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Abstract
Background: Fluorescent and luminescent gene reporters allow us to dynamically quantify
changes in molecular species concentration over time on the single cell level. The mathematical
modeling of their interaction through multivariate dynamical models requires the deveopment of
effective statistical methods to calibrate such models against available data. Given the prevalence of
stochasticity and noise in biochemical systems inference for stochastic models is of special interest.
In this paper we present a simple and computationally efficient algorithm for the estimation of
biochemical kinetic parameters from gene reporter data.

Results: We use the linear noise approximation to model biochemical reactions through a
stochastic dynamic model which essentially approximates a diffusion model by an ordinary
differential equation model with an appropriately defined noise process. An explicit formula for the
likelihood function can be derived allowing for computationally efficient parameter estimation. The
proposed algorithm is embedded in a Bayesian framework and inference is performed using Markov
chain Monte Carlo.

Conclusion: The major advantage of the method is that in contrast to the more established
diffusion approximation based methods the computationally costly methods of data augmentation
are not necessary. Our approach also allows for unobserved variables and measurement error. The
application of the method to both simulated and experimental data shows that the proposed
methodology provides a useful alternative to diffusion approximation based methods.

Background
The estimation of parameters in biokinetic models from
experimental data is an important problem in Systems
Biology. In general the aim is to calibrate the model so as
to reproduce experimental results in the best possible way.
The solution of this task plays a key role in interpreting
experimental data in the context of dynamic mathemati-

cal models and hence in understanding the dynamics and
control of complex intracellular chemical networks and
the construction of synthetic regulatory circuits [1].
Among biochemical kinetic systems, the dynamics of gene
expression and of gene regulatory networks are of particu-
lar interest. Recent developments of fluorescent micros-
copy allow us to quantify changes in protein
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concentration over time in single cells (e.g. [2,3]) even
with single molecule precision (see [4] for review). There-
fore an abundance of data is becoming available to esti-
mate parameters of mathematical models in many
important cellular systems.

Single cell imaging techniques have revealed the stochas-
tic nature of biochemical reactions (see [5] for review)
that most often occur far from thermodynamic equilib-
rium [6] and may involve small copy numbers of reacting
macromolecules [7]. This inherent stochasticity implies
that the dynamic behaviour of one cell is not exactly
reproducible and that there exists stochastic heterogeneity
between cells. The disparate biological systems, experi-
mental designs and data types impose conditions on the
statistical methods that should be used for inference [8-
10]. From the modeling point of view the current com-
mon consensus is that the most exact stochastic descrip-
tion of the biochemical kinetic system is provided by the
chemical master equation (CME) [11]. Unfortunately, for
many tasks such as inference the CME is not a convenient
mathematical tool and hence various types of approxima-
tions have been developed. The three most commonly
used approximations are [12]:

1. The macroscopic rate equation (MRE) approach
which describes the thermodynamic limit of the sys-
tem with ordinary differential equations and does not
take into account random fluctuations due to the sto-
chasticity of the reactions.

2. The diffusion approximation (DA) which provides
stochastic differential equation (SDE) models where
the stochastic perturbation is introduced by a state
dependant Gaussian noise.

3. The linear noise approximation (LNA) which can be
seen as a combination because it incorporates the
deterministic MRE as a model of the macroscopic sys-
tem and the SDEs to approximatively describe the fluc-
tuations around the deterministic state.

Statistical methods based on the MRE have been most
widely studied [8,13-15]. They require data based on large
populations. The main advantages of this method are its
conceptual simplicity and the existence of extensive the-
ory for differential equations. However, single cells exper-
iments and studies of noise in small regulatory networks
created the need for statistical tools that are capable to
extract information from fluctuations in molecular spe-
cies. Few methods used CME to address this. Algorithm,
proposed by [16], approximated the likelihood function,
the other, suggested by [17] simulated it using Monte
Carlo methods. Recently, also a method based on the
exact likelihood [18] has been developed. Although, sub-
stantial progress has been made in numerical methods for

solving CME, inference algorithms based on the CME are
computationally intensive and difficult to apply to prob-
lems of realistic size and complexity [19]. Another group
of methods is based on the DA [9,20]. This uses likelihood
approximation methods (e.g. [21]) that are computation-
ally intensive and require sampling from high dimen-
sional posterior distributions. Inference about the
volatility process becomes difficult for low frequency data
that are not directly measured at the molecular level
[10,20]. The aim of this study is to investigate the use of
the LNA as a method for inference about kinetic parame-
ters of stochastic biochemical systems. We find that the
LNA approximation provides an explicit Gaussian likeli-
hood for models with hidden variables and measurement
error and is therefore simpler to use and computationally
efficient. To account for prior information on parameters
our methodology is embedded in the Bayesian paradigm.
The paper is structured as follows: We first provide a
description of the LNA based modeling approach and
then formulate the relevant statistical framework. We then
study its applicability in four examples, based on both
simulated and experimental data, that clarify principles of
the method. Additional file 1 contains details of mathe-
matical and statistical modeling, particularly comparison
of the proposed method with an algorithm based on the
DA.

Methods
The chemical master equation (CME) is the primary tool
to model the stochastic behaviour of a reacting chemical
system. It describes the evolution of the joint probability
distribution of the number of different molecular species
in a spatially homogeneous, well stirred and thermally
equilibrated chemical system [11].

Even though these assumptions are not necessarily satis-
fied in living organisms the CME is commonly regarded as
the most realistic model of biochemical reactions inside
living cells. Consider a general system of N chemical spe-

cies inside a volume Ω and let X = (X1,..., XN)T denote the

number and x = X/Ω the concentrations of molecules. The
stoichiometry matrix S = {Sij}i = 1,2...N; j = 1,2...R describes

changes in the population sizes due to R different chemi-
cal events, where each Sij describes the change in the

number of molecules of type i from Xi to Xi + Sij caused by

an event of type j. The probability that an event of type j

occurs in the time interval [t, t + dt) equals (x, Ω, t)Ωdt.

The functions (x, Ω, t) are called mesoscopic transition

rates. This specification leads to a Poisson birth and death
process where the probability h(X, t) that the system is in
the state X at time t is described by the CME [12] which is
given in Additional file 1. It is straightforward to verify

f j

f j
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that the first order terms of a Taylor expansian of the CME

in powers of  are given by the following MRE

where φi = limΩ→∞, X→∞ Xi/Ω,  = ϕ(φ1,..., φN)T and

.

Including also the second order terms of this expansion
produces the LNA

which decomposes the state of the system into a deter-
ministic part ϕ as solution of the MRE in (1) and a sto-
chastic process ξ described by an Itô diffusion equation

where W(t) denotes R dimensional Wiener process,

 and fi =

fi(ϕ) (see Additional file 1 for derivation).

The rationale behind the expansion in terms of  is

that for constant average concentrations relative fluctua-
tions will decrease with the inverse of the square root of
volume [22]. Therefore the LNA is accurate when fluctua-
tions are sufficiently small in relation to the mean (large

Ω). Hence, the natural measure of adequacy of the LNA is
the coefficient of variation i.e. ratio of the standard devia-
tion to the mean (see Additional file 1). Validity of this
approximation is also discussed in details in [22,23]. In
addition it can be shown that the process describing the

deviation from the deterministic state  converges

weakly to the diffusion (3) as Ω → ∞ [24]. In order to use
the LNA in a likelihood based inference method we need
to derive transition densities of the process x.

Transition densities

The LNA provides solutions that are numerically or ana-
lytically tractable because the MRE in (1) can be solved
numerically and the linear SDE in (3) for an initial condi-

tion ξ(ti) =  has a solution of the form [25]

where the integral is in the Itô sense and (s) is the fun-

damental matrix of the non-autonomous system of ODEs

The Itô integral of a deterministic function is a Gaussian
random variable [26], therefore equations (4), (5) imply
that the transition densities of the process ξ are Gaussian
[26] (throughout the paper we use 'Gaussian' or 'normal'
shortly to denote either a univariate or a multivariate nor-
mal distribution depending on the context)

where Θ denotes a vector of all model parameters, ψ(·|μi-1, Ξi-1)
is the normal density with mean μi-1 and covariance matrix Ξi-1
specified by

It follows from (2) and (6) that the transition densities of
x are normal

The properties of the normal distribution allow us to con-
struct a convenient inference framework that is reminis-
cent of the Kalman filtering methodology (see e.g. [27]).

Inference
It is rarely possible to observe the time evolution of all
molecular components participating in the system of
interest [28]. Therefore, we partition the process xt into
those components yt that are observed and those zt that
are unobserved.

Let ,  and

 denote the time-series that comprise the

values of processes x, y and z, respectively, at times t0,...,

1 / Ω

d i
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tn. Here and throughout the paper we use the same letter

to denote the stochastic process and its realization.

Our aim is to estimate the vector of unknown parameters

Θ from a sequence of measurements . The initial condi-

tion ϕ(t0) is parameterized as an element of Θ. Given the

Markov property of the process x the augmented likeli-

hood P( , |Θ) is given by

where  are Gaussian densities specified in

(8), and  is an initial density assumed to be nor-

mal for mathematical convenience. It can then be shown
that (see Additional file 1)  is Gaussian. Therefore

where ψ(·|ϕ(t0),..., ϕ(tn), ) is Gaussian density with

mean vector (ϕ(t0),..., ϕ(tn)) and covariance matrix 

whose elements can be calculated numerically in a
straightforward way (see Additional file 1). Since the mar-
ginal distributions are also Gaussian it follows that the

likelihood function P( |Θ) can be obtained from the

augmented likelihood (10)

where the covariance matrix Σ = {Σ(i, j)}i, j = 0,..., n is a sub-

matrix of  such that  and ϕy is the

vector consisting of the observed components of ϕ.

Fluorescent reporter data are usually assumed to be pro-
portional to the number of fluorescent molecules [29]
and measurements are subject to measurement error, i.e.
errors that do not influence the stochastic dynamics of the
system. We therefore assume that instead of the matrix 

our data have the form . The param-

eter λ is a proportionality constant (it is straightforward to
generalize for the case with different proportionality con-

stants for different molecular components) and 

denotes a random vector for additive measurement error.
For mathematical convenience we assume that the joint

distribution of the measurement error is normal with

mean 0 and known covariance matrix Σε, i.e.

. If measurement errors are inde-

pendent with a constant variance  then .

Equation (11) implies that the likelihood function can be
written as

Since for given data  the likelihood function (12) can be
numerically evaluated, any likelihood based inference is
straightforward to implement. Using Bayes' theorem, the

posterior distribution P(Θ| ) satisfies the relation [30]

We use the standard Metropolis-Hastings (MH) algorithm
[30] to sample from the posterior distribution in (13).

Results and Discussion
In order to study the use of the LNA method for inference
we have selected four examples which are related to com-
monly used quantitative experimental techniques such as
measurements based on reporter gene constructs and
reporter assays based on Polymerase Chain Reaction (e.g.
RT-PCR, Q-PCR). For expository reasons, all case studies
consider a model of single gene expression.

Model of single gene expression
Although gene expression involves various biochemical
reactions it is essentially modeled in terms of only three
biochemical species (DNA, mRNA, protein) and four
reaction channels (transcription, mRNA degradation,
translation, protein degradation) [31-33]. The stoichiom-
etry matrix has the form

where rows correspond to molecular species and columns
to reaction channels. Let x = (r, p) denote concentrations
of mRNA and protein, respectively. For the reaction rates

we can derive the following macroscopic rate equations

For the general case it is assumed that the transcription
rate kR(t) is time-dependent, reflecting changes in the reg-

y
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ulatory environment of the gene such as the availability of
transcription factors or chromatin structure.

Using (14), (15) and (16) in (3) we obtain the following
SDEs describing the deviation from the macroscopic state
(see section 3.1.4 of Additional file 1 for derivation)

We will refer to the model in (16) and (17) as the simple
model of single gene expression.

In order to test our method on a nonlinear system we will
also consider the case of an autoregulated network where
the transcription rate of the gene is a function of the con-
centration of the protein that the gene codes for and
where the protein is a transcription factor that inhibits the
production of its own mRNA. This is parameterized by a

Hill function [31]  where

kR(t) now describes the maximum rate of transcription, H

is a dissociation constant and nH is a Hill coefficient.

Thus, the nonlinear autoregulatory model the system is
described by the MRE

and the SDEs

where . We refer to this model as

the autoregulatory model of single gene expression. The two
models constitute the basis of our inference studies
below.

Inference from fluorescent reporter gene data for the 
simple model of single gene expression

To test the algorithm we first use the simple model of sin-
gle gene expression. We generate data according to the sto-
ichiometry matrix (14) and rates (15) using Stochastic
Simulation Algorithm (SSA) [34] and sample it at discrete
time points. We then generate artificial data that are pro-
portional to the simulated protein data with added nor-
mally distributed measurement error with known

variance . Furthermore we assume that mRNA levels

are unobserved. The volume of the system Ω is unknown

and we put Ω = 1 so that concentration equals the number
of molecules. Thus the data are of the form

where  is the simulated protein concen-

tration, λ is an unknown proportionality constant and 

is measurement error. For the purpose of our example we
model the transcription function by

This form of transcription corresponds to an experiment,
where transcription increases for t ≤ b3 as a result of being
induced by an environmental stimulus and for t > b3
decreases towards a baseline level b4.

We assume that at time t0 (t0 <<b3) the system is in a sta-
tionary state. Therefore, the initial condition of the MRE is
a function of unknown parameters (ϕR(t0), ϕP(t0)) = (b4/
γR, b4kP/γRγP).

To ensure identifiability of all model parameters we
assume that informative prior distributions for both deg-
radation rates are available. Priors for all other parameters
were specified to be non-informative. To infer the vector
of unknown parameters

we sample from the posterior distribution

using the standard MH algorithm. The distribution

P( |Θ) is given by (12).

The protein level of the simulated trajectory is sampled
every 15 minutes and a sample size of 101 points
obtained. We perform inference for two simulated data
sets: estimate 1 is based on a single trajectory while esti-
mate 2 represents a larger data set using 20 sampled trajec-
tories (see Figure 1A). All prior specifications, parameters
used for the simulations and inference results are pre-
sented in Table 1A. Estimate 1 demonstrates that it is pos-
sible to infer all parameters from a single, short length
time series with a realistically achievable time resolution.
Estimate 2 shows that usage of the LNA does not seem to
result in any significant bias. A bias has not been detected
despite the very small number of mRNA molecules (5 to
35 - Figure 2A in Additional file 1) and protein molecules
(100 to 500 - Figure 1A). The coefficient of variation var-
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ied between approximately 0.15 and 0.4 for both molecu-
lar species (Figure 1 in the Additional file 1).

Inference for this model required sampling from the 9
dimensional posterior distribution (number of unknown
parameters). If instead one used a diffusion approxima-
tion based method it would be necessary to sample from
a posterior distribution of much higher dimension (see
Additional file 1). In addition, incorporation of the meas-
urement error is straightforward here, whereas for other
methods it involves a substantial computational cost [20].

Inference from fluorescent reporter gene data for the 
model of single gene expression with autoregulation
The following example considers the autoregulatory sys-
tem with only a small number of reacting molecules.
Using SSA we generated artificial data from the single gene
expression model with autoregulation. The protein time

courses were then sampled every 15 minutes at 101 dis-
crete points per trajectory (see Figure 1B). As before we
assume that the mRNA time courses are not observed and
that the protein data are of the form given in (20), i.e. pro-
portional to the actual amount of protein with additive
Gaussian measurement error. As in the previous case
study we estimate parameters from two simulated data
sets, a single trajectory and an ensemble of 20 independ-
ent trajectories. The inference results summarized in Table
1B show that despite the low number of mRNA (0-15
molecules, see Figure 2 in Additional file 1) and protein
(10-250 molecules, see Figure B) all parameters can be
estimated well with appropriate precision.

Inference for PCR based reporter data
In the case of reporter assays based on Polymerase Chain
Reaction (e.g. RT-PCR, Q-PCR) measurements are
obtained from the extraction of the molecular contents

Protein timeseries generated using Gillespie's algorithm for the simple A and autoregulatory B models of single gene expres-sion with added measurement error ( = 9)Figure 1
Protein timeseries generated using Gillespie's algorithm for the simple A and autoregulatory B models of sin-

gle gene expression with added measurement error (  = 9). Initial conditions for mRNA and protein were sampled 

from Poisson distributions with means equal to the stationary means of the system with equal constant transcription rate b4. In 

the autoregulatory case we set H = b4kP/2γRγP. In each panel 20 time series are presented. The deterministic and average trajec-
tories are plotted in bold black and red lines respectively. Corresponding mRNA trajectories (not used for inference) are pre-
sented in Additional file 1.
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from the inside of cells. Since the sample is sacrificed, the
sequence of measurements are not strictly associated with
a stochastic process describing the same evolving unit.
Assume that at each time point ti (i = 0,..n) we observe l
measurements that are proportional to the number of
RNA molecules either from a single cell or from a popula-
tion of s cells. This gives a (n + 1) × l matrix of data points

where  is the actual RNA level, λ is

the proportionality constant,  is a Gaussian independ-

ent measurement error indexed by time ti. j = 1,..., l

indexes the l measurements that are taken at time ti. Note

that  and  are independent random variables as

they refer to different cells. We assume that the dynamics

of RNA is described by the simple model of single gene

expression with LNA equations (16) and (17). Let ϒt

denote the distribution of measured RNA at time t (ut ~

ϒt). In order to accommodate for the different form of

data we modify the estimation procedure as follows. For
analytical convenience we assumed that the initial distri-

bution is normal . This together with eq.

(8) and normality of measurement error implies that

. Simple explicit formulae for μt and 

are derived in Additional file 1. Since all observations 

are independent we can write the posterior distribution as

u ≡ = ={ }, ,... ; ,...,.ut j i n j li 0 1 (22)

u r rt j t j t j t ji i i i, , , ,,= +l ε
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==
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(23)

Left: PCR based reporter assay data simulated with Gillespie's algorithm using parameters presented in Table 2 and extracted 51 times (n = 50), every 30 minutes with an independently and normally distributed error ( = 9)Figure 2
Left: PCR based reporter assay data simulated with Gillespie's algorithm using parameters presented in Table 

2 and extracted 51 times (n = 50), every 30 minutes with an independently and normally distributed error (  

= 9). Each cross correspond to the end of simulated trajectory, so that the data drawn are of form (22). Since number of RNA 
molecules is know upto proportionality constant y-axis is in arbitrary units. Time on x-axis is expressed in hours. Estimates 
inferred form this data are shown in column Estimate 1 in Table 2. Right: Fluorescence level from cycloheximide experiment is 
plotted against time (in hours). Subsequent dots correspond to measurements taken every 6 minutes.
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where ψ(·| , ) is the normal density with parame-

ters , . In order to infer the vector of the unknown

parameters Θ = (γR, λ, b0, b1, b2, b3, b4, , ) we sam-

ple from the posterior using a standard MH algorithm. To
test the algorithm we have simulated a small (l = 10, n =
50, plotted in Figure 2) and a large (l = 100, n = 50) data
set using SSA algorithm with parameter values given in
Table 2. The data were sampled discretely every 30 min-

utes and a standard normal error was added. Initial condi-
tions were sampled from the Poisson distribution with

mean b4/γR. The estimation results in Table 2 show that

parameters can be inferred well in both cases even though
the number of RNA molecules in the generated data is
very small (about 5-35 molecules). Since subsequent
measurements do not belong to the same stochastic trajec-
tory, estimation for the model presented here is not
straightforward with the diffusion approximation based
methods.

uti
s t i

2

uti
s t i

2

ut0
s t0

2

Table 1: Inference results for (A) the simple model and (B) autoregulatory model of single gene expression

(A)
Param.

Prior Value Estimate 1 Estimate 2

γR Γ (0.44,10-2) 0.44 0.43 (0.27-0.60) 0.49 (0.38-0.61)
γP Γ (0.52,10-2) 0.52 0.51 (0.35-0.67) 0.49 (0.38-0.61)
kP Exp(100) 10.00 21.09 (3.91-67.17) 11.41 (7.64-16.00)
λ Exp(100) 1.00 1.42 (0.60-2.57) 1.08 (0.76-1.36)
b0 Exp(100) 15.00 6.80 (0.97-18.43) 12.78 (9.80-15.33)
b1 Exp(1) 0.40 0.79 (0.05-3.02) 0.29 (0.18-0.43)
b2 Exp(1) 0.40 0.77 (0.08-2.79) 0.77 (0.32-1.59)
b3 Exp(10) 7.00 6.13 (4.41-7.85) 7.25 (6.79-7.55)
b4 Exp(100) 3.00 0.94 (0.11-2.88) 2.87 (2.11-3.52)

(B)
Param.

Prior Value Estimate 1 Estimate 2

γR Γ (0.44,10-2) 0.44 0.44 (0.27-0.60) 0.42 (0.32-0.54)
γP Γ (0.52,10-2) 0.52 0.49 (0.33-0.65) 0.49 (0.36-0.61)
kP Exp(100) 10.00 14.86 (3.18-47.97) 9.35 (5.87-13.15)
λ Exp(100) 1.00 1.26 (0.48-2.30) 1.15 (0.81-1.50)
b0 Exp(100) 15.00 5.99 (0.20-23.06) 13.47 (9.24-17.13)
b1 Exp(1) 0.40 0.59 (0.01-2.75) 0.27 (0.14-0.53)
b2 Exp(1) 0.40 0.92 (0.05-2.92) 0.83 (0.21-3.52)
b3 Exp(10) 7.00 6.53(0.74-14.69) 7.27 (6.44-7.79)
b4 Exp(100) 3.00 2.85 (0.35-7.19) 2.64 (1.82-3.32)

Parameter values used in simulation, prior distribution, posterior medians and 95% credibility intervals. Estimate 1 corresponds to inference from 
single time series, Estimate 2 relates to estimates obtained from 20 independent time series. Data used for inference are plotted in Figure A for 
case A and Figure B for case B. Variance of the measurement error was assumed to be known  = 9. Rates are per hour. Parameters are nH = 1, H 
= 61.98 in case B.
Page 8 of 10
(page number not for citation purposes)

Table 2: Inference results for PCR based reporter assay simulated data

Parameter Prior Value Estimate 1 Estimate 2

γR Exp(1) 0.44 0.45 (0.35-0.60) 0.46 (0.42-0.50)
λ Exp(100) 1.00 1.07 (0.90-1.22) 1.01 (0.95-1.05)
b0 Exp(100) 15.00 13.13 (10.20-15.87) 14.91 (13.86-15.77)
b1 Exp(1) 0.40 0.29 (0.14-0.51) 0.43 (0.32-0.54)
b2 Exp(1) 0.40 0.32 (0.12-0.93) 0.32 (0.21-0.43)
b3 Exp(10) 7.00 7.05 (6.39-7.63) 6.99 (6.76-7.15)
b4 Exp(100) 3.00 2.97 (2.00-4.18) 3.10 (2.76-3.43)

0 Exp(100) 6.76 6.90 (5.79-7.69) 6.55 (6.14-6.85)
Exp(100) 6.76 3.52 (0.01-8.99) 7.59 (5.44-9.49)

Parameter values used to generate data, prior distributions used for estimation, posterior median estimates together with 95% credibility intervals. 
Estimate 1, Estimate 2 columns relate to small (l = 5, n = 50) and large (l = 100, n = 50) sample sizes. Variance of the measurement was assumed to 

be known  = 4. Estimated rates are per hour.
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Estimation of gfp protein degradation rate from 
cycloheximide experiment
In this section the method is applied to experimental data.
After a period of transcriptional induction, translation of
gfp was blocked by the addition of cycloheximide (CHX).
Details of the experiment are presented in Additional file
1. Fluorescence was imaged every 6 minutes for 12.5 h
(see Figure 2). Since inhibition may not be fully efficient
we assume that translation may be occurring at a (possibly
small) positive rate kP. The model with the LNA is

The observed fluorescence is assumed to be proportional
to the signal with proportionality constant λ. For compar-
ison we also consider the diffusion approximation for
which an exact transition density can be derived analyti-
cally (see Additional file 1 for derivation)

Since incorporation of measurement error for the diffu-
sion approximation based model is not straightforward,
we assume that measurements were taken without any
error to ensure fair comparison between the two
approaches. Table 3 shows that estimates obtained with
both methods are not very different.

Conclusion
The aim of this paper is to suggest the LNA as a useful and
novel approach to the inference of biochemical kinetics
parameters. Its major advantage is that an explicit formula
for the likelihood can be derived even for systems with
unobserved variables and data with additional measure-
ment error. In contrast to the more established diffusion
approximation based methods [9,20] the computation-
ally costly methods of data augmentation to approximate
transition densities and to integrate out unobserved
model variables are not necessary. Furthermore, this

method can also accommodate measurement error in a
straightforward way.

The suggested procedure here is implemented in a Baye-
sian framework using MCMC simulation to generate pos-
terior distributions. The LNA has previously been studied
in the context of approximating Poisson birth and death
processes [22-24,35] and it was shown that for a large
class of models the LNA provides an excellent approxima-
tion. Furthermore, in [35] it is shown that for the systems
with linear reaction rates the first two moments of the
transition densities resulting from the CME and the LNA
are equal. Here we propose using the LNA directly for
inference and provide evidence that the resulting method
can give very good results even if the number of reacting
molecules is very small. In our previous study [10] we
have presented differences between fitting deterministic
and stochastic models, where we used diffusion approxi-
mation based method. Our experience from that work
and from study [20] is that implementation of diffusion
approximation based methods is challenging especially
for data that are sparsely sampled in time because the
need for imputation of unobserved time points leads to a
very high dimensionality of the posterior distribution.
This usually results in highly autocorrelated traces affect-
ing the speed of convergence of the Markov chain. Our
method considerably reduces the dimension of the poste-
rior distribution to the number of unknown parameters of
a model only and is independent of the number of unob-
served components (see Additional file 1). Nevertheless it
can only be applied to the systems with sufficiently large
volume, where fluctuations around a deterministic state
are relatively close to the mean.
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Supplemental information. Supplementary information contains deriva-
tion of the theoretical results, details about algorithm implementation and 
comparison with the inference method based on the diffusion approxima-
tion.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
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Table 3: Inference results for CHX experimental data

Param. Prior Estimate LNA Estimate DA

γP Exp(1) 0.45 (0.31-0.62) 0.53 (0.39-0.67)
kP Exp(50) 0.32(0.10-1.75) 0.43 (0.16-1.07)
λ Exp(50) 22.79(13.79-36.92) 23.85(16.31-36.54)

889.03(831.44-945.34) -

Priors, posterior mean and 95% credibility intervals obtained from 
CHX experimental data using the LNA approach and diffusion 
approximation approach. Estimation with the LNA involved one more 

parameter . Estimated rates are per hour.
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