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Summary

Cyanophages, viruses that infect cyanobacteria, are known to be abundant
throughout the world’s oceans. They are important because of the ecological
significance of their hosts which are prominent primary producers. In the natural
environment cyanobacteria undergo light-dark cycles, which might be expected to

exert significant effects on the way in which cyanophages reproduce.

The results in this study show how light plays an important role in cyanophage
adsorption to the host cell using a model system consisting of cyanophage S-PM2
and Synechococcus sp. WH7803. An initial investigation of the role of light on
phage adsorption revealed a striking light-dependence. In the dark, the phage S-PM2
was virtually not capable of adsorbing to WH7803, but adsorption resumed as soon
as the light was switched on. This light-dependent phage adsorption was not just
limited to the phage S-PM2, four out of nine other cyanophages showed the same
effect. The host photosynthetic activity and light/dark cycles were demonstrated not
to influence phage adsorption. The presence of the photosynthetic reaction centre
gene psbA in cyanophage genomes was not associated with the light-dependent

phage adsorption. No photoreceptor was detected from the phage S-PM2 particle.

A phage-resistant mutant that S-PM2 can’t adsorb to WH7803 was isolated. A
putative multicopper oxidase was found to be absent from the outer membrane
fraction of the mutant. This outer membrane fraction in the wild type showed a
moderate phage neutralisation activity (up to ~ 30%). To test whether the putative
multicopper oxidase was the S-PM2 receptor, a recombinant WH7803 strain was
constructed by inactivating the putative multicopper oxidase gene. As S-PM2 can
still adsorb to the knockout mutant as efficiently as to the wild type, it suggests that
the multicopper oxidase is not the phage receptor and that loss of the putative
multicopper oxidase is probably a pleiotropic consequence of the loss of the S-PM2
receptor or other components, such as lipopolysaccharide, that is needed for a

successful S-PM2 adsorption.

Vi
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Chapter 1 Introduction



1.1 Aims

The overall aim of this study was to further understand the interaction of marine
cyanophage-host systems with respect to the first step of the infection process,
namely adsorption. In particular, the role of light during the process of cyanophage
adsorption to the host Synechococcus sp. WH7803 was to be established.
Cyanophage-resistant mutants were to be isolated and purified. The cyanophage S-

PM2 receptor(s) were to be investigated.

1.2 The marine environment

The oceans cover ~ 70% of the world’s surface and accommodate a vast diversity of
organisms that contribute to total primary production. Among them, strains of
unicellular cyanobacteria of the genera Synechococcus and Prochlorococcus are
prevalent throughout the oligotrophic regions of the oceans and contribute between
32% and 89% of primary production (Goericke and Welschmeyer, 1993; Li, 1995;
Liu et al., 1997; Veldhuis et al., 1997). Marine viruses have been known as the most
common biological entities in the marine environment with an abundance of ~ 10’
viruses ml™* (Bergh et al., 1989; Proctor and Fuhrman, 1990; Suttle et al., 1990). It is
these marine viruses that infect the ecologically important cyanobacteria that are the

subject of this thesis.

In the marine environment, sunlight acts as an important physical parameter that can
affect the cyanobacteria-cyanophage interaction. First, sunlight drives the

photosynthetic processes of cyanobacteria. Thus, the euphotic zone is created, which
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is generally defined as the area between the sea surface and the depth where light has
diminished to 1% of its surface value. The photosynthesis of the oceans occurs in the
euphotic zone, which sometimes may be as deep as 150 meters in the open ocean
(Kirk, 1994). Second, by heating the surface of the oceans, the sunlight helps to
create a region called a thermocline, where temperature changes rapidly with depth.
In the deep layer below the thermocline, where photosynthesis does not take place,
both cyanobacterial numbers and primary production are generally low (Scavia and

Laird, 1987; Simon and Tilzer, 1987).

In this study the effect of sunlight on the adsorption of marine viruses to the host
cells is to be investigated by using a model system consisting of marine virus S-PM2

and cyanobacterium Synechococcus sp. WH7803.

1.3 Marine cyanobacteria

1.3.1 Introduction

Cyanobacteria are ancient forms of life on earth. They have the oldest known fossil
record, more than 3.5 billion years old (Schopf and Packer, 1987; Awramik, 1992;
Des Marais, 2000). All cyanobacteria are capable of photoautotrophic growth and
are truly prokaryotic. Due to their oxygen-evolving capability, cyanobacteria are
thought to have shaped the world’s atmosphere (Schopf and Packer, 1987). They can
flourish in seawater and freshwater (Mur et al., 1999), in cold and hot springs (Mur

et al., 1999) and even in harsh environments where few or no other organisms can



exist (Mur et al., 1999). The cyanobacteria make up a large component of marine
plankton with a global distribution. It is estimated that 3.6 x 10% prokaryotic cells
are present in the upper 200 m layer of the world’s oceans, and ~ 8% (2.9 x 10%’) of

them are thought to be cyanobacteria (Whitman et al., 1998).

Compared with their freshwater counterparts, marine cyanobacteria exhibit distinct
physiological properties such as resistance to elevated salt levels and unique
photosynthetic pigment compositions (MacColl, 1998). All these properties permit

acclimation to different conditions in the marine environment.

1.3.2 Marine unicellular cyanobacteria, Synechococcus and

Prochlorococcus

Synechococcus and Prochlorococcus are the two known genera of unicellular marine
cyanobacteria. They dominate the prokaryotic component of the picophytoplankton
(Veldhuis et al., 2005), which are the phototrophic component of the microbial
plankton community and were first discovered in the late 1970s (Johnson and

Sieburth, 1979; Waterbury et al., 1979).

Marine Synechococcus strains were discovered in 1979 with the aid of
epifluorescence microscopy (Waterbury et al., 1979). Synechococcus are unicellular
rod to spherical shaped cells less than 3 um in diameter (Figure 1.1) (Kana and
Glibert, 1987; Waterbury and Rippka, 1989; Herdman et al., 2001). As typical
cyanobacteria, Synechococcus strains possess a large light-harvesting complex, the

phycobilisome, which is associated with the thylakoid membrane (Glazer and Clark,
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1986). Phycobilisomes (PBSs) are mainly comprised of pigmented phycobiliproteins
(PBPs) as well as non-pigmented linker polypeptides and may amount to 50% of the
soluble protein in many cyanobacteria (Grossman et al., 1993). In marine
Synechococcus, the dominant PBP is phycoerythrin (PE), which particularly absorb
visible light in the green region of the spectrum (Ong and Glazer, 1991).
Synechococcus was classified as subcluster 5.1, previously known as marine cluster
A, members of which use phycoerythrin as their major light-harvesting pigment and
distinguished from subcluster 5.2, previously known as marine cluster B, members
of which have phycocyanin (PC) as their major light-harvesting pigment (Herdman

etal., 2001).

Figure 1.1 Electron micrograph of Synechococcus sp. WH7803.

Courtesy of Professor David Scanlan, Department of Biological Sciences, University of Warwick

Marine Prochlorococcus, a unicellular oxygenic photosynthetic prokaryote, was first
identified by flow cytometry (Chisholm et al., 1988) by virtue of their dim red
fluorescence emitted by their unique light harvesting pigments — divinyl derivatives

of chlorophyll a and b (Goericke and Repeta, 1992). Thus, Prochlorococcus is



unigue amongst cyanobacteria in that it is able to fuel photosynthesis with the blue
light that penetrates deepest down the water column in oceanic environments (Kirk,

1994).

The distribution of Synechococcus and Prochlorococcus in the world’s oceans
follow certain spatial patterns. Prochlorococcus is ubiquitous in the confined
latitudinal bands between 40°N and 40°S in the oligotrophic regions of the oceans
(Partensky et al., 1999). It accounts for up to a third of the photosynthetic biomass in
these vast areas. North of 40°N and south of 40°S it can still be found, but its
concentrations decline very rapidly (Partensky et al., 1999). However, no
Prochlorococcus is found in waters where the temperature is below 10°C (Partensky
et al., 1999). In contrast, Synechococcus has a broader distribution as it tolerates a
wider range of temperatures and is found, albeit in low concentrations, in waters
with temperatures as low as 2'C (Moore et al., 1995). This group contributes up to
25% of the photosynthetic carbon fixation in oligotrophic oceans (Burkill et al.,

1993).

The vertical distributions of Synechococcus and Prochlorococcus exhibit a typical
feature with Synechococcus in the upper layers and Prochlorococcus lower in the
water column (Figure 1.2) (Ting et al., 2002). Prochlorococcus can be found
dominating at depths of 100-200 m (Figure 1.2), and Synechococcus often dominates
at, or near, the surface (~ 0-30 m) (Waterbury et al., 1979; Grossman et al., 1993;
Worden et al., 2000; Ting et al., 2002). This Synechococcus dominance in the

surface waters is explained by the finding that Synechococcus has a greater tolerance



to solar radiation, particular ultraviolet radiation, than Prochlorococcus (Sommaruga
et al., 2005).
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Figure 1.2 Distributions of Synechococcus (pink squares) and Prochlorococcus (orange
triangles) through the water column at (32008N, 70002"W) on 10, June, 1996.

Flow cytometry was used for counting cells. The dominant wavelengths of light are indicated along
the water column. Approximate depths of the open ocean water column are also shown in meters.
From Ting et al., (2002)

In terms of average abundance, Prochlorococcus populations are generally about 1
order of magnitude higher than Synechococcus populations, excluding coastal waters
(Partensky et al., 1999). However, since Synechococcus can adjust the relative
proportions of its light-harvesting pigments through a process called chromatic
adaptation (Palenik, 2001), it may dominate some oceanic regions and thus be

greater in number than Prochlorococcus (Grossman, 2003).



1.3.3 Photosynthesis in cyanobacteria

Photosynthesis in cyanobacteria employs two photosystems; photosystem I (PSI) and
photosystem I1 (PSII), which closely resemble those found in higher plants (Barry et
al., 1994; Golbeck, 1994). With their oxygenic photoautotrophic mode of nutrition,
the cyanobacteria are distinct in the prokaryotic kingdom. They generally use water
as an electron donor and produce oxygen as a by-product. Carbon dioxide is reduced
to form carbohydrates via the Calvin cycle. In most cyanobacteria the photosynthetic

machinery is embedded into thylakoid membranes.

The major difference in photosynthetic machinery between higher plants and
cyanobacteria lies in the light-harvesting complexes. Synechococcus use PBSs to act
as the antenna to harvest ambient light. PBSs are composed of chromophore-bearing
PBPs and linker polypeptides and attached to the outer surface of the thylakoid
membrane. PBSs diffuse rapidly between reaction centres along the thylakoid
membranes in which both photosynthetic and respiratory electron flow occur, rather
than the integral membrane chlorophyll-a/b binding proteins which capture light in
plants. Therefore, the interaction between PBSs and reaction centres is transient
(Mullineaux and Emlyn-Jones, 2005). It is these PBPs, together with chlorophyll a
that give cyanobacteria their characteristic colouration; blue-green when PC is the
major PBP and orange-red when PE predominates. Due to the different chromophore
compositions in diverse cyanobacteria, a wavelength-specific light absorption is
created. For example, open ocean Synechococcus WH8103 is nine times more

effective at absorbing blue-green light (490 nm) than freshwater Synechocystis PCC
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6701 because of the involvement of marine Synechococcus-specific chromophore,

phycourobilin (PUB) (Ong and Glazer, 1991).

Different from the majority of cyanobacteria, including marine Synechococcus,
Prochlorococcus possess a unique light-harvesting complex. It lacks organised
phycobilisomes, although it still possesses PE-encoding genes (cpeB and cpeA)
(Hess et al., 1996; Penno et al., 2000; Ting et al., 2001). It contains divinyl
derivatives of chlorophyll a (absorption maximum: ~ 443-450 nm) and b (absorption
maximum: ~ 476-480 nm) as the major pigments (Goericke and Repeta, 1992;
Morel et al., 1993; Moore et al., 1995). Thus, the Prochlorococcus light-harvesting
antenna is better at absorbing blue wavelengths of light than green wavelengths,

which explains the distribution pattern down the water column in Figure 1.2.

Once the energy adsorbed by PBSs is transferred to photosynthesis reaction centres,
cyanobacteria and higher plants follow the same serial of reactions. By convention,
the light reaction of photosynthesis in plants and cyanobacteria, is represented by the
Z scheme; showing the pathway of electron transfer from water to NADP™ (Figure
1.3). Briefly, PSII is the reaction centre which carries out the photolysis of water and
excitation of chlorophyll P680. The excitation energy comes either from directly
absorbed light or from light harvesting pigment. An excited electron is transferred
from an excited P680" (which is reduced by electrons derived from photolysis of
water molecules) to pheophytin (pheo), which will reduce a bound plastoquinone,
named Qa. Then Qareduces a second quinone (Qg). From here, the electron flow
follows the intersystem chain with decreasing negative potential to PS | associated

with the generation of ATP. On excitation of PSI, electrons are consequently ejected



from P700, and the electron can therefore flow downhill to the ferredoxin and finally
to NADP. In addition to this process, a cyclic electron flow can occur within this
process when electrons flow from ferredoxin (FD) back into the intersystem electron

transport pathway to generate ATP.
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Figure 1.3 Diagram for the Z-scheme of oxygenic photosynthesis in cyanobacteria.

Most cyanobacteria, such as Synechococcus, use chromophore (phycobilin)-bearing PBSs to harvest
light except for Prochlorococcus whose light-harvesting antenna contain divinyl derivatives of
chlorophyll a and b. The light energy absorbed by the antenna is transferred into the reaction centres,
PSII and PSI. In PSII, the absorption of light energy by the chlorophyll reaction centre P680 results in
the transfer of an electron in an excited state from P680 to pheophytin (pheo), which reduces a tightly-
bound and immovable plastoquinone molecule, Q4. This in turn reduces a loosely bound
plastoquinone molecule, Qg, which detaches and becomes mobile and named PQ. The reduced Qg
diffuses through the hydrophobic core of the thylakoid membrane to a protein complex called Cyt bgf
complex (contains FeS, Cytochrome f, and two cytochrome bg molecules), which is reduced with the
concomitant translocation of protons into the thylakoid lumen. The electrons are passed on to a

mobile copper-protein (PC) which finally carries a single electron to PSI and reduces the oxidized
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P700" to P700. This process results in the production of ATP. In PSI, the electron released from P700
(on Ao) is passed ultimately to NADP™ via several other intermediates: Ay, a phylloquinone (vitamin
K); Fx, Fa, and Fg which are bound iron-sulfur proteins; ferredoxin (FD), which is a somewhat
mobile iron-sulfur protein molecule; and the enzyme ferredoxin-NADP reductase (FNR) and finally
into NADPH" which is reduced to NADPH. Alternatively, the electron may return to the cyt b6f
complex in a cyclic process that translocates additional protons into the thylakoid lumen. The
electrons used for reducing excited P680" to P680 is from photolysis of water molecules showed on

the left bottom of the diagram.

1.3.4 Ecological importance

The ecological importance of cyanobacteria was first determined by measuring the
rate at which radioactively labelled carbon sources were incorporated into organic
compound in the eastern tropical Pacific Ocean (Li et al., 1983). It was found that up
to 80% of primary productivity could be attributed to Synechococcus (Li et al.,
1983). More detailed estimation of the contributions of Synechococcus and
Prochlorococcus to the primary production has been facilitated by the use of flow
cytometry, which can distinguish Synechococcus and Prochlorococcus on the basis
of their different photosynthetic pigments (Chisholm et al., 1988; Chisholm et al.,

1992).

In the Atlantic, it was estimated that Synechococcus was responsible for 2% to 20%
of primary productivity (Li, 1994), with Prochlorococcus contributing from 11% to
57% (Li, 1994). A study carried out in the East China Sea estimated that
Synechococcus was responsible for up to 5% of the total primary production in
March, by June this had increased to 63% (Chang et al., 2003). In the Arabian Sea,
it was found that on average Synechococcus was responsible for ~ 38% of the total

gross primary production, whereas Prochlorococcus was responsible for ~ 15% of
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primary production (Liu et al., 1998). In contrast, Prochlorococcus was found to be
a dominant primary producer in the tropical and subtropical oligotrophic regions
(Liu et al., 1999; Maranon et al., 2003). Although these values vary from each other
according to different geographical locations, it is apparent the contribution of both

organisms is significant.

1.4 Marine viruses

1.4.1 Introduction

The first discovery of marine viruses can be traced back to the 1950°s (Spencer,
1955). However, it was not for another 2 decades that the study of marine viruses
became prominent. In 1979, Torrella and Morita reported a concentration of 10*
marine viruses mI™ by counting concentrated seawater samples passed through a 0.2
pum filter using transmission electron microscopy (TEM). Ten years later, a study
using ultracentrifugation and TEM detected as high as 10 viral particles mI™ present
in seawater samples from the Atlantic and Chesapeake Bay (Bergh et al., 1989).
Following this discovery, viruses have been found to be abundant in a wide range of
different regions in the marine environment, including the Antarctic (Kepner et al.,
1998; Madan et al., 2005), Arctic (Steward et al., 1996), the tropics and the
oligotrophic open ocean (Boehme et al., 1993; Cochlan et al., 1993). In these studies,
viruses are generally found in the range of ~ 10* to ~ 10’ virus-like particles (VLPs)

ml™. In general, surface waters contain higher concentrations of VVLPs than deeper
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waters, and the highest viral abundance is often accompanied by high numbers of

bacterial hosts (Hara et al., 1991; Boehme et al., 1993; Jiang et al., 2003).

In addition to variable abundance with respect to geographical locations, viral
numbers also display a significant variability in temporal scales, such as seasonal
variations. The seasonal change of viral abundance has been observed and depicted
in several different marine environments including Chesapeake Bay, Tampa Bay, the
Adriatic, Red Sea and Norwegian coastal waters (Jiang and Paul, 1994; Weinbauer et
al., 1995; Millard and Mann, 2006; Sandaa and Larsen, 2006). In the Tampa Bay
estuary a strong seasonal pattern was found with the highest concentrations in the
summer and lowest in the winter (Jiang and Paul, 1994). In the Adriatic Sea the
highest virus numbers were observed in late summer or autumn, and the lowest
numbers were in winter or early spring (Weinbauer et al., 1995). Total virus numbers
are often closely correlated with their potential host abundance. For example, in the
Norwegian coastal waters it was found that viral abundance was low in later summer
(August) and mid winter (November) as were the number of bacteria (Sandaa and
Larsen, 2006). Viral number dynamics also can be revealed by short-term studies.
For example, in the Adriatic Sea oscillations of viral and bacterial numbers in the
surface waters were detected during a 42-h cycle, where the major maxima in

bacterial abundance were followed by viral peaks (Weinbauer et al., 1995).

1.4.2 Diversity of marine viruses

Marine viruses are extremely diverse. They can infect almost every type of marine

organisms, including bacteria, planktonic microbes, algae, protozoa, molluscs,
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crustaceans, reptiles, fish and mammals (Munn, 2006). The diversity of marine
viruses that infect bacteria will be discussed in detail in the Section 1.4.5 using the
best studied marine viruses that infect cyanobacteria (cyanophages) as an example.
Apart from phages infecting marine cyanobacteria, significant advances have been
made in understanding viruses infecting marine eukaryotic phytoplankton
communities. The best described viruses belong to the family Phycodnaviridae,
which are large icosahedral, and all contain double-stranded DNA genomes, ranging
from 160 to 560 kb (180-560 kb) (Van Etten and Meints, 1999; Sandaa et al., 2001;
Van Etten et al., 2002). Phycodnaviruses infecting the cocolithophorid Emiliana
huxleyi, a well known bloom-forming marine coccolithophorid (Holligan et al.,
1993), have been shown to have major effect on the dynamics of E. huxleyi blooms

(Wilson et al., 2002; Schroeder et al., 2003).

Viruses infecting the photosynthetic, eukaryotic marine picoflagellate Micromonas
pusilla have also been shown to be genetically diverse, wide-spread (Cottrell and
Suttle, 1991, 1995; Short and Suttle, 2002). In addition, viruses that infect the
harmful boom-forming phytoplankton Heterosigma akashiwo were also investigated.
These viruses were suggested to play an important role in regulating the demise of H.
akashiwo red tide and were important factors in controlling the dynamics and
diversity of H. akshiwo populations (Nagasaki et al., 1994; Tarutani et al., 2000).
Although armed with the silica frustule, the bloom-forming diatom Rhizosolenia
setigera was found to be subjected to infection by a single-stranded RNA (ssSRNA)
virus (Nagasaki et al., 2004). A single-stranded DNA (ssDNA) virus was also
detected to be able to infect diatom Chaetoceros salsugineum (Nagasaki et al., 2005).

In addition, a nuclear inclusion virus (CspNIV) which infects and lyses the diatom
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Chaetoceros cf. gracilis was isolated and characterised from the Chesapeake Bay,
USA (Bettarel et al., 2005). Another group of phytoplankton, dinoflagellates, were
also demonstrated to be susceptible to viral infection (Tarutani et al., 2001; Tomaru

et al., 2004).

Other marine organisms, such as invertebrates, vertebrates and mammals are also
susceptible to viral infections. For example, bivalve molluscs, Crassostrea virginica,
were first reported to be infected by herpes-like virus almost 37 years ago (Farley et
al., 1972). Recently, a PCR-based method has been developed to detect a herpesvirus
(Ostreid herpesvirus 1, OsHV1) that was identified from several species of bivalve
molluscs (Batista et al., 2005). One economically important virus, white spot
syndrome virus (WSSV) that has an enveloped ds DNA, recently named as
Whispovirus (Mayo, 2002) and sequenced (van Hulten et al., 2001; Yang et al.,
2001). Viruses can also cause devastating effect in fish industry in terms of
production and revenue, such as salmon anaemia virus (ISAV) (Kibenge et al., 2004),
viral haemorrhagic septicaemia virus (VHSV) (Skall et al., 2005), lymphocystis
virus (LV) (Borrego Garcia and Bergmann, 2005) and betanodavirus that can cause
viral nervous necrosis disease in cultured marine fish (Maeno et al., 2004). Viral
infection is also a significant cause of mortality for marine mammals. For example,
the phocine distemper virus (PDV) led to over 60% seal population losses in some

areas of European 1988 and 2002 (Harkonen et al., 2006).

Diversity of marine viruses is also studied at the molecular level. Based on the idea
that separation of viral genomes by sizes should be able to provide a fingerprint of

total virioplankton, pulse field gel electrophoresis (PFGE) has been successfully
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applied in assessing the diversity of marine viruses from diverse environments
(Steward et al., 2000; Fuhrman et al., 2002). The viral dynamic studies employing
PFGE has shown that viral diversity changes with time, geographical location and
depth of water column (Wommack et al., 1999; Fuhrman et al., 2002). The
disadvantage of the use of PFGE alone in viral diversity studies is its inability of
permitting definite conclusions on the presence of specific viral groups in aquatic
environments. Recently, a culture-independent study of marine viral diversity has
been performed by sequencing viral metagenomic libraries from two marine viral
communities (Breitbart et al., 2002). It was estimated that over 65% of the sequences
were not significantly similar to previously reported sequences (Breitbart et al.,
2002). This discovery suggested that the majority of viral diversity was unknown.
This may be due to the fact that most marine organisms are not culturable in the

laboratory (Tramper et al., 2003).

1.4.3 Ecological importance

1.4.3.1 The microbial loop

The concept of the microbial loop, as the process of reintroducing dissolved organic
carbon (DOC) back into bacteria, has been established for over 20 years (Azam et
al., 1983). Following the discovery of abundant viral particles in the marine
environment, the impact of viruses has been integrated into the marine microbial
loop (Figure 1.4) (for reviews see Fuhrman, 1999; Wilhelm and Suttle, 1999;
Weinbauer, 2004). Cyanophages, an important subset of marine viruses, play an

integral part in the microbial loop (Figure 1.4), causing the lysis of phytoplanktonic
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cyanobacteria and the release of dissolved organic matter (Fuhrman, 1999; Wilhelm

and Suttle, 1999; Suttle, 2000).
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Figure 1.4 The microbial loop.

Phytoplankton are primary producers, which are subject to grazing by organisms at higher trophic
levels. The function of viruses in this loop is to short-circuit the flow of carbon into the pool of
dissolved organic matter (DOM). DOM then re-enters the loop via bacterial consumption. From
Wilhelm and Suttle (1999)

As illustrated in Figure 1.4, the net effect of viral lysis is photosynthetic fixed carbon
flowing away from higher trophic levels and being piped into the pool of dissolved
organic matter (DOM). This pool is then gradually incorporated into the loop by
heterophic bacteria (Middelboe et al., 1996). It has been estimated that up to 47% of
bacterial mortality may be due to viral lysis (Fuhrman and Noble, 1995). In terms of
photosynthetic fixed carbon, up to 26% is recycled back into DOM by viral lysis

(Wilhelm and Suttle, 1999).

1.4.3.2 Contribution to the global climate
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Another potential impact that viruses have on a global scale is their potential
involvement in the production of dimethyl sulphide (DMS), a critical component in
cloud formation and climate regulation (Malin et al., 1992). A study focusing on the
DMS-generating marine alga, Emiliania huxleyi, has found that viral lysis could
account for 25-100% of the demise of E. huxleyi during the decline of blooms in
experimental mesocosms (Bratbak et al., 1993). Another mesocosm study focusing
on DMS-producing algae, Micromonas strains, also revealed that up to 34% of the
populations could be lysed daily by viruses during the decline of blooms (Evans et
al., 2003). As viral lysis of these organisms can facilitate the production of DMS
(Hill et al., 1998), marine viruses may thus have a role in the biological shaping of

the global climate.

1.4.3.3 Impact on the community

Some theoretical and experimental analyses of the interaction between virus
infection and community composition have demonstrated that viruses have a
profound effect on the bacterial community composition in the marine environment
(Thingstad and Lignell, 1997; Thingstad, 2000; Middelboe et al., 2001; Fuhrman and
Schwalbach, 2003b). Based on theoretical models for viral control of bacterial
communities, the “kill the winner” hypothesis was proposed (Thingstad and Lignell,
1997; Thingstad, 2000). This hypothesis states that viruses would preferentially
infect the most abundant hosts, thus other populations will be able to co-exist,
otherwise, they would be out-competed. The experimental data also demonstrated

that the presence of viruses reduced the dominance of specific organisms in a mixed
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population, and thus are consistent with the “kill the winner” hypothesis (Fuhrman

and Schwalbach, 2003a).

In addition, virus-mediated genetic exchange, occurring by a process known as
transduction, was found in freshwater (Ripp et al., 1994) and marine habitats
(Dahlberg et al., 1998; Jiang and Paul, 1998). Preliminary calculations indicated 10"
transduction events per year in Tampa Bay (Jiang and Paul, 1998). As viruses are
generally specific to certain hosts, transduction would normally occur between
strains of the same species. Nevertheless, with the discovery of broad-host-range
phages, virus-mediated gene transfer could occur between genera (Sullivan et al.,
2003). A study has shown that phages infecting marine Synechococcus strains can

package host DNA (Clokie et al., 2003).

1.4.3.4 Virus-mediated mortality

Another important ecological consequence of viral infection is mortality of the host
cells. Several different methods have been attempted to assess the viral mortality of
cyanobacteria. The most direct method of detecting virus-infected cells is to use
TEM to visualise mature phages inside hosts. This approach was first adopted in
counting the number of visibly infected Synechococcus cells (Proctor and Fuhrman,
1990). It was found that up to 2.8% of cells contained mature phages, which was
translated into 28% of Synechococcus mortality by a conversion factor of 10 to infer

the frequency of infected cells from the frequency of visibly infected cells (FVIC).
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In addition to the direct TEM method, a different approach using viral decay rate to
infer the contribution of viruses to Synechococcus mortality gave an estimation of
phage-mediated Synechococcus mortality between 0.2% and 15.0% for coastal and
between 5% and 33% of mortality for open ocean systems (Suttle and Chan, 1994).
Another indirect method using theoretical rates of phage absorption and host
concentrations predicted the percentage of phage-induced Synechococcus mortality

to be in the range of 0.005% to 3.2% (Waterbury and Valois, 1993a).

1.4.4 Bacteriophages

1.4.4.1 Classification

It has been suggested that viruses found in marine, freshwater and soil systems are
dominated by phages (Weinbauer, 2004), which are viruses that infect bacteria.
Traditionally, phages have been classified by morphological characteristics observed
in the electron microscope. Currently, phages are classified into 1 order, 13 families,
and 30 genera (Figure 1.5) (Ackermann, 2003), The tailed phages are classified into
the order Caudovirales, which at present, contains three families: Myoviridae,

Siphoviridae and Podoviridae (Ackermann, 2003). .
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Figure 1.5 Schematic representations of the thirteen bacteriophage families categorised using

transmission electron microscopy.

From Ackermann (2003)

The three families belonging to the tailed phages (Figure 1.6) all have dsDNA
genomes. The myoviruses possess an icosahedral head with a long contractile tail,
and compromise ~ 25% of phage (Ackermann, 2003). The most abundant
siphoviruses also have an icosahedral head, but have a long non-contractile tail, and
constitute ~ 61% of phages (Ackermann, 2003). The podoviruses again have an
icosahedral head, but have a short non-contractile tail and constitute ~ 14% of all
phages observed (Ackermann, 2003). Podovirus tails are sometimes so small, such as
3 nm in length, that they are not easily detected under an electron microscope
(Ackermann, 1999). The three tailed families have been further subcategorised into
different morphotypes based on head morphology, such as isometric, elongated and

narrow in terms of head length to width ratio (Ackermann and Dubow, 1987).
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Figure 1.6 The three families of tailed phages as revealed by TEM.

a, Myoviruses. b, Podoviruses. ¢, Siphoviruses. Scale bar, 50 nm. From Suttle (2005)

As the traditional classification of phages is purely reliant on morphological
characteristics, it has been questioned (Lawrence et al., 2002). Accordingly, with the
rapid accumulation of phage genomic data, a sequence-based taxonomic approach
has been explored based on the overall similarity of 105 completely sequenced phage

genomes (Rohwer and Edwards, 2002).

1.4.4.2 Host range

The large majority of tailed dSDNA phages carry thin tail fibres attached to a
baseplate or to the tail shaft. The tail fibre proteins are the most important
components involved in attachment to the host cell. For example, the adsorption
specificity of T4 is determined by the distal tail fibers (encoded by gene 37), which
bind to receptors on the bacterial surface (Oliver and Crowther, 1981; Wood et al.,

1994). Duplication of a small domain in the tail fibre adhesin was found to extend
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the host range of bacteriophage T4 (Tetart et al., 1996). Studies in T-even phages
also showed that recombination between the tail fibre genes altered their adhesin
specificity (Tetart et al., 1998). DNA sequence analysis of a virulent double-stranded
DNA bacteriophage, phage K1-5, revealed two open reading frames encoding two
tail fibre proteins with different adhesin specificities, which allows them to infect

both K5 and K1 E. coli strains (Scholl et al., 2001).

Although bacteriophages are assumed to have a limited host range (Wommack and
Colwell, 2000), a phage capable of infecting a broad range of host would
conceivably have a better chance of surviving longer in the environment compared to
one that has a narrow host range. In fact, a marine virus, vibriophage KVP40, has
been shown to be able to infect eight Vibrio species and the closely related bacterium
Photobacterium leiognathi (Matsuzaki et al., 1992). Further study revealed that an
outer membrane protein, OmpK, which functioned as the receptor for K\VVP40

determined host specificity (Inoue et al., 1995).

1.4.5 Cyanophages

1.4.5.1 Introduction

Cyanophages are phages that specifically infect cyanobacteria. They were first
isolated from freshwater over forty years ago (Safferman and Morris, 1962). The
first marine cyanophage was isolated from the Black Sea in 1981 (Moisa et al.,
1981). No further research was carried out until Proctor and Fuhrman discovered that

up to 5% of cyanobacteria contained phage particles (Proctor and Fuhrman, 1990).
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Subsequently, novel cyanophages have been continually identified and characterised
from different locations, such as Georgia estuarine rivers, Rhode Island’s coastal
waters, Gulf of Agaba, the coastal waters of Texas, Woods Hole Harbor, the
Sargasso Sea, the Gulf Stream, the English Channel, Chesapeake Bay, the Indian
Ocean, and Norwegian coastal waters (Suttle and Chan, 1993a; Waterbury and
Valois, 1993a; Wilson et al., 1993a; Wilson, 1994a; Lu et al., 2001; Zhong et al.,
2002; Marston and Sallee, 2003; Clokie et al., 2006a; Millard and Mann, 2006).
Most of these investigations of cyanophages mainly focused on the viruses infecting
marine Synechococcus. However, phages infecting Prochlorococcus have also

recently been isolated and characterised (Sullivan et al., 2003).

1.4.5.2 Abundance and diversity

The cyanophage abundance in the world’s oceans varies with geographical locations,
with typical concentration ranging from 10° to10° viruses ml™ (Suttle and Chan,
1993a; Waterbury and Valois, 1993a; Suttle and Chan, 1994; Lu et al., 2001,
Marston and Sallee, 2003), and sometimes with a concentration beyond 10° viruses
ml™* (Suttle and Chan, 1993a; Wilson et al., 1993a; Suttle and Chan, 1994). In the
case of phages infecting Prochlorococcus, the highest concentration detected so far
has been 3 x 10° viruses mI™ (Sullivan et al., 2003), which is within the range of

phages infecting Synechococcus.

Cyanophages have been characterised on the basis of morphological analysis using
TEM (Section 1.4.2), but molecular diversity of cyanophages based on DNA

sequence analysis has increased rapidly. Analyses of restriction enzyme digestion of
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cyanophage DNA have revealed different patterns (Wilson et al., 1993a; Lu et al.,
2001), but Southern blotting analysis showed a limited degree of genetic
conservation (Wilson et al., 1993a). Further analysis of these conserved regions
revealed that they contained a gene that was homologous to the g20 region of the
coliphage T4 (Fuller et al., 1998). Gene g20 of phage T4 encodes the portal vertex
protein involved in capsid assembly. Moreover, this g20 region from three
Synechococcus myoviruses showed high variability as well as conserved regions.
Based on these conserved regions, PCR primers specific for the g20 region of
cyanophages of the family Myoviridae were designed (Fuller et al., 1998).
Denaturing gradient gel electrophoresis (DGGE) of the g20 PCR products (Scanlan
and Wilson, 1999) revealed high genetic diversity both in the surface water and

throughout the water column.

Based on the forward PCR primer specific to g20, a new reverse primer was
developed for amplifying a larger PCR product (Zhong et al., 2002) which has been
used to reveal the enormous diversity of cyanophages. Phylogenetic analysis based
on the sequenced PCR products revealed nine distinct phylogenetic groups with
three groups constituting known phage isolates and six groups comprised of cloned
environmental sequences. When terminal restriction fragment length polymorphism
(T-RFLP) based on the g20 gene was applied to the investigation of cyanophage
diversity in Chesapeake Bay, it was found that both phage diversity and abundance
changed over spatial and temporal scales (Wang and Chen, 2004). In another study
of the oligotrophic Gulf of Agaba, Red Sea, similar results showed cyanophage

numbers and diversity varied over a temporal and a spatial scales (Muhling et al.,

25



2005; Millard and Mann, 2006) Moreover, it was also found that cyanophage could

drive the diversity of their hosts (Muhling et al., 2005).

1.4.5.3 Classification

All of the cyanophages isolated to date from the marine environment fall into the
order Caudovirales (Mann, 2003). The majority of marine cyanophages characterised
so far are myoviruses (Waterbury and Valois, 1993a; Wilson et al., 1993a; Suttle and
Chan, 1994; Lu et al., 2001). Whereas, podoviruses dominate phages that infect
Prochlorococcus (Sullivan et al., 2003). The naming of marine cyanophages was
suggested as follows (Suttle, 2000): Cyanophage Xx-Y'YZaa where, Xx is the first
letters of the genus (and sometimes only species names are adopted) of the host used
for isolation (e.g. S for Synechococcus), YY is the place of isolation (e,g. RS for Red
Sea), Z is the virus family (e.g. M for Myoviridae, P for Podoviridae and S for
Siphoviridae), and aa is a sequential number (e.g. 3 and 4 in the names of S-RM3, S-

RM4).

1.4.5.4 Host range

Considerable variation in the host ranges of phages infecting Synechococcus has
been revealed (Waterbury and Valois, 1993a). Some phages were found to infect as
many as 10 of the 13 subcluster 5.1 Synechococcus strains, whereas others would
infect only the strain used for isolation. One phage was found to infect several
subcluster 5.1 strains as well as one subcluster 5.2 strain (Suttle and Chan, 1993a;

Wilson et al., 1993a; Lu et al., 2001). Although cyanophages have also been isolated
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using subcluster 5.2 Synechococcus as host cells, it is reported to be easier to isolate
phage on subcluster 5.1 strains than subcluster 5.2 strains (Lu et al., 2001). It has
also been found that phages infecting subcluster 5.1 Synechococcus strains had a
broader host range (Lu et al., 2001). Host range is clearly not constrained by the
geographical locations where the phages and hosts were isolated. Phages that can
infect subcluster 5.2 strains fall into all three tailed families, but all of the phages
capable of infecting subcluster 5.1 strains are myoviruses (Mann, 2003). Thus,

myoviruses tend to exhibit broader host ranges.

Recently, cyanophages capable of infecting both Synechococcus and
Prochlorococcus have been identified (Sullivan et al., 2003). Furthermore, phages
isolated on Synechococcus are more likely to cross infect with low-light-adapted
Prochlorococcus, strains that are able to grow at extremely low irradiance (Moore
and Chisholm, 1999), than high-light-adapted Prochlorococcus, strains that are able
to grow maximally at higher light intensity (Moore and Chisholm, 1999), according

to 16S rDNA phylogenetic analysis (Rocap et al., 2002).

1.4.5.5 Temperate cyanophages

Compared with the information about the lytic phages infecting Synechococcus, only
limited work has been carried out on temperate marine Synechococcus phages. The
presence of temperate phages has been indicated as an increase in viral counts and a
decrease in Synechococcus counts when Synechococcus populations were induced by
mitomycin C (Ortmann et al., 2002).The lysogenised host has been shown to account

for 0.6% of Synechococcus populations. Another report demonstrated the occurrence
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of lysogenic Synechococcus in natural populations and revealed that prophage
induction was inversely correlated with Synechococcus abundance and primary
productivity during an annual cycle (McDaniel et al., 2002). Studies on lysogeny in
E. coli have revealed that lysogenic phages can improve the fitness of the host in
certain environment; they may alter the phenotype of the host and can confer
immunity to the host (Wommack and Colwell, 2000). Whether or not the temperate
phages of marine Synechococcus have similar implications for their hosts has yet to

be determined.

1.5 Virus receptor

Viruses are intracellular parasites that commonly bind to the cell surface and inject
their genetic material and other needed components through the host cell barriers.
This first step in virus-host interactions, the recognition of the host cell, represents
one of the critical factors determining a successful life cycle. Potentially, any host
surface components can serve as virus receptors that were specifically bound to viral
receptor-binding proteins (Heller, 1992; Haywood, 1994). For example, influenza C
virus uses N-acetyl-9-O-acetylneuraminic acid as the receptor (Herrler et al., 1985).
Bovine coronavirus (BCV), a virus that can cause severe diarrhoea in newborn
calves, also use this sialic acid as the primary receptor (Schultze and Herrler, 1992).
Apart from carbohydrates, proteins are also served as viral receptors, such as a 46-
kDa membrane glycoprotein that is referred to as CAR (coxsackie adenovirus
receptor) is the primary receptor to which most of the human adenoviruses bind

(Bergelson et al., 1997; Tomko et al., 1997); LamB, an outer membrane protein of E.
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coli involved in maltose and maltodextrin transport, acts as the receptor protein for

phage lambda (Boulain et al., 1986; Heller, 1992).

Experimental evidence also showed that some viruses are using multiple receptors,
such as human immunodeficiency virus (HIV) recognise both the CD4 glycoprotein
(Sattentau and Weiss, 1988) and galactosylceramide (Fantini et al., 1993). One of the
best studied bacterial viruses, T-even-type phage T4, also bind to two different
receptors on the bacterial cell surface. The first, reversible step in the adsorption is
the binding of the long tail fibers to lipopolysaccharide (LPS) (Wilson et al., 1970)
in the outer membrane of E. coli B or the outer membrane proteins, OmpC of E. coli
K-12 (Morona et al., 1985). In phage T2, the long tail fibre binds to the out
membrane protein OmpF (Hantke, 1978). Once the long tail fibres binding to the
outer membrane receptors, the short tail fibres are released from their stored and
folded position to irreversibly bind to either the E. coli LPS core region including
heptose (Riede, 1987) or lipid A including keto-desoxy-octonate (Heller et al., 1983).
In this second step, all T-even phages bind to the LPS but not to the outer membrane

proteins (Mosig and Eiserling, 2006).
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Long tail fibre

Short tail fibre

Figure 1.7 Schematic representations of the bacteriophage T4.

The long and short tail fibres are indicated.

The two phage receptor proteins stated above, OmpC, OmpF and LamB from E. coli,
are bacterial pore-forming outer membrane proteins that were named porins in 1976
(Nakae, 1976). Porins are large water-filled channels in lipid bilayer membranes
(Nakae, 1976). In most Gram negative bacteria, porins are unusually monomers or
trimers in the outer membrane with a molecular mass between 30 and 40 kDa (Benz
and Bauer, 1988). They are highly expressed proteins and can reach about 10*-10°
copies per cell (Koebnik et al., 2000). Most of them, including the three porins stated
above, show slightly cation selectivity (Benz et al., 1985). Some of them, such as
PhoE and NmpC of E. coli and protein P of P. aeruginosa, show anion selectivity
(Benz et al., 1985). None of them show particular substrate specificity as maltoporin
LamB from E. coil, which are maltooligosaccharid-specific (Benz et al., 1986).
Given the porin’s special location and high level of expression, it is not surprising
that some of them were first identified as phage receptor before their physiological
function was determined. For example, LamB was firstly identified as a receptor for

phage lambda, hence, reflected by its name, LamB (Szmelcman and Hofnung, 1975).
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In cyanobacteria, such as Synechococcus sp. PCC 6301 and Anabaena variabilis,
porins are bigger and composed of monomers of about 50 to 70 kDa (Benz and
Bohme, 1985; Hansel and Tadros, 1998). However, whether cyanobacterial outer

membrane proteins can also act as phage receptors remains to be established.

1.6 Environmental and physiological effects on phage-host

interactions

1.6.1 Introduction

Due to the fact that phages propagate by hijacking the host cells, the production and
distribution of phages are subject to the productivity and density of the host bacterial
populations. As one would expect, anything that affect the host will have an effect on
the phage-host interactions. Thus, environmental factors, such as temperature, pH,
cations and light, and host physiological state can potentially have profound effects

on every stage of the cyanophage life cycle from adsorption to cell lysis.

The study of marine phage-host interactions is essential in order to understand the
role that phages play in the marine environment. Phages can interact with the
bacterial host cells in at least three distinct ways, resulting in lytic, lysogenic, and
pseudolysogenic relationships (Figure 1.8) (Weinbauer, 2004). The life cycle of
phages starts with attachment and ends with lysis of the host cells. During a

lysogenic cycle, the phage genome may incorporate into the genome of the host. The
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phage genome (prophage) remains as part of the genome of the host until the lytic
cycle is induced (Fuhrman, 1999; Weinbauer, 2004). In contrast to a lysogenic phage,
during pseudolysogenic cycle, phage DNA will act as a free episome and remain
dormant within the host for some time before environmental conditions favour the

Iytic or lysogenic life cycles (Weinbauer, 2004)
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Figure 1.8 Different types of phage life cycles.

Lytic cycle starts with phage adsorption and ends with the release of phage progenies. During
lysogenic cycle, phage genomes integrate into bacterial genomes and stay with the host bacteria until
the lytic cycle is induced. Alternatively, phage genomes may neither replicate nor integrate into the
host genome. They remain as intact and inactive for some time until environmental conditions favour

the lytic or lysogenic life cycles. Adapted from Weinbauer, (2004)

1.6.2 Effect of temperature, pH and cations

Temperature is a key environmental parameter and phages in general have been
found to retain their infectivity over a wide range temperature conditions from sea

ice to hot springs (Weinbauer, 2004). Studies on cyanophages revealed that they can
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be stored at 4°C for several months without significant loss of infectivity (Safferman
and Morris, 1964; Safferman et al., 1969). With respect to high temperatures,
cyanophages display varied tolerance; some are stable at 40°C (Safferman and
Morris, 1964; Safferman et al., 1969) for one hour or more, others can’t form

plagues at above 35°C (Padan et al., 1971).

Data on pH tolerance is only available in freshwater cyanophages, which show a
broad range of pH from 5 to 11 (Safferman and Morris, 1964; Safferman et al.,
1969). This observation coincides with the fact that some cyanobacteria show
maximum growth at pH values above 8, some even at pH 11 (Padan and Shilo, 1973).
By comparison, many bacteriophages lose their infectivity beyond pH 8 or 9

(Ackermann and Dubow, 1987).

The availability and concentration of cations, such as Mg®*, also can affect
cyanophage infectivity and adsorption. For instance, Mg?* is crucial for stabilisation
of freshwater cyanophages LPP-1 and SM-2 in deionised water. In contrast,
cyanophage SM-1 is stable in distilled water and Mg?* does not enhance its

infectivity (Safferman et al., 1969).

1.6.3 Effect of light

In laboratory studies on phage-host systems infection is commonly carried out under
optimised light supply for host growth. However in natural environments
cyanobacterial hosts are subject to light-dark cycles. Thus, it is important to know

how daily alternation of light and darkness will affect the phage-host interactions.
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Previous studies have found that light can strongly influence the attachment of
cyanophage AS-1 (Safferman et al., 1972) to the cyanobacterium Synechococcus sp.
strain PCC6301 (formerly Anacystis nidulans) (Cseke and Farkas, 1979b), because
only 40% of the phage were adsorbed to the cells in the dark, compared to 70%
adsorption in the light. However, a 10-fold increase in Na™ concentration in the
medium counteracted the effect of darkness and restored the adsorption rate of AS-1
to the level of light adsorption in the original medium. This phenomenon has been
explained as due to light-induced charge neutralisation at the cell surface or by light-
induced changes in the ionic composition adjacent to the cell surfaces (Suttle, 2000).
So far there has been no report about the effect of light on marine cyanophage
adsorption and so little work to identify the specific receptors on the host cell which
cyanophage can recognise and bind to. Clearly, the effect of light on cyanophage

adsorption is an area that needs more study.

In addition to adsorption, cyanophage replication is also sensitive to light conditions.
Studies on freshwater cyanophage LPP-1 infection of cyanobacterium Plectonema
boryanum have revealed that the dark incubation of phage-infected cells not only
reduced the burst size to 10-15% of that observed in the light, but also delayed the
appearance of free phage particles (Sherman and Haselkor, 1971). Despite keeping
the infected cells in the dark for various times, phage replication would resume
normally but with a larger burst size (Sherman and Haselkor, 1971). Similar results
were also observed when cyanophage AS-1 infected Synechococcus elongatus were
kept in light for 3 h before they were transferred into darkness for 10 hours (Kao et

al., 2005). In contrast, studies of freshwater cyanophage N-1 infection of the
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filamentous cyanobacterium Nostoc muscorum and AS-1 infection of Synechococcus
sp. strain PCC6301 have found that light was crucial for phage release from the hosts,
because incubation of phage-infected cells in the dark significantly reduced burst
sizes (Adolph and Haskelkorn, 1972; Allen and Hutchison, 1976). These data clearly
demonstrate that at least for some cyanophages, the host photosynthetic activity is

required for phage replication.

Apart from the dependence of phage replication on photosynthesis, phage infection
can have very different impacts on the host’s photosynthetic activity. In the case of
cyanophage infection of unicellular cyanobacteria, photosynthetic activity was
typically kept unchanged prior to lysis of the cells (MacKenzie and Haselkorn, 1972;
Sherman, 1976; Suttle and Chan, 1993a; Clokie et al., 2006c), despite the fact that
AS-1 infection of cyanobacterium Anacystis nidulans resulted in a gradual inhibition
of photosynthetic electron transport of PSII, whereas the activity of PSI was not

altered during phage infection (Teklemariam et al., 1990).

1.6.4 Effect of host physiology

Phage-host interactions can also be affected by the physiological status of the host.
There is clear evidence from studies on E. coli phage T4 that increased growth rate
of the host caused an increase in phage T4 adsorption rate and burst size, but a
decrease in the latent and eclipse period (Hadas et al., 1997). There has been very
little work done to investigate the effect of host physiology on cyanophage-host
interactions. The only report is in the cyanophage S-PM2 and Synechococcus sp.

WH7803 system, for which adsorption kinetics were unchanged when the cells were
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subjected to phosphate-starved conditions, but the latent period was longer and the
burst size was reduced to 20% of that with phosphate-containing medium (Wilson et
al., 1996). Further research found that 100% of the phosphate-replete cells lysed,
compared to only 9% of the phosphate-depleted cells. This finding indicated that
although the majority of phosphate-depleted cells were infected with cyanophage S-
PM2 (unchanged adsorption kinetics); most phages remained dormant inside the host
cells, only a small proportion entered the lytic life cycle. This phage-host
relationship has been termed pseudolysogeny and has been discovered in other

phage-host systems (Ripp and Miller, 1997).

1.6.5 Cyanophage genomics

Cyanophage strain S-PM2 was first isolated from the coastal waters off Plymouth,
UK (Wilson et al., 1996). It is a lytic myovirus with an icosahedral head and long
contractile tail that infects several strains of the abundant and ecologically important
marine Synechococcus strains (Wilson et al., 1996). It resembles coliphage T4 that
infects E. coli in morphology (Hambly et al., 2001), and was thus classified as a
cyanomyovirus. Synechococcus strain WH7803 is commonly used as its host and
this system has been used in studying phage-host interactions in this study. Recently,
the fully sequenced S-PM2 genome was published (Mann et al., 2005) (Figure 1.9).
It shows that S-PM2 has a genome size of ~ 196 kb with 237 probable protein-
coding sequences and 25 tRNA genes. There are at least 40 ORFs that are
homologues of phage T4, 19 ORFs encoding proteins that could be associated with
the cell envelope, and 20 ORFs encoding homologues of the cyanobacterial host.

Most strikingly, S-PM2 encodes homologues of the Synechococcus PSII reaction
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centre proteins D1 and D2 (Mann et al., 2003; Mann et al., 2005), which suggests
that S-PM2 may have a role in the photosynthesis of the host cells for the sake of the

providing energy for phage propagation (Mann et al., 2003).

The concept of interactions between phage infection and the host photosynthetic
performance was not a new topic. It was first reported three decades ago that phage
infection was dependent on the host photosynthesis although the extent of the
dependence varied (Adolph and Haskelkorn, 1972; MacKenzie and Haselkorn, 1972).
This concept was reinforced by following studies using different phage-host systems
(Sherman, 1976; Lindell et al., 2005; Clokie et al., 2006c; Shan et al., 2008).
Recently, phage-encoded photosynthesis genes of cyanobacterial origin, such as
psbA encoding photosystem Il core reaction centre protein D1 and hli (high-light
inducible) genes, are expressed during infection (Lindell et al., 2005; Clokie et al.,
2006b; Lindell et al., 2007). Some degree of light dependence for adsorption is also
reported for the freshwater cyanophage AS-1 (Cseke and Farkas, 1979a; Kao et al.,
2005). It is thought that the expression of virus-encoded photosynthesis genes in
infected cells allows the infected cell to maintain its photosynthetic activity so that

there is enough energy for viral replication and assembly.
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Figure 1.9 Diagram showing the circularly permuted genome of phage S-PM2.

The circles from outside to inside indicate the six reading frames, the scale bar in kilobases, G + C
content and homology with other organisms. Labels show ORF numbers and gene designations
named after their corresponding homologues in T4 or the host cyanobacteria. MS in parentheses
indicates the presence of S-PM2 proteins that have been demonstrated by mass spectrometry. Shaded

regions indicate the four genetic modules that encode T4-like genes. From Mann et al., (2005)

In addition to the S-PM2 genome, six other cyanophage (Syn9, Syn5, P60, P-SS7, P-
SSM2 and P-SSM4) genomes have been sequenced and annotated to date (Table 1.1),
among which four phages (S-PM2, Syn9, P-SSM2 and P-SSM4) are T4-like and the
others are T7-like. Four of them, S-PM2, P60, Syn5 and Syn9, were isolated on
marine Synechococcus strains (Waterbury and Valois, 1993a; Wilson et al., 1993a;

Lu et al., 2001), while the other three are Prochlorococcus cyanophages (Sullivan et

al., 2005).
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Table 1.1 General features of the sequenced cyanophages

Name Family Original host Size (bp) ORFs Presence of Presence of  Reference

psbA pshD
P60 Podoviridae Synechococcus 47,872 80 N (Chen and Lu, 2002)
S-PM2 Myoviridae Synechococcus 196,280 239 (Mann et al., 2005)
P-SSP7 Podoviridae Prochlorococcus 44,970 54 (Sullivan et al., 2005)

P-SSM2 Myoviridae Prochlorococcus 252,401 327
P-SSM4 Myoviridae Prochlorococcus 178,249 198

(Sullivan et al., 2005)
(Sullivan et al., 2005)

Syn5 Podoviridae Synechococcus 46,214 61 (Pope et al., 2007)

<z < < < <
<z <z z <z

Syn9 Myoviridae Synechococcus 177,300 226 (Weigele et al., 2007)

‘Y’ indicates that the gene is present. ‘N’ indicates that the gene is absent

With the exception of P60 and Synb5, the other sequenced cyanophages contain the
gene psbA, encoding for the photosynthesis reaction centre protein D1, and three of
them also contain the gene psbD encoding for another core photosynthetic protein
D2 (Table 1.1). Studies on the presence of the core photosynthetic genes in marine
cyanophages have established that the occurrence of the genes is widespread among

marine cyanophages (Millard et al., 2004; Sullivan et al., 2006).

1.7 Hypothesis and outline

Marine cyanophage S-PM2 needs light to complete its adsorption to Synechococcus
sp. WH7803. This light-dependent phage adsorption is not just limited to S-PM2.
Different light wavelengths and light-related processes, such as cyanobacterial
circadian clock and photosynthetic activity, may have a role in this light-dependent
phage adsorption. To gain a better understanding of cyanophage adsorption process,
S-PM2-resistant Synechococcus sp. WH7803 is to be screened from lab collections.
With the availability of the phage-resistant mutant, more effort can be put into

characterisation of the mutant and investigation of S-PM2 receptor material, which
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may be a light-sensitive molecule(s), such as protein(s), located on the outer
membrane of WH7803. Experiments including SDS-PAGE can be carried out to
compare the protein profile of wild-type and phage-resistant strains. The proteins
present in the wild-type but not in the mutant (they may represent S-PM2 receptors)
are to be analysed using mass spectrometry. To confirm their identity as S-PM2

receptors, gene knock-out mutants are to be constructed.
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Chapter 2 Materials and Methods
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2.1 Strains and Plasmids

2.1.1 Cyanobacterial and cyanophage strains

Table 2.1 Synechococcus strains used in this study

Strain Area of isolation Reference

WH7803 North Atlantic (Waterbury et al., 1986)
WH8018 Woods Hole, USA (Waterbury et al., 1986)
WH8109 Woods Hole, USA (Waterbury et al., 1986)
Dim Gulf of Agaba, Red Sea Blanes Bay, (Fuller et al., 2003)

BL36 Blanes Bay, Mediterranean Sea Laure Guillou, unpublished
BL161 Blanes Bay, Mediterranean Sea Laure Guillou, unpublished
BL164 Blanes Bay, Mediterranean Sea Laure Guillou, unpublished
RS9916 Gulf of Agaba, Red Sea (Fuller et al., 2003)

The Synechococcus strains used in this study have been maintained in artificial sea

water (ASW) medium at the University of Warwick for a number of years.

Cyanophage S-PM2 was the main phage strain used throughout this study. It was

originally isolated from English Channel (Wilson et al., 1993a). S-PM2 was

maintained by infecting Synechococcus sp. strain WH7803 and phage stocks (Section

2.8) were kept at 4°C in the dark for up to one month. The first 9 phages (from S-PM2

to S-BM3) listed in Table 2.2 were also used for challenging WH7803 to isolate

cyanophage-resistant mutants. In addition, other cyanophage strains involved in the

phage adsorption experiment were from the laboratory collection and are listed in

Table 2.2.
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Table 2.2 Cyanophages used in this study

Phage strain | Family Host (s) Avrea of isolation Reference

S-PM2 Myoviridae WH7803, WH8012, WH8018 Plymouth, UK (Wilson et al., 1993a)
S-PWM1 Myoviridae WH7803 Gulf of Mexico (Suttle and Chan, 1993a)
S-PWM3 Myoviridae WH7803, SYN48, SNC2, SNC1* | Gulf of Mexico (Suttle and Chan, 1993a)
S-BP3 Podoviridae | WH7803 Bermuda (Fuller et al., 1998)
S-BnM1 Myoviridae WH7803 Bergen, Norway (Wilson, 1994a)

S-MM1 Myoviridae WH7803 Miami, Florida (Wilson, 1994a)

S-MM4 Myoviridae WH7803 Miami, Florida (Wilson, 1994a)

S-MM5 Myoviridae WH7803 Miami, Florida (Wilson, 1994a)

S-BM3 Myoviridae WH7803, WH8103 Sargasso Sea (Fuller et al., 1998)
S-RSM1 Myoviridae WH7803, WH8103 Red Sea (Wilson, 1994b)

S-RSM2 Myoviridae WH7803, WH8012 Red Sea (Wilson, 1994b)

S-RSM3 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM5 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM6 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM7 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM8 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM9 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM11 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM12 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM13 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM14 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM15 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM18 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM19 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM22 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM23 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM25 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM26 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM30 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)
S-RSM34 Myoviridae WH7803 Red Sea (Millard and Mann, 2006)

* SYN48 and SNC2 are phycoerythrin-containing strains of marine Synechococcus, and SNC1 is a phycocyanin-

containing strain of marine Synechococcus
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2.1.2 Escherichia coli strains

Table 2.3 E. coli strains

Strain Genotype Reference

TOPO 10 F mcrA A(mrr-hsdRMS-mcrBC)D80lacZAM15 AlacX74 recAl | Invitrogen
araD139 A(ara-leu)7697 galU galK rpsL endAl nupG

MC1061 araD139, A (ara, leu)7697, AlacX74, galU’, galK’, hsr’, hsm", (Casadaban and
StrA Cohen, 1980)

DH5a supE44 A lacU169 80 lacZAMI15 hsdR17 recAl 'endAl gyrA96 | (Hanahan, 1983)

thi-1 relAl

2.1.3 Plasmids

Table 2.4 Properties of plasmids

Plasmid Relevant Characteristic (s) Reference
pCR2.1-TOPO Ap" Kan® Invitrogen
pMUT100 Kan®, Tet" (Brahamsha, 1996)
pRL24 Tc" Ap'; conjugal plasmid; derivative of RK2 (Meyer et al., 1977)
pRL528 Cm'; helper plasmid; carries mob (Elhai and Wolk, 1988)
pCR-XL-TOPO | Kan®, Zeocin® Invitrogen
pYJo1l 0.37 kb EcoRl insert cloned from Synechococcus | This study

sp. WH7803 ORF0948
pYJ02 0.4 kb EcoRl insert cloned from Synechococcus This study

sp. WH7803 ORF0948
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2.2 Chemicals

All chemicals were of analytical grade from Sigma Chemicals, unless otherwise stated.
Restriction enzymes and DNA modifying enzymes were supplied by Helena
Biosciences, unless other wise stated. Bacto-agar was supplied by Difco Laboratories

Ltd.

2.3 Equipment and kits

Gel tanks for DNA gel electrophoresis were supplied by Pharmacia, Bucks. QIAquick
Gel Extraction kit and QIAquick PCR Purification Kit from Qiagen Ltd, UK were
used to purify PCR product. A Mini prep kit (Qiagen Ltd, UK) was used to extract
plasmid from E. coli. PCR was performed using a Biometra thermal cycler.
Visualisation of PCR products was performed using Geneflash from SYNGENE,
USA. A French press from the American Instrument Company, USA was used to
disrupt cells. Two systems were used to set up protein gels to perform sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE). One system was the vertical
slab gel system, 21 cm long and 1 mm thick from C.B.S. Scientific Company, Del
Mar, CA. The second system was the Mini-PROTEAN 3 system (BIO-RAD, USA).
A Becton Dickinson FACScan was used to count cyanophages. Protein concentration
was measured using the DC Protein Assay kit (Bio-Rad Laboratories; Richmond, CA)

using bovine serum albumin (Sigma) as standard.

A bench top Heraeus Biofuge Pico was used for centrifuging small volumes (< 2 ml)

of material with a maximal relative centrifugal force (RCF) of 15 000 g. For volumes
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ranging from 10 to 350 ml, an Avanti® J-25 centrifuge (Beckman-coulter) was used.

Two different rotors were used with the centrifuge; JA25.50 for volumes up to 30 ml,
JLA-10.500 for volumes up to 350 ml. For ultracentrifugation, an Optima™ L-80XP
Ultracentrifuge (Beckman-coulter) with a SW40Ti rotor was used. A Backman TLA-

100 with a TLA-100.3 rotor was used for membrane preparation.

2.4 Medium

Water used throughout this study was obtained from a Milli-Q plus 185 water

purification system, Millipore Gloucester, UK.

2.4.1 Purification of agar for plating Synechococcus strains

In order to remove the impurities in Bacto agar for the successful growth of
Synechococcus strains on plates, Bacto agar used throughout this study was subject to
a process of purification according to a previous report (Waterbury and Willey, 1988).
Briefly, 250 g Bacto agar was washed by mixing with 5 I of water through constant
stirring in a large beaker for 30 min. Then, a Buchner funnel with 2 sheets of 3SMM
Whatman paper was used to collect the agar by filtration. This procedure was repeated
at least 3 times until the filtrate was visibly clear. Then, ethanol (5 I) and acetone (5 I)
were sequentially used for washing the agar. The resultant agar was air dried in a

fume hood. The purified agar was stored in a plastic airtight container.
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2.4.2 Media for growth of cyanobacteria

Both artificial seawater (ASW) and medium SN were used throughout this study for

the growth of Synechococcus strains.

Table 2.5 ASW medium (Wyman and Carr, 1988)

Compounds glt
NaCl 25
MgCl,. 6H,0 2
KCI 0.5
NaNO; 0.75
MgSO,.7H,0 35
CaCl, H,0 0.5
Tris base 1.1
K,HPO, 3H,0 0.03
ASW trace metals solution 1ml

Table 2.6 ASW trace metals solution (Wyman and Carr, 1988)

Compounds gl™
H,B0; 2.86
MNCl,.4H,0 181
ZnS0,.7H,0 0.222
Na,M00,.2H,0 0.39
CuS0,.5H,0 0.008
Co(NO3),.6H;0 0.0494
FeCl;.6H,0 3.0
EDTA 0.5

HCI was used to adjust the pH of the medium to 8.0. ASW was routinely made from
stocks prepared by the University media preparation service. Solid ASW agar plates

(1%) were made by the following procedures: ASW (double concentrated) was
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autoclaved separately from the agar solution (2%, w/v) before mixing together and

pouring the plates.

Table 2.7 SN medium salt stocks (100x) (Waterbury and Willey, 1988)

Compounds g I (for preparation of g I (for preparation of
liquid SN medium) solid SN medium)

EDTA 0.56 0.56

NaNO; 76.5 21.2

NH,CI - 0.531

K,HPO, 1.57 0.390

Na,COs3.H,0 1.06 1.06

Table 2.8 SN trace metals solutions and Va Vitamin mix (Waterbury and Willey, 1988)

SN trace metal solutions compounds gl
MnCl,.4H,0 1.4
ZnS0,.7H,0 0.222
Na,Mo00,4.2H,0 0.390
Co(NO3).6H,0 0.025
Ferric ammonium citrate (CgHgO7.nFe.nH3N) 6.0
Citric acid hydrate (CgH1¢Og) 6.250
Va Vitamin mix Compounds mg I
Thiamin-HCI 200
Biotin 1
Vitamin B12 1
Folic Acid 2
PABA 10
Nicotinic acid 100
Calcium pantothenate 200
Pyridoxine-HCI 100

For preparation of liquid SN medium, 200 ml of water was added to 750 ml of



seawater. After autoclaving at 121°C for 15 min, 10 ml of sterile salt stock was added,

followed by the addition of 0.5 ml of filter-sterilised Va Vitamin mix and 1 ml of

trace metals solution.

For the preparation of solid SN (0.3%) used in pour plating, 3 g of agar in 200 ml of

water was autoclaved separately from 750 ml of seawater before being combined.

Then 10 ml of sterile salt stock, 0.5 ml of Va Vitamin mix (filter-sterilised) and 1ml

of trace metals solution (filter-sterilised) were added. Finally sodium sulphite (filter-

sterilised) was added to a final concentration of 2 mM in a total volume of 40 ml.

For the preparation of solid SN (1.0%) used in solid agar plates, 10 g of agar in 200

ml of water was autoclaved separately from 750 ml of seawater before being

combined. Then 10 ml of sterile salt stock, 0.5 ml of VVa Vitamin mix (filter-sterilised)

and 1 ml of trace metals solution (filter-sterilised) were added aseptically. Finally

sodium sulphite (filter-sterilised) was added to a final concentration of 2 mM in a total

volume of 40 ml.

2.4.3 Media for growth of E. coli

2.4.3.1 Luria Bertani (LB) Medium

Table 2.9 LB medium

Compounds gl
Bacto tryptone 10
Bacto yeast extract 5
NaCl 5

pH adjusted to 7.5 with 10 M NaOH
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2.4.3.2 SOC Medium

Table 2.10 SOC medium

Compounds gl?
Bacto tryptone 20
Bacto yeast extract 5
NaCl 0.5
KCI1M 2.5 ml
Glucose * 1 M 20 ml

*Filter-sterilised glucose was added after the media had been autoclaved; SOC media was used in

transforming E. coli.

2.4.4 Contamination test medium for Synechococcus strains

To test for heterotrophic contaminants, samples from Synechococcus cultures were
plated on a modified ASW medium enriched with 2% (w/v) glucose, 0.15% (w/v)
yeast extract and 1.5% (w/v) agar. Double concentrations of the enriched ASW and
agar were autoclaved separately followed by the addition of filter-sterilised glucose (1
M) and mixing before pouring the plates. The plates were incubated in the dark at

25°C for 14 days and checked regularly for the appearance of colonies.

2.5 Phage titration

Phage titration was based on a previous reported protocol with minor modifications
(Wilson et al., 1996). Briefly, 10 fold dilutions of cyanophage was performed using
ASW, and samples were left to adsorb to 100 fold concentrated exponentially

growing Synechococcus sp. WH7803 (OD+so of 0.35-0.40) for 1.5 h at 25°C with
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gentle occasional shaking. These phage-cell suspensions were then mixed with 3 ml
molten ASW agar (0.3%) and poured onto solid ASW agar (1%) plates before being
kept on the bench at room temperature for at least 2 h. Incubation of these plates was
carried out at 25°C with illumination at 15-25 pE m™ s™. The agar used for this
procedure had been previously cleaned as described in Section 2.4.1. Plaques
(normally appeared within 7 days) were counted manually using a colony counter.

Control plates received no cyanophage.

2.6 Culture conditions

Synechococcus stock strains were cultured in 50 ml, 100 ml and 250 ml volumes in
conical flasks under constant illumination; 2 25 pE m™ s, at 25°C in ASW without
agitation in a Gallenkamp cooled incubator. Large volumes of Synechococcus were
cultured in 1 and 5 | glass vessels to which 0.5 g | ™ NaHCO3 was added. These
vessels were provided with aeration by filtered air and continuous stirring under the
same condition as stated above. Sub-culturing was performed every month by a 10
dilution of stock into fresh medium. Stocks were also tested for contamination by the
streaking of culture onto contamination test medium (Section 2.4.3). When the growth
curve was monitored, Synechococcus cultured in 1 | glass vessel was used. The cell

density was recorded using the absorbance at 750 nm (OD7so) (Wilson et al., 1996).
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2.7 Spot test

A spot test was used to detect the susceptibility of host cells to phage infection.
Briefly, 10 pl of serially diluted phage stocks (from 10™ to 10°") were spotted onto a
lawn of host cells growing on solid ASW agar (1%) plates, and kept under

illumination at 10-25 uE m?s™, at 25°C until plaques appeared.

2.8 Preparation of phage stocks

Phage lysate was prepared by infecting an exponentially growing 1 | culture of
Synechococcus sp. WH7803 (ODso between 3.5 and 4) with cyanophage at a MOI
(the ratio of viruses to hosts) of 1. When lysis was complete in 2-5 days (culture
became clear), centrifugation at 6 000 g was used to remove cell debris. The titre of
the resulting S-PM2 lysate was in the range of 1.5 x 10° - 7.2 x 10 pfu mI™%. This was
used as phage stock and kept at 4°C for up to six months before a new phage stock

was prepared.

2.9 Cyanophage concentration and purification

2.9.1 Extraction from agar plates

For every 5 plates the sloppy top agar was scraped off and resuspended in 5 ml of

ASW containing 0.5 ml of chloroform in 50 ml Oakridge centrifuge tubes. To each
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plate that has been scraped, 3 ml of ASW was added and left for 1 h, before
combining them with the resuspended sloppy agar. This suspension was shaken
vigorously, left to stand for 1 h to allow phage particles to diffuse into the medium
and was then centrifuged at 8000 g for 10 min. DNase | and RNase | were added to
the resulting supernatant to a final concentration of 1 ug ml™and lysozyme to a final
concentration of 5 mg ml™. This mixture was left for 2 h at room temperature. Then
NaCl was added to a final concentration of 0.5 M, mixed and left on ice for 1 h,
before being centrifuged at 8000 g for 10 min. The supernatant was transferred to a
clean Oakridge tube followed by polyethylene glycol (PEG) 8000 addition to a final
concentration of 10% (w/v). After gentle mixing, this was kept overnight at 4°C. The
crude phage lysates were centrifuged at 8000 g for 10 min to pellet the precipitated
phage, and washed once with 4 ml of ice-cold 10% PEG/0.5 M NaCl. The final
resulting pellet was resuspended in 2 ml of ASW. Finally, an equal volume of
chloroform was mixed with this phage suspension by gentle inversion of the tube
followed by centrifugation at 8000 g for 5 min. The resulting top agueous phase was

collected and subject to further phage DNA purification steps.

2.9.2 Extraction from liquid culture

Cyanophages were also extracted from phage-lysed cultures. Lysozme, DNase I,
RNase | and NaCl were added to phage lysate as described in Section 2.9.1 before
removing cell debris by centrifugation at 4 000 g for 20 min. PEG 8000 was then
added to the supernatant at a final concentration of 10% (w/v), until all of the PEG
was dissolved. The mixture was left over night at 4°C followed by centrifugation at 8
000 g for 10 min. The resulting pellet was resuspended in 5 ml of ASW with the
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addition of an equal volume of chloroform and mixing by gentle inversion of the tube
followed by centrifugation at 8000 g for 5 min. The resulting top aqueous phase was

collected and subject to further phage DNA purification steps.

2.9.3 Caesium chloride purification of cyanophage

Phages were further purified using caesium chloride gradients as previously described
(Sambrook and Russell, 2001). Phage suspensions from Section 2.9.1 or Section 2.9.2
were layered on the top of 7 ml of 0.75 g mI™* caesium chloride (made up in ASW)
held in Ultra-Clear™ centrifuge tubes (14 x 95 mm) (Beckman). These were
centrifuged at 4°C in an Optima™ L-80XP Ultracentrifuge with a SW4QTi rotor at 86
000 g for 24 h. Concentrated cyanophages were revealed as a milky blue band, which
was removed and dialyzed against ASW at 4°C for 3 days with daily changes of ASW.
The dialysis membrane was Spectra/Por® 6 dialysis membrane (Spectrum
Laboratories, Inc.) with a molecular weight Cut Off (MWCO) of 12-14 KDa. The titre
of the CsCl-purified S-PM2 was in the range of 1.7 x 10'° - 6.4 x 10'° pfu mI™. The

CsCl-purified S-PM2 was stored at 4°C in the dark.

2.10 Flow cytometry

Use of flow cytometry for direct counting of cyanophage S-PM2 was attempted using
a FACScan flow cytometre equipped with an air-cooled laser providing 15 mW at 488
nm and with the standard filter setup. Methods were developed and applied to phage

counting according to previous work (Marie et al., 1999; Brussaard, 2004).
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CsCl-purified S-PM2 (10 times diluted in ASW), S-PM2 lysate, ASW (control), and
Synechococcus sp. WH7803 culture that have been filtered through 0.2 um were fixed
with glutaraldehyde at a final concentration of 0.5% (v/v) for 30 min at 4°C followed
by freezing in liquid nitrogen and storage at -80°C. When thawed, samples were
diluted in TE buffer (L0 mM Tris, ImM EDTA, pH8) and incubated with three
different dyes, SYBR Green |, YOYO-1 and SYBR Gold (Molecular Probes) at a
final concentration of 5 x10™ dilutions of commercial stock, respectively and
incubated at 80°C for 10 min in the dark with Triton X-100 added to a final

concentration of 0.1% (v/v).

10 pl of stained phage sample were added to 990 ul TE buffer in a 5 ml polystyrene
round-bottom tube (BD Falcon) immediately prior to analysis. For the non-stained
phage sample, 100 ul of phage sample were added to 900 ul TE buffer. For
calibration, 10 pl Fluoresbrite® YG (Polysciences) calibration beads (optional; 2 x
10° beads ml™) were added to 990 pl TE buffer. Samples were analyzed by a
FACScan flow cytometre for 1 min at a low flow rate. The flow rate was checked
before and after running using the method recommended in the manual. The average
flow rate (normally between 30 and 40 pl mI™) was used for calculation (Campbell,
2001). The discriminator was set to green fluorescence, which is proportional to the
nucleic acids—SYBR-I complex, and the detection threshold was progressively
decreased until viruses could be detected (see below), but care was taken to avoid
detecting more than 1 000 events per s, a threshold above which coincidence occurs,
resulting in the underestimation of particle abundance. Relative green fluorescence

(FL1), total counts, and relative side scatter (SSC) were recorded on logarithmic
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scales and analyzed with the CellQuest Software (provided by BD Biosciences) that

discriminates cell populations by using combinations of all recorded parameters.

2.11 Influence of light on cyanophage adsorption

To determine the kinetics of adsorption under light and dark conditions, S-PM2 was
added to two identical cultures of Synechococcus sp. WH7803 (OD+so of 0.35-0.40) at
a MOI of 0.02. The “dark culture’ were wrapped in aluminium foil and incubated with
the “light culture’ at 25°C at 15 uE ms™. At intervals, 2 ml samples were withdrawn
and centrifuged for 15 min at 15 000 g at 4°C. The cell-free supernatant was titred as
described in Section 2.5. The results were expressed as percentages of the initial
phage titre. In addition, adsorption of another eight cyanophages to WH7803 under
light and dark conditions, including S-BnM1, S-BP3, S-MM1, S-MM4, S-MMS5, S-

PWML1, S-PWM3 and S-BM3, was also investigated (Table 2.1).

To determine the influence of light wavelength on phage adsorption, the same phage-
cell suspensions as indicated above were exposed to blue (460 nm-490 nm), green
(500-570 nm), yellow (580-590 nm) and red light (785-620 nm) with the same
intensity of 15 uE m™ s™ as the white light (460-620 nm). Different light wavelength
were supplied from the Schott KL 1500 Electronic Light Source (Schott-Fostec, LLC,
Auburn, NY) at 25°C. At intervals, 2 ml samples were withdrawn and centrifuged for
15 min at 15 000 g at 4°C. The cell-free supernatant was titred as described in Section

2.5. The results were expressed as percentages of the initial phage titre.
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2.12 Influence of DCMU and CCCP on cyanophage adsorption

Photosynthetic inhibitor DCMU (or uncoupler CCCP) was first dissolved in 50 ml
ethanol to a final concentration of 0.2 mM to make stock solutions. Working solutions
(10" M) were then prepared by dilution with water. Synechococcus sp. WH7803
cultures were pre-treated with DCMU or CCCP (both at 10 uM) for 1 h before the
adsorption test. The cyanophage S-PM2 adsorption test was carried out as for the
‘light culture” described in Section 2.11 with a non-treated control. The cell-free
supernatant was titred during a 3-h period. To investigate if S-PM2 can still propagate
in DCMU/CCCP-treated WH7803, S-PM2 titre was determined at 19 and 24 h post-
infection according to Section 2.5. The results were expressed as percentages of the

initial phage titre.

2.13 Cyanophage adsorption to entrained Synechococcus sp. WH7803

As Synechococcus sp. WH7803 has been demonstrated to be easily entrained by light-
dark (LD) cycle (Sweeney and Borgese, 1989). 1 litre culture of Synechococcus sp.
WH7803 (OD750=0.042) was incubated under a continuously modulated 12 h - 12 h
LD cycle at 22°C for at least 7-10 days. When the culture reached OD7so =0.5 (this
represents 3.6 generations), sampling began over a 24-h period (Figure 2.1).
Specifically, aliquots of cells (20 ml) were collected at 6 time points, which were 15
min post-light (named as early-light), 6 hrs post-light (named as middle-light), 15 min
before switching to dark (named as late-light), 15 min post-darkness (named as early-

darkness), 6 hrs post-darkness (named as middle-darkness), and 15 min before
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switching to light (named as late-darkness). These six samples were subject to the

light/dark adsorption test as described in Section 2.11.

Late-darkness (23.25h) Time 0 Early-light (0.25 h)

Middle-light (6 h)
Middle-darkness (18 h)

Early-darkness (12.25 h)  Late-light (11.75 h)

Figure 2.1 Diagram showing the sampling times during a 12 h-12 h LD cycle.

2.14 Pour plating of single colonies of Synechococcus strains

The plating technique was based on previous work (Brahamsha, 1996) with
modifications. Synechococcus strains were serially diluted in SN (or ASW) medium
and 0.1 ml of each dilution was added to a Petri dish followed by the addition of 35
ml of molten SN (or ASW) agar (0.3%). Gently shaking was needed to spread the
agar evenly. All plates were left on the bench for 2 h before incubating at 25°C at a
light intensity of 5 uE m™ s for 2 days, after which a higher light intensity of 25 pE
m s was used to illuminate them for up to 8 weeks or until the appearance of single

colonies.
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2.15 Isolation of cyanophage-resistant mutants

Samples of exponentially growing Synechococcus sp. WH7803 were infected with S-
PM2, S-BP3, S-PWM3, S-MM5, S-MM1, S-MM4, S-BM3, S-PWM1, and S-BnM1,
respectively, at a MOI of 1, and kept at 25°C at 15 uE m™s™. Following prolonged
incubation (3 months), putative phage-resistant mutants were detected as renewed
growth and were purified by the pour plating method as described in Section 2.14.
Single colonies were grown in 2 ml of ASW medium under constant illumination of
10 uE m™ s at 25°C for 4 weeks or until the OD7s, was above 0.3. Then they were
scaled up in 25 ml of ASW medium as stock cultures under the same condition

(Section 2.6).

In order to prove that these phage resistant mutants are genuinely mutants of
Synechococcus sp. WH7803, three pairs of primers targeting 16S rRNA, mpeBA and
cpeT genes (Table 2.11) were used to perform PCRs over the genomic DNA extracted
from putative phage-resistant mutants. mpeBA and cpeT genes are characteristic
marine Synechococcus genes (Cobley et al., 2002), whose products function in
photosynthesis. The PCR products were subsequently sequenced (provided by the
University of Warwick sequencing service) using primers listed in Table 2.11 and the
sequences were compared with the sequenced genome of WH7803 using ClustalX

(1.81).

Table 2.11 Primers used in sequencing phage-resistant mutants

Primers 5’-3’

27F-OXY1313R GGACGGGTGAGTAACGCG
OXY107F-1522R CTTCAYGYAGGCGAGTTGCAGC
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16S rRNA359F GGGGAATYTTCCGCAATGGG
16S rRNAT778R ACATACTCCACCGCTTGTGC
7803mpeBAF-704 TCATCATGCGCTACGTCTCC
7803mpeBAR-1330C CGCCAACGACCAAGGAGTAG
7803cpeTF39 AACGCTAGCCGGCCACTACA
7803cpeTR612C CCAACGCAGCCAGTGCTCAT

2.16 Isolation of the outer membrane fraction (OMF)

Two different protocols were attempted to isolate the OMF of Synechococcus sp.

WH7803.

1.

Isolation of the OMF was performed at 4°C to maintain the native structure of
proteins. 100 ml of exponential growing WH7803 (OD+so of 0.35) was
harvested by centrifugation at 4 000 g for 20 min. Cell pellets were
resuspended in 3 ml of 10 mM HEPES containing 10 mM MgCl, buffer (pH
7.4), and broken by passing six times through a French pressure cell at 1.01 x
10° kPa. After removal of unbroken cells and cell debris by centrifugation at 8
000 g for 20 min, the supernatant was subjected to centrifugation at 103 320 g
for 30 min at 4°C with the rotor TLA-100.3. The resulting pellet was
resuspended in 200 ul of the same buffer with the addition of Triton X-100 to
a final concentration of 2% (v/v) followed by centrifugation at 103 320 g for
30 min at 4°C. The resulting pellet was dissolved in 100 pl of 10 mM HEPES
containing 10 mM MgCl, buffer (pH 7.4) and stored at 4°C. 10 pl of the

sample was used for SDS-PAGE.
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2. 400 ml exponentially growing WH7803 cells were harvested by centrifugation
at 4 000 g for 20 min. Cells were incubated in 40 ml of 10 mM HEPES (pH
7.2) containing 10 mM EDTA for 30 min at 37°C. The cells were removed by
centrifugation at 4 000 g for 20 min, the supernatant was then centrifuged at
4°C at 160 000 g for 1 h in an Optima™ L-80XP Ultracentrifuge (Beckman-
coulter) with a SWA40Ti rotor. The yellow layer of the resulting pellet was
rinsed into 200 ul of 10 mM HEPES (pH 7.2) followed by centrifugation at 13

000 rpm for 20 min. The resulted supernatant was the OMF and stored at 4°C.

Protein concentration in the OMFs was measured using the DC Protein Assay kit

(Bio-Rad Laboratories; Richmond, CA) using bovine serum albumin as standard.

2.17 SDS-PAGE

50 ml of exponentially growthing (OD7s5, of 0.35-0.40) Synechococcus sp. WH7803
and S-PM2-resistant mutants were collected by centrifugation, washed twice with 10
mM HEPES pH 7.4, and resuspended in 500 pl of the same buffer. Then, 100 pl of
sample was mixed with 50 pl of Blue Loading Buffer Pack (New England Biolabs).
The sample was heated at 100°C for 5 min before loading onto a stacking gel (5%)
over a separating gel (12%). SDS-PAGE was performed as previously described
(Laemmli, 1970) in a vertical slab gel system (C.B.S. Scientific Company, Del Mar,
CA) 21 cm long and 1 mm thick with SeeBlue® Plus2 Pre-stained Standard
(Invitrogen) as molecular weight markers. The gel was run at 300 V for 8 h at 4°C and

stained overnight with Coomassie Blue with continuous shaking. Destaining was

61



performed using 45% methanol and 10% acetic acid for 3 h or until individual bands
were easily visualised. Images were collected using a scanner (Fujitsu) or using a

Geneflash system (SYNGENE).

Alternatively, the Mini-PROTEAN 3 system (BIO-RAD) was used to analyse the
outer membrane fractions (OMFs) of Synechococcus sp. WH7803, the protein
concentration was measured using the DC Protein Assay kit. 90 ug of the sample was
loaded onto the gels that were run at 4°C, 200 V for 1 h and stained with Coomassie
Blue with continuous shaking for more than 3 h, then destained for 1 h or until
individual bands were easily visualised. SilverQuest™ Silver Staining Kit (Invitrogen)
was used for silver staining. The manufacturer’s protocol was followed. When the
C.B.S. vertical slab gel system was used to analyse the OMFs, 600 pg of the sample

was loaded onto the gels. The same procedure was followed as stated above.

2.18 Protein identification and prediction

Protein samples from SDS-PAGE were sent to an outside source for protein
identification. Proteomics and sequence analysis tools from EXPASyY Proteomics

Server (http://expasy.org/) were used to translate nucleotide sequences to protein

sequences. To determine the subcellular localisation of the target protein the PSORTb

program (http://www.psort.org/psortb/) was used.
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2.19 Phage neutralisation

10 ul of S-PM2 phage stock at a titre of 1.5 x 10° pfu mI™ was mixed with 10, 20 and
30 pl of the OMF prepared using the method 3, respectively. The mixtures were
incubated at 25°C at 15 uE m?s™ for 1 h. Immediately after incubation, the mixtures
were titred according to Section 2.5. The control mixture was similarly prepared using
30 pl of 10 mM HEPES (pH 7.2). Phage neutralisation experiments were performed
in triplicate as two biological replicates. The neutralisation rate (Rn) was expressed as

a percentage and calculated as follows:

Rn = (the initial amount of free phages — the amount of free phages after the addition

of the OMF)/the initial amount of free phages x 100%

2.20 Molecular techniques

Routine cloning techniques such as restriction enzyme digestion (Fermentas), DNA
ligation (New England Biolabs) and TA cloning (Invitrogen) followed the
manufacturer’s instructions. Routine sequencing service was provided by the
University of Warwick sequencing service. When necessary, individual sequencing
results were assembled using SEQMAN (DNASTAR, Inc. Madison, Wis.). Sequence

comparisons were performed using ClustalX (1.81).

Table 2.12 Buffers and reagents

0.25% (w/v) Bromophenol Blue, 0.25% (w/v) Xylene cyanol, 15% (w/v)

DNA Gel Loading Buffer (10x) )
Ficoll
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10mM Tris-HCI (pH 8.5), 10 mM MgCl,, 100 mM KCI, 0.1 mg ml™*
BSA

Buffer R

33mM Tris-acetate (pH7.9), 10 mM magnesium acetate, 66 mM
Tango™ Buffer ) X
potassium acetate, 0.1 mg ml = BSA

TBE Buffer (10x) 0.89 M Tris-HCI, 0.89 M boric acid, 0.02 M EDTA pH 8
TE Buffer 10 mM Tris-HCI pH 8, 1 mM EDTA
400 mM Tris-HCI, 100 mM MgCl,, 100 mM DTT, 5 mM ATP (pH 7.8

T4 DNA Ligation Buffer (10x)
at 25°C

5-bromo-4-chloro-3-indolyl-beta-D- 1 )
) 20 mg ml™ dimethylformamide
galactopyranoside (X-gal)

Elution Buffer (EB) 10 mM Tris-HCI, pH8.5

2.20.1 Polymerase chain reaction

The polymerase chain reaction (PCR) was used routinely throughout this study. An
optimisation procedure for individual PCR was carried out using 25 pl reaction
systems. Typically, the following basic conditions with varied final magnesium

concentrations and annealing temperatures were adopted in PCR optimisation.

Table 2.13 PCR optimisation system

2.5 pl 2.5 mM dNTP's

25l 10x Buffer

1.0l 10 pM Forward primer

1.0 ul 10 pM Reverse primer

A* pl 25 mM MgCl,

0.5 pl 10 ng pl™ template DNA

0.1 pl 5U pl™* Taq Polymerase

Xul Sterile H,0 to make final volume of 25 pnl
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Table 2.14 Thermal cyler conditions

2 min 94°C 1x
45s 94°C

45s B*°C

1 min 72°C 34x%
10 min 72°C 1x

A* 4 different volumes of MgCl, were used in PCR optimization system; 1, 2, 3, and 4 pl
corresponding to final concentrations of 1 mM, 2 mM and 3 mM and 4 mM. B* 3 different annealing
temperatures were used 50°C, 55°C and 60°C.

2.20.2 Primer design

Primers were analysed and selected using Primer Designer (Science Educational
Software), the criteria for selecting primers included; a length of 20 bp, a mol G+C
content of 50-60%, melting temperature in the range 55-80°C, no theoretical hairpins
or self-priming. In the case of no ideal primers being found (not all criteria were able

to be met), the primer set closest to the ideal conditions was selected.

2.20.3 Purification of DNA fragments

A QIAquick PCR purification kit from Qiagen was used to purify DNA fragments
ranging in size from 100 bp to 10 kb from a single PCR reaction according to the
manufacturer’s instructions. Alternatively, a QIAquick Gel Extraction Kit was used to
extract DNA fragments ranging in size from 70 bp to 10 kb from the agarose gel
derived from PCR reactions and enzymatic reactions according to the manufacturer’s

instructions.
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2.20.4 DNA agarose gel electrophoresis

1.0% (w/v) agarose gels were used unless otherwise stated; gels were run in 0.5 x
TBE buffer at 100 volts. Ethidium bromide was added to gels to give a final

concentration of 5 ugml™,

2.20.5 Isolation of plasmid DNA from E. coli

Plasmid DNA was isolated from E. coli by the use of the QIAprep® Miniprep kit

according to the manufacturer’s instructions (Qiagen).

2.20.6 Cyanophage DNA extraction

An equal volume of phenol was added to concentrated and purified phage sample
obtained in Section 2.9.3, mixed well and left to stand for 2 min before being
centrifuged at 15 000 g for 5 min. The aqueous layer was then extracted with an equal
volume of phenol:chloroform:isoamyl alcohol (25:24:1, v/v/v), mixed well and left to
stand for 2 min before being centrifuged at 15 000 g for 5 min. The aqueous layer was
extracted with an equal volume of chloroform:isoamyl alcohol (24:1, v/v), mixed
well, left for 2 min and centrifuged at 15 000 g for 5 min. The resulting aqueous layer
was mixed well with 0.4 volumes of 7.5 M ammonium acetate and 2 volumes of
isopropanol, and left on ice for 1 h before being centrifuged at 15 000 g for 20 min at
4°C. After removing the supernatant and briefly air-drying, the resulting DNA pellet

was washed once with 100 ul of 70% (v/v) ethanol. Finally, the DNA pellet was
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recovered by a final centrifugation of 10 min at 15 000 g. The dried pellet was
dissolved in 50 ul of Elution Buffer (EB, 10mM Tris-HCI, pH 8.5). A NanoDrop®

ND-1000 spectrophotometer was used to quantify the phage DNA samples.

2.20.7 RNA extraction from Synechococcus sp. WH7803

50 ml samples were collected from exponentially growing Synechococcus sp.
WH7803 cultures. Cells were recovered by centrifugation at 4 000 g for 20 min and

were snap frozen in liquid nitrogen and stored at -20°C until RNA extraction.

After thawing and removing excess medium from the cell pellets, they were
resuspended in 1.5 ml of TRIZOL reagent (Invitrogen) and incubated for 10 min at
room temperature. CHCI3 was then added to a final concentration of 0.2% (v/v) and
the samples were shaken vigorously for 30 s before being incubated for a further 10
min at room temperature. After centrifugation at 15 000 g for 10 min, the upper
(aqueous) phase was precipitated by the addition of 0.5 volumes of isopropanol and
left on ice for 12 min. The RNA pellet was recovered after centrifugation at 15 000 g
for 10 min. The pellet was washed with 1 ml of 75% (v/v) ethanol, and after a final
centrifugation at 15 000 g for 10 min the supernatant was removed and the pellet air-
dried for a maximum of 15 min. The RNA was dissolved in 90 ul of RNase-free water
and 10 pl of 10 x DNase buffer (Ambion). Eight units of DNase | (Ambion) were
added to the samples which were incubated at 37°C for 20 min. The RNA was
purified using an RNeasy Mini Kit (Qiagen) with the addition of an on-column DNase
digestion with the RNase-free DNase Set (Qiagen), according to the manufacturer’s
instructions. In order to eliminate contaminating phage and host genomic DNA the
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procedure of DNase | digestion was repeated followed by the RNeasy Mini Kit
purification according to the manufacturer’s instructions. The RNA quality was
assessed using an Agilent 2100 Bioanalyzer (Agilent Technologies) and quantified

using a NanoDrop® ND-1000 spectrophotometer.

2.20.8 cDNA synthesis

cDNA synthesis was carried out using Tagman reverse transcription reagents
(Applied Biosystems). Each 100 ul reaction volume contained 800 ng of total RNA to
which random hexamers were added to a final concentration of 5.0 uM, and 500 pM
of each nucleotide triphosphate and 6.0 mM MgCI, were added. A total of 312.5 units
of MultiScribe reverse transcriptase, 0.4 units of RNase inhibitor and 5.0 pl of 10x
MultiScribe buffer were also added and amplification of cDNA was carried out for 10

min at 25°C, 60 min at 42°C and 5 min at 95°C in a Biometra thermal cycler.

2.20.9 DNA extraction from Synechococcus sp. WH7803

20-30 ml of cells in the late exponential phase of growth (OD75,>0.5) were harvested
by centrifugation at 4 000 g for 20 min. The cell pellets were washed once with 2.0 ml
of sterile TE buffer (10 mM Tris-Cl, 1 mM EDTA, pH 7.5) and resuspended in a lysis
buffer containing 567 ul of TE, 30 ul of 10% (w/v) SDS solution and 3 pl of
proteinase K (20 mg/ml). This solution was mixed thoroughly by gentle inversion
prior to incubation at 60°C for 4 h. 100 ul of 5M NaCl and 80 pul of 10% CTAB/NaCl

solution (prepared by adding 10 g CTAB to 100 ml of 0.7 M NaCl while agitating on
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a heated stirrer) were the added to the solution and incubated at 65°C for a further 10
min. The mixture was allowed to cool for 30 s before adding one volume of
phenol:chloroform:isoamyl alcohol (25:24:1, v/v/v) and mixed by gentle inversion.
After centrifugation (15 000 g for 10 min), the supernatant (aqueous phase containing
DNA) was transferred to a sterile eppendorf tube followed by extraction with one
volume of chloroform:isoamyl alcohol (24:1, v/v) and centrifugation at 15 000 g for
10 min. 0.6 volume of isopropanol was then added to the resulting supernatant. After
mixing by gentle inversion, DNA was precipitated at 15 000 g for 10 min at 4°C. The
resulting pellet was then washed in progressive ethanol concentrations; 50%, 75% and
100%. Finally, the DNA pellet was air-dried at room temperature for a maximum 10

min prior to dissolving in 80 ul of sterile water or EB buffer.

2.20.10 Construction of gene knockout mutants of Synechococcus sp.

WH7803

2.20.10.1 Suicide plasmind pYJO01 and pYJO02 construction

The broad host range suicide plasmid pMUT100 (Brahamsha, 1996) was used to
inactivate ORF0948 (coding for a putative multicopper oxidase) from Synechococcus
sp. WH7803. To do this, PCR primers (table 2.15) with EcoRI enzyme digestion sites
were designed to amplify two DNA fragments, ORF0948-500 (407 bp in length) and
ORF0948-1000 (370 bp in length), within ORF0948. The gel-purified PCR products
were then introduced into the multiple cloning sites in the plasmid pMUT100 using

EcoRl.
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The first step in this process was to clone the PCR products into the commercially
available plasmid pCR2.1 using a TA cloning kit (Invitrogen) according to the
manufacturer’s instructions. Then, the PCR products of the ORF0948 fragments were
cut out of the recombinant pCR2.1 using the following enzyme digestion system: 2 pl
EcoRI (Fermentas), 4 ul 10x buffer EcoRI, and 1.5-2 pg recombinant pCR2.1™ DNA.
This system was kept at 37°C for 1 h. Meanwhile, 1-2 ug of the plasmid pMUT100
was also digested at 37°C for 1 h using a system consisting of 3 pl EcoRlI, and 4 pl
10x buffer EcoRI. After enzyme digestions, the plasmid pMUT100 was treated with
calf intestine alkaline phosphatase (New England Biolabs) as previously described
(Sambrook and Russell, 2001); the ORF0948 fragments were gel-purified.

These fragments were ligated with T4 DNA Ligase according to the manufacturer’s

instructions.

The resulting ligation reaction mixtures were used to transform competent DH5a cells
(Laboratory’s own collection) as previously described (Sambrook and Russell, 2001),
using kanamycin (50ul/ml) as a selection. The nature of the putative recombinant
plasmids was confirmed by amplifying two ORF0948 fragments using the primer sets
shown in Table 2.15. In addition, sequencing (provided by the University of Warwick
sequencing service) was performed using the primers (pMUTsequencing5516:
TGCCACCTGACGTCTAAGAA). Thus plasmid pYJO1 (plasmid pMUT100
harbouring the DNA fragment amplified with PCR primers ORF0948-500) and pYJ02
(plasmid pMUT100 harbouring the DNA fragment amplified with PCR primers

ORF0948-1000) were constructed.
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Table 2.15 PCR primers for the ORF0948

Names Forward 5’-3’ Reverse 5’-3’
ORF0948-500 ACTGTCCGCAGACTTGCTAA | GGCAGCGTAAGAATGACATC
ORF0948-1000 GAACGCAGTTGGAGTTGTTG | GCCATAGGTGCTGTTGCTAA

2.20.10.2 Conjugation

The recombinant plasmids (pYJO1 and pYJ02) were electroporated into E. coli
MC1061 (containing plasmids pRK24 and pRL528) strains using Gene pulser 11
system (BioRad Laboratories, Richmond, CA) according to a published method
(Brahamsha, 1996). LB agar plates supplemented with ampicillin (100 pg/ml),
chloramphenicol (10 pg/ml) and kanamycin (50 pg/ml) were used to screen for
successfully transformed E. coli MC1061 strains by incubating overnight at 37°C. The
resulting E. coli MC1061 single colonies were grown in LB medium supplemented
with ampicilin (100 pg/ml), chloramphenicol (10 pg/ml) and kanamycin (50 pg/ml)
overnight at 37°C with vigorous aeration. 1 ml of culture was centrifuged, washed 3
times in 1 ml of fresh LB medium, and resuspended in 500 pl of SN (or ASW)
containing 10% (vol/vol) LB broth. Cells from 50 ml of exponentially growing
WH7803 culture (OD7so between 3.5 and 4.0) was harvested and resuspended in 150
pl of SN (or ASW). 10-50 pl of E. coli MC1061 was mixed with 50 pl of
cyanobacterial suspension to obtain serial conjugation ratios and spotted immediately
onto a week-old SN (or ASW) plate containing 0.3% (w/v) agar. These plates were
kept on the bench at room temperature for approximately 2 h and were then incubated

at a light intensity of 10 uE m s™ at 25°C.
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After a 2-day incubation, the inoculated areas were cut out of the agar with a sterile
stainless steel spatula and placed in 2 to 10 ml of SN (or ASW). Then, the phage T4
(Laboratory’s own collection) was added and the suspension was left overnight at
room temperature to allow T4 to kill the remaining E. coli and the Synechococcus
cells to diffuse into SN (or ASW) liquid. After serial dilutions, pour plating was
performed according to Section 2.14 using 0.3% SN (or ASW) agar (wt/vol)
containing 25 pg/ml kanamycin. Within 3 months, single colonies were transferred
from the agar plates into 2 ml of SN (or ASW) liquid medium containing kanamycin

(15 mg/ml), and cultured at a light intensity of 10-25 uE m?s™ at 25°C.
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Chapter 3 Investigation of the effect of
light and dark on cyanophage
adsorption to the host Synechococcus sp.

WH7803
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3.1 Introduction

3.1.1 Enumeration of marine viruses

A variety of methods have been developed for estimating total viral abundance in
marine samples. Among these techniques, plaque assay (PA) measures infectivity of
phages by counting plagques appeared on solid medium; the most probable number
(MPN) is a method of getting quantitative estimation of phage titres from serial
diluted phage suspensions in liquid culture (Borsheim, 1993; Waterbury and Valois,
1993a). They have the advantage of examining only viruses that are infective for a
specific host. However, this is also a major limitation, because the host strain used in
plagque assays and MPN methods will by no means have the same susceptibility to
infection by all viruses present in a natural sample (Suttle and Chan, 1993a;
Waterbury and Valois, 1993a; Wilson et al., 1993a). Additionally, the use of culture-
based methods to examine viral abundance is biased as it only detects viruses that can
infect hosts that can be cultured and it is estimated that < 1% of organisms present in

the oceans can be cultured (Rodriguez-Valera, 2004).

The most direct method of detecting marine viruses is Transmission Electron
Microscope (TEM). TEM uses a beam of electrons instead of light. It was the use of
TEM that allowed the first discovery of high viral abundance in the marine
environment (Bergh et al., 1989; Proctor and Fuhrman, 1990). However, the major
disadvantages for TEM lie in its inability to differentiate viral particles that will infect

different organisms and the time consuming process.
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Alternatively, direct counting can be done by using epifluorescence microscopy
(EFM), in conjugation with nucleic acid-specific stains such as Yo-Pro and SYBR
Green (Hennes and Suttle, 1995; Noble and Fuhrman, 1998). EFM uses light from the
objective lens to excite the stains in a sample, rather than through the sample towards
the objective lens. The advantage of viral counts by EFM compared with the use of
TEM is that it is less time consuming and more cost effective. However, counting
using DNA stains gives much higher concentrations than using TEM methods
(Hennes and Suttle, 1995; Noble and Fuhrman, 1998), which has been attributed to
the staining of particles other than viruses. Yo-Pro and SYBR Green-based viral
counting methods only allow total viral numbers to be obtained and cannot distinguish

individual viral populations.

3.1.2 Flow cytometric detection of marine viruses

Flow cytometry (FC) can be defined as a technique for analysing the light scatter and
fluorescence emitted from individual particles and cells as they pass single-file
through an intensely focused light source (i.e. a laser) (Campbell, 2001). As illustrated
in Figure 3.1, the sample is injected into the sheath where the particles are
hydrodynamically focused in a laminar flow and aligned in single file before
intercepting a light source. As the cells or particles of interest intercept the light
source they scatter light and fluoresce. The scattered and fluoresced light is sensed
and converted to electrical signals by electronic detectors. Thus, in contrast to
spectrophotometry where fluorescence is measured for a bulk volume of sample, flow

cytometry measures fluorescence per cell or particle.
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Figure 3.1 A simplified illustration of flow cytometry.
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Scattered and
fluoresced light

The sample is injected into the sheath. Hydordynamic focusing will insure cells are in single file to
flow through the sensing path under the illumination of a laser light. The signals resulting from light

scatter and fluorescence is collected and analysed (Campbell, 2001).

Several parameters can be collected through flow cytometric analysis using a Becton-
Dickinson FACSort. These include forward scatter (FSC) and side scatter (SSC),
which index size and internal complexity or granularity, respectively, three typical
fluorescence parameters including red (FL3), orange (FL2) and green (FL1)

wavelengths, as defined by the optical filters.

The idea of counting virus particles using FC was previously suggested to be
impossible because of their small size (Porter et al., 1997). FC has been used to
enumerate and discriminate the different picophytoplanktonic populations, including
marine Synechococcus (Olson et al., 1985). The discovery of Prochlorococcus was
made possible only because of the introduction of flow cytometric analysis into
picoplankton research (Chisholm et al., 1988). In conjunction with the nucleic acid
staining dyes, such as SYBR Green that fluoresce at 488 nm, FC has been found to be

a promising technique in enumerating marine viruses in natural samples (Marie et al.,
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1999; Brussaard et al., 2000). Apart from high correlation to counts obtained by TEM
and EFM, FC also showed a potential capability to distinguish two and sometimes
three distinct virus populations (Marie et al., 1999). Similarly, two populations of
VLPs were identified by FC in an attempt to assess the contribution of viral lysis to

the mortality of a Micromonas spp. population (Evans et al., 2003).

Although the application of FC alone seems to have made counting total virus
numbers less time consuming (Brussaard et al., 2000), EFM and TEM can still
provide complementary information, such as viral counts by FC were generally higher
than those obtained by TEM and EFM (Marie et al., 1999). Indeed, different virus
counting methods can result in different estimation of viral numbers (Marie et al.,
1999). Moreover EFM and FC generally give higher viral estimates than those
estimated by TEM (Weinbauer and Suttle, 1997; Marie et al., 1999). In addition, the
use of different fluorochromes can lead to different estimates for the same sample
(Bettarel et al., 2000). Thus, comprehensive optimisation procedures are proposed to

minimise the errors associated with counting with a FC (Brussaard, 2004).

In addition to culture-based and direct counting methods, viral abundance has been
estimated by reverse transcriptase PCR (RT-PCR) (Rose et al., 1997). Compared to
the traditional plaque assay for viral detection, the RT-PCR method has been shown
to be useful in detecting large amounts of non-cultivatable viruses. However,
problems like existence of RT-PCR inhibitors and the inability of detection of low

levels of coliphage in samples were present (Rose et al., 1997).

77



3.1.2 Phage adsorption

The first key step in the phage-host interaction is adsorption. This is a diffusion-
limited process that relies on protein(s) (adhesin) on the phage recognising and
binding to a molecule on the bacterial cell surface (receptor). Generally, this process
does not require energy. After the phage has attached to the host cell, energy is
required for the entry of the phage nucleic acid into the bacterial cytoplasm, leaving
the phage capsid outside of the host cell. In the natural environment, light-dark cycles
can potentially affect the first step of cyanophage-host (cyanobacteria) interactions
because light induces a completely distinct host physiological status, which may
induce changes in the properties of the cell surface. Thus, it is important to know how
the first step of cyanophage-host interactions might be affected by the shift from light

to dark. This chapter deals with the effect of light on cyanophage adsorption.

Limited research has been performed with regard to this aspect of cyanophage biology.
Cyanophage AS-1 adsorption to its host was found to be significantly dependent on
light, though this dependence could be reduced by increasing the concentration of Na*
ions (Cseke and Farkas, 1979b). Lipopolysacharride (LPS) and proteins have been
shown to be involved in the process of cyanomyovirus AS-1 adsorption, based on the
finding that purified polysaccharide can partially inactivate AS-1 and protease
treatment of proteins decreased the ability to inactivate AS-1 (Samimi and Drews,
1978). A recent study on short-term variations in the abundance of natural

cyanophage populations of the Indian Ocean revealed that the highest number of free

phages was after midnight (0100 h) (Clokie et al., 2006a). A reasonable interpretation
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is that this represents a time when phages reduce/stop adsorption to the host cells, and

phages adsorbed during the light period are being released.

Many of the previous studies on the relationship between photosynthesis and
cyanophage infection were carried out using chemical inhibitors such as
photosynthetic inhibitor, DCMU, and photosynthetic uncoupler, CCCP. DCMU
inhibits photosynthetic electron transport at the acceptor side of photosystem I1 (PSII)
by binding to the D1 protein of PSII competing with quinone for binding to the Qg
site and thereby inhibiting electron transport from the primary quinone acceptor Qa to
the secondary quinone acceptor Qg. CCCP is an uncoupler that abolishes both
photosynthetic and respiratory ATP production by breaking down the proton motive

force (PMF).

In the case of the lytic cyanophage AS-1 infection of the unicellular cyanobacterium
Synechococcus sp. strain PCC 6301 (formerly Anacystis nidulans) (Allen and
Hutchison, 1976), DCMU treatment reduced the phage yield by 73%, for which a
reasonable explanation was that cyclic photophosphorylation via PSI could support a
reduced level of phage production. The uncoupler CCCP, not surprisingly, completely
abolished phage production. Compared to the limited degree of phage AS-1
replication in the presence of DCMU, cyanophage SM-1 replication following
infection of Synechococcus strain NRC-1was completely abolished by DCMU
treatment at a concentration of 10° M (MacKenzie and Haselkorn, 1972). Thus,
replication of SM-1 was completely dependent on a fully functional photosynthetic

apparatus and could not be even partially sustained by cyclic phosphorylation.

79



3.2 Aims

To determine the role of light in the process of cyanophage adsorption to

Synechococcus sp. WH7803

3.3 Results

3.3.1 Flow cytometric analysis of the phage lysate

In order to clearly define the phage S-PM2 population, CsCl-purifed S-PM2 with a
titre of 2.5 x 10™ puf mI™ were stained using three different DNA-specific fluorescent
dyes, SYBR Green I, YOYO-1 and SYBR Gold. The results are shown in Figure 3.2.
The horizontal and vertical axes represent relative side scatter and relative green
fluorescence, respectively. Row I, Il and 11l are S-PM2 stained with SYBR Gold,
YOYO-1 and SYBR Green I, respectively. Column A and B are S-PM2 samples
subjected to filtration with 0.2 um and 0.45 um syringe filters (Sartorium Minisart)
before staining. Column C is S-PM2 sample without filtration. As seen in Figure 3.2,
filtered S-PM2 samples showed a cluster above the background noise. This region
was gated and their numbers were calculated and shown inside each plot. However,
non-filtered S-PM2 samples showed at least another population representing particles
larger than S-PM2. These particles can be removed using 0.2 or 0.45 um filters
(Figure 3.2). These ‘impurities’ can’t be bacteria because the S-PM2 has been purified
using CsCl ultracentrifugation. They may be S-PM2 aggregates. The titres based on

different combinations of dyes and filtrations were very similar and in the range of 6

80



x 10° to 7.3 x 10° particles mI™. No particles were detected from the control

experiment in which ASW was diluted with TE buffer pH8 and stained using SYBR

Green | (Figure 3.2D). However, when the same gated region was applied to non-

stained S-PM2 samples (Figure 3.2E), a titre of 6 x 10° particles ml™ was detected.
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Figure 3.2 Cytograms (4 decades log scale) of green fluorescence (Y Axis) versus side scatter (X
AXxis) for CsCl-purified phage S-PM2 (Al to Cl11) and the controls (D and E).

(Al to CIHI), CsCl-purified S-PM2 samples were subjected to filtration using 0.2 and 0.45 um pore
size syringe filter, fixed with glutaraldehyde at a final concentration of 0.1% (v/v), frozen in liquid
nitrogen, diluted in TE buffer pH8, stained for 10 min at 80°C with three different dyes, SYBR Green I,
SYBR Gold and YOYO-1 at final dilution of 5 x10°® dilutions of commercial stock, respectively. (D),
ASW (control) samples were subjected to filtration using 0.2 and 0.45 pum pore size syringe filter, fixed
with glutaraldehyde at a final concentration of 0.1% (v/v), frozen in liquid nitrogen, diluted in TE
buffer pH8, stained for 10 min at 80°C with SYBR Green | at final dilution of 5 x107® dilutions of
commercial stock. (E), CsCl-purified S-PM2 samples were subjected to filtration using 0.2 um pore
size syringe filter, fixed with glutaraldehyde at a final concentration of 0.1% (v/v), frozen in liquid

nitrogen, diluted in TE buffer pH8. The gated region for analysis was marked red.

When a fresh S-PM2 lysate (which was passed through a 0.2 um filter) was used for
flow cytometric analysis S-PM2 population was detected in the same gated region
after staining with SYBR Green I, although this S-PM2 signature was not as discrete
as CsCl-purified ones (Figure 3.3A). The count was 7.4 x 10 particles mI™. The
count based on a stained blank (Figure 3.3B) was 1.3 x 10’ particles mI™. This is
probably due to non-specific staining of cellular debris and auto fluorescence of the
water soluble photosynthetic pigments of Synechococcus sp. WH7803, such
phycoerythrins (Ong et al., 1984). There were also some particles above the S-PM2
population (indicated by a blue circle) (Figure 3.3A). These were probable due to

aggregations of phage particles.
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Figure 3.3 Cytograms (4 decades log scale) of green fluorescence (Y Axis) versus side scatter (X

Axis) for cell-free crude phage lysate.

(A), The S-PM2 lysate after filtration with 0.2 um syringe filter was fixed with glutaraldehyde at a final
concentration of 0.1% (v/v), frozen in liquid nitrogen, diluted in TE buffer pH8, stained for 10 min at
80°C with SYBR Green | at a final dilution of 5 x10” dilutions of commercial stock. (B), A stained
blank was WH7803 culture (filtered through 0.2 um) stained with SYBR Green |. The gated region for

analysis was marked red. Particles inside blue line may represent aggregated phage particles.

In order to establish that this staining protocol for flow cytometric analysis of phages
can function well, the same methodology was applied to a Streptomycete phage ®c31
(Alexander and McCoy, 1956) in crude phage lysate (Courtesy of Dr. Leonides A
Calvo-Bado). As seen in Figure 3.4A, a tight phage population was detected. No

phage populations were detected from a stained blank (Figure 3.4B).
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Figure 3.4 Cytograms (4 decades log scale) of green fluorescence (Y Axis) versus side scatter (X

Axis) for cell-free crude phage lysate.

(A), The Streptomycete phage ®c31 lysate after filtration with 0.2 um syringe filter was fixed with
glutaraldehyde at a final concentration of 0.1% (v/v), frozen in liquid nitrogen, diluted in TE buffer
pH8, stained for 10 min at 80°C with SYBR Green | at a final dilution of 5 x10° dilutions of

commercial stock. (B), A stained blank was Streptomycete culture (filtered through 0.2 um) stained

with SYBR Green I. The phage population was detected as a discrete cluster (indicated by an arrow).

3.3.2 The role of light in the cyanophage S-PM2 adsorption to

Synechococcus sp. WH7803

Using a model system consisting of the marine cyanomyovirus S-PM2 and
Synechococcus sp. WH7803, the adsorption of cyanophage S-PM2 to the host
WH7803 was found to be rapid in the light; nearly 90% of the phages were adsorbed
to the cells within 45 min (Figure 3.5). There was hardly any further adsorption for a
further 15 min, and a plateau was reached (Figure 3.5). The abrupt increase of the

number of unattached phages at around 6 h post-infection is due to the release of
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progeny phages from the infected host cells (Figure 3.5). Compared to the rapid
adsorption in light, the adsorption in dark was considerably slower; about 15% of the
phages were adsorbed within 3 h (Figure 3.5). However, the adsorption resumed

almost instantaneously upon illumination 3 h post-infection in the dark (Figure 3.5).
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Figure 3.5 Effect of light on the adsorption of cyanophage S-PM2 to Synechococcus sp. WH7803
cells.

Synechococcus cells (OD750= 0.35) in the logarithmic growth phase were incubated with phage at a
MOI of 0.02 at 25°C at 15 uE m™2 s™. The free phage titer was assayed every 15 min for 6 h in the cell-
free supernatant remaining after centrifugation. Empty circles (o) represent phage adsorption in the
light and solid circles (®) represent phage adsorption in the dark. Data are the mean of three biological

replicates with standard deviation (SD) values.

3.3.3 Investigation of the role of light in the adsorption of 8 other

cyanophages to Synechococcus sp. WH7803
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In order to get an idea of whether this light-dependent phage adsorption is a universal
phenomenon in the process of cyanophage infection or unique to the cyanophage S-
PM2, a simplified version of this light/dark adsorption experiment was applied to 8
other cyanophages by examining the number of un-adsorbed phages 45 min post-
infection. All these cyanophages can infect the host strain Synechococcus sp.
WH7803 and form plaques. Figure 3.6 shows the proportions of un-adsorbed phages
either in the light or dark. On the basis of their adsorption patterns, three different
groups can be identified. Four of the phages (S-PWM3, S-BP3, S-BnM1 and S-PM2)
show light-dependent adsorption (~ 90% adsorption in the light, ~ 10% adsorption in
the dark 45 min post-infection). One cyanophage, S-MMS5, shows a decreased
adsorption rate that was light/dark-independent (~ 50% adsorption in light/dark 45
min post-infection). The other four cyanophages (S-MM1, S-MM4, S-BM3 and S-
PWML1) display a light-independent adsorption pattern with a markedly decreased
adsorption rate (~ 10% adsorption in light/dark 45 min post-infection). These data
show that light plays an important role in the cyanophage adsorption and suggest that
at least some of the cyanophage in the natural environment may display the light-

dependent adsorption.
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Figure 3.6 Adsorption of different cyanophages to Synechococcus sp. WH7803 cells under
illumination and in darkness.

Synechococcus cells (OD,so= 0.35) in the logarithmic growth phase were incubated with different
phage strains at a MOI of 0.02 at 25°C at 15 pE m™? s™ and in the dark respectively. The free phage titer
was assayed 45 min post-infection in the cell-free supernatant remaining after centrifugation. Data are
the mean of three biological replicates with SD values.

3.3.4 Light wavelength-associated cyanophage adsorption

As light is a type of electromagnetic radiation that exists at a wide range of
wavelengths, cyanophage adsorption under different wavelengths was studied. As
shown in Figure 3.7, no marked differences in the phage adsorption patterns were
detected by exposure to blue (460 nm-490 nm), green (500-570 nm) or yellow (580-
590 nm) light compared to the adsorption kinetics in white light (460-620 nm).
However, cyanophage adsorption in red light showed a much lower rate. Interestingly,
in Synechococcus sp. WH7803, red light (785-620 nm) is the only wavelength that

can not be harvested by the photosynthetic light-harvesting system to fuel
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photosynthesis owing to the constitution of the light-harvesting pigments, which have
absorption maxima lie between 490 and 570 nm (Ong and Glazer, 1991; Swanson et
al., 1991)). The red light’s inability to drive S-PM2 adsorption suggests that a

functional photosynthesis of the host may be required for cyanophage adsorption.

100

90
S
o 80 .
wn B 4
= 70
(«B]
'g 60 —e—\\/hite
(2]
-c?s 50 == B|ue
% Green

40
S == Red
c%) 30 Yellow
= 20
2 i
a 10 ?

0 T T T T T T T T T 1

0 10 20 30 40 50 60 70 80 90 100

Time (min)

Figure 3.7 Effect of wavelengths on the adsorption of cyanophage S-PM2 to Synechococcus sp.
WH7803 cells.

Synechococcus cells (OD750= 0.35) in the logarithmic growth phase were incubated with phage at a
MOI of 0.02 at 25°C at 15 uE m™2 s™ and were subjected to white (460-620 nm), blue (460-490 nm),
green (500-570 nm), red (785-620 nm), or yellow light (580-590 nm). Aliquots were withdrawn at 20,
40 and 90 min post-infection and the free phage titer was determined in the supernatant remaining after

centrifugation. Data are the mean of three biological replicates with SD values.

3.3.5 S-PM2 can still adsorb to DCMU/CCCP-treated Synechococcus

sp. WH7803
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In order to investigate whether photosynthesis of the host has a role in S-PM2
adsorption to Synechococcus sp. WH7803, photosynthesis inhibitors, DCMU, and
uncoupler, CCCP, were used to treat cells prior to adsorption. At time intervals, free
phage was titered. Two control reactions were included in this experiment. Control 1
was using non-treated cells. Control 2 was the same as control 1 except for the
inclusion of ethanol at a concentration of 0.5% (v/v) due to the fact that ethanol was
used to prepare the DCMU and CCCP solutions. As seen in Figure 3.8, no
alternations were detected when comparing S-PM2 adsorption kinetics under different
conditions and a plateau was reached after 1 h post-infection. This demonstrates that
DCMU and CCCP treatment of the host cell did not influence S-PM2 adsorption
kinetics. When the whole experiment was repeated in the dark, no adsorption was

observed (Figure 3.9).

As DCMU/CCCP causes damage to the host photosynthetic energy production system,
it is reasonable to infer that DCMU/CCCP treatment will abolished S-PM2
propagation although they can still adsorb to Synechococcus sp. WH7803. As S-PM2
has a latent period of 9 h for infecting a culture of WH7803 (Wilson et al., 1996),
samples were taken at 19 and 24 h post-infection to count un-adsorbed S-PM2 using
plagque assay. No plaques were detected that meant no phage progenies were produced.
In contrast, the positive control reaction (control 1) produced a typical one-step
growth curve of S-PM2 on Synechococcus sp. WH7803, which agreed with a previous

report (Wilson et al., 1996).
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Figure 3.8 Cyanophage S-PM2 adsorption to DCMU (10°M) / CCCP (10°°M) treated
Synechococcus sp. WH7803 cells in constant light.

In the presence of DCMU/CCCP, Synechococcus cells in the logarithmic growth phase (OD75> 0.35)
were incubated with phage at a MOI of 0.02 at 25°C at 15 uE m™s™. The free phage titer was assayed
at 0.5, 1, 2, and 3 h in the supernatant remaining after centrifugation. Control 1 was S-PM2 adsorption
to non-treated WH7803 cells. Control 2 was S-PM2 adsorption to non-treated WH7803 cells in the
presence of ethanol (0.5% v/v) due to the use of ethanol in preparing the DCMU and CCCP solutions.
Data are the mean of three biological replicates with SD values.
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Figure 3.9 Cyanophage S-PM2 adsorption to DCMU (10°M) / CCCP (10°M) treated
Synechococcus sp. WH7803 cells in the dark.

In the presence of DCMU/CCCP, Synechococcus cells in the logarithmic growth phase (OD7s,> 0.35)
were incubated with phage at a MOI of 0.02 in the dark. The free phage titer was assayed at 0.5, 1, 2,
and 3 h in the supernatant remaining after centrifugation. Control 1 was S-PM2 adsorption to non-
treated WH7803 cells. Control 2 was S-PM2 adsorption to non-treated WH7803 cells in the presence of
ethanol (0.5% v/v) due to the use of ethanol in preparing the DCMU and CCCP solutions. Data are the
mean of three biological replicates with SD values.

3.3.6 Cyanophage adsorption to Synechococcus host strains grown

under an artificial 24-h light-dark (LD) cycle

Light/dark cycles are environmental stimuli that synchronize the circadian clock and it
has been demonstrated that cyanobacteria possess an endogenous 24-hour circadian
clock, which regulates cell division, nitrogen fixation, photosynthesis, amino acid

uptake, carbohydrate synthesis and respiration (Sweeney and Borgese, 1989; Lorne et
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al., 2000; Golden, 2003). Synechococcus sp. WH7803 has been demonstrated to be
readily entrained to an artificial 24 hour LD cycle (Sweeney and Borgese, 1989). How
this circadian clock in WH7803 influences diel phage adsorption has never been
studied. In order to address the question of light-dependent phage adsorption, phage

adsorption to entrained Synechococcus strains was investigated.

As shown in Figure 3.10, S-PM2 adsorption to cells derived from 6 different time
points (Figure 2.1) over a 12 h — 12 h LD cycle followed the same pattern: ~ 90%
adsorption in the light and ~ 10% adsorption in the dark. These data clearly show that
no matter what stage the cells were withdrawn from phage adsorption followed the
same simple rule of light-dependent adsorption. This indicates that the circadian

rhythm of the host cells did not have a role in S-PM2 adsorption.
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Figure 3.10 Adsorption of cyanophage S-PM2 to Synechococcus sp. WH7803 cells under a
modulated LD cycle.

Synechococcus cells (ODsso= 0.35) grown under 12:12 h LD cycle were incubated with S-PM2 at a
MOI of 0.02 in light (15 uE m?s™) and dark at 25°C, respectively. The free phage titer was assayed 45
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min post-infection in the supernatant remaining after centrifugation. Data are the mean of three

biological replicates with SD values.

3.3.7 Investigation of the role of the psbA gene in the light-dependent

cyanophage adsorption to Synechococcus sp. WH7803

As many, but not all marine cyanophages, have been found to contain the gene psbA,
coding for the photosynthetic reaction centre protein D1 (Millard et al., 2004;
Sullivan et al., 2006), is it possible that the presence of the gene psbA in the
cyanophage genomes determines light-dependent phage adsorption. To answer this
question, a set of degenerate PCR primers targeting the psbA gene was designed based
on known psbA gene sequences which include 23 cyanobacterial psbA gene sequences
and 15 cyanophage psbA gene sequences (courtesy of Dr. Andy Millard, this
laboratory). The detailed sequence information can be found in Appendix 1. The
resulting degenerate primers were: F-primer, 5’-CTTCTATCCNATYTGGGAAG-3’;
R-primer, 5’-TNAGGTTGAANGCCATNGTR-3" (R=A+G ,Y=C+T, N=A+C+G+T).
PCRs were carried out to amplify the psbA gene from the 9 cyanophage stains as
described above in a total volume of 50 ul, containing 0.25 mM dNTPs, 3 mM MgCl,,
0.4 uM primers, 10 ng of phage DNA, 1 unit of Taq polymerase (Fermentas), and 5 pl
10x Taq buffer (Fermentas). Amplification conditions were as follows: 94°C for 2
min, 30 cycles of 94°C for 45 sec, 55°C for 45 sec, 72°C for 1 min, with a final

extension of 10 min at 72°C.

As seen in Figure 3.11, PCR products were obtained from all the cyanophages.

However, a PCR product was also generated from Synechococcus sp. WH7803
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(Figure 3.11), which indicated that these degenerate primers were able to amplify the
Synechococcus psbA. In order to eliminate false postive cyanophage psbA PCR
products generated from contained host genomic DNA contamination, cyanophages
were CsCl-purified before DNA extraction. The putative cyanophage DNAs were
then tested by PCR targeting the 16S rRNA gene of Synechococcus sp. WH7803
using the following primers: 27F-OXY1313R and OXY107F-1522R (Fuller et al.,
2003). PCRs were carried out in a total volume of 50 ul, containing 0.25 mM dNTPs,
1.5 mM MgCl;, 0.1 uM primers, 10 ng of DNA, 1 unit of Taq polymerase
(Fermentas), and 5 pl 10x Taq buffer (Fermentas). Amplification conditions were as
follows: 94°C for 2 min, 30 cycles of 94°C for 45 sec, 55°C for 45 sec, 72°C for 1
min, with a final extension of 10 min at 72°C. No 16S rRNA PCR products were

obtained based on the cyanophage DNA (Figure 3.12), which ensured the absence of

host genomic DNA.

10 11 12 13 14

Figure 3.11 Gel images of PCR products of the psbA gene generated by a set of degenerate

primer.

DNA extracted from 9 cyanophages infecting Synechococcus sp. WH7803 were used as templates to
perform PCRs. S-PWM3 (Lane 1), S-BP3 (Lane 2), S-BnM1 (Lane 3), S-PM2 (Lane 4), S-MM5
(Lane 5), negative control (Lane 6), S-MM1 (Lane 7), WH7803 (Lane 8), GeneRuler™ 1kb DNA
ladder in bp from Fermentas (Lane 9), S-MM4 (Lane 10), S-BM3 (Lane 11), S-PWM1 (Lane 12),
negative control (Lane 13), GeneRuler™ 1kb DNA ladder in bp from Fermentas (Lane 14).
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Figure 3.12 Gel image of PCR products generated by PCR primers targeting the 16S rRNA gene
of Synechococcus sp. WH7803.

DNA extracted from 9 cyanophages infecting Synechococcus sp. WH7803 were used as templates to
perform PCRs. S-PWM3 (Lane 1), S-BP3 (Lane 2), S-BnM1 (Lane 3), S-PM2 (Lane 4), S-MM5
(Lane 5), a negative control (Lane 6), S-MM1 (Lane 7), S-MM4 (Lane 8), 50 ng of WH7803 DNA
(Lane 9), 1 ng of WH7803 DNA (Lane 10), S-BM3 (Lane 11), S-PWM1 (Lane 12), GeneRuler™ 1kb
DNA ladder in bp from Fermentas (Lane 13).

The nucleotide sequences of the 9 cyanophage psbA products were very similar to
each other and to the cyanobacterial psbA gene sequence from their host strain,
Synechococcus sp. WH7803 (Figure 3.13). This demonstrated that all the 9
cyanophages carried the psbA gene. Therefore, light-dependent cyanophage
adsorption has nothing to do with the presence or absence of the psbA gene in
cyanophage genome. These data also indicated that the presence of the psbA gene in
cyanophage genomes was prevalent and this gene may function for cyanophage

replicating in photoautotrophic hosts (Clokie et al., 2006c).
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Figure 3.13 Sequence alignment of the pshA PCR product from 9 cyanophage strains with the
cyanobacterial psbA gene sequence from their host strain, Synechococcus sp. WH7803.

A degenerate PCR primer was used to amplify the psbA gene from 9 cyanophage strains (S-MM5, S-
PWM3, S-PWML1, S-BP3, S-BnM1, S-MM4, S-BM3, S-MM1 and S-PM2). The sequences were
aligned using ClustalX.

3.3.8 Absorption properties of S-PM2 particles

In order to establish whether S-PM2 itself carries a photoreceptor to detect ambient

light, the absorption properties of CsCl-purified S-PM2 particles were determined
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using a NanoDrop spectrophotometer (Figure 3.14). No absorption peaks were
detected within the range of visible wavelentgh (400 nm to 750 nm), which indicated
the absence of a chromophore. Attention was then focused on the host to find out

more about the cyanophage S-PM2 receptor.

1.0 mm Absothance

014 _
200 235 250 275 300 325 350 375 400 425 460 475 500 525 55O 575 GO0 G25 G50 675 700 725 7ED
Wawelength nm

Figure 3.14 Absorption spectrum of CsClI purified Cyanophage S-PM2.

1 pl of CsCl purified S-PM2 at a concentration of 3 x 10° pfu mI™ was analysed using a NanoDrop

spectrophotometer. ASW was used as a blank.

3.3.9 Preliminary investigation of cyanophage-cyanobacterium

recognition

Many molecules located on the cell surface can potentially function as phage
receptors. In order to gain a better understanding of the nature of cyanophage receptor

molecules, 8 different cyanobacterial hosts were challenged with 9 different
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cyanophages using a spot test (Section 2.7). The diversity and complexity of
cyanophage-cyanobacterium recognition can be seen in Table 3.1. The *+” was used
to signify the detection of plaques, which indicates successful lytic phage infection.
The “-> was used to signify no plaque formation. As seen in Table 3.1, specific phages
can infect multiple hosts, this is presumably due to the presence of the same phage
receptor(s) on the different cell surfaces. Specific hosts show different susceptibilities
to different phages (except WH7803-original isolation host). This table can serve as a
guide to design experiments to examine the adsorption patterns of different
cyanophage-host systems in the light and dark. For example, light-dependent
adsorption (~ 90% adsorption in light, ~ 10% adsorption in dark 45 min post-infection)
was also discovered in two other cyanophage-host systems: S-MM5 and Dim (Fuller
et al., 2003), S-MM4 and Dim. These data support the notion that the light-dependent

cyanophage adsorption is not just limited to S-PM2 and Synechococcus sp. WH7803.

Table 3.1 Cyanophage-host systems

S-PM2 | S-PWM3 S-BP3 S-BnM1 | S-MM5 S-MM1 S-MM4 S-BM3 | S-PWM1

WH7803 + + +

WH8109

Dim

(I I o I I
(I I o I I

BL161

BL164

T o R o

RS9916

WH8018 -

L I o L I o I o I o I
+
T I o I I o I O o I I
+ |+
L I o L I o o I o

+ | |+

BL36 -

+: positive infection  -: no infection

In order to establish whether S-PM2 light-dependent adsorption was specific to
WH7803, another S-PM2 host, marine Synechococcus strain BL161 (Laure Guillou,

unpublished), was used to perform adsorption test in the light and dark by counting
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Synechococcus sp.

free phages at the beginning and 45 min post-infection following the same protocol as
for Synechococcus sp. WH7803. It was found that ~ 60% of the phages adsorbed to
BL161 in the light and ~ 40% of the phages adsorbed to BL161 in the dark (Figure
3.15). This pattern was quite distinct from the S-PM2 adsorption to WH7803 (90%
adsorption in the light and 10% adsorption in the dark). This suggests that the nature
of the host cell has a big impact on the S-PM2 light-dependent adsorption. Therefore,
it is crucial to examine the cell surface of the host cells and define the component to

which cyanophage S-PM2 attaches.

BL161 in the dark =

Synechococcus sp.

BL161 in the light —

0 20 40 60 80 100

Percentage of un-adsorbed S-PM2

Figure 3.15 Adsorption of S-PM2 to Synechococcus sp. BL161 in the light and dark.

BL161 cells in the logarithmic growth phase (OD75,= 0.35) were incubated with S-PM2 at a MOI of
0.02 at 25°C at 15 pE m™2 s, The free phage titer was assayed 45 min post infection in the supernatant

remaining after centrifugation. Data are the mean of three biological replicates with SD values.

3.4 Discussion

Using flow cytometry for counting phage S-PM2 is because the sheer volume of the
plaque assays used in counting phage. For example, when the experiment of the effect

of light on the adsorption of cyanophage S-PM2 to Synechococcus sp. WH7803 cells
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was carried out (Figure 3.5), phage samples were collected from 25 time points and
each time point needed 9 plates to do plague assays, which means there was a total of
450 plates (225 for phage adsorption in the light and 225 for phage adsorption in the
dark). Although plaque assays give reliable phage counts, it is time-consuming. In
order to do large scale phage adsorption experiments, namely assaying adsorption of
other phages to Synechococcus sp. WH7803 in the light and dark, counting phage
using plaque assays obviously becomes a tedious task. A quick and reliable way of

counting is needed.

Although the nucleic acid staining dye, SYBR Green, has been used in flow
cytometry to count marine viruses from crude cell lysate (Marie et al., 1999;
Brussaard et al., 2000; Brussaard, 2004), it was not the case for marine phage S-PM2
infection of Synechococcus sp. WH7803. Even with CsCl-purified S-PM2 phage
particles, 2-3 individual populations were observed (Figure 3.2, Column C). When the
CsCl-purified S-PM2 was subject to an extra procedure of filtration, populations
representing particles bigger than S-PM2 were removed (Figure 3.2, Columns A and
B). These data indicates that cyanophage S-PM2 tend to form aggregates, which may
explain the observation that count of CsCl-purified S-PM2 based on FC (6 x 10° to
7.3 x 10° particles mI™) were almost 10 time lower than plaque assay (2.5 x 10*° puf
ml™). When fresh S-PM2 lysates were used to perform FC, the phage count (7.4 x 10’
particles ml™) was almost 10 times lower than plaque assay (5.8 x 10° puf mI™). It is
not an unusual phenomenon for lytic phages to form aggregates. For example, a lytic
phage, named 0305d8-36 infecting Bacillus thuringiensis has been reported to be able
to form aggregates during plaque formation (Serwer et al., 2007a; Serwer et al., 2007c;

Serwer et al., 2007b). To overcome the problem of aggregation, S-PM2 may need to
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be diluted to dissociate phage aggregates before counting using FC. Apart from phage
aggregation, the autofluorescence of the phycoerythrins in WH7803 (Ong et al., 1984)
can also be a problem based on the following observations: (1) CsCl-purified S-PM2
without staining with SYBR Green | showed particles in the gated region (6 x 10°
particles ml™, Figure 3.2E). (2) The stained blank also showed particles in the gated
region (1.3 x 10 particles mI™, Figure 3.3B). These counts may be due to the
autofluorescence of photosynthetic pigments of WH7803. To make FC work for S-
PM2, phycoerythrins would need to be removed. As the same protocol functioned on
a Stratomycete phage ®c31, as seen in Figure 3.4, the problem with S-PM2 was not a
technical fault. Therefore, due to aggregation and background signals, phage

counting in following study resumed to plaque assay.

Light is one of the most important environmental factors that effect cyanobacterial
growth. In the natural environment cyanobacteria are subject to light/dark cycles and
it is important to know how phage infection will be affected by the shift from light to
dark. It has been previously reported that the light can considerably affect the
adsorption of the freshwater cyanophage AS-1 to Synechococcus PCC 7942
(previously named Anacystis nidulans) (Cseke and Farkas, 1979b); 40% of the phage
was adsorbed to the cells in the dark, whereas 80% of the phage was adsorbed to the
cell in the light. Compared to the 10% of phage adsorption in dark and 90% of phage
adsorption in light, S-PM2 is far more sensitive to light in terms of the adsorption step.
Apart from light availability, higher light intensity has been indicated to be more
effective in cyanophage AS-1 adsorption to Synechococccus elongates (Kao et al.,

2005).
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As DCMU/CCCP-treatment of Synechococcus sp. WH7803 cells did not prevent
phage S-PM2 from adsorbing, this suggests that the adsorption of S-PM2 to WH7803
does not need the ATP generated through the process of photophosphorylation.
However, DCMU/CCCP did abolish the replication of S-PM2 in Synechococcus sp.
WH7803, which agrees with previous observation that the use of DCMU or CCCP
completely abolished cyanophage SM-1 replication in Synechococcus strain NRC-1
(MacKenzie and Haselkorn, 1972). This leads to two implications, either the process
of S-PM2 adsorption does not need energy or other unknown energy sources in the

hosts are required for S-PM2 adsorption.

LD cycles can induce different physiological statuses and synchronise the circadian
clock of the photoautotrophic host cell, which may influence phage adsorption.
Furthermore, Synechococcus sp. WH7803 has been reported to be easily entrained
under LD cycles (Sweeney and Borgese, 1989; Jacquet et al., 2001). Consequently,
phage adsorption to LD-entrained WH7803 cells was investigated. Data showed that
LD cycles did not bring any effect to S-PM2 adsorption kinetics, which agrees with a
previous observation that circadian rhythm of Synechococccus elongatus had little
effect on the cyanophage AS-1 diel infection (Kao et al., 2005). However, to
unequivocally establish the role of circadian clock of WH7803 in S-PM2 adsorption,
the entrainment of the WH7803 circadian clock needs to be confirmed (Ishiura et al.,

1998) as the strain has been cultured in lab under constant light for many years.

One possible scenario for the light-dependent adsorption is that light may introduce
some “critical changes’ (which could not be initiated in the dark) in either the cell

receptor or the phage itself so that successful adsorption could occur. If light could

102



trigger some change in the phage itself, S-PM2 must contain a photoreceptor to detect
ambient light. In higher plants, the photoreceptor is commonly phytochrome, a protein
with bilin chromophores that is sensitive to light in the red and far-red region of the
visible spectrum (Quiail et al., 1995). However, red light (785-620 nm) did not bring
about phage adsorption to a similar level as blue (460 nm-490 nm), green (500-570
nm) and yellow (580-590 nm) light did (Figure 3.7). As a matter of fact red light
(785-620 nm) had a very similar effect as the darkness to S-PM2 adsorption (Figure
3.5 and 3.6). This implies that no phytochrome-like molecule exists in S-PM2. In
addition, absorption spectrometry of S-PM2 also confirmed the absence of light-
detection molecules in S-PM2. Furthermore, no chromophore-coding gene was

discovered in the S-PM2 genome (Mann et al., 2005).

As S-PM2 showed decreased adsorption rate to Synechococcus strain BL161
compared to that of WH7803 in the light but no adsorption to both of them in the dark,
this indicates that light-triggered S-PM2 receptor(s) on the cell surfaces of BL161 and
WH7803 may be different molecule(s). If the same molecule(s) were used as S-PM2
receptor(s), the abundance of that receptor molecule(s) may be higher on the cell

surfaces of WH7803 than BL161 in the light.

It has been reported that the gene wac of phage T4 encodes a protein whisker, which
can interact with the long tail fibers (LTFs) and hold the LTFs in a retracted
conformation that prevents the phage from adsorbing (Letarov et al., 2005). Moreover,
the sensitivity of the wac to ambient conditions, such as pH and temperature, enables
T4 to adapt itself to its environment (Letarov et al., 2005). Phage S-PM2 may use a

similar mechanism as phage T4 to maintain the LTFs of phage S-PM2 in an extended
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format that enables the phage to adsorb. Elimination of light may force the LTFs to
fold and form a compressed format that inhibits contact between phage adhesin and

cell receptor, thus blocked adsorption.

The possibility that the expression of the phage S-PM2 receptor-coding gene was
under the control of light was ruled out by the observation that when the phage-host
suspension was exposed to light adsorption resumed almost immediately (Figure 3.5).
This indicates that the receptor molecule must already be on the cell surface, which
leads to the possibility that the receptor molecule could undergo a conformational
change in the light to favour phage recognition. Therefore, the research now focuses
on the host Synechococcus sp. WH7803, trying to identify the molecule that S-PM2

binds to.
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Chapter 4 Isolation of cyanophage-

resistant mutants
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4.1 Introduction

Mutant E. coli strains that are resistant to phage infection have been reported for all
the T-series phages (Lenski, 1988b). For lytic phages, resistance is often the result of
loss or modification of the receptor molecule on the cell surface to which the phage
binds. These mutations often simultaneously reduce the cell’s competitiveness
because the receptor molecules often have a functional role in bacterial physiology
(Lenski, 1988a). Despite the trade-off between resistance and competitiveness,
sensitive and resistant E. coli strains have been shown to stably co-exist in laboratory

communities (Lenski, 1988b).

The occurrence of phage-resistant cyanobacteria has been suggested to be widespread
in the marine environment (Waterbury and Valois, 1993a; Suttle and Chan, 1994;
McDaniel et al., 2006). Indeed, Waterbury and Valois (1993) and McDaniel et al.
(2006) reported that some Synechococcus isolates from the Sargasso Sea, Woods Hole
Harbor, the Gulf Stream and the Gulf of Mexico were resistant to cyanophage isolates
obtained from the same location. Suttle and Chan (1994) suggested that the phage-
resistant Synechococcus strains were more likely to occur in the mesotrophic rather

than the oligotrophic regions of the ocean.

There are three potential ways for Synechococcus strains to become phage-resistant in
the natural environment (Mann, 2003). Firstly, a number of strains within the
Synechococcus population are naturally resistant to certain phages due to their
genotype. This has been shown to be the case in laboratory studies. Some

Synechococcus strains showed susceptibly to as many as 11 phage isolates, whereas
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others were only infected by 1 or 2 phages (Waterbury and Valois, 1993a). Secondly,
Synechococcus strains can mutate into phage-resistant forms under the selection
pressure for the strains to be resistant, though these mutants pay a physiological cost
(Lennon et al., 2007). Thirdly, normally sensitive cells may become resistant to phage
infection under certain physiological conditions or in particular phases of the cell

cycle.

Phage receptor studies in E. coli and related species were facilitated by the availability
of phage-resistant mutants (Heller, 1992). However, little work has been carried out
on identifying cyanophage-resistant cyanobacteria. Recently, a number of phage-
resistant Synechococcus mutants have been isolated and characterised (Stoddard et al.,
2007). Phage adsorption tests also suggested that resistance was likely due to changes

in phage receptors (Stoddard et al., 2007).

Limited work has been carried out to identify cyanophage receptors. One early report
suggested that the lipopolysaccharide (LPS) may be involved in binding of the
cyanophage AS-1 to the unicellular cyanobacterium Anacystis nidulans KM based on
the fact that the LPS layer was able to inactivate the cyanophage AS-1 (Katz et al.,
1977; Samimi and Drews, 1978). In this chapter, spontaneous cyanophage-resistant
mutants from Synechococcus sp. WH7803 were isolated and their susceptibilities to

cyanophage infection were tested.

4.2 Aims

To isolate cyanophage-resistant mutants derived from Synechococcus sp. WH7803.
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4.3 Results

4.3.1 Isolation and confirmation of cyanophage-resistant mutants

As part of an effort to understand light-dependent S-PM2 adsorption, 9 different
cyanophages (see Section 2.11) were used to infect Synechococcus sp. WH7803 at a
MOI of 1. During prolonged incubations (3 months), re-growth was detected from 3
out of 9 phage-infected WH7803 cell cultures, including phages S-PM2, S-BP3 and
S-BnML1. No re-growth was observed for the other six cyanophage-host incubations.
These 3 putative phage-resistant strains were purified using the pour plate method
(Section 2.14) to get single colonies, which were then subject to culture in liquid
medium. The resistant strains were named by adding ‘R’ (for ‘resistant’) and the name
of the cyanophage to the end of the host strain WH7803. Consequently, the S-PM2-
resistant strain was named ‘WH7803RS-PM2’; the S-BP3-resistant strain was named

‘WH7803RS-BP3’; the S-BnM1-resistant strain was named ‘WH7803RS-BnM1’.

To confirm that these 3 putative phage-resistant mutants, derived from single colonies,
were still resistant to phage infection, cultures (OD750=0.3) were challenged with their
corresponding phages at an MOI of 1 and were kept under illumination (Section 2.6)
for 10 days. Wild-type WH7803 cultures (with or without phage addition) were

grown as controls. All the putative mutants showed obvious growth (OD7sp >0.75),

but the phage-infected wild-type cell cultures died. This indicated that the phage-

108



resistance was not just a result of a temporary phenomenon and but was probably due

to a permanent modification in their phage receptors.

In order to rule out the possibility of contamination and to further confirm that these 3
putative phage-resistant mutants were genuinely Synechococcus sp. WH7803
derivatives, all 3 phage-resistant mutants derived from single colonies was examined
by PCR coupled with DNA sequencing using primers targeting three Synechococcus
sp. WH7803 genes; the 16S rRNA gene and two photosynthesis-related genes, mpeBA
and cpeT (Table 2.11). The PCR product of the 16S rRNA gene was amplified using
the following primers: 27F-OXY1313R and OXY107F-1522R (Fuller et al., 2003).
PCRs were carried out in a total volume of 50 pl, containing 0.25 mM dNTPs, 1.5
mM MgCl,, 0.1 uM primers, 10 ng of DNA, 1 unit of Tag polymerase (Fermentas),
and 5 pl 10x Taq buffer (Fermentas). Amplification conditions were as follows: 94°C
for 2 min, 30 cycles of 94°C for 45 sec, 55°C for 45 sec, 72°C for 1 min, with a final
extension of 10 min at 72°C. The PCR product of the mpeBA operon was amplified
using the following primers: 7803mpeBAF-704 and 7803mpeBAR-1330C. The PCR
product of the cpeT gene was amplified using the following primers: 7803cpeTF39
and 7803cpeTR612C. Both PCRs were carried out in a total volume of 50 pl,
containing 0.25 mM dNTPs, 1 mM MgClI;, (for mpeBA) or 4 mM MqCI,, (for cpeT),
0.4 uM primers, 10 ng of DNA, 1 unit of Taq polymerase (Fermentas), and 5 pl 10x
Taq buffer (Fermentas). Both amplification conditions were as follows: 94°C for 2
min, 30 cycles of 94°C for 45 sec, 60°C for 45 sec, 72°C for 1 min, with a final
extension of 10 min at 72°C. Sequencing reactions were carried out using the same

primers as for the PCRs, except that two more primers, 16S rRNA359F and 16S
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rRNA778R, were involved in 16S rRNA sequencing in order to sequence the full

length of 16S rRNA gene.

When the sequence results were aligned with the corresponding genes of wild-type
Synechococcus sp. WH7803, 100% identity was revealed (Figure 4.1-4.3). This
demonstrated that the 3 phage-resistant mutants were derived from Synechococcus sp.

WH7803.
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Figure 4.1 Sequence alignments of the genes in the S-BnM1-resistant strain and Synechococcus
sp. WH7803 (WH7803).

A 16S rRNA gene, B mpeBA gene, C cpeT gene. Five individual phage-resistant single colonies

(indicated as R1-5) were chosen for DNA sequencing.
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Figure 4.2 Sequence alignments of the genes in the S-BP3-resistant strain and Synechococcus sp.
WH7803 (indicated WH7803).

A 16S rRNA gene, B mpeBA gene, C cpeT gene. Five individual phage-resistant single colonies
(indicated as 2, 19, 27, 28 and 32) were chosen for DNA sequencing.
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A 16S rRNA gene, B mpeBA gene, C cpeT gene. 10 individual phage-resistant single colonies
(indicated as R1-10) were chosen for DNA sequencing.

Since time constraints did not allowed me to perform a comprehensive analysis of all
three cyanophage-resistant strains, only WH7803RS-PM2 was chosen for detailed

analysis.

4.3.2 Examination of the binding capacity of S-PM2 to WH7803RS-

PM2

The binding capacity of WH7803RS-PM2 to S-PM2 was examined by performing the
adsorption experiment described in Chapter 3 using WH7803RS-PM2 as the host. It
was found that virtually no phage adsorbed to the mutant within 45 min post infection
in light compared to ~ 90% adsorption to WH7803 (Figure 4.4). This lack of
adsorption suggests that resistance to S-PM2 occurred through mutations of the S-

PM2 receptor molecules to which S-PM2 binds.

WH7803 oK
WH7803RS- o
PM2
0 1‘0 2‘0 3‘0 46 5‘0 6‘0 76 8‘0 9‘0 160

Percentage of un-adsorbed S-PM2

Figure 4.4 Adsorption of S-PM2 to WH7803RS-PM2 and WH7803 in the light.

WH7803RS-PM2 and WH7803 in the logarithmic growth phase (OD;so= 0.35) were incubated with S-
PM2 at a MOI of 0.02 at 25°C at 15 pE m™ s™. The free phage titer was assayed 45 min post infection

116



in the supernatant remaining after centrifugation. Data are the mean of three biological replicates with

SD values.

4.3.3 Examination of the growth curve of WH7803RS-PM2 cells

Although no obvious visible phenotypic alterations were observed in the mutant and
wild-type cells, the growth rates were examined in order to determine any effect
exerted by phage-resistance. No marked difference was observed in the growth curves
of the wild-type and mutant (Figure 4.5). This indicated that loss of the S-PM2
receptor molecules on the cell surface did not significantly impair the cell’s

physiological status under these particular growth conditions.

1.4

1.2

- -4 - WH7803RS-PM2
—=—\WH7803

Absorbance at 750 nm

12

-0.2

Time (day)

Figure 4.5 Growth curves of Synechococcus sp. WH7803 and WH7803RS-PM2 in ASW medium.

Cells were cultured in 1 | glass vessel with aeration and stirring. Cell growth was monitored by
absorbance at 750 nm. The points are the mean of three biological replicates. The error bars represent
SD (n=3).
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4.3.4 Examination of the binding capacity of other cyanophages to

WH7803RS-PM?2

In order to gain further insight into the specificity of the S-PM2 receptors, the
susceptibility of WH7803RS-PM2 to 30 cyanophages (listed in Table 2.2) was
investigated by the use of a spot test (see Section 2.7). The wild-type Synechococcus
sp. WH7803 strain was used as a positive control because it is susceptible to all of the
30 cyanophages and always yields plagques. Freshly prepared stocks of the 30 phages
(Section 2.8), which had a similar titration of ~10° pfu mI™, were serially10-fold
diluted and each dilution was used in the spot test. As shown in Table 4.1,
WH7803RS-PM2 was still infected by 13 cyanophages with a similar susceptibility to
the control cells based on the fact that plaques were formed on both strains at
dilutions down to 10™. This indicates that these 13 cyanophages probably do not bind
to the same cell receptor molecule as S-PM2. Apart from these 13 cyanophages that
form clear plaques on WH7803RS-PM2 at dilutions down to 107, one particular
cyanophage, S-MM5 was able to form plagues on WH7803RS-PM2 at dilutions down
to 10 and form plaques on the control cells, WH7803 at dilutions down to 10’
(Figure 4.6). This decreased resistance to cyanophage S-MMD5 indicates that
WH7803RS-PM2 is only partially resistant to S-MMD5 infection. This may result from
an alteration in a secondary phage receptor. In addition, WH7803RS-PM2 was
resistant to the other 16 cyanophages with no plaques being formed at any dilution.

Thus, they probably use the same cell receptor molecules as S-PM2.
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4.3.5 Examination of the binding capacity of 9 cyanophages to

WH7803RS-BP3 and WH7803RS-BnM1

The same methodology as described above was applied to WH7803RS-BP3 and

WH7803RS-BnML1 to test their susceptibility to 9 cyanophages. Both were still

resistant to S-BP3, S-BnM1, S-PWML1 and S-BM3 and sensitive to the others (Table

4.2). This indicated that the two phages, S-BP3 and S-BnM1, probably shared the

same phage receptor(s).

Table 4.1 Binding capacity of 30 cyanophages to Synechococcus sp. WH7803RS-PM2

Phage strain

Synechococcus
sp.WH7803RS-PM2

Synechococcus
sp.WH7803

S-PM2

%

S-PWM1

S-PWM3

S-BP3

S-BnM1

S-MM1

S-MM4

S-MM5

-+ | H| | | A

S-BM3

S-RSM1

S-RSM2

S-RSM3

S-RSM5

S-RSM6

S-RSM7

S-RSM8

S-RSM9

S-RSM11

S-RSM12

S-RSM13

S-RSM14

S-RSM15

S-RSM18

S-RSM19

I o o o o o I o SR I B O o o o o o I o o o S I o O O o o o o S B S I o B I I o o o o S I S I o
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S-RSM22

S-RSM23

S-RSM25

S-RSM26

S-RSM30

S-RSM34

Ho(H (||

t: sensitive, with similar susceptibility to the control cells

t: sensitive, with decreased susceptibility compared to the control cells

—: resistant

Table 4.2 Binding capacity of 9 cyanophages to WH7803RS-BP3 and WH7803RS-BnM1

Phage strain Synechococcus Synechococcus Synechococcus
sp.WH7803RS-BP3 | sp.WH7803RS-BnM1 sp.WH7803
S-PM2 i i i
S-PWM1 — — i
S-PWM3 t i i
S-BP3 — — t
S-BnM1 — — i
S-MM1 ¥ i i
S-MM4 ¥ i i
S-MM5 i i i
S-BM3 — — i

¥: sensitive, with similar susceptibility to the control cells

—: resistant
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Lawn of WH7803 Lawn of WH7803RS-PM2

S-PM2

S-MM5

Figure 4.6 Spot tests of the infectivity of cyanophage S-MM5 on WH7803RS-PM2 and WH7803.

Serial diluted (10™ to 107) S-PM2 and S-MMS5 phage stocks with a titer of ~ 10° pfu mI™ were spotted
on lawns of WH7803 (left) and WH7803RS-PM2 (right) cells. S-PM2 was spotted on the upper half of
the plate, while S-MMD5 was spotted the bottom half.

4.4 Discussion

The successful isolation of 3 cyanophage-resistant mutants, WH7803RS-PM2,
WH7803RS-BP3 and WH7803RS-BnML1, out of 9 phage-infected Synechococcus sp.
WH7803 cell suspensions demonstrates that spontaneous phage-resistant strains do
exist among wild-type strains, these phage-resistant strains will show the advantage
when challenged with phage. As resistance can be passed from single colonies to
several transfers in liquid cultures, this suggests the resistance is due to heritable
genetic changes not physiological cost. Furthermore, mutation to resistance to one
phage does lead to resistance to other phages based on the fact that the S-PM2-
resistant mutant also showed resistance to other 15 cyanophages. According to the

theory that phage-resistant marine Synechococcus strains are accompanied by a fitness
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cost (Lennon et al., 2007), one would expect that mutation to resistance to 16
cyanophages would impose a large trade-off in the fitness of WH7803RS-PM2.
However, no obvious fitness cost has been detected from the S-PM2-resistant mutant
because it showed a very similar growth rate as the wild-type strain. Armed with this
resistance to multi-phage infections and the ability to maintain the cell’s physiological
status, this S-PM2-resistant Synechococcus strain certainly has a competitive
advantage over sensitive strains, which has been generally assumed (Bohannan and
Lenski, 2000). Although the multi-phage-resistant strains were discovered in the
laboratory environment, it remains to be investigated whether or not this multi-phage-
resistant and physiologically intact mutant exists in the natural environment. The
possibility that the observed phage resistance is due to lysogeny was ruled out by the

fact that these cyanophages are strictly lytic.

The fact that the S-PM2-resistant Synechococcus strain is not able to bind to S-PM2
implies mutation(s) in the phage receptor(s). A recent report also showed that
cyanophage-resistant marine Synechococcus strains may gain their resistance by
changing the host receptor sites (Stoddard et al., 2007). The mutations conferring
resistance to S-PM2 also caused resistance to other 15 cyanophages. This cross-
resistance to other phages suggests that different cyanophages may share the same
receptor(s). In this study, two cyanophages, S-BP3 and S-BnM1, probably use the
same molecule(s) as the receptor according to the evidence that WH7803RS-BP3 and

WH7803S-BnML1 strains showed the same susceptibility pattern to 9 cyanophages.

The fact that the mutant strain WH7803RS-PM2 was still susceptible to 16 out of 30

cyanophage indicated that mutation to resistance to one phage does not necessarily
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lead to resistance to other phages, which agrees with previous observations
(Bohannan and Lenski, 2000). This discovery also confirms that different phages use
different receptor(s) and also implies that Synechococcus strains in the natural
environment may be composed of many populations that probably differ in their
phage receptors, such as Synechococcus strain WH7803 may be composed of one
population of S-PM2-resistant strains, one population of wild-type strains and one

population of S-PM2-sensitive but S-BP3 and S-BnM1-resistant strains.

Apart from the possible universality and specificity in the phage receptor, a possible
partial resistance was indicated by the fact that WH7803RS-PM2 strain (compared to
the wild-type Synechococcus sp. WH7803) showed a decreased susceptibility to
phage S-MM5 infection (Figure 4.2). A similar result has also been discovered in
coliphage-resistant strains (Lenski, 1984). Mutants of E. coli B that exhibited
complete resistance to bacteriophage T4 were shown to be partially resistant to
bacteriophage T2, and this was due to the involvement of two receptors in the
adsorption of T2 to E. coli B cells (Lenski, 1984). Thus, it is possible that two
receptor molecules on the cell surface are required for a successful S-MM5 adsorption
to Synechococcus sp. WH7803. As numerous studies in the past have provided
considerable evidence that some viruses recognise more than one receptor (Haywood,
1994), it is possible S-PM2 binds to two receptors on the surface of WH7803.
Therefore, any change to one of the receptor molecules may lead to resistance to S-
PM2 infection. Another possibility leading to resistance is changes on the cell surface
morphology (could be due to missing of outer membrane proteins), which makes the
phage receptor(s) inaccessible for phage binding. A detailed study focusing on the

nature of the S-PM2 receptor will be described in Chapter 5.
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Chapter 5 Characterisation of a phage
S-PM2-resistant mutant derived from

Synechococcus sp. WH7803
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5.1 Introduction

5.1.1 SDS-PAGE

SDS-PAGE is a standard technique used to separate proteins according to their
primary structure or size (Shapiro et al., 1967). By mixing protein samples with SDS,
an anionic detergent, any secondary, tertiary or quaternary structure will be denatured.
As a result, all proteins are reduced to the same linear shape with negative charge due
to the attachment of the SDS anions. The proteins are then separated on a
polyacrylamide gel, which is formed from the polymerization of two compounds,
acrylamide and a cross-linking agent, bisacrylamide (Bis). The relative size of the
pores formed within the gel is determined by two factors, the total amount of
acrylamide and the amount of cross-linker. The pore size increases when the total
amount of acrylamide increases. With respect to cross- linking, 5% gives the smallest
pore size. Higher or lower than 5% will increases the pore size (Shapiro et al., 1967,
Weber and Osborn, 1969). Therefore, different pore-sized gels can be obtained by
adjusting the concentration of polyacrylamide and Bis for the purpose of separating a

mixture of proteins.

In practice, a multiple gel system comprising of a stacking gel over a separating gel is
used. These gels are made from different concentrations of acrylamide using different
buffer system. For examples, the stacking gel is usually a large pore-sized
polyacrylamide gel that is prepared with Tris/HCI buffer pH 6.8. As a result, SDS-

coated proteins are concentrated to a thin starting zone. The resolving gel is a small

125



pore polyacrylamide gel that is typically made using a pH 8.8 Tris/HCI buffer
(Laemmli, 1970). It is the resolving gel that has the power to separate proteins

according to their size.

A major drawback to the one-dimensional SDS-PAGE is that it can not distinguish
two proteins made of different amino acids but with the same molecular weight. This
problem was resolved more than 20 years ago by introducing another dimension of
immobilised pH gradient (Gorg et al., 1998), so called two-dimensional SDS-PAGE.
The 1% dimension uses isoelectric focusing (IEF) that separates proteins on the basis
of their isoelectric points (pls) (Dossi et al., 1983). In the 2" dimension, proteins are

separated by their size.

5.1.2 Matrix-Assisted Laser Desorption/lonisation Time-Of-Flight

Mass Spectrometry (MALDI-TOF MYS)

Mass spectrometry has been successfully used for identification and analysis of
molecules for more than half a century (Burlingame et al., 1992). However, it has
limitation when analysing large molecules due to their low volatility and thermal
instability (Burlingame et al., 1992). To obviate these problems, one techniques that
has significant impact on large molecule identification is MALDI-TOF MS, which
allows for determination of large biomolecules greater than 200 KDa (Hillenkamp et
al., 1991; Beavis et al., 1992). MALDI-TOF MS was introduced by Karas et al. and
Tanaka et al. in 1987-1988 for UV-laser desorption/ionisation of large polypeptides
and proteins about 10 kDa (Karas et al., 1987; Karas and Hillenkamp, 1988; Tanaka

et al., 1988). The MALDI technique is based on an ultraviolet absorbing matrix,
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which is normally an organic aromatic weak acid that can facilitate desorption and
ionisation of compounds in samples (Karas et al., 1987; Karas and Hillenkamp, 1988).
The principle underlying MALDI-TOF MS is illustrated in Figure 5.1. Typically, the
sample/matrix is placed in vacuum and subjected to multiple laser shots. The resulted
ions are then accelerated by an applied high voltage, separated in a field-free flight
tube. The smaller ions arrive at the detector in a shorter amount of time than the more
massive ions. These ions are detected as an electrical signal and recorded as a function
of time to yield a TOF mass spectrum. MALDI-TOF MS offers promise for the fast
and unequivocal identification of relatively pure material. For example, identification
of a protein can be accomplished by breaking it into specific peptide fragments using
amino acid specific proteolytic enzymes such as endoprotease trypsin. The enzymatic
digestion results a unique ‘mass-map’ or profile, which is used to search against

databases to allow unambiguous identification.

5.1.3 Liquid Chromatography Tandem Mass Spectrometry (LC-

MS/MS)

LC or high performance liquid chromatography (HPLC) is a form of column
chromatography to separate and identify compounds. LC system comprises a column
packed with stationary phase, a pump that moves the mobile phase(s) through the
column, and a detector that shows the retention times of the molecules. MS/MS is a
technique that involves two mass spectrometers. Typically, the first MS functions in
selecting a single mass. The second MS is used to separate the mass-selected fragment

ions (Wysocki et al., 2005). By coupling an LC system, LC-MS/MS becomes a
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powerful technique in proteomics, such as peptide sequencing and protein

identification (Delahunty and Yates, 2005).

Detector

Flight tube

/ \ Laser beam

High voltage

Matrix

Matrix/samples mix

Figure 5.1 Cartoon to show the principles of MALDI-TOF MS.

The matrix/sample mix is subjected to laser shot. The ions are separated in a flight tube where small

ions reach the detector first.

5.1.4 Cyanobacterial cell surface

The cell surface is critical in determining the susceptibility of a bacterium to
bacteriophage infection as phage adsorption is dependent on the presence of specific

attachment sites, receptors, on the cell surface. The cyanobacterial cell surface
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displays a combination of Gram positive and Gram negative characteristics. It has a
considerably thicker peptidoglycan layer than that of most Gram negative bacteria
(Golecki, 1977; Hoiczyk and Baumeister, 1995) (Figure 5.2). Frequently,
cyanobacterial outer membranes (OMs) are covered by external surface layers such as
the S-layer, which is protein surface layer formed by a single protein (for a review see
Sara and Sleytr, 2000). As part of the Gram negative cell envelope structure, S-layers
may function as a protective coat (Koval, 1997) or molecular sieves providing sharp
cutoff levels (Sara and Sleytr, 1987). They also act as adhesion sites for cell-
associated exoenzymes (Egelseer et al., 1995) and may contribute to virulence when

they are part of the cell envelope of pathogens (Doig et al., 1992).

Figure 5.2 Electron micrograph images showing the cell envelope of the cyanobacterium

Phormidium uncinatum (A) and E. coli (B).

The cyanobacterial cell wall possesses a much thicker peptidoglycan layer and a serrated external layer
(e.g. an S-layer) outside the outer membrane. CM, cytoplasmic membrane; EL, serrated external layer;

OM, outer membrane; P, peptidoglycan layer. Bars, 100 nm. From Hoiczyk and Hansel (2000)
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5.1.5 Cyanophage receptors

Limited work has been carried out to identify the cell receptors recognised by
cyanophages. One early report based on the model system consisting of cyanophage
AS-1 and Anacystis nidulans (Synechococcus sp. PCC 7942) suggested that both the
LPS and protein fractions may be involved in the binding process based on the fact
that AS-1 was inactivated by LPS and protein fractions extracted from the cell surface
(Katz et al., 1977; Samimi and Drews, 1978). Disruption in Anabaena sp. strain PCC
7120 of the genes thought to encode undecaprenyl-phosphate
galactosephosphotransferase (rfoP) and mannosyl transferase (rfbZ) led to resistance
of the obligately lytic phage A-1 and the temperate phage A-4 (Xu et al., 1997). Both
these enzymes are involved in the synthesis of the O-antigen component of LPS and
electrophoretic analysis showed that the interruption of the rfbP and rfbZ genes led to
a change in, or loss of, the characteristic pattern length of the LPS (Xu et al., 1997).
The O-antigen is comprised of serially repeated, strain-specific oligosaccharide units.
Thus this study suggests that LPS may play an important role in cyanophage
adsorption and variation in the nature of the O-antigen component may determine

cyanophage host range.

5.2 Aims

To characterise the phage S-PM2-resistant mutant derived from Synechococcus sp.
WH7803 and localise the cell receptor(s) in Synechococcus strain WH7803 to which

cyanophage S-PM2 binds.
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5.3 Results

5.3.1 SDS-PAGE of whole-cell proteins of WH7803 and WH7803RS-

PM2

In order to identify the potential host components that can act as S-PM2 receptor(s),
whole-cell SDS-PAGE was used to characterise the protein profiles of Synechococcus
sp. WH7803 and WH7803RS-PM2 cells. As shown in Figure 5.3, a single protein
band with a size of ~180 kDa is only present in Synechococcus sp. WH7803 (The
poor quality of the picture is due to the resolution limit in printing and an electronic
version of Figure 5.3 can be found in the CD accompanied this thesis). Apart from
this protein band no other difference can be revealed by comparing the protein profile
based on the one dimensional PAGE (identical results were obtained from three

biological replicates). The identity of this protein was established.
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Figure 5.3 SDS-PAGE profiles of whole-cell protein extracts from Synechococcus sp. WH7803
and WH7803RS-PM2 cells.

Lane 1 Synechococcus sp. WH7803, Lane 2 Synechococcus sp. WH7803RS-PM2, Lane 3 SeeBlue®
Plus2 Pre-Stained protein standards (Invitrogen) that were used to estimate protein molecular weight.
The missing band from the mutant is indicated by an arrow (a better view can be achieved by referring

to the electronic version of this picture in the CD).
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5.3.2 Protein identification by MALDI-TOF and LC-MS/MS

The protein band present only in Synechococcus sp. WH7803 was excised from the
gel and analysed by MALDI-TOF MS to obtain a “mass fingerprint’ and the
remainder peptides separated using a nano-scale HPLC system, followed by online

MS/MS (this part was performed and analysed by Samuel J.H. Clokie).

MALDI-TOF analysis (Figure 5.4B) yielded 118 peptides of sufficient quality (signal
to noise ratio) to search against the Synechococcus sp. WH7803 genome (Genbank
accession NC009481) using the Protein Prospector program (UCSF, CA). The results
clearly showed that the protein is the putative multicopper oxidase (MCO) (encoded
by the ORF0948 in Synechococcus sp. WH7803) with a MOWSE score significantly
(~10°) above the runner-up hit (Figure 5.4A and 5.4C). As a control no significant hits
were recorded when the mass list was searched against the entire NCBI non-

redundant database using the MASCOT (www.matrixscience.com) web-based search

program or the Protein Prospector program. A nano-scale HPLC also confirmed the
MALDI-TOF identification as the putative MCO (Figure 5.4D, 5.4E and 5.4F). The
experiment was repeated three times and the mass spectral analysis performed on

three separate experiments.
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Mass (m/z)

>putative MCO, MW: 187712.2 / P1:4.21

SLLGTTDQPYQFKIAADTYIDLLRLDTQGR

TDRWLQTEGVSLGGRRATPISADNWRPIARDSSGELLSLEEVTLTGNSALARFSGGVEAVYSVGGSGLLA
NAIPEGPQVVVEGTVR

IGSLFPTLEDGSPNLILSSGLELR VVSSLQSGTLDTPMRISSDPVRIPGIDR
GVLSKWTTHARNR AASDSSNYKPAELWDAY
DGSTTVFSRFDTDALLQR
NWAVLK LRLDGFDNLGGVVNR
FHNISLIHTDSDGNRTTLPLYLYGEDGHQYPQIR
RVDVLVYLPEGK
GTLVGPASE
YDAATVELLK
YIGHPFHIHINDYQVK NLEDTTSLNSSGYEFYDPAAKEVVSLEPQRGEFHSIPEAQDPEKISLATF
GANDQTIR LYQAQTFDSVQLQAL
PDSGQTWTR

LTPYADSSLAPWVFIEDFSGDGQR
DLVTAGFDQVQSDVVNLK
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SLLGTTDQPYQFKIAADTYIDLLRLDTQGR
ATPISADNWRPIAR

GSLFPTLEDGSPNLILSSGLELR ISSDPVRIPGIDR
GVLSK SMEDLLK AASDSSNYKPAELWDAYDGSTT
VFSRFDTDALLQR
IPLFK NWAVLK LDGFDNLGGVVNR
TTLPLYLYGEDGHQYPQIR
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KEVVSLEPQRGEFHSIPEAQDPEKISLATFGANDQTI
R
LTPYADSSLAPWVFIEDFSGDGQRDLVTAGF
DQVQSDVVNLK

Figure 5.4 The protein band that was absent in the WH7803RS-PM2 cells migrating to
approximately 180 kDa corresponds to a putative MCO, confirmed by MALDI-TOF mass

spectrometry and peptide mass fingerprinting.

A The table shows top scoring hits from the 118 masses submitted to the Synechococcus sp. WH7803
genome in house, indicating MOWSE (Pappin et al., 1993) scores and the sequence coverage. The
table shows the putative MCO as the clear winner, with a lead of over 10°to the next match. B the
mono-isotopic spectrum shows the masses of peptides recovered from the tryptic digest of the 180 kDa
band found in Synechococcus sp. WH7803. Peptide masses corresponding to the theoretical digest of
MCO are shown — not all matching masses are displayed in this image. Heavily lined boxes indicate
trypsin masses (842.51 and 2211.10) used for internal calibration of the spectra. Altogether 30
matching peptides were recovered, corresponding to 25% of the MCO protein. The distribution of the
matched peptides within the protein sequence is shown in C with matching peptides shown in bold.
Although there are no matches in the C-terminal 500 amino acids of this protein, there is only one
possible tryptic peptide (due to the low abundance of Arginine and Lysine residues) within this region
that is in the range of MALDI-TOF analysis. The mass tolerance used to search the database was set at
50 ppm. D shows the most significant hit as the MCO from data derived from LC-MS/MS analysis of
the 180 kDa band. E shows a summary of data for each peptide with good cross-correlation scores
corresponding to the MCO. F shows in bold, the location of the peptides in the protein sequence. As
control, both sets of data were searched against the NCBI nr database and no significant hits were

reported.

5.3.3 Sequencing the putative MCO gene in Synechococcus sp.

WH7803RS-PM2 strains

One possibility that could lead to the absence of the putative MCO protein in the S-
PMZ2-resistant strain was a mutation in the gene sequence. To test this hypothesis, the

gene in the mutant strain was sequenced and compared with its counterpart in the wild
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type strain. To do this, a 5256-bp PCR product covering the region of the putative
MCO gene was amplified from Synechococcus sp. WH7803 and WH7803RS-PM2
using the ‘Expand Long Template PCR System’ (Roche) with the following primers:
ORF0948F 7, 5’-ATGGTTAATGGCGACGAAGC-3’; ORF0948R+13, 5’-
TGGCGTTCAGCAATCAGAAG-3’. PCRs were carried out in a total volume of 50
ul, containing 0.35 mM dNTPs, 0.35 uM primers, 100 ng of DNA, 0.75 ul of Expand
Long Template Enzyme mix, and 5 pl of Expand Long Template buffer 1.
Amplification conditions were as follows: 94°C for 2 min, 30 cycles of 94°C for 20
sec, 65°C for 30 sec, 68°C for 4 min + 20 sec/cycle, with a final extension of 7 min at

68°C.

When different amounts of input template DNA (200, 10 and 5 ng) were used, single
PCR products with the expected size of 5256-bp were revealed (Figure 5.5A). A well-
defined PCR product was generated from 100 ng of input DNA template (Figure
5.5B), which was then purified and used as the DNA template in sequencing. Based
on the known sequence of ORF0948 in Synechococcus sp. WH7803, 10 sequencing
primers were designed (Table 5.1). The primer, 0948R3638C (bolded in Table 5.1),

was used to sequence the gap between the primers 0948F2720 and 0948F3267.

In addition, PCR primers (upstream0948F848, 5’-AGCATCGCCAACCAGCTCAC-
3’; upstream0948R+422, 5’-ACCGCCTCAACACCACCAGA-3’) targeting a 1270-
bp region (including an 848-bp upstream region with respect to the transcription start
point of the ORF0948) were also designed to examine if there were any alternations in
the promoter regions of ORF0948 in wild-type and mutant strains. PCRs were carried

out in a total volume of 50 pl, containing 0.25 mM dNTPs, 1.5 mM MgCl;, 0.1 uM
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primers, 10 ng of DNA, 1 unit of Taq polymerase (Fermentas), and 5 pl 10x Taq
buffer (Fermentas). Amplification conditions were as follows: 94°C for 2 min, 30
cycles of 94°C for 45 sec, 65°C for 45 sec, 72°C for 1 min, with a final extension of

10 min at 72°C. The resulting PCR products (Figure 5.6) were sequenced using the

primers of upstream0948F848 and upstream0948R+422.

bp

6557

4361

2321

Figure 5.5 Gel image of PCR products generated by the PCR primer targeting the putative MCO

gene.

DNAs from Synechococcus sp. WH7803 and WH7803RS-PM2 were used as templates to perform
PCRs. Lane 1 DNA ladder of ADNA Hindlll digest in bp, Lane 2 200 ng of WH7803RS-PM2 DNA as
template, Lane 3 10 ng of WH7803RS-PM2 DNA as template, Lane 4 a negative control, Lane 55 ng
of WH7803RS-PM2 DNA as template, Lane 6 GeneRuler™ 1kb DNA ladder from Fermentas in bp,
Lane 7 100 ng of WH7803 DNA as template, Lane 8 and 9 100 ng of WH7803RS-PM2 DNA as

template, Lane 10 a negative control.
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Figure 5.6 Gel image of PCR products generated by the PCR primer targeting the upstream
region of the putative MCO gene.

DNAs from Synechococcus sp. WH7803 and WH7803RS-PM2 were used as templates to perform
PCRs. Lane 1 WH7803RS-PM2 DNA as template, Lane 2 WH7803 DNA as template, Lane 3 a

negative control, Lane 4 GeneRuler™ 1kb DNA ladder in bp from Fermentas.

Table 5.1 Primers used for sequencing the ORF0948 in Synechococcus sp. WH7803RS-PM?2

Primers 5’-3’

0948F498 CCGCAGACTTGCTAACTACA
0948F1078 CGCATTAGCTCCGATCCAGT
0948F1644  AGCGGCTTCATTGGTTAGCA
0948F2190 TTCAGATGGCAACCGCACAA
0948F2720 CAATTCGTCAGCGTCAGTTC
0948F3267 TCGCATGCTGTACCAGGATT
0948F3622  CTCAGGACCTCCAGATTGAC
0948F4000 GCTGCACTGTCACTCATGTT
0948F4850  TTGCCTATTCCACGCTCTAC
0948R3638C AATCTGGAGGTCCTGAGAGT
0948R5111C GCATCCAACTGATTGGAGAC

When the sequencing results of the ORF0948 of Synechococcus sp. WH7803RS-PM2
were assembled and aligned with that of Synechococcus sp. WH7803, a 100% identity
was revealed (Figure 5.7A). This demonstrated that the putative MCO gene sequences
were the same in S-PM2-resistant and wild-type strains. In addition, the 848-bp
upstream regions of the ORF0948 also showed 100% identity (Figure 5.7B). These

date demonstrated that there were no mutations in the putative MCO.

139



A

R-conti
w7803 WA

ruler

R-gontig
WHT202
rauler .. .....dlef... ..ol T 0.......1. .......190....... weenneadl@.oi.. . d20.LL L0230 wesaman 50.......2 weenneedilaaaan.-200...... 200, ... 300

R-contig CaRc: <
WHTE02 CaaC: <
ruler .......310.......320.......330.......340.......3B0....

3 :! !!
PR s U L L L L LT

R-contd i
WHTE0 ac Lt
ruler .. 0. ..470.. . «.540.. «BED.. <580,

R-contig @ Lt c
na’.?eog e
rul

£ JEPIFFEEET > L BSSISNNSY - BISSNI - [ BN 1] PP~ PP L PSS - [ RSN ] 700.......710.......720 cennna 7300 00nnn  T40L L0l TRO

R-contd
WHTE2D
ruler ..o.ii.as cenene e @0 e BBO L B0 B

R-contig
WHT202
rular

e "
R-contd, g <

WHT20 CaC <

rulsr ......1060......1070......1080......21000......1200......1110......112 ......:1:13 femenalls ......:l:l ......1160......1:1 ceenso 11800, 1100, ... 1200

B-contig )
oy R B e
ruler . 3 k 1 PIEPFPES [ [ PSS - LRSS | ] R 140

.
R-contd, c i c
WHTE0 cc i

ruler ......1.51.0......1520......1.530......1540......1550......1560......1570......1580......1.590......1600......1.610......1620......1630......16&0......1.650

) !um:: mﬂm mtmiiiim

= «1EB0. «1690. 1700, 1720 720 1740.. L1780

~ sy i ek el AR 5-c il - ke o Sl - S <
ruler ......1810......1820......1830......2840......1860......1860......1870. .....18080......1890. ... ..1900......1910......1920......1930......1940. .....1960

R-contig
WHT202
ruez......1960......1970......1 0......3 0...... 00...... ......2 0......2030......2 weesma20b0......2060......2070......2080...... weeaead100

a8
150
FEL]

200

288
450

£28
£00

£88
TE0

az8
900

988
1080

1128
1200

1z88
1250

1428
1500

1588
1850

1728
1800

1888
1350

2028
2100

140



E-contig Bech c
'I'ETQU aca C
......2110......2:\20......2130......21& weeamadlb0.. .. 2160, ... 0170, ... . 20, weeeea2200......2210......22 { R I | A

Romtigc ccal
WHT202 c
ruler ......2380......2 .....2 weesandd ......2 0......2 10......23 maane 30...... 30...... 50......23 ceeee e 23700000 2380, 2300, L 2400

o R T N T L T L R I I I

Tuler ..eee2BB0. .00 2870 L0 20 2090 2B00. e 2810 e 220 e 26200 2B 2650 2B 2ET0 L 2680, L2690, .. 2T00

R-contd c eu
WHTR2O au
ruler ......2710......2720......2730......27&0......2750......2760......2770......2780......2790......2800......2910......2820......2930......28&0......2950

TED? AR oM Aot N HATICA
WHTR202 {4
ruler ......3020..... 3020, ... . 3000, ... 3040, .

T EL

R-contd
WH

R-contig CoTIC: <
WHTE02 CCTIC: <
ruler ......3300......3320......3330......3340......3360. .. ... 3380, . ... wmeaaa3380......3390... 0......34.1 wanane 20......3&30...... ddﬂ......?

Romtig ) Ca)
o SRR W
ruler ......3d80......2470......3480.... |1 JRI | -1 [ TR | 5 [ JRp—_— | [ P— PR L1

R-contig @06 c I c I
WHT202 @oe:
ruler ......3610......3620......3630......36&0......3650......3660......3670......3680......3690......3700......3'."10......3720......3730......3'.'&0......3750

sy TR R g s A R e i A B R
ruler ......3900......3920,.....3930......3940......3960...... [ L) [ R T ] g —— {1 T« T [ ] ] R (. 5 [ Pp—_— X - { S —_—— {1 T R [ { J—_—_—" ] )

Romtiga cc
IETQOBG
ruler ......4080...... 70......60 [ | ......10......11 wemanadld ......dl?ﬂ......dldU......dJ PR - L PSS & & [ e 10......4190......20

2188
1280

2228
2400

2488
2880

2628
2700

2788
2850

2018
2000

2088
2150

2228
2200

2288
2450

2528
3800

2688
2750

2828
2900

2088
40t

4128
4200

141



4288

E-contd,
42350
(]

IETQO

+
4428
4500

E-contig €CIs
WHTE02 ool
ruler ...... 4360

R-contig 4588
WHTE0Z 4550
T | [ R -1

sy I R S el ol S S S S i T e 12

...... dEE0. ... . 4870, ... . 4BB0. .. ... 4690, . ... AT00. ... e dT10 . e AT AT 20 AT, TR0 L TR0 AT T L dTROL L 4790 .. 4800

i I R e e I S s S a s A e s SR S e W R E

raler ..aias dBi0. ... 4820, ... dB30. . ..ae 4840 ... d8E0.. ... 4880 ...t [T [T, 4880, . .... 4850...... 4900...... 4%10...... 4920 ..ot 4%930.. ... 4940. ... 4550

B oocnti c03a
'I'ETQO £100
lez

E-contig 5189
WHTE02 £235

rulsr
R-upstream e s
7803 -upstream $00
n &2

WH7S02 0548
ruler ....... LT P T70..uinns T80 .an T 800 ... 810.. P 1T PN 2T AP |1 AN T DA [ A T Y [T R

-upstrean TEARTCEARGTCTTCTICEAN l:-CI:_l:- GAATTIC 985

7suz upstream e 1050
WHT803-0848 1c 202

str am.t:lmu_ CHGITGRGCTTC 1135

73!12 upltrulm m:nm: € 1200

m7su= 0943 ﬂ EC EI GGIC EIC ﬂEﬂIC L‘ 3s2
...... 1060......1070......1080......1080......1100. weeaea11i00.....1130. ......1197......

Figure 5.7 Sequence alignments of the putative MCO gene and its 848-bp upstream region in S-
PM2-resistant strain and Synechococcus sp. WH7803.

A The putative MCO gene. B The 848-bp upstream region. A 5256-bp PCR product covering the
putative MCO-coding region were amplified and subjected to DNA sequencing. A 1270-bp region
including a 848-bp upstream segment with respect to the transcription start point of the ORF0948 was

amplified and were subjected to DNA sequencing.
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5.3.4 Reverse transcriptase (RT)-PCR analysis of the putative MCO
gene expression in Synechococcus sp. WH7803 and WH7803RS-PM2

strains

Another possibility that could lead to the absence of the putative MCO protein in the
S-PM2-resistant strain was a mutation affecting transcription. To test this hypothesis,
RT-PCR was used to determine the expression of the MCO-coding gene (ORF0948)
in Synechococcus sp. WH7803 and WH7803RS-PM2 cells. A 407 bp PCR product
was amplified from regions within ORF0948 by using the following primers:
KO407F493, 5-ACTGTCCGCAGACTTGCTAA-3’; and KO407R899C, 5°-
GGCAGCGTAAGAATGACATC-3’. Another 307 bp PCR product was amplified
from other regions within ORF 0948 by using the following primers: KO307F1308,
5-GAACGCAGTTGGAGTTGTTG-3’; and KO307R1677C, 5’-
GCCATAGGTGCTGTTGCTAA-3’. Both PCRs were carried out in a total volume of
50 pl, containing 0.25 mM dNTPs, 4 mM MgCl,, 0.4 uM primers, 10 ng of cDNA (or
DNA for positive control), 1 unit of Taq polymerase (Fermentas), and 5 pl 10x Taq
buffer (Fermentas). Amplification conditions were as follows: 94°C for 2 min, 30
cycles of 94°C for 45 sec, 60°C for 45 sec, 72°C for 1 min, with a final extension of

10 min at 72°C.

Furthermore, a 249 bp PCR product representing the structural gene of mpeBA coding
for the major light-harvesting protein was amplified to demonstrate the quality of the
cDNA. The following primers were used mpeBAF492, 5°-
ACTCTCCGCTGAGGCTGCTT-3’; and mpeBAR740C, 5’-

GCGATGGCGTCGTAGTTCTG-3’. The PCR was carried out in a total volume of 50
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pl, containing 0.25 mM dNTPs, 1 mM MgCly, 0.4 uM primers, 10 ng of cDNA (or
DNA for positive control), 1 unit of Tag polymerase (Fermentas), and 5 pl 10x Taq
buffer (Fermentas). Amplification conditions were as follows: 94°C for 2 min, 30
cycles of 94°C for 45 sec, 60°C for 45 sec, 72°C for 1 min, with a final extension of

10 min at 72°C.

As shown in Figure 5.8, no PCR products were obtained when using RNA as
templates, which rules out the possibility of genomic DNA contamination. As
expected, a PCR product for mpeBA was obtained using cDNA derived from
WH7803 and WH7803RS-PM2 cells. The two sets of PCR primers targeting two
different regions of the putative MCO gene generated products on cDNA derived
from WH7803 and WH7803RS-PM2, which demonstrated that this gene was still

transcribed in the WH7803RS-PM2 cells.

12 3 45 6 7 8 9 10 11 12 1314 15 16 17 18 19

Figure 5.8 Gel image of PCR products using the primer pair to amplify a region within ORF
0948 (coding for muticopper oxidase) against cONA from wild-type and S-PM2-resistant cells.

Lanes are numbered from left to right. PCR reactions with different primers and templates are as
follows: Lane 1 mpeBA primers + RNA extracted from WH7803RS-PM2 cells, Lanes 2 mpeBA
primers + RNA extracted from WH7803 cells, Lane 3 mpeBA primers + WH7803RS-PM2 cDNA,
Lane 4 mpeBA primers + WH7803 cDNA, Lane 5 mpeBA primers + WH7803 DNA, Lane 6 a negative
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control (mpeBA primers + water), Lane 7 ORF 0948 (370) primers + RNA extracted from WH7803RS-
PM2 cells, Lanes 8 ORF 0948 (370) primers + RNA extracted from WH7803 cells, Lane 9 ORF 0948
(370) primers + WH7803RS-PM2 cDNA, Lane 10 ORF 0948 (370) primers + WH7803 cDNA, Lane
11 ORF 0948 (370) primers + WH7803 DNA, Lane 12 a negative control (ORF 0948 (370) primers +
water), Lane 13 ORF 0948 (407) primers + RNA extracted from WH7803RS-PM2 cells, Lanes 14
ORF 0948 (407) primers + RNA extracted from WH7803, Lane 15 ORF 0948 (407) primers +
WH7803RS-PM2 cDNA, Lane 16 ORF 0948 (407) primers + WH7803 cDNA, Lane 17 ORF 0948
(407) primers + WH7803 DNA, Lane 18 a negative control (ORF 0948 (407) + water), Lane 19
GeneRuler™ 1kb DNA ladder in bp from Fermentas.

5.3.5 Isolation and characterisation of the outer membrane fractions

(OMFs) of Synechococcus sp. WH7803 and WH7803RS-PM?2

In order to establish the role this MCO protein may play in S-PM2 adsorption, its

subcellular localisation was investigated.

5.3.5.1 Bioinformatic prediction

The translated amino acid sequence (Figure 5.9A) from the DNA sequence of the
ORF0948 of Synechococcus sp. WH7803 genome was subjected to localisation
prediction using PSORTD version 2.0.4. The most likely predictions were outer

membrane or extracellular (Figure 5.9B).

A

>SynWH7803_0948 Putative MCO
MATKLIMNPLDFLASGWLNRSLLGTDQPYQFKIAADTYIDLLRLDTQGRDLDFGFESLSEQTWLSEFQQANASSLDLEK
IRTDRWLQTEGVSLGGRRATPISADNWRPIARDSSGELLSLEEVTLTGNSALARFSGGVEAVY SVGGSGLLANAIPEGPQ
VVVEGTVRRLANYNNGIAIYEADPLNGAVDGLSPGDPGYLQAALRDAKESGLVFSAFQLPENGSIGSINLNLSPDKNYG
FLLLVDGDESNLFSSYSSANPDNAVQVVSFTTSDGSLALGFEDQLVTGESDQDFNDVILTLPITTSTDILSEVNYRIGSLFP
TLEDGSPNLILSSGLELRTIDGESRVVSSLQSGTLDTPMRISSDPVRIPGIDRFLRDWFIPQLTDTANSQSLFNAYKKGVLS
KWTTHARNRSMEDLLKIGYVGPGNDQSATNDDYWNAVGVVGSDLYKAASDSSNYKPAELWDAYDGSTTVFSRFDTD
ALLQRLEALTDPEANPNPDLWYPSMLYTFGVPGEGTSYPAPVLMMQPGDGMNLNFTNDIKVDGLNEEQNQAASLVSN
STYGNAAGDGLGALNAVNYHLHGSHTNPGGFGDNVVARYTTGQQWTTEIDLPADHGQGSYWYHPHYHPSVNQMVY
GGMSGPFQVGDPLSKIPLFKDIPRNWAVLKTMDVGIDAETGKLRLDGFDNLGGVVNRMTMVTVNGEFQPTAEAGEGG
WOQAITLSNQTNQAFHNISLIHTDSDGNRTTLPLYLYGEDGHQYPQIRAATDGIFGASGASNQLPTGYTQAVDLLSLPPAK
RVDVLVYLPEGKTEMASTYSFEQDGVDYTINNAGSYPDLTEINTGFGSKTGAGPLALFNVEGGQALPTTAELDAVIAQA

145



NAGIDVQQILPTTSQADYDPLQVPSVDLFAQDADGSDLWDPIRQRQFNWTKGTLVGPASEYDAATVELLKHYSMMND
GATYEPYTSLPVGKPGVDNWLGYNNPFLINDHVFPYGNMTIAQLGTIEEWVNRNWSINSPSKYIGHPFHIHINDYQVKD
SDTELQNKRNLEDTTSLNSSGYEFYDPAAKEVVSLEPQRGEFHSIPEAQDPEKIASLATFGANDQTIRMLYQDYLGTYVF
HCHILPHEDAGMMQIVTVVENTDSSWLVEAQGFTQNESGVRLYQAQTFDSVQLQALPDSGQTWTRAQAGDLGADFV
QDIALAAGGGGEAGIIELFDGAALLRGETLRTSRLTPYADSSLAPWVFIEDFSGDGQRDLVTAGFDQVQSDVVNLKDLEI
KAFLPGEAPGSWDEQFNFDPFDDISLMAPHSVMPRMGLSADQVSVAMADMNLDNFQDVAIAYAVEGGVRLVVIDGA
ALSLMFQTGEMEGGFFADSNVLADAVFLDSGLSDLSQLVLTSGFNSYAQSALENLVLTTQSSAGSQQFTLQLQAGHFIA
TNLPDSSESGGHGGHGGHGGAGLSPDERITNLRNNSLPLFLVDELQLANGTEAVTPTISAGLGHGGTLLDGHAVIAQGN
EVNGNASNSDILINTTQQLVIPLDGLNLINADDLTGIVDTTSSSTFTAEQVQQRYQLTSMTYLAYTGKLLWPSALASQAA
SILGTGEQASALVTNLLSSPAYAGEIEALYGGPLADQSVNDIVEIAYSTLYKRSATASELQSWQDQVSAGLDQTLLPQAI
LQSTQEADRFRVALLSDITQWTALQWGTTAEVSGSYGQGLVGDEQVSNQLDALASSLGSYASFEDAQQGFDLFTTEAL
QELIGTPVSKSGFF

B
SeqlD: SynWH7803 0948 Putative MCO
Analysis Report:

CMSVM- Unknown [No details]
CytoSVM- Unknown [No details]
ECSVM- Extracellular [No details]
HMMTOP- Unknown [No internal helices found]
Motif- Unknown [No motifs found]
OMPMotif- Unknown [No motifs found]
OMSVM- OuterMembrane [No details]
PPSVM- Unknown [No details]
Profile- Unknown [No matches to profiles found]
SCL-BLAST- Unknown [No matches against database]
SCL-BLASTe- Unknown [No matches against database]
Signal- Unknown [No signal peptide detected]
Localization Scores:

Cytoplasmic 0.00

CytoplasmicMembrane 0.00

Periplasmic 0.02

OuterMembrane 3.73

Extracellular 6.26

Final Prediction:
Unknown (This protein may have multiple localization sites.)

Figure 5.9 Prediction of the subcellular localisation of the putative MCO of Synechococcus sp.
WH7803 by the use of PSORTb version 2.0.4.

A The predicted amino acid sequence of the putative MCO. B The result predicted using PSORTh
version 2.0.4.

5.3.5.2 SDS-PAGE analysis of the outer membrane fractions (OMFs)

To experimentally establish the localisation of the putative muticopper oxidase
protein on the Synechococcus cell surface, two outer membrane isolation methods
were used. Method 1 is based on differential centrifugation (Resch and Gibson, 1983).

Method 2 is based on the fact that the outer membrane is not covalently bound to the
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peptidoglycan network, but bound primarily by physical forces, i.e. ionic and/or
hydrophobic. As a result, treatments such as incubation with a chelating agent like
EDTA cause release of the OMF, a complex of LPS, protein, and phospholipid into
the surrounding medium (Lindberg, 1973). The detergent Trition X-100 was used in

the method 1 to remove cytoplasmic membrane (Schnaitm, 1971).

90 pg of the OMFs from Synechococcus sp. WH7803 and WH7803RS-PM2 obtained
using the method 1 showed a profile with three predominant bands at approximate 98,
64 and 50 kDa (indicated by solid arrows) (Figure 5.10). No protein bands
corresponding to the MCO (~180 kDa) were identified, which may be due to
limitation of the isolation method. One faint protein band with an apparent molecular
mass lower than 16 kDa (indicated by a dashed arrow) seemed to be only present in
the OMFs of mutant cells (Figure 5.10) (identical results were obtained from three
biological replicates). This difference was confirmed using the silver staining of the
OMFs obtained using method 2 (lower part of lane 3, Figure 5.13). However this
protein band with an apparent molecular mass lower than 16 kDa was found both in
the mutant and wild-type cells using whole-cell SDS-PAGE analysis (Figure 5.3), it

was probably due to the presence of other similar sized proteins in the whole cell.
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Figure 5.10 SDS-PAGE profiles of OMFs obtained by method 1 from Synechococcus sp. WH7803
and WH7803RS-PM2 cells.

Lane 1 SeeBlue® Plus2 Pre-Stained protein standard (Invitrogen) that was used to estimate protein

molecular weight, Lane 2 Synechococcus sp. WH7803RS-PM2, Lane 3 Synechococcus sp. WH7803.

Since SDS-PAGE analysis of the OMFs obtained using method 1 did not reveal the
MCO band, method 2 was tried. The resulting pellet obtained after centrifuging the
cell-free fraction of EDTA-treated WH7803 had a green base covered with a yellow
layer (Figure 5.11). Since the OMF contains no chlorophyll and phycobilins, the
yellow layer should be the OMF and the green pellet should be a membrane fraction
containing chlorophyll. A similar finding was observed previously (Resch and

Gibson, 1983).

Yellow layer

G llet
\L. - _J‘/ reen pelle

Figure 5.11 Diagram to indicate the pellets obtained after centrifuging the supernatant of EDTA-
treated WH7803.
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To find out the protein composition of the pellet obtained by the second method, 600
ug of the yellow layer and green pellet were analysed using SDS-PAGE alongside
whole-cell protein extracts. As seen in Figure 5.12, the whole-cell protein profiles of
Synechococcus sp. WH7803 and EDTA-treated WH7803 appear to be the same,
which indicated that EDTA treatment was mild enough to preserve most of the cell
structures. A well-defined protein band was revealed in the yellow fraction
(highlighted by a yellow rectangle), but almost invisible in the green material. This
band was analysed by MALDI-TOF and demonstrated to be the putative MCO (this

was performed and analysed by Samuel J.H. Clokie using the same methodology as
described in Section 5.3.3). From now on the yellow fraction will be referred to as the

OMF. This band can also be visualised as faint bands in the whole cells (due to the
limitation of resolution in printing, they can’t be seen in the printed format, but can be
see on the electronic version of Figure 5.12 stored on the CD accompanying this
thesis). Additionally, the OMF and the green material displayed marked difference. A
band of approximately 98 kDa (highlighted by a black rectangle) that was observed
using method 1 was almost indistinguishable from the background in the OMF, but
prominent in the green material as well as in the whole cells. The 50 kDa band
(highlighted by a blue rectangle) that was observed using method 1 was also revealed
in the OMF obtained by method 2 (Figure 5.12). In addition, the 64 kDa band
(highlighted by a red rectangle) that was observed using the methods 1 was only
present in the green material. Both the OMF and the green material were devoid of
phycobiliproteins, which were the most noticeable bands in the whole-cell extracts.

Identical results were obtained from three biological replicates.
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Figure 5.12 SDS-PAGE profiles of OMFs obtained by the use of method 2.

Lane 1 wild-type WH7803 cells, Lane 2 EDTA-treated WH7803 cells, Lane 3 the yellow pellet
obtained from the supernatant of EDTA-treated WH7803 cells, Lane 4 the green pellet obtained from
the supernatant of EDTA-treated WH7803 cells, Lane 5 the SeeBlue® Plus2 Pre-Stained protein
standard (Invitrogen) in kDa. o and B subunits of phycobiliproteins were labelled. The band highlighted
by a yellow rectangle was the putative multicopper oxidase. The band highlighted by a black rectangle
was the protein band that was only revealed using method 1 to prepare the OMF. The band highlighted

by a red rectangle was only present in the OMF prepared using method 1 and the green material
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prepared using method 2. The band highlighted by a blue rectangle was revealed using both method 1
and 2.

5.3.5.3 Comparison of the OMFs of Synechococcus sp. WH7803 and

WH7803RS-PM2 cells

As the putative MCO protein has been demonstrated to be present in the OMF of
Synechococcus sp. WH7803 and absent in WH7803RS-PM2 cells, it is logical to
predict that this protein should be absent in the OMF of WH7803RS-PM2. To
unambiguously confirm this prediction and gain a better understanding of the
composition of the OMFs from the wild-type and phage-resistant cells, both
Coomassie staining and silver staining techniques were used to visualise 60 ug of the
OMFs after the protein electrophoresis as the silver staining is about 10-100 times

more sensitive than the Coomassie staining (Switzer et al., 1979).

As seen in Figure 5.13, more protein bands are revealed using silver staining (lane 2)
than Coomassie staining (lane 1). The putative MCO protein band (confirmed by
MALDI-TOF) was faint in Coomassie staining but very distinct in silver staining
(please refer to the electronic version of Figure 5.12 on the CD accompanying this
thesis to see the putative MCO protein band in Coomassie staining). No
corresponding protein band was revealed in the OMF of WH7803RS-PM2 (lane 3)
using silver staining (identical results were obtained from three biological replicates).
This confirmed that the putative MCO was absent from the OMF in the S-PM2-
resistant mutant, which indicated that this protein could play an important role in the
adsorption of S-PM2 to Synechococcus sp. WH7803. In addition, silver staining also
revealed several differences in the protein band profiles of the two OMFs, such as the
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three extra bands (indicated by red arrows) that seemed to be present in the S-PM2-
resistant mutant, but missing from the wild-type strain (lane 3) (identical results were
obtained from three biological replicates). However, the presence of two protein
bands (indicated by blue arrows) that seemed only to be present in the S-PM2-

resistant mutant was not a repeatable observation.
kDa

250
148

98

64

50

36

22

16

Figure 5.13 SDS-PAGE profiles of the OMFs obtained by method 2 from Synechococcus sp.
WH7803 and WH7803RS-PM2.

SilverQuestTM Silver Staining Kit (Invitrogen) was used to stain the protein gel. Lane 1 the OMF from
Synechococcus sp. WH7803 cells after Coomassie staining, Lane 2 the OMF from Synechococcus sp.
WH7803 cells after silver staining, Lane 3 the OMF from WH7803RS-PM2 cells, Lane 4 the SeeBlue®
Plus2 Pre-Stained protein standard (Invitrogen) in kDa. The protein band indicated by black arrows
represented the putative MCO protein. Three protein bands indicated by red arrows were only revealed

in the resistant mutant. Two protein bands indicated by blue arrows were not a repeatable observation.
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5.3.6 Examination of the binding capacity of S-PM2 to EDTA-treated

Synechococcus sp. WH7803

To test if the EDTA treatment of Synechococcus sp. WH7803 can remove the phage
S-PM2 receptor material, an adsorption experiment as described in the Chapter 3 was
performed using EDTA-treated Synechococcus sp. WH7803 as the host. It was found
that ~ 70% of phage adsorbed to the EDTA-treated cells within 45 min post infection
compared to ~ 90% adsorption to the non-treated cells (Figure 5.14). This reduced
adsorption suggested that the material removed by EDTA treatment of Synechococcus

sp. WH7803 contained the S-PM2 receptor materials.

Non-treated
WH7803

EDTA-treated
WH7803

0 10 20 30 40 50 60 70 80 90 100

Percentage of un-adsorbed S-PM2 (%0)

Figure 5.14 Adsorption of S-PM2 to EDTA-treated Synechococcus sp. WH7803.

Synechococcus sp. WH7803 cells in the logarithmic growth phase (ODsso= 0.35) were firstly treated
using 10 mM HEPES (pH 7.2) containing 10 mM EDTA followed by ASW washing for 3 times and
incubated with S-PM2 at a MOI of 0.02 at 25°C at 15 uE m?s™. The free phage titer was assayed 45
min post infection in the cell-free supernatant remaining after centrifugation. Data are the mean of 3

biological replicates with SD values.
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5.3.7 Examination of the binding capacity of S-PM2 to the OMF of

Synechococcus sp. WH7803

To demonstrate that the OMF obtained by EDTA treatment contains phage S-PM2
receptor material, a phage neutralisation experiment was performed. It was found that
30 pl of the OMF (contains 1.5 mg protein) neutralised ~ 30% of 10 ul of S-PM2
stock at a titre of 1.5 x 10° pfu mI™ (Figure 5.15). A similar neutralisation effect was
also observed with the addition of 20 ul of the OMF (containing 1 mg protein) (Figure
5.15). 10 pl of the OMF (containing 0.5 mg protein) neutralised ~ 18% of S-PM2
stock (Figure 5.15). Without the addition of the OMF, the control reaction with the
addition of 30 ul of 10 MM HEPES (pH 7.2) showed a negligible neutralisation effect
(~ 3%) (Figure 5.15). This suggests that the OMF contains S-PM2 receptor material

that could be the putative MCO.
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Figure 5.15 Phage neutralisation of the OMF of Synechococcus sp. WH7803 obtained by method
3.

10 pl of S-PM2 phage stock at a titre of 1.5 x 10® pfu/ml was mixed with varying amount of the OMFs
and incubated at 25°C at 15 pE m™2s™ for 1 h. The mixtures were then subject to phage titration. Data

are the mean of 3 biological replicates with SD values.
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5.4 Discussion

Based on the 1D-PAGE coupled with MS analyses of Synechococcus sp. WH7803
and WH7803RS-PM2, the putative MCO was found to be absent from WH7803RS-
PM2 cells. To demonstrate the possibility of the putative MCO involving in S-PM2
adsorption, both bioinformatic and biochemical analyses were used to localise the
putative MCO protein from Synechococcus sp. WH7803. Although two different
methods, differential centrifugation and EDTA treatment, were tried, only the latter
method revealed the presence of the putative multicoppper oxidase in the OMF
obtained from Synechococcus sp. WH7803. The protein band representing the
putative MCO showed reduced apparent molecular weight in the OMF (Figure 5.12)
compared to that in the whole-cell (Figure 5.3). This is probably due to the different
preparation method used. The use of EDTA in preparing the OMF may remove some
metal ions from the MCO that otherwise would bind to the MCO in the whole-cell
protein preparations. Consequently, the MCO from the OMF showed reduced size on
a SDS-PAGE gel. As expected, the OMF obtained from WH7803RS-PM2 cells
showed the absence of the putative MCO. Sequencing and RT-PCR analyses
demonstrated that the putative MCO gene in WH7803RS-PM2 cells remained
complete at the nucleotide level and was actively transcribed into mRNA. This led to
two possibilities, that either the mutant cell may have lose the ability to translate this
particular mRNA into protein or more likely the putative MCO could not be properly
anchored into the specific site on the cell surface, which may be due to a structural
change on the cell membrane, and thus was secreted into the surrounding environment
based on the fact that the putative MCO can only be detected in the OMF from the

wild-type strain, but not from the S-PM2-resistant mutant.
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MCOs (MCOs) are a diverse family of proteins that utilise the unique redox feature of
copper ion as cofactors in the oxidation of a wide variety of substrates
(Messerschmidt, 1997). The best known MCOs are laccase, ascorbate oxidase and
ceruloplasmin (Nakamura and Go, 2005). Recently, novel MCOs that function in the
transport systems of metal ions were discovered. These include hephaestin, a copper-
dependent ferroxidase (Nittis and Gitlin, 2004), Fet3 protein for Fe(ll) transfer
(Askwith et al., 1994), CueO (Copper efflux oxidase), an enzyme involved in
converting Cu(l) to the less toxic Cu(ll) (Outten et al., 2000), and CumA for Mn(Il)
oxidation (Francis and Tebo, 2001). They have been suggested to be involved in Mn?*
oxidation in several different bacterial strains, including a marine Gram-negative
bacterium (Brouwers et al., 2000; Francis et al., 2001). However, there is little
research about the function of this protein in the marine Synechococcus strains. A
putative MCO has been discovered bioinformatically from the genome of
Synechococcus CC9311 (Palenik et al., 2006). Alongside the putative MCO
discovered from Synechococcus sp. WH7803, the cyanobacterial MCO may function
in oxidation of organic compounds or detoxifying high levels of reduced copper as
both Synechococcus sp. WH7803 (Waterbury et al., 1986) and CC9311 (Toledo and
Palenik, 1997) were isolated from costal environment where copper is an important

component, both naturally occurring and as a pollutant.

The discovery that this putative MCO was absent from the S-PM2-resistant mutant
derived from Synechococcus sp. WH7803 leads to speculation that if this protein
functions as a phage receptor. it may be present as two forms, active and non-active,

which are activated by light. To prove this speculation, future work including the
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purification and characterisation of the putative MCO of Synechococcus sp. WH7803
is needed. Alternatively, if the process of S-PM2 adsorption needs energy, it may be
derived from Mn?* oxidation, which has been demonstrated to be a energy source for
a marine bacterial strain SSW22 (Ehrlich and Salerno, 1990). If this speculation is
right, it explains why phage adsorbed to the host occurs even when energy production
was abolished by DCMU and CCCP. The lack of adsorption in the dark and
wavelength-associated adsorption could be due to the possibility that the visible
spectrum of light is need to induce Mn®* oxidation in Synechococcus sp. WH7803. To
prove this speculation, future work including demonstration of the presence of energy
production via Mn®* oxidation in the strain WH7803 and the energy requirement for

phage S-PM2 adsorption is needed.

As a decreased rate of S-PM2 adsorption to the EDTA-treated WH7803 cells was
observed (Figure 5.13), a phage neutralisation experiment using S-PM2 and the OMF
obtained using the method 2 was performed in order to demonstrate that the S-PM2
receptor materials were present in the OMF of Synechococcus sp. WH7803. A
moderate neutralisation effect (up to ~ 30% neutralisation) was achieved using 1 mg
of the OMF. No further neutralisation was observed even when the amount of the
OMFs was increased to 1.5 mg (Figure 5.14). The failure in achieving a near 100%
neutralisation could be due to the involvement of other molecules (such as
lipopolysaccharide that will be discussed in Chapter 6) not present in this OMF for S-
PM2 adsorption. Alternatively, the integrity (or the partial integrity) of the outer

membrane may be required for S-PM2 adsorption.
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Since the use of one dimensional PAGE in comparing the protein profiles of the wild
type and mutant strains, questions rise about its limited resolving power compared to
two dimensional PAGE (Klose, 1975; Ofarrell, 1975; Ofarrell et al., 1977). Although
one dimensional PAGE revealed only one proteins band absent in the mutant, it did
not necessarily mean there are no other differences between the two strains. In
addition, two dimensional PAGE has been used in analysis of the E. coli outer
membrane (Molloy et al., 2000). Therefore, to better understand the protein
differences between the wild type and mutant, two dimensional PAGE would be a

better choice.
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Chapter 6 Construction of a putative
MCO gene knockout mutant of

Synechococcus sp. WH7803
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6.1 Introduction

Generally, there are three methods that can be employed in gene transfer in
cyanobacteria; conjugation, electroporation and natural transformation (Koksharova
and Wolk, 2002). Bacterial conjugation is a process of transmitting genetic material
from a bacterium to another cell through cell-to-cell contact. Although it is time-
consuming, conjugation has proven to be the most general means for gene transfer in
cyanobacteria, mediated by the broad-host-range, incompatibility-group P (IncP)
plasmid RP4 and its close relatives, e.g., RK2 (Elhai and Wolk, 1988; Koksharova
and Wolk, 2002). Those conjugal plasmids have been successfully used to mobilise
DNA from Escherichia coli to a wide variety of cyanobacteria including oceanic
cyanobacteria of the genus Synechococcus (Brahamsha, 1996). Two criteria must be
satisfied for DNA/plasmid to be mobilised by a conjugal plasmid. First, it must
contain an “origin-of-transfer” (oriT), a stretch of DNA that is also called the bom site
(for basis of mobilisation). Second, it must carry or be provided with a mob gene
whose product is a DNA-nicking protein that specifically recognises the bom site
(Elhai and Wolk, 1988). One plasmid that can fulfil the criteria stated above is the
incompatibility-group Q (IncQ) plasmid RSF1010, a high-copy-number, broad-host-
range plasmid known to be efficiently transmitted in the presence of IncP plasmids
(Bagdasarian et al., 1981). Electroporation appears to be a general technique for the
introduction of exogenous DNA into cyanobacterial cells (with varied efficiencies),
although it has a potential for causing mutagenesis (Thiel and Poo, 1989; Koksharova
and Wolk, 2002). A few cyanobacteria, such as Synechococcus and Synechocystis

strains, are naturally transformable by exogenous DNA (Lorenz and Wackernagel,
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1994). It has been reported that Synechocystis sp. strain PCC6803 can take up

virtually any sequence of DNA (Grigorieva and Shestakov, 1982).

The conjugation system used in this study is based upon a previous report (Brahamsha,
1996), in which Synechococcus cells were mated with an E. coli conjugal donor
strains MC1061 containing three plasmids, pRK24, pRL528 and the recombinant
plasmid pMUT100 (or original pRL153 in the control experiment). The broad-host-
range conjugal plasmid pRK24 has been shown to be able to mediate DNA transfer to
a wide range of bacteria including myxobacteria, thiobacilli, and cyanobacteria (Elhai
and Wolk, 1988). The second plasmid pRL528 is a helper plasmid that provides the
Mob protein facilitating mobilisation (Elhai and Wolk, 1988). The third plasmid
pMUT100 is a kanamycin-resistant suicide vector that is a derivative of pBR322
(Brahamsha, 1996). In order to find out the function of the putative MCO in the
process of S-PM2 adsorption, this suicide vector was used to inactivate ORF0948 that
encodes the putative MCO of Synechococcus sp. WH7803. A recombinant pMUT100
harbouring an internal portion of ORF0948 was generated and introduced into
WH7803. Integration of the recombinant vector into the WH7803 genome by
homologous recombination thus impaired the function of ORF0948. Subsequent
examination of the adsorption properties of phage S-PM2 to the knockout mutant cells

would answer the question of whether the MCO plays a role in S-PM2 adsorption.

6.2 Aim

To inactivate the ORF0948 of Synechococcus sp. WH7803 that encodes a putative

MCO.
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6.3 Results

6.3.1 Construction of suicide plasmids pYJ01 and pYJ02

Two PCR products of 407 bp and 370 bp in length within ORF0948 were amplified
using the following primer sets: ORF0948-500 and ORF0948-1000 (Table 2.15).
PCRs were carried out in a total volume of 50 pl, containing 0.25 mM dNTPs, 2 mM
MgCl,, 0.1 uM primers, 10 ng of DNA, 1 unit of Tag polymerase (Fermentas), and 5
pl 10x Taq buffer (Fermentas). Amplification conditions were as follows: 94°C for 2
min, 30 cycles of 94°C for 45 sec, 60°C for 45 sec, 72°C for 1 min, with a final

extension of 10 min at 72°C.

The two PCR products were firstly cloned into the commercially available plasmid
pCR2.1 (Invitrogen). Then, the PCR products of the ORF0948 fragments were cut out
of the recombinant pCR2.1 using EcoR1 enzyme digestion and were ligated with
plasmid pMUT100 that was also digested with EcoRI. The recombinant plasmids,
pYJO1 (accommodating the 370-bp fragment) and pYJ02 (accommodating the 407-bp
fragment), were firstly confirmed by PCR to amplify the two ORF0948-derived
fragments (Figure 6.1A and 6.1B). Then, EcoRI enzyme digestion of the putative
plasmids, pYJO1 and pYJ02, gave the expected patterns with two bands, the insertions
(370 and 407 bp in length) and the linearised pMUT100 (Figrue 6.1C and 6.1D).
Finally, the putative recombinant plasmids were sequenced using the following

primer: pMUTsequencing5516: TGCCACCTGACGTCTAAGAA. When the
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sequenced results were aligned with the genome of Synechococcus sp. WH7803, a
100% identity was revealed. This demonstrated that the putative recombinant

plasmids, pYJO1 and pYJ02, were truly recombinant pMUT100 carrying two

ORF0948-derived fragments.

bp
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500

250

-

T L 1%

500
. 250

Figure 6.1 Gel images of PCR products and EcoRI enzyme digestions.

The putative recombinant plasmids (pYJO1 and pYJO02) derived from 6 individual DH5a single
colonies grown on kanamycin (50ul/ml) were subject to PCR and EcoRI digestion. Lane 1 a negative
control, Lane 2 PCR against plasmid pMUT100, Lane 3 to 8 the plasmid DNA derived from 6
individual DH5a single colonies, Lane 9 the DNA derived from Synechococcus sp. WH7803. A 370-bp
PCR products amplified using the primer set ORF0948-1000, B 407-bp PCR products amplified using
the primer set ORF0948-500, C EcoRI digestion of plasmid pYJO01, D EcoRlI digestion of plasmid
pYJ02. GeneRuler™ 1kb DNA (in bp) ladder from Fermentas was used.
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6.3.2 Conjugation

Two different media SN and ASW were used for growing Synechococcus sp.
WH7803 throughout the conjugation experiments. As no differences were detected,
only the data from SN medium is presented here. The efficiency of conjugation was
(2.5 +0.73) x 10™. Efficiency is expressed as the number of transconjugants per
recipient cell and calculated as described by Brahamsha (1996). Values are the
averages of three independent experiments (£ the standard deviation). Single colonies
of putative transconjugants, which displayed a kanamycin-resistant phenotype, were

inoculated into liquid medium for further analyses.

After obtaining kanamycin-resistant single colonies it was important to demonstrate
that this resistance was due to the presence of the recombinant plasmid, pYJO1 or
pYJO02, and that no viable E. coli was present in the culture. Firstly, portions of the SN
liquid cultures of the putative transconjugants were spotted on LB solid agar plates
and contamination test medium (Section 2.4.4) to ensure that they did not contain any
E. coli contamination. Both media failed to detect even a single live cell of E. coli.
This demonstrated that no viable E. coli cells were present in kanamycin-resistant
single colonies. Secondly, one set of PCR primers was used to amplify an 872-bp
region covering the kanamycin-resistance gene in the plasmid pMUT100 using the
following primers: KanF, 5-ATGGCAAGATCCTGGTATCG-3'; and KanR, 5'-
GGAACCGGAGCTGAATGAAG-3'. The PCRs were carried out directly on 1 pl
each of transconjugant and wild-type WH7803 cells (OD75,=0.35) in a total volume of
50 pl, containing 0.25 mM dNTPs, 2 mM MgCl,, 0.4 uM primers, 1 units of Taq

polymerase (Fermentas), and 5 pl 10x Taq buffer (Fermentas). Amplification
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conditions were as follows: 94°C for 2 min, 30 cycles of 94°C for 45 sec, 60°C for 45

sec, 72°C for 1 min, with a final extension of 10 min at 72°C.

It was found that only the transconjugant culture yielded PCR products, while the
wild-type culture yielded no such PCR products (Figure 6.2). These tests confirmed
that the kanamycin-resistance was due to the presence of the recombinant plasmids,
pYJO1 and pYJO02, in Synechococcus sp. WH7803. Consequently, the knockout strains
accommodating the plasmid pYJO1 or pYJ02 were named ‘WH7803/pYJ01’ or

“WH7803/pYJ02’.

1 23 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 6.2 Gel image of PCR product of kanamycin gene fragment.

Lanes are numbered from left to right. Lanel GeneRuler™ 1kb DNA ladder from Fermentas (bp), Lane
2-8 PCR reactions using cell cultures derived from 7 single colonies of Synechococcus sp. WH7803 as
template, Lane 9 a negative control, Lane 10 PCR reaction using 100 ng of pMUT100 DNA as
template, Lane 11 a negative control, Lanes 12-15 PCRs using WH7803/pYJO01 cultures derived from 4
kanamycin-resistant single colonies, Lanes 16-18 PCRs using WH7803/pYJ02 cultures derived from 3

kanamycin-resistant single colonies.

6.3.3 RT-PCR analysis of the expression of the putative MCO gene

To determine whether the putative MCO gene is inactivated by conjugal transfer of

the pMUT100-derived plasmids pYJO1 and pYJ02, two PCR primer sets, ORF0948-
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500 and ORF0948-1000 (Table 2.15), were used to amplify the cDNA derived from
the WH7803/pYJ01, WH7803/pYJ02 and WH7803 cultures. PCRs were carried out

in a total volume of 50 pl, containing 0.25 mM dNTPs, 2 mM MgCl,, 0.1 uM primers,
10 ng of cDNA, 1 unit of Taqg polymerase (Fermentas), and 5 pl 10x Taq buffer
(Fermentas). Amplification conditions were as follows: 94°C for 2 min, 30 cycles of
94°C for 45 sec, 60°C for 45 sec, 72°C for 1 min, with a final extension of 10 min at
72°C. As seen in Figure 6.3, no PCR products were obtained using cDNA derived
from WH7803/pYJ01 and WH7803/pYJ02 cultures. These confirmed that the putative

MCO gene in Synechococcus sp. WH7803 has been successfully inactivated.

1 2 3 4 5 6 7 8 9 10 11 12

Figure 6.3 Gel image of PCR products of 370 and 407-bp within the putative MCO gene.

Lanes are numbered from left to right. Lane 1 GeneRuler™ 1kb DNA ladder from Fermentas (bp),
Lane 2 370-bp PCR products amplified using WH7803 DNA as a template, Lane 3 370-bp PCR
products amplified using pYJO1 DNA as a template, Lanes 4 PCR using the primer set of ORF0948-
500 and WH7803/pYJO1 cDNA, Lane 5, PCR using the primer set of ORF0948-500 and
WH7803/pYJ02 cDNA, Lane 6 a negative control, Lane 7 GeneRuler™ 1kb DNA ladder from
Fermentas (bp), Lane 8 407-bp PCR products amplified using WH7803 DNA as a template, Lane 9
407-bp PCR products amplified using pYJ02 DNA as a template, Lanes 10 PCR using the primer set of
ORF0948-1000 and WH7803/pYJO1 cDNA, Lane 11, PCR using the primer set of ORF0948-1000 and
WH7803/pYJ02 cDNA, Lane 12 a negative control.
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6.3.4 SDS-PAGE of whole-cell proteins of WH7803/pYJ01 and

WH7803/pYJ02

To determine whether the knockout mutants lacked the putative MCO, whole-cell
SDS-PAGE analysis was used to characterise the protein profiles of WH7803/pYJ01
and WH7803/pYJ02 cultures. As shown in Figure 6.4, the putative MCO band
(indicated by an arrow) is only present in Synechococcus sp. WH7803 but not in
WH7803/pYJ01 and WH7803pYJ02 (Please refer to the CD accompanied this thesis
for an electronic version of Figure 6.4). This demonstrates that the knockout strains

had lost the ability to produce the putative MCO.

KDa 1 2 3 4
250
148

36

22

16

Figure 6.4 SDS-PAGE profiles of whole-cell protein extracts from WH7803, WH7803/pYJ01 and
WH7803/pYJ02.

167



Lane 1 WH7803/pYJ01, Lane 2 SeeBlue® Plus2 Pre-Stained protein standard (Invitrogen) in KDa,
Lane 3 WH7803/pYJ02, Lane 4 Synechococcus sp. WH7803. The putative MCO band in WH7803

strain is indicated by an arrow.

6.3.5 Examination of the growth curve of WH7803/pYJ01 and

WH7803/pYJ02

Although no obvious visible phenotypic alternations were observed in the knockout
mutants, their growth rates were compared with the wild-type strain. As seen in
Figure 6.5, no marked difference was observed in the growth curves. This indicated
that loss of the putative MCO did not do much harm to the cell’s physiological status

under these particular growth conditions.

12 4

11 4

- 8- -\WH7803/pYJ01

09 4

-+ WH7803/pYJ02

08 4

0.7 4 —— \WH7803

Absorbance at 750 nm

Time (Day)

Figure 6.5 Growth curves of Synechococcus sp. WH7803 and WH7803/pYJ01 and
WH7803/pYJ02 in ASW medium.
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Cells were cultured in 1 | glass vessel with aeration and stirring. Cell growth was monitored by
absorbance at 750 nm. The points are the mean of three biological replicates. The error bars represent
SD (n=3).

6.3.6 Examination of the binding capacity of S-PM2 to

WH7803/pYJ01 and WH7803/pYJ02

To determine whether or not the phage S-PM2 is still able to adsorb to the putative
MCO gene knockout mutant in the light and dark, the adsorption kinetics were
investigated using the same method as described in Section 3.3.1. WH7803 and the S-
PMZ2-resistant mutant strains were used as controls. As seen in Figure 6.6, ~ 85%
phage adsorbed to both knockout mutants, WH7803/pYJ01 and WH7803/pYJ02
within 45 min post infection in the light. Compared to ~ 90% adsorption to WH7803
and no adsorption to the phage S-PM2-resistant mutant, the adsorption rate suggest
that the inactivation of the putative MCO does not eliminate the phage S-PM2
receptor. S-PM2 showed no adsorption to the resistant mutants in the dark (Figure
6.7). This suggests that the loss of the putative MCO in the S-PM2-resistant mutant
may be a pleiotropic effect of the loss of the phage S-PM2 receptors, or it may be part
of the phage S-PM2 receptors, and other components are required for a successful

adsorption.
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Figure 6.6 Adsorption of S-PM2 to WH7803RS-PM2, WH7803 and the knockout WH7803

mutants in the light.

WH7803RS-PM2, WH7803, WH7803/pJY01 and WH7803/pYJ02 in the logarithmic growth phase
(OD-50= 0.35) were incubated with S-PM2 at a MOI of 0.02 at 25°C at 15 uE m™? s™. The free phage

titer was assayed 45 min post infection in the supernatant remaining after centrifugation. Data are the

mean of three biological replicates with SD values.
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Figure 6.7 Adsorption of S-PM2 to WH7803 and the knockout WH7803 mutants in the dark.

WH7803, WH7803/pJY01 and WH7803/pYJO02 in the logarithmic growth phase (OD-5,= 0.35) were
incubated with S-PM2 at a MOI of 0.02 at 25°C at 15 uE m?s™. The free phage titer was assayed 45

min post infection in the supernatant remaining after centrifugation. Data are the mean of three

biological replicates with SD values.
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6.4 Discussion

The idea of inactivating the putative MCO gene stems from two experimental
observations: firstly, this particular protein is absent in the S-PM2-resistant mutant;
secondly, the OMF of Synechococcus sp. WH7803 containing this protein has a
neutralisation effect on the phage S-PM2. If the putative MCO was the S-PM2
receptor, the knockout strain of WH7803 would lose its susceptibility to phage
infection. To test this hypothesis, a suicide plasmid pMUT100, which had been
previously constructed for the purpose of conjugal transfer of Synechococcus sp.
WH7803 (Brahamsha, 1996), was used to inactivate the putative MCO gene in
Synechococcus sp. WH7803. A conjugation frequency of (2.5 + 0.73) x 10 was

observed, which was comparable to the previous reported data (Brahamsha, 1996).

Compared with the wild-type strain, the knock-out WH7803 mutants can still grow
well in ASW, almost the same growth rate as the wild-type. It could be due to the loss
of MCO is not ‘life-threatening” for WH7803, and its function could be compensated
by other proteins. A recent report also demonstrated that a knock-out strain of
Shewanella oneidensis MR-1 showed the same growth rate under anaerobic
conditions, but a decreased growth rate when cultured aerobically compared to the
wild-type strain (Gao et al., 2006). In addition, it has been reported that the growth
rate of Escherichia coli did not change after the cyaY gene was knocked out (Li et al.,

1999).

As S-PM2 still can adsorb to the knockout mutant as it does to the wild type, it shows

that the loss of the putative MCO can not block S-PM2 adsorption. Based on the fact
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that the putative MCO-containing OMF showed an S-PM2-neutrilisation effect
(Chapter 5), other components in the OMF may be S-PM2 receptors. Previous studies
on the phage T4 receptors have revealed that both lipopolysaccharide (LPS) and outer
membrane proteins, such as OmpC, were required for a successful adsorption to E.
coli K-12 (Yu and Mizushima, 1982). Furthermore, the LPS of the unicellular
cyanobacterium Anacystis nidulans KM has been indicated to be involved in binding
of the cyanophage AS-1 based on the fact that the LPS fraction was found to be able
to inactivate the cyanophage AS-1 (Samimi and Drews, 1978). Therefore, it is
possible that LPS is required for the adsorption of the phage S-PM2 to Synechococcus
sp. WH7803. Further experiments would be to investigate the LPS fractions from S-

PM2-resistant mutant and the wild type.
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Chapter 7 Conclusions
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Viruses in general and bacteriophages in particular, have been shown to be ubiquitous
in the marine environment and are thought to play an important role in marine food
webs and influence global carbon cycling (Fuhrman, 1999; Wilhelm and Suttle, 1999).
Cyanophages capable of infecting marine unicellular cyanobacteria were first
characterised in 1993 (Suttle and Chan, 1993b; Waterbury and Valois, 1993b; Wilson
et al., 1993b). In contrast to phage infection of heterotrophic hosts, novel features of
cyanophage-host interactions have been revealed during the course of this study.
Cyanophage replication depends on the host photosynthetic performance, although the
extent of the dependence varies (Adolph and Haskelkorn, 1972; MacKenzie and
Haselkorn, 1972; Sherman, 1976; Lindell et al., 2005). Phage-encoded photosynthesis
genes of cyanobacterial origin, such as the psbA encoding photosystem Il core
reaction centre protein D1 and hli (high-light inducible) genes, are expressed during
infection (Lindell et al., 2005; Clokie et al., 2006¢; Lindell et al., 2007). These
discoveries indicate that light may play an important role in cyanophage adsorption.
However, regarding the first key step in the cyanophage—host interaction, the
adsorption of the phage to the host cell through highly specific binding to receptors on
the cell surface, there is little information as to the nature of the receptors for
Synechococcus phages and little work has been carried out to investigate the influence

of environmental factors on cyanophage adsorption.

The broad aim of this study was to further understand the interaction of marine
cyanophage-host systems based on a model system consisting of cyanophage S-PM2
and the marine cyanobacterium Synechococcus sp. WH7803. Synechococcus strains
are marine unicellular cyanobacteria and are inevitably subject to light-dark cycles in

the natural environment. The particular aim of this study was to investigate the role of
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the light during the process of cyanophage adsorption to the host Synechococcus sp.
WH7803. Another aim of this study was to isolate and purify cyanophage-resistant

mutants and to investigate the S-PM2 receptor(s).

The results from this study show for the first time that marine phage adsorption was
light-dependent. Compared to 40% adsorption of a freshwater cyanophage AS-1 to
Synechococcus PCC 7942 (previously named Anacystis nidulans) in the dark, (Cseke
and Farkas, 1979b), elimination of light almost completely abolished phage S-PM2
adsorption to Synechococcus sp. WH7803. Once the light was switched on, S-PM2
adsorption resumed immediately. Moreover, this light-dependent phage adsorption
was not just limited to S-PM2. Four out of nine other cyanophages also showed the
same effect. This suggests that at least some cyanophages in the marine environment
can only infect cyanobacteria in the presence of daylight. This light-dependent
cyanophage adsorption explains why the abundance of cyanophages from the Indian

Ocean showed a maximum at 0100 h over a 24 h period (Clokie et al., 2006a).

As no previous work has been carried out to understand the light-dependent
adsorption, the investigation was started using different light wavelength to examine
the phage adsorption rate. It was found that S-PM2 exhibited a considerably decreased
adsorption rate under illumination at red wavelengths compared to blue, green, and
yellow light. This discovery suggested a possible link between phage adsorption and
the host photosynthetic energy production for the reason that red light can’t be
effectively utilised by Synechococcus sp. WH7803 for fuelling photosynthesis (Ong
and Glazer, 1991). In order to establish whether photosynthetic energy production is

needed in the process of S-PM2 adsorption, chemical inhibitors of photosynthesis and
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the proton motive force, DCMU and CCCP, were used to treat the host before
adsorption. No differences were detected when comparing the S-PM2 adsorption to
‘treated” and ‘non-treated’ hosts. This finding rules out the possibility that ATP

generated by photophosphorylation is needed for phage S-PM2 adsorption.

As Synechococcus sp. WH7803 has been demonstrated to establish a circadian rhythm
in response to light/dark (LD) cycles (Sweeney and Borgese, 1989), it was important
to establish whether this circadian rhythm could vinfluence the light-dependent
adsorption. It was found that no matter what stage the cells were at in the 12h-12 h
LD cycle, phage adsorption was still light-dependent. This showed that the circadian

rhythm of the host cells did not have a role in cyanophage adsorption.

Recent studies have shown that the psbA gene is present in cyanophage genomes
(Mann et al., 2003; Millard et al., 2004; Sullivan et al., 2006). The importance of the
D1 protein has been well-explained (Melis, 1999). As many, but not all marine
cyanophages, have been found to contain the psbA gene (Millard et al., 2004; Sullivan
et al., 2006). This led me to investigate the possible role of the phage-encoded psbA
gene in the light-dependent adsorption. Nine cyanophages that displayed different
adsorption patterns to Synechococcus sp. WH7803 in the light and dark were
sequenced for the presence of the psbA gene. All of them were discovered to contain
the psbA gene. This indicated that the genomic occurrence of the phage-encoded D1

protein was not associated with the light-dependent cyanophage adsorption.

Since phage adsorption can be rapidly restored when exposed to light, a photoreceptor

may be responsible. Therefore, the absorption property of S-PM2 particles was
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examined in order to establish whether S-PM2 itself carries a photoreceptor to detect
ambient light. No absorption peaks were detected within the range of visible
wavelength (400 nm to 750 nm). This indicated that S-PM2 did not carry detectable
chromophore-containing molecule(s) responsible for detecting ambient light, which

led to focus on the host.

To gain a better understanding of whether this light-dependent S-PM2 adsorption to
WH7803 is common in the natural environment, more cyanophage-host pairs were
tested. Interestingly, the cyanophage S-MMD5 only displayed light-dependent
adsorption to Synechococcus strain Dim, but not to WH7803. Darkness was
demonstrated to be less efficient in preventing S-PM2 from adsorption to another S-
PM2 host BL161 than to WH7803. This suggested that the nature of the cell surface
could play a major role in the light-dependent cyanophage adsorption. Since
information about Synechococus phage receptors remains unknown, isolation and

characterisation of phage-resistant mutants was carried out.

An S-PM2-resistant mutant of Synechococcus sp. WH7803 was isolated and shown
not to bind the S-PM2, which suggested a mutation in the S-PM2 receptor. This
mutant was also resistant to 16 out of 30 cyanophages. No obvious fitness cost has
been detected from the S-PM2-resistant mutant because it showed a very similar
growth rate as the wild-type strain. Consequently, this S-PM2-resistant

Synechococcus strain would have a competitive advantage over sensitive strains.
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Since the restoration of phage adsorption was immediate when the phage-host
suspension was shifted from the dark to the light, this indicated that a protein
conformational change may be induced by the light to favour phage recognition.

The protein profiles of Synechococcus sp. WH7803 and the S-PM2-resistant mutant
were analysed. A putative multicopper oxidase was found to be absent in the S-PM2-
resistant mutant and was demonstrated to be present in the outer membrane fraction
(OMF) of Synechococcus sp. WH7803, but not in the OMF of the mutant. The OMF
of the wild type showed a neutralisation effect on S-PM2. This demonstrated that the

OMF contained molecules that had S-PM2 receptor activity.

Due to the absence of the multicopper oxidase in the OMF of the mutant, this made
the protein a good candidate to be tested as the S-PM2 receptor. The corresponding
gene in WH7803 was knocked out. However, S-PM2 was still able to adsorb to the
knockout mutants at a similar rate as to the wild type. This indicated that the putative
multicopper oxidase was not the S-PM2 receptor and suggested that the loss of this
protein in the S-PM2-resistant mutant may be a pleiotropic effect of the loss of the
phage S-PM2 receptor. As the putative multicopper oxidase gene in the mutant
remained complete at the nucleotide level and was transcribed into mRNA, this led to
the possibility that the putative multicopper oxidase could not be properly anchored
into the specific site on the cell surface, which may be due to a structural change in

the cell envelope and thus was secreted into the surrounding environment.

Since the OMF of the wild type showed a neutralisation effect on S-PM2, components

in the OMF should be responsible for this effect. As 1-D SDS-PAGE has limited
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resolution, further experiment using 2-D SDS-PAGE analysis over the OMFs would

be a better choice.

Based on the results presented in this thesis, a hypothesis (Figure 7.1) was formulated.
For a successful S-PM2 adsorption, two receptors, MCO and a second receptor
(probably LPS) are needed. S-PM2’s light-dependent adsorption and adsorption only
at a certain wavelength range suggested at least one receptor, most likely MCO, is
light sensitive. In the presence of the light, MCO is activated which leads to MCO
conformation change. Only this conformation will be recognised and binded by S-
PM2. After the successful initial binding, the irreversible binding to the second
receptor follows. The adsorption process doesn’t need energy derived from the host
photosynthesis because S-PM2 can still adsorb to DCMU/CCCP-treated WH7803 in

the light.

But surprisingly, S-PM2 can still infect the MCO-knockout mutants and adsorption to
these mutants only happened in the light, but not in the dark. It can be explained that
other surface ion-transporters may have a similar function role as MCO thus they
compensated MCO to act as the first receptor to make the initial binding happen. The
growth rate of these knockout mutants was similar to the wild type, which supports
the compensation theory on cell fitness point of view. If the second phage receptor
was also knocked out, S-PM2 would not be able to absorb to WH7803. The OMF
prepared using EDTA treatment of WH7803 only showed a moderate (30%)
neutralisation effect on S-PM2. This is due to the absence of the second phage

receptor (LPS) in the OMF.
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Figure 7.1 Diagram illustrating the possible role of two S-PM2 receptors involved in S-PM2

adsorption to Synechococcus sp. WH7803.

S-PM2 adsorption involved two steps and two sets of receptors. Firstly, MCOs ([ ]) and other similar
ion transporters ((___]) changed conformation in the presence of light and become recognisable to S-
PM2 to initiate the adsorption. After the initial first step, the irreversible adsorption to the second
receptor (), such as LPS in the cell wall followed. As S-PM2 adsorption doesn’t need energy derived
from the host photosynthesis, S-PM2 can still adsorb to DCMU/CCCP-treated WH7803. But
adsorption did not only depend on light, but also need certain wavelength range. EDTA treatment of
WH7803 only stripped off OMF (including MCO) but no cell wall fraction, which explain why the
OMF only showed a 30% neutralisation effect on S-PM2. If the second S-PM2 receptor was added in
the OMF, a 100% neutralisation of S-PM2 was expected.

The discoveries made in this study provide with some clues about the phage-host
relationships in the marine environment. S-PM2 illustrates the critical role of the
daylight in some phage life cycles. S-PM2 displays intriguing characteristics that are
not found in phages infecting heterotrophic bacteria. The study also suggests that
some cyanophages in the natural environment can only infect cyanobacteria in the

daytime and that multi-phage-resistant stains may occur in the natural environment.
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Considering that there is so little information about cyanophage receptors, this study

provides the basis for the eventual identification of a cyanophage receptor.
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CAATNIT T TCEASGTGGG TEACERISCACPHAAIAACCGYCTYTASG TIGCETGGTTY
[CAA@NETTCTGOGAGTGGGTYA (ECACCGACAACCGECTOTATGTEGGTTGGTTY
[CAAONE T TCTGOGAGTGGGTYA (ECACCEBACAACCGECTOTATGTEGGTTGGTTY

TCTGAG OGASTGGGTIRACEYEMIACIAACAACRGERTOTATGTIGG T TGGTTYGGT
GRACGAGLRIT TGAGTGGGTAAC‘TCCACiGACAAﬂCGC‘TCTAEGTTGGTTGGTTTGGT
CﬁEAAG U TGUGAGTGGGT®ACIYAHIACCGACGAACCGECTYTATGTIRGGTTGGT TYGGA

GTGCTGATGATECCO®ACACTGCTGGCYGCO®ACO®ATCTGCTTCGTCATEGCYTTCEGTCGCHE
GTGCTGATGATCCCC‘CACTGCTGGCTGCC‘CC‘TCTGCTTCGTCATCGCTTTCGTCGCC

GTGCTGATGAT®

COATCTGCTTCEGTCATEGCRTTCETCGCS
TCTGCTTCGTCATCGCaTTCGTCGCC

ACICTGCTGGCYGCYACOASCTGCTTCATCGTYGCO®TTCATCGCH
CCACCTGCTTCATCGTTGCCTTCATCGCC
CCACCTGCTTCATCGTTGCCTTCATCGC‘
CC&CCTGCTTCATCGTTGCCTTCATCGC‘

?TGATGAT LRIE®CTGCTGGCYGCEACOATIITGCTTCATCATI®GCET TIETHIGCS
C

GTUCTGATGAT®

GTGCTGATGATYCCOKe{eC T®CTGGCEGCOACO®ATCTGCTTCAGCATHGCYT THA C
GTGCTGATGATYCCOKE®CTGCTGGCEGCO®ACO®ATCTGCTTCAGCATHGCE
GTEGCTGATGATYCCHLE®CTGCT®ACE OATCTGCTTCATCOT®GCE C

GTUCTGATGATECCIACYCTGUTGGCAGCAACYATCTGCTTCATCET®GCOTTCATCGCY
GTACTGATGATICCYA GCTGCTTGCAGCAACTATITGITTCATCGTCGCCTTCATCGCT

AGGCTGATGATY ACHCTGYTGGCAGCAACHATCTGCTTCATCGTOGCOTTCATCGCR
ACGCTGATGATT TCTGTTGGCAGCAACT‘TCTGCTTCATCGTCGCCTTCATCGCT
ECGCTGATGATT A TCTGTTGGCAGCAACT‘TCTGCTTCATCGTCGCCTTCATCGCT

GTACTAATGATECCEGCe] LGCEGCUACUATUTGUT TUATUAEGCETTCATHGCE
AGGCTGATGATYCCYACHCTYCTOGCAGCUGCYATCTGCTTYATIGTUGCYT TCATCGCHY
QCGCTGATGATTCCT‘CT T] CGCAGCTGCT‘TCTGCTTT‘TTGTTGCTTTCATCGCT

GTUCTUATGATECCIKICTHCTAGCH A TGCTTPATCETRGCITTCATCGCA
GTITAATGATECCINKIC THC TAACUIGCUGCY CTTGITTCATTGTAGCATTCATCGCT
GTACTHATGATHCCLRESI TACTAGCHGCHACHASITGCTT

GTCGCTGGCTCCCTGAT
GCTCCLCCEGT®GACATCGATGGCATCCGIGAGCCEGTCGCTGGCTCCCTGAT®TACGGH
GCTCCYCCEGTYGACATCGATGGCATCCGO®GAGCCYGTCGCTGGCTCCCTGATETACGGH
GCTCCJCCEGTYGACATCGATGGCATCCGO®GAGCCYGTCGCTGGCTCCCTGAT®TACGGH
GCTCCPCCEGTYGACATCGATGGCATCCGO®GAGCCYGTCGCTGGCTCCCTGAT®TACGGH
GCTCCYCCEGTYGACATCGATGGCATCCGOGAGCCYGTCGCTGGCTCCYTGATETACGGH
GCTCCYCCEGTYGACATCGATGGCATCCGRGAGCCYGTCGCTGGCTCCYTGATETACGGH
GCTCCCCEGTYGACATCGATGGCATCCGO®GAGCCYGTCGCTGGCTCCYTGATETACGGH
GCTCCYICCEGTYGACATCGATGGCATIICG®GAGCCYGTCGCTGGCTCCYTGAT®TACGGH

QEQTCG‘CGGCATCCGCGAGCCTGTCGCCGGCTCCCTGETTTACGGC

C

>

OGGCATCCGEOGAGCCUCTCGCE®GGCTCCCTCETYTACGGH

--------- GTEGAUATIRGATGGEATRCGEGAGCCYGTUGCTGGCTCLRI TS T®TACGGH
GCTCCIYECEGTEGACATCGATGGYATCCOYGAGCCOGTCGCEGGCTCCCTGATOTAGCH
————————— GTPGAPATCGATGGCATCCGOGAGCCOGTCGCTGGCTCCTGATSTACGGS
(GCTCCECC TCGATGGCATCCGJGAGCCOGTCGCTGGCTCCCTGATOTACGGS
GCECCCCC TCGATGGCATiCGTGAGCCTGTCGCTGGCTCCCTGATCTACGGC
GCilccece

TCGAEGGCGTCGGAGCCGT@ACGGTCET LCLEATEeC
CT|
ﬁCT

TETALUGGLE

TRGATGGEATCAGEGAGCCEGTCGCTGGYTC

G
UG TEGACATCGATGGATCCGEGAACCIGTCGCTGGYTCACT

GCTCCOCCYGTEGACATCGATGGCATCCGGABCCEGTIGCTGGYTC TETALUGGLE
GCTCC®CC TETACGGH
GCTCCECCUGTEGACATCGARGGCATCCGGAACCEGTIGCTGGHTCLUCTGATETALIGG
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223
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GCTCCGTGACATCGAGGCATCCGGAACCGTGCTGGTCCTGATTGG
GCTCCCCGTGACATCGAGGCATCCGGAACCGTGCTGGTCCTGAT

GTPGACATCGATGGRATCRGRGAACCAGTCGCRGGCTCCCTEATETANGGE
crcacatceatcalaTcccancleTcocioacTeCCTRATRTARGES
--------- crycacaTceaTcalaTcAccARceTcocioaCTCCCTRATRTARGES

A
G TGTGGACATTGATGGEATCCGTGAACCTGTTGCEGGMTCTCT UG
T| CGTCG‘T‘TTGQEGGCATCCGCGAACCTGTTGCTGGTTCTCTAATGTACGG‘
T|

GGCATCCGEGAACCHGTUGCTGGUTCUCTAATETACGGY

AACAACATCATCTCTGGTGCTGTTGTTCCTTCCAGCAACGCCATCGGCCTGCACTTCTA®
AACAACATCATCTCTGGTGCTGTTGTTCCTTCCAGCAACGCCATCGGCCTGCACTTCTA®
——————————————————————————— ICCTTCCAGCAACGCCATCGGCCTGCACTTCTAS
AACAACATCATCTCO®GGTGCTGTTGTTCCTTCCAGCAACGCCATCGGCCTGCACTTCTAT]
AACAACATCATCTC®GGTGCTGTTGTTCCTTCCAGCAACGCCATCGGCCTGCACTTCTAT]
AACAACATCATCTCTGGTGCTGTTGTTCCTTCCAGCAAJGCCATCGGCCTGCACTTCTAT
AACAACATCATCTCTGGTGCTGTTGTTCCTTCCAGCAACGCCATHUGGCUTGCACTTCTAT]
AACAACATCATCTCTGGTGCTGTTGTTCCTTCCAGCAACGCCATHUGGCUTGCACTTCTAT]
AACAACATCATCTCTGGTGCTGTTGTTCCTTCCAGCAACGCCATGGCYTGCACTTCTAT]
AACAACATCATRTCTGGTGCTGTTGTTCCTTCCAGCAACGCCATCGGCTGCACTTCTAT
AACAACATCATCTC®GGTGCTGTTGTTCCTTCCAGCAACGCCATHIGGCCTGCACTTCTAT]
AACAACATCATCTCO®GGTGCTGTTGTTCCTTCCAGCAACGCCATHGGCCTGCACTTCTAT]
AACAACATCATCTCOGGTGCTGTTGTECCOTCCH®CAACGCCATCGGCCTGCACTTCTAT]
AACAACATCATCTC®GGTGCTGTTGT{gCC@TCCLE®CAACGCCATCGGCCTGCACTTCTAT]
AACAACATCATCTC®GGTGCTGTTGTTCCTTCCL8CAACGCCATCGGCCTGCACTTCTAT]
CGCCATGGCYTGCACTTCTAT]

UGGCH

HGGCH

AACAACATCATHIITCTGGTGCTGTTATTCCTTCCAG
AACAACATCATITCTGGTGCTGTTATTCCTTCCAG
AACAACATCATCTCEGGTGCTGTTGTECCETCC]
C G
G

CGCCATYGGCYTGCACTTCTAT
CGCCATHGGCHTGCACTTCTAT
AACGCCATCGGCCTGCACTTCTAT
AACAACATCATCTC®GGTGCTGTTATTCCETCIIMAAACGCCATIGGCCTGCACTTCTAY
AACAACATCATCTCTGGTGCTGTTATTCCETCIME®CAACGCCATCGGCCTGCACTTCTAY
AACAACATCATCTCEGGTGCTGTTGTTCCTTCCAGCAACGCCATCGGCCTGCACTTCTAT
CAACATCATCHCGGCEGTGTCCCC CAACGCEATCGGACTGCACETCTAT]

AACAACATCATHITCTGGTGCAGTTGTTCCTTCRREMAAACGCAATCGGRCTICACTTCTAT
AACAACATCATCTCTGGTGCIAGTTGTTCCETC] CAACGCAATIGGﬂCTTCACTTCTAT
AACAACATCATRTCTGGTGCTGTTGTTCCTTC] CGCIATCGGICTYCACTTCTAT

AACAACATCATCTCTGGTGCAAGTTGTTCCETC]
"CAACATCATCTCTGGTGCAGTTGTTCCCTC

CAACGCAATTGGTCTACACTTCTAT
"CAACATCATCTCTGGTGCAGTTGTTCCCTC

CAACGCIATHGGUCTACACTTCTAT
CAACGCEATTGGTCTACACTTCTAT
AACAACATCATRTCEGCAGCOGTEGTTCCEHNECAGCAARGCCATCGGACTACACTTCTAS
AACAACATCATITCRGRGCRG TG TTCCNECAGCAARIGCCATCGEACTACACTTCTAR
"CAACATCATETCGGGAGCCGTCGTTCCGAGCAGC GCCATTGGACTACACTTCTAC
AACAACATCATCTCEGGEGCTGTTGTECCTIMECAGIAACGCATCGGACTYCATTTETAT
AAJAACATCATCTCTGGTGCTGTTATECCTTCPAGCAACGCCATCGGCCTYCACTTCTAT
AAIJAACATCATCTCTGGTGCTGTTATECCTTCPAGCAACGCCATCGGCCTYCACTTCTAT
"CAACATCATCTCTGGTGCNGTEGTCCCCAGT‘GCAACGC“ATIGG‘ TGCACETCTAT]
AACAACATCATCTCTGGTGCRGTTGTTCCATCIRESAAACGCIATCGGLRITACACTTCTAT
AACAACATCATCTCTGGTGCTGTRGTTCCATCIRESAACGCRATRGGIN TACACTTCTAT
acaaiaTgATTCTeoRcCRe TG TTccecscAAc A TGSACTGCACTTR TAT

** **_**_**_**__*_**__*_**_

CCCATCTGGGAAGCYGCTTCECTCGATGAGTGGCTGTACAACGGCGGECCO®TTCCAGCTG

CCCATCTGGGAAGCEGCTTCHPCTCGATGAGTGGCTGTACAACGGCGGTCCTTTCCAGCT(®
CCCATCTGGGAAGCEGCTTCHPCTCGATGAGTGGCTGTACAACGGCGGTCCTTTCCAGCT(®
CCCATCTGGGAAGCEGCTTCYCTCGATGAGTGGCTGTACAACGGCGGTCCTTTCCAGCT
ICCCATCTGGGAAGCAGCTTCIACTCGARMGAGTGGCTGTACAACGGCGGTCCTTTCCAGCT S
CCCATCTGGGAAGCAGCTTCACTCG GAGTGGCTGTACAACGGCGGTCCTTTCCAGCT(®
CCCATCTGGGAAGCAGCTTCACTCG GAGTGGCTGTACAACGGCGGTCCTTTCCAGCT(®
CCCATCTGGGAAGCAGCTTCACTCG IGAGTGGCTGTACAACGGCGGTCCTTTCCAGCTY

CCCATCTGGGAAGCEGCETCE®CTCGATGAGTGGCTETACAACGGCGGTCCTTRACCAGCTG
CCCATCTGGGAAGCGGCCTCCCTCGATGAGTGGCTCTACAACGGCGGTCCTTACCAGCTG

CCCATCTGGGAAGCAGCIACYCTIGATGAGTGGCTGTACAACGGCGGECCTTIYJCAGCTG
CCCATCTGGGAAGCﬂGC"CTCTTGATGAGTGGCTGTACAACGGCGGCCCTT‘ CAGCTG

CCCATCTGGGAAGCEGCTTCHYCTCGATGAGTGGCTGTACAACGGCGGECCTTIMICAGCTG
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283

301

403

400

CCCATCTGGGAAGCEGCATCECTHG
CCCATCTGGGAAGCCGCATCGCTTG GAATGGCT®T
CCCATCTGGGAAGCCGCETCGCTTG
CCRATYTGGGAAGCYGCTRCACTYGATGAATGGCTETACAAIGGEGGTCCATTCCAGCTH
CCAATTTGGGAAGCTGCTACACTTGATGAATGGCTCTAC GGGGGTCCATTCCAGCTT
CCAATTTGGGAAGCTGCTAC‘CTTGATGAATGGCTCTAC GGGGGTCCATTCCAGCTT
CCEATCTGGGAAGCCGCTTCGCTTGAEGAATGGCTCTACAACGGGGGTCC@TMCCAACTT

GORACCRTNICAGCTY
ﬂGGTCCTT‘CCAGTTG
GTACAACGGIGGTCCTTACCAGHTE

Al

* KAk Ak KAk Kk Kk Kk Kk Kk Kk Kk *k *

TCGGCATHTECGCCTACATGGGTCGT@AGTGGGAACTCTCY
TCTTCCACTTCCT®ATCGGCATCTACGCCTACATGGGECGTGAGTGGGAACTCTCC
C
C

GTGATCTTCCACTTCCT@ATCGGCATCTACGCCTACATGGGE®CGTGAGTGGGAACTCTCC
GTYGTETTCCACTTCCTEGATCGGCATCTIUCLEECTACATGGGECGE®GAGTGGGAACTCTCC
GTYGTETTCCACTTCCTEGATCGGCATCTICLEECTACATGGGTCGE®GAGTGGGAACTCTCC
GTPGTCTTCCACTTCCTGATCGGCATCTUCLEECTACATGGGECGE
GTEGTYTTCCACTTCCTGATYGGCATYT®EGCCTACATGGGECGT®AGTGGGAACTCTCC
T]
T]

GTEEGTYTTCCACTTCCTEATYGGCATYTI®EGCCTACATGGGECGT®AGTGGGAACTCTCC]
GTEGTUTTCCACTTCCTEATUGGCATYTI®EGCCTACATGGGECGT®AGTGGGAACTCTCC
GTEGTCTTPCACTTCCTGATCGGCATYT®CGCCTACATGGGECCE®AGTGGGAACTCTCC
GTIEECTTCCACTTCCTGATCGGCATYT®CGCCTACATGGGTCGT®AGTGGGAACTCTCC
GTURIECTTCCACTTCCTEATCGGCATYT®CGCCTACATGGGTCGT®AGTGGGAACTCTCC]
GTURIECTTCCACTTCCTEATCGGCATHT®CGCCTACATGGGTCGT®AGTGGGAACTCTCH
AT®ATCTTCCACTTCCTEATCGGCATCTACGCCTACATGGGECGEBGAGTGGGAACTCTCC]
THUTTCCACTTCCTGATCGGATCTAIGCITACATGGGTCGTGAGTGGGAACTCTCC]
GTIIGTCTTCCACTTCCT@ATCGGCATCTAIGCCTACATGGGTCGTGAGTGGGAACTTCC
GTYATCTTCCACTTCCTEATHGCUATCTAYGCRTANATGGCRACCAGAGTGGGAACTCTCH
GTUGTCTTCCACTTCCTGATYGGCATCTAYGCCTACATGGGTCGTGAGTGGGAACTETCH
GTUGTCTTCCACTTCCTGATYGGCATCTAIYGCCTACATGGGTCGTGAGTGGGAACTETCH
GTYGTCTTCCACTTCCTEATUGGCATCTAYGCCTACATGGGTCGTGAGTGGGAACTETCLE
GTOGTTTCCACTTCCTOATCGGATCTAYGCTACATGGGRCGRGAGTGGGAACTYREC
GTRGTHTTCCACTTCCTRATCGGATCTANGCRTACATGGEACGAGAGTGEGAACTRYEC
GT@GTYTTCCACTTCCTOATGGYATCT ceyracaTceolcalleacTeeeAACTIINEC
GT®GTETTCCACTTCCTYETCGG TCTTCGCTTACATGGGECG‘GAATGGGAACTTTC‘
GTEGTCTTCCACTTCCTYATCGG GTCTTCiCTTACATGGGTCGCGAGTGGGAACTCTCT
T

GTEGTCTTCCACTTCCTYATCGGYGTCTYCUCYTACATGGGTCGOGAGTGGGAACTCTCHY
GTYGTETTCCACTTCCTYATIIGG

TH@TTCCACTTCCT T“GG‘ATCTCT
GTTGTCTTCCACTTCTTAAT‘GGAGT‘GC‘GCNTACGCTGGT‘G‘C

TACCGCCTGGGCATGCGCCCOTGGATCTGCGTYGCO®TACAGCGCACCTGTCGCTGCRGCH
TACCGCCTGGGCATGCGCCCCTGGATCTGCGTTGCCTACAGCGCACCTGTCGCTGCAGCC
TACCGCCTGGGCATGCGCCCTTGGATCTGCGTTGCCTACAGCGCACCTGTCGCTGCAGCC
[TACCGCCTGGGCATGCGCCCOTGGATCTGCGT®GCETACAGCGCACCTGTCGCTGCYYGCH
TACCGCCTGGGCATGCGCCCOTGGATCTGCGT@®GCO®TACAGCGCACCTGTCGCTGCHGCH
TACCGCCTGGGCATGCGCCC@TGGATCTGCGT@®GCO®TACAGCGCACCTGTCGCTGCHGCH
[TACCGCYTGGGCATGCGCCCTTGGATCTGYGTYGCRATACAGCGCACCTGTCGCTGCYGCA
TACCGCTTGGGCATGCGCCCTTGGATCTGTGTTGCﬂTACAGCGCACCTGTCGCTGCTGC‘
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232
400
232
400
400
403
232
400
406
406
406
406
232
232
232
400
403
403
232
406
421
403
421

463
463
214
463
463
463
463
463
463
460
463
463
463
463
292
214
460
292
460
292
460
460
463
292
460
466
466
466
466
292
292
292
460
463
463
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481
463
481

523
523
274
523
523
523
523
523
523
520
523
523

TAQICGCIITGGG

TACCGCTHGG
TACCGCT®GG

TGCGLCCTTGGATCTGCGTYGC!
TGCGCCCETGGATCTG
TGCGPCCTTGGATCTG
TGCGYCCTTGGATCTG
TGCGYCCTTGGATCTG]
TGAGECCTTGGATCT
TlAGRCCTTGGATCT]
TlAGRCCTTGGATCT]
TGEGGCCQTGGATCT
TGCGCCCTTGGATITG GTEGCUTAC ‘GCECCTGTTGCCGCEGCT
T C

TACCGIJCT®GG
TACCGJCT®GG
TAPCGRCTAGG
TagcclcTAGG
TAICCRCTAGG
TACCGACTTGG

TACCAACTGGGYATGCGCCCTTGGATYTG AGCECCTGTYGCEGCUGCH
INEHGACTAGG‘ATGHGGCCETGGATTTTCGTCGCTT‘T‘GCGCACCHGTGGCCGC‘GC‘
WTAGGﬁATGCGCCTTGGATCTGGTGCT
NGACTAGGIATCAGECCTTGGATRTGUG TAGCATACHS
A AnrAchccmrecaririce TG ATIAS

TCOCCHUGTO®TTCCTGGTPTACCCCTTCGGTCAGGGTTCYTTCTCTGA®GCIAATGCCCCTG
TCCGCTGTCTTCCTGGTTTACCCCTTCGGTCAGGGTTCTTTCTCTGACGCAATGCCCCTG
TCCGCTGTCTTCCTGGTTTACCCCTTCGGTCAGGGTTCTTTCTCTGACGCAATGCCCCTG
[TCTGCAGT@®TTCCTGGTCTACCCCTTCGGTCAGGGETCOTTCTCTGA®GCE®ATGCCCCTG
[TCTGCAGT@®TTCCTGGTCTACCCCTTCGGTCAGGGETCOTTCTCTGA®GCE®ATGCCCCTG
[TCTGCAGT@TTCCTGGTCTACCCCTTCGGTCAGGGETCO®TTCTCTGA@GCO®ATGCCCCTG
[TCTGCAGTOTTCCTO®GTCTACCCCTTCGGTCAGGGTTCETTCTCTGATGCIAATGCCCCTG
TCTGCAGTCTTCCTCGTCTACCCCTTCGGTCAGGGTTCGTTCTCTGATGCAATGCCCCTG
TCTGCAGTCTTCCTCGTCTACCCCTTCGGTCAGGGTTCGTTCTCTGATGCAATGCCCCTG
TITGCAGTCTTCCTCGTCTACCCCTTCGGTCAGGGTTCGTTCTCTGATGCAATGCCCCTG
[TCTGCAGTETTCCTGGTCTACCCCTTCGGTCAGGGTTCETTCTCTGA@®GCEATGCCCCTG
[TCTGCAGTETTCCTGGTCTACCCCTTCGGTCAGGGTTCETTCTCTGA®GCEATGCCCCTG
TCOCCOGTETTCCTGGTETACCCCTTCGGTCAGGGETCOTTCTCHEG TGCCCCT™
TCOGCOGTETTCCTGGTgTACCCCTTCGGTCAGGGETCOTTCTCEOG TGCCCCT®
[TCTGCAGT®TTCCTGGTCTACCCCTTCGGTCAGGGTTCOTTCTCTGA TGCCCCTG
INEEGUGCTE®TTCYTGATCTAYCCCTTCGGTCAGGGTTCETTCTCTGATGE®ATGCCYCTG
T

[oNoN0)

LNIECUGG T T TCYTGATCTALRCCCTTCGGTCAGGGTTCETTCTCTGATGEEATGCCYCTG
NICCLGGT®TTCYTGATCTALRCCCTTCGGTCAGGGTTCETTCTCTGATGE®ATGCCYCTG
[TYTGCEGTOTTCCTGATCTAIYCCCTTCGGTCAGGGTTCOTTCTCEGABGE®ATGCCCCTH
INKEGCYGTYTTCCTGGTETACCCCTTCGGTCAGGGTTCETTCTCTGATGE@ATGCCCCTG
INREGCGTYTTCCTGGTETACCCCTTCGGTCAGGGTTCYTTCTCTGATGE@ATGCCCCTG
JNIEGCOGTYTTCCTGGTEETALIICCCTTCGGTCAGGGETCETTCTCEGATGE®ATGCCCCTG
\CeGCOCTETTECTEGTETARECCATCCGECAGGGETCOTTCTCOGATECHETGCCCCTH
TCTGCYGT@TTCCTOGTCTAYCCT TCGGTCABGGITCYTTITCEGATGCPATGCCHCTH
TCTGCYGTITTCCTOGTCTAYCCYTTCGGTCARGGTCYTTCTCEGATGCYATGCCUCTH
TCTGCRGTRTTCCTHGTCTARCCHTTCGGTCAAGGT TCSTTCTCTGATGCHATGCCYCTS
JNETGCAGTEETTCCTOGTCTALICCYTTCGGTCAAGGTTCYTTCTCTGABGCE®ATGCCYCTG
JXe TGCAGTEETTCCTOGTCTALICCYTTCGGTCAAGGTTCYTTCTCTGASGCE®ATGCCYCTG
e TGCAGTIETTCCT®GTCTAYCCYTTCGGTCAAGGTTCYTTCTCTGASGCEATGCCYCTG
TCTGCEGTYTTCCTYGTCTAYCCATTCGGTCAAGGTTCYTTCETGASGCUATCCCYCTH
TCTGCRGTYTTCCTYGTCTANCCRTTCGGTCARGGTTCYTTCINE TGARGCIATGCCHCTH
TCTGCEGTYTTCCTYGTCTALCCRTTCGGTCARGGTTCYTTCSTGARGCIATGCCHCTH
ACGGcTGTCTTICTTGTGTACcCETTTGGTCAGGGQTCGTTITCTGATGGTATGCCACTT
JACTGCYGTYTTCCTGGTCTACCCCTTYGGRCABGGTTCYTTCETGATGEIATGCCECTH
ACTGCTGTTTTCCTGGTCTACCCCTTTGGECAAGGTTCTTTC‘ TGATGEIIATGCCECTL
THTGCYGTETTHCTEGTATAGCCCTTCGGTCAAGCYNEN T TIAETGATGEATGCCCCTY
TPEGCUGTITTCCTYGTYTACCCRTTCGGTCAGGGTTCITTCTCRGABGENATGCCRIITA
TTTGCAGTATTCCTTGTGTAﬁCCATTCGGTCAGGGTTCATTCTCTGATGGT‘TGCC‘CT‘
S TGCYGTETTICTEG TYTACCCATTRGGECARGCEHNT THAETGATGEIIATGCCUCTH
** **

* Kk Kk * * k% * * KKk Kk X% *hkk *

GGCATCTCTGGCACCTTCAACTACATGYTGGTGTTCCAGGCE®GAGCACAACATCCTGATG

GGCATCTCTGGCACCTTCAACTACATGCTGGTGTTCCAGGC®GAGCACAACATCCTGATG
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334
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583
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580
412
580
580
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643
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643
643
643

GGCATCTC@®GGCACCTTCAACTYCATGCTGGTGTTCCAGGCYGAGCACAACATCCTGATG

BGGCACETTCAACTYCATGCTGGTGTTCCAGGCYGAGCACAACATCCTGATG
TR TC®GGCACCTTCAATICATGCTGGTGETCCAGGCEGABCACAACETECTEATG
TUTCTGGYACHT TUAACTAPATGCTYGTATTCCAAGCIRGAACAC TCCT]
TCTCTGGYACYT TPAACT TGCTTGTATTCCAAGCAGAACAC TCCTYATG
TS TGGUACHTTCAACTACATGCTYGT®TTCCAAGCIAGAGCACAACATCCTGATG
TCIRGTGGCACCTTCAACTACATGCTYGTE®TTCCAAGCIAGAGCACAACATICT®ATG
TCR TGGCACCTTCAACTACATGCTTGTCTTCCAAGCAGAGCACAACATTCT TG
TCA TGGCACCTTCAACTACATGCTTGTCTTCCAAGCAGAGCACAACATTCT
[TCOGGCACETTCAACTACATGYTHUGTATTCCAAGCEGAAC CATCCT]
TC®GGCACETTCAACTACATGYTUGTATTCCAAGCEGAAC. CATCCT]
TC®GGCACETTCAACTACATGTUGTATTCCAAGCEGAAC. CATCCT]
[TACATGCTGGT@TTCCAAGCHIGAGCACAACATYCT
CTACATGCTGTYTTCCAGGCRGAACACAACATYCT
CTACATGCTTGTTTTCCAGGCAGAACACAACATTCT
TCTGG C‘TTCAACTTCATGCCCGTCTTCCAAGCAGAGCACAAEATTCT
ACATTCAACTTCATGTTCGTATTCCAAGCAGAACAEAACATCCT

[TGGCACYTT

CACCCCTTCCACATGCTGGGEGT®GCAGGTGTYT TCGGOGGCINECYTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGEGTEGCAGGTGTYTTCGGOGGCINECUTGTTCTCCGCOATG
CACCCCTTCCACATGITGGGEGTEGCAGGTGTYTTCGGEGGCINECCTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGTGTYGCAGGTGTETTCGGTGGCTCCPTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGTGTYGCAGGTGTETTCGGTGGCTCCYTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGTGTYGCAGGTGTETTCGGTGGCTCCCTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGTGTYGCAGGEGT®TTCGGEGGCECPTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGTGTYGCAGGEGT®TTCGGOGGCINECYTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGTGTYGCAGGEGT®TTCGGOGGCINECYTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGTGTYGCAGGEGT®TTCGGOGGCINECYTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGTGTEGCAGGOGT®TTCGGOGGCINECYTGTTCTCCGCEATG
CACCCCTTCCACATGCTGGGTGTEGCAGGEGTETTCGGEGGCINECYTGTTCTCCGCEATG
CACCCCTTCCACATGCTGGGTGTGGCEGGTGTGTTCGGTGGTTCCCTGTTCTCCGCC‘TG
CACCCCTTCCACATGCTGGGTGTEGCOGGTGTETTCGGTGGYTCCCTGTTCTCCGCOATG
CACCCCTTCCACATGRTGGGEGTE®GCAGGTGT®TTCGGTGGITCCPTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGTGTEGCAGGRGTETTCGGEGGCECYTGTTCTCCGCEATG
CACCCCTTCCACATGCTGGGTGTEGCAGGEGT®TTCGGOGGCINECYTGTTCTCCGCEATG
CACCCCTTCCACATGCTGGGTGTEGCAGGEGT®TTCGGEGGCINECUTGTTCTCCGCEATG
CACCCCTTCCACATGCTGGGTGTEGCEGGTGTETTCGGTGGCTCCCTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGEGTEGCAGGTGTYTTCGGEGGCECCTGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGEGTEGCAGGTGTYT TCGGEGGCINECITGTTCTCCGCOATG
CACCCCTTCCACATGCTGGGTGTPGCAGGTGTETTCGGTGGCTCCCTGTTCTCCGCOATG
CACCCCTTCCACATGETGGGTGTEGCEGCEGTET TIGCTGCMECCCT®TTCTCCGCEATG
G
G

AT
TTCCACATGCTRGGTGTIGCRGGAGTATTCEGTGETCICTGTTCTCRGCYATG
CACCCCTTCCAPATGCTYGCAGTYGCUGGTGTOT TIGGTGG
CACCCCTTCCAYATGCTOGGOGTRGCAGGTGTETTCGGEGG
CACCCCTTCCAATGCTEGGEGTAGCAGGTGTRTTCORRGE
CACCCCTTCCARATGCTSGARGTAGCAGGTGTRTTCGENGE
CBCCCCTTCCACATGCTYGGRGT®GCAGGTGTETTPGGTGG
CBCCCCTTCCACATGCTYGEAGTGCAGGTGTRTTIGGTGE

CACCCCTTCCACATGCTHGCHGTRGCAGGTGTRTTHGGTGE
CCCTGTTIAENGCYATG

C. CCTTTCCAEATGTTGGGAGTTGCTGGTGTTTTTGGTGG

CAPCCYTTCCACATGYTGGGRGTHUGCYGGEGTETTCGGTGGYTCYCTGTTCTCYGCYATG
C CCTTTCCACATGTTGGGAGTTGCTGGGGTCTTCGGTGG [TCPYCTGTTCTCHYGCYATG
CAIJICCCTTCC TGCTEGGEGTTGCTGGGGT‘TTIGGTGGCGCTCTGTTC‘GTGC TG
CACCCRTTCC TGEQGGTGTGCAGGTATTTCGGTGG ACCINITATTCTCHUGCHATG

CACCCCTTCCAYATGEO®AGGTGTIRGCAGGTATETTCGGTGGLACTOT TCAIGCAATG
CAYCCETTCCACATGCTOGGTGTYGCYGGEGTIRTTCGGTGGRTCUCTYTTCTCYGCYATG

* **x Khkkkk Kkhkk **k **k Kk Kk * KKk Kk Kk **x Kkk

CQHCCETTCCACATGCTCGGTGTTGCTGG GTRTTCGGTGCRTCYCTCTTCTCUGCHATG
CALICCE

[TCYCTGTTCIAGIGCAATG
TC‘CTGTTTAGTGCAATG
TCACTGTTTAGTGCAATG
TCECTGTTTAGTGCAATG
[TCCCTGTTUAGGCAATG
TCCCTGTTTAGTGCAATG
TCCCTGTTTAGTGCAATG

CACGGCTCCCTGGTGACCTCCTCCTGGTGCGTGAAACCACCGAGAGCGAGTCCCAGAAC
ICACGGCTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACCGAGARCGAGTCCCAGAAC

ICACGGCTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACCGAGARCGAGTCCCAGAAC
CAIIGGCTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACCGAGABCGAGTCCCAGAAC

CACGGCTCACTGGTGACCTCCTCCPTGGTGCGTGAAACCACCGABABCGAGTCCCAGAAC
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703
703
454
703
703
703
703
703
703
700
703
703
703
703
532
454
700
532
700
532
700
700
703
532
700
706
706
706
706
532
532
532
700
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703
532
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721
703
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763
763

CACGGCTCRCTGGTGACCTCCTCCYTGGTGCGTGAAACCACCGAAAGCGAGTCCCAGAAC
CACGGCTCACTGGTGACCTCCTCCTTGGTGCGTGAAACCACCGAAAGCGAGTCCCAGAAC
CACGGCTCECTGGTGACCTCCTCCTTGGTGCGTGAAACCACCGAAAGCGAGTCCCAGAAC
CACGGCTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACCGAGABCGAGTCCCAGAAC
CACGGCTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACCGAGAGCGAGTCCCAGAAC
CACGGYTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACCGAGAGCGAGTCCCAGAAC
CACGGTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACHGAGAGCGAGTCCCAGAAC
CACGGCTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACCGAGABCGAGTCCCAGAAC
CACGGCTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACCGAGAGCGAGTCCCAGAAC
CACGGCTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACCGAGAGCGAGTCCCAGAAC
CACGGCTCCCTGGTGACCTCCTCCCTGGTGCGTGAAACCACCGAGABCGAGTCCCAGAAC

GT®CGTGAGAC]
GT®CGTGAGAC
eCeeppericie
TLPCGTGAGAC]
TLPCGTGAGAC]
TLHCGTGAGAC]
ICTGGTACGTGAGAC
CTRUGTACGTGAGAC
CTRGTACGTGABGAC

e
Ard
Ard
e
BrC
BrC
J&rc
CCTC
CCTC

GGITCCCTEGT
cagccliregeTieT
colhrcpicTheT
CACGGINXECTGGT
CACGGYTCRCTHGT

GG TACAAGTTCGGICAAGAMGAAGAGACCTAJAACATCGTEGCTGCCACGGTTAC

TACGGYTACAAGT TCGGYCAAGAAGAAGAGACCTACAACATCGTIIGCEGCH

TALIGG TACAAGT TIGGYCAAGAAGAAGAGACCTACAACATCGTGGCTGCECACGGTTAC
GGRTAC]
GGATAC
GGATAC

GGUIT. GTT] GGTCAAGAAGAAGAGACCTACAACATCGTAGCTGCAC

GGUIT. GTT] GGTCAAGAAGAAGAGACCTACAACATCGTAGCTGCAC

GGUTACAARTTCGGICAAGAGGAAGAGACIITACAAIATIIGTGCEGCIC

GGTTACAAGTTCGGECAAGAAGAAGAGACTTACAACATTGTTGCTGCTC
T]

GGYT GTTYGGYCAAGAAGAAGAGACCTACAACATCGTAGCTGCRC
T]
T]

GGUTACAAGTTCGGYCAAGAAGAAGAGACHTACAACATIGTIIGCTGCIC

GGUTACAABTTIGGICAAGAAGAAGAGACETACAACATCGTOGCAGCECACGGETAC

GG TACAAGTTCGGRCAAGAAGAAGAGACRTAIPJAACATCGTIGCTGCRACALIIGGRTAC
NCAAGAAGAAGAAACaT‘T"CATTGTTGCTGCﬂ QHGGATAC

A
**x X *hx Kk Kk Kk Kk KAxIxAA KAk Kk khk kk khk kkhk kkhk kkhk khk Kk

TCGGTCGCCTGATCTTCCAATACGCCTCCTTCAACAACAGCCGTAGCCTYCACTTCTTC
[TTCGGTCGCCTGATCTTCCAATACGCCTCCTTCAACAACAGCCGTAGCCTYCACTTCTTC
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virus

V31
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V4

P_SSM2

P-SSM4

514
763
763
763
763
763
763
760
763
763
763
763
592
514
760
592
760
592
760
760
763
592
760
766
766
766
766
592
592
592
760
763
763
592
766
781
763
781

823
823
574
823
823
823
823
823
823
820
823
823
823
823
652
574
820
652
820
652
820
820
823
652
820
826
826
826
826
652
652
652
820
823
823
652
826
841

[TTCGGTCGCCTGATCTTCCAATACGCCTCCTTCAACAACAGCCGTAGCCTYCACTTCTTC
[TTCGGTCGCCTGATCTTCCAATACGCCTCCTTCAACAACAGCCGTAGCCT@®CACTTCTTC

TTCGGTCGCCTGATCTTCCAATACGCCTCETTCAACAACAGCCG
[TTCGGTCGCCTGATCTTCCAATACGCCTCgTTCAACAACAGCCG
[TTCGGTCGCCTGATCTTCCAATACGCCTCCTTCAACAACAGCCG
[TTCGGTCGCCTGATCTTCCAATACGCCTCCTTCAACAACAGCCG
TTCGGTCGCCTGATCTTCCAATACGCHTCCTTCAACAACAGCCG
[TTCGGTCGCCTGATCTTCCAATACGCCTCETTCAACAACAGCCG
TTCGGTCGCCTGATCTTCCAATACGCCTCETTCAACAACAGCCG
TTCGGTCGCCTGATCTTCCAATACGCCTCgTTCAACAACAGCCG
[TTCGGTCGCCTGATCTTCCAATACGCCTCCTTCAACAACAGCCG

TTCGGTCGCCTGATCTTCCAGTACGCATCCTTCAACAAC

TTcGGTceicTGATITTCCAGTAﬁGcﬁTCITTﬁAAC

TTCGGTCGCCTGATCTTCCAATACGCﬂTCCTTCAACAAC
CTGATCTTCCABTALIGCATCETTCAACAAC
CTGATCTTCCAGTAYGCATCRTTCAACAAC
CTGATCTTCCAGTAYGCATCRTTCAACAAC
TGATJTTCCAATARGCATCHITTCAACAAG
TGATYTTCCAATANGCATCITTCAACAAC
TGATLTTCCAATA| GCETCTTTCAACAAC

CTIATCTTCCAGTACGCCIECTTCAACAATJAGYCGEAGYCTECAFTTCTTC

CTGATCTTCCAAT

CTGATCTTCCAAT

CTHQTITTCCAATATGCTTCTTTHAACAAHAGCCG
TCTTCCAGTAYGCATCE

CTGGCTGCCTGGCCTGTTGTCGG]
CTGGCTGCCTGGCCTGTTGTCGG]

CTGGCTGCCTGGCCO®GTTGTCGGCATCTGGTTCACCGCCCT]
CTGGCTGCCTGGCC®GTTGTCGGCATCTGGTTCACCGCCCT]

CTGGCTGCCTGGCCTGTEGTPYGGCATCTGGTTCACCGCCCT]

CTGGCTGCCTGGCCTGTEGTCGGCATCTGGTTCAC]

CTGGCTGCCTGGCCTGTEGTPYGGCATCTGGTTCACC
CTGGCTGCCTGGCCTGTEGTIYGGCATCTGGTTCACC
CTGGCTGCCTGGCCTGTEGTCGGCATCTGGTTCACC
CTGGEEGCCTGGCCTGTTGTCGGCATCTGGTTCAC
CTGGETGCCTGGCCTGTTGTCGGCATCTGGTTCAC
CTGGE®GCCTGGCCTGTTGTCGGCATCTGGTTCAC
CTGGCIEGCCTGGCCEGTEATCGGCATCTGGTTCECC
CTTGCTGCMTGGCCTGTTGTTGG“ATCTGGTTCACCGCICTGGG
CTCGCTGCﬁTGGCCﬂGTﬁGTGGG‘A

CTeGCAGC

CTGGCTGCCTGGCCTGTEGTYGGCATCTGGTTCACC
T]
T]

crecccclreaceTer]
creccllecirecccTer,

CTUGCTGCCTGGCCTGTTGTYGGCATCTGGTT]
CTUGCTGCCTGGCCTGTTGTYGGCATCTGGTT]

CTGGCTGCPTGGCCTGTEGTUGGCATCTGGTTCACYGCECTAGGCGT
CTTGCTGCTTGGCCTGTTGTCGGHQTCTGGTT GCPYGCCCTGGGCGTATCYACEATGGCE

CTUGCTGCYTGGCCTGTTGTCGG]

CTeGCINICATGGCCTGTTATCHGHET

CGTLLSECT!
CGTTCGCTACACTT

TTCAACAACAGCIRGA

CTGGCTGCCTGGCCTGTTGTCGGCATCTGGTTCACCGCCCTOGGCGTETCACCATGGCC
CTGGCTGCCTGGCCTGTTGTCGGCATCTGETTCACCGCCCTRGGCGTBTCHACCATGGCC
CTGGCTGCCTGGCCTGTTGTCGGCATCTGGTTCACCGCCCTINGGCGTETCHACCATGGCE
CTGGCTGCCTGGCCTGTTGTCGGATCTGGTTCACCGCCCTEGGCGTETCHACCATGGCE
TCTGGTTCACCGCCCTGGGCGTETCAACCATGGCC
TCTGGTTCACCGCCCTGGGCGTETCHACCATGGCS
CTGGCTGCCTGGCCEGTTGTCGGCATCTGGTTCACCGCCCTPGGCGTETCMACCATGGCC
necceTerchACCATGGCC

pecceTerchaccATaaCC
CTGGGTGCCTGGCCCGTTATCGGCATCTGGTTEACEICCHTGGGCATITCAACCATGGCC
CTGGCTGCCTGGCCTGTEGTPGCCATCTGGTTCACCGCCCTRGGCGTE
u LGGCGTE
CTGGCTGCCTGGCCTGTEGTCGGCATCTGGTTCACPGCCCTGGGCGTWAE
LGCCCTGGGCGTioele
CTGGCTGCCTGGCCEGTTGTCGGCATCTGGTTCACCGCCCTIIGGCGTETCY
CCRTGGGCATIECE
ccrecccATYECE
ccBreeccATIReCE
cclreccchTeNas
cclrecechAToNee
clTeGeCATNSEACCATGGCC
ccBreeecGTETCHACCATGGCC

CCETGG%

TCTGGTTPACCGCCCTEGGCCTENES
\TGGCCTGTTGTCGGYATCTGGTTCACPGCACTYGGYG TRLe
CTGGCAGCATGGCCTGTCGTTGG TCTGGTTCACHUGCHYCTEGGHGTLatee:
OGTHUGGYATCTGGTTCACHGCYCTEGGHG TEa¢e
OGTUGGUATCTGGTTCACHGCYCTEGGHG Tase
CTUGCTGCCTGGCCTGTTGTYGGCATCTGGTTYACUGCUCTUGCUGTATCIAACCATGGCE
CTGCTCTTGGTGTATCﬂACCATGGCG

TCTGGTTYGCYGCCCTGGGCGTATCYACEATGGCE
CTTGCTACTTGGCCTGTEGTCGGCAT“TGGTT o TeloTIOITEETENTAGT

A TGGTTAACCHCLA T GGG
CTCGCTGT‘TTCCCTGTMGTCTGTGTATGGTTAACCTCT‘TGGGT‘TC ENACRATGGCA

CACTTYTTC]

UTTC
GTCTﬂCACTTCTTC
AGIRJTACACTTCTTC

ATCATTCAACAACTCTCGTTCATTﬂCACTTCTTC

(E[®ACEATGGCC
(E[®ACEATGGCC
CCATGGCC
CCATGGCC
CCATGGC(
CCATGGCE
CCATGGCE
CCATGGCE
CCATGGCC
CCATGGCC

GTEELLE
GTGTCe

GETICTEe

AUCUGC
T|
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RS9920
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BAC81F06med
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S BM4

S-RSM28

S-WHM1
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virus

V31

clone

BAC9D04

823
841

883
883
634
883
883
883
883
883
883
880
883
883
883
883
712
634
880
712
880
712
880
880
883
712
880
886
886
886
886
712
712
712
880
883
883
712
886
901
883
901

943
943
694
943
943
943
943
943
943
940
943
943
943
943
772
694
940
772
940
772
940
940
943
772
940
946
946
946
946
769
769
769
940

CTYGC TACYTI®CCEG TEG TRGGCATIT GG TIACCHCCINTGGGIIATIE TERACHATGGCY
**'* ----- *--**-**--*--*--*-***_*__*--*-_*_*___*___ *___*__*'

TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGEGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGYGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGEGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGEGTCCTG
TTCAACCTGAAJJGGCTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGEGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGEGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGEGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGYGTCETH
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTEGATESECAGGGCGYGTECTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTEGATIKE8CAGGGLCGYGTECTG
TTCAACCTGAACGGTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGGTCCTG
TTCAACCTGAACGGTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGEGTCCTG
TTCAACCTGAACGGHTTCAACTTCAACCAGTCCATCCTYGATGGTCAGGGCCGEGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTEGATGECAGGGCIAEGTHETS
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTEGATGRECAGGGCIIAEGTHET®
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTEGATGRECAGGGCIAEGTHETS
TTCAACCTGAACGGIITTCAACTTCAACCABTCEETIICTEGATGEECAGGGCCGEGTENTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTEGATAGTCAGGGCCGGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCEATCCTEGATAGTCAGGGCCGGTCCTG
TTCAACCTGAACGGCTTCAACTTCAACCAGTCCATCCTYGATGGICAGGGCCGYGTIETG
TTCAACETEAAIGGCTTCAACTTCAAJCAGTCEATCCTSG CAGGGCCECTIATS
TTCAACCEGAACGGTTCAACTTCAACCAGTCIATCCTYGATGGRCABGGRCGYGTCCTS
TTCAACCT@AACGGH TTCAACTTCAAECAATCCATWTGATGGTCAAGGCGGTCTG
TTCAACCTGAACGGTTCAACTTCAACCAGTCCATCIITIEGATGGTCAGGGCIAIGTCCTG
TTCAACCTGAACGGYTTCAACTTCAACCAGTCCATCATGATAGTCAGGGCIAGTCCTG
TTCAACCTGAACGGYTTCAACTTCAACCAGTCCATCATGATAGTCAGGGCIAGTCCTG
TTCAACCTGAACGGTTTCAACTTCAACCAGTCCATCATGGATAGTCAGGGCA AGTCCTG

TTCAACYTG GGYTTCAACTTPAACCAGTCRATIE TRENSAWACGGLCACG THATE
TTCAACYTG GG TTCAACTT] CCAGTCAATTGT———ACAC‘ GGYCACGT(EIAT(®
TTCAACYTG GG TTCAACTT] CCAGTCEATTGT———ACAC‘ GGYCACGT(EIAT(®
[TTCAACCT] GGYTTHAACTTCAACCABTCCATIIE TIGAAGGTCAAGGLAAAG TIATI
[TTCAACCT] GG TTCAACTTCAACCAGTCCATKE TAYN® TIK® TEAAGGHCGUGTRCTS
[TTCAACCT] GGETTCAACTTCAACCAGTCCATTGT‘TCTTCTG"GGTCGTGTACTC
TTHAALICTG GGCTTIAACTTCAACCAGTCEATCI e TACREANGGYCAECTEE T
[TTCAACCT] GGTTCAACTTCAACCARTCAG TIEE TIGATGEICAGGIAACG TS L

Al
TTCAACCTT"CGGATTCAACTTCAACCAATCAGTTGT‘GATGC‘“CGG“‘G‘T TA
TTCAACCTT;‘TGGTTTT"CTTT"CCAGTCAGT‘GTTGATGTC"CGG“;G‘T“TC
**'**----**-**-**-*****-**-**_**__*__* _________ **--- -* *
AACACCTGGGCIIGAIIGTGCTGAACCGHGCO®GGCCTCGGCATGGAAGTGATGCACGAGCGC
AACACCTGGGCHUGAUGTGCTGAACCGHGC®GGCCTCGGCATGGAAGTGATGCACGAGCGC
AACACCTGGGCHUGAUIGTGCTGAACCGUGCIEGGCC T ettt ettt ettt
AACACCTGGGCEGACGTGYTGAACCGHUGCOGGCCTCGGCATGGAAGTGATGCACGAGCGC
AACACCTGGGCEGACGTGYTGAACCGHUGCO®GGCCTCGGCATGGAAGTGATGCACGAGCGC
AACACCTGGGCEGACGTGYTGAACCGHUGCO®GGCCTCGGCATGGAAGTGATGCACGAGCGC
AACACCTGGGC®GACGTGHUTGAACCGHUGCIGGCCTCGGCATGGAAGT®ATGCACGAGCGC
"CACCTGGGCCGACGTGTTGAACCGTGCAGGCCTCGGCATGGAAGT TGCACGAGCGC
"CACCTGGGCCGACGTGTTGAACCGTGCAGGCCTCGGCATGGAAGT TGCACGAGCGC
‘GﬁACITGGGCCGACGTGTTGAACCGTGCAGGCCTCGGCATGGAAGT TGCACGAGCGC
"CACCTGGGCTGACATECTEQQCCGTGCCGGCCTCGGCATGGAAGTGATGCACGAGCGC
AACACCTGGGCHUGACATE®CTE®AACCGUGCO®GGCCTCGGCATGGAAGTGATGCACGAGCGC
AACACCTGGGCIGALIGTGCTGAACCGEGCO®AACCTCGGCATGGAAGTGATGCACGAGCGC
AACACCTGGGCIGALIGTGCTGAACCGEGCO®AACCTCGGCATGGAAGTGATGCACGAGCGH
AACACCTGGGCYGAIGTGCTGAACCGEGCOAACCTEGGCATGGAAGTGATGCACGAGCGC]
(M8 CACCTGGGCYGACGTGTGAACCGEGCAAC C T C ettt
[6CACCTGGGCHYGACGTGHTGAACCGOGC®AACCTCGGCATGGAAGTGATGCACGAGCGC
[S8CACCTGGGCHUGACGTGYTGAACCGEGCMAACCTCGGCATGGAAGTGATGCACGAACGC
AACACCTGGGCHUGAUGTGCTGAACCGOGC®AACCTCGGCATGGAAGTGATGCACGAGCG]
AACACCTGGGCGAYGTGCTGAACCGEGCEAACCTCGGCATGGAAGTGEAGCALIGAGCGC]
AACACCTGGGCIGAIIGTGCTGAACCGEOGCOAACCTCGGCATGGAAGTG®AGCACGAGCGC
AACACCTGGGCOGACATGETGAACCGGCOGGCCTCGGCATGGAAGTGATGCACGAGCGC]
ABCACCTGGGCEGAJATGCTEAACCGCESGCRCTIIGGCATEGAAGEGATGCARGABCGC
AACACCTGGGCAGACGTIICT®AACCGEGCLUGGLCTUGGEATGGABG TBRATECACGAARGH
AACACHITGGGCIGACGTGCT®AACCGGCHGGUCTEGGUATGGAAGTAATGCACGAGCG]Y
AACACCTGGGCRGACGTYCTHAACCGUGCUGGUCTEGGUATGGAAGTGATGCACGAGCGC
“CACCTGGGCAG GT®CT®AACCGEGCHUGGUCTUGGHUATGGAAGTIATGCALIGAGCGY
“CACCTGGGCAG GT®CT®AACCGEGCUGGUCTUGGHUATGGAAGTIATGCALIGAGCGY
“CACCTGGGCAG GT®CT®AACCGEGCHUGGLCTUGGHUATGGAAGTIATGCALIGAGCGY
AACACETGGGCECACATEOCTUAACCCRAGCUGCUCTUGCUATCCAGCT®ATGCACGAACGC
AACACETGGGCEGACAT®CT] CCGAGCTGGTCTTGGT‘TGGAGGTC‘TGCACGAACGC
AACACETGGGCEBGACAT®CT] CCGAGCTGGTCTTGGT‘TGGAGGTC‘TGCACGAAHGT
IAAPACETGGGCEGACET®CTAAACCCAGCHYGGHC TGS TGGAAGTE®ATGCAIGAACGC

213



S-RSM88
S_PM2

va

P_SSM2
P-SSM4
P-SSP7
consensus

cc9605_1789035
cc9605_1988757
RSS9907
WH8102c
wh8102d
WH8102a
cc9902_1532706
€c9902_1329094
cc9902_1325626
cc9902_521111
rcc307_1742955

rcc307_1894193a

rs9917_ 1594270
rs9917_699639
gBAC30A05med
RS9901
rcc307_1894193
RS9920

rs9917 2037312
BAC81F06med
cc9605_1306934
WH8102b

rs9917 2430567
V5

S-RSM2

S _BM4

S-RSM28

S-WHM1

S _WHM1

virus

V31

clone

BAC9D04
S-RSM88

S _PM2

V4

P_Ssm2

P-SSM4

P-SSP7
consensus

cc9605_1789035
cc9605_1988757
RSS9907
WH8102c
wh8102d
WH8102a
cc9902_1532706
€c9902_1329094
cc9902_1325626
cc9902_521111
rcc307_1742955

rcc307_1894193a

rs9917_1594270
rs9917_699639
gBAC30A05med
RS9901
rcc307_1894193
RS9920
rs9917_2037312
BAC81F06med
cc9605_1306934
WH8102b
rs9917_2430567
V5

S-RSM2
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S-WHM1

943
943
772
946
961
943
961

1003
1003

1003
1003
1003
1003
1003
1003
1000
1003
1003
1003
1003

832

1000

832
1000

832
1000
1000
1003

832
1000
1006
1006
1006
1006

829

829

829
1000
1003
1003

832
1006
1021
1003
1021

1063
1063

1063
1063
1063
1063
1063
1063
1060
1063
1063
1063
1063

1060

1060

1060
1060
1063

1060
1066
1066
1066

AACACCTGGGCIG

“CACCTGGGCAG
“CACTTGGGCHGACAT CTRAACCGAGCIAACCTYGGYATGGAAGTGATGCACGABAGL
Tl CMGAGCAAACCTTGGT‘TGGAAGTT‘TGCACGAAAG‘

C
UTGCCRIGATGTHCT
T A

** *

ACGCTCACAACTTCCC®CTCGACCTGGCUGCTGCTGAGTCCACHUCCTGTGGCYCT eoates
AACGCTCACAACTTCCC®CTCGACCTGGCUGCTGCTGAGTCCACHCCTGTGGCHCT{eoate

AACGCTCACAACTTCCCRCTCGACCTBGONGCTGCTGAGTCCACACCTGTCGONC TN
AACGCTCACAACTTCCORCTCGACCTBGCRGCTGCTGAGTCCACCCTETGGCC TN
AACGCTCACAACTTCCCMCTCoACCTBGCRGCTGCTaAGTCCACACCTETooCHC THEN
AccrocTeacTccaclh A
AACGCTCACAACTTCCCECTCGACCTBGCHGCTGCRGACECECCCTGTCOCHCTHNE
AACGCTCACAACTTCCCRCTCGACCTBGCHGCTGCRGACECECCCTGTCGOHC TS NE

AACGCTCACAACTTCCCECTCGACCTEGCAACEACTGAGECECECCTGTGGCC T

AACG O A AAC T T C

AACGCTCACAACTTCCCECTCGACCTEGCYGCEGCTGAGTCCACECCEGTGGC]
C

AACGCTCACAACTTCCCECTCGACCTEGCYGCTGCTGAGTCCACY TIGCAG
AACGCTCACAACTTCCCOCTCGACCTGGCIACTGHUTGAGTCCACH TIGCAG
%CAEAACTTCCCCTCG AUICTGGCIAGCECLISCA M| C GICACA

fcCcecACAACTTICCL
AAJIGCTCACAACTTCCCIICTCGACCT®GCYGCTGCTGAGTCCACOCCTGTGGCACT e
"CGCTCACAACTTCCCTCTCGACCTTGCTGCTGCTGAGTCﬂACCCCTGTAGCACTCACC
AACGCACACAACTTCCCYCTCGACCT®GCYGCTGCTGAGTCCACRCCTGTGGCACTWAEY
aceclcacaacTTecccTeeaccTaGegeCTGCTeAGTCCACHCCTGTEoCCTHSS
ACGCCACAACTTCCCCTCGACCTRGCHGCTGCTGAGTCCACHCCTGTERCAC TS

AACGCACACﬁﬁHTTCCC‘ ——————————————————————————————————————————

“CGCACAC [TTCCCA
AAJJIGC®CACAACTTCCC
AACGCI®CACAACTTCCCECTUCACHTECCUGCTGCOCAARNCIRACIRICTCTUCCLRIT EEn)
CT| A GCleaT|
CT| GCleaT|

LUGACCTYGCAGCAGCAGA GCAAC‘CCMGTT GACT

TGACCTTGC”GC”GC”G"GCAACACC”GTT GACT

AATIGOCACAACTTCCCHY
agccllcacAaCTTCCC
“CGCﬁCACAGCTTCCC

AAIIGCIACACAACT TCCCACTHIGACHTAGCIYICTGCTAAMEIXEACIACRVAG THCCUC TR
AATGCECACAACTTCCCACT‘GACCTAGC‘TCTGCTGAGTCT‘C"C‘GTT THPAACT
E&TGCTC‘T"CTTCCCACTTG‘TTTAGCTTCGGCTGAGTC‘AC"‘C‘TT CA
GCIICCTGCE®ATCGGTTGA
GCPCCTGCE®ATCGGTTGA
GIICCTGCE®ATCGGTTGA
GCUICCTGCE®ATCGGTTGA

GCRACCTGCRATCGGTTGA

GCACCTGCAATCGGTTG‘
GCACCTGCAATCGGTTG‘
GCACCTGCAATCGGTTGA

GCUICCTGCE®ATCGGTTGA
GCPCCTGCE®ATCGGTTGA
GCRCCTGCIRATCGGTTAG
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virus
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consensus

WLo[SISMGCLUCCTGCEATCGGTTGA

1060 [¢feT ACEATIGGETAA
1063 ®GCIAATCGGTTGA
1063 CGC”ATCGGTTG‘
1066
1081

1063
1081 ..
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