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 2 

Abstract 1 

 2 

The Richards equation has been widely used for simulating soil water movement. 3 

However, the take-up of agro-hydrological models using the basic theory of soil water 4 

flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is 5 

partly due to the difficulties in obtaining accurate values for soil hydraulic properties 6 

at a field scale. Here, we use an inverse technique to deduce the effective soil 7 

hydraulic properties, based on measuring the changes in the distribution of soil water 8 

with depth in a fallow field over a long period, subject to natural rainfall and 9 

evaporation using a robust micro Genetic Algorithm. A new optimized function was 10 

constructed from the soil water contents at different depths, and the soil water at field 11 

capacity. The deduced soil water retention curve was approximately parallel but 12 

higher than that derived from published pedo-tranfer functions for a given soil 13 

pressure head. The water contents calculated from the deduced soil hydraulic 14 

properties were in good agreement with the measured values. The reliability of the 15 

deduced soil hydraulic properties was tested in reproducing data measured from an 16 

independent experiment on the same soil cropped with leek. The calculation of root 17 

water uptake took account for both soil water potential and root density distribution. 18 

Results show that the predictions of soil water contents at various depths agree fairly 19 

well with the measurements, indicating that the inverse analysis is an effective and 20 

reliable approach to estimate soil hydraulic properties, and thus permits the simulation 21 

of soil water dynamics in both cropped and fallow soils in the field accurately. 22 

 23 

Key words: inverse analysis, soil hydraulic properties, Genetic Algorithm (GA), soil 24 

water dynamics, root water uptake. 25 



 3 

1. Introduction 1 

 2 

The prediction of soil water movement is a central feature of agro-hydrological 3 

models. However, the treatment of soil water dynamics in many of these models is 4 

often approximate as they do not rely on basic flow theory (Ritchie, 1998; Droogers et 5 

al., 2001; Zhang et al., 2007, 2009; Renaud et al., 2008; Pedersen et al., 2009; Rahn et 6 

al., 2009). Many adopt the cascade approaches for hydrological simulations. 7 

According to the reviews by Cannavo et al. (2008) and Ranatunga et al. (2008), a 8 

large proportion of crop nitrogen models (7 out of 16) and soil water models (13 out 9 

of 21) that have been widely applied in Australia employ the cascade approaches for 10 

soil water dynamics. Such models also include the newly developed AquaCrop model 11 

for irrigation scheduling developed by the FAO (Steduto et al., 2009; Raes et al., 12 

2009). Although the cascade approaches are simple and easy to implement, they do 13 

not satisfactorily simulate soil water movement at daily intervals (Gandolfi et al., 14 

2006), and so are less accurate in estimating evaporation and water uptake by crops.  15 

 16 

Over the last few decades not only has the basic theory of water movement in soil, i.e. 17 

the Richards’ equation, become generally accepted, but the modeling of soil water 18 

dynamics has progressed significantly through advances in mathematics and computer 19 

science. The numerical schemes such as the finite element method used for the 20 

solution to the basic equation are well developed (Šimůnek et al., 2008), and software 21 

such as HYDRUS is readily available for 1-D or multi-dimensional simulations 22 

(Šimůnek et al., 2005; 2006). In the simulations of soil water dynamics in the soil-23 

crop system, the models using the basic equation such as the SWAP model developed 24 

by Kroes et al. (2008) have also developed. A new simple and explicit algorithm for 25 



 4 

the basic equation has recently been proposed (Yang et al., 2009). Despite the 1 

progress made, the take-up of such theory based flow models for the practical uses is 2 

still low, largely because of difficulties in making satisfactory estimates of soil 3 

hydraulic properties at a field scale (Bastiaanssen et al., 2007). It is, therefore, 4 

important to devise reliable methods for estimating soil water properties for use in 5 

such flow based models. 6 

 7 

There are a number of ways to determine the soil hydraulic properties, including: 8 

direct measurements (Van Genuchten et al., 1991); estimation using pedo-transfer 9 

functions (PTFs) (Wösten et al., 1999; Hwang and Powers, 2003; Cresswell et al., 10 

2006); and inverse modeling techniques (Hopmans and Šimunek, 1999). Direct 11 

measurements are usually carried out under laboratory conditions, but they are time 12 

consuming and require complex measuring devices. Further, the measurements are 13 

made on small cores, suffering from the edge effects caused by water movement at the 14 

soil-container interface. PTFs methods, on the other hand, are based on soil texture 15 

and particle-size distribution data, and are easy to use. However, there are 16 

inconsistencies in the derived soil hydraulic properties between different models 17 

(Hwang and Powers, 2003). 18 

 19 

The third approach is to deduce the soil characteristics using inverse modeling 20 

techniques. Such techniques have proven promising to estimate the parameters 21 

required by physically based agro-hydrological models (Bastiaanssen et al., 2007), 22 

and have received enormous efforts in the last couple of decades. While many 23 

scientists (Nützmann et al., 1998; Finsterle and Faybishenko, 1999; Bohne and 24 

Salzmann, 2002; Bitterlich et al., 2004; Minasny and Field, 2005; Schmitz et al., 25 



 5 

2005) used the measured soil water content and soil pressure head data on small cores 1 

under laboratory conditions, which still suffers from the edge effects, others (Jhorar et 2 

al., 2002; Ines and Droogers, 2002; Sonnleitner et al., 2003; Ritter et al., 2003) 3 

attempted to infer soil hydraulic parameters from simulation models using data for 4 

cropped soils gathered in the field. However, the interpretation of data from cropped 5 

soils is strongly dependent on the way in which the selected model quantifies the root 6 

density distribution in the profile and the relationship between root water uptake and 7 

soil water availability. Due to the uncertainty of root density distribution and the lack 8 

of consistency between the results from two types of model, i.e. uptake without water 9 

stress compensation (Feddes et al., 1978; Šimunek et al., 1992) and with 10 

compensation (Li et al., 2001, 2006), questions are raised about the robustness of the 11 

deduced soil hydraulic properties. This suggests that a more reliable approach would 12 

be to use data from uncropped soils for the inverse analysis. Gómez et al. (2009) 13 

succeeded to identify the soil hydraulic conductivity by applying an inverse technique 14 

on data from a field drainage experiment. However, the work is unable to be directly 15 

applied for the water dynamics in the soil-crop system because of the lack of the 16 

relationship between soil water content and soil pressure head. In the area of 17 

developing new optimization algorithms for inferring soil hydraulic properties, 18 

research has also been active and fruitful (Huyer and Neumaier, 1999; Abbaspour et 19 

al., 2001; Schmitz et al., 2005).  20 

 21 

The principles behind estimating soil hydrulic parameters using an inverse modeling 22 

technique involve three different steps: determining the number of identified 23 

parameters, formulating the optimized function, and implementing an optimization 24 

algorithm. In general, the identified parameter number should be kept to the 25 



 6 

minimum. Thus, if the parameters can be determined with certainty in advance, they 1 

should be treated as known parameters. The selection of an effective optimization 2 

algorithm is important for solving the inverse problem. Although there are many 3 

traditional algorithms available (Rao, 1984; Hopmans and Šimunek, 1999), they are 4 

only able to find a localized optimum solution which is highly dependent on the initial 5 

estimates of the optimized parameters. Such algorithms are not directly applicable to 6 

the problem in this study. New algorithms have been proposed which facilitate a 7 

global search. These include evolutionary Genetic Algorithms (GAs) based on a 8 

natural selection rule (Holland, 1975; Goldberg, 1989; Carroll, 1999). The algorithm 9 

has been successfully applied in identifying soil water hydraulic properties (Ines and 10 

Droogers, 2002). 11 

 12 

Hopmans and Šimunek (1999) and Romano and Santini (1999) have stressed that 13 

careful consideration must be given to the construction of the optimized function, so 14 

that the inverse problem is properly posed. Whether it is successful in solving the 15 

inverse problem is largely dependent on how the optimized function is constructed. It 16 

has been widely reported to use soil water content data in the formulation of the 17 

optimized function. For example, Bohne and Salzmann (2002) and Ritter et al. (2003) 18 

used the mean squared residuals of soil water content between the measured and 19 

simulated data in the optimized function. To improve the identifiability of the inverse 20 

problem, the inclusion of information other than soil water content such as 21 

evapotranspiration has also been attempted (Ines and Droogers, 2002). However, the 22 

construction of such an optimized function was made possible only when the actual 23 

evapotranspiration was directly measured. In the field experiments, the measurement 24 

of actual evapotranspiration is difficult. Therefore, the incorporation of additional soil 25 
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characteristic information which can be easily measured in the optimized function 1 

should be sought to make the inverse problem better posed, and thus to increase the 2 

identifiability of the inverse problem and the uniqueness of the identified parameters.  3 

 4 

The objective of the study was therefore to evaluate the use of a new optimized 5 

function and an inverse simulation approach using a GA technique for estimating soil 6 

hydraulic properties at a field scale.  The new function was, for the first time, 7 

constructed from dynamic water distribution data down the soil profile from a 8 

‘calibration’ experiment in a fallow soil, and the soil water at field capacity. The 9 

reliability of the inferred soil water properties was then examined in predicting soil 10 

water dynamics in an independent ‘verification’ experiment carried out on a leek crop 11 

on the same site.  12 

 13 

2. Experiments 14 

 15 

Two experiments were carried out, both on a sandy loam of the Wick series 16 

(Whitfield, 1974) in Big Ground field at Wellesbourne, UK. One is used to deduce 17 

soil hydraulic properties from soil water contents at various depths under bare fallow 18 

conditions over time collected from an evaporation experiment (calibration 19 

experiment). The other is used to provide independent data for testing the validity of 20 

the inferred soil hydraulic properties by simulating water dynamics using a plant-soil 21 

model (verification experiment). 22 

 23 

The calibration experiment was conducted from 27 April (Day 117) to 21 November 24 

(Day 325) in 1971 (Burns, 1974). Physical properties of this soil are given in Table 1 25 



 8 

(after Burns, 1974). The profile consisted of fairly uniform soil to a depth of 25 cm 1 

and a slight increase in the sand content to the measured depth of 45 cm, with no 2 

significant cracks in the profile. Soil samples from 4 replicate plots were taken at 5 3 

cm increments to a depth of 45 cm (using a 2.54 cm internal diameter soil tube) at 4 

regular intervals throughout the experiment. Five cores were taken at random from 5 

each plot and the corresponding depth increments combined. Soil water contents in 6 

the samples were measured by drying at 105ºC for 24 h. In total 9 measurements of 7 

soil water content down the profile on Day 118, 131, 168, 189, 204, 229, 250, 278 and 8 

319 were taken during the experiment. Corresponding measurements of field capacity 9 

for the same soil were made on three replicate plots after applying excess irrigation 10 

and covering the soil with polythene sheeting for 48 h to prevent evaporation (Burns, 11 

1974). Daily values of rainfall and the climatic variables of minimum, mean and 12 

maximum air temperatures were recorded at the on-site weather station within 400 m 13 

of the experimental site. 14 

 15 

The verification experiment was carried out in the same area of the same field from 15 16 

April (Day 105) to 15 October (Day 284) 1973. The soil was cropped with leek (var. 17 

The Lyon), and was direct drilled at a row spacing of 55 cm on 15 April.  The 18 

experiment was arranged in a randomized block design with 3 replicate plots (each 10 19 

m x 1 m). All fertilizer, herbicide and pesticide applications were made according to 20 

conventional practice. No irrigation was applied to the plots once the crop was 21 

established. Two measurements of the distribution of roots, nitrogen, potassium, 22 

phosphate and soil water were made on 08 August (Day 220) and 03 September (Day 23 

246) 1973. Soil samples were taken on each date using a pinboard (with 5 cm pins 24 

arranged in a 5 cm by 5 cm matrix) which was driven into the vertical side of a newly 25 



 9 

dug pit located across a selected crop row (Goodman and Burns, 1975). On each 1 

occasion the board was positioned to take soil samples across the whole plant row 2 

(between the midpoints of successive rows) to a depth of 45 cm. It was then dug out 3 

of the soil, trimmed, and individual 5 x 5 x 5 cm samples removed for lab analysis. 4 

The measured root distribution and soil water related data was used in the current 5 

study to test the reliability of the reduced soil hydraulic properties. Daily 6 

measurements of the climatic variables were made at the on-site weather station as for 7 

the calibration experiment. 8 

 9 

3. Theory 10 

 11 

3.1. Description of the flow model 12 

 13 

3.1.1. Soil water flow 14 

 15 

In a 1-D situation, the Richards equation governing water flow in an isotropic variably 16 

saturated soil with a sink term is (Celia et al., 1990; Šimunek et al., 1992): 17 

 18 
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where t (d) is time, z (cm) is the vertical coordinate, K (cm d
-1

) is the soil hydraulic 21 

conductivity, h (cm) is the soil pressure head, and S (cm d
-1

) is the sink term, 22 

representing the volume of water extracted from a soil unit. 23 

 24 
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The soil hydraulic functions are defined according to van Genuchten (1980) and 1 

Mualem (1976): 2 

 3 
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where  is the relative saturation, s  and r  (cm
3
 cm

-3
) are the saturated and residual 8 

soil water contents,  (cm
-1

) and n are the shape parameters of the retention and 9 

conductivity functions, m=1-1/n, Ks (cm d
-1

) is the saturated hydraulic conductivity. 10 

 11 

3.1.2. Soil evaporation and crop transpiration 12 

 13 

Daily potential crop evapotranspiration is calculated using a FAO 56 crop coefficient 14 

method (Allen et al., 1998): 15 

 16 

0ETKET cc         (4) 17 

 18 

where ETc (mm d
-1

) is the daily potential evapotranspiration, Kc is the crop coefficient 19 

and ET0 (mm d
-1

) is the reference evapotranspiration, which is estimated directly at 20 

daily intervals using a Hargreaves method recommended by the FAO when the 21 

Penman-Monteith method cannot be applied due to lack of measured climatic 22 

information (Allen et al., 1998): 23 

 24 
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where Tmin, T and Tmax ( C) are the minimum, mean and maximum air temperature, 3 

and Ra (MJ m
-2

 d
-1

) is the total incoming extraterrestrial solar radiation which is 4 

expressed as (Allen et al, 1998): 5 

 6 
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 14 

where dr is the relative distance between the earth and the sun, J is the day number in 15 

the year,  (radian) is the solar declination,  (radian) is the latitude, and s is the 16 

sunset hour angle. 17 

 18 

The crop coefficient method partitions the Kc factor into two separate coefficients: 19 

 20 

ecbc KKK         (10) 21 

 22 
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where Kcb is the basal crop coefficient for transpiration, and Ke is the evaporation 1 

coefficient. Kcb depends on crop species and its development stage. 2 

 3 

For the evaporation coefficient, Ke is defined as: 4 

 5 

),min( maxmax ccbce fKKKK      (11) 6 

 7 

where Kcmax is the maximum evapotranspiration coefficient, and f is the soil fraction 8 

not covered by plants and exposed to evaporation as described by Allen et al. (1998). 9 

 10 

3.1.3. Root water uptake 11 

 12 

The rate of root water uptake, expressed as in Feddes et al. (1978) and Wu et al. 13 

(1999), is: 14 

 15 

),()()( max hzShzS        (12) 16 

 17 

where  is the root water stress reduction factor, and Smax (cm d
-1

) is the maximum 18 

root water uptake rate. 19 

 20 

In the calculation of maximum root water uptake it is assumed that all roots have 21 

identical physical properties, and therefore have uniform water uptake capacity 22 

regardless their age or location. The water uptake rate from the different parts of the 23 

root zone is dependent on root density. By assigning the potential transpiration to the 24 

root zone, the maximum root water uptake rate can be calculated as follows: 25 
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where )(zl  is the root density distribution down the profile. 4 

 5 

The reduction of transpiration is caused by the decline in water uptake by the roots in 6 

the dry parts of the soil.  Following Feddes et al. (1978), Šimunek et al. (1992), Wu et 7 

al. (1999) and Sonnleitner et al. (2003), root water uptake is assumed to be zero when 8 

soil pressure head is below h3, i.e. the soil pressure head at the permanent wilting 9 

point (h3 = -15000 cm), and is unlimited for soil pressure head between h1 and highh210 

for a rapid transpiration and lowh2  for a slow transpiration.  The increase in water 11 

uptake between h3 and h2 is linearly related to the soil pressure head. Water uptake is 12 

also assumed to be 0 at saturation due to lack of oxygen in the root zone, i. e. 13 

 14 
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The actual transpiration rate Tact (cm d
-1

) is therefore calculated: 17 

 18 
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3.2. Inverse analysis model 21 

 22 



 14 

Estimating soil water parameters using an inverse modeling technique includes the 1 

determination of the number of identified parameters, the formulation of the 2 

optimized function and the implementation of an optimization algorithm. 3 

 4 

3.2.1. Identified parameters 5 

 6 

There are five soil hydraulic parameters in the van Genuchten equation (Eqs. 2 and 3). 7 

Attempts have been made to use fewer soil hydraulic parameters by fixing known or 8 

insensitive parameters which can be estimated with certainty to enhance the 9 

uniqueness of the inversely analyzed solution. Jhorar et al. (2002) fixed r and Ks 10 

when implementing an optimization algorithm to the inverse problem as sensitivity 11 

analyses of parameters revealed that they were insensitive to the model’s response. 12 

This was also found to be the case for the calibration experiment in this study. 13 

Sensitivity analyses show that r, Ks and  are much less sensitive than s and n to the 14 

mean squared residuals of soil water contents obtained at different depths and 15 

intervals between measurement and simulation (Fig. 1). The analyses were carried out 16 

using the soil hydraulic properties derived from PTFs proposed by Wösten et al. 17 

(1999), i. e. [ s, r, , n, Ks]
T
 =[0.336, 0.025, 1.218, 0.04869, 28.88]

T
, together with 18 

other parameter values explained in the following section. Ritter et al. (2003), on the 19 

other hand, set a value for soil water content at saturation in advance. However, none 20 

of the above parameters were measured or could be determined with certainty in our 21 

study. We therefore used the whole set of the van Genuchten parameters in the inverse 22 

analysis. 23 

 24 

3.2.2. Formulation of the optimized function 25 



 15 

 1 

In the formulation of an optimized function, we used two criteria in this study, i.e. soil 2 

water content  and soil water content at field capacity FC. The primary reason of 3 

including FC was that the experiments for measuring FC were carried out under field 4 

conditions, and the measured value was considered more representative for the soil at 5 

the field scale. 6 

 7 

To solve the optimization problem, a Genetic Algorithm (GA) technique was adopted. 8 

Two fitness functions containing  (Eq. 16), and  and FC (Eq. 17) were tested. Since 9 

the measured soil water content at field capacity was representative for the soil at the 10 

field capacity, a much bigger weight was assigned to FC than  in Eq. (17) to ensure 11 

that the inferred soil water content at field capacity was close to the measured value. 12 

 13 
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where f1 and f2 are the fitness functions, x is the parameter vector, i.e van Genuchten 18 

soil water parameters, mea and sim (i.e.  in the flow equation) are the measured and 19 

simulated soil water content at depths in the profile, ti (d) is the time when the i
th

 20 

measurement is taken, N is the number of measurements, and FC,mea and FC,sim are 21 

the measured and simulated soil water content at field capacity, respectively. To 22 

determine FC,mea excess irrigation was first applied and the soil was covered with 23 



 16 

polythene sheeting for 48 h to prevent evaporation. The soil samples were then taken 1 

from three replicate plots and soil water contents were measured (Burns, 1974). FC,sim 2 

was defined as the soil water content at the soil pressure head of -330 cm. 3 

 4 

3.2.3. Optimization algorithm 5 

 6 

GAs are global search heuristics to find exact or approximate solutions to 7 

optimization and search problems based on the evolutionary ideas of natural selection. 8 

They are implemented in a computer simulation in which a population of abstract 9 

representations of candidate solutions to an optimization problem evolves toward 10 

better solutions. The evolution starts from a population of randomly generated 11 

individuals and happens in generations. In each generation, the fitness function of 12 

every individual in the population is evaluated, multiple individuals are stochastically 13 

selected from the current population (based on their fitness), and modified to form a 14 

new population through genetic operators of crossover (recombination) and mutation. 15 

For each new solution to be produced, a pair of "parent" solutions is selected for 16 

breeding from the pool. A new solution shares many of the characteristics of its 17 

"parents". New parents are selected for each new child, and the process continues 18 

until a new population of solutions of appropriate size is generated. The new 19 

population is then used in the next iteration of the algorithm. The algorithm terminates 20 

when a termination condition has been reached, commonly a maximum number of 21 

generations has been produced. Detailed procedure of implementing a GA is given in 22 

Goldberg (1989). 23 

 24 
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The technique and corresponding software used in the study was a micro-GA, 1 

developed by Carroll (1999). The advantage of using this technique is that the 2 

software not only includes many GA concepts, such as creep mutation and uniform 3 

crossover, but is also very effective. Compared to a conventional GA, which normally 4 

requires a large population size and a large number of generations, the adopted micro-5 

GA performs excellently for a small population size. For many cases a population of 6 

as few as 5 can achieve satisfactory results within 100 generations (Carroll, 1999). 7 

 8 

Soil hydraulic parameters were inferred from all measured soil water contents at 9 

different depths and intervals in a fallow field subject to natural rainfall and 10 

evaporation in the calibration experiment. The reliability of the deduced soil water 11 

parameters was tested in reproducing data of soil water content collected from the 12 

verification experiment on the same soil cropped with leek.  13 

 14 

3.3. Evaluation criteria 15 

 16 

Accuracy of the simulated soil water content using deduced parameters was evaluated 17 

using the model efficiency coefficient (EF) (Nash and Sutcliffe, 1970), the root of the 18 

mean squared errors (RMSE) and the mean absolute error (MAE) (Bohne and 19 

Salzmann, 2002; Ritter et al., 2003; Merdun et al., 2006): 20 

 21 
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where 
mea

 is the average of the measured values. 5 

 6 

An efficiency of 1 (EF = 1) corresponds to a perfect match of simulated and measured 7 

data. A small RMSE and MAE indicate that the simulated values are in good 8 

agreement with the measured values.  9 

 10 

4. Parameter values  11 

 12 

4.1. The calibration case 13 

 14 

The inverse modeling procedures were implemented on data of measured soil water 15 

content from the calibration experiment. As the soil is fairly uniform throughout its 16 

profile, it was characterized by depth-independent values of the parameters s, r, , n 17 

and Ks. In the forward simulation, the first measured data of soil water content down 18 

the profile (Day 118) were taken as the initial condition. The measured daily rainfall 19 

and the potential evaporation, calculated using the FAO approach (Allen et al., 1998), 20 

were used as inputs (Fig. 2). Daily rainfall and evaporation were assumed to be 21 

uniformly distributed throughout the day. Simulated water contents were to 42.5 cm, 22 

the deepest depth at which measurements from the calibration experiment were made. 23 



 19 

Since boundary conditions have a great effect on the accuracy of simulation (Boone 1 

and Wetzel, 1996; Lee and Abriola, 1999), we used measured soil water contents at 2 

the deepest depth for the condition at the lower boundary. The maximum water influx 3 

from the soil surface was the difference between rainfall and evaporation. The actual 4 

evaporation, however, was often less than the maximum because the surface soil was 5 

not wet enough to permit a sufficient water flux to meet potential demand. The rate of 6 

water transport depends critically on the soil wetness near the surface. The soil flow 7 

equation was solved using a Galerkin type linear finite element scheme (Šimunek et 8 

al., 1992). The soil domain was divided into 32 soil layers with thin layers in the top 9 

and the bottom where the upper and lower boundary conditions were imposed. The 10 

thickness of soil layers ranged from 0.2 cm to 2 cm. The lower and upper values for 11 

the 5 parameters were set as: s (0.3-0.5), r (0.001-0.1),  (0.01-0.2), n (1.05-1.8), 12 

and Ks (10.0-250.0), wide enough to describe the soil in this study. We implemented 13 

the optimization procedures to the fitness functions Eq. (16) and Eq. (17). The 14 

population size was set to 5 as suggested by Carroll (1999). However, in order to 15 

study the effect of the population size on the parameter estimation, we also used a 16 

population of 10 in the optimization procedures. 17 

 18 

4.2. The verification case  19 

 20 

The reliability of the deduced soil water parameters was tested against data of soil 21 

water content collected from the verification experiment on 08 August (Day 220) and 22 

03 September 1973 (Day 246) on the same soil cropped with leek. The parameters h1, 23 

highh2  and 
lowh2  were set to be -1 cm, -500 cm and -1100 cm as suggested by Šimunek 24 

et al. (1992) and Sonnleitner et al. (2003). The potential crop evapotranspiration 25 



 20 

during the period was estimated using the FAO approach (Allen et al., 1998). In the 1 

calculation, the values of 1.35 and 0.9 were used for the parameters of Kcmax and Kcb 2 

(Allen et al., 1998). No significant rainfall events occurred in the period (Fig. 3). The 3 

simulation began from 08 August 1973, and the observed distribution of soil water 4 

content on that day was used as the initial condition. The calculated soil depth was 45 5 

cm and the lower boundary condition was set as free drainage, as in Rowse et al. 6 

(1978) who simulated soil water movement on the same cropped soil. This was a 7 

fairly accurate representation of the field conditions according to their measurements. 8 

 9 

5. Results and discussion 10 

 11 

5.1. Deduction of soil water parameters from the calibration experiment 12 

 13 

The deduced values of the parameters based on the fitness function Eq. (16) show that 14 

the simulated results were slightly better with the population of 10 than 5 in terms of 15 

RMSE and EF, while opposite is the case in terms of MAE (Table 2). Based on the 16 

fact that in both cases the results of RMSE, MAE and EF are all extremely close to 17 

each other, it is difficult to decide which population size is better. However, the 18 

deduced values of the parameters were rather different. For example, the deduced s 19 

of 0.332 with the population of 5 was much less than the value of 0.422 inferred with 20 

the population of 10. This indicates that the proposed criteria solely based on soil 21 

water content (Eq. 16) yielded different sets of parameter values with very similar 22 

model responses, i.e. the inverse solution was not unique. This non-uniqueness 23 

phenomenon is commonly faced and reported in the literature (Hopmans and 24 

Šimunek, 1999). The major reason for such a phenomenon is that the problem is 25 



 21 

highly non-linear, and the fitness function is not well posed. It can also be partly 1 

attributed to lack of measurements at the wet end of the soil water retention curve. In 2 

the study there were few measurements of soil water content above or near to the field 3 

capacity. 4 

 5 

The non-uniqueness solution to the inverse problem was effectively overcome by 6 

adopting the hybrid fitness function Eq. (17).  Results reveal the soil water retention 7 

curves inferred from different population sizes agree with each other well, indicating 8 

that the hybrid fitness function (Eq. 17) was better posed than Eq. (16) (Fig. 4). The 9 

calculated values for the evaluation criteria RMSE and MAE were satisfactory, and the 10 

EF value was fair (Table 2). To compare the inferred soil hydraulic properties with 11 

those derived from other alternative approaches, retention curves derived from PTFs 12 

proposed by Wösten et al. (1999) and Cresswell et al. (2006) were also calculated 13 

(Fig. 4). It was assumed that soil water content at saturation from Cresswell et al. 14 

(2006) was the same as that from Wösten et al. (1999), since Cresswell et al’s 15 

approach did not offer a solution to estimating the saturated soil water content. The 16 

functions proposed by Wösten et al. (1999) were based on a study of more than 5000 17 

soil samples across Europe. Both PTFs derived retention curves are close to each 18 

other and the corresponding volumetric water contents over a wide range of given 19 

pressure heads were about 0.07 to 0.1 cm
-3

 cm
-3

 less than those calculated from GA. 20 

 21 

Overall comparison of soil water content between measurement and simulation (Fig. 22 

5) and the detailed comparisons were made between simulated and measured soil 23 

water contents down the soil profile measured at intervals in the calibration 24 

experiment (Fig. 6). The simulated water contents were calculated from the flow 25 
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model using the deduced parameter values (Table 2) for a population size of 10 with a 1 

hybrid fitness function (Eq. 17). The simulated values of soil water content are in 2 

good agreement with the measured values, and the values of RMSE (0.024 cm
3
 cm

-3
) 3 

and MAE (0.0194 cm
3
 cm

-3
) are small. Over the 64 comparisons only 5 differed by 4 

more than 0.04 cm
3
 cm

-3
 and the biggest difference was 0.085 cm

3
 cm

-3
. The overall 5 

agreement between measurement and simulation is fairly good, which is illustrated in 6 

Fig. 5 where the measurements against simulated values are all close to the 1:1 line.  7 

The detectable discrepancies between simulated and measured values were mainly 8 

near the top and the middle of the profile (Fig. 6). The measured values near the 9 

surface tended to be lower than the simulated ones, while in the middle, the opposite 10 

appears to be the case. This may be explained by the heterogeneity of soil in the 11 

profile, with the profile having a lower field capacity at the top and a relatively larger 12 

one in the middle (Table 1). In the process of inverse modeling, we assumed the soil 13 

was homogenous throughout the profile. 14 

 15 

The cumulative rainfall, potential and actual evaporation during the experiment are 16 

shown in Fig. 7. It reveals that the actual evaporation is considerably less than the 17 

potential one. By the end of the experiment the cumulative actual evaporation was 27 18 

cm, only about 40% of the cumulative potential value. This might be attributed to the 19 

dryness of the soil in the top 5 cm layer during the most of the experiment period (Fig. 20 

8a). Except for the three periods between Day 160 to 172, Day 205 to 230 and Day 21 

285 to 295 which coincided with major rainfall events (Fig. 2), soil water content in 22 

the top 5 cm layer was low, close to 0.2 cm
3
 cm

-3
 (Fig. 8a), resulting in reduction in 23 

evaporation. Another contributory factor is that the potential evaporation might be 24 

over-estimated by the Hargreaves method simply based on the air temperatures used 25 



 23 

in the study. The cumulative actual evaporation was also less than cumulative rainfall, 1 

which was partly caused by drainage at the lower boundary of the soil profile, 2 

particularly in the three periods when rainfall clearly exceeded the evaporation 3 

demand (Fig. 8b). 4 

 5 

5.2. Simulation of water dynamics in the soil-crop system in the verification 6 

experiment 7 

 8 

Relative root density distributions were measured using a pin board technique 9 

(Goodman and Burns, 1975) on 08 August (Day 220) and 03 September (Day 246) 10 

1973 and averaged (Fig. 9a). The rooting depth was 27.5 cm, and the maximum root 11 

density occurred at 8 cm below the soil surface. Such a pattern of root distribution 12 

where the maximum root density is found some distance from the soil surface rather 13 

than the top is in accordance with measurements from other vegetable crops such as 14 

cabbage, carrot and lettuce (Thorup-Kristensen, 2006). As previous studies (Gerwitz 15 

and Page, 1974; Pedersen et al., 2009) have also shown that the root density declines 16 

down the soil profile in an approximately exponential manner, we derived the 17 

following equation to describe the relative root density by fitting an exponential 18 

equation to the measured data in the analysis: 19 

 20 
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 24 

where zrmax (= -8 cm) is the vertical coordinate where the maximum root density 1 

occurs. Good agreement of relative root density distribution between measured and 2 

modeled with Eq. (21) was observed (Fig. 9a). 3 

 4 

Simulated and measured soil water content in the profile on 03 September 1973 was 5 

compared (Fig. 9b). Apart from a marked discrepancy in the top 5 cm region, the 6 

simulated water content not only reproduced the measured pattern, but also agreed 7 

with the measured data well (with the maximum error of less than 7%). The 8 

discrepancy in the near surface region may partly be attributed to the simplified 9 

assumption that the soil was homogenous throughout the profile even though the soil 10 

near the surface had a lower ability to retain water (Table 1) as explained earlier. The 11 

soil water content in the root zone was close to the permanent wilting point, indicating 12 

that the plants were under severe water stress at the later stages of the simulation 13 

period. 14 

 15 

Root water uptake from different 5 cm soil layers were simulated according to Eq. 16 

(12) (Fig. 10a). Since there were no rainfall events in the early stages of the 17 

simulation, roots depleted the soil water rapidly in the top soil layers. Under the dual 18 

action of evaporation and transpiration, the top 5 cm soil layer dried out with no water 19 

uptake possible in the first 3 days as the soil water content rapidly dropped to the 20 

permanent wilting point of 0.16 cm
3
 cm

-3
 (Fig. 10b). After 7 days, the drought spread 21 

to the 20 cm soil depth. The water contents in the soil layers between 5 to 20 cm were 22 

all close to the permanent wilting point, while the water content in the top 5 cm layer 23 

was even lower due to evaporation (Fig. 10b). The plants suffered from severe water 24 

stress between Day 227 to Day 238 when only water below 20 cm was available for 25 



 25 

root uptake. The sudden increase in water uptake from the top layer was caused by 1 

rainfall on Day 238 (Fig. 10a). Rain water did not penetrate to the second layer as the 2 

noticeable change in water content was restricted to the top 5 cm layer (Fig. 10b). 3 

Only from below 20 cm was water constantly available for uptake. This is a result of 4 

low root demand and of capillary flow from lower soil layers. 5 

 6 

6. Conclusions 7 

 8 

Soil hydraulic properties were accurately deduced from soil water contents measured 9 

at intervals down a fallow field soil by setting up a new optimized function and 10 

optimizing it with a micro-GA optimization tool. It supports the view that micro-GA 11 

provides a powerful means of searching for a global optimum. The new optimized 12 

function constructed using both soil water content and soil water at field capacity is 13 

better than that using solely soil water content to overcome the problem of non-unique 14 

parameter estimation in inverse modeling. The latter were exacerbated by the lack of 15 

measurements at the wet end of the soil water retention curve. To improve the 16 

uniqueness of the identified parameters, special attention needs to be given to 17 

collecting soil water data when the soil is wet in a field evaporation experiment. 18 

 19 

Results from the study also confirm that an exponential function can accurately 20 

describe root distribution down the soil profile with the maximum root density of leek 21 

found 8 cm below the soil surface. Good predictions of soil water content in the 22 

cropped soil indicate that the approach employed for the deduction of the effective 23 

soil hydraulic properties is effective, and the way of simulating water dynamics in the 24 
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soil-crop system using the FAO dual crop coefficient method for estimating potential 1 

evaporation and transpiration is reasonable. 2 
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Table 1: Physical properties of the soil profile 

 

Depth 

(cm) 

% Sand 

(2~0.02 

mm) 

% Silt 

(0.02~0.002 

mm) 

%Clay 

(<0.002 mm) 

Organic 

matter 

(%) 

Bulk density 

(g cm
-3

) 

Water content at 

field capacity 

(cm
3
 cm

-3
) 

0.0 ~ 3.8 76 9 15 5.1 1.55 0.24 

3.8 ~ 7.5 75 9 16 5.5 1.56 0.24 

7.5 ~ 11.3 75 9 16 5.4 1.61 0.25 

11.3 ~ 15.0 75 9 16 6.0 1.66 0.25 

15.0 ~ 18.8 75 9 16 5.8 1.72 0.27 

18.8 ~ 22.5 75 10 15 5.3 1.75 0.29 

22.5 ~ 26.3 75 10 15 1.3 1.76 0.28 

26.3 ~ 30.0 74 10 16 1.5 1.74 0.29 

30.0 ~ 33.8 74 10 16 2.8 1.70 0.28 

33.8 ~ 37.5 77 9 14 3.8 1.65 0.25 

37.5 ~ 41.3 78 9 13 3.0 1.59 0.23 

41.3 ~ 45.0 79 8 13 2.3 1.56 0.21 
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Table 2: Deduced soil water characteristics using different fitness functions and population sizes, and statistical assessment for resulting soil 

water content data 

 

Fitness Population size 
s 

(cm
3
 cm

-3
) 

 
(cm

-1
) 

n 
  

r 
(cm

3
 cm

-3
) 

Ks 
(cm day

-1
) 

RMSE 
(cm

3
 cm

-3
) 

MAE 
(cm

3
 cm

-3
) 

EF
 

  

( mea- sim)
2
/N 

5 0.332 0.1128 1.131 0.0027 49.0 0.0227 0.0182 0.547 

10 0.422 0.0955 1.198 0.0078 118.2 0.0225 0.0186 0.556 

( mea- sim)
2
/N-( FC_mea- FC_sim)

2 

 

5 0.425 0.0636 1.185 0.0544 225.7 0.0237 0.0190 0.504 

10 0.425 0.0506 1.205 0.0635 134.7 0.0240 0.0194 0.495 

 

EF: modelling efficiency coefficient; RMSE: root of the mean squared errors; MAE: mean absolute error. 
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Figure captions 1 

 2 

Figure 1: Sensitivity analyses of soil hydraulic parameters for the calibration 3 

experiment. The model response in the y axis is the mean square residuals of soil 4 

water content between measurement and simulation. The symbols □, ×, *, ◊ and Δ 5 

represent soil hydraulic parameters, s r, , n and Ks, respectively, with the values 6 

set as 0.336 cm
3
 cm

-3
, 0.025 cm

3
 cm

-3
, 1.218, 0.04869 and 28.88 cm d

-1
 derived from 7 

PTFs proposed by Wosten et al. (1999). 8 

 9 

Figure 2: Measured daily rainfall (a) and calculated potential evaporation using the 10 

FAO approach (b) from Day 117 (27/04/71) to Day 325 (21/11/71) in the calibration 11 

experiment. 12 

 13 

Figure 3: Measured daily rainfall (a) and calculated potential evapotranspiration using 14 

the FAO approach (b) from Day 220 (08/08/73) to Day 246 (03/09/73) in the 15 

verification experiment. 16 

 17 

Figure 4: Soil water retention curves deduced using a GA and calculated with other 18 

alternatives. The upper lines with the symbols □ and ◇ are the curves deduced using 19 

population sizes of 5 and 10 with a hybrid fitness function, respectively. The lower 20 

solid and dotted lines are derived from PTFs proposed by Wosten et al. (1999) and 21 

Cresswell et al. (2006), respectively. Soil water content at saturation for the curve 22 

from Cresswell et al. (2006) is assumed the same as that from Wosten et al. (1999). 23 

 24 
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Figure 5: Overall comparison of soil water content between measurement and 1 

simulation in the calibration experiment. 2 

 3 

Figure 6: Soil water contents measured and simulated using the deduced soil 4 

hydraulic properties down the soil profile in the calibration experiment. Solid line 5 

represents the simulations and the symbol ∆ represents measurements. 6 

 7 

Figure 7: Cumulative rainfall, potential and actual evaporation during the calibration 8 

experiment. 9 

 10 

Figure 8: Simulated soil water contents in different layers (a) and water flux at the 11 

lower boundary (b) during the calibration experiment. 12 

 13 

Figure 9: Averaged relative root density distribution (means and dispersions) of leek 14 

measured on Day 220 (08/08/73) and Day 246 (03/09/73) down the soil profile (a) 15 

and the measured soil water content down the profile on 08/08/73, and the measured 16 

and simulated soil water content on 03/09/73 (b). The solid line in (a) represents fitted 17 

relative root density distribution using exponential functions and the symbol ∆ 18 

represents the measurements. The symbols □ and ∆ in (b) represent the measured soil 19 

water content distributions on 08/08/73 and 03/09/73, respectively, and the solid line 20 

represents the simulated water content distributions on 03/09/73 using the soil water 21 

hydraulic properties deduced in this study. 22 

 23 

Figure 10: Simulated root water uptake (a) and soil water content (b) in different soil 24 

layers from Day 220 (08/08/73) to Day 246 (03/09/73) in the verification experiment. 25 
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