TABLE S6. Fitting of an empirical model to %N and %P measurements made during growth of whole crop biomass. The model is %N=aW^b ; %P=cW^d and $\text{N:P}=(a/c)\text{W}^{(b-d)}$. For each experiment the values of the coefficients a, b, c and d were first determined and then used to calculate the N:P ratios corresponding to each value of W. The original measurements of N:P were then regressed against these calculated values. The calculations were made separately for the data for each of the 5 crops given in Fig.1 and given in the following tables.

Fitted values of a, b, c, and d and values of r²

Experiment	a	b	r^2	c	d	r^2
Onions 92 all varieties	3.065	-0.177	0.872	0.303	0	-
French beans 73	2.936	-0.194	0.852	0.297	-0.0702	0.784
Peas 72	3.944	-0.153	0.882	0.426	-0.0697	0.661
Swede 72	3.367	-0.223	0.825	0.466	-0.0359	0.732
Turnip 72	4.375	-0.157	0.742	0.614	-0.0488	0.644

Gradients of proportional relationships between measured and calculated values of N:P and the corresponding values of ${\bf r}^2$

Experiment	Gradient	\mathbf{r}^2	No of values
Onions 92 all varieties	0.996	0.925	18
French beans 73	0.978	0.711	17
Peas 72	1.008	0.714	14
Swede 72	0.993	0.777	19
Turnip 72	1.007	0.652	19
-			

That the gradients are always near one indicates that the model gives an excellent fit to the data.