knowledge, so that the model specification could be 

raised to an even higher level of abstraction. They also provide more advanced 

specification methods like natural language processors, graphics interfaces 

and multi-entry dialogue interrogations. 

The Simulation Environments have also been the result of breakthroughs in 

AI resulting in improved interfaces, knowledge representation, and 

relational and object oriented databases These store simulation modelling 

knowledge using rules, frames, semantic nets, and object oriented 

programming. They use a variety of the specification methods used by the 

automatic programming and modelling systems. The main aim is not merely 

to produce code like automatic simulation programming, but to support the 

entire simulation model development life cycle from model building, 

validation and verification through to experimentation and statistical 

analysis. 

Allied to the incorporation of AI was the impact of advances in software 

engineering research which resulted in improved user interfaces. 
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1.3 Developments in user interfaces 

There has also been an improvement in the interfaces used for specifying a 

simulation model. In the early general purpose simulation languages like 

GPSS, SIMSCRIPT and CSL, the models were specified by using a text editor 

to enter a number of program statements. This process required the user to 

have an in-depth knowledge of the syntax of the simulation language. This 

problem was alleviated with the advent of higher level specification methods 

using Activity Cycle Diagrams (ACD), block diagrams (e. g. Blocks facility in 

SIMAN), etc, which can be thought of as statement generators or a form of 

code generator. This removed the need for the user to know about the syntax 

of a particular simulation language statement. 

An important implication for simulation systems, especially Generic 

Simulators was the emergence of Windowing Environments incorporating on- 

line help. These allowed different parts of a model to be created and displayed 

in different windows via a combination of menus, dialogue boxes and graphics. 

The graphical interface could be used for creating the animation whilst 

dialogues could be used for entering the simulation model parameters. The 

dialogue boxes are used to provide contextual information to the user to: 

" make a related set of choices. 

" type in some information. 

" choose from a set of options. 
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" acknowledge a piece of information before proceeding. 

The entry of model parameters was further simplified in dialogue boxes using 

buttons, scroll boxes, dials or text fields with facilities for guiding the user and 

simultaneous error checking to ensure correct input. 

1.4 Simulators 

In order to further simplify the task of model specification in simulation, data 

driven models or special purpose simulators were developed, e. g. Mast, 

Rensam, Map/1, etc, which are preprogrammed simulation models specific to a 

range of systems, and require no programming on the part of the user. These 

are restricted to specific problem domains for example MAST and MAP/1 are 

intended for modeling Flexible Manufacturing Systems (FMS). In such 

systems the user simply provides the data which may be numerical (e. g. 

number and capacity of a machine), logical (e. g. a dispatching rule for an AGV) 

or textual. 

The next stage in the evolution of simulation software lead in the early and 

mid 1980's to the development of generic simulators like WITNESS, 

PROMODEL, SIMFACTORY and FACTOR/AIM which segregated 

programming and data. These attempted to extend the flexibility of simulators 

to cover the entire manufacturing domain. Research into these Generic 

Manufacturing Simulators has proceeded in parallel with that into automatic 
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simulation programming, making the development and the use of the latter 

effectively redundant. These simulators which used the improved user 

interfaces, attempted to have greater flexibility without diminishing their ease 

of use, combining some of the advantages of general purpose simulation 

languages, more advanced interfaces and special purpose simulators. The 

development of these generic data driven languages, which separate data and 

programming, has made the model specification easier than with general 

purpose simulation languages without losing significant flexibility. They do 

not require the need for a sequential or procedural simulation program to be 

written and are designed to model systems which have a similar underlying 

structure. They reduce model development time, increase accuracy, improve 

communication and are predominately Visual Interactive. 

The underlying structure in such systems is motivated by the realisation that 

manufacturing systems that are simulated have the same characteristics, but 

differ in details. For example, since all manufacturing systems comprise 

products, and resources to produce them such as facilities, machines, 

operators, handling devices, storage, pallets, fixtures, tools, etc, a lot of the 

research has been concerned with developing systems which are applicable to 

a variety of manufacturing systems with little modification. 

This is particularly true for the generic simulators which include domain 

knowledge of a variety of manufacturing systems, providing pre-defined 

modelling constructs for real world objects whose characteristics can be easily 
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instantiated for a specific application. This is true even though they have 

followed different development paths, e. g. WITNESS (Istel, 1995) was initially 

intended for modeling production lines, PROMODEL (Production Modelling 

Corp, 1991) for systems with a family of parts and FACTOR/AIM (Pritsker 

Corp, 1992) for machine shops. 

1.5 Research Objectives. 

Automatic modelling systems (as well as code generators) drew a distinction 

between a specification language (interface) and the target simulation 

language. Like automatic modelling systems, manufacturing simulators also 

raised the level of specification by incorporating domain and simulation 

modelling knowledge in the interface, but did not maintain a distinction 

between the specification language and the simulation modelling language; 

the interface effectively acts as both. 

Many manufacturing simulators are now commercially available, and their 

use in industry has rapidly increased, often by non-specialist manufacturing 

engineers. However, their development has not been based on any common 

standard, and this is evident in the differences that exist between their 

interfaces, internal data representation methods, modelling capabilities and, 

to a lesser extent, even in the way the simulation executive operates. A lack of 

a standard makes it impossible to reuse any part of a model when a user finds 

it necessary to move from one simulator to another; in such cases, not only a 
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new language has to be learnt but also the complete model has to be developed 

again, requiring considerable time and effort. 

The objective of this research programme was to develop a standard 

framework for manufacturing simulators which would help with the 

reusability of models, or large parts of them between different simulators. The 

motivation is similar to the STEP research programme (Burkett and Yang. 

1992)on the development of a standard for CAD system. The tight coupling of 

the model specification and simulation modelling in manufacturing simulators 

makes this a difficult task; a similar problem was also faced in STEP, and led 

to the separation of specification data model from the target modelling 

languages with the help of application referrence models (translators). The 

approach is similar to that taken in the automatic programming techniques 

but, unlike examples of the latter in the literature, development of standards 

cannot be based on specific target languages. Due to the highly logic intensive 

nature of simulation modelling techniques, it was also envisaged that complete 

standardisation is unlikely, and the development of a minimum standard was 

a more realistic objective. This minimum standard required the scope of the 

manufacturing systems covered by the standard to be set to covering the 

majority of automated manufacturing systems i. e mass production, job shops, 

batch and FMS. Also, within this scope the minimum standard was restricted 

to the structural elements and the process plan (the only behavioural element) 

of these systems. 
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The steps taken in this study towards the development of a standard 

framework can be summarised as: - 

1. investigate the development of simulation software and their specification 

methods, in particular, advances in knowledge representation techniques, 

interfaces and automatic programming methods. 

2. investigate and identify a minimum modelling standard for generic 

manufacturing simulators. 

3. develop a data model for the standard model specification. 

4. develop a translation method for creating (partial) simulation models in 

target manufacturing simulators from the data model, and illustrate with 

examples. 
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CHAPTER 2. The Development of Discrete Event Simulation 

2.1 Introduction 

In this chapter the nature of discrete event simulation and its main 

developments over the years are discussed. Since problem specification in a 

computer useable form is a time consuming and difficult task, much of the 

research in simulation has been concerned with simplifying it by the inclusion 

of modelling structures, domain knowledge, simulation expertise in the model 

specification interface, and the development of easier to use user interfaces. 

Much of the early work was concerned with the development of formal, general 

modelling structures (often referred to as world views), while later work 

concentrated on developing higher level modelling constructs containing 

domain knowledge. There has also been considerable effort in the 

improvement of the software environment, from the early days of models in 3'' 

generation general purpose languages (e. g. FORTRAN) to the present day 

generic simulators (e. g. WITNESS). 

2.2 Application of Simulation 

As manufacturing systems become more complex, the greater the effort 

required to plan, operate and improve them. Discrete Event Simulation 

(DES) is now a well established technique for strategic analysis and design 
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of manufacturing systems, and is increasingly being used as well in tactical 

and operational planning. DES involves the modelling of a system in such a 

manner that the model mimics the response of the actual system to a high 

(or desired) level of accuracy. Its importance to manufacturing industry is 

evident from the large number of commercial tools that have been developed 

in recent years particularly for this market. 

DES allows effective representation of all important system components, 

together with their characteristics and interactions, and the inclusion of the 

variability in their behaviour. Whatever detail the modeller requires to 

make appropriate judgments about a system can usually be included, thus 

providing an environment for the realistic experimentation with system 

design alternatives and their operations. - 

Simulation can be used to evaluate the design of a proposed system (Ranky, 

1983; Musselman, 1984; Schriber, 1987; Carrie, 1988) prior to its physical 

implementation; hence, it can be thought of as a forecasting technique, 

effectively allowing the users to operate the (virtual) system before its actual 
implementation. This is extremely useful since the cost of simulation is a 

fraction of the cost of rectifying faulty system design, making its use critical 

when the cost of the proposed system is high. When a system already exists, 

simulation can be used for studying ways of improving the design or 

investigating different operating policies and scheduling strategies without 

disturbing its operation in any way. 
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In addition to its traditional role as a design tool, DES is increasingly being 

employed as an aid to the creation of shop floor schedules (Kiran and Smith. 

1983; Novels and Wichmann, 1990), which can be used to control the 

production activities of the real system. Through the execution of a detailed 

simulation model a finite capacity schedule is generated. The model includes 

the process routes of jobs and the resources they require, the initial conditions 

of the current shop floor status, known machine breakdowns, critical resources 

etc. Additionally scheduling rules can be included for assigning part allocation 

priorities, machine conflict resolution, labour allocation, tool allocation, etc. 

The event schedule that the simulation run generates can be given to the 

shop-floor as a realistic schedule consisting of a planned time ordered set of 

activities. However, before the schedule can be released to the shop floor, it 

has to be analysed to see whether it is acceptable in terms of the expected level 

of performance on, for example, due date satisfaction, throughput or 

utilisation of resources. If the schedule is deemed unacceptable a series of 

experiments may need to be conducted to refine it by increasing capacity 

(through overtime), reducing load (e. g. through sub-contracting of work), 

changing the priorities of critical jobs, etc. In recent years, a number of 

simulation based scheduling systems have appeared like Provisa (Istel, 1993) 

and INORDA (Insight, 1993). These provide useful facilities for scheduling 

such as built in scheduling rules and links to MRP systems. 

Simulation is extremely useful in gaining confidence of non-technical clients 

because the results from a simulation are easier to understand than those 

from an analytical approach. This is especially true since the appearance of 

animation facilities within simulation software for displaying the movement of 

entities through a visual display. An important effect of this increased ease of 
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communication between the model builders and users is that the user can 

become involved in the model development process. 

As a tool for system design and operation, DES also has a number of 

limitations. There is the need for specialised training in constructing 

simulation models, since manufacturing engineers are very seldom skilled in 

simulation techniques. Considerable time and effort are needed for data 

collection, model building, verification and validation, execution and the 

interpretation of results. Simulation is only an experimental tool and not an 

optimisation method; only a relatively small number of alternatives can be 

investigated in a reasonable time. Simulation experiments are also of a 

statistical nature and therefore require interpretation. However, some of these 

problem, in particular model development, have been addressed to some 

extent in recent years through a number of developments in the field, e. g. with 

the advent of Manufacturing Oriented Simulation Languages and Integrated 

Simulation Support Systems. 

Although there is no all encompassing methodology which can be adopted to 

ensure a successful simulation project, it has been found from experience that 

a simulation project should proceed through a number of stages (Law and 

Kelton. 1982; Schriber, 1987; Carrie, 1988; Pidd, 1988). The stages are: 

1. Understanding and definition and of the objectives, and specification of key 

issues to be addressed by the model. The objective(s) include: evaluation of 

a proposed design against a specific set of criteria; comparison of a number 

26 



of competing systems; development of operating policies or procedures; 

prediction of a system's performance under a specific set of conditions; 

identification of bottlenecks etc. 

2. Model formulation phase, in which a conceptual model is envisioned to 

represent the system under study. The conceptual model is the model 

formulated in the mind of the modeller, identifying the basic building blocks 

of the system in terms of the manufacturing functions. 

3. Model building to translate the conceptual model into a computer 

executable simulation model. This model may be defined in a 3rd 

generation high level language, general purpose simulation modelling 

language, special purpose package or a simulator. 

4. Collection of the data required for the model; the extent of the task may be 

determined by the desired detail and accuracy of the model. The data 

required in a manufacturing simulation model include processing times, 

set-up times, failure times, repair times, transporter travel times, type of 

setup., etc. 

5. Verification to examine the computer code to ensure that it conforms to the 

user's conceptual model of the real system. 

6. Validation to determine whether the simulation model behaves in the 

manner of the real system and concentrates on the degree of fit between the 

real world and its model representation. 

7. Experimental design to determine the correct combination of system 

variables that result in the best possible performance characteristics. 

8. Model execution to provide results. 
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9. Statistical analysis to extract information from the experimental results. 

2.3 Concepts of flexibility and ease of use 

Concepts of flexibility and ease of use are important in any discussion on 

simulation methodology and software because they define the suitability of a 

simulation system to the problem domain, and the level of expertise required 

of the personnel who will develop and use the models. 

Ease of use is an important and desirable feature in simulation software 

because it affects the speed of model development; determined by the method 

and tools available to the user in specifying the model. In the early systems 

there was very little assistance; models were specified with the aid of primitive 

text editors and by the writing of program statements in 3rd generation 

general purpose computer languages. The situation has improved with the 

advent of general purpose simulation languages, intelligent editors, simulators 

and Graphical User Interfaces (GUI). 

Flexibility is an equally important feature in simulation software because no 

two manufacturing systems are the same. If the simulation software doesn't 

possess the necessary flexibility, then the model may have to be distorted to fit 

a particular system, which may result in a model of dubious or unknown 

accuracy. Alternatively the modeller may have to spend a great deal of time 

and effort in finding ways of overcoming the limitations of the particular 
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system. Flexibility is concerned with the ability the simulation software 

provides for modelling a wide range of different systems. A simulation 

software system is deemed highly flexible if it can be used to model a wide 

variety of systems with the inclusion of a substantial amount of the detail 

required by the modeller, whereas an inflexible system is one in which the 

amount of detail that can be included is restricted by the structure and the 

input requirements of the software. 

It has been found from experience, that as the development of simulation 

software has progressed, increased ease of use has generally been at the 

expense of lower flexibility. This relationship between the ease of use and 

flexibility is illustrated in Fig 2.1 (based on an analysis by (Mills and 

Talavage, 1985)), which indicates that the special purpose simulators (MAST, 

GCMS, etc. ) are the most easy to use (due to their entirely data-driven 

approach), but are limited in flexibility because they were designed to model 

only a specific type of manufacturing system. In contrast more programming 

oriented (as opposed to data-driven) simulation software have more flexibility 

but less ease of use. WITNESS (Istel Ltd, 1995) can be seen as an attempt to 

strike a balance between the two extremes via the inclusion of a programming 

language within a data-driven framework. 
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HIGH RENSAMIRENSIM 
MAST 

GCMS 

XCELLISIMFACTORY and FACTOR/AIM 
EASE 

OF USE 
WPTNESS/PROMODEL 

SIMAN 

PSS 

LOW 

LOW HIGH 
LEVEL OF FLEXIBILITY 

Fig, 2.1 The relationship between the level of flexibility and the ease of 

use of simulation software. 

2.4 Development of simulation modelling constructs 

Any model represents a view of a system that it tries to depict. Development of 

a modelling tool similarly has to be based on a generic view of the domain or 

the world it is designed to depict, and requires modelling constructs or 

concepts that are designed to express that view. Early work on discrete event 

simulation was concerned with the development of such basic modelling 

concepts so as to give it a distinctive methodology and facilitate the creation of 

a specially designed tool for it. Three primitive constructs were developed- 

events, activities and processes, which were used as the basis for describing 
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the dynamic systems that were to be modelled. The three concepts gave rise to 

very distinctive modelling approaches, or world views as they are commonly 

called, in the simulation software that subsequently emerged- event 

scheduling (ES), activity scanning (AS) and process interaction (PI). 

2.4.1 Event Scheduling. 

In an event based or event scheduling method (Markowitz, Hauser and Karr, 

1963) the modeller specifies the real world system in terms of the number of 

events at which its state or, more precisely, that of one or more of elements 

changes. Two types of events can occur- consequential events which are 

dependent on some conditions being satisfied, and scheduled events which are 

destined to occur at some points in time. Examples of events are arrival of a 

part at a machine, start of machining operation, machine breakdown, etc. If a 

simple machining operation in a system consisting of just that one machine is 

considered, there are three events associated with it- arrival of a part, start 

machining and end machining. Parts are scheduled to arrive from outside the 

system at given intervals and, hence, the arrival is a scheduled event but, as a 

consequence, arrival of the next part is also scheduled and , therefore, it is also 

a consequential event; another consequential event that may result is the start 

of machining. The start machining event is dependent on the availability of a 

part and a free machine, and can result as a consequence of either the arrival 

of a part or the end of machining. The routines corresponding to the start 
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machining and end machining events are shown in Fig 2.2 and Fig 2.3 

respectively. 

From either "part arrival" or 
"end machining" routine 

Machine= No 

idle? 

Yes 

iI Queue size= Queue size +1 

Queue No 

Size>o? 
Yes 

Machine state=busy 

Queue size =Queue size-1 

Schedule end of 
machining 

Return to executive 

FiE 2.2 Start machining event 
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From execeutive 

End machining 
machine state-idle 

Scheduled event 

part->outside world 

Start machining. I Consequential event 

Return to o executive 
( time advancement) 

FiE 2.3 End of machininE event routine. 

An event based executive scans a list of future events, determines the time of 

the most imminent event and moves the simulation clock forward to this time. 

It then executes the scheduled event as well as the corresponding user 

specified consequential events (event phase), before returning to the time 

phase. The simulation progresses in time by iterating through these two 

phases. The operation of the executive is illustrated in fig 2.4. 
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Start 

Time Scan 

" Find the time of occurance of the most 
immediate event at time TNEXT. 

" Advance clock to TNEXT 

Execute scheduled events 

Execute consequential events 

Simulation 

. over ?, 

Stop 

Time advancement 
phase 

Event phase 

Fig 2.4 The operation of an event based executive 

In this approach the user not only specifies the real world system using events 

as the building block or modelling constructs, but also the consequences that 

result when a scheduled event takes place. This exact specification of the 

behaviour of the system makes the ES approach computationally efficient 

since the executive does not waste any unnecessary time trying to test 

consequential events that are clearly not affected by the occurrence of a 

particular scheduled event. 
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An event is the basic building block in simulation modeling, and internally all 

simulation software works on the basis of events. However, to raise the level of 

model specification and provide a degree of modularity in its definition two 

higher levels of modelling constructs were soon developed-activities (mainly 

from research in UK) and process (resulting mainly from research in USA). 

2.4.2 Activity Scanning. 

An activity has a duration determined by the interval between the start and 

end events. A true activity definition consists of a condition under which it can 

start, changes in state of the system entities at start, its duration, and the 

changes in state of system entities when it ends; it effectively combines the 

start and end events corresponding to the activity. Early attempts at the 

development of an activity structure (Buxton and Laski, 1962), however, 

retained the separate definitions of the start and end events, but removed the 

onus on the user to define the relationship between the scheduled and 

consequential events. All events, scheduled or consequential, are defined 

independently, each with its own start condition; the two phase executive 

automatically tries to start each event after the time phase. The executive is 

illustrated in Fig 2.5. The sequence in which the events are specified is 

extremely important as the executive scans them in that order when 

attempting to start them; an end machining event would need to be specified 

prior to the corresponding start machining event to ensure that a machine 
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that becomes idle on completion of an operation is immediately available for 

the following operation. 

Fig 2.5 Activity based executive 

Such a early version of the activity scanning method was soon replaced by the 

three phase approach (Tocher, 1963). There were two developments associated 

with this latter and true activity based approach, Model specification could be 

truly modulerised in terms of activities, with the start and end events 

combined into a single structure; a three phase executive was developed that 

executes all scheduled events after time advancement, and then proceeds to 

test each activity in turn to see if it can start 
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The definition of a simple machining activity is illustrated in Fig 2.6. 

From executive 

Part 
No 

available 9 

Yes 

No 
Queue>O? 

Yes 
Condition 

No 
Machine 

state =idle? 

-------------- Yes 

Queue size=Queue size -1 
Machine state= busy 

I 

Schedule end of 
state machining after duration 

changes 

After duration 
part-> outside world 
Machine state =idle 

Return to 
executive 

FIE 2.6 Machining activity 
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The arrival of a part would be modelled in exactly the same way as for event 

scheduling, but there would be no need to include in its definition any 

reference to the consequential event of start machining. In the 3 phase 

approach the events associated with activities are divided into two types. 

These are: 

" Bound events (B) which are unconditional events which should be 

initiated by the control routines whenever their scheduled time is reached. 

These are usually the end of activity events. In the machining operation, 

the state changes associated with the finish machining event will be 

executed by the simulation executive as soon as the operation has been 

completed. 

Conditional events (C) whose execution depends on the either the 

cooperation of entities and resources or the satisfaction of certain specific 

condition within the simulation. They are unscheduled events like the start 

of an activity. The start machining event can be considered a conditional 

event because it is dependent on status information like whether the 

machine is available and the queue is empty i. e. the conditions a machine 

must be free and at least one part must be available have to be met; these 

are tested during the activity scan phase. 

The operation of the executive is shown in Fig 2.7. 
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Start 

Ist Phase 
" Idenfify the time of the most impending event TNEXT 
" Generate a list of all B event due at this time 
" Advance clock to TNEXT 

2nd Phase 

" Execute the list of B events. 
" Update system status 

3rd Phase 
" Scan through all C events executing those 

whose conditions are satisfied. 
" Update status 

No 
Simulation 

over ? 

Yes 

Stop 

Fig 2.7 The operation of a3 phase executive. 

The (true) activity based approach provides a highly modular structure to the 

model specification, and removes some of the specification task from the user 

(i. e. the need to specify consequential events associated with each scheduled 

event); however, the latter also makes the approach computationally far less 

efficient than the event scheduling method since the entire activity list has to 

be scanned. 
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2.4.3 Process Interaction 

In the process interaction (PI) approach (Gordon, 1961) the real system is 

envisaged as a set of processes, representing the sequence of operations 

through which temporary' entities in the system (i. e. parts) pass during their 

life cycle within the system. A process can be thought of as routines that 

encompass the history of the part as it passes through the system. The 

approach models system from the perspective of the parts as they move 

through the system, in contrast to the activity and event approaches which are 

based on the perspective of the resources and the operations they are engaged 

in. It is the simulation software that translates the processes for each part into 

a sequence of events. 

As an example consider the single machining operation. The part process is 

then the sequence of operations: -part arrives, waits until it is at the front of 

the queue, seizes machines, waits until service complete and then leaves 

machine. The flow for this process is shown in Fig 2.8. It can be seen that 

there are three points when control is returned to the executive, at points 

corresponding to when the part is obstructed or delayed. There are two types 

of delays: unconditional when a part remains at a certain point in the 

process until a pre-defined processing time has expired; and conditional 

' Simulation entities are divided into two categories: - permanent and 
temporary. Permanent entities are those like machines that remain in the 
system throughout the duration of the simulation. Temporary entities like 
parts and assemblies are those that pass through the system and are of no 
interest once they have left. 
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when the delay is dependent on the state of the system e. g. the part remains in 

the queue until the machine is available and the part is selected as the next 

for processing. An attempt is made to reactivate the progress of a part when an 

unconditional delay time expires, but it may experience a further conditional 

delay. 
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From Executive 
Activation point 1 

Schedule arrival of 
next part 

No 
Queue=O? Access queue 

Yes 
Wait until front 

of queue No 
machine 

available? 
To executive 

Yes 

Sieze machine and 
initiate machining From executive 

Activation point 2 

Remove part 
Delay by machining from queue 

time 

Schedule end of 
machining 

To executive 

From executive 
Activation point 3 

Free machine 
I 

Release part 

I 
To executive 

Fig 2.8 A simple machining operation process 

A operation of a process interaction executive is shown in Fig 2.9 
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Start 

Future events scan 
Time advancement similar to the other 

phase approaches 
T 

Event phase 
Update future events list 

Scan current events list 

No 
Simulation 

over? 
Yes 

Stop 

Fig 2.9 Process interaction executive 

In practice, most process interaction software takes a more pragmatic 

approach and in the event phase try to reactivate all resources (permanent 

entities) in the system that are currently idle. This is almost always 

computationally more efficient since there are usually a lesser number of 

resources than parts. In either case, a two phase executive is used and, hence, 

the PI approach is computationally more efficient than the activity based 

approach; it is, however, still computationally less efficient than the event 

based approach since the user does not guide the search process as he does in 

the case of the latter. 
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2.4.4 Advantages and disadvantages of approaches 

From a programming point of view the activity based approach is the most 

efficient because the model is composed of small activity blocks making it 

easier to write, debug, modify and enhance. It is also stated by Pidd (1988) 

that this approach "greatly eases the process of `top-down' design favored in 

structured programming". Therefore, from the viewpoint of ease of model 

specification it is superior to the other two approaches. However it is very 

inefficient in its use of computer time because a significant amount of 

computer time is wasted in scanning the complete set of activity routines each 

time the simulation clock is advanced. 

The process interaction approach is more in tune with a program structure 

that is material flow oriented; hence, it has advantages in modelling 

manufacturing systems with a large number and variety of parts, and general 

purpose resources e. g. as in jobshops. An added advantage of the approach is 

that it is synonymous with the building block approach compatible with the 

simulation developer's notion of the life history of a part as it moves through a 

system. However, the approach is less modular than the activity based 

method, processes are more difficult to code, and it is difficult to model specific 

constraints of resources (other than general availability). Also, the executive is 

more complex to implement. For a more thorough explanation of the 

advantages and disadvantages of the three approaches the reader should 

consult Pidd (1988) and Fishman (1978). 
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An example of a 3-phase activity based simulation language is Hocus, whereas 

examples of process and event based languages are SIMAN and See-Why 

respectively. Table 2.1 below contains some languages and their world view 

orientation. 

Events FORSS (IGHT) 
OPTIK 
GASP II. IV 
SEE-WHY 
SIMSCSRIPT 11.5 2 

3-Phase ECSL 
Activity HOCUS 

SIMON 
........................................ p........................................................ 

Process GPSS 
Q-GERT 
SIMAN/CINEMA 
SIMULAa 
SLAM II 
SIMSCRIPT 11.5 

.................................................................................................. 
TABLE 2.1 Simulation languages and their world views 

2.5 Historical perspective on the development of simulation software 

Ease of model specification depends not only on the modelling structure that is 

available to the user, but also on the software environment in which the 

particular simulation system is implemented. Simulation software has 

developed considerably from the early days of models written in 3rd 

generation general purpose computer languages to the present day generic 

2 As reported in Law and Kelton(1982) SIMSCRIPT 11.5 can be used in both process interaction and event 
scheduling modes. 
' Although SIMULA is an object oriented language, its world view, as reported by Pidd(1990) and 
Nygaard(1978), is process interaction. 
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simulators; many features have been added over the years to aid ease of use, 

productivity, validation and presentation. 

A visual depiction of how simulation software has progressed from the 1950's 

is given in Fig 2.10, whilst Table 2.2 shows how simulation software for 

manufacturing has evolved from 3rd Generation General Purpose Computer 

Languages to Generic Simulators. 

3rd Generation General 
Purpose Computer 

Language Simulations 
I 

Simulation Toolkits 
Comprising library of standard routines for 

simulation tasks. Simulation model comprises 
program statements, calling routines, in 3rd 

generation general purpose computer 
language 

Visual Interact ive General purpose The provision of 
Simulation Simulation Languages Front Ends for 

with animation some languages 
I 

Special purpose 
Simulators 

I 

Generic Sim ulators 

Fig 2.10 The development of simulation 
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Year 3rd Generation 
General Purpose 
Computer 
Languages 

Simulation 
Toolkits 

General 
Purpose 
Simulation 
Languages 

`Simulators 

Up to 1960 Fortran 

1961 GPSS 

1963 SIMSCRIPT CSL 

1964 GASP 

1966 SIMULA 

About 1970 

1972 Q-GERT 

1976 HOCUS 

1977 GPSS/H 

1979 SLAM II 

1980 SEE-WHY ECSL MAST 

1983 SIMAN 

SIMSCRIPT 

11.5 

1984 DISC AutoMod 

Since 1985 CSIM WITNESS 

XCELL+ 

SIMFACTORY 

ProModelPC 

Table 2.2 The Development of Simulation Software 

'This applies to both special purpose simulators like MAST and generic simulators like WITNESS 
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2.5.1 Use of 3rd generation general purpose computer 1anEuaIes 

Up until about 1960, before the advent of simulation languages, models were 

developed in general purpose computer languages like FORTRAN. It involved 

writing routines for facilities which would later be available in simulation 

languages, e. g. for the simulation executive, random number generator, 

sampling from probability distributions, statistics collection, etc. The user 

would then construct a simulation model by writing program segments to 

describe the logic of the modelled system calling the routines that performed 

the standard functions. 

The advantages of using 3rd generation general purpose computer languages 

are: 

1. Modellers usually know a general purpose computer language. 

2. Portability, since most general purpose computer languages can be run on 

most computer operating systems. 

3. Greater flexibility. 

The disadvantages: 

1. The writing of all the general simulation facilities is time consuming, 

increasing model development time. 

2. The entire program has to debugged with no error detection for tracking the 

progress of entities through the simulation. An added hindrance is that the 
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error messages are in the host language, and not specific to simulation 

modelling. 

2.5.2 Toolkits 

Toolkits resulted from the realisation that certain features are required in any 

DES, and that a substantial amount of the code in the early simulations 

models, written in 3rd generation computer languages was reusable. These 

toolkits provide libraries of routines for time handling, moving entities, 

random number generation, statistics collection, etc. The simulation model is 

then developed by writing a 3rd generation computer program that calls these 

routines. 

The first toolkit was SIMSCRIPT (Markowitz, Hauser and Karr, 1963) which 

provided FORTRAN routines for usb in DES. To develop the model the user 

writes a FORTRAN program to call these routines. Other systems which 

adopted the same approach were GASP (Kiviat and Colker, 1964), SIMON 

(Hills, 1965), SEE-WHY (Fiddy, et al, 1981). SIMON was originally a 

collection of ALGOL routines, while later toolkits like CSIM 

(Schwetman, 1988), SMPL (MacDougall, 1987) and DISC (Selvaraj; Blair; 

etal, 1990) provided routines written in C. 
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2.5.3 General purpose simulation languages 

These are programming languages which have their own vocabulary and 

syntax oriented towards the specifics of simulation programming, and are 

often termed Statement Description Languages (SDL). GPSS (Gordon, 1961) is 

probably the earliest simulation language and was developed in the USA by 

IBM. It is a process interaction simulation language in which entities flow 

through blocks in a block diagram, and it culminated in the version GPSS/H in 

1983. SIMAN (Pegden, 1985) another process interaction language, was the 

first to separate the model and the data to run the model. It also allowed event 

based modelling via the incorporation of an event statement in the model 

frame to call user written FORTRAN routines to perform computations not 

possible using the standard process interaction approach; in addition, it 

provided a block diagram interface as a possible method for model 

specification. 

Most of the early work in the UK on the development of simulation languages 

was performed by Tocher in the steel industry, resulting in one of the first 

simulation packages GSP (General Simulation Package) (Tocher, 1963). The 

language that evolved from this research effort was CSL (Buxton and Laski, 

1962) which was further developed by Clementson into ECSL (Clementson, 

1982). 

The research paths followed by the general purpose languages mentioned thus 

far have been solely concerned with SDL. However, SIMSCRIPT started off as 
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a toolkit and eventually became a statement description simulation language 

culminating in SIMSCRIPT 11.5 (Russel, 1983). GASP also followed this 

development path and evolved into GASP IV (Pritsker, 1974), and was later 

combined with Q-GERT (Pritsker, 1972) to form SLAM (Pritsker and Pegden, 

1979). It should be noted, as stated in Law and Kelton (1982), that 

SIMSCRIPT 11.5 and SLAM can be used in both event and process 

orientations. 

The features usually provided by these general purpose computer languages 

are: 

1. Time handling. This maintains the simulation clock, the list of future 

events and handles event logic. 

2. Data structures to hold information about simulation entities, and for 

taking entities into and out of queues. 

3. Initialisation facilities to set conditions in the model when the run begins. 

4. Random number generation. 

5. Distribution sampling e. g. for the duration of activities and the processes of 

the real world which are often stochastic. 

6. Error checks and diagnostics. 

7. Collection of statistics.. 

8. Report generation in the form of numerical printouts, histograms, time 

series and pie charts. 

The advantages of simulation languages are: 
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1. Powerful software tailored to the purpose of simulation with the provision of 

the majority of common facilities required for simulation programming, 

resulting in a decrease in model development time. 

2. Need for fewer lines of user written code. 

3. The models are easier to change. 

4. The provision of error detection to check for illogical or impossible situations 

with the provision of suitable domain (simulation) specific error messages. 

However specialist training is required in the use of the simulation language. 

2.5.4 Object Oriented Simulation 

Object oriented simulation focuses on the objects that make up the system as 

opposed to the overall function of the system. These objects are encapsulated 

so that they can hide the data, and procedures, which define their behaviour. 

Objects interact by passing messages which usually result in the execution of 

certain actions to change system status. A machine can be thought of as an 

object which has a set of attributes that define its state and a set of operations 

for manipulating this state. As an example, an attribute of a machine may 

define its type i. e. whether it is a single, or production, or assembly machine, 

etc, and the operations relate to the start of processing, its setup, repair, etc. 

An important characteristic of object oriented simulation is that objects maybe 

grouped into classes; for example there may be a class of machines related to 

milling operations. It is extremely useful for simulation software reuse 
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because developers can use objects that meet their modelling requirements 

from existing classes. 

A particularly useful aspect of object oriented programming is that of 

inheritance which allows a new class to be defined as a refinement of an 

existing class. The new class inherits all the attributes and operations of the 

existing class and can have new attributes and operations to distinguish it, 

and any changes made to the attributes and operations of the existing class 

are passed to the new class. This can be viewed as an inheritance tree of 

objects, called the class hierarchy, which describes the hierarchy of objects 

which have been derived from one another. 

In an object oriented simulation some of the objects can be thought of as active 

because they execute independently and concurrently with other active 

objects. These active objects schedule events for each other to define when 

state changes can occur by the passing of messages between themselves. 

There is a wide variety of object oriented languages with some providing 

facilities geared towards simulation model building. The first object oriented 

simulation language was SIMULA (Dahl and Nygaard, 1966) which was 

developed from the early 60's onwards at the Norwegian Computing Centre, 

and makes use of the process interaction modelling approach. It uses objects to 

describe all entities, and allows the objects to be grouped in classes. Each 

object has a set of attributes and a process, which is a sequence of activities in 
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which the objects of the class engage. The more modem object oriented 

simulation systems have followed a similar development path as conventional 

simulation, with facilities added to ease model specification. An example of 

such a system is SIMPLE++ (AESOP, 1994) which provides a library of 

primitive objects that can be combined with user written models to build new 

models. 

2.5.5 Simulators 

These are generalised models of a specific or generic type of system developed 

in such a manner that the modification of certain parameters can be used to 

achieve different models. There are two types: special purpose which can 

model certain types of very specific systems e. g. FMS, automated warehouses, 

AGV systems, etc; generic which apply to a much wider domain, with most 

developed for manufacturing applications. 

In the beginning the motivation behind simulators was to ease model 

specification by use of improved user interfaces, and by eliminating all 

programming. The specification method was further enhanced by the use of 

modelling primitives or modules which attempt to imitate the characteristics 

of real world objects (resources, materials, conveyors, etc. ) However, as 

systems developed it was evident that some form of programming had to be 

retained in an effort to preserve some modelling flexibility. 
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2.5.5.1 Special Purpose Simulators 

These systems require no programming and are effectively very large models 

specific to a certain type of manufacturing system. Although these systems 

don't require any simulation programming knowledge, they do require the 

user to learn the input specification and, therefore, require the user to possess 

some simulation expertise. The ease of use of these systems is usually at the 

expense of their flexibility, and they are usually of little use outside their 

application domain. 

The MAST system (Lenz, 1989), a development of GCMS (Generalised 

Computerised Manufacturing Simulator (Lenz, and Talavage, 1977), was the 

first simulator, and is an integrated environment particularly suited to the 

modelling of FMS. The model requires data specific to parts, workstations, 

conveyors and/or AGVs, in-process storage and system layout. In addition it 

provides a library of scheduling rules for parts, machine selection, AGV 

routing, etc. The model is completely data-driven and no programming is 

required, and the layout is defined by points and their links. Other systems 

specific to FMS are RENSAM/RENVIS (O'Keefe, and Haddock, 1991) and 

MAP/1 (Rolston, 1985), whilst PROPHET (ICI, 1990) is a simulator used in 

certain applications in the chemical industry. 

The advantages and disadvantages (O'Keefe and Haddock, 1991) of data- 

driven models can be summarised as: 

Advantages 

1. If the input data is valid, then the statistics that come out will be valid. 

This is because the tools have been thoroughly tested. In traditional 

languages if the programmer has incorrectly coded the model, the 
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statistics may be correct in their values but not in their interpretation; in 

data-driven systems the model is more reliable since experimentation is 

achieved by altering the data set, not by altering generic code specifying 

the model.. 

2. Ease of use since no programming is required. 

3. Rapid model development due to lack of iterative development, 

refinement and debugging. 

4. Proper statistics collection and analysis are built in and not left to the 

user. 

Disadvantages 

1. Different organisations have different terminology and view systems in 

different ways, and this may limit the use of a particular simulator. For 

example, RENSAM uses the concept of fixtures rather than pallets and 

sees the number of parts in FMS being constrained by the number of 

fixtures rather than the number of pallets. Some organisations in 

contrast may view pallets as more critical and find the Modular FMS 

simulator (Montazeri, Gelders, and Van Wassenhove, 1988), written in 

FORTRAN and GPSS, more amenable, since it uses pallets rather than 

fixtures 

2. These systems often require more data than is required or available, 

resulting in over specification. This is because the actual model may 

contain low level programming statements that require the satisfaction of 

certain data requirements. In RENSAM, for example, Materials Handling 

System (MHS) movement times are specified as a matrix of times 

between stations; for a six station system a 6*6 matrix would be required; 

if, for example, the MHS is underutilised, we may wish to represent all 

travel times between all stations as a single constant for simplicity, we 
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would still have to specify the time in the matrix format to an 

unnecessary level of detail. 

3. Incorrect input data can have the following consequences: 

a. If the simulator is robust, the problem would not be detected until the 

simulation is executed and it may not even then be detected if the 

simulator was really robust. 

b. If it is fragile, it will produce error messages related to the underlying 

simulation program and not the data input, leaving the user to find 

the relationship between the error message and the data. 

4. Ease of use is achieved at the cost of reduced machine execution 

efficiency. 

5. They will always reach the limits of their capability. 

It was highlighted by Bevans (1982) that a truly user friendly FMS simulator 

would ask questions of the user concerning the FMS to be simulated, and after 

performing the simulation would immediately display the results'. He 

indicated, however, that they fall well short of this level of user friendliness 

and can only be used by computer knowledgeable persons. 

2.5.5.2 Generic Simulators 

In an attempt to strike a balance between ease of use and flexibility; a new 

generation of simulation software have now come on the market since the mid 

1980's referred to as generic simulators, they have been primarily targeted at 

general manufacturing system applications and, hence, are also referred to as 

' However it should be noted that they may not be displayed in the terms the user needs. 
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manufacturing simulators. The development of these systems attempted to 

combine the ease of use of special purpose simulators with the flexibility of the 

general purpose simulation languages. They do not require the user to write 

an extensive simulation program but supply the input specification for a 

specific domain, that is broader than in the case of special purpose simulators, 

and in most cases encompasses the entire manufacturing domain. The input 

specification is in the form of a combination of data and high level language 

using special modelling constructs of the particular system. They are 

considerably easier to use requiring less programming expertise than if 

general purpose simulation languages were used. However they do sacrifice a 

degree of modelling flexibility in the process. 

In an attempt to limit this reduced flexibility some of the systems like 

WITNESS and PROMODEL have in-built programming languages which give 

them greater flexibility than completely data-driven models. For modelling 

complex features, the user written program may not always remain simple; 

however, since most of the data is contained in a data driven format, the 

programming effort required is limited, usually needed for expressing complex 

logic. 

The manufacturing simulators both raised the level of model specification and 

provided a high degree of modularity in it by developing modelling constructs 

based on real world objects, e. g. machines, parts, process routes, labour, etc. 
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Model specification was also made easier by parallel developments in user 

interface techniques, e. g. GUI, pop-up menus, dialogue systems. The greater 

ease with which models can be developed has made these tools accessible to a 

much wider user base than previous simulation systems, and explains their 

dominance in the market. The subject of generic manufacturing simulators is 

discussed in greater detail in chapter 4. 

Developments in the field of computer graphics has also contributed to 

important advances in simulation software, and these are briefly explained in 

the next section. 

2.6 Advent of animation and visual interactive simulation 

An important breakthrough in simulation software was the advent of 

animation. Animation is a method which utilises computer graphics to produce 

a visual display of the temporary entities moving through the system 

comprising of permanent entities. Typically the displays are in colour allowing 

colour schemes for different entity status and icons for representing different 

types of permanent entities. The benefits of animation are: 

1. It can be used to aid the production and debugging of simulation models. 

Animation of the mechanism and behaviour of the simulation model allows 

the detection of logical errors introduced during model development. 

2. Improves communication and presentation by providing a decision maker 

with an insight into the model and an explanation of the solution. 
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3. Bottleneck Analysis. Bottlenecks are easily detected because the animation 

allows the observation of several simultaneous and inter-related events. It 

also allows an insight into the preconditions that result in the bottleneck. 

4. Provides an insight into whether the assumptions inherent in the model 

have resulted in a valid representation of the modelled system. 

It should however be mentioned that despite its advantages animation is no 

substitute for rigorous model validation and statistical output analysis. 

Many of the early animation systems, like FORS to form FORSIGHT, and 

SIMON to form SIMON/G, were added to existing general purpose simulations 

languages as post-processors, where the animation is played after the 

completion of the simulation run. Some systems like, HOCUS and CINEMA 

are examples of concurrent animation systems where they run concurrently 

with the simulation; the display is updated as each event occurs and work 

pieces move from machine to machine, or as the state of resource changes. 

However, in most such systems , the animation and the simulation models are 

developed separately. 

An important development in simulation systems in the early 1980's, and an 

aid to generic simulators, was the advent of SEEWHY (Fiddy, et al, 1981) a 

visual interactive simulation system which allowed the simultaneous creation 

of the simulation model and animation. It uses a library of FORTRAN routines 

which are designed to ease the process of building visual interactive 

simulation models. In addition to the usual simulation routines, it provides 
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convenient ways of creating and moving graphic images on-screen. This form 

of Visual Interactive Simulation was made possible by advances in graphics 

and animation, and its advent was deemed the most important advance in 

simulation since the development of general purpose simulation languages. 

This allowed models to be created gradually by allowing the user to stop model 

execution to correct modelling errors, which may have become evident 

visually. 

These systems provided a means of fine tuning the simulation without having 

to perform multiple full length simulation runs, and graphical output such as 

histograms can be constanly updated as computations proceed, increasing the 

user's understanding of the simulation results and, therefore, their credibility. 

It helps the user to visualise how models are put together, how the parts 

interact and how to modify the model structure. 

In See-Why, for example, the following categories (Carrie, 1988) of interaction 

are provided: run control; display changes and output; element inspection and 

manipulation; saving and restoring the model; user's own interactions. The 

concept of visual interactive simulation has now been incorporated to a greater 

or lesser extent in most modern simulation systems. 
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2.7 Discussion 

From the very early days of simulation software there has been a constant 

drive towards easing the task of model specification. This was initially 

attempted in one of two ways: via the world view or the structural approach 

(event scheduling, 3-phase, and process interaction) used to conceptualise the 

modelled system; and via the software or environmental approach (simulation 

toolkits, and general purpose simulation languages) used for implementing the 

model. 

There has also been a third approach to aid model specification, through 

research into automatic model generation (discussed in detail in chapter 3), 

which attempted to reduce the modelling burden by incorporating domain, 

simulation and target language knowledge in the tool; more recent work has 

been concerned with various Artificial Intelligence (AI) tools and concepts in 

simulation software. In parallel to such work, and with similar motivation, 

manufacturing simulators came into existence which, while not using AI 

knowledge representation techniques, do use AI concepts of knowledge 

representation and real world objects (modelling primitives which map real 

world entities), for representing manufacturing domain knowledge. The result 

of this in-built knowledge has been that simulation models can now be 

developed by people with little computer expertise. 
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These developments have resulted in the research trend moving away from 

general purpose simulation languages towards simulators. The task of model 

specification was further aided by advances in user interfaces; this was 

achieved by providing WINDOWS based environments comprising iconic 

pallets for animation creation and dialogues for model data entry. Also, work 

on the development of generic simulators aimed to extend the applicability to 

the entire manufacturing domain while still preserving a degree of modelling 

flexibility by providing an underlying programming language within a data 

driven framework. This made it possible to develop more complex models with 

less simulation training and in less time than was typically the case with 3rd 

generation computer programming and general purpose simulation languages. 

The flexibility of these systems, to express logic not afforded within the main 

modelling environment, is further enhanced by most systems providing the 

modellers with the option of dropping out into computer languages like 

FORTRAN and C. 

Although the development of general purpose simulation languages may have 

stagnated, their employment is not entirely redundant. Sometimes the real 

world system may be too complex to be easily represented in a generic 

simulator, or its form may be incompatible with the underlying modelling 

structure provided by the latter; it may be either impossible or too difficult to 

represent the system in a satisfactory and easy to understand manner; in such 

cases it may be advisable to use a general purpose simulation language or 

toolkit. 
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CHAPTER 3 

SIMULATION CODE GENERATORS. AUTOMATIC MODELLING 

SYSTEMS AND ARTIFICIAL INTELLIGENCE BASED SIMULATION 

3.1 Introduction 

Much of the research in the area of Discrete Event Simulation from the early 

days has been geared towards making the model specification process easier. 

Two approaches for this were discussed in the previous chapter: -of the world 

views to provide consistent modelling structures and greater modularity in 

model specification (structure) and by improving the simulation software 

(environment). 

A third approach evident in the research efforts was the development of 

automatic simulation programming systems. The objective of such systems 

was to take a specification of a system from the designer (where informality is 

desirable) and utilising automated programming techniques to construct the 

model without any further user intervention. They have gone some way in 

removing the modelling burden from the user by attempting to store 

simulation and/or modelling expertise within a computer program. 

Barstow (1983) states that "An automatic programming system allows a 

computationally naive user to describe problems using the natural items and 

concepts of a domain with informality, imprecision and omission of detail. An 

automatic programming system produces programs that run on real data to 

effect useful computations and are reliable and efficient enough for routine 
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use. " These systems effectively restyled the way the programs are specified by 

raising the specification level to a higher more natural level. 

The earliest automatic programming systems were the code generators, 

which were developed prior to the introduction of formal Artificial Intelligence 

(Al) concepts and tools. However, as AI developed and became prevalent 

within the general field of automatic programming, so it started to influence 

automatic simulation programming resulting in the development of 

automatic modelling systems. 

3.2 General Automatic Programming 

The aim of automatic simulation programming, which as a subject preceded its 

use in simulation, was to raise the level of programming to a higher more 

natural level, in the process removing from the user a substantial amount of 

the programming burden. The main approaches attempted to continually 

refine high-level specifications until a low-level implementation in a 

traditional programming language (Fortran, Pascal, etc) could be 

automatically generated from them. The aim was to improve the programming 

environment, so that programs could be constructed more easily and 

accurately than could be done by a human programmer. 

It is in effect the automation of some part of the programming task. The early 

automatic programming systems were called compilers because previous to 

this programs were written in machine code. The first system of this type was 

the first FORTRAN compiler (Backus and Herrick, 1954), which allowed 

programs to be written in what was then regarded as a high-level language. 

The development of these high-level languages had a dramatic effect because 

they allowed representations in a concise and more understandable manner, 
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with the compiler making a substantial amount of low-level programming 

decisions. However, since most programs these days are written in similar 

high-level languages, automatic programming is concerned with a more 

enhanced program development environment. 

The main aim of automatic programming systems is to restyle the way a 

programmer specifies the program. This is achieved by the specification of the 

program at a higher more natural level alleviating the more humdrum tasks 

associated with programming, particularly the requirement for keeping track 

of large amounts of detail. An additional aim is to generate efficient programs, 

and involves selecting the best amongst a number of possible implementations. 

The general structure of an automatic programming system is shown in Fig 

3.1. The main elements are the requirements specification language which is 

used to enter the program specification, via a user interface, and is converted 

into a machine understandable representation or data structure. This data 

structure then acts as data that is transformed by a translator into a lower- 

level implementation in the target language, which is usually a traditional 

computer language. 

Requirements User 
Translator Target Specification Interface Data 01 

Language Structure Language 

Fig 3.1 The structure of a Automatic Programming System 
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The requirements specifications languages used in the overall field of 

automatic programming are natural language, dialogue systems, graphics, 

examples, logical formalisms and very high level languages. It will become 

evident from the following sections that all the different types of specification 

languages are pertinent to simulation program generators and automatic 

modelling systems, except examples and logical formalisms. It is worth 

mentioning that model specifications are approximations of a real system, 

since there is no limit to the amount of detail that can be included in a model. 

In addition modelling in general is an iterative process which requires 

continual dialogue between the domain expert and the programmer to 

determine the user's intent. This will result in changing the specification until 

the exact requirement is determined. The specifications will eventually become 

programs carefully crafted, debugged and maintained. 

The translation methods for transforming the program specification into a 

lower level implementation in a traditional target language include 

procedural, deductive, transformational, and knowledge based methods. In the 

field of simulation code generators and automatic modelling systems only the 

procedural and knowledge based methods apply. 

The earliest efforts at automatic programming were impeded because of the 

lack of availability of user friendly program specification methods. Also, users 

weren't always aware of what they wanted and, even if they were, the 

specification languages were considered too cumbersome and complicated. 

This had the adverse effect of some specifications rivalling the generated 

programs in size, and were often more difficult and error prone to alter. 
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3.3 Code Generators 

3.3.1 General Approach 

Code generators were the earliest automatic simulation programming systems 

for raising the model specification to a higher level of abstraction, and used 

knowledge representation and translation methods that pre-dated modern AI 

based approaches. A formal definition (Mathewson, 1984) of a simulation code 

generator was provided as "A program generator is an interactive software 

tool that translates the logic of a model described in a relatively general 

formalism into the code of a simulation language. The facility gives the user 

the benefits of a simple symbolic input combined with the power of a high level 

language in which to develop complex models". These early attempts at 

simplification of the model specification process did not utilise Al, and the 

systems were written in high level languages like FORTRAN and Pascal. They 

are however important because they represent the first systems to provide 

automatic simulation program generation capabilities. They, however, 

generate only part of the code, requiring subsequent editing by the user for 

advanced modelling, and in effect only possess knowledge of the target 

simulation language. In general they require no knowledge of the structure, 

syntax or semantics of the simulation language6. These systems improved 

modelling times, but still required substantial simulation expertise and 

experience. In effect there are two types of users (O'Keefe and Haddock, 1991) 

of simulation code generators: 

6 Work has also been done in automating the production of this formal 
specification(Paul and Doudis, 1986), where a system containing knowledge about the 
development of Activity Cycle Diagram(ACD) has been developed. The initial system 
was dialogue based with a subsequent system employing a natural language interface 
so that a description is compatible with the clients way of thinking. This addition was 
in effect an attempt to convert the code generator into an automatic programming 
system. 
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1. An experienced simulation developer who uses them for fast prototyping, 

and then edits and further develops. 

2. A simulation novice who uses only the generator for relatively simple 

models. 

The main components of such a system are shown in Fig 3.2. 

Interface Program 
generator 
written in 
procedural 

programming 
language 

Simulation model 
in general purpose 
simulation language/ 
traditional 
Programming language 

(USER Formal model 
Representation 

ACD, Block Diagr- 
am Network Input) 

General simulation modelling/ 
domain knowledge 

Target langaa 
Knowledge 

Fist 3.2 Components of Code Generators 

Simulation code generators require as input a formal specification like an 

Activity Cycle Diagram (ACD) (Hills, 1965), or network input (Sinclair, Doshi, 

and Madala, 1985) and perform a translation to create the simulation model. 

An ACD (Carrie, 1992) of a simple machine shop model is given in Fig 3.3. 

This is a very simple model and the meaning is self evident, with queues 

represented by ellipses and activities by rectangles. The construction of such 

diagrams can become complicated and labour intensive for the representation 
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of operators, load/unload stations, pallets and palletising operations, vehicles 

and their assignment, etc. 

outside 
world 

Arrive Wait Leave 

Process 

Idle 

Job 0 Machine 

Fig 3.3 ACD of a simple machine shop 

The formal specification is often entered interactively using: 

" Questionnaires. These were used in some of the earliest systems and 

comprise a single form which provides fields for specifying all entities and 

their characteristics. In addition there are fields for entering all 

relationships between various entities. This method is descriptive and 

allows any model changes to be made easily, but has the disadvantage of 

requiring the user to understand what fields correspond to which 

characteristics. 

" Dialogue Systems. In this method a number of sequential dialogues 

containing one or more questions are used to elicit the specification. In order 
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to reduce the number of sequential dialogues, the more advanced dialogue 

interfaces provide a number of data fields corresponding to the different 

characteristics of an entity, rather than having separate dialogues for each 

characteristic. 

The main advantage of user interrogation is that it removes from the user 

any burden associated with writing the specification in any form of 

descriptor language. It is also the most natural method resembling the 

relationship between the domain experts and the model developers. The 

main disadvantage is that unlike with descriptive specification methods for 

long specifications there will be a large number of sequential dialogues 

needed for model entry making it difficult to keep track of what has been 

entered. Also dialogue interfaces are disadvantaged by their inability to 

allow the user to backtrack to earlier dialogues to change input. 

" Graphics Interface. These are used to specify the layout of the model and 

are used in conjunction with one of the above specification methods, so that 

the characteristics of the components of the model can be entered. 

The main method of translating the formal specification into a simulation 

model is procedural and involves writing a general purpose program that 

maps the specification into the lower level target language representation. 

This type of translation system is implemented using traditional general 

purpose computer languages like FORTRAN or PASCAL. Other translation 

methods employed in the general field of automatic programming are 

deductive and transformational; for additional information on this area 

consult Green (1969), Waldinger and Levitt (1974), Kowalski (1977), Clark 

and Sickel (1977), Darlington and Burstall (1973), Martin (1974), Lenat 

71 



(1975), Biggerstaff (1976), Fickas (1985), Balzer (1981), Manna and Waldinger 

(1980), Partsch and Steinbruggen (1983), and Cheatham (1984). 

The majority of the generators produce models in high level programming 

languages or activity based general purpose simulation languages, although 

there are a few systems that generate models in the process oriented general 

purpose simulation language SIMAN. The only generator concerned with an 

event based language is Express (Shanehchi, 1985) for See-Why and is merely 

a front end for writing the FORTRAN code responsible for executing events; 

the events themselves have to be defined by the user, requiring substantial 

simulation expertise for the task. 

3.3.2 Examples 

The development of code generators is illustrated here with a few typical 

examples. 

A system that uses 'a questionnaire as the specification method is MIDSEM 

(Davis, 1976), which has two stages for model generation. The model definition 

and the model generation. The system provides 3 model definition modules, 

each of which provides an interactive questionnaire representing a particular 

modelling scheme. The 3 questionnaires require information about the 

entities, activities and queues of an ACD, events as used in SIMSCRIPT, and 

information about bound and conditional events in the style of the ALGOL-60 

Elliot Simulation Package (ESP). The system runs models in various forms; for 

example the Simulate module is an on-line simulator which runs the model 

directly from the input file, whilst the Model Generate module produces 

syntactically correct simulation language statements for the two phase or 
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three phase versions of ESP (this has a control structure similar to 

SIMSCRIPT). 

DRAFT/GASP (Mathewson and Allen, 1978) is a member of the DRAFT family 

of code generators and employs user interrogation for eliciting the system 

specification. The function of DRAFT is to produce a compiler executable 

model. The background for this work is that of of Dr A. T. Clementson who 

designed a generator (Clementson, 1982) of this type for ECSL. The project 

has been extended to support a number of languages other than ECSL such as 

SIMON (II), SIMON 75, ACSL, SIMSCRIPT and FORTRAN, emphasising the 

point that the specification method is independent of the target language. The 

models are described using an Activity Cycle Diagram, requiring the user to 

have simulation expertise in order to develop the diagrams, but no target 

language knowledge is required. The advantages of this approach include 

clear problem description through the use of diagrams, and speed of code 

generation. The style and error free format of the generated programs 

contribute to these advantages. The translator for DRAFT/GASP is written in 

FORTRAN, in the form of a coded algorithm which transforms the logic of the 

Activity Cycle diagram into the code of the simulation language. The use of a 

questionnaire can be a long and tedious process when specifying a large 

system, and further work on the DRAFT system has resulted in the 

development of a graphics module called DRAW (Mathewson, 1985) and SSIM 

(Mathewson, 1985) which uses spreadsheet techniques as an alternative 

method of input. 

Subrahmanian and Cannon (1981) developed a code generator written in PL�I 

which generates SIMSCRIPT simulation models. The model is described using 

a high-level descriptor language (very high-level language), in contrast to 
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previously mentioned systems which use questionnaires or dialogues, and 

allows the definition of model components, active and passive variables, 

component interactions, output facilities, terminal conditions, variable input 

and initial state of the model. This description is then parsed to produce a 

standard model description, which is independent of the target language, 

specifying all relationships between variables used in the model. This 

standard description is finally translated to produce the SIMSCRIPT code. 

A system called Autosim (Paul & Chew, 1987) produces models in Pascal'. The 

system is written using Turbo Pascal and supported by LIBSIM, a library of 

Pascal subroutines. The model specification is via an ACD through 

interrogation, and each answer is used to guide subsequent questions. This 

specification is then converted into an interactive data file, referred to as the 

formal model specification. The specification requires the names of all 

temporary and permanent entities in the system; also life cycles for temporary 

entities have to be defined as sequences of alternating queue and activity 

names, together with their source-sink queues. After these cycles are specified 

the system analyses the specification and provides a review. This allows the 

user to check that he has specified the system he intended. The next part of 

the specification requires definition of the queuing disciplines for the queues 

defined during the life cycle description. The final part of the specification is 

obtained by interrogating the user for the duration of all activities, the 

arithmetic of any entity attributes, and the initial conditions. 

'This system and the ones in the previous and proceeding 
paragraphs(Raczynshi, 1990; Shearn1990) generate models in high level 
languages(Pascal) in contrast to the majority of generators which produce models in 
general purpose simulation languages. 
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The majority of generators require the editing of the generated program in 

order to model complex requirements not covered by the specification 

language. Such edits, external to the system are usually not easy and will 

have to be re-entered if there is any modification to the original model 

description. 

This problem was addressed by PASSIM (Shearn, 1990) so that editing of the 

generated program would be virtually eliminated. When necessary, rather 

than editing the generated program, the system allows user written Pascal 

code that comprises the edits in the generated program to be included in the 

model description. There is also an option for the generation of a program from 

a current or previously defined specification. 

The systems so far described use textual interfaces for specification purposes. 

However a number of other generators use graphical interfaces for 

specification. GIST (Sinclair, Doshi, and Madala, 1985) is one such system 

which allows the specification of Extended Queuing Network (EQN) models, 

through a graphical or textual interface. It produces executable images to 

simulate a model of the real world system. The GIST system is based on 

CSIM, a run-time support environment for discrete event simulation. It 

provides two interfaces, GUIDE (Graphical User Interface and Dialogue 

Editor) and TIDE (Textual Interface and Dialogue Editor). GUIDE allows the 

specification of EQN's by the use of graphics to define the model, in which 

icons from a set representing the various object types are connected together. 

It is particularly useful because EQN models are naturally represented by a 

network of objects and their interconnections. The object types in a GIST 

model are SOURCE, SINK, ALLOCATE, DEALLOCATE, DESTROY, FORK, 

JOIN, PROBE, SWITCH, QUEUE, SERVER AND QSERVER; each of these 

object types has a unique dialogue window allowing specification of object 
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names, classes of objects and distribution parameters. A complete description 

of these object types together with an example session is provided in the paper 

"A Graphical Interface for Specification Of EQN models (Sinclair & Madala, 

1986)". 

A variation on the previous system is the Queuing Model Generator (QMG) 

(Raczynshi, 1990) which makes it possible to define a queuing model without 

any programming. It comprises a menu-driven layout editor, which permits 

the user to define the model by placing blocks and interconnection lines to 

depict all possible model events and the model structure. The editor performs 

a preliminary verification and does not permit obviously inconsistent diagrams 

to be created. After the diagram has been completed the system asks for the 

corresponding probability distributions and parameters. A Pascal program is 

then finally generated, compiled and executed. 

3.4 Contribution of Al 

It is stated (Shannon, Mayer and Adelsberger, 1986) that "Not only does 

simulation need AI technology but also ES (Expert Systems) badly need 

simulation. If one examines the current uses of AI and ES, it immediately 

becomes apparent that few of these uses have a time domain because the AI 

experts do not yet know how to handle time. One of the real strengths of 

simulation is its ability to forecast or project events and effects through time. 

The ability of Expert Systems will remain limited until the technology of 

simulation is incorporated and exploited. " 

The main contribution of Al to automatic simulation program generation has 

been in the areas of improved interfaces, knowledge representational schemes 
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and knowledge based translation methods. The attempt at improved user 

interfaces was in some way motivated by the desire to make communications 

with computers more natural. This involved research into natural language 

processors, and the use of such processors for simulation program 

specification; this was deemed attractive because it is often the most natural 

method of representing on paper a specification and provides vocabulary, 

informality and syntax. 

There were other advantages of natural language processors like ease of use, 

with little training to become familiar with input requirements, and reduction 

in time consuming debugging and syntax checking steps because the post- 

processor ensures that the syntax of the simulation language is fulfilled. Also 

natural language descriptions are usually most compatible with the user's 

logical representation of the system. 

However, a number of disadvantages of the natural language systems 

emerged: 

" only successful when processing constrained input, meaning the user is 

limited in the structural variation of sentences he can use. 

" reduced flexibility with skilled users finding them cumbersome. 

" for modelling complicated systems, the size of the specification will often 

exceed the size of the generated program. 

These disadvantages did not, however, prevent its application in further 

research as part of hybrid specification methods comprising natural language, 
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and dialogue and/or graphical interfaces. This had a knock on effect of 

accelerating research into alternative methods like dialogue and graphical 

interfaces. 

The other main contribution of AI to simulation has been in the use of 

advanced knowledge representation and inferencing techniques. This resulted 
in the encoding, of domain, simulation and target language knowledge 

explicitly in AI representational schemes like facts, frames, semantic nets and 

rules. For most of the automatic modelling systems of the next section, the 

target language knowledge is predominantly SIMAN, whilst the domain 

knowledge varies from queuing systems to electronics component 

manufacturing. The domain knowledge includes the concepts of the domain 

and the interrelationships between these concepts, and is required to infer 

how to choose a solution from the specification. 

The advent of advanced inferencing techniques provided a more flexible means 

of model translation than the procedural methods used by the code generators. 

It provided a means of applying rules (general simulation and target language 

knowledge) to facts (the data structure representation of the model 

specification) to produce new facts (the simulation program). 

3.5 Automatic Modellinn Systems 

3.5.1 General Approach 

As Artificial Intelligence (AI) evolved and became prevalent within the field of 

program automation so it started to influence automatic simulation 

programming resulting in the development of automatic modelling systems. 
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These used all the innovations from AI research such as improved interfaces, 

knowledge representation and inference. These systems in contrast to most 

program generators which contain only target (simulation) language 

knowledge, contain general simulation modelling, domain and target language 

knowledge. The main purpose of such systems is to improve the environment 

in which the simulation program is specified by the reduction in the amount of 

detail the modeller is confronted with, via a specification method more natural 

to the user's problem domain and way of thinking. The general structure of 

such systems is given in Fig 3.4. 

User Interface 
Specification Natural Language Processo Internal 

and/or Graphical Interface Representation -ý Translation System 

and/or Interrogation Dialog 

General Simulation 
modelling and Domain 

Knowledge encoded in Al 
representational scheme 

General simulation 
modelling and target 
language knowledge 

encoded in AI 
representational schemes 

Simulation 
Model 

Interpreter 

Model 
Executive 

FiE 3.4 Structure Of Automatic ModellinE Systems 

The specification methods for automatic modelling systems include natural 

language, dialogue system, and a combination of a graphics interface and user 

interrogation. They all use Al techniques for knowledge representation and 

translation and the majority of the models are generated in the process 

oriented general purpose simulation language SIMAN. 

3.5.2 Examples 

The development of automatic modelling systems is illustrated here with a few 

typical examples. 
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A automatic modelling system by Ginsberg, etal (1965) can be used to create 

simulation models of job shops through the selection of options from a 

questionnaire. This questionnaire defines the scope and structure of all job 

shop simulation programs that can be constructed by the system. The 

questionnaire comprises an explanation booklet and an answer sheet 

requiring information about resource configurations, job characteristics, 

decision rules and probability distributions. The program generator, when 

these choices have been made, translates them into a SIMSCRIPT simulation 

program. The translator utilises a statement list, written in Pascal, which 
defines all statements used in SIMSCRIPT the target language. It also uses a 

set of decision tables to provide a link between the questionnaire choices and 

the statements in the statement list. The simulation program is produced via 

the application of the statement list using the decision tables. 

A system developed by Murray and Sheppard (1986), referred to as an 

Intelligent Front End (IFE), generates code for simple queuing systems in the 

SIMAN general purpose simulation language. An interactive dialogue system 

is used to extract information from the user so that an internal specification of 

the system to be modelled can be formed and stored; it uses OPS83 data 

structures for representation. This internal specification is a description of the 

temporary and permanent entities together with their interactions. It also 

contains all information concerning model termination, transportation 

characteristics and statistical requirements. The OPS83 expert system 

building tool is used for implementation, with backward chaining and forward 

chaining rules used to create the internal model description and simulation 

model respectively. Model construction rules encoded in an AI language are 

used to transform the internal model specification into an executable 

simulation model. 

80 



Natural language processors have been used in a number of systems for 

simulation model specification. The earliest system using this approach was 

developed by Heidorn (1974) at the Naval Postgraduate School in the sixties, 

and automatically generates simulation code in the GPSS discrete event 

simulation language. The possible inputs to the system are restricted to a set 

of allowable syntactic and semantic constructs, which have to be learned by 

the user. This data structure is used to create a GPSS simulation program 

together with an English description of the problem, which is needed to verify 

that the user has entered the specification he intended. The sentences contain 

actions whose order is made explicit using conjunctions like "after", "when", 

and "before" or by the use of the adverb "then". If the order of the actions 

depends on status information, an "if' clause may be used for specifying 

conditions and an "otherwise" sentence for specifying an alternate action. 

Sentences are also required to specify the time between arrivals, the time 

required to perform each activity, the length of the simulation run, the time 

unit and the quantity of each permanent entity. The specification is analysed 

by decoding rules written in a rule based language and interpreted by a 

FORTRAN program, like a bottom up, parallel processing syntax directed 

compiler. The rules are phrase structure rules whose right hand sides 

consitute record building actions. The entity-attribute-value data structure is 

used primarily to describe the flow of temporary entities through the system, 

the actions that take place at permanent entities and the interrelationships 

between actions. The data structure comprises a number of records which 

represent physical entities (like cars and docks) and abstract entities (like 

actions and functions). The actions include the entry of an entity into the 

system and one or more of other actions such as wait, service, load and unload. 

For the GPSS model generation, these rules represent the allowable syntactic 

constructs of GPSS. The same process of inference is used to generate an 
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English description of the internal model description, where the grammar 

rules represent the allowable syntactic constructs of a limited English 

language. 

A later project using the same specification method resulted in the 

development of an Expert System (Ford and Schroer, 1987) written in Zetalisp 

which translates a natural language specification of an electronics 

manufacturing plant into a SIMAN simulation program. The main 

components of the system are the natural language interface, a Simulation 

Writer, a Simulation Analyser, and the SIMAN discrete event simulation 

language. The natural language interface translates the description of the real 

world system into an internal representation called conceptual dependency 

and via a transformer generates the Lisp input commands for the Simulation 

Writer module. The Simulation Writer module takes Lisp input commands 

from the natural language processor and converts them into SIMAN code in 

the correct format and punctuation. The code once generated is reviewed and 

critiqued, and if any errors are found solutions are extracted from a patch 

library. The program is then run in the SIMAN simulation package, and if 

there are errors they are returned to the system and examined by the 

debugger. Corrections are then made to the code by the system and the 

reviewing, critiquing and debugging cycle is repeated until no more errors are 

found. The Simulation Analyser comprises expert rules for improving system 

efficiency, and recommends changes the Simulation Writer module should 

make to the code. Before these changes are made the user is given the option 

of modifying or accepting the proposed corrections. 

Simtalk (Rummel, 1988) is a natural language interface for discrete event 

simulation which operates for a limited number of FMS. It operates as an 
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interface to a larger expert system which interacts with the user, models the 

manufacturing system, and generates simulation pseudo code. The system 

limitations includes 10 workstations with 10 identical servers at each station, 

2 inspection stations with 2 possible outputs after inspection, user definable 

transportation between workstations and up to 3 products simultaneously 

routed through the system. 

Haddock (1987) developed a system for FMS written in BASIC which takes a 

description of the system to be modelled and creates the simulation model in 

SIMAN. The three options provided allow the user to create, edit or run an 

existing model. After the model and experimental frames are generated they 

are interpreted and linked to comprise the complete simulation model. The 

system also provides options for output analysis by incorporating pre- 

programmed FORTRAN subroutines within the software structure of SIMAN, 

so as to provide assistance to the user not only in model development but also 

the analysis of the results. This additional option has resulted in the system 

being classified as a hybrid system since it comprises front and back end 

interfaces around an existing simulation system (in this case SIMAN). Work 

on this system was also referred to on the use of optimisation techniques 

(Bengu and Haddock, 1986) to analyse alternative system designs, 

investigating the use of search techniques to optimise mean number of entities 

in the system, mean time spent by them and system utilisation. 

A system called the SIMAN Module Processor (SMP) (Endesfelder and 

Tempelmeier, 1987) generates operational simulation models of FMS by 

combining user-specific pre-defined modules using interactive pre-processor 

operations. The system is based on the realisation that separate model 

components can be combined or incorporated in existing models to form new 

models. The system operates by combining SIMAN modules to form the 
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model, and utilises the facility in SIMAN's to model sub-models. The sequence 

of problem specific adaptation includes the modification of probability 

distribution parameters and the consistent numbering of servers and queues 

Also, the system ensures that changes made in the model frame result in 

corresponding changes in the experimental frame. The process of developing a 

new model from pre-defined models is achieved by offering the user modules to 

be incorporated into the model, reading and interpreting the modules line by 

line and interrogating the user for relevant data as it progresses, and eliciting 

parameters of probability distributions. It is also possible for the user to 

develop his own modules and store them in the library, documenting each 

required input so that a novice user can, at a later date, follow the input 

commands to produce operable models. The main advantages of the system are 

that the configuration of new system variants eliminate the need to develop 

new models from scratch, the elimination of syntactical and logical errors has 

to be carried out only, once and the enlargement of the model can be carried 

out at any time. This system is unique because it incorporates both the 

concepts of software engineering, mainly model reusability and modularity, 

and automatic programming in producing simulation models. 

Schroer (1989) developed a simulation assistant, using a similar approach to 

the SIMAN Module Processor (SMP) (Endesfelder and Tempelmeier, 1987) 

mentioned in the previous paragraph, providing a structured approach to 

modelling manufacturing systems via a set of pre-defined GPSS simulation 

macros, a user interface, and an automatic code generator. The library of 

subroutines comprise GPSS subroutines for each function in a manufacturing 

system including assembly, fabrication, inspection, and inventory. The user 

interface, written in turbo Pascal assists the user, through a dialogue, to 

define the system and its attributes. The output from the interface is a 
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specification file which is the input to the code generator; the latter selects the 

required GPSS macros from the macro library and automatically writes the 

GPSS simulation program. The experimental conditions are then elicited and 

the program executed, with any changes made via a number of options for 

modifying the problem specification. 

SIMTOOL (Brazier and Shannon, 1987) is an interactive simulation tool 

written in Prolog for developing SIMAN simulation models of AGV systems. 

This is an automatic programming system equivalent to the Gong and 

McGinnis system (Gong and McGinnis, 1990) described earlier. The model, 

however, is specified using a graphical description of the network layout, 

comprising a directed graph of nodes and arcs which represent the AGV 

system. The nodes represent places where loading/unloading, vehicle queuing, 

route assignment, vehicle selection and vehicle blocking can occur. The arcs 

represent the routes an AGV takes while in the system by using a parent-child 

precedence relationship between connected nodes. The network, after it has 

been specified, is converted into data tables, which contain all node 

relationships and distances between nodes. Next, parameters concerning 

stations, AGVs and parts are specified using pull down menus, pop up menus, 

box menus and a series of questions. As an example, the part parameters 

include the number of part types, inter-arrival times, routing sequences, 

processing times for all parts on all machines, and the arrival and departure 

station names. This parameter information is stored in a file allowing 

modifications at a future date. 

Gong and McGinnis (1990) developed a similar system which converts 
information as provided by the system designer or simulation user into a 

SIMAN (process interaction) simulation program for evaluating 
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manufacturing systems with AGVs moving along a uni-directional guide path 

network. The system is written in Quick Basic version 4.5, and it requires, as 

input, characteristics of permanent and temporary entities, together with their 

interactions. The translation system uses an internal representation 

comprising two types of modules; the 1st defines the system logic, whilst the 

2nd determines the system control policies for determining decisions related to 

vehicle assignment, path selection, and machine selection rules. The model 

constructor, based on internal matrices, then recognises the problem 

specification and retrieves the system logic modules and the corresponding 

control policy modules from the program base to form the simulation model. 

A System developed by Koshevis and Chen (1980) written in Golden Common 

Lisp provides an object oriented approach for the graphical representation of 

the real world system. From this representation SLAM code is produced and 

executed. It requires no prior knowledge of model building or programming, 

only knowledge of the system to be modelled and the functions of the icons in 

the system. The specification of the system is provided by placing these icons 

on the screen in their required positions, together with transfer lines to show 

the connections between nodes. The system then checks this representation for 

completeness by determining what components have to be added. It then 

prompts the user using interrogation for information regarding these 

components together with any missing information; for example, if a service 

node is present the system asks for the number of parallel servers, the 

duration of the service and queue information. 
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3.6 Al Based Simulation Tools 

In this section we review how Artificial Intelligence aids simulation modelling, 

other than for automatic model generation. Although some of the systems are not 

entirely relevant to our research, they do provide an insight into specification and 

model construction methods 

The first few systems we will describe are Knowledge Based Simulation 

Environments which attempt to reduce the cognitive distance between a design 

expert's description of systems and the descriptions supported by a simulation 

language. These are systems which store modelling knowledge using rules, 

frames, semantic nets and object oriented programming. The specification is 

usually acquired using a natural language, interrogation system, a graphics 

interface, or a combination of the three. These don't produce code but execute the 

model internally. The user can however monitor the execution or perform 

experiments interactively. Their purpose is to develop systems that cover the 

entire simulation life-cycle from model building, validation, refinement through 

to experimentation and statistical analysis. In addition they attempt to provide a 

far greater understanding of the phenomena being modelled by making models 

more comprehensible; they do this by representing the behaviour of objects in a 

manner more conducive to reasoning which is not possible in a procedural 

paradigm alone. 

The systems comprise a set of objects which are standard within an application 

domain. For example in a manufacturing domain these objects will constitute 

machines, transport devices and storage facilities. A specific model is then created 

by specialising these objects and linking them via relations. The models are often 
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elicited by the use of domain specific knowledge acquisition systems (Fox, Seth, 

Baskaran and Bouer, 1986). 

Research on such systems was initiated by the development of the SIMULA 

language which as an extension of ALGOL 60, and was deemed the first objected 

oriented language since it was geared to the representation of real world entities. 

The use of the object oriented approach, including message passing and 

encapsulation with inheritance hierarchy, has many advantages because it greatly 

simplifies the simulation of complex models resulting in highly comprehensible, 

modifiable and reusable models. Forward chaining rules can be used to represent 

the behaviour of human decision makers and are local to objects, whilst backward 

chaining rules in the form of messages can be used to achieve specific goals. In 

this way it is possible to mimic competently the behaviour of real world entities. 

The Rule Oriented Simulation System (ROSS) is a large scale simulator (Klahr, 

Faught, and Martins, 1980) which incorporates AI techniques for modelling 

decision making behaviour in the domain of military air battles. It incorporates 

detailed and complex knowledge about the behaviour of real world systems 

modelled as objects. These objects are represented in a hierarchical manner 

allowing inheritance of properties as well as behavioural rules. The objects 

communicate by passing messages between themselves describing the actions that 

they take. In order to improve comprehension of knowledge and hidden 

embedded assumptions, ROSS uses rules to explicitly represent behavioural 

knowledge. To solve the problems of scattered and fragmented knowledge and to 

allow intelligible and efficient knowledge representation, object oriented 

programming has proved advantageous; for example an object called radar could 

have instances ground radar and airborne radar, which would inherit information 

from radar allowing the efficient storage and retrieval of knowledge. Since the 
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knowledge representation is made intelligible and efficient through object 

orientation it makes the retrieval of knowledge simple, and any modifications are 

inherited by all descendants of a class. The ability to alter behaviour allows the 

incremental addition and refinement of knowledge, resulting in ease of 

knowledge acquisition and system development thus, helping to keep the 

knowledge current; the modifications result in different simulation models, and 

ROSS provides a browser function which allows the examination of the 

simulator's knowledge. An explanation facility is provided to explain why certain 

events occurred and others didn't; this helps the understanding of how the 

simulator works, and the effects of certain behavioural rules. 

A Knowledge Based Simulation (KBS) System developed by Reddy and Fox 

(1982) for organisational modelling is a Lisp based discrete event simulation 

package. The system is object oriented, developed as part of the Intelligent 

Management Systems (IMS) project. The model is composed of objects and their 

inter-relations, which match the user's conceptual model of the organisation. 

Models are stored as objects using SRL schemata, which incorporate an 

inheritance facility and allow the formation of networks. These schema contain 

slots which define limitations (facets) and status information. The slots also 

include rules to describe the behaviour of objects, and goals to describe 

performance criteria. The system informs the user whether these goals are met or 

not. Running the model involves the dragging of the schema network through 

time. The system is interactive allowing examination of the model and its 

behaviour. There are options for model creation, model alteration, graphics 

display, and monitoring and of run control. The modelling system provides a 

library of objects and relations which the user may use, alter and or/extend for his 

application. The schema for these various objects and processes are arranged in a 

hierarchy, where each schema may inherit slots and values from schema higher 
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up in the hierarchy. These modelling libraries are created from SRL schema 

representing various objects, processes, behavioural rules and scheduling 

algorithms for specific problem domains. Once these libraries are created a model 

is formed by combining relevant schema from the library. 

SIMKIT (Zalevsky, 1988) is a frame based system, which represents real world 

entities as objects. The models are developed by SIMKIT, which sits on top of the 

KEE Expert System Shell, and are executed on a LISP machine. Each machine or 

product is represented by a separate frame containing information on its 

relationship to other frames and its unique and inherited characteristics. The 

simulation model comprises instances of objects from several libraries, which are 

hierarchically linked, becoming more specific as they move towards the model 

level. In these libraries there is a subclass structure, with the lowest level of the 

hierarchy containing the specific machines. 

The Simulation Environment System SES (Adelsberger, Pooch, Shannon and 

Williams, 1986) was developed in order to allow more natural model 

representation and experimentation. The system employs object oriented 

programming to elevate the model and experimental file to a higher level of 

abstraction than is possible with traditional simulation languages. It combines 

these object oriented concepts with knowledge based systems and simulation to 

create an user friendly interactive environment. The system also includes a 

conflict resolution mechanism, and a goal driven run-time environment for 

advanced problem solving. The simulation model and the experimental files are 

treated as objects, which are created or modified using a graphical interface, 

template/menu input and natural language dialogue, or by a specification 

language. These objects correspond to modular components of the real world. The 

behaviour of these simulation model objects describe the behaviour of the 
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modular components of the real world in response to various inputs. The 

interaction of these objects is by the passing of messages, which describe both 

functional and relational actions. The object oriented approach effectively 

represents a correspondence between simulated and real world objects. Also once 

an object is created, it serves as an abstraction for future refined objects. This 

results in an hierarchy of objects with inherited properties and behaviours 

representing the real world to be modelled. After the model and the experimental 

frame are created, they are checked using conflict resolution for consistency and 

completeness. The run time environment provides verification of simulation 

results via run time displays. 

An Expert System by Shannon (Shannon, Mayer and Adelsberger, 1985) for the 

manufacturing domain stores a number of models in a database. These may be 

complete models or sub-models representing the operation of various real world 

objects. The user then specifies the system and the experiment, allowing the 

system to search the database for the appropriate model. If a suitable model is not 

available, the system constructs a model by incorporating sub-modules into a 

main model. In addition, a model generation facility is available; the user specifies 

the manufacturing system allowing the system to automatically generate the 

model code. This would require the specification of the plant layout via the 

placement of icons corresponding to the different manufacturing facilities; 

additional information like station numbers, speeds of transportation devices, and 

buffer sizes would be elicited by interrogation. In this system a corporate data 

base could be set-up to aid user input, containing information on all parts to be 

manufactured i. e. machine setup times, machining times, load/unload times, etc. 

The user can then specify the part (number, group), batch sizes, arrival rates and 

dates, proposed schedule and historical record, allowing the system to search the 
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database, extract the relevant information and associate it as attributes of the 

entity. 

A discrete event simulation package T-Prolog (Futo and Szeredi, 1982) extends the 

traditional approach to simulation by the use of automatic problem solving. This 

involves backtracking in time, and the automatic modification of models 

depending on logical deductions. The models are defined using first order 

predicate logic using horn clauses. There is a provision for interrupting the 

simulation run so that the model can be modified by the addition or deletion of 

logical statements from the original set of clauses. The system can be forced to 

return to a previous state for trying possible alternatives, if there is deadlock and 

a goal cannot be satisfied. The main problem with the package is that the user 

must be proficient in predicate logic in order to define the problem, and it is 

therefore not an automatic programming approach. The system combines the time 

handling primitives of simulation and the symbolic processing capabilities of 

Artificial Intelligence into a Prolog superset It allows specification of multiple 

model parameters and goals; the interpreter then executes the model and tries to 

find the first parameter set that matches the goals. The simulation approach is 

called AI based since the behaviour of the model is examined at various points 

during the running of the simulation by the use of control conditions. Also the 

structure of the model can be altered automatically according to rules invoked 

depending on the state of the system. The role of time is essential since the 

conditions for synchronising the processes of a real system are time dependent. 

A system called PROSS (O'Keefe and Roach, 1987) is a Prolog based 

implementation of GPSS and uses a hybrid approach, where rule based 

scheduling polices reside alongside a process oriented simulation model. This is 

achieved by linking Prolog rules to a process description simulation model. The 
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reason for developing this hybrid approach is that Prolog's AI based knowledge 

representational scheme expressed as rules is a convenient way of representing 

many scheduling algorithms. Further rules allow the representation of heuristic 

knowledge; thus a simulation model with a rule based component can contain 

complex heuristic rules. 

3.7 Discussion 

From this chapter we can conclude that automatic simulation programming 

must be domain specific containing knowledge of the specific problem being 

addressed. Also it must consider aspects like efficiency, general programming 
knowledge and constraints imposed by the hardware and the target language. 

They cannot be expert in every domain because this is beyond the current 

scope of Al. The simulation code generators have a wider scope than automatic 

modelling systems, since they are merely translators for writing simulation 

language programs, with the domain knowledge provided as part of the model 

specification. However, they require a more formal specification (e. g. ACD) 

than automatic modelling systems which are tied to tighter domains e. g. FMS, 

AGVS, jobshop, etc. 

Two possible methods (Barstow, 1985) of making automatic programming 

systems domain independent, together with an explanation of why these 

methods are unrealisable, are: 

1. The first approach would involve having the program specification comprise 

a description of what the software is to do, together with a set of definitions 

that allow the program description to be understood (the domain 

knowledge). The problems with this are: 
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" The coupling of the domain knowledge to a single program will restrict its 

reusability. This is disadvantageous because the coupled knowledge may 

be applicable to a number of programs. 

" Domain knowledge is more diverse than just object definitions, ranging 

from problem solving heuristics to expectations about the run-time 

characteristics of the data. 

" It would be difficult for a computationally naive user to express the 

domain knowledge unless the system knew a significant amount already. 

Therefore it is advisable to separate the program specification and the 

domain specific knowledge. 

2. The second method is where the domain knowledge is provided as part of an 

interactive specification process. Here the system is initially ignorant of the 

domain, with the user providing the domain knowledge during the process 

of specifying a program; after a number of programs have been specified the 

domain knowledge would have increased, thus solving the reusability 

problem mentioned in the previous case. The drawbacks of the method are: 

" Again there is a requirement for a sophisticated user, although this 

problem can be overcome to some extent by having sophisticated users 

initially, with the naive users only using the system once there is 

considerable domain knowledge incorporated in the system. 

" The main drawbacks that make this type of system unattainable are the 

problems with the organisation and structuring of domain knowledge, and 

that little is known about how programming knowledge and domain 

knowledge interact. 

The specification method that is used is of great importance, and should 

support ease of use, conciseness, flexibility and incremental development. 
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There have been problems in some specification methods resulting in 

specifications being as long as the generated programs and almost as difficult 

to understand. This has sometimes resulted in a mix of a number of different 

methods being used. The knowledge representation schemes should also be 

chosen wisely and should be capable of representing domain, general 

simulation and target language knowledge in a concise and easily modifiable 

manner. 

The initial aim of automatic simulation programming was ease of use and an 
improvement in productivity, and it has become allied to Artificial Intelligence 

research. Subsequently its limitations have been tied to those of AI, 

specifically that its application for substantial program automation has only 

been successful for narrow domains. This is due to AI being particularly 

successful in applying a depth of knowledge in a narrow domain as opposed to 

breadth. These limitations also apply to the earlier simulation code generators, 

which are effectively expert systems themselves since they encode simulation 

coding expertise within a procedural programming framework. Therefore, all 

simulation program automation systems thus far are restricted to certain 

domains i. e. simulation code generators to the simulation domain whilst the 

automatic modelling systems to specific real world system domains e. g. FMS, 

queuing system, AGV system, etc. It is also evident that they are even 

restricted in their capabilities within these domains. For example none of the 

systems have attempted to provide faciltities for specifying certain modelling 

intricacies (e. g. scheduling rules and labour priorities) 

Due to these limitations in flexibility and ease of use, Al based modelling has 

shifted its focus from a strictly program generation task to simulation 
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environments that support the entire simulation development life cycle: - 

model building, validation, experimental design and output analysis 
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Chapter 4 Analysis of Generic Manufacturing Simulators 

4.1 Introduction 

Generic manufacturing simulators, as briefly mentioned in the previous 

chapter, were an improvement on special purpose simulators operating in 

limited domains, and attempted to provide greater modelling flexibility with 

little compromise in ease of use. This was achieved in some simulators by 

providing a programming language within a data-driven framework; 

alternatively other simulators were very large models with a large choice of 

input data options to instantiate it for a wide range of application. Examples 

of generic manufacturing simulators are WITNESS, PROMODEL, 

FACTOR/AIM, XCELL+ (Conway and Maxwell, 1986), MODEL MASTER 

(Bolin, 1986), and SIMFACTORY. 

These simulation systems are geared towards the entire manufacturing 

domain, and not just specific types of systems such as FMS. They provide 

common elements for modelling the components, which are present in 

manufacturing systems, together with their characteristics. This is achieved 

via the provision of modelling modules which are used for representing, 

amongst other things, machines, conveyors, tracks, vehicles and parts. Certain 

modules, dependent on the particular language, provide some form of routing 

facility for defining the interactions between permanent and temporary 

entities. In addition, in some systems, there is the provision of options for the 
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manipulation of system variables and attributes; this can lead to greater 

flexibility but is achieved at the expense of ease of use. 

They raised the model specification to a higher level of abstraction from 

traditional simulation languages by incorporating application domain 

(manufacturing related) knowledge, as well as substantial simulation 

knowledge in the specification language used as the user interface. Their 

development can be seen as the result of the influence of knowledge based and 

object oriented techniques, but they usually don't use the tools and formal 

techniques of either. Real world objects and their behavioural components are 

defined as aggregate building blocks within the systems, and the user provides 

data to instantiate them for a specific model. Hence, they are often referred to 

as data driven modelling tools; however, to obtain the full flexibility that may 

be needed to model any complex system, the simulators generally do offer the 

option to add user defined behavioural knowledge in a free format 

programming style, either within the specification environment (e. g. as in 

WITNESS) and/or by linking to a routine written in a third generation general 

purpose language (e. g. as in PROMODEL). 

4.2 Simulation of manufacturinE systems 

A manufacturing system is primarily concerned with transforming the shape 

and form of parts (material) with the aid of various processing units 

(machines). The presence of a material or machine focused view of the world in 
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simulation languages was first mentioned by Tocher (1965), who concluded 

that all simulation languages to date had one or the other as the dominant 

entity type in the way models are constructed. Some of the early simulation 

languages and their dominant entity type is shown in Fig 4.1. In a material 

based view of the world, machines (and other resources) play a subordinate 

role, simply serving material/parts, while the logic governing the behaviour of 

the manufacturing system is contained in the definition of the latter in the 

form of a process plan (or route). In a machine based view of the world, such 

logic is contained in the definition of the machines or, more precisely, 

machining activities. In practice, however, more neutral terms for modelling 

constructs were used in the systems since they had applications in fields other 

than manufacturing. The material based view is synonymous with the process 

interaction approach, with the process routes of temporary entities as 

dominant features in the model. The activity based systems, with their 

modelling approach based on the processing activities which are responsible 

for changing the status of the entities, coincide with the machine based view of 

the world. SIMULA, as an object oriented simulation language, can combine 

both material and machine based views of manufacturing systems; 

interestingly, as discussed in section 4.4, the presence of such a hybrid 

approach can be detected in at least some of the manufacturing simulators 

that were developed much later. 
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Simulation Language Dominant type of Entity 

GPSS Material 

SIMPAC Material 

SIMSCRIPT Material 

SIMULA Materials and Machines 

CSL Machine 

ESP Machine 

GSP Machine 

MONTECODE Machine 

SIMON Machine 

FiE 4.1 Early simulation lanEuaEes and their entity focus 

A manufacturing system, of course, uses a number of other resources, 

primarily labour, and various types of transportation units to aid material 

flow. These resources, together with material and machines, are the physical 

elements of the manufacturing system, i. e. the structural components needed 

to define it. For its full definition, the logic governing material flow and 

interaction between various resources will also need to be represented, which 

constitute the behavioural components of the manufacturing system; these 

could simply be the priority rules that are used to determine the next part to 

be processed by a machine, or complex control systems governing the 

behaviour of Automated Guided Vehicles and flexible numerically controlled 

machines. 
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4.2.1 Structural Components 

4.2.1.1 Parts and Machines 

As already discussed, parts and machines (processing stations) are the two key 

elements in any manufacturing system. How they and their interactions are 

treated define the central characteristic (world view) of a simulation system. 

In a material based process interaction view of the world, the active elements 

are the parts and their interactions with machines are defined primarily 

through process plans; a machine based activity view of the world treats the 

machines as the active elements, with their interaction with parts defined by 

the changes in the part status brought about by the machining activities. 

4.2.1.2 Materials Handling 

Materials handling systems are employed to move materials, WIP, completed 

parts, tools, scrap etc. from one point in a manufacturing system to another. 

Materials handling systems can be manual like cranes, trucks, forklifts, etc. 

Alternatively they can be mehanised and automated like conveyors and AGVs. 

The discussion here concentrates on automated materials handling, because of 

their complex control requirements and requirement for greater flexibility in 

the modelling tool. 

There are usually two classifications of conveyors: fixed conveyors, which 

index parts a position at a time, include belt, chain, tray and trolley; 
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accumulation conveyors, which allow queuing, like roller and tow line. A 

conveyor system can be a number of conveyors connected together, or a single 

conveyor comprising a number of segments. A conveyor system could be 

viewed from a machine based focus by visualising each segment as a machine. 

However, there are inherent problems with the approach, specifically that the 

travel time of a part is indeterminate because it is affected by the delays 

suffered by parts that precede it on the conveyor. The material based view is 

also inadequate since it views machines as being idle or busy, whereas 

accumulating conveyors are always busy. 

An Automatic Guided Vehicle (AGV) system is a more flexible method of 

moving materials and components from one point to another in the factory. It 

is possible for track systems like AGVs to be represented with the machine 

based view by having different sections of the track modelled as different 

machines with their own control rules determining the movement of the 

vehicles; there would be problems with modelling AGVs with a material based 

view since they are resources with complex control systems/rules governing 

their individual behaviour and not just passive elements supporting the 

operation of parts. 

However, making materials handling systems conform to machine based view 

is a totally unsatisfactory approach from the viewpoints of terminology and 

conceptual integrity, and most simulation software provide specialised 

modelling elements for representing them. These elements provide means for 
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representing vehicle routes, track layouts and dimensions, conveyor 

dimensions and operating characteristics, etc. However, it should be noted 

that the inclusion of these additional modelling elements do not change the 

basic world view of the simulation software, since in material based systems 

the behavior of the materials handling system, such as its allocation, 

movement and release, will be controlled by the part (material). 

4.2.1.3 Buffers. 

A manufacturing system would normally contain some work-in-progress (WIP) 

at designated buffer storage locations usually, but not always, next to 

machines or processing stations. Such WIP is simply parts waiting (queueing) 

for one or more resources, and the buffers can be regarded as passive elements 

through which a part passes during its life cycle. In simulation software with a 

materials view, buffer locations that a part visits would be contained in a 

process plan (note: -this differs from the traditional view that a manufacturing 

engineer normally takes of a process route, which usually only contains the 

processing stations the part visits). In a machine based view of the world, the 

storage locations are simply treated as the queues from which parts are drawn 

by the machine or to which a part is sent by it on completion of the required 

manufacturing operation. 
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4.2.1.4 Labour and other resources 

Labour is often required by a machine for its operation, setup and repair. It is 

also required in less automated systems for transportation. The majority of 

manufacturing simulation software provides special modules for modelling 

labour and allocating them to processing operations within a simulation, but 

they and other similar resources are treated as passive elements serving a 

part (material based view) or machine (machine based view). 

Inspection is traditionally performed manually and is highly time consuming 

and expensive, which has lead to the development of modern automated 

inspection systems utilising sensors, optical methods, probes and specialised 

machine tools. Inspection operations are usually modelled in exactly the same 

manner as machining activities, which may or may not require the use of 

labour (inspector). 

4.2.2 Behavioural components 

In addition to the physical constituents or structural elements that define a 

manufacturing system, the behavioural elements, which relate to the 

interaction of different structural elements, also need to be considered. This 

most commonly relates to the interaction between materials and machines, 

and in the simplest type of production control refer to the use of a number of 

standard queuing or priority rules to control material flow through a plant. 
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These rules, however, take into account only the local information related to 

the operation for which the material is queueing. It is desirable in some cases 

to base decision making on the global system state i. e. scheduling an operation 

based on the status of subsequent operation stages. 

The ease with which scheduling rules can be included in a simulation model is 

also dependent on the tool used for its implementation. For example in some 

systems they can be easily modelled (at the cost of flexibility) because they are 

built into the simulator and merely have to be selected. In other systems they 

have to be programmed resulting in greater behavioural modelling flexibilty at 

the cost of reduced ease of use. However, some practitioners (M. Da Silva and 

Bastos, 1986; Bhattacharyya, Roy and Huang, 1989) have commented on the 

lack of flexibility of traditional simulation software for modelling more 

complex decision rules based on overall system status; in particular, it is 

generally difficult to represent any but the simplest priority rules for 

allocation of labour since, in both material and machine based world views, 

labour is modelled simply as a passive element serving parts (material based 

view) or machines (machine based view). To overcome the problem with 

inflexibility the authors have proposed a knowledge based hybrid approach, 

which combines a generic simulation model with a declarative knowledge base 

containing the decision rules. 
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4.3 Classification of manufacturing systems 

Historically the development of simulation software was governed by their 

suitability for modelling certain types of manufacturing systems. There are a 

number of different types of manufacturing systems which are distinguished 

by their production volume, product variability, layout and level of 

automation. 

4.3.1 Production Lines. 

The layout of production lines is product based, where the processing and 

assembly resources are placed along the line of flow of the product. These 

systems process materials which have very similar characteristics, with a 

process route that is usually fixed and restricted by a non flexible material 

handling system (rotary worktable, fixed transfer mechanism). Therefore, 

since the process route is relatively fixed, it is reasonable to conclude that the 

machines determine the sequence of operations to which the parts are 

directed; the process route of a part can be implicitly defined in the model with 

the starting conditions of machining operations and actions taken at their end. 

The complexity of interactions between material and machines would often lie 

in complex, individual control rules associated with each machine. Thus mass 

production systems of this type have a natural link with simulation software 

which have activity based world views. 
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4.3.2 Jobshops 

In a jobshop type of manufacturing system, typically a large number of 

jobstorders with varying characteristics and widely different process plans are 

produced, on general purpose machines. Due to the general simplicity of the 

machine characteristics and the diversity of the process routes of parts, 

jobshops have a natural affinity to the material based view of the world, and 

could be regarded as providing the basis for the development of the process 

interaction approach as one of the main paradigms in simulation software. In 

such systems the process route (or plan) provides the main element for 

modelling the machine- material interaction, and using it as the basis for 

modularity in the model makes addition or alteration of the route relatively 

simple; in a machine based view, this would be more difficult since the logic of 

all the affected machining activities will need to be altered. 

4.3.3 Batch Production Systems. 

These systems produce the same product in medium lot sizes and aim to 

satisfy continuous customer demand. They achieve this by building up 

inventory of a specific product before moving onto another. When the 

inventory of the first product becomes low it returns to produce more of it. The 

aim of providing a degree of product variability whilst maintaining a sufficient 

level of production volume has meant that the machine tools used are again 

general purpose with alterations made for higher production rates. The 
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systems are often arranged in a process based layout, where machines are 

arranged in groups according to the manufacturing process. In batch 

production systems, where batches have different characteristics, as with job 

shops, the process routes vary making the dominant entity the material. 

4.3.4 Flexible Manufacturing Systems. 

Concepts of flexible manufacturing system (FMS) were developed to bring 

many of the benefits of mass production to small volume batch production 

environments. Flexible CNC machines are used, with fast changeover times to 

produce a large variety of products or variants of the same product, and 

making them easily adaptable to changing market requirements. Automated 

materials handling systems (e. g. AGVs) were also introduced to speed up 

material flow to keep work-in-progress (WIP) low and, thus, make the overall 

manufacturing system more responsive to customer demand. 

Since these systems are highly flexible, with the ability to produce a wide 

variety of parts, the process routes are highly variable, making the material 

the dominant entity. However, since these systems often incorporate complex 

materials handling systems-to aid flexible routing, the material is not the only 

dominant entity; complex control rules governing the behaviour of physical 

resources (permanent entities) are often characteristics of such systems, 

making it necessary to model their activities in some detail. The early process 

interaction simulation languages were not very good at modelling these newer 
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material handling entities. However as simulation software evolved, they 

were accounted for by the incorporation of special modelling facilities 

(statements in general purpose simulation languages and modules in generic 

manufacturing simulators). The machines themselves can have complex 

control rules governing their behaviour. Often a machine has little or no buffer 

attached to it and, instead of playing a passive role of working on the next part 

in the buffer (according to some priority rule), its control system may call on 

the next part to be routed to it; the machine based view is more appropriate in 

such cases. Hence, an ideal modelling tool may need to combine both material 

and machine based views, and incorporate special facilities for representing 

complex material handling systems. 

4.4 The World View Of Manufacturing Simulators 

Manufacturing simulators were developed to enhance model specification to a 

higher level of abstraction by incorporating domain knowledge in the 

simulation software. There is no particular evidence in the literature to 

suggest their development was based specifically on existing simulation 

modelling paradigms i. e. event, activity and process interaction approaches. 

Instead, the manufacturing simulators were developed with modelling 

constructs to represent real life objects (parts, machines, AGVs, conveyors, 

etc. ) and their behaviour. An analysis of the systems, as illustrated in this 

section, also clearly reveals that each was primarily developed with a world 

view of particular type of production system (mass production, jobshop, etc. ). 
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This, however, inevitably provided them with either a dominantly material or 

machine based view of the world. Three well known simulators (WITNESS, 

PROMODEL and FACTOR/AIM) were selected as representative systems 

throughout the study, and were examined for their inherent world views. The 

three were, in fact, selected for differences in the style and structure of model 

development that characterise each, and could be considered as typical of a 

wide range of manufacturing simulation systems that are now available. 

4.4.1 WITNESS 

WITNESS provides the user with a menu based form and Graphical User 

Interface for specifying a model (examples of the forms can be found in 

Appendix A), and the specification language creates a list file of the model 

details; the latter is the internal data structure that the simulation system 

within WITNESS uses. The focal point of the specification for core 

manufacturing activities in WITNESS is the definition of machines, which is 

used to specify both the resource and the machining activity (and, hence, the 

interaction between it and parts). This gives WITNESS similarities with an 

activity based structure (machine view). Very early versions of the system did 

not offer `part route' as an aggregate modelling element, suggesting the origin 

of its world view of manufacturing was based on mass production lines with 

little variety in products; later versions, however, included `part route' as a 

modelling element. 
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The route element within the part definition module, if used to define the 

sequence of operations a part passes through during its life cycle, gives 

WITNESS a material view of the world similar to that in the process 

interaction approach. A simple machining operation comprising: part arrival, 

delay in queue, machine seizure, delay by operation time and machine release, 

would be represented by the route entries in Fig 4.2. If however a route is not 

used, the sequence of operations can be defined by the use of output rules in 

the part, queue and machine definitions. For the single machining operation 

defined above, the output rules are: 

PUSH TO QUEUE For Part 

PUSH TO MACHINE For Queue 

PUSH TO QUEUE For Machine 

Fig 4.2 Single Machining Operation in WITNESS 

Since a WITNESS model has the characteristics of both the material (process 

interaction) and machine based views (activity scanning) it can be thought of 

as a hybrid (activity/process) simulator. 



It is possible to dictate the order in which the WITNESS executive attempts to 

output parts from blocked elements and input parts to idle elements, 

whenever a change occurs in the model. This can be achieved in one of two 

ways: 

" By event: Every time a change occurs in the simulation (that is, every time 

an event takes place) WITNESS tries to obtain work for elements which are 

idle. This is the two phase method usually employed in the process 

interaction approach. 

" By time: Just before WITNESS completes actions associated with all 

activities that are due to finish at the current simulation time, it updates 

the clock and then attempts to unblock any elements. This is a three phase 

approach, nearer to that used in an activity based system. 

Time mode allows greater account to be taken of priority given for allocation of 

resources; however, it does not suffer from the degradation of computational 

efficiency as in the normal three phase activity based approach since a full 

activity does not take place. Time mode also allows the more realistic 

modelling of queuing conveyors, as the next part to be pulled from the 

conveyor is ready after one conveyor cycle in time mode (whereas in event 

mode the next part is only ready after two conveyor cycles). 
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4.4.2 PROMODEL 

The internal model representation in PROMODEL is in the form of a number 

of tables (see Appendix A for examples of tables) to which the user can add 

data values either directly or through a DOS Interface. The focal point of the 

specification of core manufacturing activities is the definition of parts, which is 

used also to define the process route of a part that represents its interaction 

with resources. This is similar to the world view contained in process 

interaction (PI) based simulation systems (e. g. SIMAN[Pegden, 1985]), which 

has its root in batch production systems and jobshops with a variety of parts. 

The programming part of the model is restricted entirely to the routing 

module which specifies the process plan for all materials. A single machining 

operation in the PI approach (Fig 2.8) comprises the sequence: part arrival, 

waits in queue, seizes machine, waits until completion time elapsed and 

releases machine. This representation is equivalently represented in 

PROMODEL as shown in Fig 4.3. 

Part Location Operation 
min 

Output Next 
location 

Condi- 
tion 

Q_ty Move 
time min 

P1 queue 7 p1 ml 0 1 conveyor 

p1 ml 10 p1 queue 0 1 conveyor 

p1 queue 5 P1 Exit 0 1 conveyor 

Fig 4.3 Single Machining Operation in PROMODEL 
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There seems to be no tendency towards the machine based approach and, 

therefore, activity based world view, since the machines signified by location 

pay no part in the modelling process apart from processing points within the 

routing module. They don't even have to be defined in advance of their use 

within the routing module, which is the case in WITNESS. The only other 

roles played by the physical elements likes machines is in the definitions of 

their capacities and breakdowns. Explicit modelling constructs of interrupting 

activities, like breakdown of machines, that most manufacturing simulators 

provide, however, gives an element of an activity structure; in a true PI 

system, interruptions have to be modelled by the user as part of a process 

route (using various artificial methods, e. g. using a dummy `part' to occupy a 

machine while it is broken down). 

From an execution of the model, an analysing the trace of the simulation run, 

it can be confirmed that the program executes the process plan by scanning 

idle resources and by the use of a sequence of actions like: 

" PART begins move from LOCATION A to LOCATION B. 

" Operation time for PART at LOCATION B is TIME. 

" Operation time completed for PART at LOCATION B. 

" Begin output logic for PART at LOCATION B. 

" PART queues for output at LOCATION B. 
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4.4.3 FACTOR/AIM 

The internal model representation in FACTOR/AIM is in the form of a DB2 

database which is populated by the user through menu base forms and 

Graphical User Interface. However, data from Excel compatible files can be 

loaded directly into the database. Although machines and all the physical 

elements of the manufacturing system have to be defined first, a 

predominantly material based view exists in the system since the machine- 

material interactions are defined via a process plan module that specifies a 

sequence of job steps comprising of transportation (move-between) and 

processing (setuploperation) actions. A single machining operation is 

determined by a process plan comprising a number of jobsteps, as shown in 

Fig 4.4, with the processing time of 10 given in the Setup/Operation editor 

(Appendix A Fig 21) in the operation time field. Modelling constructs provided 

for interrupting activities, however, again gives an element of an activity 

structure. 

Jobstep Type Description Next 

Jsl Setup/Operation Queue Js2 

Js2 Setup/Operation Process at Ml Js3 

Js3 Setup/Operation Queue js4 

Filz 4 .4A 
Single Machining Operation in FACTOR/AIM 
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The FACTOR/AIM executive would execute the following jobsteps in three 

stages, each containing a number of sub-stages. These are: 

1. Start ofjobstep event at time t0. Process jobstep jsl 

. Load Part 1 of order. 

"Allocating 1 unit of pooled resource Queue. 

"Allocation complete. 

"Schedule end of service for jobstep at time t1 

"jobstep js2 selected as next. 

2. Start of jobstep event at time t1. Process jobstep js2 

Load Part 1 of order. 

"Allocating 1 unit of resource Machine. 

"Allocation complete. 

*Freeing one unit of pooled resource Queue. 

"Schedule end of service for jobstep at time U. 

"jobstep js3 selected as next. 

3. Start of jobstep event at time U. Process jobstep js3 

. Load Part 1 of order. 

. Allocate 1 unit of resource Queue. 

"Allocation complete. 

*Free one unit of Resource Machine. 

'Schedule end of service for jobstep at time t3. 

"jobstep js4 selected as next. 
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4.4.4 Other generic manufacturing simulators. 

It is clear from the above discussion that both machine (activity) and material 

(PI) based views can be used to develop manufacturing simulators, and a 

hybrid approach can also be taken to give the user the choice of defining the 

machine-material interactions primarily through that of parts (in the form of a 

process routelplan) or machines or a combination of both. A number of other 

simulators were also examined with the help of their literature (brochures and 

research papers), and Fig 4.5 presents the dominant world view of some of the 

particular simulators. It should, however, be recognised. that all 

manufacturing simulators are hybrid in their nature at least to some extent, 

e. g. the way interrupting activities and transportation devices (e. g. AGVs) are 

modelled in a predominantly PI system have similarities with an activity 

based approach, while even the systems with a predominantly activity 

structure use a simulation executive that behaves more like that of a PI 

system. The key common feature amongst them are the real world objects and 

their behaviour, and this emphasis has led to a more pragmatic approach to be 

taken than the paradigms of the early simulation systems. 
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Simulator RPM: Worl. dView 

FACTOR/AIM PROCESS 

PROMODEL PROCESS 

WITNESS ACTIVITY/PROCESS 

XCELL+ ACTIVITY 

SIMFACTORY ACTIVITY 

ARENA PROCESS 

MODEL MASTER ACTIVITY 

Fig 4.5 World view of Generic Simulators 

4.5 Common Modelling Elements in Generic Manufacturing 

Simulators 

From the investigation of generic manufacturing simulators, through direct 

use, published literature and vendor's brochures, it is also evident that a 

number of common modelling elements are provided by all of them. These 

elements allow the modelling of the commonly found components or 

constituents of manufacturing systems, together with their characteristics, 

like products, processing stations or machines, buffers or receiving areas, 

manpower or labour, transporters and tracks and finally interrupting 

activities (breakdowns, setups). 
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The investigation of generic simulators resulted in the classification in Fig 4.6, 

which shows the common modelling elements that are available to the 

modeller in a number of popular generic manufacturing simulators. The 

similarities are obvious and stem from the fact that they are all based on a 

common domain; in some instances slightly different names are used to 

represent similar elements (e. g. transporters and vehicles) and sometimes a 

generic name is used instead of a specific element with the same features (e. g. 

resources and labour). 

, lent 

Parts Part Part Order Object Load Stock 

t'roce. c. c Phan Route or Routing Process plan Process plan Process System Processes 
INPUT/ and Jobsteps comprising comprising 

procedures for: if 
OUTPUT operation then else logic; 
rules sequence actions to take 

down, bring up 
resources; actions 
to choose processes, 
resources, queues 
based on their state 

i, Iachines Machine Location Resource Station Resource Workcentre 

Buffers Buffer Location General Pool Queue Queues+Order Buffer 

Lists 

('un veyors Conveyor Conveyor Section Conveyor Section Conveyor Conveyor Section Conveyor 

Alan(lower Labour General Resource Multi-capacity Resource Resource Auxiliary 

operator Resource 

1ranrsporterc Vehicle Transporter Vehicles Transporter AGV Carrier 

Tracks Tracks Transporter Paths Transporter Domain Guide Paths Path 

Segments 

Fig 4.6 The common elements within Generic Manufacturing 

Simulators 
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Each of the common elements provide input facilities for defining their 

characteristics, for example: the parts element will have means for specifying 

name, maximum number of arrivals of a part type, time elapsed between 

successive arrivals, time of first arrival, batch size; whilst the transporters 

element will have means for specifying characteristics like pickup speed, 

delivery speed, load time, unload time, capacity, etc. Similarly means will be 

provided for specifying the characteristics of the machines, buffers, conveyors, 

manpower and tracks. 

4.4.1 Behavioral elements 

The only elements that appear not to be common amongst simulators are those 

related to rules provided for job priorities and resource assignment. These 

rules may be in-built (FACTOR/AIM) or have to be written using an in-built 

programming language (WITNESS, PROMODEL, TAYLOR II (Nordgren, 

1994) 

For example: 

" In WITNESS scheduling rules are programmed using Actions (for 

modifying variables and attributes) and input/output rules. A number of 

elemental in-built rules are available to the user, such as: WAIT, PUSH, 

PULL, IF, MOST, PERCENT, SEQUENCE, SELECT, BUFFER, FLOW, 

CONNECT, RECIPE, DESTINATION. Composite rules can be formed from 

these elemental rules, or user defined rules can be developed, using the 
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various programming constructs that WITNESS makes available. An 

example of a composite rule would be: 

IF NPARTS(ml)>1 
least_slack rule 

else 
most work remaining rule 

endif 

where one of two user defined rules would be selected depending on the 

value of a system variable NPARTS. 

" In PROMODEL in-built elemental actions are used for resource allocation 

(GET), assembling parts (JOIN), sending parts to a resource (SEND [n] 

[part] TO [location]), etc in the OPERATION or OUTPUT part sections of 

the routing module. Composite rules can be constructed using the IF- 

THEN rule which access and manipulate part attributes, and system and 

user defined variables. The format of the IF-THEN rule is: 

IF [condition] THEN [actions]. 

The condition part of the rule can be used to test the contents, capacity of 

resource, or the status of a resource, the value of a user defined variable, 

the clock value, the value of a part attribute, etc, In addition it is possible to 

drop out to an external language (C) if the required logic cannot be 

programmed using the in-built language. 
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" In ARENA the rules can be defined using the SIMAN base modules, which 

conform to the SIMAN block or experiment statements; Alternatively the 

Advanced Manufacturing Template can be used, which supports the 

majority of manufacturing systems from jobshop, to flow shops, to assembly 

lines. Model logic can be based on pre-defined selection rules, for example, 

the following priority rules for the selection of a part from a queue are 

available: -cyclic (CYC), random (RAN), preferred order rule (POR), largest 

number busy (LNB), largest remaining capacity (LRC), smallest remaining 

capacity (SRC). These are elemental rules which can be used alone or 

combined to form more complex composite rules. 

" In FACTOR/AIM the rules are in-built and include: 

1. AGV assignment rules provided are: - closest vehicle, closest cruising 

vehicle, closest parked vehicle, or longest idle vehicle. 

2. Sequencing by: 

" Queue discipline (FIFO, LIFO). 

" Integer values (Attributes, Priority, Load-size, Number of Jobsteps). 

" Date/Time (Date, Jobstep Time, Processing Time Remaining). 

" Least slack-Static or Dynamic. 

3. Order Release Rules: 

" Earliest Due Date. 

" Number of Jobsteps. 

" Order size. 

" Processing Time. 
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" Priority. 

" Least Static Slack/Number of Jobsteps. 

" Least Static Slack/Processing Time. 

4. Material Handling Device contention rules based on: 

" Earliest Due Date. 

" Earliest Order Release Date. 

" FIFO and LIFO. 

" Attributes. 

" Priority. 

" Largest or Smallest Load size. 

From the analysis of the behavioural elements of the generic simulators, it 

is evident that FACTOR/AIM is the easiest to use since no programming is 

required, but this is at the detriment of flexibility since only the in-built 

rules can be used with no scope for modification or user defined rules 

(Note: - The system, however, does allow the modeller to drop out into an 

external programming language to define rules that are not pre-defined 

within it; ability to define rules this way, however, is severely limited by the 

extent to which system status information can be communicated to and from 

the external program). The other manufacturing simulation systems are 

also similarly easy to use as long as only the elemental rules provided need 

to be used which, of course, would severely limit their application. 
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4.6 Common Modelling Elements of WITNESS. PROMODEL and 

FACTOR/AIM. 

In this section the common elements, and their characteristics, of WITNESS, 

PROMODEL and FACTOR/AIM are identified and described using the 

classification given in Fig 4.6. Although manufacturing simulators are based 

on a common domain knowledge, their implementations differ in many 

respects, both in the way the model is specified and the way its data is stored. 

The three systems selected for a more in-depth study were chosen because of 

their differences; the core manufacturing activities (i. e. excluding 

transportation) are defined primarily through the real world objects such as 

parts and machines (locations in case of PROMODEL), but the emphasis 

placed on each is different. 

4.6.1 Parts 

A number of attributes of parts are commonly found in the majority of 

manufacturing simulators: 

" The maximum arrivals of a particular part, which is the maximum 

number of parts which can be allowed during a single simulation run. 

" The inter-arrival time is the time between successive arrivals. 

" The arrival time of the first part of a part type, which is the simulation 

time at which the first part of a particular type arrives. 
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" The lot size. 

These characteristics or attributes are specified in WITNESS, PROMODEL 

and FACTOR/AIM using fields within the the parts module (Fig 1 Appendix 

A), Part Scheduling Module (Fig 12 Appendix A) and demand editor (Fig 19 

Appendix A) respectively. 

4.6.2 The process plan 

The process plan represents the path a part takes through the model including 

all processing steps and transportations. Consider the case, in Fig 4.7, where 

there are 3 machines and a load/unload station. 

Load/unload M1 

Conveyl 

Conve 4 Conveyl 

M2 M3 

Conve 

Fig 4.7 Three machine system 

In WITNESS this path is entered using the route editor (Fig 3 Appendix A) 

within the part detail module. This editor allows the route to be specified 

using stages, where each stage represents an interaction with a transportation 

device or machine. The route stages for part 1 say, shown below, specify that it 
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visits machines ml, m2 and m3 using conveyors conveyl, convey2, convey3 

respectively, and the load/unload stages are 1 and 9 (Note: -This is an example 

of the internal representation of a process plan, and not the way the data is 

entered by the user). 

PART ROUTE: STAGE 1: load/unload; 
R SETUP : 0; 
R CYCLE : 10; 

STAGE 2: conveyl@0; 
R SETUP : 0; 
R CYCLE : 0; 

STAGE 3: ml; 
R SETUP : 0; 
R CYCLE : 7; 

STAGE 4: convey2@0; 
R SETUP : 0; 
R CYCLE : 0; 

STAGE 5: m2; 
R SETUP : 0; 
R_CYCLE : 15; 

STAGE 6: convey3@0; 
R SETUP : 0; 
R CYCLE : 0; 

STAGE 7: m3@0; 
R SETUP : 0; 
R CYCLE : 5; 

STAGE 8: convey4@0; 
R SETUP : 0; 
R_CYCLE : 0; 

STAGE 9: load/unload; 
R SETUP : 0; 
R CYCLE : 15; 

STAGE 10: SHIP; 
R SETUP : 0; 
R CYCLE : 0; 

In PROMODEL this process plan would be modelled via the routing module 

as shown in Fig 4.8. 
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Part Location Operation( 
min 

Out ut 
art 

Next 
location 

Condi- 
tion 

Qtty Move 
time(min) 

p1 load/unload 10 p1 ml 0 1 conveyor' 

P1 ml 7 p1 m2 0 1 conveyor 

p1 m2 15 p1 m3 0 1 conveyor 

p1 m3 5 p1 
load/unload 0 1 conveyor 

pl load/unload 15 p1 exit 0 1 conveyor 

Fig 4.8 PROMODEL routinE module 

Similarly in FACTOR/AIM the route a part takes is modelled via the definition 

of a process plan comprising a number of jobsteps. The first jobstep would be 

specified in the FIRST field, of the process plan editor (Fig 20 Appendix A), 

and in the above situation would be load/unload. The remainder of the process 

plan is specified using a complex field which has four columns for specifying: 

" The job step name. 

" The type of jobstep: a transportation (move-between) or processing 

operation ( setup/operation). 

"A description of the job step. 

" The next job step 

For an equivalent representation of the WITNESS and PROMODEL process 

plans, shown above, this would result in the jobsteps shown in Fig 4.9. 

$ The conveyor system would be specified using the conveyor location and conveyor transfer logic 
tables(see section 4.6.5.1) 
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3 sl setup/operation'' load/unload station js2 

js2 move-between" take loads to ml js3 

j53 setup/operation process at ml js4 

j94 move-between take loads to m2 js5 

js5 setup/operation process at m2 js6 

JS6 move-between take loads to m3 js7 

js r setup/operation process at m3 js8 

js8 move-between take loads to loadlunload j sg 

Add_to_material I exit 

Fig 4.9 FACTOR/AIM Process Plan 

If a conveyor is chosen as the transportation mechanism then the type of 

transportation in the move-between jobstep editor (Fig 23 Appendix A) is 

chosen as a conveyor system. A list of already defined conveyor systems is then 

available and a selection is made. The begin and end points, which indicate 

where the parts are picked up and dropped off respectively, are also defined 

for the move-between jobstep. 

'The processing time would be entered using the Setup/Operation editor(Appendix A Fig 2l) in the 
operation time(10 in our case) field. 
'° The conveyor system using the move-between jobstep cditor(Appendix A Fig 23). For a thorough 
explanation see section 4.6.5.1 
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If a vehicle-track system is used, the transporter control points signifying the 

beginning and end points of the move-between jobtep would have to be 

specified. 

The processing time at each location is modelled using the operation/setup 

jobstep editor by entering a value in the operation time field. 

4.6.3 Buffers 

There are two types of buffers commonly available as modelling elements in 

manufacturing simulators. 

Machine dedicated buffers 

A machine dedicated buffer is a queue at a machine. In a WITNESS model, it 

is represented through the machine's details (Fig 5 Appendix A). In 

PROMODEL, the buffers are defined as separate components in the 

capacities module before they are used in the routing module. For example 

the input/output buffers blin and blout of machine ml would be represented, 

in the routing module, as shown in Fig 4.10. 

129 



Part Location Operation(min) Output Next Condi- City Move 
art location tion tiine(min) 

P1 lo/unlo 0 p1 blin 0 1 1 

pl blin 7 pl ml 0 1 conveyor 

P1 ml 7 PI b lout 0 1 conveyor 

pl blout 5 pl lo/unlo 0 1 conveyor 

PI lo/unlo 0 P1 exit 0 1 1 

Fig 4.10 PROMODEL Representation of machine dedicated buffers in 

the routing module 

In FACTOR/AIM machine dedicated buffers are modelled as general pools 

(Fig 24 Appendix A) and then assigned to a machine, using the 

setup/operation jobstep editor (Fig 21 Appendix A), in the Resource/Pool 

group. For example if Blout is the output buffer for ml then it is specified in 

the Resource/Group field as shown in Fig 4.11 

Fig 4.11 FACTOR/AIM Output buffer representation in the 

Resource/Group field. 
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General Buffers 

These buffers are not buffers used for queuing at resources, but are separate 

and used as temporary WIP storage. Two attributes are used to define their 

characteristics. 

The capacity of the buffer is the maximum number of parts a buffer can hold 

at any particular time. In WITNESS the capacity of a buffer is entered directly 

into the capacity field within the buffer's details module (Fig 4 Appendix A), 

whereas in a PROMODEL simulation model the capacity, for say buffer blin, 

is defined within the capacities module (Fig 13 Appendix A) in the Qty 

column. In FACTOR/AIM, buffers remote from machines are modelled as 

general pools with the capacity specified by using the general pool editor 

(Fig 24 Appendix A), in the capacity field; this is different from the dedicated 

buffers in that in the process plan the jobstep after the visit to the buffer will 

be move_between, signifying that the buffer is not attached to the machine. 

Buffer Delay is the time elapsed before a part is allowed to leave a buffer. In 

WITNESS the delay is entered directly into the appropriate field in the 

buffers module (Fig 4 Appendix A), whereas in a PROMODEL simulation a 

delay of 5 time units of part pl in buffer blin, before visiting say machine m3, 

will be defined in the routing module in the operation column as shown in 

Fig 4.12 
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Part Location Operatio 
n(min) 

Ou traut 
art 

Next 
location 

Condi- 
tion 

qty Move 
time(min) 

p1 blin 5 p1 m3 0 1 conveyor 

FiE 4.12 SnecifyinE the delay of a part in a buffer in PROMODEL 

In FACTOR/AIM the delay is modelled in the jobstep corresponding to the visit 

to the buffer by entering a value in the operation time field of the 

operationlsetup jobstep editor (Fig 21 Appendix A). 

4.6.4 Machines 

Generic simulators usually allow four types of machines to be defined. These 

common types are: 

LA single machine that processes one part at a time. In WITNESS this type 

of machine is modelled by selecting the `single' option within the type field 

in the machine detail form (Fig 5 Appendix A), whereas in PROMODEL 

a single machine ml is modelled by a simple routing entry in the routing 

module as shown in Fig 4.13. 
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Part Location Operation(min) Output Next Condi- 
_Qty 

Move 
art location tion time min 

p1 ml 5 p1 mllout 0 1 conveyor 

Fig 4.13 The PROMODEL representation of a single machine within 

the routing module. 

In FACTOR/AIM a single machine is modelled by adding a single 

capacity resource (see Fig 25 Appendix A for resource editor), where all 

the processing characteristics are given via the process plan using the 

setup/operation jobstep editor (Fig 21 Appendix A). 

2. A batch machine that processes a batch of parts at one time. In WITNESS 

a batch machine is modelled by: 

a) selecting the `batch' option in the machine detail (Fig 5 Appendix A); 

b) entering values for the minimum and maximum batch sizes that can be 

processed by the machine. 

In PROMODELI' a batch machine ml to process a batch of 3 units is 

modelled by specifying, in the routing module, the batch size in the 

quantity column of the location sending the part as shown in Fig 4.14. 

"The capacity of ml should be greater than the maximum batch size in the capacities 
module 
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Part Location Operation Output Next Condition Qty Move 
min art location _ time min 

p1 

p1 

m3 

m1 

5 

5 

p1 

p1 

ml 

m1 

0 

0 

3 

3 

conveyor 

conveyor 

FiE 4.14 The PROMODEL representation of a batch machine 

within the routing module. 

In FACTOR/AIM a batch machine is modelled by defining a multi- 

capacity resource. The batch size is modelled using the accumulate 

jobstep (Fig 22 Appendix A) before the visit to the multi-capacity machine, 

where the size of the batch size is entered in Accum quantity field. 

3. An assembly machine takes a number of parts and assembles them onto 

a single part. In WITNESS an assembly machine is modelled by: 

a) selecting the `assembly' option in the machine detail (Fig 5 Appendix A); 

b) entering a value for the number of parts to be assembled. 

In PROMODEL a number of parts can be assembled into a single part 

using the JOIN action in the Output Part column of the machine sending 

the part, and in the Operation column of the assembly machine. The 

routing entries for modelling an assembly machine m3 which assembles 

parts pl and p2 (quantity 3 for each) from machines ml and m2 

respectively onto a part called `base' are shown in Fig 4.15. 
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Part Location Operation Ou tput Next Condi- f_ty Move 
min art location tion time(min) 

P1 ml 5 p1 m3 JOIN 3 conveyor 

p2 m2 5 p1 m3 JOIN 3 conveyor 

base m3 JOIN 3 pl base load/unload 0 1 conveyor 

JOIN 3 p2 base 

F iE 4.15 The PROMODEL representation of an assembly machine 

within the routing module. 

In FACTOR/AIM an assembly machine is defined by specifying the jobstep 

that accesses it as an AccumulatelSplit jobstep (Fig 22 Appendix A). The 

assembly quantity is specified by entering a value in the Accum quantity 

field. 

4. A production machine takes in one part and outputs a number of parts. 

In WITNESS a production machine is modelled by: 

a) selecting the `production' type option in the machine detail (Fig 5 

Appendix A). 

b) entering values for the quantity and name of the part to be produced. 

In PROMODEL this is achieved by specifying the initial quantity, 1, in the 

quantity column of the machine sending the part and a quantity equal to 

the number produced in the quantity column of the production machine. 

The routing entries are given in Fig 4.16. 
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Part Location Operation Output Next Condi- Qty Move 
min art location tion time min 

P1 

P1 

ml 

m2 

5 

5 

p1 

p2 

m2 

load/unload 

0 

0 

1 

10 

conveyor 

conveyor 

Fig 4.16 The PROMODEL representation of a production machine 

within the routinE module. 

In FACTOR/AIM a production machine is modelled in the same manner as 

an assembly machine. This again requires the jobstep which accesses the 

production machine being specified as Accumulate/Split (Fig 22 Appendix 

A), but this time a production quantity is entered in the split field. 

Machine setups 

There are usually two types of setups: - one after a change of part type and the 

other after a number of operations have been completed. It was found that the 

type of setup most commonly available for modelling in generic simulators is 

the one after a change of part type, although some generic simulators like 

WITNESS support both types. 

In WITNESS to achieve the change of part type setup the setup mode is set to 

after a part change (Fig 5 Appendix A). and the setup time specified, 
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whereas in a PROMODEL simulation a setup after a part change is specified 

in the Downtime module as shown in Fig 4.17. 

Basis Resource Part for which Duration Preceding qty Maintenance 
setu occurs Minutes Part Resource 

Setup ml All 10 All 1 manl 

FIE 4.17 Downtimes Module 

In a FACTOR/AIM model a setup after a part change is specified in the 

setup/operation jobstep editor in setup time field (Fig 21 Appendix A). 

Machine Breakdowns 

In generic manufacturing simulators the following types of breakdowns are 

usually modelled: 

1. Breakdown according to Available time. In WITNESS if there is a 

breakdown to be modelled in terms of the time the machine was available 

then: 

a) select the available time option in the breakdown field of the 

machines module (Fig 5 Appendix A). 

b) enter time between breakdowns. 

c) enter repair time. (Note: -in all cases, time can be defined by a constant, an 

expression or a statistical distribution). 
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For PROMODEL a breakdown in terms of the time the machine was 

available is modelled by: 

a) setting the Basis column to Clock in the Downtime module (Fig 14 

Appendix A). 

b) entering a time between breakdowns. 

c) entering a repair time. 

In FACTOR/AIM a number of different breakdowns can be defined via the 

breakdown editor (Fig 26 Appendix A) and then assigned to particular 

machines. In order to specify a breakdown according to available time: 

a) select the breakdowns value basis as Onshift Time. 

b) enter time between breakdowns. 

c) enter repair time. 

2. Breakdown after a number of operations. In WITNESS if breakdown 

after a number of operations is to be modelled for a particular machine, 

then: 

a) select number of operations option in the breakdown field of the 

machines module (Fig 5 Appendix A). 

b) enter number of operations between breakdown. 

c) enter repair time. 

In PROMODEL a breakdown after a number of operations have been 

completed is achieved by: 
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a) setting the entry in the Basis column to Cycle in the downtime module 

(Fig 14 Appendix A); the resource is removed from service after the 

specified number of operation cycles. 

b) entering the number of operations between breakdown. 

c) entering the repair time. 

In FACTOR/AIM to model a breakdown after a number of operations then: 

a) set count as value basis in the breakdown editor (Fig 26 Appendix A) 

b) enter number of operations 

c) enter repair time. 

3. Breakdown according to the time the machine is busy. In WITNESS if a 

breakdown in terms of the time the machine is busy is to be modelled for 

a particular machine then: 

a) select the busy time option in the breakdown field of the machines 

module (Fig 5 Appendix A). 

b) enter interval between breakdowns. 

c) enter repair time. 

In PROMODEL a breakdown in terms of the time the machine is busy is 

modelled by 

a) setting the entry in the Basis column to Usage in the Downtime 

module. 
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b) entering interval between breakdowns. 

c) entering repair time. 

It should be noted that in WITNESS the labour for repair is not detailed 

within the breakdown field, but is specified by: 

a) selecting the Repair option within the Labour field. 

b) specifying a labour rule for acquiring labour of a particular type using 

the labour editor. 

This is not the case with PROMODEL, where the labour name required for 

repair is specified within the maintenance resource column of the 

downtimes module (Fig 14 Appendix A). 

In FACTOR/AIM to model a breakdown by the time the machine is busy: 

a) set value basis in the breakdown editor (Fig 26 Appendix A) to 

processing time. 

b) enter time between breakdowns. 

c) enter the repair time. 
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4.6.5 Conveyors 

Conveyors along with vehicle and track systems are the main transportation 

devices that can be modelled in generic simulators. In WITNESS a number of 

conveyors are usually linked together to form a conveyor system. In 

PROMODEL and FACTOR/AIM, however a conveyor system is modelled as a 

combination of conveyor sections, where a conveyor section is defined as any 

uninterrupted span of conveyor of the same type. 

In WITNESS a conveyor system is modelled as a number of different inter- 

connected conveyors via the conveyors detail module. 

The conveyor system in PROMODEL is modelled via the Conveyor module, 

which comprises of the following three sub-modules: Conveyors 

Specification, the Conveyor Location Interface and the Conveyor 

Transfer Logic sub-modules. 

In FACTOR/AIM the conveyor system comprises a number of conveyor 

control points linked into sections. For example, a conveyor section csl 

could link conveyor control points cpl and cp2. There are three attributes 

associated with conveyors: -its type, capacity and cycle time; in addition, how 

the parts are routed with a conveyor need to be defined. 
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There are usually two different types of conveyors that can be modelled. In 

WITNESS the two types are modelled by entering either fixed or queuing in 

the type field of the conveyor detail module (Fig 6 Appendix A). In 

PROMODEL there are also two types which can be modelled and are 

compatible with the WITNESS classification of a conveyor; aT (fixed) entry in 

the Type column of the conveyor specifications sub-module (Fig 15 Appendix 

A) indicates a transport conveyor and aA (queuing) entry an accumulation 

conveyor. Examples of fixed conveyors are belt, chain, tray and trolley, while 

examples of queuing conveyors are roller and towline. In FACTOR/AIM the 

type of the conveyor is specified using the conveyor system editor (Fig 27 

Appendix A); for a queuing conveyor the block rule is selected as 

Accumulate, and for a fixed conveyor the block rule is selected as Block. 

In WITNESS the capacity of a conveyor is specified in the part length field 

of the conveyor module (Fig 6 Appendix A) which signifies the maximum 

number of parts that can be physically placed end to end on the conveyor. In 

PROMODEL the capacity of each section is modelled by entries for the length 

of load and spacing columns of the conveyor specifications module (Fig 15 

Appendix A). In FACTOR/AIM capacity relates to that of a particular conveyor 

section and is specified in the capacity field using the conveyor segment 

editor (Fig 28 Appendix A). 

The cycle time is the time to move a part through one part length. In 

WITNESS this is modelled by using the cycle time entry in the conveyor 
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detail module (Fig 6 Appendix A), whilst in PROMODEL the cycle time is 

modelled by entering it in the speed column of the conveyor specifications 

sub-module (Fig 15 Appendix A). In FACTOR/AIM the cycle time is specified 

using the conveyor system editor (Fig 27 Appendix A) in the velocity field. 

4.6.5.1 How parts are routed using a conveyor. 

This is used to indicate how the conveyor system is connected to the 

load/unload stations and machining centres. In WITNESS this is specified by 

the input/output rules and entry of the route in the part's details, which 

specifies which conveyor(s) are used to transport a part to a specific location. 

The input rule is set to WAIT and the output rule to PUSH TO ROUTE. 

Consider the layout of Fig 4.18, a4 station system served by 4 conveyors. 
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ml m2 
1-1 

Conveyor2 

Conveyor 1 Conveyor3 

Conveyor4 Q 

load/unload m3 

Fig 4.18 A WITNESS representation of a4 station and 4 conveyor system 

We see that machine ml is connected to conveyorl, machine m2 to conveyor2, 

machine m3 to conveyor3 and the load/unload to conveyor4. These connections 

would be specified in the route entry in the detail of part pl as: 

PART ROUTE: STAGE 1: load/unload; 
R SETUP : 5; 
R CYCLE : 10; 

STAGE 2: conveyorl@O; 
R,. 

-SETUP: 
0; 

R CYCLE : 0; 
STAGE 3: ml; 

R SETUP : 0; 
R CYCLE : 5; 

STAGE 4 : conveyor2; 
R SETUP : 0; 
R CYCLE : 15; 

STAGE 5: m2@0; 
R_SETUP : 0; 
R CYCLE : 0; 

STAGE 6: convey3@0; 
R SETUP : 0; 
R CYCLE : 

STAGE 7: m3@0; 
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R. 
-SETUP: 

0; 
R CYCLE : 0; 

STAGE 8: convey4@0; 
R. 

-SETUP: 
0; 

R CYCLE : 0; 
STAGE 9: load/unload; 

R SETUP : 0; 
R CYCLE : 15; 

STAGE 10: SHIP; 
R SETUP : 0; 
R CYCLE : 0; 

This 4 conveyor system would be represented in PROMODEL as a single 

conveyor comprising 4 sections as shown in Fig 4.19. 

ml m2 
Q 

section2 

Q 

section 1 section3 

F-I section4 Q 

loadlunload m3 

FiE 4.19 PROMODEL representation of 4 conveyor system 

In PROMODEL these connections would be specified in the Conveyors 

Location Interfaces sub-module as shown in Fig 4.20. 
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CONVEYOR LOCATIONS INTERFACE 

Location Conv Et(m) Sec 

ml section l 1 1 
m2 section2 1 1 
m3 section3 1 1 
load/unload section4 1 1 

Fig 4.20 Conveyor Location interface entries for PROMODEL example 

The Ft(m) entry is the distance along the section at which the routing location 

interfaces with the conveyor and the sec entry is the time to transfer between 

the conveyor and the location (Note: -sec stands for seconds but, in practice, 

the time can be specified in any unit). 

In PROMODEL the Conveyor Transfer Logic sub-module is used to specify 

the length of the conveyors and their connections to other conveyors. The 

layout of the Conveyor transfer logic is shown in Fig 4.21. 

O-OVITP. VnR TR ANQFF. R T 
. 
O('YTC 

From Position To Position Time 
ft(m) ftm Sec 

cl 3 c2 0 1 
c2 4 c3 0 1 
c3 3 c4 0 1 
c4 4 cl 0 1 

FiE 4.21 Conveyor Transfere logic entries for PROMODEL 

example 

" From is any conveyor section which merges into another conveyor section. 
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" Position is the distance of the load along the "From" conveyor where 

transfer takes place (conveyor length). 

" To is any conveyor section which the "From" section merges into when 

loads are transferred. 

" Position is the distance of the load along the "To" conveyor after transfer 

has taken place (0 to signify beginning of conveyor section). 

FACTOR/AIM uses a similar method to PROMODEL for specifying a conveyor 

with the use of conveyor control points connected by a number of conveyor 

sections. The 4 conveyor system would be represented using conveyor control 

points ccpl, ccp2, ccp3 and cpp4, connected by 4 sections sectionl, section2, 

section3 and section4. This is shown in Fig 4.22. 

ml m2 
a 

section2 

Q 

ccp2 ccp3 
sectionl section3 

ccpl ccp4 
Q section4 Q 

load/unload m3 

FIE 4.22 FACTOR/AIM representation of a4 station and 4 conveyor 

system 
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The connections to resources would be specified using the move-between 

jobstep editor (Fig 23 Appendix A), of the process plan in the origin, 

destination and drop off fields. This is illustrated in Fig 4.23, where: 

" Origin is the conveyor control point from which the part is transported. 

" Destination is the conveyor control point to which the part is transported. 

" Drop off is the location which interfaces with the destination control point. 

Job step Origin Destination Drop off 

move part from load/unload to ml ccpl ccp2 ml 

move part from ml to m2 ccp2 ccp3 m2 

move part from m2 to m3 ccp3 ccp4 m3 

move part from m3 to load/unload ccp4 ccpl load/unload 

Fig, 4.23 FACTOR/AIM iobstens for specifying conveyor section 

connections to resources 

4.6.6 Transporter Systems 

A transporter system in generic manufacturing simulators is defined using a 

fixed path along which a vehicle moves; both the vehicle element and the track 

system on which it travels have to be defined together with their attributes 

and characteristics. In addition, the way vehicles search for work and are 

routed through the tracks have to be specified. 
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4.6.6.1 Vehicles 

The common characteristics that can be associated with a vehicle are: the 

maximum number of parts a vehicle can carry (capacity), its start position, 

and the time to pickup and deposit parts. 

The capacity of a vehicle is modelled by using the max parts field of the 

WITNESS vehicle detail module (Fig 7 Appendix A). In PROMODEL the 

number a vehicle can transport is specified in the routing module as an entry 

in the Qty column. Similarly in FACTOR/AIM the maximum number of parts 

a vehicle can carry is specified using the load button within the transporter 

vehicle editor (Fig 31 Appendix A). 

The start position of a transporter is the track where the vehicles enter the 

simulation. In WITNESS the start position is entered in the vehicle detail 

module (Fig 7 Appendix A) by entering an output rule specifying the track to 

which vehicle is initially pushed to when the simulation starts e. g. PUSH to 

TRACK1. In PROMODEL this is entered as a path point directly into the 

start position column of the transporter specifications sub-module (Fig 18 

Appendix A) In FACTOR/AIM the start position of the transporter is specified 

in the initial position field of the transporter vehicle editor (Fig 20 

Appendix A). 
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The pick up time is the time taken to load a part onto the vehicle. In 

WITNESS this is specified in the track detail form (Fig 8 Appendix A) as an 

entry in the load detail, whilst in PROMODEL it is specified in the 

transporter specification module (Fig 18 Appendix A) as an entry in the 

pickup time column. In FACTOR/AIM the pick up time is specified in the 

pickup time field of the transporter vehicle editor (Fig 31 Appendix A). 

The deposit time is the time taken to unload a part from a vehicle. In 

WITNESS this is specified in the track detail form (Fig 8 Appendix A) as an 

entry in the unload detail, whilst in PROMODEL it is specified in the 

transporter specification module (Fig 18 Appendix A) as entry in the 

deposit time column. In FACTORIAIM the deposit time is specified in the 

deposit time field of the transporter vehicle editor (Fig 31 Appendix A). 

4.6.6.2 Tracks 

Tracks are the paths on which the vehicles travel, delivering parts between 

various processing stations. The different generic manufacturing simulators 

have distinct but equivalent methods for representation of tracks. For 

Example, a system comprising 5 machines, a load/unload station and 6 tracks 

would have representation in WITNESS shown in Fig 4.24. 
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ml m2 

load/unload F 
t3 

F-l -12 II 
t2 

t6 t5 t4 

oa m5 m4 

FiE 4.24 WITNESS Representation of a6 machine/6 track system 

The equivalent PROMODEL representation is shown in Fig 4.25 where pl to 

p2, p2 to p3, p3 to p4, p4 to p5, p5 to p6, p6 to pl are the equivalent path point 

connections of the WITNESS tracks tl,..., t6. 
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ml m2 

o a 
load/unload pp2 ppa 

a ppl pp4 m3 

pp6 pp5 

a o 
m5 m4 

Fig 4.25 PROMODEL 6 machine/6 track system representation 

The FACTOR/AIM representation, shown in Fig 4.26, is similar to the 

PROMODEL one with transporter control points tcp, ... , tcp6 connected by 

transporter segments tsegl...... tseg6. 
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ml m2 

a o tcp2 twg2 41 
tcp3 

load/unload meg, ßg3 
tcp 1 41 4,0 tcp4 m3 

tseg6 tseg4 

tcp6 
tseg5 

tcp5 
0 0 

m5 m4 

Fig 4.26 FACTOR/AIM 6 machine/6 track system representation 

Tracks define the designated guided path along which vehicles can travel. The 

characteristics commonly used to specify tracks are: -the way they are 

connected, their length and maximum speed. 

Track connections are used to specify which track a vehicle enters once it 

reaches the end of the track it is traveling on at present. In WITNESS this is 

specified as an output rule for a track in the track detail form (Fig 8 

Appendix A). In our example the output rule for: 

" track tl is PUSH TO t2 

" track t2 is PUSH TO t3 

" track t3 is PUSH TO t4, etc 
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In PROMODEL the same connections are specified in the transporter path 

logic sub-module as shown in Fig 4.27. 

PATH LOGIC FOR(vl) 

From To Block Speed 
ft(m)/min 

Distance ft(m) 
or time min 

pp1 pp2 
pp2 pp3 
pp3 pp4 
pp4 pp5 
pp5 pp6 

6 1 

FiE 4.27 Path logic for PROMODEL example 

In FACTOR/AIM the track segment connections are specified in terms of the 

transporter control points via the use of the transporter segment editor (Fig 

33 Appendix A). In the example shown, the segments and their begin and end 

points would result in the entries shown in Fig 4.28. 
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Segment Be in 1! iM 

tsegl tcpl tcp2 

t5e`ý tcp2 tcp3 

t. 4e3 tcp3 tcp4 

t eg4 tcp4 tcp5 

tsc, g5 tcp5 tcp6 

tsegf7 tcp6 tcp 1 

Fig 4.28 Segment information for FACTOR/AIM model 

In WITNESS the length of the track is used to calculate the vehicle movement 

times along the track, and is modelled by an entry in the length field in the 

tracks detail form (Fig 8 Appendix A). In PROMODEL tracks along which the 

vehicles travel are defined in the Transporter Path Logic sub-module as 

path point connections which make up the path logic for a transporter; 

transporters can only move from path point to path point, and the distance 

between them are defined. For example track trl (length 10m) which is 

connected to track tr2 (length 5m) could be defined as connect path points ppl, 

pp2 and p3. This is shown in Fig 4.29. 

155 



PATH LOGIC FOR(vl) 

From To Block Speed Distance ft(m) 
AL /min or time min 

ppl 
2 

pp2 
3 

5 
10 

Fier 4.29 Path Logic for PROMODEL example 

Similarly In FACTOR/AIM the length of a segment is specified via the 

transporter segment editor (Fig 33 Appendix A). 

The maximum speed a vehicle is allowed to travel along the track is modelled 

in WITNESS by an entry in the max speed field in the tracks detail (Fig 8 

Appendix A) form, whilst in PROMODEL this is defined in the Transporter 

Path Logic sub-module as an entry in the speed column of the path point 

connections. In FACTOR/AIM the only way of specifying a maximum speed 

along a track is to enter a velocity for the vehicle in the velocity column of the 

transporter fleet editor (Fig 29 Appendix A). 

4.6.6.3 Work search 

The way a vehicle searches for work in WITNESS is by the use of a work 

search list, specified for all tracks using the work search option within the 

track detail. (Appendix A Fig 8). This is a list of tracks where parts may be 

waiting to be loaded. Typically, this list includes the tracks which are a short 
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distance from the current track. Any number of tracks may be specified in this 

list. When an idle vehicle reaches the front of a track, it scans down its 

demand list. If it encounters a demand to load at a track which appears in the 

work search list of the current track, it will be assigned to the CALL. If the 

load track is the current track, the vehicle immediately attempts to load. The 

order of the work search list does not determine the order in which demands 

are satisfied. For example, the work search list for a track may be: T1, T2. 

However, if the first entry in the demand list requires loading at T2, this may 

be satisfied before T1. This method requires all load tracks to have a calling 

mode of CALL; for example CALL AGV1, TI, T2 means that transportation is 

required using AGV1 from tracks Tl to T2. 

In PROMODEL this type of work search is achieved using the Interface and 

search priority sub-modules, where the tracks tr2, tr3 and tr4 would be 

represented by path points pp2 to pp3, pp3 to pp4, and pp4 to pp5 respectively. 

These path points are assigned locations corresponding to loadinglunloading 

points via the Location Interface sub-module, which identifies the 

connections between the Locations (machines) and the Location Interface 

points (Path points). In our example this would result in the entries shown 

in Fig 4.30, where: 

0 Location is the part routing location with which the transporter 

interfaces. 

" Point is the transporter point where the transporter interfaces with the 

routing location. 

157 



LOCATION INTERFACES 
Location Point 
load/unload pp1 
ml pp2 
m2 pp3 
m3 pp4 
m4 pp5 
m5 6 

FiE 4.30 Location Interfaces for PROMODEL example 

In the Search priority module Type is the type of search priority and would 

be W for work. If a sequence is specified for this type then the transporter 

searches for work at each routing location. If no locations are specified or if no 

parts are waiting at any of the specified locations, then the transporters work 

search will default to the closest waiting part rule. In our example this 

would result in the entries shown in Fig 4.31. This means if there is no work 

at path point pp2 then search machines m2, m3 and m4, which correspond to 

transporter sections ending at transporter path points pp3, pp4 and pp5 

respectively. 

SEARCH PRIORITY 
Type Point Se uence 
W pp2 m2, m3, m4, 

END 

FIE 4.31 Search Priority for PROMODEL example 
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In FACTOR/AIM once a part has been processed and if the move-between 

jobstep (Fig 23 Appendix A)) indicates a transporter vehicle is required, a 

request for the vehicle is logged. The assignment of the vehicle is then to the 

part that is closest to the vehicle. 

4.6.6.4 Part routing 

Suppose the machine visitation order of part pl is load/unload, m3, m5, ml 

and load/unload for the WITNESS representation of Fig 4.24, then load and 

unload tracks that correspond to the machine visits for part pl in the table is 

as given in Fig 4.32. 

Fig 4.32 Load/Unload tracks for WITNESS example 

A CALL action statement is used in the finish cycle actions for a machine 

(Fig 5 Appendix A), where WITNESS keeps a list of unsatisfied calls for each 

type of vehicle called the DEMAND LIST. The syntax of the CALL statement 

is: 
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The CALL statements for the actions on finish after processing at machines 

m3, m5 and ml are given in Fig 4.33. 

Fig 4.33 Call statements in actions on machine finish cycle for 

WITNESS example 

The connections of the tracks to machines would be indicated by specifying 

load/unload rules for the tracks. The machine-track connections shown in the 

representation in Fig 4.24 would require the track load/unload rules shown in 

Fig 4.34. 

160 



Track 

............ 

Load rule 
..... _.. Unload rule 

ti Pull from ml Push to ml 

t2 Pull from m2 Push to m2 

t3 Pull from m3 Push to m3 

t4 Pull from m4 Push to m4 

t5 Pull from m5 Push to m5 

t6 Pull from load/unload Push to load/unload 

FiLr 4.34 Load/Unload rules for WITNESS example 

In PROMODEL this visitation order would be represented in the routing 

module, as shown in Fig 4.35. 

Part Location Operation 
(min) 

Output 
part 

Next 
location 

Condi- 
tion 

Qty Move 
time(min) 

P1 load/unload 0 p1 m3 0 1 agv 
p1 m3 4 p1 m5 0 1 agv 
p1 m5 4 p1 ml 0 1 agv 
p1 ml 3 p1 load/unload 0 1 agv 
p1 load/unload 0 P1 exit 0 1 agv 

Fig 4.35 Transporter routing in PROMODEL 

The routing in a FACTOR/AIM model incorporating a transporter would be 

specified via the process plan. The transporter control point connections to 

resources would be specified using the move-between jobsteps (Fig 23 
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Appendix A), of the process plan in the origin, destination and drop off 

fields. This is illustrated in Fig 4.36 for the layout shown in Fig 4.26,. where: 

" Origin is the conveyor control point from which the part is transported. 

" Destination is the conveyor control point to which the part is transported. 

" Drop off is the location which interfaces with the destination control point. 

Fig 4.36 Transporter control point machine connections for 

FACTOR/AIM example 

4.6.7 Labour 

Labour is the manpower required for the operation, setup or repair of a 

machine and can be shared by several machines. Two characteristics of labour 

are commonly defined: -its quantity and its assignment. 

In WITNESS the quantity is the number of a labour type which have the 

same operating characteristics and is specified in the quantity field of the 
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labour detail (Fig 11 Appendix A), whereas in PROMODEL the number of a 

particular labour type is entered in the capacities module (Fig 13 Appendix 

A) in the quantity column. In FACTOR/AIM labour is modelled as a multi- 

capacity operator, with the quantity specified via the multi-capacity 

operator editor (Fig 34 Appendix A) in the quantity field. 

Once labour has been defined it must be assigned to resources. It is 

commonly assigned for: 

1. Operating a resource. In WITNESS the labour for operating a machine is 

specified by activating the Cycle button (Fig 5 Appendix A) within the 

Labour field of the machine detail and entering a rule for acquiring a 

particular labour type. In a PROMODEL simulation model the labour 

requirement, of manl, for machine ml to cycle part pl would be defined in 

the routing module using the Get and Free actions within the Operation 

column as shown in Fig 4.37. 

Part Location Operation(min) Output 
art 

Next 
location 

on i- 
tion 

(ý1ty Move 
time(min) 

P1 ml Get mans p1 outbuff 0 1 conveyor 
5 1 
Free manl 

p1 outbufn 0 p1 0 1 conveyor 
m3 

Fig 4.37 Labour assignment in PROMODEL 
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In FACTOR/AIM labour for operating a resource is assigned in the 

Setup/Operation jobsteps under the Resource/Pool/Group heading. For 

example if we wanted to assign multi-capacity operators called workers in the 

ResourcelPoollGroup of the Setup/Operation jobstep (Fig 21 Appendix A) 

we would have the entries in the name and action columns shown in Fig 4.38. 

Name Aetion 

workers Allocate/Free 

Fig 4.38 Labour assignment in FACTOR/AIM 

2. Setup. In WITNESS the labour for setup is specified by activating the 

setup button within the Labour field of the machine detail (Fig 5 Appendix 

A) and entering a rule for acquiring a particular labour type, whereas in 

PROMODEL it is specified within the downtimes module in the 

maintenance resource column as shown in Fig 4.39. 

Basis Resource Part for which setup Duration Preceding Qty Maintenance 
occurs (Minutes) Part Resource 

Setup ml All 10 All 1 man1 

Fig 4.39 Specification of labour for setups in PROMODEL 
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In FACTOR/AIM labour for setting up a resource is assigned in the 

Setup/Operation jobsteps (Fig 21 Appendix A) under the setup heading in 

the resource field. 

4.7 Discussion 

It has become evident from the analysis of a number of popular generic 

manufacturing simulators that they provide a number of common modelling 

elements. These elements, although they may have different names, serve the 

same modelling purpose. For example processing stations in WITNESS are 

defined using the Machine element, whilst in PROMODEL they are defined 

using the Location element. 

The analysis has also shown that the main difference between the simulators 

are in their world views, internal data representations and the interfaces used 

by the user to specify the model. The world view is predominately activity 

scanning or process interaction based since most generic simulators modelling 

capabilities revolves around the definition of processing stations and materials 

respectively. There are, however, exceptions like WITNESS which are hybrid 

systems using a mixture of activity and process interaction world views. 

A more in-depth analysis of WITNESS, PROMODEL and FACTOR/AIM has 

shown that although there are differences in the data models (consisting of the 

internal representation and the user interface used to map the manufacturing 
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systems) of the different simulators, the modelling elements and their 

characteristics used to represent the manufacturing system are, to a great 

extent, the same or equivalent in nature. However, some generic simulators 

allow the modelling of certain manufacturing component characteristics, 

whilst others don't; as an example WITNESS allows the modelling of conveyor 

breakdown and PROMODEL doesn't. 

The identification and the classification of the common elements and their 

characteristics has shown that they can be used as a blue print for a 

framework that can be used in the development of future generic simulators; 

this can be achieved by using the classification as a minimum modelling 

requirement. It is also evident that the modelling elements that are common to 

the majority of simulators are those used to model the structural components 

(resources, facilities, etc. and their characteristics) of manufacturing systems. 

There, however, seems to be a lack of modelling conformity across the various 

generic simulators for the behavioral modelling elements (priority rules, 

resource allocation rules); some generic simulators have in-built rules 

(FACTOR/AIM) with no scope for modification or tailoring, while others 

(PROMODEL, WITNESS and ARENA) require the behavioural element to be 

developed using the in-built programming language. Also, when behavioural 

rules have to be programmed, different generic simulators use different 

approaches; for example, WITNESS uses INPUT/OUTPUT rules and 

ACTIONS within the detailing modules of the various resource elements for 

specification of behavioural rules, while PROMODEL uses rules only within 
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the OPERATION and OUPUT PART columns of the routing module to specify 

priorities of the jobs and their destinations when alternatives exist. 

4.8 Development of a Standard Framework for Manufacturing 

Simulation. 

The structure of a manufacturing simulator can be divided up into three main 

elements: - an internal representation of the manufacturing system model, a 

user interface for the user to populate the internal representation with the 

relevant data, and a simulation executive which executes the model; in 

addition, a simulator would contain a number of utility routines to support the 

data model and/or the executive and for generating reports on experimental 

results. The internal representation variously takes the form of a list file 

(WITNESS), tables (PROMODEL), databases (FACTOR/AIM), etc. In some 

cases, the user interface simply allows the user to populate directly a series of 

tables that constitute the internal representation. Others have menu driven 

forms which are filled in by the user to specify the model, and data is then 

mapped onto internal model representation through an internal translation 

process; the populated forms themselves may be stored as a model of the 

manufacturing system, but are not directly accessed by the executive. The 

overall structure of a generic manufacturing simulator is shown in Fig 4.40. 
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User Interface to elicit 
application knowledge 

Data model instantiation 
Model 

Instantiated model in 
internal representation 

Executive 

FiE 4.40 Overall Structure of Generic Manufacturing Simulator 

The data models in the simulators are tightly coupled, and are very distinctive 

in the character of the user interface as well as the way the data is organised 

both for it and the internal representation. This makes it difficult for a user to 

move easily between different simulators. To facilitate such tasks would 

require decoupling the interface from the internal representation, and provide 

an independent (neutral) data model as the basis for specification and storage 

of instantiated models; within such a standard framework for manufacturing 

simulators, translators could be added which would convert the model 

specification to the internal representation of target simulators. The overall 

approach is shown in Fig 4.41. 

168 



User Interface to elicit 
application knowledge 

Decouple 

model instantiation 

Neutral Interface 
and Translator(application Instantiated model in 

reference models) 
' 

model instantiation 
internal representation 

Executive 

Generic Simulator 

Fig 4.41 Framework for de-counline data model from executive 

The approach is broadly similar to that taken in STEP (Trapp, 1991; Burkett 

and Yang, 1992; Yang, 1993) in which a standard data model (modelling 

language and data representation scheme) was developed based on an 

analysis of the features and purpose of product design models. Translators, 

called application reference models in STEP, could then be added to convert 

the standardised data representations into models in target systems; a 

common approach for the application reference models was developed, but 

each one of them would need to be based on the protocols of the target system 

In the following chapter, work done towards the implementation of such a 

standard framework is discussed. The framework is not a new simulator; it 

does not have a simulation executive of its own. Nor does it provide the 

facilities for specification and development of a full simulation model, but it is 
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designed to enable the representation of the common modelling elements of 

manufacturing simulators; the model specification would need to be further 

enhanced in the specification language of the target simulators. Maintenance 

of a minimum model specification through the standard framework would 

reduce substantially the effort needed in rewriting it for another simulator, if 

the need arises; it, however, provides ample opportunity for vendors of such 

systems to differentiate their products in the full range of modelling 

capabilities provided, in the ways the simulation executive works and how 

reports are presented. 
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Chapter 5 Standard Manufacturing Simulator Framework 

5.1 Overview 

In this chapter we provide a description of the development of a Standard 

Manufacturing Simulator Framework (SMSF), based on the analysis of 

requirements for such a framework and the common elements of generic 

simulators presented in the previous chapter .A schematic diagram of the 

framework is shown in Fig 5.1, and it comprises three distinct elements: 

1. an interface for the user to specify the application model; it can be viewed as 

providing the user with a tool for mapping the common data requirements 

of a simulation model onto its internal representation in SMSF; 

2. an internal data representation, called the Common Representation of 

Manufacturing Simulators (CRMS); and 

3. a module containing translators for converting the CRMS data into the 

corresponding representation of target manufacturing simulators; this is 

currently illustrated with translators to generate (partial) models in three 

popular simulators and, in addition, a natural language description of the 

application model. 
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Model 

Interface 

CRMS 
franse(-,,,, 

-). frame(-,, 
_, 

). 
frame(-,, j. 
frame(-,, j. 

------------ -------------- ----- 
Translation Module 

WITNESS PROMODEL FACI'OR/AIM 
List File Table Generation Database Generation Natural Language 

Generation Rules Rules Rules Generator 

Equivalent Simulation Models 

WITNESS PROMODEL FACTOR/AIM Natural Language 
Model Model Model Description for 

Verification and 
Documentation 

Fig 5.1 The Standard Manufacturing Simulator Framework 

CRMS is at the core of the framework and devised specifically as an internal 

data representation for the common modelling elements identified in the 

previous chapter, and is independent of any generic simulator. It is in the form 

of a frame structure, that has been used to represent information about the 

definition and details of entities. 
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CRMS is instantiated for an application via a dialogue interface which 

provides the user with a number of dialogue boxes. Each dialogue can contain 

a single question, a number of questions or combination of questions and list 

box selections; depending on the selections made within a dialogue, other 
dialogues are activated. Incremental data entry is possible so that if a model 

specification needs to be added to or modified, the user and the internal 

analysis process do not have to start from the beginning. 

Partial model generation in target simulators is performed by translators 

which use the instantiated CRMS as data. These translators are production 

rules which fire when their left hand sides match the CRMS data; when the 

production rules fire, their right hand sides are activated and perform actions 

which write the simulation models. Its operation is illustrated with translators 

(application reference models) that generate for three simulators: WITNESS, 

PROMODEL and FACTOR/AIM. The model generated format for: WITNESS 

is a list file; PROMODEL is a text file in the form of a number of tables; 

FACTOR/AIM is a database comprising tables for different entities. 

An English language generation facility which translates the CRMS data into 

a natural language specification of the model is also included. This is useful 

for verification and documentation purposes so that the user has a record of 

what he has specified, and ensure that he has entered what he intended; the 

latter is especially useful when there is a large model to be entered requiring 

vast amounts of information via a long sequence of dialogues. 

The software for the system has been written in Prolog. The main reason for 

the selection of this language was that it is widely used in the area of AI and 
automatic simulation programming. The actual implementation, LPA Prolog, 

proved useful in that it allowed dialogues to be implemented using a portable 
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dialogue manager. The Prolog stream system is particularly useful because it 

allows the writing of program statements to a file using the BIP (Built In 

Predicate) write. The Prolog language is entirely backward chaining meaning 
that it is goal directed, which is adequate for the specification process whose 

goal is the elicitation of a complete specification and the instantiation of 
CRMS. The framework, however, also required the implementation of a 
forward chaining inference mechanism for model generation, which is a data- 

driven process; it uses the model representation in CRMS as data and the 

WITNESS, PROMODEL and FACTOR/AIM model generation rules as 

production rules. This was achieved using Oops, a forward chaining inference 

mechanism implemented in Prolog. 

5.2 User Interface 

The user interface elicits the model specification for a given manufacturing 

system, and instantiates the internal data representation in SFMS. CRMS 

and the user interface together provides the data model of SFMS that is used 

by the application specific translators (or reference models) to generate partial 

models in any generic manufacturing simulator. As discussed in the previous 

chapter it contains knowledge of manufacturing systems but excludes any 

knowledge of simulation; the latter remains within the target simulators. 

5.2.1 Specification Methods 

A number of methods exist for specifying models, in general, and for 

manufacturing systems in particular. They each have both advantages and 

disadvantages, and have been used in various automatic programming 
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systems. A brief discussion of the principal contenders help to present the 

reasoning behind the particular approach that was selected for use in SFMS. 

Natural Language Interfaces 

The use of a natural language interface involves specifying the model using 

the constructs (syntax, vocabulary, grammar) of a natural language in the 

form of a number of sentences. As an example the time between arrivals of a 

part could be specified as: 

The time between arrivals of part 2 is according to an integer uniform 

distribution with a minimum value of 10 minutes and a maximum value of 15 

minutes. 

The advantages of the approach are: 

1. it is the closest representation to the human way of thinking. 

2. provides vocabulary and syntax. 

3. little training is needed for learning input requirements 

4. provides easy to read self documentation 

The disadvantages are: 

1. constrained input, making them inflexible; attempts at increased flexibility 

result in reduction of ease of use and excessive training requirements. 

2. for modelling large systems, the specification will often exceed the size of 

the generated program. 
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Dialogue Interfaces 

Dialogue interfaces employ (Murray system, 1986) dialogues containing one or 

a number of fields for input to elicit data. Due to development of more 

advanced interface technology, it is usually possible for all the characteristics 

of a specific element of a manufacturing system to be entered within a single 

dialogue. As an example, a dialogue for part characteristics could have fields 

for: arrival time of first part; time between successive arrivals; lot size; 

maximum number of arrivals. 

Advantages of the approach are: 

1. least labour intensive, and user friendly since the user is prompted and 

guided through the specification. 

2. little or no training required. 

Disadvantages of the approach: 

1. if the specification progresses through a large number of dialogues, the user 

may find it difficult to remember what has been specified. 

2. inability to backtrack to earlier dialogues for modification or correction of 

input. 
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Graphical Inter_ faces 

Graphical interfaces are used to specify the layout of a system and are used in 

conjunction with a natural language or dialogue interface. They can be special 

purpose (Sinclair, Doshi, and Madala, 1985; Raczynshi, 1990; Gong and 

McGinnis, 1990) and restricted to a specific domain, or general purpose 

(Koshevis and Chen, 1980) applicable to any simulation domain. 

Advantages of the approach are: 

1. Most suitable for systems for which pictorial representation is desired or 

necessary 

Disadvantages of the approach are: 

1. The special purpose graphical interfaces are useless outside very restricted 

domains and often require knowledge of directed graph theory. 

2. The general purpose graphical interfaces, although they may be applicable 

to any simulation domain, require more expertise for model specification. 

5.2.2 Choice of approach 

Dialogues were chosen as the specification method because of their ease of use. 

Also, recent developments in windows based dialogues allow a number of 

characteristics to be entered in a single dialogue, for example, the majority of 

the characteristics of a specific part; this is advantageous from the point of 

view of both system development and speed of specification. The development 
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of these user friendly dialogues has become easier with improvements in 

computing technology (e. g. GUI, etc). 

Natural language was deemed unsuitable because it can only be used in a 

restrictive manner as a formal high level language, which would require 

learning; also it is more labour intensive to use with little system guidance 

which is inherent in dialogue interfaces. 

Graphical interfaces are usually more difficult to develop, and often restrictive 

in their application; since the requirement here is for data entry rather than 

pictorial layout, graphical interfaces were not used. 

5.2.3 The Dialogues 

In this section a brief illustration is provided on the use of dialogues to elicit 

from a user the specification of an application model. This is presented with 

examples for entering data on the main components of a manufacturing 

system, i. e. parts, transportation and machines. The sequence in which the 

dialogues appear is shown in Fig 5.2; particular emphasis is placed on the part 

and machine dialogues, with the transportation dialogues shown within a 

single box for conciseness, and only dialogues for the specification of a part are 

discussed in detail. 
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Start 

Number of parts 

Part characteristics dialogue 
Fields for inputing: 
" Lot size. 
" First arrival 
" Maximum arrivals 
" Inter-arrival time 

canine route: 
Entry and exit point for pact 
The machine number for part visit 

Increment Part id number Dialogues for specifying: 
1. Batch machines containing fields for 

yes minumum and maximum batch sizes. 
id ýraai 2. Assembly containing fields for name of 

numbaOrp"na assembly and assembly quantity. 
3. Production machine containing fields for 

name of part produced and production 
Labour quantity 

Number of machines 

Machine characteristics 
Fields fa Inputing: 

" Machine type. Single madiine(default). 
" Selecting setup requirements. 
" Selecting breakdown type. 
" Input/output buffer sizes. 

Ilncrement machine id 

Yu 
Madum ld< - Taal mmbm d 

11 The Number of macbines a part vlsUa 

Setup after part change 
Fields for inputing: 
" Setup time. 
" Labour requirement. 

: Setup after number of operations 
Fields for inputinf. 

" Number of operations 
" Setup time. 
" Labour requirement. 

Dialogues for breakdowns 
according to available time, 
number of operations and busy 
time. 
Fields for inputing: 
" down interval 
" number of operations 
" repair time 
" labour requirements. 

Transportation type 

Conveyor system: 
" Number of conveyors 
" Conveyor characteristics 

Transporter system: 
" Number of vehicles. 
" Vehicles characteristics. 
" Number of tracks. 

End 

Fie 5.2 The sequence of dialogues for elicitation of the model specification 
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Part specification dialogues comprise three different sections. 

The first dialogue shown in Fig 5.3 determines the number of parts in the 

system. 

How many different parts 
will be processed by the 
system. 

Fig 5.3 Dialogue to elicit number of parts 

The second dialogue shown in Fig 5.4 elicits the characteristics of the 

individual parts. 

In this dialog please specify the characteristics of part type p1 

What is the lot size for 
this part ? 

At what time does the 
first arrival of this 
part occur 7 

What is the max arrivals 
for this part 7 

Is the interarrival time 
according to a: 

integer_uniform_distri>:: 
binomial-distribution 
erlang_distribution 
gamma_distribution 
uniform_distribution 
lognormal-distribution 
ne ex onential distri s 

Effl 

Fig 5.4 Dialogue to elicit part characteristics 

Depending on the selection made in the inter-arrival time list box in the 

previous dialogue, a dialogue to elicit parameters of the selected probability 
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distribution appears. For example a dialogue to establish the parameters of an 

Erlang distribution is shown in Fig 5.5. 

Specify the Erlang distribution 
parameters for the interarriual time 
of this part 
Enter the mean: 

Enter the k parameter: 

Enter a stream from 1-100 from which 
samples are taken 

Figy 5.5 Dialogue to elicit parameters of Erlang distribution 

The dialogues were developed using the Portable Dialogue Manager in LPA 

Prolog, which allows the rapid and efficient development of Windows 

compatible user friendly dialogues. The important feature of the Portable 

Dialogue Manager that were used in the development of the user interface are 

briefly discussed here. 

All dialogues must have the following attributes specified: 

1. Invoke. This attribute specifies that the dialogue is used to gather 

information from the user, and will have termination buttons like OK, 

CANCEL or ABORT. 

2. Title. The title attribute of a dialogue definition is used for representing the 

title characters of the window in which the dialogue is drawn. 
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Each dialogue can have a number of different field types specified. 

There are four types of fields which are: 

1. text fields which constitute a region for presenting information to the user 

or, when specified as editable, for gathering information from the user. 

These fields may be scrollable. Its value attribute allows data to be 

included in a text field and the editbox attribute allows a user to type data 

into a dialogue. 

In addition attributes can be used which are common to the Four Fields. 

These are: 

" The name attribute of a field is specified as an argument of the field 

type, and is used to identify a particular field within the dialogue. 

" the location attribute specifies the position of a field absolutely or 

relative to some preceding field. 

" The size attribute is used to represent the width and height of field. 

" The return attribute of a field return is used to return the list of 

item(s) selected by the user when presented with options in the 

dialogue. 

A field can be positioned below another field using the below 

attribute. 

2. picture fields which constitute a non-functional region into which a pre- 

defined bitmap image of a picture can be drawn. 
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3. button fields to represent the control aspects of a dialogue. The cancel and 

ok buttons are attributes of this field. 

4. list fields comprising a list of scrollable Prolog atoms. There are two 

attributes specific to this field: 

" The select attribute which is used to state whether a single or multiple 

choice selection is expected from the user in response to the dialogue. 

" The layout attribute is used to specify the layout of the dialogue, e. g. 

layout (scrollbar) for a box with a scrolibar attached, or layout (popup) for 

a popup menu, or layout (Rows*Colums) for a grid of control buttons. 

As an example the predicate for generating the characteristics of a part is 

diapart_3: 
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5.2.4 Editing and Extending the specification modes 

A particular disadvantage of the use of dialogue interfaces in the past has 

been the need to start a session from the beginning whenever a mistake was 

detected in the model specification, or if it needed to be modified/extended in 

any way; unlike natural language specifications, which allow data to be 

incrementally added or changed, dialogue interfaces used in the early 

simulation model generators were strictly sequential in nature. In SFMS, an 

editing and extending mode has been added to the user interface to allow the 

user greater flexibility in instantiating CRMS data, thus considerably adding 

to its ease of use. 
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The dialogue shown in Fig 5.6 is used to indicate to the system whether the 

user wants to edit the model or enlarge it. 

Do you wish to: 

*1 Enlarge model or 

02 Edit the model parameters 

¬eF 7 ail 

Fig 5.6 Dialozue for model modification 

If the enlarge model button is selected then the Model Enlargement dialogue, 

shown in Fig 5.7, is used to elicit which components are to be added to the 

existing model. 

Which of the following do you wish to add 
to the model ? 

Mi Parts 

Q2 Machines 

Q3 Conveyors 
Q4 Ages 
QS Tracks 
Q6 load/unload stations 
Q7 Manpower 

>Cr CB;; 

Fig 5.7 Dialogue for model enlargement 

If Parts box is selected with a cross hair in the Model Enlargement dialogue 

then the dialogue to elicit the number of parts, shown in Fig 8, is used to 

obtain the number of new parts which are to be added to the CRMS. Once the 

number of additional parts is determined then the part characteristics 

dialogues, previously explained, is used to elicit their individual 

characteristics. 
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How many new parts do 
you wislito include 

Iii 
_ 

Cr.: Obi:;; ' 

Fig 5.8 Dialogue to elicit the number of new parts to include 

This enlargement or editing facility uses the modify predicate which calls the 

edit-or-enlarge-1 dialogue predicate 

where test-modify, which comprises two clauses, is used to determine 

whether the user wants to enlarge (call predicate enlarge) or edit (call 

predicate edit) the model. 

The enlargelO predicate calls the enlarge_type_1 dialogue to determine 

which component(s) is to be added to the model. It then uses test add-1 to 

determine which components are selected for addition to the model. 
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The edit/0 predicate calls the edit_type_1 dialogue to determine which 

component(s) are to have their characteristics modified. It then uses test-edit 

to determine which individual component's characteristics need to be edited. 

If the part information needs to be edited, the test-edit-1 clause below 

succeeds, and is used to elicit the part number and access its existing 

characteristics from the clause store. These existing characteristics are 

removed from the clause stores using the retractall predicate, and the new 

characteristics elicited and added to CRMS using the diapart_5 (dialogue for 

elicting part characteristics) and add-4 (adds characteristics entered in 

dialogue to CRMS) predicates. Similarly test-edit predicate is used to modify 

characteristics of machine, conveyor, AGV, manpower, etc. 
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The test_add 1 predicate used for adding characteristics of new parts 

operates, in a similar manner to the test-edit-1 predicate. 

5.3 Internal data representation 

In the previous chapter we examined the nature of generic simulators, and 

three in depth, to identify a number of common modelling elements with 

characteristics. In this section work on the development of a representation for 

these common elements in a generic simulator independent format, called the 

Common Representation for Manufacturing Simulators (CRMS), is discussed. 

5.3.1 Knowledge Representation 

A number of AI knowledge representation methods exist and were considered 

for the development of CRMS. Knowledge representation can be defined as a 

method of encoding in a communicative manner knowledge about the real 

world or its status via languages, descriptions or pictorial representations. For 

effective knowledge representation, a stylised version of the real world must 

be encoded via the use of a formal language. These formal languages are 

commonly referred to as knowledge representation schemes. 
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5.3.1.1 Types of knowledge 

A distinction needs to be made between factual and inferential knowledge in 

relation to the purpose of any study which, in this case, is manufacturing 

simulation modelling. This enables a distinction to be made between the 

simulation model representation of the manufacturing system and the 

expertise required to create the simulation model. 

Factual Knowledge 

Factual knowledge treats a collection of knowledge as a static model involving 

the extraction and storage of large amounts of data that show some property, 

and is closely associated primarily with information science in which the 

emphasis is on using computers for classifying, indexing and searching 

through data. It can be thought of as declarative knowledge comprising a 

static collection of facts and a set of general procedures for manipulating them. 

This knowledge is compatible with the representation of a simulation model, 

which is a static representation of data from the real world. A factual 

representation is declarative because it is viewed strictly as data with no 

consideration of how the data will be used. 
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Inferential Knowledge 

Inferential knowledge is concerned with the reasoning behind the creation of 

the factual data, instead of simply its classification and retrieval. It can be 

thought of as procedural knowledge since it involves the execution of a number 

of steps to reach conclusions from a number of basic facts. Inferential 

knowledge is an addition to declarative knowledge, in the form of a program to 

manipulate the declarative knowledge. In most AI environments this 

inferential knowledge can be a number of logical assertions, which can be used 

in addition to declarative knowledge to form a complete program. A theorem 

can then be used to execute the program for problem solving. Logical 

assertions can be represented in a number of programming languages, with 

PROLOG (Roussel, 1975; Clocksin and Mellish, 1984; Bratko, 1986) perhaps 

the most universally accepted. 

Inferential knowledge can be seen from the simulation perspective as the 

reasoning and knowledge required to create a simulation model, i. e. model 

development and encoding. An inference mechanism is a necessity for 

applying inferential knowledge so as to create factual knowledge. In the case 

of simulation modelling this would involve examining the real world in 

relation to simulation modelling expertise, via human reasoning, to develop a 

simulation model. 
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5.3.1.2 Knowledge Representation Methods 

Predicate Logic 

This is a formal language to allow conceptualisation of the real world. For 

example we can represent the statement that a part 1 is concentric in 

predicate logic as: 

concentric(part_1) 

where concentric is the predicate and part 1 is the constant. It can also be 

used to represent relationships between objects. For example the statement a 

machine 1 is an assembly machine can be represented as: 

isa(machine_1, assembly_machine). 

It is also possible to use standard logic symbols in predicate logic formulae 

like: 

-*(implication), -, (not), v(or), n(and), V(for all), 2(there exists). This allows 

representation of statements like: 

1. All parts require some pallet as Vx: 3y: requires(x, y). 

2. machine 1 is not lathe as -, not(machine_1, lathe) 
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Examples of rules would be a statements such as: 

1. All gears are concentric as Vx: gears(x) --*concentric(x) 

2. A mass production system is a manufacturing system which has high 

production volumes: 

`dx: manufacturing system(X)nhigh volume(X)--ýmass-production system 

EX). 

In Prolog this would be written as: 

mass_productionsystem(X): -manufacturing_system(X), high volume(X). 

Predicate logic is a universal abstract language for representing knowledge, 

whereas logic programming is a sub-set of predicate logic. Logic programming 

allows situations to be described with the formulae of predicate logic, and with 

the aid of a problem solver can be used to make inferences from the formulae. 

Prolog is the best known logic programming language. 

The search strategy used in Prolog is termed backward chaining and is an 

example of goal directed problem solving; for example, to prove the goal that a 

manufacturing system is mass production, we must first prove the sub-goals 

that it is a manufacturing system and it is high volume. The alternative to this 

search strategy is forward chaining or data-driven inference. These react to 
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changing data and are sometimes called production systems; for example the 

rule: If part one has been processed, call AGV could be represented as: 

condition action 
If part processed-*call AGV 

Semantic Nets 

This representation attempts to describe concepts or objects and was first used 

as a software representation by Quillian (1968) in the area of natural 

language processing. This is achieved by analysing world meanings and the 

way they interact with one another. Semantic networks comprise a net of 

nodes, which represent concepts and meanings, and links which represent 

relationships between nodes. Examples of nodes can be MACHINE, PART, 

CONVEYOR, ASSEMBLY MACHINE, and links can be IS, ISA, DO, 

HAS, CAUSES. Semantic network of an assembly machine is shown in Fig 

5.9. 
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Fig 5.9 Semantic Network to represent an assembly machine 

This can be represented in symbolic logic as: 

IS A(assembly_machine, machine) 

IS(assembly_machine, non_manual) 

DO(assembly_machine, pick and^place_operations) 

ARE(machine, resources) 

However, as mentioned by Ringland and Duce (1988), the use of nodes and 

links can have certain disadvantages if the designers of networks are careless 

in the way they assign meanings to nodes. For example a type node labeled 

"machine" cannot make a distinction between the class of all machine or a 

typical machine. 
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The Frame Knowledge Representation Scheme 

The development of frames as a knowledge representation scheme alleviated 

the problem of distinguishing between classes and their specifics by providing 

a mechanism for representing stereotypical concepts or events. This is 

achieved by allowing properties to be set at the higher levels of a hierarchy 

which can then be inherited by those at lower levels. They were developed as a 

means for representing knowledge about objects and, as a concept, were 

initially envisaged by Minsky (Minsky, 1979). They differ from rule based 

systems in that they are geared to representing in a structured way a large of 

number of facts. They can be thought of as a data structure comprising a 

number of components called slots, which have unique names and contain 

specific types of information like: 

"A specific value. 

"A pointer to other frames. 

"A procedure for computing the slot value. 

An example of a frame for storing knowledge of conveyors is shown below: 

frame: conveyor 
a_kind_of: transportation 
move s_by: me ch ani cal_me ans 
activity-during-. working-shifts 

where the slots are a a_kind_of, moves_by, and activity during. These 

have slot values transportation, mechanical_means and working shifts 
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respectively. This could be represented as the prolog clauses containing four 

arguments: as 

frame(conveyor, a_kind_of, value, transportation) 
frame(conveyor, moves_by, value, mechanical_means) 
frame(bird, activity_during, value, working shifts) 

where the: 

" 1st argument is the name of the frame, 

" 2nd argument the slot name, 

" 3rd argument indicates the type of the data the slot holds and is a specific 

value, and 

" 4th argument holds the slot entry which is a specific value in this case but 

could be a pointer to another frame or a procedure. 

Scripts 

Scripts (Schank and Abelson, 1977) are a specialised structure often used to 

represent sequences of events in a restricted domain, whereas frames are more 

general purpose structures for the representation of common clusters of facts. 

For example scripts can be used to define a typical situation at a machine cell 

(Schank and Abelson, 1977) such as when a part enters the cell, when its 

operation begins and ends, and when it exits. This situation can be 

summarised by four main events as shown in Fig 5.10. 
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Entering 

Start of Operation 

End of Operation 

Exiting 

FiE 5.10 Events in machine cell script 

Scripts have a number of important components such as: 

" Entry conditions-Conditions that must be satisfied before events in a 

script can be executed. For example in the case of the machine cell, a part 

must have been scheduled before the script for it can be executed.. 

" Results-Conditions that prevail after an event in the script has occurred; 

for example, a record that the scheduled operation has been completed. 

" Props-Objects like tools, fixtures, etc. which are involved in the events. 

" Roles-Manpower which are involved in the events. 

" Track-The actual sequence of events. 

A frame could be used for representing the entering event as: 

location: machine cell 

action: enter machine_cell 

locate an available machine 

choose tool 
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locate on machine for processing 

Obiect Oriented Programming 

In object oriented methods (Tokoro and Ishikawa, 1984; Zaniolo, 1984), the 

basic computation entity is the object, and computation is only allowed via the 

passing of messages between objects. Each message has attached methods or 

procedures which perform computations to answer the message. 

Objects can be arranged in classes to form a hierarchy of classes, where objects 

lower down in the hierarchy inherit characteristics and methods from those 

higher up. The only means of computation is to send a message to an object. 

There are two types of variables: class variables common to all objects in a 

class; and instance variables unique to a particular object. 

A class hierarchy for automated materials handling is given in Fig 5.11. If 

a message was sent to the AGV_1 asking about its type, it is handled by the 

method of the AGV class returning the answer automated. If the same 

message was sent to the conveyor 1 object, there is no class method in the 

conveyors class that can process the message, so it is sent to its superclass 

automated materials handling which uses its class method to return 

automated. 
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AUTOMATED MATERIALS 
HANDLING CLASS 

[ethod: 
asked for type of MHS answer 

Superclass of 

CONVEYOR CLASS 
vlethod: 
f asked for capacity answer 

of 

Superclass of 

AGV CLASS 
Method: 
If asked for level of flexit 
answer high. 
Method: 
If asked for type of MHS 
answer automated. 

of 

Conveyor_1 Object 

AGV_1 Object 

Fig 5.11 Automated materials handling class hierarchy 

5.3.2 Knowledge Representation Scheme Selection 

The previous discussion shows the wide ranging choice available for 

knowledge representation. Each of the methods, however, have both 

advantages and disadvantages and they have been developed for a different 

range of applications. In our framework, the objective is to choose a knowledge 

representation scheme for manufacturing system knowledge, which can then 
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be translated by an application reference model to the internal representation 

of any selected simulator. Simulation knowledge would be contained in the 

simulators and not in the framework. 

Scripts were not considered suitable for use in the development of CRMS 

because not only manufacturing knowledge but also simulation knowledge 

would have had to be built into the framework; it would have involved the 

writing of a partial simulation model by translating the manufacturing system 

into the important script components like entry conditions, results, props, 

roles and track. 

Since CRMS will be used to represent a declarative (factual) model of the real 

world, rules were discarded as a means of representation since they are used 

primarily for inferential knowledge e. g. simulation programming knowledge. 

The use of object oriented programming is unnecessary since our research 

deals with non-hierarchical modelling systems like WITNESS, PROMODEL 

and FACTOR/AIM, and not knowledge based simulation systems like ROSS. 

Frames were considered the most suitable representation method since they 

are modular, with each type of entity (machine, conveyor, part, etc. ) having a 

unique frame. For example, a processing resource entity (machine) could be 

represented by a frame called machine, containing different slots for 

representing the characteristics of different machines. In addition to their 

modularity, frame representations are easy to read, understand and modify. 
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Different frames can be used to represent different common modelling 

elements within which different slots can be used to represent their different 

characteristics. 

5.3.3 The Frames of CRMS 

In this section we illustrate how frames have been used within CRMS for 

representing the common modelling elements (data groups) and their 

characteristics, illustrated in Figs 5.12 to 5.19. 

(PART#) 

Has 

Maximum number of arrivals 
inter arrival time 
lot size 
First arrival time 

Characteristic 

Fitz 5.12 Part data group 

(PROC_PLN#) 

Has 

(PART#) 
No Stages 
Stages (resource, transport, 

resource, transport, ... no stages 

Characteristic 

Fig 5.13 Process Plan data group 
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Has 

Type (single, assembly, batch, production) 
Breakdown (available time, number of ops, time 

machine busy) 
Setup type (change of part type) 
Labour setup 

Characteristic 

Fig 5.15 Buffer data group 

Fig 5.16 Conveyor data group 
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Fig 5.14 Machine data group 



Fig 5.17 Vehicle data group 

Has 

sections to other tracks 
imum speed 
k search (list of locations or closest waiting part) 
routing 

Fie 5.18 Track data group 

Has 

Assignment to resource (operation or setup) 

Fig 5.19 Labour data group 
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Only frames for parts, machines and part route are shown for illustrative 

purposes, but those for the other elements can be found in Appendix B. As 

discussed in the previous chapter only structural knowledge has been 

considered in the development of the framework; however, later we discuss 

how restricted types of behavioural knowledge may be added to it. 

Parts 

A part has a number of characteristics, as indicated in chapter 4, and in 

CRMS there is a slot associated with each of these. The general format of the 

frame used to represent parts in CRMS is: 

frame(part, PART No, SLOT NAME, val, VALUE) 

where: 

9 1st argument is a constant denoted in Prolog by the atom `part' and is the 

name. 

" 2nd argument is a variable denoted in Prolog by the use of capitals and is a 

unique identifier for the part. For example part 1 would be denoted by 

PART-No=l. 

" 3rd argument identifies a unique slot, corresponding to each of the sub- 

characteristics of parts, like: max_no_arr(maximum number of arrivals), 

inter arr tim(inter-arrival time), lot_size(lot size), f rst_arr_tim(time of 

first arrival). In addition there would be additional slots for representing 

probability distributions and their parameters. 
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" 4th argument is a constant denoted by `val' to indicate that the slot contains 

a unique value as opposed to a pointer to another frame or a procedure for 

computing a value. 

* 5th argument is a unique value of a slot. For example for a `lot size' slot an 

entry 3 would indicate a lot size of 3. 

For example in CRMS the inter-arrival time for part `1' according to a 

triangular distribution can be represented by the following frame entries:: 

frame(part, 'i', inter arr tim, val, triangular) 
frame(part, '1', pl, val, '2') ) 
frame(part, '1', p2, val, '4') ) 
frame(part; 1', p3, val, '6') ) 

SLOT NAME=inter arr tim, p1, p2 and p3 in turn, where slots p1, p2 and p3 

define the parameters of the triangular distribution 

Machines 

A machine has a number of characteristics, as indicated in chapter 4, and in 

CRMS there is a slot associated with each of these. The general format of the 

frame is: 

frame(machine, MACHINE_No, SLOTNAME, vat, VALUE) 
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where: 

" 1st argument is a constant denoted in Prolog by the atom `machine' to 

identify the frame name, 

" 2nd argument is a variable denoted in Prolog by the use of capitals and is 

unique number identifier for the machine. For example machine `1' would 

have MACHINE_No=1, 

9 3rd argument identifies a unique slot such as: quantity (number of 

identical machines), type (machine type), the breakdown information, 

setup-type (type of setup) setup-time (time taken for setup), lab setup 

(labour required to perform setup). 

4th argument is a constant denoted by `val' to indicate that the next 

argument requires a unique value as opposed to a pointer to another frame 

or a procedure for computing a value, 

9 5th argument is a unique value of a slot. 

For example, the number of identical machines is represented in the slot 

quantity as: 

frame(machine, '1', quantity, val, '2') 

where SLOT NAME=quantity. 

Part Route 

Part route is separate from the part frame because it represents the 

interaction between temporary entities (parts) and permanent entities 
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(machine, conveyors, etc. ). It provides the process interaction element of CRMS 

and, in itself, can be considered as one of the behavioural elements of a 

manufacturing system. The general format of the frame is: 

frame(process_seq, PART No, VISIT No, SLOTNAME, val, VALUE) 

where: 

" Ist argument is a constant denoted in Prolog by the atom `process_seq' to 

signify the frame name. 

" 2nd argument is a variable denoted in Prolog by the use of capitals and is a 

unique identifier for the part. For example part `1' would result in 

PART N0=1. 

" 3rd argument is a variable denoting the visit number. For example 

VISIT NO=4 to represent the 4th machine visited by a part. 

" 4th argument is a unique slot used to identify: load_unload (load/unload 

station), machine-no (machine identifier), conveyor no (conveyor 

identifier), transporter no ( transporter indentifier), transport_time 

(travel time), proc_time (processing time), etc. 

" 5th argument is a constant denoted by `val' to indicate that the next 

argument requires a unique value as opposed to a pointer to another frame 

or a procedure for computing a value. 

" 6th argument is a unique value to represent a load/unload station, location 

identification, processing time or set up time. 
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For example if part 1 uses conveyor 1 to visit machine and is processed for 3 

minutes it would have the following CRMS entries 

frame(process_seq, ' 1', 1, machine_no, val, ' 1') 
frame(process_seq, 'l', 1, conveyor no, val, 'l') 
frame(process_seq, 'l', 1, proc time, val, '3') 
frame(process_seq, 'l', 1, proc time_units, val, 'minutes') 

where VISIT Y0=1 and SLOT NAME=machine_no, conveyor no, proc_time, 

process_time_units. 

5.4 Model Translators 

The third element in SFMS is the translation module for transforming data of 

an application model instantiated in CRMS into an internal representation of 

any target generic manufacturing simulator. The module, in practice, consists 

of indiviual translators (application reference models) for each generic system, 

and SFMS currently contains one each for developing representations in 

WITNESS, FACTOR/AIM and PROMODEL. The system could be extended to 

cover other generic manufacturing simulators since CRMS is designed to 

conform to the common elements and their characteristics of all such 

simulators. Rules are used to represent inferential knowledge in the 

translators because they attempt to create from factual knowledge in CRMS 

more factual knowledge in the form of a (partial)simulation model 

representation. Rules are often referred to as production rules since they 

produce new knowledge from existing knowledge. It is effectively knowledge 

required to create a simulation model, and is highly dependent on the 

language in which the model is to be generated, i. e. the rules for generating 

models in PROMODEL, WITNESS and FACTOR/AIM will be different and 
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unique dependent on the underlying internal data representation model of 

each. 

In order to apply this knowledge, a forward chaining inference mechanism is 

required to apply the rules to existing knowledge in order to create new 

knowledge. These forward chaining inference mechanisms are commonly 

called production systems because when the left hand side of a rule matches 

working memory (CRMS) the actions (model writing) specified on the right 

hand side are performed. A forwarding chaining production system called 

Oops (Merritt, 1989) was implemented in Prolog as part of SFMS. The rule 

selection algorithm is simple; where the first rule matching working memory 

is selected. 

Knowledge is encoded in Oops by creating rules with the following syntax: 

rule <rule id>: 

(<N>: <condition>,.... ] 

==> 

traction>,...... ]. 

where: 

" id: - unique identifier for the rule. 

" N: - optional identification for the condition-pattern to match against 

working 

memory. It should be noted that each of these conditions has to be a 

legal Prolog data structure, including variables. 

The major predicates of Oops are shown in Fig 5.20. 
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go 

rule try go 

match process 

fact match take process 

FiE 5.20 The major predicates in the Oous inference eneine 

5.4.1 Model Translation 

In this section we illustrate how instantiated CRMS is transformed into 

equivalent WITNESS, PROMODEL and FACTOR/AIM internal model 

representations. 

5.4.1.1 Translator for WITNESS 

Structure of WITNESS 

In WITNESS the internal model representation is in the form of a list file, 

which is a text representation of the model and is composed of two parts: 
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1. The define section which contains definitions of all entities in the model 

such as parts, machines, buffers, tracks, vehicles, conveyors, etc. A 

machine for example, is defined using a statement of the form: 

which means that machine ml is of type single and of quantity 1. A conveyor 

definition statement such as: 

CONVEYOR: conveyl, l, Fixed, l&; 

means the system contains a conveyor called convey! which is fixed and can hold a 

maximum of 18 parts. 

2. The detail section which contains statements comprising the characteristics of the 
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Translation Methodology for WITNESS 

The WITNESS list file is generated in SFMS by rules which are matched against CRMS 

and whose Right Hand Side (RHS) actions generate WITNESS list file statements under the 

define and detail sections. 

The format of the list file generation rules is: 
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The actual rules, and their application, for transferring part and machine details into a 

WITNESS list file are presented in Appendix C. 

5.4.1.2 Translator for PROMODEL 

Structure of PROMODEL 

PROMODEL uses different tables within a single text file for internal representation of the 

model. The different tables are used for representing the information entered in the 

Routing, Part Scheduling, Downtime, Capacity, Transporter Path, etc. modules. The Part 

Scheduling table, as an example, has the layout: 

Part I Location I Qty per arrival I No of arrivals 

Translation Methodology for PROMODEL 

The PROMODEL tables are generated by rules which are matched against CRMS data facts 

and whose RHS actions generate entries in the various tables. The modelling of parts in 

PROMODEL involves generating entries in the routing and part scheduling tables. 
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The format of the rules used for writing the entries is of the form: 

The actual rules, and their application, for translating part and machine data can be found in 

Appendix C 

5.4.1.3 Translator for FACTOR/AIM 

Structure of FACTOR/AIM 

FACTOR/AIM uses tables for representing a model in the DB2 database management 

system, but is different from PROMODEL in that separate tables(not within the same file) 

are used to represent different parts of the model. Examples of some of the commonly used 

tables and their descriptions are given in Fig 5.21. 

Table Description 

ORDERnnn This table defines the type of order. There are three different types 

of orders including: a new order released at a specific time; an in- 

process order to represent a order released into the system prior to 

the start of the simulation; an explicit-release order to release an 

order into the system whenever a release jobstep is performed. 

DEMANDnnn This table is used to define characteristics of orders. It includes: 
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expected makespan; first release time; inter-arrival time; maximum 

to release; name; number of parts per load, etc. 

PROCPLNnnn This table defines the process plan of an order. It contains: the 

name of the firstjobstep; the list of remaining job-steps 

JOBSTEPnnn This defines the individualjobsteps of a particular process plan 

RESRCnnn Single-capacity resource table for representing a the characteristics 

of a single machine. Characteristics include: allocation type; 

animation type; its statistics display options (e. g. the average time 

it was down); options for collecting queue length data; 

specification of shift patterns. 

MCRnnn Multi-capacity resource table for representing the characteristics of 

a multi-capacity machine. The characteristics specified are the same 

as for a single capacity resource with the addittion of a column for 

capacity. 

POOLnnn General and WIP buffer tables. The characteristics specified are the 

same as for multi-capacity resource. 

CONSYSnnn Conveyor System table. The characteristics specified include: type; 

block rule; down rule; spacing, etc. 

CONSEGnnn Conveyor Segment table defines a portion of conveyor system. The 

characteristics specified include: capacity; begin and end control 

points; name; length; etc. 

CONCPnnn Conveyor Control Points table defines where pickups and drop- 

offs occur. 

TRNSYSnnn Transporter system table defines name and description of a 
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transporter system. 

TRNSEGnnn Defines segments of transporter layout using start and end control 

points 

TRNCPnnn Transporter control points where pickups and drop offs are 

performed 

Fig 5.21 The main FACTOR/AIM database tables 

The JOB STEPnnn table, as an example, has the following layout: 

DESCR JSID NEXTJSID PROCPLANID 

Load arrives to system in_sys lbOl 1-bracket 

take pre-cast parts to 
drill 

lb01 lb02 1-bracket 

where: 

* DESCR is the jobstep description. 

" JSID is the jobstep identification. 

" NEXTJSID is the next jobstep identification. 

" PROCPLANID is the process plan accessed by thejobsteps. 
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Translation MethodoloQV for FACTOR/AIM 

The FACTOR/AIM tables are generated by rules which are matched against CRMS data , 

whose RHS actions generate different table entries. In FACTOR/AIM, parts are modelled 

using the tables ORDERnnn, DEMANDnnn, PROCPLnnn and JOBSTEPnnn. The 

generation of the DEMANDnnn and JOBSTEPnnn are illustrated here; most of the part 

characteristics are transferred into these tables. 

The format of the rules used for generating the tables is of the form: 

The actual rules, and their application, for translating part and machine data can he found in 

Appendix C 

5.4.1.4 Natural language description 

In addition to the application reference models or translators for (currently 

three) manufacturing simulators, SFMS translation module also contains a 

translator to transform the instanstiated data in CRMS into a natural 

language description of the model specification. This is designed to hell) the 

user in the verification of the specification and its documentation. 
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Verification is important when dialogues are used since, if there are a 

substantial number of sequential dialogues, it is virtually impossible for the 

user to keep track of the information he has specified. A natural language 

documentation is also likely to be useful when the need arises for translation 

of a model into a different simulator and/or the merger of parts of models 

oroginally written in different simulators. 

The generation of a natural language description involves translation from one 

language to another. Traditionally research has been geared to translating one 

spoken language like German (source language) into another, say, English 

(the target language). This involves first translating the source language into 

a meaning representation, requiring thorough knowledge of the language and 

the following steps: 

1. tokenisation to analyse individual words into their components, with 

separation from punctuation. 

2. structural analysis to transform sequences of words into structures, 

rejecting those word sequences that breach the grammar rules of the 

language. 

3. discourse analysis to determine how the meaning of a sentence may be 

influenced by the previous sentence. 

4. pragmatic analysis to determine what is meant. For example "do you know 

what day it is" should be answered with a "particular day" and not simply 

"yes". 
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The main problem with language translation is that generation of a meaning 

representation requires world knowledge for discourse and pragmatic analysis, 

which is beyond the current limitations of Al. This can only be overcome by 

placing restrictions on the sentences that are to be analysed. After a meaning 

representation has been generated, the translation into the target language is 

less knowledge intensive (only structural knowledge of the target language is 

required), since a subset of grammatical rules can be used to generate a 

limited number of target language statements. 

For our purpose, which is translation of the information entered through the 

dialogues into a English language description, the analysis of the dialogue 

input is restricted and requires no structural, discourse, or pragmatic analysis. 

This is because the input is restricted to fixed elements based on domain 

knowledge. The meaning representation is the data in CRMS, and is 

generated from variables instantiated from the user inputs through dialogues. 

Then grammatical rules are used to translate the information in CRMS into 

an English language description 

For example a rule that transforms the inter-arrival information in CRMS for 

part 1 below 

1S 
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and generates the sentence: 

ha 

Similarly the following two rules generate sentences describing the lot sizes 

and first arrival times of parts. 

rule 17#: 
frame(creation 

=>1 

220 



5.5 Behavioural Knowledge 

Knowledge discussed so far is concerned with the structural elements of 

manufacturing systems, and has been the main focus of SFMS. The problem 

with including behavioural knowledge (apart from the process plan) is the lack 

of any standard, with different systems having different means of including 

such knowledge: for example, FACTOR/AIM has a number of different in-built 

rules with no means of tailoring, whilst WITNESS and PROMODEL have a 

number of different distinct elemental rules which can be used alone or 

combined to form more complex composite rules. 

However, behavioural knowledge for restricted domains can be included in a 

standard framework. In jobshop and batch production systems, for example a 

number of simple sequencing rules are commonly used to direct resource 

allocation and material flow; examples of such rules are First Come First 

Served (FCFS), Earliest Due Date (EDD), Shortest Processing Time (SPT), etc. 

In FACTOR/AIM these traditional priority or dispatching rules are directly 

available as options. 
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In other simulators , the priority rules have to be made up of elemental rules 

that the system provides. For example, consider the case where the contents of 

a buffer are to be sequenced for subsequent processing by a machine on the 

basis of the SPT rule, i. e according to the shortest or minimum processing 

time. This can be implemented in WITNESS using: attribute pull-this (for 

identifying part with minimum processing time); integer variable position 

(position in buffer); real variable min prot (minimum processing time); and 

real variable pro-tim (processing time). 

A function minprt used in the action on entering the buffer, shown below, can 

then be used for finding the part in the buffer with the minimum processing 

time. 

the buffer, detailed below, then pushes the part which has the maximum value 

(which is 1) of attribute pull-this to the connected machine. 
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This could be implemented in a equivalent PROMODEL representation using 

the IF-THEN rule in the operation column, as shown below in Mg 5.22. In 

the example below, at the location Buffer the action in the operation column 

checks to see if attribute At3 (processing times at ml) of part types pland p2 

against attribute At4 (minimum processing time at ml). The part type which 

has the minimum processing time is then sent to ml using the action SEND. 

Part Location Operation(Min) Output Next Location Condition Qty Move time(Min) 

Part 

pl Buffer If AT3=AT4 pl M1 If 10 0 

then SEND 1 

p1 TO Ml 

p2 Buffer If AT3=AT4 p2 Ml If 10 0 

then SEND 1 

pl TO Ml 

p1 ml 10 pl unload 0 1 0 

Fig 5.22 SPT rule in PROMODEL 
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5.6 LinkinE SMSF with Simulators 

The data model in the Standard Manufacturing Simulation Framework 

(SMSF) provides a standard representation for the development/maintenance 

of the definition of the main structural and process interaction (process route) 

elements of manufacturing systems, and their characteristics, usually found in 

generic simulators. It has also been shown that for relatively restrictive 

application domains, for example as envisaged in FACTOR/AIM, much of the 

commonly used priority and assignment rules for governing the behaviour of 

system elements can also be incorporated in such a standard data model; 

elemental rules found within simulators can also be. included, but not 

composite rules which are often created by the user from them. The 

application reference models contained in the translation module of SMSF can 

then be used to produce a basic or partial system model in the internal 

representations of target simulators. Hence, if it were to be adopted as the 

standard for all new and existing simulators, SMSF would greatly assist in the 

transfer of models between different simulators; only non-standard, mainly 

behavioural, elements would need to be added in the target simulator once the 

transfer was completed. 

For such a framework to work effectively, the standard data model should 

ideally be completely integrated within all simulators. The user interface in 

SMSF (or one similar to it) should become part of all new or existing 

simulators, and the (standard) internal data representation (CRMS) of the 
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framework should be maintained by them in parallel with their own. This 

would ensure that the definition of the common elements and their 

characteristics are consistently maintained in CRMS for subsequent 

translation, when necessary. The approach still provides the vendors of 

individual simulators plenty of scope for product differentiation. 

If, however, the framework is not truly integrated with a simulator, then the 

user must exercise strict discipline in ensuring that the common elements and 

their characteristics are defined, and maintained only through SMSF; 

otherwise consistency of definition between the two internal data 

representations will be lost. In such a situation, it may be helpful to have 

reverse engineering tools that would transfer model data from the target 

simulators to CRMS data. Development of such reverse engineering tools, 

however, poses a much more challenging problem since the internal data 

representation of the simulator would first need to be parsed to determine 

common system elements (and their characteristics) and their meanings, 

translation can then take the same rule based approach as already used in 

SFMS. If true standardisation is to be achieved, then vendors would be 

expected to incorporate that standard data model and an appropriate 

translator as part of their product, including the necessary reverse 

engineering tool with it. 
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Chapter 6. Conclusions 

The research effort furnished the following conclusions: 

1. The major motivation in simulation research has been concerned with 

improving the task of model specification; this has always been considered 

important both to reduce the considerable time and effort needed for it, and 

to widen its use by reducing the level of expertise required. 

2. Early research in simulation was concerned with the development of world 

views on which modelling approaches could be standardised. Three such 

world views emerged in the 1960's, namely event scheduling, activity 

scanning and process interaction. The activity scanning approach, from the 

perspective of the manufacturing domain, has a machine dominant view of 

the world (as does the event based approach), and is particularly well suited 

for modelling production lines (mass production systems). Activity scanning 

provides the best modular structure for model specification but 

computationally the approach is relatively inefficient. Process interaction, 

from the perspective of the manufacturing domain, has a material dominant 

view of the world, with process routes of parts as the central building block 

for specification of the real world system. The approach is best suited for 

manufacturing systems with a large variety of parts and routings, as is 

usually the case in intermittent production systems (batch production, 

jobshops), and the world view is similar to that which production engineers 

take of such systems. 
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3. The very earliest simulation systems were usually toolkits which provided 

users with a set of routines that are commonly required in simulation 

modelling. The toolkits use an event based view of the world and, although 

the model specification still had to be provided in 3' generation computer 

languages, the task of the modeller was eased by the availability of 

standard routines. Soon a number of new languages dedicated to simulation 

modelling became available. Most of these were based on the activity and 

process interaction based views of the world (e. g Hocus for the former, and 

GPPS for the latter), although a few were based on the event scheduling 

approach (SIMSCRIPT). 

4. The next major development in easing the task of simulation modelling 

came from the application of automatic programming techniques, which 

raised the specification level from the simulation language code to a higher 

more natural level using questionniares, dialogue interfaces, natural 

language interfaces, graphical interfaces, etc. Early systems were simply 

code generators while later research led to the development of automatic 

modelling systems which incorporated domain specific knowledge. The 

influence and actual use of Al tools and techniques in automatic simulation 

programming systems has been considerable, particularly in the later 

systems. This can be found in the three main areas: -improved interfaces for 

model specification (e. g in the use of dialogues and natural language; better 

schemes for representing simulation, domain and target language 

knowledge (e. g. use of frames, object oriented techniques); and use of 

knowledge based methods for translating the model specification into a 
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model in the target language. However, due to the logic intensive nature of 

simulation models their application does have limitations. The restriction 

lies not only in the domain of application for automatic modelling systems, 

but also in the limitations in modelling complex behaviour of real world 

systems; often the user would need to extend or modify the model created by 

enhancement to the code in the underlying simulation language or, 

alternatively, simply accept a certain loss of accuracy in the model. 

5. The development of simulators: 

a)meant early systems were highly restrictive in their application domain 

(e. g FMS), and were completely data-driven. This made them very easy to 

use, but totally inflexible in modelling behaviour that was not already 

incorporated within the particular system. The more recent generic 

manufacturing simulators, the subject matter of this research, extended 

the application domain to more general manufacturing systems. They 

removed many of the problems of modelling inflexibility not only by 

enhancing the inherent domain knowledge but also by providing the user 

with a built-in programming language to add complex behavioural 

aspects of the real world system, and/or the ability to drop out into an 

external computer language to do the same. 

b) was made possible by advances in computing techniques, as well as AI 

concepts of knowledge based systems. 

c) resulted in the incorporation of manufacturing domain knowledge in the 

specification language used to elicit knowledge of the real world system 

from the user and, thus, eased the task of model specification. 
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d) resulted in the use of modelling constructs to raise the specification level 

from that of abstract concepts of entities, queues and events, activities or 

processes to that of real world objects like machines, parts, labour and 

process routes. 

e) emphasised differences in their world view, with some exhibiting a 

machine based world view, others a material based view of the world, 

while some (e. g. WITNESS) have developed a hybrid view incorporating 

both alternatives; the particular world view determines whether they are 

naturally more suited to modelling certain manufacturing systems as 

discussed earlier. However, they also to some extent incorporate features 

from the activity and process interaction based approaches; for example 

the way interrupting activities (machine breakdowns, setup, etc) are 

modelled has a distinctive activity based view, while the time 

advancement mechanism usually is similar to that for the process 

interaction approach. 

6.1 Research achievements and contribution 

Many different manufacturing simulators are now commercially available, and 

their number is rapidly increasing. Lack of any common standard is posing a 

growing problem. It is difficult to move a model developed in one simulator to 

another, or to combine models developed in different systems. When such 

becomes necessary or is considered desirable, not only does a modeller have to 

learn the syntax and vocabulary of a new language, a considerable time and 
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effort would be needed in rewriting the entire model. Development of a 

standard is necessary to improve reusability of models written in different 

systems and is the first step, in the interchangability of such models; this was 

the motivation behind the research project. 

1. The research has lead to the development of a Standard Manufacturing 

Simulation Framework (SMSF). It has used automatic programming 

techniques, and advances in knowledge elicitation, representation and 

methods, and consists of a standard data model and a translation module 

for conversion of the specification data internal representations of target 

simulators. The framework has been developed in LPA Prolog. 

2. The standard data model has been developed based on an analysis of 

generic manufacturing simulators; in particular three popular systems 

(WITNESS, PROMODEL and FACTOR/AIM) were analysed in detail, 

which were specifically chosen for the differences in their modelling 

approach and data representation methods. The analysis revealed a high 

degree of commonality of modelling elements, and their characteristics, used 

in the simulators to represent the structural component of manufacturing 

simulators. 

3. The case of behavioural components defining interactions between 

resources, priority rules for allocation of resources, etc, is, however, very 

different; the simulators have widely different methods for expressing such 

logic. The only behavioural element for which a standard could be easily 

defined is a process route providing basic information on the interaction 
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between parts and resources (machines, transporters), and this has been 

included in the standard framework. Methods for inclusion in the 

framework of priority rules for allocation of resources to jobs (e. g. EDD, 

SPT, etc) however, have been indicated. These rules are directly available 

as options in FACTOR/AIM, but have to be translated into other simulators 

using the programming and elemental modelling constructs they provide. 

4. The standard data model uses a dialogue interface to elicit from the user the 

model specification data; this has been implemented using LPA Prolog's 

dialogue manager. A Common Representation for Manufacturing 

Simulators (CRMS) has been developed for internal model data 

representation. CRMS has been implemented using the frame AI knowledge 

representation scheme. It provides a highly modular and readable 

mechanism for storage of instantiated model, and is the basis for the 

exchange of model data. Each frame represents a common element 

(module), and the resulting modularity promotes compatibility with the 

internal model representations of manufacturing simulators. The standard 

data model is consistent in simulators which have a material dominant view 

of the world or a machine dominant view, or a hybrid view as in WITNESS. 

However, it captures more of the data for a simulator with a material 

dominant view or hybrid view through a process route. 

5. A production rule based method has been used to provide the translation 

methodology in the standard framework, SMSF, and this has been 

illustrated with the development of translators for the three popular 

simulators that have been studied in detail. Their developments are based 
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on an analysis of the structure of the internal model representation of the 

target simulators, determining the equivalent representation of frames of 

CRMS which are compatible with these structures, and the design of 

production rules which would transfer model data from CRMS to an 

equivalent internal model structure of the target simulators. The 

translators contain specifications of the format of the data structures of 

CRMS and the internal model representation of the generic simulators, 

together with a data transfer mechanism for mapping constructs 

syntactically from the former to the latter. The modularity of CRMS and its 

compatibility with the internal model representations of the generic 

manufacturing simulators made the design and coding of the rules within 

the translators relatively simple, concerned solely with data mapping; 

although the translators are application specific (i. e. dependent on the 

target simulator, the methodology used is common and generally 

applicable). 

6. The research has addressed the real problem of transferring model data 

between generic manufacturing simulators. SMSF provides a first step 

towards the development of standards in the field, and the structural 

integration of model data of dissimilar simulators. The maintenance of a 

minimum model specification through the standard data model will reduce 

substantially the effort needed in transferring a simulation model from one 

simulator to another. 
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If the standards that have been developed are accepted by the vendors and 

users of simulators, there are two ways for application of the framework. 

Ideally it would be integrated by the vendors in their systems, with the 

standard data model an integral part of the model specification language and 

internal model data representation; this would ensure automatic consistency 

of data. Any new simulator that is developed should use the standard data 

model as the blue print. There will still be plenty of scope for product 

differentiation through enhancements to modelling capability, the method 

offered for representing behavioural aspects of the real world system, the way 

the simulation executive works, and the reports that are generated. The 

alternative method would be to maintain the standard data model in parallel 

with that of the simulator that is currently in use by the model developers. In 

such cases, strict discipline would be required to ensure that the common 

modelling elements and their common characteristics are maintained through 

the standard data model, as otherwise consistency of data between the two 

systems would be lost. 

6.2 Limitations of framework. 

The limitations of the framework are: 

1. It only covers only the structural aspects of manufacturing systems with the 

only allowance for the behavioral aspects being the process plan. 
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2. The translators only generate partial WITNESS, PROMODEL and 

FACTOR/AIM models. Although a sufficient number of rules for each 

translator have been written to provide a basis for their completion. 

6.3 Further Work 

A number of suggestions for further work and enhancements to the standard 

framework have been made in the thesis, and three areas need special 

mention. 

1. Analysis of other simulators. Only three simulators have been analysed 

in-depth in the study, although others have been considered by studying 

their brochures and published literature. A more in-depth analysis of other 

manufacturing simulators, e. g. XCELL+, SIMFACTORY, ARENA, MODEL 

MASTER, TAYLOR II, etc, would help to further validate the standards 

that have been developed (and their refinement, if necessary). Translators 

for them could also be developed. 

2. Greater analysis and inclusion of behavioural elements. Currently the 

standard framework includes very little representation of behavioural 

elements of a real world system and, hence, is only capable of producing 

partial models. Indications, however, have been provided on how priority 

rules common used for assignment of resources (e. g. EDD, SPT). Greater 

analysis of such behavioural elements would be needed. This would have 

two great advantages. First, this should mean that fully working models 
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would be produced during translation (which would normally still require 

enhancements or modifications). Secondly, in some cases a complete 

automatic translation may be possible, e. g. in the case of simple models, and 

models in very specific domains (batch production, jobshops which use 

standard priority rules as found in FACTOR/AIM for instance). 

3. Development of a reverse engineering tool. As already discussed, if the 

standard data model is not fully integrated with the specification language 

and internal data representation of manufacturing simulators, then strict 

discipline is required to maintain consistency of data between the systems. 

In such cases, the availability of a reverse engineering tool that would 

translate the data from the internal representation of a simulator to that of 

the standard framework would be of great benefit. Development of such 

reverse engineering tools would require careful formalised parsing of the 

internal data representations of the simulators and analyses of their 

meaning. This is a considerable research challenge but, if successful, it 

would close the loop in the framework for model translation and 

interchangability. 
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Appendix A WITNESS Detail Forms, PROMODEL Modules 
and FACTOIUAIM Modelling Editors 

The WITNESS detail forms, PROMODEL modules and the FACTOR/AIM 

modelling editors are given in this section and are referenced from chapter 4 

section 4.4. 
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Fig 10 WITNESS "Crack loading Detail Form 
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CONVEYOR SPECIFICATIONS 
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load ft(m) 
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Fig 15 PROMODEL Conveyor Specifications Sub-module 
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FiE 17 PROMODEL Conveyor Transfer Logic Sub-module 
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Fig, 18 PROMODEL Transporter specification module 
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Fig 23 Move-between Jobsteg Editor 

Fig 24 FACTOWAIM Pool Editor 
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Fig 25 FACTOWAIM Machine Editor 

I'iý 26 TACTOR/AIM Breakdown Editor 
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Fig 30 FACTOR/AIM Transporter System Editor 
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Fie 33 FACTOR/AIM Transporter Segment Editor 

Fie 34 FACTOR/AIAI Multi-Capacity Operator Editor 
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Appendix B. The Remainder of CRMS Frames 

This appendix contains the remainder of the frames of the CRMS, other than 

the one explained in chapter 4. 

1 The Buffer Frame of CRMS 

The frame for representing the buffer element has the format. 

frame(buffer, BUFFER NO, val, VALUE) 

The slots to represent the buffer element's sub-elements are described below. 

1.1 The slot for type of buffer 

This slot is used to specify whether a buffer is attached to a machine. For 

example buffer 1 would be specified as a WIP buffer as: 

frame(buffer; l', type, val, 'wip') 

A machine attached buffer would be specified as inputlouput. For example 

buffer 2 could be specified as: 

frame(buffer, '2', type, val, 'input/ouput') 
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1.2 The slot for capacity of buffer 

In CRMS the capacity of a buffer is represented in the capacity slot as: 

frame(buffer, 'l', capacity, '10') 

1.3 The slot for buffer delay 

In CRMS the buffer frame entry for buffer bl, which stores parts for 5 

minutes is specified in the delay slot as: 

frame(buffer, '1', delay, '5') 

2 Conveyors Frame 

This frame has the format: 

frame(conveyor, CONVEYOR NO, val, VALUE) 

The slots that are used to represent a conveyor's sub-elements are discussed 

below. 
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2.1 The slot for type of conveyor 

The type of conveyor `1' would be defined in CRMS in the frame conveyor as: 

frame(conveyor, 'l', type val, A or T) 

where CONVEYOR_NO=1, SLOT NAME=A denotes an accumulating 

conveyor and Ta transport conveyor. 

2.2 The slot for larEest part that can be placed on conveyor 

The maximum part length of conveyor `1' is defined in CRMS in the frame 

conveyor as: 

frame(conveyor, 'l', part length, val, '15') 

where SLOT NAME=part length. 

2.3 The slot for maximum capacity of conveyor 

The maximum capacity (7 in the example below) of conveyor ̀ 1' is defined in 

CRMS in the frame conveyor as: 

frame(conveyor; l', max_capacity, val, '7') 
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where SLOT-NAME=max-capacity. 

2.4 The slot for convenor speed 

The speed of conveyor `1' is defined in CRMS in the frame conveyor as: 

frame(conveyor, 'l', cycle_time, val, '1') 

where SLOT-NAME=cycle-time. 

2.5 The slot for conveyer to machine connections 

These slots define the connections of conveyors with machines and are found 

in the CRMS frame process-seq. For example if the processing route of part 1 

is represented in CRMS as: 

frame(process_seq, 'l', O, load / unload, val, '1') 
frame(process_seq, ' 1', 1, machine_no, val, ' 1') 
frame(process_seq, 'l', 1, conveyor no, val, 'l') 
frame(process_seq, 'l', 1, proc time, val, '3') 
frame(process_seq, 'l', 1, setup time, val, '4') 
frame(process_seq, '1', 2, machine_no, val, '2') 
frame(process_seq, '1', 2, conveyor no, val, '2') 
frame(process_seq, '1', 2, proc time, val, '3') 
frame(process_seq, ' 1', 2, s etup_time, val, '4') 
frame(process_seq, '1', 3, machine_no, val, '3') 
frame(process_seq, '1', 3, conveyor no, val, '2') 
frame(process_seq, '1', 3, proc time, val, '1') 
frame(process_seq, '1', 3, setup_time, val, '4') 
frame(process_seq, ' 1', 4, load/unload, val, ' 1') 
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frame(process_seq, 'l', 1, conveyor no, val, 'l') 

it means that machine ml is connected to conveyor cl, machine m2 to conveyor 

c2, machine m3 to conveyor c3 and the load/unload station to conveyor cl. 

3. Vehicles Frame 

This frame has the format: 

frame(Vehicle, VEHICLE_NO, val, VALUE) 

The slots that are used to represent a vehicle's sub-elements are discussed 

below. 

3.1 The slot for maximum number a vehicle can carry 

In CRMS the maximum number (3 in example below) a vehicle (1 in the 

example) can carry is represented in the frame vehicle, using the capacity 

slot as: 

frame(vehicle, '1', capacity, val, 3) 

Where VEHICLE_NO=1 and SLOT_NAME=capacity. 
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3.2 The slots for vehicle speed when it is loaded and unloaded. 

This is represented in the frame vehicle, via the load speed and 

unload speed slots as: 

frame(vehicle, '2', load_speed, val, 10) 
frame(vehicle, '2', unload_speed, val, 7) 

Here VEHICLE_NO=2 has SLOT NAME=1oad_speed and unload_speed to 

represent its loaded (10 in example) and unloaded speeds (7 in example). 

3.3 The slot fors vehicle acceleration and deceleration 

The acceleration and deceleration of a vehicle is represented in the frame 

vehicle, via the accel and decel slots as: 

frame(vehicle, ' l', accel, val, ' 10') 
frame(vehicle, 'l', deccel, val, '7') 

Here VEHICLE_NO=2 has SLOT NAME=acc and decel to represent the 

acceleration (10 in example) and deceleration (7 in example). 
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3.4 The slot for start position of a transporter 

This is represented in CRMS in the frame vehicle, via the start slot as: 

frame(vehicle, 'l', start, val, '10') 

Here VEHICLE_NO=1 has SLOT_NAME=start to represent its start position 

(track 10 in example). 

3.5 The slot for pickup time 

This is represented in CRMS in the frame vehicle, via the pickup slot as: 

frame(vehicle, 'l', pickup, val, '10') 

Here VEHICLE_NO=1 has SLOT_NAME=pickup to represent its pickup time 

(10 in example). 

3.6 The slot for deposit time 

This is represented in CRMS in the frame vehicle, via the deposit slot as: 

frame(vehicle, 'l', deposit, val, '10') 
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Here VEHICLE_NO=1 has SLOT NAME=deposit to represent its deposit time 

(10 in example). 

4. Track Frame 

This frame has the format: 

frame(track, TR. ACK NO, val, VALUE) 

The slots that are used to represent a track's sub-elements are discussed 

below. 

4.1 The slot for track to track connection 

The connect to slot identifies which tracks are connected to which. For 

example if we wished to specify that track 1 was connected to track 2, in 

CRMS this would be represented in the frame vehicle as: 

frame(track, 'l', connect_to, val, '2') 

Here TRACK N0=1 has SLOT NAME=connect to signify track 1 is connected 

to track 2. 
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4.2 The slot for length of the track 

In CRMS the length of two connecting tracks trl and tr2 would be defined in 

the frame track via the length slot as: 

frame(track, 'l', length, val, '10') 
frame(track, '2', length, val, '7') 

Here TRACK NO=1 has SLOT-NAME=length (10 in example), and 

TRACK NO=2 has SLOT NAME=length (7 in example). 

4.3 The slot for maximum sueed 

In CRMS the maximum speed a vehicle can travel on a track is represented in 

the frame track as: 

frame(track, 'l', max speed, val, '10') 

Here TRACK 
-N0=1 

has SLOT NAME=max_speed to represent its maximum 

speed (10 in example). 
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4.4 The slot for track to machine connections 

In CRMS the connection of tracks to machine would be specified in the 

process_seq frame using the load-track and unload-track slots. For 

example 

frame(process_seq, '1', 1, machine no, val, '3') 
frame(process_seq, 'l', 1, load_track, val, 'l') 
frame(process_seq, 'l', l, unload_track , val, '3') 
frame(process_seq, '1', 2, machine_no, val, '4') 
frame(process_seq, '1', 2, load_track, val, '3') 
frame(process_seq, '1', 2, unload_track , val, '5') 

signifies that track 3 is connected to machine 3 and track 5 is connected to 

machine 4. 

where 

" PART NO=1 
" VISIT NO=1 and 2 
" SLOT NAME=machine_no, load-track , unload-track , machine_no, 

load-track or unload-track in turn. 

5 Manpower Frame 

This frame has the format: 

frame(manpower, TRACK NO, val, VALUE) 
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The slots that are used to represent the sub-elements of labour are discussed 

below. 

5.1 The slot for manpower quantity 

The quantity of a certain type of manpower would in CRMS be represented as 

an entry in quantity slot: 

frame(manpower, quantity, val, '5') 

where SLOT NAME=quantity (5 in example). 

5.2 The slot for manpower assiEnment 

If man number `1' is required for machine `1' to operate this would be defined 

in CRMS in the frame machine as: 

frame(machine; l', lab for cyc, val; 1') 

Here MACHINE_NO= 1 and SLOT_NAME=lab for cyc. 

The manpower required for machine ̀ 1' to setup would be defined in CRMS in 

the frame machine as: 

frame(machine, 'l', lab_for setup, val, '1') 
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Here MACHINE NO= 1 has SLOT NAME=lab for setup for labour required 

to setup (man 1 in above example). 
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Appendix C Model Construction Rules 

This appendix comprises WITNESS, PROMODEL and FACTOR/AIM part and machine 

modelling rules and their explanation. They provide additional explanation of the operation 

of the translation system. 

1 Witness model contruction rules 

1.1. WITNESS Part modelling rules 

The first rule for modelling a part, as an example, is used to define the part. The rule has the 

form 

rule 1#: 

I : frame(creation_info, A, Iot_size, val, B) I 

The portion of CRMS that triggers it is: 

frame(creation_info, l , lot_size, val, 10) 

which would generate a part definition: 
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PART: pl, Variablc attributes; 

The rule for transferring the data characteristics of parts into a WITNESS list file is: 

rule I#: 
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The left hand side of this rule is matched against CRMS data of the form shown below, 

which in this case is the data characteristics of part 1: 

me(creation-in fo, ' 1', Iot_size,, 

me(creation_info, ' 1', first_arr_ 

me(creation_info, ' I', max_arr, 
me(creation_. info, ' I', inter_arr_ 

me(crcation_info, ' 1', pl, val, 'I 
me(creation_info, ' I', p2, '10'); 

me(creation_info, ' I ', p3 , 
'1')) 

The rule includes a number of right hand side actions in the form of Prolog 

predicates, which manipulate and transfer data from CRMS, via the Prolog 

clause store, into the list file. These user defined actions have the advantage 

of limiting the number of rules required for transformation, and only a single 

rule was required for transferring part data. 

For the above part detail rule only two user written predicates are needed write_dist_3 and 

route 1: 

" write_dist_3 is used to test and write a probability distributions and its characteristics. It 

has 15 different clauses, one for each distribution The one for the IUNIFORM 

distribution tests to see if E equals integer_uniform_diistribution (tests to see if the inter- 

arrival time distribution is an integer uniform) and, if it is, it proceeds to extract from the 

Prolog clause store its parameters and asserts them into the inter-arrival time statement 

of the part detail in the list file. 
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The above action tests to see if E= integer-uniform-distribution is true. If it is then X and Y 

are instantiated to the part's inter-arrival time parameters pl and p2. It then proceeds to 

write IUNIFORM followed by the parameters pl and p2 as part of the inter--arrival time 

statement of part 1. 

" route_I given below generates, in the list file, the processing sequence of a part from 

data in CRMS of the form: 

The right hand side action that transfers this information into the part route section of a part 

details in the WITNESS list file: 
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Aj: - 
try_point, A, 

_, 
load / un 

: t(fact(frarn c(cntry_point, A, 
_, 

li 
('PART ROUTE: STAGE 1: 1o, 
(B), 

: tall(stagc(X)). 
l(stage( I)), 
rout_end(A); 

It includes user written predicates test_rout_end(A) and exit_point(A), where 

test_rout end I retrieves the machines visited and conveyors used to get the part to the 

machines. Since the part may get to a machine via a number of conveyors, the 

testend-con-1 predicate is used to include all the conveyors in the route up to the last one 

which delivers the part to the machine. 

test_rout_end(A): - 
retract(fact(frame(process_seq, A, B, machine_. no, val, C 

retract(fact(frame(process_seq, A, B, conveyor_no, val, C 

retract(fact(framc(proccss scq, A, B, proc_time, val, E))) 
rctract(fact(framc(pruccss 

_s c(I, A, B, sctup_time, val, F)); 
inc__stage, 

stagc(W), 
nl, 
write(' STAGE '), 
write(W)" "C 
writc(': m'), 
writc(C), writc('; ' )ol, 
write(' R_SETUP: '), 
write(f), write('; ' 1, %write setup time E 

write(' R_CYCLE: '), 

write(E), write('; '), %write cycle time F 
test_rout_end(A). % redo and if itcarnt retrive any frames 

for part A control is returned to predicate route above 
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The predicate exit-point-1 adds the unload station and the conveyor(s) for transporting the 

part there. 

exit_point(A): - 
fact(frame(exit_point, A, 

_, 
Ioad/unload, val, C)), % retrieve exit point of part A 

fact(frame(proccss_sey, A, B, conveyor__no, val, D)), % retrieve conveyor(s) for getting 
there 

inc_stage, % increment stage 
nl, 
write(' STAGE'. ), 
stage(W). 
write(W), 
writc(': load'), 

write(C), 
write(' ; ')gl, 

write(' 
write(' 

R_SETUP: O; ')pI, 
R_CYCLE: O; '), 

stage, 
nl, 
write(' STAGE '), 

stage(X), 
write(X), 
write(. ': SH IP; ')pl, 

write(' 
write(' 

R_SETUP: O; '), nl, 
R_CYCI. E: O; '). 

retrieve current st: 
% write stage «V 

This transformation of CRMS data, shown above would create a part detail like: 

Pl 

Name o1' hart: 1) I; 
Type: Variable attributes; 
Group number: 1; 
Maximum arrivals: 2; 
Inter arrival time: IUNIFORM(1,10,1); 
First arrival at: 1.0; 
Lot size: 1; 
Output rule: PUSH to ROUTE; 
Part route: STAGE 1: Ioad/unloadl; 

R_SETUP : 0; 
R_CYCLE : 0; 

STAGE 2: conveyorl @0; 
R_SETUP : 0; 
R_CYCLE : 0; 
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STAGE 3: ml; 
R_SETUP : 4; 
R_CYCLE: 3; 

STAGE 4: convevor2Cý0; 
RSETUP: 0; 
R_CYCLE : U; 

STAGE 5: m2; 
R_SETUP : 4; 
R_CYCLE : 3; 

STAGE 6: conveyor3C`U; 
RSETUP: 0; 
R_CYCLE : 0; 

STAGE 7 m4; 
R_SETUP : 4; 
R_CYCLE : 3; 

STAGE 8: cunveyor40>U; 
R__SETUP : 0; 
R_CYCLE:; 

STAGE 9: load/unload2; 
R_SETUP : 0; 
R_CYCLE : 0; 

End 
Reporting: Yes; 
Contains fluids: No; 
SHift: Undefined; 

ENDpl 

1.2 WITNESS Machine Modelling Rules 

The application of rule I below generates the machine definition. 

_> 

(rctract(all), 
tell(modcl. lst'), 
write(NACHINE: m'), 
writc(A), 
write(', '), 

writc(C), 
write(', '), 

write(B), 
write(', '), 

e/ %'rite MACHINE: m to denote 
`7cwrite machine number 

9%write quantity of particular machine 

`7e "rite machine whether single, assembly or production 
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write(D), %write input buffer size 

nil. 

The application rule 2 below generates the machine detail. 

rule 2#: 
jframe(machine 

_inf(ý, 
A, typc, val, 'I'), 

frame(machinc_ info, A, quanuty, val, B), 
frame(machine_ inio, A, Iah_pnority, val, C), 
frame(machine_ inf'o, A, lab_I'or_rep, val, E), 
frame (m ac hi tie- in f o, A, la b_fo r_c yc, val, F), 
frame(machine__ info, A, breakdown_type, val, M), 
frame(machine_ infu, A, setup_typc, val, H), 
frame(machine_ infu, A, in_hul'f ier, val, I) 

lretract(all), 
tell( modcl. lst' ), 
write('m'), %write m to denote in 
write(A), %write machine numi 
nl, nl, 
write('NA\'1I; 0 1'Iv1ACI IINE. nm'), %write machine title 

write(A), %write machine nunit 
write('; ')gl, 

writc('QUANTI' I`Y: '), 

writc(B), %write machine quani 
writc('; ')pl, 
write('TYPE: '), 
mach_type(A, T), t7 action for writing m 
nl, 
writc('PRIORITY: undefincd 
write('LABOR: '), nl, 
write(' Repair: man'), 
write(E), 
write('; ') ßi1, 
write(' Pre-empt level: None; '), nl, 
write('END'), nl, 
write('LABOR: '), nl, 
write(' Cycle: man'), writc(F), write('; ')nl, 

write(' Pre-empt level: Nonc; '), nl, 
write('END'), nl, 
write('DISCRETE LINKS: '), nl, 
write(' Fill: Nonc'), n1, 
write('END'), nl, 
write('DISCRETE LINKS: '), nl, 
write(' Empty: None'), nl, 
writc('END'), nl, 

%write labour 
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The rule contains user written actions or predicates machine-type-2, Priority 
_2, setup_2 

and breakdown 2. Where: 

" There are three clauses for the setup 2. The one for a setup after a part change is : 

the others, near identical in form, are for when there is no setup and when there is a setup 

after a number of operations. 

" Their are four clauses for the breakdown-2 predicate, where the one for a breakdown 

after a number of operations is : 

brcakdown(A, G): -G='4 After a number of operations'->%check to see breakdown after 
writc('BREAKDOWNS: Operations; 'b1, number ops 
fact(frame(machine__info,, nofopcrations, val. ß )). °ioretrieve frames with breakdown 
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fact(frame(machine_info, A, rep_time, val, C)), 
fact(frame(machine_info, A, scrap_partsa1. D)), 
write('*Ops between breakdown: '). 
writc(B), write('; ')p1. 

write('* Repair time: '. ), 
write(C), write('; ')Pl, 

write('* Scrap part: '), wwritc(D), wwwritc('; 'i)1, 

write('* Setup on repair: No; ')pl. 

retract(fact(frame(machine_info, A, no_operations, val, B))), 

retract(fact(frame(machine_info. A, rep_time, val. C))). 

re tract(faet(frame(machine_info, A, scrap_part, val, D))). 

the others are for when there is no breakdown, a breakdown according to the time a 

machine is available or a breakdown according to the time a machine is busy. 

" There are 6 machine -type clauses, one for each type of machine, where for the batch 

machines it is: 

for the Batch machine it writes Batch followed by Batch min and Batch max, together with 

the respective parameters. The other clauses are when the machines are either assembly or 

production 
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" The labour-2 predicate has 3 clause one for cycle labour or repair or both. The one for 

repair is: 

2 PROMODEL Model Construction Rules 

2.1 PROMOI)EI, Part modelling rules 

The first step in generating the routing table is to generate the column headings. This was 

achieved by the rule below: 

routing_table_header: - 
tcIl(Pro model. mod'), %Setup output streai 
writing 
write('ROUTING' )ä1, nl, 
write(' Output New 

write('Part Location Operation (min) part lo 

write('---- -------- --------------- ---- 
load_files(' M: APR OC SEQ. PL', (if(truclciad_type(sou 
(go; nl). 

The write predicates generate the following column headings: 

Output Next Condi- Move') 
Part Location Operation (min) part location tion Qty time (min) 

---- ---------- ------------------- ---- --------- ------- ---- ----------- 

The portion of the CRMS data which is transformed into the routing table is of the form: 
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-t(frame(entry_point, ' 1', 
_, 

load / unload, val, ' 1')). 
a(frame(pr(cess 

_seq, 
' 1', I, machine_no, val, ' 1')). 

t(frame(process 
_seq, 

' 1', l, conveyor_no, val, [' 1', '2', 3'0). 
t(frame(process 

_seq, 
' 1', I , proc_time, val. '3')). 

t(frame (process 
_scq, 

' 1', l 
, sctup_time, val, ' 4' )). 

t(frame(process 
_seq. 

' 1', 2, machine_no, val, '2')). 
t(frame(process 

_seq, 
' I', 2, conveyor_no, val, 1'4', '5', '6'])). 

t(frame(process_ seq, ' 1 ', 2, proc_time, val, '3')). 
t(frame(process_ scq, ' I', 2, setup_time, val, '4')). 
t(frame(process_ seq, ' 1', 3, machine_no, val, '3')). 
t(frame(process_ seq, ' I', 3, conveyor_no, val, ('7', '8', '9'1)). 
t(frame(process_ seq, ' 1', 3, proc_time, val, '3')). 
t(frame (process_ seq, ' 1', 3, setup_time. val, '4')). 
t(frame(exit_point, ' 1', 

_, 
load / unload, val, ' 1')). 

t(frame(process_ scq, ' I', 2, conveyor_no, val, [' 10', ' 11', ' 12' 

The rule for transforming this portion of CRMS data into the routing table is of the form: 

(frame(entry 
_point, 

A, 
_, 

load/unload, val, B), 
frame(process_sey, A, N, machine_no, val, C), 
frame(process_scq, A, N, cunvcyor_no, val, D]), 
frame(exit_po1nt, A, 

_, 
Ioad/unload, va1, E)] 

[retract(all), %retracts all data that matches LHS to prevent continuou! Yectüon of r 
tell ('prom odd, mod'), %setups file promodelmod for output 
write('p'), %s rite p to denote part in part column 
write(A), %write part number 
write(' '), 
write('load/unload'), %write load/unload in location column 
writc(B), %write load/unload station 
write(' 0'), %write 0 in operation column 
write(' '), 

write('p'), %write p to denote part in output part colurr 
writc(A), %write part number 
write(' 'j 

write('m'), %write in to denote machine in next location column 
write(C), %write first machine visit after entry 
write(' 01 conveyor), % write rest of first line if routing table 
nl, 
route(A), %action that writes the rest of the route of pa 
nl, see below for explanation 
write('p'), %write p to denote part in part column 
write(A), %write part number 
write(' '), 
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The rule writes load/unload station signifying the entry point of part, executes the user 

written action route_I and writes the last line containing the exit point for the part. The 

only user written action isroute_I which has the structure: 

route(A): - 
fact (frame (process_sey, A, N, machine_no, val, C)), %access the frames of 

number N. machine nut 
fact(frame(process_scy, A, N, conveyor_nu, val, D)), conveyor number to g 
fact(frame(process_sey, A, N, proc_timr, val, E)), and the processing tin 

write('p'), % write p to denote part under part i 
writc(N), %w rite part number 
write(`.... '), 

write('m'), %write in to denote machine under location 

write(C), write machine number 
writC '........ ' 

write(E), %write processing time tinder operation 
write(`.... '), 

writc('p'), %write p to denote part under output part colui 
write(N), %write part number 
retract(fact(frame(process_seq, A, N. machine__no, val, C))), %, retract current me 
fact(frame(process 

_scy, 
A, N, machinc no, va1, C)) °c, access next machir 

writc('m'), %write m to denote machine under next location colon 
write(C), %% write machine number 
write('......... 
write(' 01 CONVEYOR'), nl, % signifies conveyor system used for ti 
route_cnd(A). %test for route end 
route_end(A): - 
frame(process_sey, A, N, machineno, val, C), %see if frame entry exists for next 
route(A). % if yes redo action route(A) otherwise tl 

complete route of part A has been written 

t 

This rule would generate the following entries in the routing table in the case of the above 

data 
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Part Location 

p1 load/unload 1 
pl ml 
p1 m2 
pl m3 
p1 load/unload l 

( )utput 
Operation (min) part 

0 p1 
3 p1 
3 p1 
3 pl 
0 p1 

\cxt ( ndi- Move 
location tion Qty time (min) 

-------- 
ml 

-------- 
0 

---- ---------- 
1 conveyor 

m2 0 1 conveyor 
m3 0 1 conveyor 
load/unload 10 1 conveyor 
Exit 0 1 conveyor 

As with the routing table the first step in writing the part scheduling table is to generate the 

column headings, and is done in way similar to that for the routing table. 

The portion of CRMS data which is translated into the part scheduling table is of the form: 

[frame(entry_point, A, load I unload, val, 1), 
frame ((-reation_info, l, lot_size, val, 2) 
frame(creation_info, l, firs(_arr_tirn, val, 3) 
framc(creation_info, l jnax_arr, %, al, 4) 
fact(frame(crcation_info, ' J', inter_an"_tint, val, 5)). 

The rule for doing this is of the form: 

[rule 4#: 
framc(cntry_po int, A, load / unload, val, A), 
frame(creation_ info, A, lot_sizc, val, B), 
frame (creation_ info, A, inter_arr_time, val, C), 
frame(creation_ info, A, max_arr, val, D), 
frame(creation_ info, A, start_ time, val, E)] 

[retract(all), 
UUiikPiuwuuei. mou ), 
write('P'), %write P to denote part under Part column 
write(A), %write part number 
write(' '), 

write('Ioad/unload'), %write load/unload to denote part under location column 
write(F), %write load/unload station number 
write(' '), 
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...................................... . write(' 
write(C), n! J. %%vrite inter-arrival time 

The CRMS data shown above would be translated into the part scheduling module as: 

Qty per No. of Start Arrival 
Part Location arrival arrivals (min) frequency (min) 

----- ---------- ------- 
P1 load/unloadl 2 

-------- 
4 

----- 
3 

--------------- 
5 

2.2 PROMODEL 'Machine Modelling Rules 

In PROMODEL machines are defined in the capacities table. The column headings for the 

capacities table are generated using the rule: 

capacities: - 

[frame (machine_info, X, yuantity, val, A)I 
=> 

[retract(all), 
tell (promodel. mod'), 
write('m'), %write m to denote machine 
wri te(X), write(' '), %write machine number 
write(A), nl). %write machine quantity 

Unlike in WITNESS, where a single rule is used to generate the machine characteristics, 

two rules are required in PROMODEL one for its definition within the capacities table and 

other for its breakdown and setup information within the downtimes table. Since the latter 
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rule has a similar structure to the rule for generating the capacities table entries its 

explanation is omitted for the purposes of conciseness. 

3. FACTOR/AIM Model Construction Rules 

3.1 FACTOR/A 111 Part Modelling Rules 

The first in generating the DEMANDnnn table is to generate the column headings, and this 

is created in a way similar to that for PROMODEL. 

frame(creation_i n fo, l Jot size, val, 2) 
frame (creation_info.!, first_arr_tim, val, 3) 
frame(creation_info, 1, max_arr, val, 4) 
fact(frame(creation_info, ' I'. intcr_arr_tim, val, 5)). 

The rule for doing this is: 

3me(creation 
_info, 

A, lot_ size, val, B), 

mc(creation_ info, A, intcr 
_arr_timc, val, C), 

me(creation_ info, A, max _arr, val, D), 
me(creation_ inft), A, start _time, val, E)] 

^> 
Lract(all), 
('dcmand. tah'), 
te('P'), %write P to denote 
tc(A), %I%write part numb 
te(' '), 

te(' '), 
te(E), %write first arriv.: 
te(' '), 

tc(C), %write inter-arriv 
te(' ') 
te(B), %write load size 
te(' ') 
te(D), nl]. %write ordersize 

The CRMS data shown above would be translated into the DEMANDnnn table as: 
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DEMAND 
------------- 
pl 

FIRSTARR IN I ERTINIE LOADSIZE ORDSIZE 

-------------- 
3 

---------------- 
5 

--------------- 
2 

------------- 
4 

The next stage is to specify the part route via the JOBSTEPnnn table. The table heading is 

generated in a similar way to that described before. 

this would result in the table heading: 

DEMAND JSID NEXTJSID RESIDI 

The CRMS entries which are transfered into the JOSTEPnnn table are of the form: 

fact (frame (entry-poi nt, ' 1', load / unload, val, ' 1')). 
fact(framc(prucess_seq, ' 1', l, machinc_no, val, ' I')). 
fact(frame(pr(--, cess_seq, ' 1', 2, machine_no, val, '2')). 
fact(frame(process_seq, ' I', 3, machine_no, val, '3')). 
fact(framc(cxit_point, ' 1', load / unload, val, ' l')). 

The rule for transfering this data into the JOBSTEPnnn is of the form: 

[frame(entry_point, A, 
_, 

load/unload, va1, B), 
frame(exit_point, A, 

_, 
Ioa(llunload, val, C)) 

[retract(all), %retracts all data that matches LHS to prevent continuous e: 
of rule 

tcl1(johstcp. tah' ), %set up jobtep. tab for output 
writc('p'), %write p to denote part in DEMAND cc 
writc(A), %write part number 
writc('jsl'), %write jsl for Ist step in JSID column 
write(' js2'), %write js2 for 2nd step in NEXTJSID c4 
write(' load/unload'), %write load/unload in RESIT column 
writc(B), %write load/unload station number of part enti 
n1, 
routc(A), %action for generating route of part A 
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te(' p') 
te(A), 
te(' 
te('js'), 
K) 
te(X), 
is, 

te(' ' ), 

{) 
tc(X ), 
te(' load/unload'), 

`(Ný rite p to denote part in 1)E11AND column 
"e write part number 

9 write js for current step in JSID column 
,% retrieve current jobstep number 
%write current jobstep number 
`ýýincrement current jobstep 

1%ö write js for last jobstep in NEXTJSID column 
`. ''c retrieve current jobstep number 
'42write current jobstep number 
%write load/unload in RES1D column 
`%o write load/unload part exit station number 

The built in predicate route that transfers the CRMS route data into the JOBSTEPnnn table 

is 

route(A): - 
fact(frame(process_sey, A, N, machine_no, vval, c 11, c access the frames of visit 

number N. 
ri te(' p' ), 
rite(A), 
rite(' '), 

rite(js'), 
(X) 
ri te(X), 
CJs, 
ri te(' '), 

ritc(js'), 
X) 

ritc(X), 
rite(' m'), 

ýi%write p to denote part in DEMAND column 
't, write part number 

%write js for current step in JSID column 
'. retrieve enrrent, jobstep number 

write current jobstep number 
`%iýincrement current jobstep 

`, owwrite js for last jobstep in NEXTJSIDcolumn 
`7cretrie e current jobstep number 
%write current jobstep number 
ý'Icwrite m to denote machine in RES1D column 
% write machine visit number 

act(frame(process-seq, A, N, machinc_no>, v, 

ute_end(A, N). 

% retract current machine 
%increment visit number 
%test for route end 

route_end(A, N): - 
framc(process__seq, A, N, machine_no, val, C), %see if frame entry exists for next eist 
route(A). % if yes redo action route(A) otherwise the 

complete route of part A has been written 
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This rule would result in the followingJOBSTEPnnn table: 

DEMAND JSID NEXTJSID RESIDI 

pl jsl js2 load/unloadI 
pl js2 js3 ml 
p1 js3 js4 m2 
p1 js4 js5 m3 
p1 js5 js6 load/unloadI 

3.2 FACTOR/AIM Machine Modeling Rules 

In FACTOR/AIM machines are defined in the RESRCnnn table. The column headings for 

the RESRCnnn table are generated using the rule: 

The rule for detailing a machine is : 

niber 
teC '), 
tel'niachine')] 

sh 

/i armen tYf ýl ýi 
ýýýrýA 

machine b 
x"esourc4 
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The breakdown information of a machine is specified in the RESBRKnnn table. The column 

headings for the RESBRKnnn table are generated using the rule: 

BRK. tab'), %Setup on 
SLUE BETED FRSTED 

-------- --------- 

The rule generating the RESBRKnnn table is of the form: 

rule 2#: 
[frame(machine_info, A, breakelown_type, val, 2 According to the time the machine is 
available'). 
frame(machine_info, A, first, val, B)). 
frame(machitie-in fo, A, rep-ti me, val, C)). 
frame(mac hine_info, A, down_interva1, val, D))] 

=> 
[retract(all), 
tx ll(RESBRK. tab'), %setup RLSBRK. tab as output file 
write('f>nshift'), %write onshift for type 
write(' 
writc(D), %write down interval 
write(' 

write(B), %write time of first break down 
write(' 

, vrite(C), %write repair time 
write(' 
urite('hreak'), %write break to denote breakdown 
vritc(A), nl, ¶ write breakdown number 
N17tc('m')lj1, %n write in to denote (machine 

vrite(A)] %write machine number 
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p radix D Running the system 

1. Run 386-PROLOG version 2.3 for windows. 

2. Loading the specification elicitation(CRMS) and the dialogue interface code. 

Consult file setup. pl by typing [setup] at the Prolog prompt ? -. This 

consults: the specification elicitation files specl. pl and spec2. pl; and the 

PDM dialogue files winboxl. pl, winbox2. pl, winbox3. pl and winbox4. pl. 

This also loads the forward chaining inference mechanism required for the 

model generation. In addition it also setups the output streams which will 

be used for writing the CRMS, WITNESS models, PROMODEL models and 

FACTOR/AIM models to file. 

3. Run the Dialogue system by typing the Prolog query run. This brings up 

the sequence of dialogues and writes the data entered to the file 

struc. pl(CRMS) 

4. To generate a WITNESS list file corresponding to the CRMS consult file 

modconrul. pl, which setups all output streams for writing to files and 

consults the files containing the WTNESS define and detail section rules. 

To generate the WITNESS model type the query go, which activates the 

forward chaining inference that matches the CRMS against the generation 

rules to generate the model. The generated model will be found in the file 

witness. ist 

5. To generate the PROMODEL models, FACTOR/AIM model and the English 

description consult the files promodegen. pl, factorgen. pl and langen. pl 

respectively. Again type the query go to start the generation. 
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