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Abstract

In this thesis we use techniques associated with the statistical properties of
large stochastic datasets to probe the scaling properties of solar wind timeseries.
In particular, we consider single-point spacecraft measurements of interplanetary
vector quantities such as velocity and magnetic field. These techniques are first
applied to well-known distributions such as the normal distribution in order to
demonstrate the scaling properties associated with different types of timeseries.
For example, a normal distribution can be thought of as the steps of a Brownian
walk and is a fractal process or in other words there is a power-law relation between
stepsize and the length of the walk. This simple behaviour is complicated when
intermittency (similar to large jumps in a random walk) and multifractality are
introduced. We also show other model distributions exhibiting these effects and
the consequences on the statistical analysis results.
These methods are then applied to in situ solar wind observations by monitors
such as the ACE and Ulysses spacecraft. ACE occupies a privileged position at the
Lagrangian point between the Sun and the Earth, whereas Ulysses was the first
spacecraft to explore the Sun’s polar regions. We are thus able to show the scaling
behaviour of velocity and magnetic field fluctuations for a wide range of different
solar wind conditions (such as fast and slow solar wind speeds) and between periods
of maximum and minimum solar activity and to examine both ecliptic and polar
solar wind behaviour. The large datasets available mean we can probe fluctuations
over a wide range of scales from the inertial range to the larger energy containing
scales. We find that the polar inertial range (small-scale) behaviour for fast solar
wind can be summarised for the magnetic field by a single function, which holds
for all components and for different successive solar minima.
We further use ACE measurements to examine the velocity and magnetic field
large-scale fluctuations normal and parallel to the local background magnetic field
and propose that the parallel velocity component carries the signature of coronal
processes convected outwards into the solar wind. The scaling exponents obtained
constrain the models for these processes.
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Chapter 1

Introduction

1.1 Overview of the Thesis

We first introduce the solar wind and its characteristics, together with the space-

craft which gather the data that we subsequently analyse. We further discuss

structures in the solar wind plasma and magnetic field; their presence over a wide

variety of scales - from minutes to days and from 104 to 107 km; and the difficulty

in distinguishing between phenomena such as in situ generated turbulence and

signatures of coronal origin, which have been convected outwards from the Sun

by the expanding solar wind. The different scaling models applied to solar wind

turbulence are also described, as well as the similarities and differences between

magnetohydrodynamic turbulence (MHD) and hydrodynamic turbulence.

We begin in Chapter 2 by describing the statistical methods used and their appli-

cation to the identification of the known scaling properties of model distributions.

This enables us to test the methods and the computational C++ and Matlab codes

developed to extract the scaling information. We then apply these techniques to

single-point spacecraft measurements of solar wind fluctuations in vector quan-

tities such as velocity and magnetic field. This is of particular interest because

there are many different conditions in the solar wind, which can affect the ob-

served scaling. For example, the solar wind has a variable speed depending on

local conditions at its coronal origin and on the overall level of solar activity. Ob-

servations also depend on the position of the spacecraft, which can be located

above the Sun’s poles or in the solar ecliptic plane between the Sun and Earth.

We differentiate between these different conditions and the results of these studies

have been published in Nicol et al. (2008); Chapman et al. (2009a); Nicol et al.

(2009).

We also examine the universality of turbulent fluctuations and finite-size effects

1



CHAPTER 1. INTRODUCTION

in the solar wind, which is a spatially extended system with a finite Reynolds

number.

1.2 The Solar Wind

1.2.1 Introduction

The solar wind is a continuous plasma outflow from the Sun (Parker, 1958) char-

acterised by a wide range of structures and turbulent phenomena on different

spatial and temporal scales. It permeates the heliosphere, which extends beyond

Pluto’s orbit to ∼ 100 AU (1 AU∼ 1.496 × 108 km (p12 Cox, 2000)), a surface

known as the heliopause, which is a shock front between the solar wind and the

weakly ionised interstellar medium. The heliosphere also contains the entirety of

the Sun’s magnetic field.

The existence of the solar wind was hypothesised as early as the 1600s by Ke-

pler. It was observed that comets, whether approaching or moving away from the

Sun, had tails always pointing away from the Sun. Kepler proposed that this was

due to a pressure exerted by sunlight on the dust particles composing these tails.

However, this explanation was unable to account for small variations in the tails’

directions and even kinks. In 1943, Cuno Hoffmeister, and subsequently Ludwig

Biermann, suggested that the Sun was emitting a steady stream of charged par-

ticles, as well as photon radiation, which interacted with the charged ions within

comet tails (see Stern, 1989, for a review and references therein). It was only in

1958 that Eugene Parker formulated a possible mechanism for this outflow.

The model proposed by Parker (1958) assumes a hot corona, whose expansion out

into empty space is only restricted by gravity. As gravity falls off with increasing

radial distance, there comes a critical point where the corona has expanded to a

sufficiently large radius to allow the high energy plasma particles to flow freely

into space. This plasma, or solar wind, would flow at increasingly fast speeds as

it moves further away from the Sun. These predictions were later confirmed by

the Mariner II mission to Venus in 1962 (Neugebauer & Snyder, 1962).

The possible heating mechanisms of the corona, which provide the thermal energy

necessary to drive and accelerate the solar wind, are still the subject of much de-
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bate; see for example Belcher (1971); Barnes (1992); Priest et al. (2000); Ofman

(2005). The solar wind constitutes then a collisionless plasma (ρ ∼ 3 cm−3, where

ρ is the total heavy particle number density, i.e. electron, ion and proton, in in-

terplanetary space as opposed to ∼ 1× 108 cm−3 in the corona (Cox, 2000, p50))

in which locally generated and radially convected turbulent phenomena can be

observed.

In general we distinguish three types of solar wind, with different coronal origins

and characteristics. First, there is the fast solar wind, which originates deep inside

open magnetic field regions or coronal holes (dark regions in UV images of the Sun,

where the plasma is slightly colder than in surrounding regions) (Krieger et al.,

1973). Phillips et al. (1994) use observations from the Ulysses mission to show

that the fast solar wind is fairly uniform in speed ∼ 750 km s−1 and density

ρproton ∼ 3 cm−3 (normalised to 1 AU by R2, where R is radial distance from the

Sun). Second we have the slow wind, which is far more variable in speed (be-

tween 250 and 500 km s−1) and much denser than the fast wind (ρproton ∼ 8 − 10

cm−3) (McComas et al., 1998b, 2000). The slow solar wind is associated with

the streamer belt at the Sun’s equator (Gosling et al., 1981; Habbal et al., 1997).

The high spatial and temporal variability of streamers (p3 Benz, 2002), which

are wisp-like streams of particles travelling through the Sun’s corona, is thought

to be linked to the high variability of the slow solar wind. Finally coronal mass

ejections (CMEs) are responsible for a third type of solar wind. Some of the first

CME observations date from the 1970s (MacQueen et al., 1974). They occur when

a coronal structure starts to rise, carrying with it large amounts of coronal mass

and magnetic flux. CMEs reach velocities of ∼ 470 km s−1 (Howard et al., 1985)

and can be tracked as they move through the heliosphere. The interaction of these

different types of wind, combined with the effect of the Sun’s rotation, causes the

appearance of rarefactions and compressions (respectively low and high pressure

regions). The solar wind is also supersonic and superalfvénic. At 1 AU, the sound

speed vS and the Alfvén speed vA are ∼ 30 − 50 km s−1, therefore much smaller

than the solar wind speed.
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1.3 The Solar Magnetic Field

1.3.1 Introduction

On large scales (& 1500 km), the Sun has a complex magnetic field topology

with regions of varying polarity and magnetic field strength (0.02 − 0.4 T) (p365

Cox, 2000). At 1 AU, the ecliptic solar magnetic field has dropped off to ∼
5 nT (p163 Baumjohann & Treumann, 1996). Sunspots are regions of intense,

concentrated magnetic fields (Hale, 1908) of ∼ 0.3 T (p368 Cox, 2000), which

appear as dark spots on the solar surface. Observations of sunspots date as far

back as 2000 years by Chinese astronomers (∼ 165 B.C., Stephenson (1990))

and they are an important indication of the level of the Sun’s magnetic activity

(p36 Lang, 2000). Sunspots are observed to travel in pairs of opposite polarity

(Hale et al., 1919) joined by magnetic loops (magnetic flux tubes), which rise

up through the photosphere into the corona. Because of its enhanced magnetic

field, the region around a bipolar sunspot group is known as an active region and

is also characterised by intense X-ray emission (Reidy et al., 1968; Vaiana et al.,

1973). Violent and unpredictable solar phenomena such as solar flares (the first

observation of a solar flare was by Carrington (1859) and R. Hodgson), which are

brief and powerful energy bursts powered by magnetic energy stored in the upper

corona (p156 Lang, 2000), are also known to occur in active regions.

1.3.2 The Solar Cycle

Observations of solar magnetic activity show both temporal and spatial evolution

characterised by a period known as the solar cycle. Measurements of sunspot num-

bers by S. H. Schwabe over 17 years from 1826 (Stern, 1989), showed a periodic

variation in the average number of sunspots seen on the solar surface over suc-

cessive years. These results and others were then compiled by Rudolf Wolf, who

managed to reconstruct the cycles to 1755 and thus establish the mean length of

the solar cycle as ∼ 11 years (Meadows, 1970). However, individual solar cycles

have been observed to have lengths ranging from 9 to 14 years. 1755 − 1766 is

known as solar cycle 1 and we are currently approaching the end of cycle 23 (year

2009).
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The start of a solar cycle is characterised by sunspots appearing in belts of ac-

tivity at middle solar latitudes ∼ 30°. The number of sunspots increases and the

belts move towards the equator as the cycle progresses (Carrington, 1858). By

the time the number of sunspots reaches a maximum, the solar magnetic field is

highly disorganised, with numerous regions of opposite magnetic polarity. Before

reaching the equator, the sunspots slowly start to disappear and the solar mag-

netic field evolves to a simple North-South orientated dipole-like configuration

(Babcock, 1961). The Sun therefore goes from periods of maximum solar activity

to minimum activity every 4 to 7 years. The sunspot behaviour is summarised

in a plot known as a butterfly diagram, shown in Figure 1-1. The Sun is divided

into equal area latitude strips and the butterfly plot shows the average percentage

of solar surface area occupied by sunspots over individual solar rotations for each

strip. The characteristic butterfly shape arises from the initial appearance of the

sunspots at higher latitudes before they converge to the equator. A regular update

of this plot is kept by the Solar Physics Group at NASA’s Marshall Space Flight

Center.

Figure 1-1: These plots show the evolution of the percentage of solar surface area
occupied by sunspots as a function of equal area solar latitude strips and time
(plot courtesy of NASA online resources, NASA (2009))
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1.3.3 The Magnetic Solar Cycle

The Sun also has a magnetic solar cycle, which is approximately twice the sunspot

cycle, known as the 22 year Hale cycle after George Ellery Hale (1868 − 1938),

whose observations on the polarity of sunspots led to its identification. The mag-

netic polarity of the Sun reverses every solar cycle, meaning the magnetic poles

return to the same polarity after two solar cycles. During periods of minimum

solar activity, the field is observed to be dipolar with the magnetic dipole axis

approximately aligned with the solar rotation axis. A more complex structure is

seen at lower latitudes and the equator due to the tilt and warps of the helio-

spheric current sheet (HCS) (e.g. McComas et al., 2000). The HCS arises from

the neutral line at the source solar surface, which divides regions of opposite ra-

dial magnetic field polarity (i.e. North and South) (Hoeksema, 1995). This line is

swept outwards by the expanding solar wind to form the three dimensional HCS.

The twist of the magnetic field lines due to the Sun’s rotation causes the HCS to

be likened to a ballerina’s skirt or a gardener’s sprinkler (Figure 1-2).

Figure 1-2: Artist’s impression of the heliospheric current sheet, which results from
the influence of the Sun’s rotating magnetic field on the outwardly expanding solar
wind. The three dimensional spiral shape has been likened to a ballerina’s skirt
(Image credit: NASA artist Werner Heil).

Large polar coronal holes are sources of fast uniform solar wind (∼ 750 km s−1),

carried out on the open magnetic field lines. Slower, denser and more variable solar

wind is present at lower latitudes (< 40° heliospheric latitude). During times of
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maximum solar activity, the magnetic field configuration is far more complex, with

a mixture of different flows from active regions, streamers, mid-latitude coronal

holes and coronal mass ejections. The dipole configuration is roughly conserved,

however the magnetic dipole axis is now approximately normal to the solar rotation

axis as it rotates round from pole to pole. All these observations are results from

the pioneering Ulysses mission, which was the first spacecraft to leave the solar

equatorial plane and explore the Sun’s poles. Figure 1-3 was first published on the

cover of Geophysical Research Letters, volume 1 in 1998 (McComas et al., 1998a),

and shows the change in solar wind velocity and magnetic field polarity though

a complete solar latitude scan by Ulysses over 1994 − 1995, during the first solar

minimum of cycle 23.

Figure 1-3: Solar wind speed and magnetic polarity measured by Ulysses, as a
function of heliolatitude, overlaid with three concentric images taken with the
NASA/GSFC EIT instrument (centre), the HAO Mauna Loa coronagraph (inner
ring), and the NRL LASCO C2 coronagraph (outer ring). Each 1-hour averaged
speed measurement has been color coded to indicate the orientation of the ob-
served interplanetary magnetic field: red for outward pointing and blue for inward
(McComas et al., 1998a).

However the mechanisms of the solar magnetic field’s origin are still largely un-

known, although it is thought the solar dynamo (for a recent review, see Charbonneau,
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2005, and references therein) is at least partially responsible.

1.3.4 The Magnetic Carpet

On smaller spatio-temporal scales (∼ 200− 300 km (p365 Cox, 2000)), the photo-

spheric magnetic field forms highly structured areas of magnetic and non-magnetic

regions. It is also a dynamic field, threaded by the emerging magnetic flux tubes,

whose interaction with the magnetic field already present produces bright points

on the solar surface. The magnetic regions are observed to have a granulation

different to that of the non-magnetic regions; the granules and lanes between then

appearing much smaller (Tarbell et al., 1990). The cellular structures formed by

these regions occur on a variety of different scales and do not appear to have a

characteristic length scale. A fractal approach is used to model the distribution

of these fields.

A fractal (Mandelbrot, 1982) can be loosely thought of as an object, whose struc-

ture looks the same at all levels of magnification. In other words, it displays

the property of self-similarity. Mandelbrot strictly defines a fractal as a set for

which the Hausdorff Besicovitch dimension strictly exceeds the topological dimen-

sion (p15 Mandelbrot, 1982). The topological dimension dT is always an integer

unlike the Hausdorff Besicovitch dimension or fractal dimension df . The fractal

(capacity) dimension df of the “mass” M of an object measured within a sphere

of radius R (Sornette, 2004, p27) embedded in a space of d dimensions with a

resolution ǫ is

M ∝ ǫd

(

R

ǫ

)df

(1-1)

This reflects the fact that as the resolution increases (i.e ǫ → 0), the “observable

mass” of a fixed object of macroscopic size R will decrease, i.e. the fractal object

becomes more tenuous. In a Euclidean span ℜd, we have 0 ≤ dT , df ≤ d and

the two dimensions also satisfy the Szpilrajn inequality df ≥ dT (p15 Mandelbrot,

1982). Physically, we can think of dT as the well known spatial dimensions. In

other words, it is the number of independent directions for a point moving in a

space of dimension d. For well behaved systems, equation 1-1 can be more simply
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expressed as the scaling of the number of elements N → M
ǫd at scale l → ǫ

R
with l

N(l) ∝ l−df (1-2)

For the magnetic carpet, df is obtained from the scaling of the area A(L) of solar

plages (areas of emerging or reconnecting magnetic field lines) with lengthscale L

via the relationship A(L) ∼ Ldf (Schrijver et al., 1992). The magnetic carpet frac-

tal dimension was estimated to be ∼ 1.45− 1.60 by Schrijver et al. (1992). Power

law distributions and fractal behaviour are further observed for solar and stellar

flare parameters such as temperature, volume and duration (Aschwanden et al.,

2008) for example.

1.3.5 Parker Spiral

The solar magnetic field is carried out with the solar wind, and the magnetic field

lines remain anchored in the solar surface, which is an excellent conductor. For

ideal magnetohydrodynamics (low resistivity), the frozen-flux condition means

that the charged particles leaving the solar surface convect with the field lines,

or equivalently the particles “drag” the field lines. If we start from Maxwell’s

differential equations for Faraday’s law of induction and Ampère circuital law

(ignoring the displacement current) (p7 Lang, 1999)

∇ × E = −∂B

∂t
(Faraday) (1-3)

∇ × B = µ0J (Circuital law) (1-4)

here E is the electric field, B is the magnetic field, J is the current density and

µ0 = 4π · 10−7 N A−2 is the permeability of free space. The electic field E can

also be expressed as

E = −υ × B + J/σ (1-5)

here υ is the flow velocity and σ is the electrical conductivity. Combining these

definitions we obtain the induction equation for the magnetic field

∂B

∂t
= ∇ × (υ × B) +

1

µ0σ
∇2B (1-6)

The first term on the right-hand side of equation 1-6 represents convection, while

the second term represents diffusion. In the perfectly conducting limit, the induc-
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tion equation reduces to:
∂B

∂t
= ∇ × (υ × B) (1-7)

This holds when the diffusion of the magnetic field through the plasma is negligible

next to the transport of the field along the plasma. This condition is met in solar

system plasmas, because of the low collisionality and large spatial scales involved.

Due to the Sun’s rotation, the field lines then adopt an Archimedean spiral pattern,

show in Figure 1-4.

Figure 1-4: The frozen-in field lines result in the Parker spiral interplanetary
magnetic field lines geometry. The position of a fluid element is shown as it leaves
the Sun’s surface and then at a later time, during which the Sun has rotated. The
field line’s origin is frozen in at the Sun, giving rise to a spiral shape.

This result was first derived by Parker (1958), who assumed a steady state

expansion of the solar wind into interplanetary space. If we adopt a reference

frame co-rotating with the Sun at angular frequency Ω and assume a purely radial

flow (passive magnetic field), the velocity of a fluid particle leaving the Sun is given

by (p193 Priest, 1985)

v = ur̂ − Ωrθ̂ (1-8)

where r̂ and θ̂ correspond to spherical coordinates and r is the radial distance

from the solar surface. The frozen-flux assumption means that the flow and the

field lines are parallel to each other, i.e. v × B = 0. This means that the field

components are in the ratio

Bθ

Br

= −uθ

vr

= − u

Ωr
(1-9)
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From Maxwell’s equations, ∇ · B = 0 or equivalently the magnetic flux though a

closed surface is zero, so that Br ∝ 1/r2. If we further assume u to be constant,

which is a reasonable approximation throughout most of the heliosphere, we then

obtain the magnetic field lines following their characteristic spiral shape. At 1

AU, the tangential and radial velocity components are comparable in magnitude.

To summarise, solar wind elements, which originate from the same place on the

solar surface, are connected by spiral magnetic field lines.

1.3.6 Structures and Scaling in the Solar Wind

The solar wind carries signatures of coronal dynamics as well as locally generated

turbulent phenomena, which span a broad range of scales. Generalizing somewhat,

the solar wind spectral power density is observed to scale approximately as f−1

(Ruzmaikin et al., 1995a; Goldstein et al., 1995b) at lower frequencies (≤ 1 mHz);

and as f−5/3 (Ruzmaikin et al., 1993; Horbury et al., 1995a), reminiscent of the

inertial range of Kolmogorov (1991a), at higher frequencies (∼ 10 mHz-100 mHz).

The frequency at which the transition occurs (∼ 1 mHz-10 mHz) between these two

power laws is observed to decline with increasing distance from the sun in the plane

of the ecliptic (see Feynman et al., 1995; Horbury et al., 1996a). This extension of

the f−5/3 range to lower frequencies at greater distances can be interpreted as evi-

dence for an active turbulent cascade (Goldstein et al., 1995b; Horbury & Balogh,

1997) that evolves a growing inertial range as time passes in the outward propagat-

ing plasma. The f−1 component is taken to reflect embedded coronal turbulence,

convected with the solar wind plasma (Matthaeus & Goldstein, 1986). It is ubiq-

uitous in the solar wind and is seen at all latitudes and radial distances. It is not

yet certain whether, in addition, this coronal turbulence acts as the low frequency

large-scale driver of the inertial range turbulence. The f−5/3 fluctuations are often

predominantly shear Alfvénic in character, that is incompressible and displaying

correlation or anticorrelation between perturbations of the magnetic field and of

fluid velocity (Smith et al., 1995). Figure 1-5 is taken from (Bruno & Carbone,

2005) and shows the power density spectra of magnetic field fluctuations observed

by Helios 2 between 0.3 and 1 AU.
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Figure 1-5: From (Bruno & Carbone, 2005), the power density spectra of magnetic
field fluctuations observed by Helios 2 between 0.3 and 1 AU during its first mission
to the Sun in 1976. The spectral break (blue dot) shown by each spectrum, moves
to lower frequencies as the heliocentric distance increases.

The first observations initiated a debate as to whether the fluctuations are of

solar coronal origin, simply passively advecting with the flow, or whether they are

dominated by locally evolving turbulence (Goldstein, 2001). The inertial range

fluctuations, and the crossover to f−1 behaviour, show secular variation with he-

liocentric distance (Horbury et al., 1996a). This is consistent with evolving, rather

than fully evolved, turbulence. Helios data, in conjunction with Ulysses, has been

used by Goldstein et al. (1995a), to show that the f−1 region contains scales,

which are too large to be produced in situ and are progressively eaten away by

the smaller scale turbulence, which must therefore be active. The large scale mag-

netic structure of the corona also varies with both heliospheric latitude and solar

cycle, and this is clearly manifested in the coherent structures and variation of

wind speed that are observed (Phillips et al., 1995). A key question, and the fo-
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cus of this thesis, is the interplay between the large scale coronal driver and the

evolving inertial range turbulence. This is studied by examining their dynamics

over a wide range of scales.

1.4 Turbulence in the Solar Wind

The solar wind is a low-density ionised gas dominated by collective effects. In-

sofar as turbulent and non-linear phenomena occur in the solar wind similarly to

turbulence in hydrodynamic flows in the limit of infinite Reynolds number; we an-

ticipate that the methods and equations used in hydrodynamics can be extended

to magnetohydrodynamics. The motion of an unmagnetised nonconducting fluid

is governed by the Navier-Stokes equations, and turbulence arises from the non-

linear terms contained in these equations. For an incompressible fluid, these have

the form (p1 Frisch, 1995)

∂υ

∂t
+ υ · ∇υ = −∇p + ν∇2υ, (1-10)

∇ · υ = 0 (1-11)

where υ is velocity, p is pressure and ν is kinematic viscosity.

The equations are then supplemented with initial and boundary conditions, which

arise from the nature of the problem considered. In (1-10), if we take U and L

to be respectively a characteristic velocity and length scale of the the flow, we

can form a control parameter known as the Reynolds number, RE (p31 Acheson,

1990).

inertia term : |(υ · ∇)υ| = O(U2/L)

viscous term : |ν∇2υ| = O(νU/L2)

RE =
|inertia term|
|viscous term| = O

U2/L

νU/L2
=

UL

ν
(1-12)

From this definition, it is easy to see that a high Reynolds number implies either

a low viscosity of the fluid or that L/ν → ∞ (e.g. Chapman et al., 2009b), i.e. L

is very large. In the second case, an extended inertial range would be observed

with many excited modes. Phenomenological studies of the flow past a cylinder

(p3-11 Frisch, 1995), also show that as the Reynolds number is slowly increased,
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symmetry breaking and instabilities arise in the fluid, leading to fully developed

turbulence at very high Reynolds numbers. The formation of eddies in the fluid

on a wide variety of different spatial scales is observed, which implies the presence

of some form of statistical self-similarity or scale-invariance.

The analogous control parameter in plasma turbulence is the magnetic Reynolds

number Rm = 4πUL/η (p212 Lang, 1999), where U is again a typical velocity, L

is a typical length scale and η is the electric resistivity. For Rm > 1, transport

dominates over diffusion, i.e. the magnetic lines of force move with the fluid. A

method of estimating the effective magnetic Reynolds number in solar wind flows

at ∼ 1 AU using the Cluster spacecraft is detailed in (Matthaeus et al., 2005).

Matthaeus et al. (2005) use the fact that the Rm can also be expressed as a ratio

of the outerscale of the turbulence L0 to the Taylor microscale LT (p61 Frisch,

1995) by Rm = (L0/LT )2 (p107 Frisch, 1995), they find Rm = 2.3 × 105.

The simplest set of equations to describe the solar wind are given by incompressible

magnetohydrodynamics (MHD). This assumption is often justified by observations

of a high (anti)correlation between magnetic and velocity fields, which indicates

the presence of shear Alfvén waves. The incompressible MHD equations are given

below (see for example Biskamp (chap.2 1993)) and are similar to equations 1-10

and 1-11, however with the added complication of a background magnetic field,

introducing anisotropy:

∂ρ

∂t
+ ∇ · ρυ = 0 (continuity) (1-13)

ρ

[

∂υ

∂t
+ (υ · ∇)υ

]

= −∇p − 1

µ0
B × (∇ × B) (momentum) (1-14)

∂B

∂t
= ∇ × (υ × B) (induction) (1-15)

∇ · υ = 0 (incompressibility) (1-16)

Here B is the magnetic field, p is the thermodynamic (or kinetic) pressure and µ0

is the permeability of free space.

A qualitative picture of solar wind turbulence is given by Richardson’s energy cas-

cade model (1922), a nonlinear transfer of energies via smaller and smaller scale

eddies from the energy injection-scale, l0, to the viscous dissipation scale, lvis,

which is known as the inertial range. Sahraoui et al. (2009) use Cluster data to

show that the dissipation range has two breakpoints at 0.4 and 35 Hz, which cor-
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respond respectively to the Doppler-shifted proton and electron gyroscales. This

picture is further complicated by the anisotropic (background B) and intermit-

tent (i.e. non-space filling) nature of the solar wind. Various models attempt to

describe the global statistical behaviour of turbulence and have been applied with

varying levels of success to this system, starting with Kolmogorov’s famous 1941

theorem for hydrodynamic turbulence.

1.4.1 Kolmogorov Turbulence (K41)

Kolmogorov’s 1941 paper (Kolmogorov, 1991b) makes the assumption of locally

isotropic time-steady homogeneous fluid turbulence. These restrictions are im-

posed on the velocity differences’ probability density laws, not on the velocities

themselves. The important step here is that although the mean flow and large

scale fluctuations are generally inhomogeneous and anisotropic, it is assumed that

on sufficiently small scales the statistical regime may be taken as homogeneous

and isotropic (p14 Monin & Yaglom, 1971). This assumption only holds for very

large Reynolds numbers and arises from considering the highly chaotic nature of

the energy transfer. This causes any orientating effect of the mean flow to be lost

as smaller and smaller scales are reached.

The time-steady condition implies that the energy injection rate into the system,

the energy transfer rate and the energy dissipation rate must all be equal on aver-

age, i.e. there is no build-up of energy at any scale. The energy cascade can then

be thought of in the following way: the averaged flow has first-order fluctuations

arising from the displacements of different fluid volumes of average diameter, l0.

We can further characterise their movement by defining an associated velocity, υ0.

For very large RE , these fluctuations will in turn generate their own diameter and

velocity fluctuations, respectively l1 and υ1. This process will continue down to a

scale n, with RE,n = lnυn/ν, where the effect of viscosity will be strong enough

to prevent the formation of any further orders of fluctuations. If we now consider

the energy transfers, this is equivalent to the first-order fluctuations absorbing the

motion’s energy and passing it on to the second order fluctuations, and so on until

the energy is dissipated as heat by viscous processes. The fluctuations (or eddies)

are also considered to be space-filling at all scales.

15



CHAPTER 1. INTRODUCTION

Kolmogorov considered the second moment of the velocity increments, defined as

Sm=2 = 〈δυ(l)m=2〉 (1-17)

where:

δυ(r, l) = υ(r + l) − υ(r) (1-18)

and υ(r) is the velocity at position r, υ(r + l) is the velocity at a position

(r + l), m is the order of the moment considered and the angular brackets denote

spatial averaging. Sm is also known as the structure function (p220 Biskamp,

1993) (p19 Bohr et al., 1998).

Under the further hypothesis that the probability density functions of δυ(l) de-

pend only on ε, defined as the average dissipation of energy per unit mass and

time, and on the viscosity ν and that for the inertial range, where l >> lvis, this

reduces to a single dependence on ε, Kolmogorov derived the well known 2/3rds

law

S2 = Cε2/3l2/3 (1-19)

Here C is some universal dimensionless constant, which can be measured. How-

ever Landau pointed out in 1942 that there is no reason to suppose C is universal,

because the averaging process depends on the variation of ε over the turn-over

times of the large eddies (≃ l0). This variation is different for different flows, im-

plying that the averaging does not have a universal behaviour (Landau & Lifshitz,

1987). A further argument is also presented by Frisch (1991).

Under the assumption that the turbulent flow is self-similar at small scales, the

velocity increments can also be expressed in terms of a unique scaling exponent,

h ∈ ℜ (Frisch, 1995, p75):

δυ(r, λl) = λhδυ(r, l), ∀λ ∈ ℜ+ (1-20)

for all r, and where the increments l and λl are smaller than l0, the integral or

energy-injection scale. Upon comparison of (1-19) and (1-20), it can be seen that

the only consistent value of h is h = 1/3. This gives the following generalization

of (1-19) for moment m, taking into account the non-universal nature of C:

Sm = 〈δυ(l)m〉 = Cmεm/3lm/3 (1-21)

16



CHAPTER 1. INTRODUCTION

It can be noted that the scaling exponent for l, i.e. Sm(l) ∼ lζ(m), then has the

general form ζ(m) = mh, with ζ(3) = 1 in this case.

In 1941, Obukhov proposed another form of this assertion (p14 Monin & Yaglom,

1971) known as the 5/3rds law. This states that the spectral density of the kinetic

energy of turbulence over the spectrum of wavenumbers k in the inertial range has

the form:

E(k) = Ckε
2/3k−5/3 (1-22)

where Ck is again a dimensionless constant known as the Kolmogorov constant.

Fits to experimental data imply Ck = 1.7±0.2 (p32 Bohr et al., 1998). The power

spectral index, α, defined by E(f) ∝ f−α where E(f) is the power spectrum, is

then related to ζ(2) by:

α = 1 + ζ(2) (1-23)

A more mathematically detailed derivation of this is given in Chapter 2. For

the moment, we see that this holds for Kolmogorov by recalling that 〈υ2(l)〉 ∝
〈E(l)〉 ∝ l2/3, that k ∝ 1/l and that the power spectrum is given by a Fourier

transform of E(l).

It is interesting to note that (1-22) can also be obtained by dimensional analysis

upon application of the Buckingham-Pi theorem (e.g. chap.8 Longair, 2003).

Finally Kolmogorov (1991a) derived one of the few exact results in turbulence,

namely the 4/5ths law. Starting from the Navier-Stokes equations and under the

assumptions of isotropy, homogeneity and finite density of energy dissipation, it

can be shown that (chap.6 Frisch, 1995)

〈δυ3
||(l)〉 = −4

5
εl (1-24)

where δυ3
||(l) denotes the third order longitudinal velocity increments. This result

is only valid for the inertial range when ν → 0 and RE → ∞; finite viscosity

would necessitate the inclusion of an extra ν-dependent term. Politano and Pou-

quet (Politano & Pouquet, 1998b,a) use Elsässer variables (linear combinations of

magnetic field fluctuations in velocity/Alfvén units and velocity fluctuations) to

extend the 4/5ths law to MHD. Instead of third order longitudinal velocity fluc-

tuations, the scaling of mixed longitudinal third order structure functions formed

from Elsässer variables is now considered. At high frequences (small scales) the
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Hall effect also becomes important and Galtier (2008) uses Hall MHD to derive

exact scaling laws for the third order correlation tensors for the velocity, magnetic

and current density fields. In (Galtier, 2009), axisymmetric MHD is also consid-

ered for which Galtier derives an exact vectorial law. This has a form close to the

isotropic case considered by Politano et al. (1998).

Studies of the magnetic field and velocity increments in the fast solar wind do

indeed show, over certain temporal ranges, power spectra with a −5/3rds trend

(Horbury et al., 2005) (Bruno & Carbone, 2005, p72), i.e. Kolmogorov-like be-

haviour. However power spectra are often noisy and this result is often subject

to large errors. Other behaviours are also present and phenomena such as Alfvén

waves need to be considered.

1.4.2 Kraichnan-Irishnikov Turbulence (IK)

Shear perturbations in the magnetic field travel at the Alfvén speed (VA = B/
√

µ0ρ)

along the background field as Alfvén waves, which are therefore transverse and

electromagnetic (Cravens, 1997, p 131). In 1965, Kraichnan (Kraichnan, 1965)

suggested that Kolmogorov’s inertial range law only applies to hydrodynamic the-

ory and needs to be modified for the hydromagnetic case. Independently, Irosh-

nikov developed a similar theory in 1964 (Iroshnikov, 1964).

The effect of including shear Alfvén waves, which propagate either parallel or anti-

parallel to the background magnetic field B0, is to decrease the energy transfer

rate. Effectively the eddy decay time in the energy cascade model is taken to be

longer than the Alfvén decorrelation time, τA(l) = l/υA where l is the fluctuation

scale and υA the Alfvén speed. Decorrelation now occurs before the full eddy de-

cay or energy transfer to the next scale, has happened. The energy transfer time

is thus increased by a factor of τE/τA, where τE is the eddy turnover time. This

leads to a different spectral density dependence over the inertial range:

E(k) = Ck(εB0)
1/2k−3/2 (1-25)

and a structure function scaling exponent ζ(m) = m/4, smaller than the m/3

expected from K41. We also note that if the energy transfer rate is constant, in

this model ζ(4) = 1 is an intermittency free parameter. In contrast to ζ(3) = 1
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obtained from K41. However this is again a linear model, which takes no account

of the intermittent (or inhomogeneous) nature of the solar wind, which we define

next.

1.4.3 The β Model and Intermittency

Intermittency occurs when the statistics of a process are dominated by large oc-

casional events, structures and dissipation processes. The intermittent nature of

a flow can be determined by calculating the flatness, also known as the kurtosis.

The flatness is the normalised fourth central moment of a distribution and esti-

mates the importance of the distribution’s tails. A random function υ(t) in the

temporal domain is then said to be statistically intermittent if at small sampling

scales τ (high frequency) the flatness (Frisch, 1995, p122):

F (τ) =

〈

(υτ (t))
4〉

〈

(υτ (t))
2〉2

(1-26)

grows without bounds as τ goes to smaller and smaller scales, or equivalently as

the frequency increases to higher sampling rates. For a Gaussian distribution, the

kurtosis can be shown to be FG = 3. A quantify often examined in then the com-

pensated kurtosis, F (τ) − FG, which is a measure of the extent of the considered

distribution’s deviation from Gaussianity.

The β model was first developed by Frisch et al. (1978) in an attempt to incor-

porate intermittency into the description of the turbulent cascade using a fractal

approach. An example of a simple fractal structure is the well known Cantor set

or “middle-third deletion”. With each scale, the number of “gaps” in the structure

increases. Figure 1-6 shows the first four iterations of a Cantor set.

19



CHAPTER 1. INTRODUCTION

Figure 1-6: The first four iterations of a Cantor set: as the number of iterations
increases, so does the number of “gaps” in the structure. The length of an element
at iteration n is given by L = LO/3n and the number of elements at iteration n is
then N = 2n. The fractal dimension is given by df = log(2)/log(3) ∼ 0.631.

Applying these ideas to turbulence, the eddy decay process still happens as

described previously, except not all possible daughter eddies are produced. In

other words, there are ”gaps” in the fluctuations on every scale. The parameter

µ is introduced as a measure of the intermittency. If β (0 < β < 1) is defined as

the fraction of daughter eddies of size l = rn/L0 produced then:

β = rµ (1-27)

Generally r = 2 is chosen for simplicity. µ is also known as the codimension and

µ = 3 −D where D is the fractal dimension. From equation 1-27 we can see that

µ ranges from µ → 0 for β → 1 (non-intermittent case) to µ → −∞ for β → 0

(most intermittent case).

The scaling of the velocity fluctuations is also modified by this non space-filling

behaviour. At increasingly small scales, the eddies occupy less and less space,

which causes the velocity fluctuations in active eddies to decrease less rapidly with

scale than for the Kolmogorov model. By again considering the simple process

of energy transfer by eddy decay it can be shown that the mth moment of the

velocity fluctuations varies with scale as follows:

δυm(l) ∼ lζ(m) (1-28)

The scaling exponent, ζ(m), now has a µ dependence:

ζ(m) = (1 − µ)(m/3) (1-29)

A measure of the intermittency and deviation from Kolmogorov is often given

by considering the difference between the measured value of the exponent for the
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sixth order velocity structure function and its K41 value of 2 (Frisch, 1995, p130),

which is similar to µ in (1-29) for m = 6. However, this does mean that we need

to go to m = 6 for K41 and m = 8 for IK, which makes intermittency difficult to

study experimentally.

Previously, the structure functions, Sm, were seen to scale as the velocity fluctua-

tions, |δυ|m, (1-21). This is because, when the eddies are space-filling, there is no

difference between the average velocity fluctuation, 〈|δυ|m〉 over a scale l within

the inertial range and a single velocity perturbation over eddies on that scale.

However this is no longer the case for the β model, where the average velocity is

maller than the corresponding fluctuation over an active eddy. This can be shown

by noticing that the fraction of space, which is active, decreases as a power of l.

Consider the following energy cascade:

ln = r−nl0 (1-30)

The fraction of active space on the scale ln is therefore given by βn. The average

velocity fluctuations can then be expressed as:

〈|δυ(ln)|m〉 = βnδυm(ln) (1-31)

now recalling the definition of β from (1-27) and using (1-30) to express r−n as a

function of ln we obtain:

〈|δυ(ln)|m〉 ∝ lµnδυm(ln) (1-32)

We then obtain the following scaling relationship for the structure functions:

Sm(l) ∝ lµlςm ∝ lζ(m) (1-33)

where the exponent is given by:

ζ(m) = µ + ςm = m/3 + µ(1 − m/3) (1-34)

See also (Chapman et al., 2005b) for a general topological discussion. The β

model was extended to MHD turbulence, i.e the Kraichnan-Iroshnikov theory, by

Ruzmaikin et al. (1995). The MHD β model yields the following expression for

the structure function scaling exponent:

ζ(m) = m/4 + µ(1 − m/4) (1-35)
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This model still yields a linear dependence of the scaling exponent ζ(m) on m,

even with the inclusion of an adjustable parameter. Experimental evidence does

not confirm this behaviour (e.g. Borgas, 1992) and non-linear scaling of the ζ(m)

must be considered.

1.4.4 The p-Model and Multifractality

The previous models assume a fractal behaviour of the turbulence considered, im-

plying a unique value of the scaling exponent h. If instead a multifractal approach

is attempted, any experimentally observed non-linear behaviour of the ζ(m) ex-

ponents of the velocity structure functions can now be included in the system’s

description as well as intermittency.

To go from a fractal to a multifractal approach, it is necessary to weaken the as-

sumption of global scaling invariance (Frisch, 1995, p144) (Bohr et al., 1998, p34)

made by Kolmogorov, to one of local scaling invariance. This now means that a

continous range of values of h is permitted, i.e for each h in the allowed range,

there is a set ϕh ⊂ ℜ3 of fractal dimension df(h), such that, as l → 0:

δυ(r)

υ0
∼
(

l

l0

)h

, r ∈ ϕh, dimϕh = df(h) (1-36)

The fractal dimension df characterises the scaling structure of an object and

can coincide with the usual topological dimension of the object (see for exam-

ple Paladin & Vulpiani, 1987). However the advantage of the fractal approach to

turbulence is that intermittency can be included by considering df < 3. Consider

the fractal Cantor set shown previously, a multifractal Cantor set can be con-

structed by distributing a weight at each iteration such that each segment recieves

a fraction p1 and p2 and p1 + p2 = 1. Figure 1-7 shows the first few iterations of

this set for p1 = 1/3 and p2 = 2/3 (p351 Lynch, 2007).
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Figure 1-7: The first three iterations of a multifractal Cantor set: at each iteration
the two segments recieve different weights p1 = 1/3 and p2 = 2/3.

Real-world examples of multifractals include galaxy distributions (see for ex-

ample Borgani et al., 1993, and references therein) and even phytoplankton dis-

tributions in turbulent coastal waters (Seuront et al., 1999).

The β model detailed previously was extended and developed as the random β

model by Paladin & Vulpiani (1987). Here, intermittency and a multifractal ap-

proach are incorporated by considering eddies of different shapes and dimensions,

and instead of a single value of β, a probability density is used. This means that

different structures, like eddies or sheets, are generated with different occurrence

probabilities. Burlaga (1991) studied intermittent turbulence in the solar wind

at ∼ 8.5 AU and showed that these observations are consistent with a random β

model prediction, which assumes that the turbulence is a mixture of sheets and

space-filling eddies.

Meneveau & Sreenivasan (1987) presented another multifractal model, known as

the p-model, for fully developed turbulence. A simple example of this is to con-

sider an eddy decaying into two smaller ones. The parent transfers a fraction p of

its energy to one of them and a fraction (1 − p) to the other one. By convention

p ≥ 1/2 and values of ζ(m) are given by:

ζ(m) = 1 − log2

(

pm/3 + (1 − p)m/3
)

(1-37)

This reduces to Kolmogorov for p = 1/2. If we wished to consider Kraichnan-like

turbulence the ζ(m) equation becomes:

ζ(m) = 1 − log2

(

pm/4 + (1 − p)m/4
)

(1-38)

Various studies such as Horbury et al. (Horbury & Balogh, 1997), have shown

good agreement between this model and experimentally observed high solar lati-

tude magnetic field fluctuations from the Ulysses mission for p ∼ 0.7.
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1.4.5 The She-Leveque Model

One of the more recent intermittent turbulence models to be developed is the

She-Leveque model (She & Leveque, 1994). The inertial range turbulent energy

dissipation field is coarse-grained and the most intermittent structures thus ob-

tained are postulated to be filament-like. At each inertial range scale l, where

lvis << l << l0, the fluctuations are assumed to be in statistically steady-state

and a continuous energy cascade from the largest to the smallest scale is hypothe-

sised. This again allows the scaling behaviour of the velocity increments, δυ, and

the energy dissipation rate, ε on a scale l to be expressed as:

〈δυm(l)〉 ∼ lζ(m), 〈εm(l)〉 ∼ lτ(m) (1-39)

By using the relationship between δυ and ε given by the 4/5ths law (1-24), the

following relationship can be derived between the structure function exponent,

ζ(m), and the energy dissipation exponent, τ(m):

ζ(m) = m/3 + τ(m/3) (1-40)

For Kolmogorov turbulence this results in τ(m/3) = 0, which is expected because

the Kolmogorov theory assumes a constant energy dissipation rate, independent of

the scale l. However as previously discussed, experimental results diverge strongly

from this behaviour. The She-Leveque model proposes expressions for ζ(m) and

τ(m) without having recourse to any adjustable parameters such as p in the p-

model or β in the random β model. The main assumptions are that anomalous

scaling laws arise from a divergent scaling dependence of εm=∞(l) as l → 0. The

presence of intermittent structures is postulated to be the origin of this diver-

gence. εm=∞(l) can then be thought of as the coarse-grained intensity of the most

intermittent structures, which are modelled as filaments or 1D objects, embedded

in neutral fluid turbulence. The following expression for εm=∞(l) is then derived:

ε∞(l) ∼ l−2/3 (1-41)
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By then postulating a universal scaling relation between scalings of successive

structures and a K41 energy transfer scaling, She and Leveque obtain:

ζ(m) =
m

9
+ 2

[

1 −
(

2

3

)m/3
]

(1-42)

τ(m) = −2

3
m + 2

[

1 −
(

2

3

)m]

(1-43)

This model was extended by Politano & Pouquet (1995) to include MHD tur-

bulence, within the framework of Iroshnikov-Kraichnan theory. Instead of the

Kolmogorov 5/3rds energy transfer scaling, the 3/2 law defined in (1-25) is used.

The new results for the scaling exponents are:

ζ(m) = m/9 + 1 − (1/3)m/3 (1-44)

τ(m) =
2m

3
+ 1 − (1/3)m (1-45)

There is another school of thought which argues that the anisotropy present in the

solar wind, due to the Alfvénic perturbations, cannot be adequately modelled by

the Kraichnan-Iroshnikov scaling. Goldreich & Sridhar (1995) formulated these

ideas quantatively in the context of a strong turbulence MHD theory, i.e. the

turbulence that develops when an incompressible, magnetized fluid is strongly

perturbed. By contrast, in weak turbulence the perturbations are small.

1.4.6 Goldreich-Sridhar Energy Cascade

The strong background magnetic field with respect to small-scale magnetic field

fluctuations present in the solar wind means that simulations and observations

show anisotropy, in direct contradiction to the isotropy often assumed when cal-

culating the MHD spectrum (e.g. Biskamp & Müller, 2000). Goldreich & Sridhar

(1995) present a model of anisotropic MHD turbulence, whose main features are

an anisotropic spectrum with k‖ ∼ k
2/3
⊥ L−1/3 with respect to a background mag-

netic field (L is the outer or energy injection scale) and a 1D energy spectrum

∝ k
−5/3
⊥ or in other words the Kolmogorov spectrum. If we consider the energy

cascade picture, with energy cascading through eddies on smaller and smaller

scales, then the scaling relationship between k‖ and k⊥ means that the sizes of the

parallel and perpendicular eddies are also correlated. As we move to higher k⊥,
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the eddies become elongated along the direction of the magnetic field, also only

shear Alfvén waves are considered, therefore magnetic (δbA) and velocity (δvA)

field perturbations only occur perpendicular to the background field. If we take λ

as the transverse eddy size and l as the parallel eddy length, then a critical bal-

ance is achieved when VA/l ∼ δvA/λ: during the time l/VA it takes for two eddies

travelling in opposite directions along the magnetic field to cross each other, the

magnetic field lines are displaced in the perpendicular direction by δvA · l/VA. This

distance is equated to the transverse eddy size λ. The energy transfer time for all

scales is then

τtransfer(λ) ∼ l/VA ∼ λ/δvA (1-46)

If we assume the energy tranfer rate to be constant, i.e. ε ∼ δv2
A/τtransfer(λ) =

constant, then we find simply δvA ∝ λ1/3 ∝ k
−1/3
⊥ . This leads to an energy

spectrum in the perpendicular direction of the Kolmogorov form

E(k⊥) = |δvA|2k−1
⊥ ∝ k

−5/3
⊥ (1-47)

In Fig. 1-8 we summarise the different behaviour of the structure function scaling

exponent, ζ(m), as a function of m for the various models described previously.
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Figure 1-8: Dependence of ζ(m) on m for different turbulence models. The p model
was computed using p = 0.79 and the β model with β = 0.9. These values were
obtained by Horbury et al. (Horbury & Balogh, 1997), for Ulysses solar minimum
polar data, however they are by no means universal. The values ζ(3) = 1 for
Kolmogorov-like models and ζ(4) = 1 for Kraichnan-like models are clear, as is
the divergence of the different models at higher m. However, experimentally the
different models are difficult to distinguish.
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1.4.7 Further Models and Simulations

For completeness, we briefly consider another important area of research, namely

direct numerical simulations of MHD turbulence. These directly solve the time

dependent incompressible and compressible MHD equations and enable investi-

gation of the small scale phenomenology of turbulent fluctuations as well as the

effects of eddy viscosity and resistivity (Biskamp & Müller, 2000). The principal

drawback is that simulations are severely limited in the number of Fourier modes

which they can encompass. This means that the Reynolds numbers reached are

quite low and although periodic boundary conditions are used, finite size effects

can also be a problem. It is therefore difficult to resolve and probe the inertial

range of turbulence using MHD simulations.

Biskamp & Müller (2000) simulate freely decaying 3D turbulence and show that

the inertial range scaling exponents are consistent with a modified She-Leveque

model, with ζ(3) ∼ 1. Because of the limited inertial range available, analyses

of simulations make extensive use of extended self-similarity (Benzi et al., 1993),

which involves considering ratios of structure functions. This method has been

shown to extend the inertial range, although the exact physical basis is unknown.

The results of Biskamp & Müller (2000) were further developed by Merrifield et al.

(2005).

Boldyrev (2005) also proposes a phenomenological model for the turbulent MHD

cascade, which includes the effects of anisotropy. In the limit of a strong back-

ground field, their results show an IK like spectrum, whereas weaker anisotropy

leads to a Goldreich-Sridhar type result. There is an extensive body of work on

this model, see for example (Boldyrev, 2006; Mason et al., 2008). However in

this thesis we are concerned only with data obtained from in situ spacecraft mea-

surements rather than simulations. We note that the observed scaling behaviour

provides empirical constraints for numerical models.
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1.5 Spacecraft observations

1.5.1 The Ulysses Mission

The Ulysses spacecraft was a joint NASA/ESA mission (Marsden et al., 1996),

launched in October 1990. Its primary mission was to study the heliosphere in

three dimensions by journeying out of the ecliptic plane and over the solar poles.

Ulysses is the first spacecraft to provide in situ measurements of solar particles

and fields at essentially all solar latitudes (maximum latitude, ∼ 80°). After its

launch in 1990, a gravity-assist manoeuvre at Jupiter in 1992 sent Ulysses into

the Sun-centered out of ecliptic orbit shown in Figure 1-9.

Figure 1-9: Ulysses orbit (plot courtesy of Ulysses online resources): 1990− 1995.
South polar pass: from days 210 to 269, 1994. Ulysses moved from 2.6141 AU to
2.2014 AU and from an heliographic latitude of −75.17◦ to −79.60◦. North polar
pass: from days 180 to 239, 1995. Ulysses moved from 1.7926 AU to 2.2043 AU
and from an heliographic latitude of 73.76◦ to 77.03◦.

At its closest approach to the Sun, during its fast latitude scan, Ulysses’ per-

ihelion distance is 1.3 AU. The aphelion of its orbit is at Jupiter at ∼ 5.4 AU.

Ulysses has a total orbital period of 6.2 years and has outlived its projected life-

time of 5 years by successfully completing two full orbits and three solar passes.

Failing power supplies however meant that the final communication with Ulysses

occurred on 30th June, 2009 after which its transmitter was shut down.

Ulysses has therefore made observations of the solar wind at periods of both max-

imum and minimum solar activity through a variety of different instruments, in-
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cluding in particular the VHM/FGM magnetic field experiment (Balogh et al.,

1992). The background magnetic fields at the locations of the Vector Helium

Magnetometer (VHM) and the Fluxgate Magnetometer (FGM) onboard Ulysses

were measured prior to lauch as 30 pT and 50 pT respectively, making Ulysses one

of the magnetically cleanest space probes. The magnetometers themselves were

shown to be intercalibrated to better than 0.1nT. In table 1-1, a summary of the

magnetic field ranges and corresponding precision of these instruments is provided

(data from Balogh et al. (1992)).

Table 1-1: Characteristics of the magnetic field experiment onboard Ulysses, com-
prising the VHM and FGM magnetometers. Data is from Table 2 in (Balogh et al.,
1992)

Instrument Ranges (±) Resolution

VHM 8.192 nT 4.0 pT

65.52 nT 32.0 pT

FGM 8.00 nT 3.9 pT

64.0 nT 31.2 pT

−2.048 µT 1.0 nT

44.0 µT 21.5 nT

The analysis is this thesis will focus on the 60 second (∼ lengthscale of 4.5 ×
104 km) vector heliospheric magnetic field measurements, during intervals when

Ulysses was above the Sun’s North and South poles at heliospheric distances of

∼ 1.8 − 2.6 AU and heliographic latitudes of ∼ 72 − 80°. 1 second averaged (∼
lengthscale of 750 km) Ulysses magnetic field data is also available, however we

choose to use the 1 minute averaged data in order to remove any possible effects

from Ulysses’ spin, which has a period of 12 seconds.

1.5.2 The ACE Mission

The Advanced Composition Explorer or ACE (Stone et al., 1998), was launched in

August 1998 and is in a Lissajous orbit around the L1 Lagrangian point between

the Earth and the Sun. Its mission is to monitor the interplanetary medium and
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its composition. ACE therefore provides continuous observations of solar wind

particles and fields in the solar ecliptic plane at a fixed heliospheric distance ∼ 1

AU. A plot of ACE’s orbit is shown in Figure 1-10.

Figure 1-10: ACE orbit (plot courtesy of ACE online resources) from launch in
1998 to 2008. The Geocentric Solar Ecliptic (GSE) coordinate system is used
(Hapgood, 1992), where X is the Earth-Sun line and Z is the ecliptic North pole.

In this thesis, the solar wind velocity field and density data from the So-

lar Wind Electron Proton Alpha Monitor (SWEPAM, (McComas et al., 1998a))

and the magnetic field data from the ACE Magnetic Field Experiment (MAG,

(Smith et al., 1998)) are used. The data has a resolution of 64 seconds, which cor-

responds to lengthscales ∼ 4.8×104 km in the fast solar wind and ∼ 2.2×104 km

in the slow solar wind. SWEPAM measures particle energies separately for ions

(here protons and alphas) and electrons. The ion SWEPAM sensor can measure

energies in the range 0.26−36 keV/q (q is the ion charge), with a resolution of 5%,

whereas the electron sensor measures energies in the range 1.6 − 1350 keV with

a resolution of 12%. The MAG experiment comprises 2 fluxgate magnetometers,

which provide 3 component vector magnetic field measurements over 8 different

dynamical ranges, described in Table 1-2 (data from (Smith et al., 1998)).

30

http://www.srl.caltech.edu/ACE/ASC/DATA/browse-html/gse_color.html


CHAPTER 1. INTRODUCTION

Table 1-2: Characteristics of the magnetic field experiment onboard ACE. Data
is from Table 1 in (Smith et al., 1998)

Range number Ranges (±) Resolution

(0) 4 nT 0.001 nT

(1) 16 nT 0.004 nT

(2) 64 nT 0.016 nT

(3) 256 nT 0.0625 nT

(4) 1024 nT 0.25 nT

(5) 4096 nT 1.0 nT

(6) 16, 384 nT 4.0 nT

(7) 65, 536 nT 16.0 nT

1.5.3 Coordinates

The coordinate system used as the initial basis for the work in this thesis is the

solar-ordered RTN system: R is the sun-spacecraft axis, T is the cross product of

R with the solar rotation axis, and N is the cross product of R and T , completing

the right-handed system. The Ulysses observations considered are taken when

the spacecraft is sitting in fast uniform solar wind above the polar coronal holes

with expanding open magnetic fieldlines. The RTN coordinate system is therefore

appropriate, because we wish to consider turbulent fluctuations along and normal

to the bulk flow direction, in this case the radial direction. In the ecliptic at ACE’s

orbit, the situation is different as the background magnetic field is twisted in the

Parker spiral, and forms an angle of about ∼ 45° with the Earth-Sun axis. The

natural frame in which to study these fluctuations is then to project the RTN

coordinates parallel and perpendicular to the background field. The average solar

wind flow direction is however still radial, prompting a comparison of the two

coordinate systems in Chapter 6.
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1.5.4 The Taylor Hypothesis

The Taylor hypothesis allows us to convert spacecraft frequencies to spatial scales

in the solar wind if the solar wind velocity is known. It relies on the solar wind

speed being much larger than the local speed of the MHD waves, typically the

Alfvén speed (VA ∼ 51 km s−1 at 1 AU, (Mullan & Smith, 2006)). The fluctua-

tions can therefore be regarded as being “frozen in”. As the spacecraft velocity

is also considerably smaller than the solar wind velocity, a spacecraft time series

can be considered as equivalent to a radial snapshot of the plasma flowing past it.

Another way of expressing this is that the fluctuations on a particular scale need to

be sampled at a much faster rate than their characteristic period. For example if

waves of characteristic scale λ propagate at velocity υ with respect to the plasma,

which in turn propagates at speed υsw with respect to the spacecraft, then these

vary in a time tsc = λ/υsw in the spacecraft frame (Horbury et al., 1996b). Now

in the solar wind frame they vary in tp = λ/υ. It follows that tsc << tp or equiv-

alently υsw << υ corresponds to our “frozen-in” assumption condition. If this is

true we can now use the dispersion relation to relate the spacecraft frequency ωsc

to a solar wind plasma frame wavenumber kp by ωsc = υswkp (valid only for Alfvén

waves).

In practice the Taylor hypothesis is valid for most timelags in the solar wind

(Bruno & Carbone, 2005; Osman & Horbury, 2009). Small in situ generated tur-

bulent fluctuations are sampled at faster rates, whereas larger scale “frozen-in”

structures (“1/f” region) are convected outwards from the Sun and do not evolve

locally.

1.5.5 Stationarity

Another important consideration is the concept of statistical stationarity, since

most timeseries analysis methods rely on some assumption of data stationar-

ity. Strictly this means that, for a timeseries y(t), none of the probability dis-

tributions or ensemble averaged properties of y(t) depend on the origin in time

(Matthaeus & Goldstein, 1982). In practice this is not always possible, instead

the assumption of weak stationarity is used, where stationarity of the 2 point cor-
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relation function is ensured if the mean and variance (i.e. the first two moments)

of the data are themselves time-stationary.

Turbulent processes are stochastic, therefore their behaviour can therefore only

be predicted with a degree of probability, and it is necessary then to consider

ensemble averages of all possible realisations (Bruno & Carbone, 2005). A fully

developed turbulent flow is very sensitive to small perturbations, however its aver-

age properties are not. Ideally, this would mean taking averages over an ensemble

of turbulent flows (or realizations) prepared in near-identical conditions. This is

however not possible in the solar wind, where instead the most common method

used is time-averaging. For single point spacecraft data, we therefore consider the

average behaviour of fluctuations y(t+τ)−y(t) over a timescale τ , which is linked

to the lengthscale via the Taylor hypothesis. For this analysis to be valid, the

timeseries must be weakly stationary: the overall pattern of fluctuations occuring

at different times is not affected by the time evolution of the system, or in other

words the turbulence is statistically stationary over time scales much larger than

the time scale of the fluctuations. Matthaeus & Goldstein (1982) used short and

long intervals of interplanetary magnetic field data to show that this assumption

is satisfied for the interplanetary magnetic field. This is highly relevant to this

thesis, where we will be dealing with both short ∼ 10 days and long ≥ 50 time

periods. We have investigated the ACE and Ulysses datasets considered in Chap-

ters 3 to 6 using the methods outlined in Matthaeus & Goldstein (1982) and we

have found they can be considered weakly stationary.

1.5.6 Correlation

The solar wind also shows evidence of correlated structures and to briefly illustrate

this, Figure 1-11 shows the autocorrelation functions R(τ) = 〈δBi(t1)δBi(t2)〉,
where t2 − t1 = τ , δBi(t) = Bi(t) − 〈Bi(t)〉 and i denotes the RTN magnetic

field components. Fast uniform solar wind magnetic field measurements from

the Ulysses spacecraft from a 10 day period, when Ulysses was at a heliospheric

distance ∼ 2.4 AU, are used. We consider time lags τ up to ∼ 2500 minutes or

about 1.7 days.
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Figure 1-11: Autocorrelation functions R(τ) for the RTN magnetic field compo-
nents for a representative 10 day interval of Ulysses data, days 210 − 220 of the
1994 South polar pass.

We can estimate the correlation times for the different components from Figure

1-11, by fitting an exponential of the form R(0)e(−τ/τc) where τc is the correlation

time and R(0) is simply the variance of the process, to Rτ . We find τc,R = 44± 2

minutes, τc,T = 89.6 ± 3.2 minutes and τc,N = 74.3 ± 2.3 minutes, with 95%

confidence bounds. We perform the same analysis in Figure 1-12 for similar length

datasets of fast and slow solar wind magnetic field observations from the ACE

spacecraft, positioned in the ecliptic plane at ∼ 1 AU.
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Figure 1-12: Autocorrelation functions R(τ) for the RTN magnetic field compo-
nents for fast and slow intervals of ACE data at ∼ 1 AU.

Figure 1-12 shows that the fast wind correlation function decreases much faster

than the slow solar wind correlation, as also observed by (Bruno & Carbone, 2005).

This is believed to be due to the fact that the fast solar wind has a bigger pop-

ulation of Alfvénic fluctuations, which are highly stochastic fluctuations, so that

decorrelation occurs faster than in the slow solar wind. In all cases, the smallest

timescales within the inertial range of solar wind turbulence are shorter than the

correlation times, reflecting highly correlated structures at these scales.

1.5.7 Finite Size Considerations

Theoretical turbulence models (e.g. Kolmogorov) are constructed in the limit of

infinite Reynolds number RE and for spatially extended fully developed turbu-

lence. However, physical timeseries are often bounded in space or in RE . The

solar wind has a large scale structure and therefore a finite RE , which although

≫ 1 (∼ 105 Matthaeus et al. (2005)), may still create finite size effects, which in

turn will affect the observed scaling.

Grossmann et al. (1994) show numerically and analytically that deviations from

Kolmogorov scaling of velocity moments decrease with increasing RE for flows

with 1.05×104 ≤ RE ≤ 1.4×107. They also point out that higher order moments

are more sensitive to the finite size corrections than lower ones. This is further
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corroborated by Arenas & Chorin (2006), who argue that higher order moments

(m > 3) of non-Gaussian fields show scaling with a strong RE dependence.

Another way of correcting for finite RE effects is suggested in (Sreenivasan & Bershadskii,

2006, and references therein), and involves using logarithmic expansions. Struc-

ture function formed quantities such as flatness are shown to have a dependence

on lnRE rather than RE.

Finally, in practice, both in numerical simulations (Merrifield et al., 2007) and in

the laboratory (Dudson et al., 2005; Dendy & Chapman, 2006) the scaling of the

moments Sm ∼ lζ(m) is not always found or is not observed over a significantly

large range. This may reflect the finite spatial domain, or in the case of a turbulent

system and fluctutations, that the turbulence is not fully evolved. A weaker form

of scaling, known as extended self-similarity (ESS) first observed by Benzi et al.

(1993) may be applicable to such datasets. ESS proceeds by replacing l by an

initially unknown generalized lengthscale g(l), such that formally

Sm(l) ∼ [g(l)]ζ(m) (1-48)

It follows from equation 1-48 that

Sm(l) = [Sm′(l)]ζ(m)/ζ(m′) (1-49)

(see for example Grossmann et al., 1997; Pagel & Balogh, 2001). This process has

been seen to extend the range over which scaling is observed. The reason why this

occurs is however still an open question in turbulence.

1.6 Experimental Applications

This thesis now presents a study of statistical methods to investigate non-linear

phenomena in the solar wind over a range of different spatio-temporal scales and

for different solar wind conditions.

In Chapter 2, the analysis techniques such as power spectral density (PSD), prob-

ability density functions (PDF), generalised structure functions (GSF) and ex-

tended self-similarity (ESS) are presented along with their application to three

different model timeseries. The timeseries are chosen such that the expected scal-

ing is known, however they also demonstrate different aspects of the solar wind
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such as Gaussianity (Brownian walk), finite-size effects (Lévy flight) and intermit-

tency (p-model). These methods are then applied to solar wind data in Chapters

3, 4, 5 and 6.

Chapters 3 and 4 explore inertial range turbulence using magnetic field measure-

ments from the Ulysses spacecraft, which spent many months in the quiet fast

solar wind above the Sun’s polar coronal holes in a very simple coronal magnetic

topology where both field and flow were highly ordered. It is known that so-

lar wind acceleration and heating occurs over coronal holes. Ulysses is therefore

ideally placed to sample the fast solar wind emanating from these holes. We quan-

tify the scaling of the moments of the probability distribution function (PDF) of

fluctuations of the well known inertial (high frequency) and 1/f (low frequency)

ranges. GSF are used to show power law scaling in the “1/f” range of the form

〈|y(t + τ) − y(t)|m〉 ∼ τ ζ(m), but ESS was required to reveal scaling of the form

〈|y(t + τ) − y(t)|m〉 ∼ [g(τ)]ζ(m) over the inertial range. We find that g(τ) is in-

dependent of spacecraft position, which suggests that g(τ) is telling us about the

macroscopic structure confining the turbulence. The scaling of the “1/f” region

fluctuates with increasing radial range, consistent with a possible coronal origin.

A good fit to the inertial range is g(τ) ∼ τ−log10(λlogτ). The exponents found here

by ESS for the inertial range are fitted by a p-model and we find a higher degree of

intermittency in the normal (N) and tangential (T ) components of the magnetic

field than in the radial (R) component. This provides quantitative constraints on

models for fluctuations within the solar wind. This study is extended in Chapter

4, by constraining the form of the function g(τ) and by comparing the results from

all of the Ulysses polar passes, in order to demonstrate universality. This is strong

support for an in situ process independent of the solar driver in the inertial range.

In Chapters 5 and 6, we use ACE solar ecliptic measurements to explore the lower

frequency temporal scales. The “1/f” energy range is of more direct coronal origin

than the inertial range, and carries signatures of the complex magnetic field struc-

ture of the solar corona, and of footpoint stirring in the solar photosphere. We

again quantify the scaling properties, focusing on solar cycle dependence and on

anisotropy with respect to the background magnetic field. We present structure

function analysis of magnetic and velocity field fluctuations, using a novel tech-
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nique to decompose the fluctuations into directions parallel and perpendicular to

the mean local background magnetic field. Whilst the magnetic field is close to

“1/f”, we show that the velocity field is “1/fα” with α 6= 1. For the velocity,

the value of α varies between parallel and perpendicular fluctuations and with the

solar cycle. There is also variation in α with solar wind speed. We have examined

the PDFs in the fast, quiet solar wind and intriguingly, whilst parallel and per-

pendicular are distinct, both the B field and velocity show the same PDF of their

perpendicular fluctuations, which is close to gamma or inverse Gumbel. These

results point to distinct physical processes in the corona, and to their mapping

out into the solar wind. We compare our solar wind velocity and magnetic field

fluctuations analysis in a frame ordered with respect to the background magnetic

field to the same analysis in a frame ordered with the bulk velocity flow.
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Model results

2.1 Introduction

In order to demonstrate the statistical analysis methods, which we will apply to

the solar wind parameters in Chapters 3 and 4, we first apply them to three model

timeseries.

The first two processes, which we will examine, are the Brownian walk and a stable

Lévy process. These are both examples of critical phenomena, or processes, which

are defined by structures on many scales and power law behaviour of characteristic

quantities (p40 Sornette, 2004). Renormalisation Group (RG) analysis explores

mathematically the concept that the macroscopic behaviour of an observable is

the result of the sum of arbitrary processes at a microscopic level. A timeseries can

then be decimated on different scales, but the observed probability density func-

tions (PDFs) at each scale will be the same, provided they are correctly rescaled.

This approach works well for self-similar systems.

The simplest case is the Brownian walk, which is ubiquitous in nature and is

described by Gaussian statistics. Stable Lévy flights, which have heavy-tailed

distributions of step length, can be thought of as generalisations of a Brownian

walk. A process is stable if, when we sum N i.i.d. (independent and identically

distributed) random variables x which have the same PDF P1(x), we obtain a

random variable X =
∑

x with PDF PN(X) of the same form as P1(x). As

N → ∞, the central limit theorem (Sornette, 2004) tells us that the sum, nor-

malised by 1/
√

N , of N random independent and identically distributed variables

of zero mean and finite variance σ2, is a random variable with a PDF converg-

ing to the Gaussian distribution with variance σ2. A generalised version of CLT

allows us to define a Lévy distribution of index β < 2 as the sum of all i.i.d.

random variables with no finite variance and distributions with power law tails
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(∝ δx−1−β, β ∈ (0, 2]). This indicates that the Gaussian or Brownian and Lévy

distributions (β < 2) are stable. We can also note that random walks themselves

are not stationary, however their increments are statistically stationary.

The third process which we will consider is the p-model, introduced in Chapter

1. This model allows the generation of a multifractal and therefore intermittent

timeseries and has been used extensively to model solar wind turbulence (e.g.

Horbury & Balogh, 1997). It should be stressed that these models are distinct

from phenomenological models, such as She-Leveque and Goldreich-Sridhar the-

ories, which attempt to describe the physics of the solar wind by considering

different types of structures (e.g. filamentary and/or sheet-like) or the effects

of anisotropy. Nevertheless the analysis methods, which we apply, are univer-

sal statistical timeseries tools and it is useful to consider their application to

well-known processes, which still display some of the properties observed in the

solar wind, such as Gaussian statistics (e.g. Burlaga et al., 1989), non-Gaussian

statistics (Marsch & Tu, 1997) and intermittency (see for example Burlaga, 1991;

Marsch & Tu, 1997; Bruno et al., 2007).

The analysis methods and tools of power spectral density (PSD), probability den-

sity function (PDF) rescaling and generalised structure functions (GSF), and the

scaling information which they provide, are described before being applied to the

different models. The problem of finite size datasets and the bias this can cause on

the systems statistics is also addressed by applying a novel conditioning technique

developed by Kiyani et al. (2006). Other sources of error, which we minimise, lie

with “noisy” PSD and the problem of fitting to finite range power laws, i.e. over a

finite range of scales. We use a windowing and averaging procedure to reduce the

PSD errors and we include in our scaling error analysis the variations in scaling

values when fitting the GSFs over ranges (of scales) of increasing length. Finally,

there are other analysis methods such as rescaled-range analysis (Hurst et al.,

1965), which is described in the conclusions.
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2.2 Model Timeseries

2.2.1 Brownian Walk

Brownian motion is named after the British botanist and surgeon Robert Brown,

who first described the random movements of pollen grains immersed in a fluid

observed under a microscope (1827). Generally, it now signifies a mathematical

model (Sornette, 2004, p25), used to describe a certain type of continuous (in time)

stochastic process. Physical examples include the motion of particles suspended

in a fluid (famously studied by Einstein (1905)) and stockmarket fluctuations.

Brownian motion is one of the simplest random motion models: if we consider the

motion of a particle suspended in a fluid at time t0 and position x(t), it will make

a random displacement δx(t, τ) in time τ to position x(t + τ) = x(t) + δx(t, τ) at

time t0 + τ . The distribution of the “steps” δx(t, τ) is found to be Gaussian and

independent of its position coordinates. Brownian motion can then be summarised

by three intrinsic properties

• The steps δx(t, τ) = x(t + τ) − x(t), t ≥ t0 have a Gaussian distribution

and are independent identically distributed (i.i.d.) variables

• The step δx(tn, τ) = x(tn + τ) − x(tn) is independent of previous steps

t0 < t1 < t2 < · · · < tn.

• The mean step is zero, < δx(t, τ) >= 0

Figure 2-1 shows a one dimensional Brownian walk constructed from 1×106 steps

taken from a normal distribution.
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Figure 2-1: Brownian walk constructed from 1 × 106 normally distributed steps
over [−1 : 1].

Consider further the simple random walk shown in Figure 2-1. Taking t0 = 0

and x(t0) = 0, the position at time tn is given by (Sornette, 2004, p24)

x(tn) =

i=n
∑

i=1

δx(ti, τ) (2-1)

If we take < x(tn) > as the average position at time tn over a large assembly of

walks, we obtain from equation 2-1

< x(tn) >=

i=n
∑

i=1

< δx(t, τ) >= n < δx(τ) > (2-2)

We can now define the velocity of this average total displacement < x(tn) >

v =
< x(tn) >

tn
=

n < δx >

nτ
=

< δx >

τ
(2-3)

The typical extent of the random walk around its mean position vt is therefore

given by the variance < x(tn)2 > − < x(tn) >2

< x(tn)2 > − < x(tn) >2 =
i=n
∑

i=1

i=n
∑

j=1

(< δx(ti)δx(tj) > − < δx(ti) >< δx(tj) >)

=
i=n
∑

i=1

i=n
∑

j=1

Cij (2-4)

where Cij =< δx(ti)δx(tj) > − < δx(ti) >< δx(tj) > is the correlation function

of the steps δx(ti) and δx(tj). One of our assumptions is that these steps are
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uncorrelated, therefore we can write Cij as

Cij =
[

< δx2 > − < δx >2
]

δij (2-5)

which can be substituted into equation 2-4 to yield

< x(tn)2 > − < x(tn) >2= n
[

< δx2 > − < δx >2
]

≡ nσ2
δx (2-6)

where σ2
δx =< δx2 > − < δx >2 is the variance of the probability density function

of the δx variables. If we define the diffusion coefficent D =
σ2

δx

2τ
and recall that

n = t
τ
, we obtain the diffusion law relating the variance of the sum of n i.i.d.

variables to the individual step variance:

< x(tn)2 > − < x(tn) >2= 2Dt (2-7)

Equation 2-7 can be generalised to d dimensions by applying the rule of additivity

of the variance of each projection of the random walk position over each direction.

Finally, the Brownian walk exhibits the property of self-affinity or fractality, which

means sub-sections of the system are statistically similar to the whole system

under a suitable mathematical transformation (see definition of fractal dimension

in Chapter 1). For our dT = 1 Brownian walk in Figure 2-1, where dT is the

topological dimension, we can estimate the total length L of the walk unfolded as

approximately

L ∼
√

σ2
x + t2 ∼ t

√

1 +
(σx

t

)2

(2-8)

For small τ scales, (σx/t)
2 is much larger than one, as we know from equation 2-6

that as n = t/τ , σx ∝ 1/τ . Therefore equation 2-8 becomes

L ∼ t

√

(σx

t

)2

∼ t
1
2 (2-9)

We can think of t as the resolution ǫ in equation 1-1, which leads to

df = d − 1

2
=

3

2
(2-10)

A large scales however, the converse is true and we find L ∼ t and therefore df = 1.

If we generalise our Brownian walk to d, dt ≥ 2 dimensions,
√

σx is a representative

diameter estimate and
√

σδx is a natural resolution scale, we have

n =

(

σx

σδx

)df

(2-11)
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From 2-6 the fractal dimension df of a Brownian walk in d ≥ 2 is 2.

Another quantity of interest, often used in fractal analysis, is the Hurst exponent

H . For walks based on i.i.d. steps in a space of embedding dimension d, H is

directly related to the fractal dimension df such that

df = d − H (2-12)

The Hurst exponent helps to quantify the predictability of a time series and is

generally used in the analysis of financial timeseries, to identify trends (see for

example Sánchez Granero et al., 2008, and references therein). It measures the

relative tendency of a time series to either regress to a longer term mean value or

“cluster” in a given direction. From equation 2-12, a Hurst exponent close to 0.5

implies Brownian walk behaviour, whereas 0 < H < 0.5 is a sign of anti-persistent

behaviour and 0.5 < H < 1 of persistent (data shows trends) behaviour. There are

different methods of estimating the Hurst parameter, such as generalised structure

functions, which will be examined later.

Although many natural systems exhibit Brownian walk characteristics, there are

other types of stochastic processes. We will introduce two further types of time-

series, the Lévy flight and the p-model which respectively demonstrate the effects

of extreme events and multifractality (a single fractal dimension is no longer suf-

ficient to describe the system’s dynamics).

2.2.2 Lévy Flight

Lévy flights are named after the french mathematician Paul Lévy (1886 − 1971)

and are a class of random walks where the step size δx is taken from a probability

distribution P (δx), which has power law tails

P (δx) ∝ δx−1−β (2-13)

We see from equation 2-13 that a process with such scaling has no variance (the

integral
∫∞

0
δx2P (δx)d(δx) does not converge/exist) for 0 < β < 2 and when

0 < β ≤ 1 it has no mean (=
∫∞

0
δxP (δx)d(δx)) defined either. For β ≥ 2, we

recover processes with finite variance and mean such as the Brownian walk. The

following algorithm (Siegert & Friedrich, 2001) is used here to generate the Lévy
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flight steps or increments:

δx =
sin(βr)

(cos(r))
1
β

(

cos[(1 − β)r]

γ

)

(1−β)
β

(2-14)

where r is a uniformly distributed random variable in the range [−π/2, π/2] and γ

is an exponentially distributed random variable with mean 1, which is independent

of r. β is set equal to 1. Figure 2-2 shows a 1 × 106 step Lévy flight generated

using 2-14.
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Figure 2-2: Lévy walk with β = 1 constructed from 1×106 Lévy distributed steps

As we can see in Figure 2-2, a Lévy walk is dominated by occasional large

jumps, this type of behaviour is observed in many real-life systems such as some

financial markets (p162 Wolfgang & Baschnagel, 1999), photon diffusion in hot

atomic vapours (Mercadier et al., 2009) and more generally anything dominated

by extreme events at large times. These large events or outliers can lead to anoma-

lous behaviour when calculating the system’s statistics as in practice we are dealing

with finite length timeseries with a defined mean and variance, and therefore a

finite sample size saturation is observed. A method of addressing this problem,

while still preserving the underlying statistics of the system, is introduced later.

Finally we can note that the β exponent, characteristic of the Lévy flight, is re-

lated to the Hurst exponent via H = 1
β
. This will also be dicussed later when we

show the functional form of the Lévy flight probability density function.
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2.2.3 p-Model

We now introduce a multifractal timeseries, namely the p-model, already described

in Chapter 1, section 1.4.4. In Figure 2-3 we show a p-model for p = 0.6 (data

courtesy of K. Kiyani).
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Figure 2-3: p-model constructed from 1.05 × 106 p-model generated steps

As we can see from Figure 2-3, the p-model is indeed highly intermittent or

“bursty”, which is what makes it an attractive model for anisotropic MHD turbu-

lence in the solar wind. Recall also that the p-model is multifractal, i.e. a single

fractal dimension is not sufficient to quantify the system’s dynamics at every point

(Bohr et al., 1998, p34 and references therein).

We now consider different practical methods of extracting the scaling information

from these timeseries.

2.3 Power Spectral Density

2.3.1 Introduction

The power spectral density of a process is a positive real function dependent

on frequency and associated with a stationary stochastic signal or deterministic

function of time. The spectral density is often used to identify periodicities in a

signal. If f(t) is a finite-energy signal (or square integrable, which means that
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the integral of the square of its absolute value, over the interval considered, is

finite), the spectral density F (w) of the signal is the square of the magnitude of

the continuous Fourier transform of the signal

F (w) = | 1√
2π

∫ ∞

−∞

f(t)e−iωtdt|2 (2-15)

where ω is the angular frequency (ω = 2πf). It is also possible to define a discrete

Fourier transform for the case when the signal is discrete with values fn over an

infinite number of elements:

F (ω) = | 1√
2π

∞
∑

n=−∞

fne
−iωn|2 (2-16)

In order to build a meaningful spectral representation for a stochastic process, we

need to consider the spectral representation theorem (p127 Percival, 1993). Sta-

tionary processes have constant variance over time and unless we are dealing with

a harmonic process, they are also generally not periodic, which means we cannot

define their spectral properties over a subrange of frequencies. We quote here

the spectral representation theorem for a stationary, continuous parameter, con-

tinuously stochastic and real-valued process X(t) with zero mean (p134 Percival,

1993)

X(t) =

∫ ∞

−∞

ei2πftdZ(f) (2-17)

where Z(f) has specific properties defined in (p135 Percival, 1993). For weakly

stationary random processes the following relationship can be derived between the

spectral density function F (w) and the autocorrelation function R(τ):

F (w) =

∫ ∞

−∞

R(τ)e−iωτdτ (2-18)

Equation 2-18 is also known as the Wiener-Kinchin formula and states that the

power spectral density is the Fourier transform of the corresponding autocor-

relation function. The power spectral scaling exponent α can be expressed as

α = ζ(2) + 1 for the power spectrum F (ω) ∼ ω−α of a non-stationary function

comprised of stationary i.i.d. increments, see for example Frisch (p54 1995). For

a fractal process we have the result that α = 2H + 1. We now consider the power

spectra of our model timeseries defined previously.

47



CHAPTER 2. EXPERIMENTAL METHODS

2.3.2 FFT Method

A fast Fourier transform (FFT) technique is applied to the data, where each

timeseries is split up into windows of 212 = 4096 points with a 50% overlap on

the previous window. A Hanning window is applied to each of these sub-intervals

and the FFT is computed. An average is then taken of these FFTs to obtain the

power spectrum for each dataset.
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Figure 2-4: The PSDs for the Brownian walk, Lévy flight and p-model timeseries
defined previously. The PSD have an f−α power law behaviour where α is the
power spectral exponent. The PSDs are all fitted using linear regression between
the frequencies 3.255 × 10−5 Hz to 2 × 10−3 Hz and the following values of α
obtained: Brownian walk, α = 1.989 ± 0.005; Lévy flight, α = 1.987 ± 0.001 and
p-model, α = 0.864 ± 0.012.

Using α = ζ(2)+1, the PSD analysis allows us to estimate H for the Brownian

walk and the Lévy flight. We obtain H = 0.495 ± 0.003 for the Brownian walk

case and H = 0.494± 0.001 for the Lévy flight. The result for the Brownian walk

is what we would expect from our previous analysis, however the Lévy flight H
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exponent is approximately only half what we would expect, this is due to finite

data size effects, which we shall investigate further on. It should also be noted

that PSD analysis only gives information on the second order scaling exponent.

For information on higher order scaling exponents, other analysis methods are

necessary.

2.4 Probability Density Function

2.4.1 PDF Collapse

As mentioned previously the fluctuations in a stochastic process x(t) can be

characterised on different time scales τ by considering differences δx(t, τ) over

a timescale τ (e.g. Chapman et al., 2005a). The probability density functions or

PDFs, P (y, τ), of these increments for the different τ can be displayed and tested

for self-similar behaviour.

First it will be assumed that the δx(n, τ) satisfy the following general scaling

relationship:

δx(bτ) ≡ f(b)δx(τ) (2-19)

where b is some scaling factor, ≡ denotes an equality in the statistical or dis-

tribution sense and f is some scaling function. Statistical stationarity in the δx

increments is also assumed. As is that b and f(b) are both positive and that (2-19)

can be interpreted as a generalised form of self-affinity. From (2-19) the following

scaling transformations can be derived:

τ ′ = bτ, δx′ = f(b)δx, (2-20)

where the primed variables are scaled quantities. The conservation of probability

under change of variables relates the PDFs of δx and δx′ by:

P (δx, τ) = P ′(δx′, τ ′)
|d(δx′)|
|d(δx)| (2-21)

where P (δx, τ) is the PDF associated to δx and P ′(δx′, τ ′), the one associated to

δx′. Using the transformations defined in (2-20), (2-21) can then be expressed as:

P (δx, τ) = f(b)P ′(f(b)δx, τ ′) (2-22)
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This implies that the given stochastic process, here δx(t), is statistically self-

similar. In other words a process on scale τ ′ (and δx′) can be mapped onto

another process on a different scale τ (and δx) via the scaling transformations

given by (2-20) Kiyani et al. (2006). The PDFs of both these processes are then

related by (2-22).

As b is an arbitrary variable, we can thereby simplify things further by choosing

b = τ−1, which gives us:

P (δx, τ) = f(τ−1)P ′(f(τ−1)δx, 1) = f(τ−1)Ps(f(τ−1)δx) (2-23)

This is equivalent to saying that any PDF P of increments δx characterised by

an interval τ can be collapsed onto a single unique PDF Ps of rescaled increments

f(τ−1δx) and interval τ = 1 by the above scaling relation. For self-affine scaling,

the scaling function f takes the form of a power law, f(b) = bh = τ−H . H is again

the Hurst exponent. Equation (2-23) now becomes:

P (δx, τ) = τ−HPs(τ
−Hδx) (2-24)

This method of PDF collapse requires knowledge of the Hurst exponent, as we have

seen PSDs are not always a reliable method of estimating H , we will investigate

another method to obtain H , namely generalised structure functions in the next

section.

However another equivalent method of renormalization is possible using the mean

and standard deviation of the data. We will attempt a scaling collapse on the

different models’ fluctuations PDFs using this method initially. The PDFs are

renormalized using (e. g. Greenhough et al., 2002a)

P [(x− < x >)] = σ−1P [σ−1(x− < x >)] (2-25)

where < · · · > denotes the ensemble mean and σ is the standard deviation of the

distribution. For a self-affine process, knowledge of the functional form of the PDF,

and of the Hurst exponent H , is sufficient in principle to build a stochastic differ-

ential equation model for the process (e. g. Chapman et al., 2005a; Kiyani et al.,

2007). Figure 2-5 shows the PDF for the increments of the Brownian walk shown

in Figure 2-1, the collapsed PDF using equation 2-25 is also shown. The time-

series is differenced over τ = 1 + 30n for n = 0 to n = 16, i.e. τ = 1 to τ = 481.
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The PDFs of the increments of a Brownian walk theoretically have a Gaussian

distribution given by

PB(δx, τ) =
1

σ
√

2π
e

−(δx−µ)2

2σ2 (2-26)

where µ is the mean of the data and σ is the standard deviation.
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Figure 2-5: The PDFs for the steps of the Brownian walk (Figure 2-1) for τ = 1
to τ = 481 in steps of 30. The right hand panel shows the PDFs renormalised by
their mean and standard deviation. For clarity the legend only shows τmin, τmax

and an intermediate τ .

Figure 2-5 clearly shows the Gaussian nature of the Brownian walk increments,

the fit parameters for the Gaussian fit (equation 2-26) of the collapsed curves are

µ = 0 and σ = 1, consisent with the renormalisation process. The PDFs collapse

onto a single curve confirming the self-similar nature of the process. We can further

confirm the normal nature of the statistical flucutuations graphically by using a

normal probability plot. On such a plot, shown in 2-6, the empirical probability

is plotted versus the data value for each point in the data. The fluctuations will

appear as a straight line if they are from a normal distribution, other distributions

introduce curvature.
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Figure 2-6: Normal probability plot for the steps of the Brownian walk (Figure
2-1) for τmin = 1 (green), τmin = 281 (yellow) and τmax = 481 (black). Between
the 25th and 75th percentiles, the datapoints are connected and this line is then
extended to the full plotted range (dashed red line).

In Figures 2-7 and 2-8 we repeat this procedure for the Lévy walk (Figure 2-2)

and the p-model (Figure 2-3).

(a) (b)

Figure 2-7: The PDFs for the steps of the Lévy flight (Figure 2-2) for τ = 1 to
τ = 481 in steps of 30. The right hand panel shows the PDFs renormalised by
their mean and standard deviation. For clarity the legend only shows τmin, τmax

and an intermediate τ .

Figure 2-7 shows that this method of rescaling does not work for the Lévy

flight, even though it is a mono-fractal process. This is because, as we mentioned

previously, a Lévy flight has infinite variance for 0 < β < 2 so the renormalisa-

tion using the mean and standard deviation of the data cannot be correct. As we
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are dealing with a finite dataset, these quantities exist but will be governed by

the large outliers in the PDF and cannot give any meaningful statistical informa-

tion. Theoretically the Lévy flight PDF is defined by the Fourier transform of its

characteristic function

PL(δx, τ) =
1

2π

∫ ∞

−∞

eikδxe−γτ |k|βdk (2-27)

where γ ≥ 0 and τ ≥ 0 are the characteristic scales of the process, for simplicity

we consider γ = 1. From equation 2-27, the scaling properties of PL(δx, τ) are

PL(δx, τ) = τ− 1
β PL(τ− 1

β δx, 1) (2-28)

By identification with equation 2-24, this gives the previously mentioned result

H = 1/β.
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Figure 2-8: The PDFs for the steps of the p-model (Figure 2-3) for τ = 1 to
τ = 481 in steps of 30. The right hand panel shows the PDFs renormalised by
their mean and standard deviation. For clarity the legend only shows τmin, τmax

and an intermediate τ .

The p-model PDF in Figure 2-8 is again heavy tailed, showing the presence

of large steps in the timeseries. However for the peak region of the PDF, the

collapsing process works relatively well. We can further extend our PDF analysis

by using GSFs to define the Hurst or ζ exponents of these models and retest the

PDF collapse defined in equation 2-24.
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2.5 Generalised Structure Function

2.5.1 Introduction

Scaling can be quantified by computing the generalized structure functions (GSFs)

of the fluctuations, 〈| δx |m〉, where 〈· · · 〉 again denotes ensemble averaging. As-

suming weak stationarity, GSFs are related to the scale τ of the fluctuation by

a scaling Sm = 〈| δxτ |m〉 ∼ τ ζ(m). In principle, the scaling exponents ζ(m) are

obtained from the gradients of the loglog plots of Sm versus τ . In practice, these

are affected by the fact that both the length of the dataset, and the range of τ

over which we see scaling, are finite. We now outline a method to optimise this

process to obtain a good estimate of the exponents. Let us begin by discussing a

simple self-affine process, the Brownian walk, where Sm ∼ τ ζ(m), ζ(m) = Hm. For

a robustly self-similar process, any point on the PDF will scale as τ−H (self-affine

property), so that in principle one can use any subset of the PDF to obtain H .

We seek to choose the most statistically significant subset, and we do this by re-

computing H for different regions of the PDF, if the process is fractal, we expect

to find the same H . To probe the full range of behaviour in the PDF and the tails

we need to test for convergence to a single value of H for a wide dynamic range

of the PDF, for example ∼ 20σ. A fractal (self-affine) timeseries will in principle

always give the same value of H if computed from any point, or range of values,

of the PDF. The largest values explored by the PDF of the data are the least well

sampled statistically. It follows that if we successively remove these outliers we

should see, for a fractal timeseries, rapid convergence to a constant H value.

We test this for the Brownian walk, Lévy flight and p-model by computing the

ζ(m) from the GSFs and then plotting a representative value ζ(2) as a function

of the percentage of removed points. This is shown in Figure 2-9 for a Brownian

walk, see also Kiyani et al. (2007). The errors are obtained by combining the least

squares error in the ζ(m) value fitted across the full range, with the standard devi-

ation of the ζ(m) values fitted across varying lengths of points, the latter starting

with a minimum length of about half the total fitting range length, centered on

the middle of the full fitting range. This method is applied for all the exponent

statistics throughout this Chapter. This allows us to test the robustness of our
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chosen scaling range by examining the variation of the ζ(m) exponents as a func-

tion of the fitting range. This is shown in Figure 2-9 for a Brownian walk, see also

Kiyani et al. (2007).
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Figure 2-9: The top left panel shows the GSFs for the Brownian walk computed
for τ = 1 to τ = 481 in steps of 3 for both raw (“.”) and 0.4% conditioned data
(“×”) fitted to τ = 4 to τ = 118 (red lines). The top right panel shows how the
fitting range is tested by fitting between τ = 46 to 76 and then increasing the
fitting range on either side to the next consecutive τ , up to τ = 4 to τ = 118. The
bottom panels show the scaling exponents ζ(m) plotted as a function of moment
m = 1 to 6 for different percentages of removed points (left panel) and ζ(2) plotted
against the percentage of removed points (right panel).

The scaling for a Brownian walk with normally distributed steps demonstrates

the expected behaviour for a fractal process without heavy tails (2-9). We can

quantify the observed scaling by ζ(2) = 1.001±0.001, which gives a Hurst exponent

of 0.501 ± 0.001. Within errors this is the same as the theoretical H = 0.5 value.

The analysis is repeated for the Lévy flight and the p-model in Figures 2-10 and

2-12.
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Figure 2-10: The top left panel shows the GSFs for the Lévy flight (β stable with
β = 1) computed for τ = 1 to τ = 481 in steps of 3 for both raw (“.”) and 0.4%
conditioned data (“×”) fitted to τ = 4 to τ = 118 (red lines). The top right panel
shows how the fitting range is tested by fitting between τ = 46 to 76 and then
increasing the fitting range on either side to the next consecutive τ , up to τ = 4
to τ = 118. The bottom panels show the scaling exponents ζ(m) plotted as a
function of moment m = 1 to 6 for different percentages of removed points (left
panel) and ζ(2) plotted against the percentage of removed points (right panel).

A Lévy flight has a heavy-tailed distribution, which means that finite-size

effects can stongly bias the results. This is manifest in the lower panel of Figure

2-10 by the saturation/roll-over effect in the ζ(m) plots at m > β (references

for saturation effect). However upon the successive removal of the most extreme

and therefore badly-sampled outliers, we recover the expected scaling behaviour,

which is robust beyond the removal of ∼ 0.2% (∼ 2000 values) extreme points.

Again we can quantitatively estimate H from ζ(2) = 2.03 ± 0.03, which gives

H = 1.02 ± 0.02. This is again similar within errors to the expected value of

H = 1/β = 1. In Figure 2-11, these values of H are used in equation 2-24,
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P (δx, τ) = τ−HPs(τ
−Hδx) to test the PDF collapse for the Brownian and Lévy

cases.
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Figure 2-11: The renormalised PDFs for the steps of the Brownian walk (left
panel) and the Lévy flight (right panel) for τ = 1 to τ = 481 in steps of 30.
The PDFs are collapsed using the value of H , obtained from the GSF analysis, in
equation 2-24. For clarity the legend only shows τmin, τmax and an intermediate
τ .

We can see in Figure 2-11, that the collapse process using the Hurst exponent

works for both the Lévy flight and the Brownian walk, confirming the monofractal

nature of these processes. However, in the heavy tails of the Lévy flight PDF, the

collapse doesn’t work, hence the need to remove these outliers, when attempting

to recover the scaling behaviour. The p-model GSF analysis is now considered.
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Figure 2-12: The top left panel shows the GSFs for the p-model (generated with
p = 0.6) computed for τ = 1 to τ = 481 in steps of 3 for both raw (“.”) and 0.4%
conditioned data (“×”) fitted to τ = 4 to τ = 118 (red lines). The top right panel
shows how the fitting range is tested by fitting between τ = 46 to 76 and then
increasing the fitting range on either side to the next consecutive τ , up to τ = 4
to τ = 118. The bottom panels show the scaling exponents ζ(m) plotted as a
function of moment m = 1 to 6 for different percentages of removed points (left
panel) and ζ(2) plotted against the percentage of removed points (right panel).

A multifractal can never return a single constant value of H as one changes the

range of values over which H is computed; this can be seen for the multifractal

p-process (Meneveau & Sreenivasan, 1987) in the lower panels of Figure 2-12.

To conclude, a plot of the value of the exponent (here ζ(2)) as we succesively

remove outliers can distinguish fractal and multifractal processes. For processes

that are fractal, it also provides a more precise determination of the single ex-

ponent H that characterizes the timeseries. Also, each successful computation

of a GSF at increasingly high order yields additional information about the na-

ture of the PDF of fluctuations. For practical applications of the GSF analysis
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to a broad range of datasets, see for example: MHD turbulence simulations -

Merrifield et al. (2005, 2006, 2007); solar wind turbulence - Horbury & Balogh

(1997); Hnat et al. (2005); Chapman & Hnat (2007); Nicol et al. (2008); geomag-

netic indices Hnat et al. (2003); laboratory plasma turbulence - Budaev et al.

(2006) and references therein.

2.6 Extended Self-Similarity

2.6.1 Introduction

We will use our model timeseries to demonstrate extended self-similarity (ESS),

already introduced in Chapter 1. Recall that ESS proceeds by replacing τ by

an initially unknown generalized timescale g(τ), such that formally Sm(τ) =

[Sm′(τ)]ζ(m)/ζ(m′). In Figure 2-13, we show ESS for the Brownian walk, where

the Sm are plotted against S3 on loglog plots. The slopes of the ESS plots, now

give us the ratios of the scaling exponents ζ(m)/ζ(3). We choose S3 by convention,

as ζ(3) = 1 for ideal Kolmogorov hydrodynamic scaling.
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Figure 2-13: The top left panel shows ESS log10Sm versus log10S3 for the Brownian
walk computed for τ = 1 to τ = 481 in steps of 3 for both raw (“.”) and 0.4%
conditioned data (“×”) fitted to τ = 4 to τ = 352 (red lines). The top right panel
shows how the fitting range is tested by fitting between τ = 178 to 193 and then
increasing the fitting range on either side to the next consecutive τ , up to τ = 4
to τ = 352. The bottom panels show the scaling exponents ζ(m)/ζ(3) plotted
as a function of moment m = 1 to 6 for different percentages of removed points
(left panel) and ζ(2)/ζ(3) plotted against the percentage of removed points (right
panel).

The Brownian walk is still perfectly behaved and the ratio ζ(2)/ζ(3) ∼ 0.67 as

we would expect from our prior knowledge of the fractal scaling behaviour and the

Hurst exponent, i.e. ζ(2)/ζ(3) = 2H/3H ∼ 0.67. It is important to stress the ESS

cannot give any quantitative information on the scaling exponents, only on their

ratios. However it is a useful tool for identifying extended scaling regions and the

type of scaling (fractal, multifractal etc.) present. The analysis is repeated for the

Lévy Flight (Figure 2-14) and the p-model (2-15).
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Figure 2-14: The top left panel shows ESS log10Sm versus log10S3 for the Lévy
Flight computed for τ = 1 to τ = 481 in steps of 3 for both raw (“.”) and 0.4%
conditioned data (“×”) fitted to τ = 4 to τ = 352 (red lines). The top right panel
shows how the fitting range is tested by fitting between τ = 178 to 193 and then
increasing the fitting range on either side to the next consecutive τ , up to τ = 4
to τ = 352. The bottom panels show the scaling exponents ζ(m)/ζ(3) plotted
as a function of moment m = 1 to 6 for different percentages of removed points
(left panel) and ζ(2)/ζ(3) plotted against the percentage of removed points (right
panel).

Figure 2-14 shows the convergence to fractal behaviour of the Lévy flight, again

after removal of ∼ 0.2% of the outliers. The ζ(2)/ζ(3) converges to ∼ 0.67, which

is the result expected for any mono-fractal process under ESS.
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Figure 2-15: The top left panel shows ESS log10Sm versus log10S3 for the p-model
computed for τ = 1 to τ = 481 in steps of 3 for both raw (“.”) and 0.4% conditioned
data (“×”) fitted to τ = 4 to τ = 352 (red lines). The top right panel shows how
the fitting range is tested by fitting between τ = 178 to 193 and then increasing
the fitting range on either side to the next consecutive τ , up to τ = 4 to τ = 352.
The bottom panels show the scaling exponents ζ(m)/ζ(3) plotted as a function of
moment m = 1 to 6 for different percentages of removed points (left panel) and
ζ(2)/ζ(3) plotted against the percentage of removed points (right panel).

The behaviour of the ζ(m)/ζ(3) exponents for the p-model, shown in the lower

panels of Figure 2-15 confirm again the multifractal nature of the p-model process

and the impossibility to identify a single characteristic Hurst exponent. Tu et al.

(1996) present a derivation for the scaling exponents ζ(m) of a p-model for fully

developed turbulence, assuming that ζ(3) = 1

ζ(m) = 1 − log2

(

pm/3 + (1 − p)m/3
)

(2-29)

Where p and (1 − p are the fractions of energy transferred from a mother eddy

to its daughter eddies. We can see that for p=0.5 this reduces to fractal scaling
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and exponents linear in m, whereas p = 1 represents the most intermittent case.

ESS forces ζESS(3) = ζ(3)/ζ(3) = 1 we can therefore compare equation 2-29 with

our experimental results. In Figure 2-16, the ζESS(m) for 0.4% conditioned data

overlaid with the ζ(m) obtained from equation 2-29 for p = 0.6.
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Figure 2-16: The ζESS(m) for 0.4% conditioned data (blue) are compared to the
ζ(m) exponents obtained from the p-model (red) described in equation 2-29.

From Figure 2-16, it is clear that our experimental results are within errors of

the theoretical p-model results. It is therefore possible to extract some quantitative

information from the statistical analysis of intermittent or multifractal timeseries,

which can give some insight into the nature of the process under consideration

2.7 Conclusions

We have used various spectral and statistical analysis techniques to probe the

scaling properties of three very different timeseries.

• For fractal processes such as the Brownian walk, the correct scaling and

Hurst exponent (H = 0.5) is deduced from the power spectra slope and the

generalized structure functions.

• The self-affine nature of a fractal process is shown by the PDF collapse and

rescaling using H and the standard deviation and mean. These methods
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should indeed be equivalent as the GSF scaling assumption for a fractal

process, Sm =< |δx|m >∼ τ ζ(m), ζ(m) = Hm, means that both the standard

deviation and the mean of the data should be scaling with H .

• Processes, which are still monofractal, but have a more heavy-tailed PDF

like the Lévy flight, require more careful analysis due to finite size system

effects.

• The correct scaling can be recovered upon application of a data conditioning

technique, which removes the poorly sampled outliers from the statistics

calculations.

• The p-model is shown to be be multifractal and under ESS, consistent with

the expected scaling exponents.

2.8 Further Analysis Methods

These methods are by no means exclusive and other techniques abound to probe

the scaling characteristics of timeseries. The original method of determining the

Hurst exponent, proposed by Hurst in (Hurst et al., 1965), is known as rescaled

range analysis. The ratio of the range (R) of a timeseries x(t, τ), where R is defined

as the difference between the maximum and minimum values of the cumulative

sum of x(t, τ) over a timespan τ , to the scale S, which is taken to be the standard

deviation of x(t), has a power-law scaling shown in equation 2-30.

R

S
= (cτ)H (2-30)

where the coefficent c was taken to be 0.5 by Hurst and H is the Hurst exponent.

R and S are mathematically defined by

R = max1<t<τ (x(t, τ)) − min1<t<τ (x(t, τ)) (2-31)

and

S =

[

1

τ

τ
∑

t=1

(δx(t)− < δx >τ )
2

]
1
2

(2-32)

where

x(t, τ) =
t
∑

t′=1

(δx(t′)− < δx >τ ) (2-33)
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This method gives an indication of the variability of a system over time, and is

similar in principle to the way in which we estimated the fractal dimension of a

Brownian walk in equation 2-11. The problem often arises in judging over which

range of τ to estimate H . If τ is too small, then short time correlations can dom-

inate and the Hurst exponent is no longer a good indication of any long range

dependence in the data. At too large scales, there may be insufficent data for

good statistics.
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Chapter 3

Ulysses results

3.1 Introduction

A key objective of the present work is to relate aspects of the Ulysses solar wind

measurements described in the next section: their spectral power density; their

intermittency (Bruno et al., 2003); and their spatial location. Recent structure

function analysis using WIND and ACE data, taken in the ecliptic plane at 1AU,

shows evidence of scaling within the inertial range for |B|2 that is solar cycle

dependent (Kiyani et al., 2007). To unravel the interplay between the large scale

coronal driver and the evolving inertial range turbulence, we therefore make use of

Ulysses polar passes. Ulysses has performed six polar passes and previous studies

include Smith & Balogh (1995); Horbury et al. (1996b); Horbury & Balogh (2001)

and references therein.

In this Chapter, we seek to characterize the intermittency therefore we remove

the minimum of outliers consistent with obtaining good representation of the tails

of the probability density functions (PDFs) (Kiyani et al., 2006). This is distinct

from, but complimentary to, approaches that seek to eliminate the intermittency

by removing significant fractions of the tails of the PDFs, in order to probe the

remnant scaling (S. Habbal, private communication, 2007). We perform gener-

alized structure function (GSF) analysis, on intervals of quiet solar wind as seen

by Ulysses. We show that while GSF is not sufficient to reveal scaling in the

inertial range, extended self-similarity (ESS) successfully recovers self-similar be-

havior. Furthermore we examine the possible latitudinal and radial dependences

of both the inertial and “1/fα”, α → 1, ranges, and conclude that the inertial

range, unlike the “1/fα” regime, shows very little variation with spacecraft posi-

tion over the 60 days considered. We focus here on magnetic field fluctuations for

our analysis rather than Elsässer variables, since these involve velocity measure-
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ments at lower cadence; however see Sorriso-Valvo et al. (2007), where local (in

time) scaling properties are also considered.

3.2 Quantifying Scaling

As we saw in Chapter 2, a time series y(t) exhibits scaling (Sornette, 2004), if

Sm = 〈|y(t + τ) − y(t)|m〉 ∼ τ ζ(m). Here the angular brackets denote an ensemble

average over t, implying an assumption of weak stationarity. In practice, we

examine the data over a sufficiently large range of time intervals τ in order to

establish the power law dependence; that is, the scaling exponent ζ(m).

As discussed in Chapter 1, section 5.4, the point of contact between time and

length scales is the Taylor hypothesis (Taylor, 1938), where in the high speed flow

the time interval τ plays the role of a longitudinal lengthscale. The power law

dependence of the Sm expresses a generic scaling property and since the coronal

magnetic carpet is known to be fractal and the large scale coronal dynamics as

seen in solar flare statistics exhibit scaling, one might anticipate that a propagat-

ing signature of coronal origin might also show scaling which could be captured

by the ζ(m) scaling exponents. In practice, we test for scaling by computing

the associated generalized structure functions or GSF (Burlaga & Klein, 1986;

Ruzmaikin et al., 1993, 1995b; Marsch & Tu, 1996; Horbury & Balogh, 1997, and

references therein). As shown previously, for a perfectly self-similar process, such

as the Kolmogorov cascade or a random fractal, ζ(m) depends linearly on m. Tur-

bulent flows are typically intermittent, nevertheless, Sm scaling with τ would be

expected in uniform, fully developed turbulence in an infinite domain. In practice,

power law scaling is not always found. As detailed in Chapter 1, section 5.6, this

may reflect the finite spatial domain, or that the turbulence is not fully evolved.

We will see that this is the case for the inertial range in quiet intervals of Ulysses

observations. However extended self-similarity (ESS) does turn out to be applica-

ble to our datasets.

The measured vector magnetic field time series, B(t), is differenced for time lags

τ in the range 1 minute to 50 minutes, yielding a series δyi(t, τ) for its three
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components

δyi(t, τ) = Bi(t + τ) − Bi(t) (3-1)

where i denotes the component of B under consideration. Assuming time-stationarity,

the t dependence in δyi(t, τ) can be dropped:

Sm(τ) = 〈|δyi|m〉 =

∫ ∞

−∞

|δyi|mP (δyi, τ)d(δyi) (3-2)

where P (δyi, τ) is the probability density function of δyi, < · > again denotes

temporal averaging and m is a positive integer. The effect of outliers becomes

increasingly apparent in the higher order structure functions, subject to statistical

constraints, which typically limits consideration to m ≤ 6. We therefore apply the

conditioning technique (Kiyani et al., 2006) outlined in Chapter 2.

3.3 The Datasets

In 1995, the Ulysses spacecraft spent three months above the North polar coronal

hole, in quiet fast solar wind. As this was close to a period of minimum solar

activity, the magnetic topology of the Sun was relatively simple, free from transient

events such as solar flares. The Sun’s surface magnetic field was actually dipolar

during this time, positive or outwards in the Northern hemisphere and negative

or inwards in the Southern hemisphere (Forsyth et al., 1996).

Throughout this Chapter, we present results separately for each 10 day con-

tiguous interval from day 180 to 239 of 1995, while Ulysses was above the North-

ern coronal hole. Each dataset comprises approximately 13, 000 datapoints of

one minute averaged measurements. This enables us to explore both the scaling

properties of the inertial and “1/fα” ranges and to test for radial and latitudinal

dependencies. Over these 60 days, Ulysses moved from 1.7926 AU to 2.2043 AU

heliospheric distance and through 73.76◦ to 77.03◦ heliographic latitude, with a

peak at 80.22◦ on days 212 and 213. The successive time intervals are compared

in order to identify any radial or latitudinal trend. The study is restricted to the

radial (R), tangential (T ) and normal (N) magnetic field components and uses

one minute averaged measurements in order to remove any possible sub-spacecraft

spin artefacts.
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3.4 Ulysses Observations and Scaling

3.4.1 Power Spectra

The magnetic field power spectra are computed using the multitapering spectral

analysis method (Percival, 1993).
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Figure 3-1: Log-log plots of the B-field components’ power spectra for days
180 − 189. Two regions with different scaling exponents are distinguishable with
a break between frequencies at 10−3.5 − 10−3Hz, consistent with previous results
(Horbury et al., 1996a). For comparison purposes, −1 and −5/3 power scaling
laws are also shown. The power spectra for the other time intervals examined
show similar behavior.

In Figure 3-1 we see that the power spectra show an inertial range with a

Kolmogorov-like behavior at higher frequencies and a characteristic flattening of

the spectra at lower frequencies. The existence of this regime is well-known in

many physical processes (Bak et al., 1987), including the interplanetary magnetic
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field (Matthaeus et al., 2007). The power spectra reveal power law scaling, but

give no information on intermittency or on whether the turbulent cascade is active;

for this we turn to the associated GSFs.

3.4.2 Generalized Structure Functions

We first summarise the scaling behavior seen in the different time intervals in

Figure 3-2, where we plot S3 versus τ for the data conditioned by clipping 0.1%

outliers following the technique of Kiyani et al. (2006).
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Figure 3-2: Log-log plots of third order structure function S3 versus sampling
interval τ for all three components of magnetic field fluctuations in the solar wind
measured by the Ulysses spacecraft during contiguous intervals of ten days, which
are plotted separately on each panel, from day 180 to day 239 of 1995. Only the
0.1% conditioned data is shown for clarity.

The existence of two distinct scaling regions in Figure 3-2 is clear. For the small

τ region we see the inertial range with scaling exponents ζS(m), whereas the large
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τ region corresponds to the “1/fα” range with scaling exponents ζL(m). Figure

3-3 shows that linear regression applied to the third order structure functions

for both raw and conditioned data yields power-law scaling in the “1/fα” range.

However this does not appear to be the case for the inertial range, where the Sm

clearly curve for τ ≤ 30 minutes. The ζ exponent numerical values for the raw and

conditioned GSF data differ by no more than ∼ 6% on average, with the higher

order moments showing stronger variations, as expected.
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Figure 3-3: Log-log plots of third order structure function S3 versus sampling
interval τ for all three components of magnetic field fluctuations in the solar wind
measured by the Ulysses spacecraft during contiguous intervals of ten days, which
are plotted separately on each panel, from day 180 to day 239 of 1995. The raw
data is represented by “·” and the 0.1% conditioned data by “×”. Top left panel:
radial field BR. Top right panel: tangential field BT . Bottom panel: normal
field BN . For τ ≥ 30 minutes, corresponding to “1/fα” power spectral density,
scaling of the form Sm ∼ τ ζ(m) is observed with ζL,R(3) = 0.399± 0.011, ζL,T (3) =
0.508±0.010 and ζL,N(3) = 0.445±0.008; solid lines show linear regression fits for
26 minutes ≥ τ ≥ 49 minutes for 0.1% conditioned data, whereas the dashed lines
show the same fits for the raw data. For τ ≤ 30 minutes, corresponding to the
inertial range, there is no scaling but the data suggest a possible common g(τ).

Figures 3-2 and 3-3 suggest that a single function g(τ) may be common to all

the time intervals considered. We test this conjecture in Figure 3-4, by normalizing

all the S3 log plots to their value at τ = 30min., close to the centre of the τ

range. The curves overlay quite closely, and there is no secular latitudinal or

radial dependence of g(τ).

72



CHAPTER 3. ULYSSES

2 2.5 3 3.5

−1.5

−1

−0.5

0

0.5

↑τ  = 30 min

B
R

log
10

τ(s)

lo
g 10

S
3

 

 

days 180−189
days 190−199
days 200−209
days 210−219
days 220−229
days 230−239

(a)

2 2.5 3 3.5

−1.5

−1

−0.5

0

0.5

↑τ  = 30 min
B

T

log
10

τ(s)

lo
g 10

S
3

 

 

days 180−189
days 190−199
days 200−209
days 210−219
days 220−229
days 230−239

(b)

2 2.5 3 3.5

−1.5

−1

−0.5

0

0.5

↑τ  = 30 min
B

N

log
10

τ(s)

lo
g 10

S
3

 

 

days 180−189
days 190−199
days 200−209
days 210−219
days 220−229
days 230−239

(c)

Figure 3-4: Evidence for limited variation in ζ(3) between ten-day data runs in
the scaling region, and for a common g(τ) between the different time intervals.
Data for BR, BT and BN from Figure 3-2 are replotted after normalization such
that the value of S3(τ = 30 minutes) is the same for each ten-day run within each
panel. Gradients in the scaling range (solid lines) do not vary systematically with
their timing with respect to the 60-day observation period, nor do they vary in the
same way for different magnetic field components. Away from the scaling region,
points appear to lie close to a common curve, reflecting g(τ).

The displacements of the curves in Figures 3-2 and 3-3 arise from the data: as

Ulysses moves, the GSF and ESS plots shift in a relatively ordered way, consisent

with different power levels in the fluctuations as a function of position. In Figure

3-5 we examine this further by showing the variations of a single point on each

line, S3(τ = 30) as a function of time and therefore function of increasing radial

distance and varying heliographic latitude, for all B field components.
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Figure 3-5: Dependence of the value of S3(τ = 30 minutes) on sampling time - a
proxy for mean location of the moving Ulysses spacecraft - for BR, BT and BN .
Here interval one refers to days 180 to 189 of 1995, and interval six to days 230 to
239.

S3(τ = 30) for all three components exhibits a secular trend and decreases with

time as heliographic range increases. There is no significant latitudinal variation,

although there is a flattening of the slope after ∼ day 210 (or interval 4), when

Ulysses passes over the solar pole and the heliographic latitude starts to decrease

again. This is more apparent in the N and T components, the R component

seeming relatively unaffected. This is consistent with the work of Goldstein et al.

(1995a), who also observed a stronger radial, rather than latitudinal, dependence

of the turbulent properties.

3.4.3 Extended Self-Similarity

Let us now test more precisely for Sm ∼ [g(τ)]ζ(m) within the inertial range by

applying ESS to the data. We first apply the technique to the entire τ range of 2−
49 min., with results shown in Figures 3-6 and 3-7. We will also however consider

the results from the GSFs and fit to the inertial and “1/f” regions separately.
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Figure 3-6: Evidence for extended self-similarity (ESS) across the full τ range.
Log-log plots of second order structure function S2 versus third order structure
function S3 for all three components of magnetic field fluctuations in the solar
wind measured by the Ulysses spacecraft during contiguous intervals of ten days,
which are plotted separately on each panel, from day 180 to day 239 of 1995. The
different intervals have been uniformly shifted in the y-direction for clarity. Top
left panel: radial field BR. Top right panel: tangential field BT . Bottom panel:
normal field BN . Data points in the inertial range are marked by crosses, and in
the “1/fα” range by open circles. The straight lines show linear regression fits
across the full temporal range from τ = 2 − 49min. These results imply a global
average fitting across the different time intervals of ζR(2)/ζR(3) = 0.749 ± 0.004,
ζT (2)/ζT (3) = 0.759 ± 0.004 and ζN(2)/ζN(3) = 0.765 ± 0.004.
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Figure 3-7: Variations of ζ(2)/ζ(3) for fits to the full τ range (τ = 2−49min.) for
BR, BT and BN . Here interval one refers to days 180 to 189 of 1995, and interval
six to days 230 to 239.

Power law scaling is recovered for the entire τ range considered. ESS also seems

to extend the inertial range scaling region and, apart from a few exceptional cases,

it is generally difficult to distinguish clearly between the inertial range and “1/fα”

ranges from these plots. Figure 3-6 shows a reasonable linear fit to the whole τ

range but we see a small but systematic displacement of the data from the fitted

line at higher frequencies. Figure 3-7 shows the ESS exponents ζ(2)/ζ(3), obtained

from the gradients of the linear fits in Figure 3-6, which exhibit no dependence on

the time interval considered.

However the GSF analysis has given prior indication of the τ at which the

transition from one regime to the other occurs. It is therefore of interest to apply

ESS analysis separately to the two regions - inertial range and “1/fα” - identified

above. As we discuss below, Figures 3-8 to 3-10 then demonstrate that the “1/fα”

range is the dominant source of variation, in clear contrast to the inertial range.

Figure 3-8 repeats the ESS analysis for the inertial range with τ = 2 − 14 min.,

and Figure 3-9 for the “1/fα” range with τ = 26 − 49 min.
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Figure 3-8: As it Figure 3-6 but showing fits for the inertial range between
τ = 2 − 14 min. These results imply that on average across the different time
intervals ζS,R(2)/ζS,R(3) = 0.747 ± 0.008, ζS,T (2)/ζS,T (3) = 0.757 ± 0.007 and
ζS,N(2)/ζS,N(3) = 0.753 ± 0.005 in the inertial range.
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Figure 3-9: As in Figure 3-6 but showing fits for the “1/fα” range between τ = 26−
49 min. These results imply that across the different time intervals 0.675±0.017 ≤
ζL,R(2)/ζL,R(3) ≤ 0.745 ± 0.017, 0.687 ± 0.019 ≤ ζL,T (2)/ζL,T (3) ≤ 0.835 ± 0.034
and 0.724 ± 0.004 ≤ ζL,N(2)/ζL,N(3) ≤ 0.817 ± 0.012 in the “1/fα” range.
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Figure 3-10: Variations of ζ(2)/ζ(3) for fits to the inertial range (solid lines,
τ = 2 − 14min.) and the “1/fα” range (dashed lines, τ = 26 − 49min.) for BR,
BT and BN . Here interval one refers to days 180 to 189 of 1995, and interval six
to days 230 to 239.

The difference between the inertial range and “1/fα” fits can be seen in Figure

3-10, where the gradients of the fits are shown. Importantly, Figure 3-10 demon-

strates that the dominant contribution to the scatter in the corresponding global

plot, Figure 3-5, arises from the “1/fα” region at larger τ . This aligns with what

was found with the GSF analysis, see Figure 3-3.

The GSF plots in Figure 3-2 can be fitted using a quadratic fit of the form

log10Sm(τ) ∼ α(m)(log10τ)2 + β(m)(log10τ) + γ (3-3)

where γ contains the secular variation in S3 seen in Figure 3-5. Equation (3-3)

can be rewritten in the form

Sm(τ) ∼ τ−a(m)(log10(τ)+λ) ∼ [τ−log10(λ̃τ)]a(m) (3-4)

where λ̃ = 10λ = 10−7.575±0.246 is found by taking an average over fits for all the

different time intervals. The minus sign is necessary if we insist on positive scaling

of exponents a(m) as α is negative and β is positive. In Figure 3-11, we show λ

for all components and time intervals.
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Figure 3-11: Variations of λ for α and β quadratic fits (see equations (3-3) and
(3-4)) to the inertial range (τ = 2 − 14min.) for BR, BT and BN . Here interval
one refers to days 180 to 189 of 1995, and interval six to days 230 to 239.

In Figure 3-11 we plot the GSFs versus g(τ). We can see that a good straight

line is recovered.
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Figure 3-12: Evidence for g(τ) dependence in the inertial range. Log-log plots of
the GSFs for moments m = 0 − 6 versus g(τ) for all three components. A single
time interval is shown here, days 180 − 189; the same analysis was done for the
other time intervals and similar results found. The g(τ) is normalized for each
component such that ζS(3) = 1. This is achieved by obtaining ζS(3) from a linear
regression fit of the GSF for each component and then incorporating this into the
g(τ) expression such that g(τ) = τ−log10(λ̃τ)ζi(3) where i = R, T or N . The break
between the inertial range and “1/fα” ranges does not seem to change position
from the GSF but is clearer in these plots.

Finally let us again consider the behavior of the ζS exponents for m = 1−6 for

all components and time intervals. These can be fitted to the multifractal p-model.

The values of ζ(m) are then given by ζ(m) = 1− log2

(

pm/3 + (1 − p)m/3
)

. For the

data considered here, p-model fits of the ζS exponents for the different components

during the first time interval give pR = 0.79 ± 0.01, pT = 0.85 ± 0.01 and pN =

0.84±0.01. These values are consistent with previous work by Horbury & Balogh

(1997), who found p ∼ 0.8, and by Pagel & Balogh (2001).
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3.5 Conclusions

In this Chapter we have analysed Ulysses quiet fast polar solar wind magnetic field

measurements to study the evolving turbulence. We quantify the scaling behavior

of both the inertial range (i.e. power spectrum ∼ f−5/3) and the lower frequency

“1/fα” range present in the solar wind. Six contiguous intervals of ten days, over

which approximate stationarity can be assumed, were studied using the Taylor

hypothesis to relate temporal and spatial scales. The scaling that we establish

is “macroscopic” in the sense that it is obtained over these time intervals of ten

days. One can also consider local (in time) scaling properties (Sorriso-Valvo et al.,

2007). We use generalized structure functions (GSF) and extended self-similarity

(ESS) to quantify statistical scaling, and find that:

• GSF is sufficient to reveal power law scaling in the low frequency “1/fα”

range of the form 〈|y(t+ τ)− y(t)|m〉 ∼ τ ζ(m), but ESS is necessary to reveal

scaling in the inertial range. This implies a scaling of the form 〈|y(t + τ) −
y(t)|m〉 ∼ [g(τ)]ζ(m) over the inertial range.

• The “1/fα” range scaling varies in a non secular way with spacecraft position

as found previously (Horbury et al., 1995b). This is consistent with a coronal

origin for the “1/fα” scaling.

• In the inertial range, comparisons of the third order structure function S3

for the different time intervals show that the function g(τ) is independent

of spacecraft position, although an ordered trend in the absolute value of S3

with increasing radial distance is observed.

• A good fit to the inertial range is g(τ) ∼ τ−log10(λ̃τ), where λ̃ = 10−7.575±0.246.

However, this fit does pose several problems, particulary in the limit of τ → 0

and doesn’t really present any physical meaning, we propose a different fit

in Chapter 4.

• The exponents found for the inertial range, normalized such that ζS(3) = 1,

are fitted by a p-model with pR = 0.79 ± 0.01, pT = 0.85 ± 0.01 and pN =

0.84 ± 0.01. This implies a higher degree of intermittency in the normal

components of the magnetic field than in the radial component.
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Our results clearly differentiate between the dynamics of the fluctuations seen in

the “1/fα” and in the inertial range. Intriguingly, the inertial range signature

is not simply that expected from homogeneous and infininte RE turbulence, in

that there is a generalised scaling function g(τ) for the scaling. This is highly

suggestive of turbulence in a confined or space-varying medium, see for example

the work of Biskamp & Müller (2000). Our function g(τ) may therefore capture

the evolution of the turbulence observed at Ulysses, reflecting both the heating of

the fast solar wind at the corona and the subsequent expansion in the presence of

the large scale solar magnetic field.
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Chapter 4

Ulysses and Universality

4.1 Introduction

In Chapter 3, we probed the statistical properties of the fast quiet solar wind ar

solar minimum using Ulysses vector magnetic field measurements. We found that

extended self-similarity holds for the structure functions Sm in the inertial range,

and that Sm ∼ g(τ)ζ(m). In this Chapter we propose a different fit g(τ/τ0) to the

one presented in Chapter 3 and further explore the universal properties of this

function.

It is an open question, whether evolving turbulence has an universal nature despite

the different mechanisms at its origin and evolution. It is then interesting to ex-

amine which features of solar wind turbulence are universal across an anisotropic

finite-sized system with finite RE and different levels of activity. We test the idea

that this function g(τ/τ0) is invariant by applying GSF and ESS to Ulysses mag-

netic field data for fast quiet polar wind flows. Ulysses spent many months in

the fast quiet solar wind emanating from the solar polar coronal holes during 2

successive solar minima in 1994−1995 and 2007−2008, thus providing for the first

time an opportunity to study the accelerated fast solar wind in a relatively simple

open radial magnetic field configuration. Of particular interest is a comparison

between these two solar minima.

The most recent solar minimum has been reported to have many different prop-

erties to the previous one, such as lower magnetic field strength (∼ −15%), lower

power (∼ −42%), lower density (∼ −17%) and a more complex magnetic field

structure in contrast to the simple dipolar configuration expected (McComas et al.,

2006, 2008; Smith & Balogh, 2008; Issautier et al., 2008). In figure 4-1, we show

the time evolution of the bulk ion velocity, |vion|, the magnitude of the magnetic

field, |B|, and the normalised ion density, ρionR/R2
0 for all 60 days of each polar
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pass. The ion density is normalised to 1 AU
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Figure 4-1: The magnetic field magnitude, bulk velocity and ion density are com-
pared for the considered North and South 60 day intervals during the 1994−1995
(blue) and 2007 − 2008 (red) solar minimum polar passes. The density measure-
ments are normlaized to 1 AU. The black dashed lines delimit days 30 − 39 of
2007 as during this period Ulysses passed through the tail of comet McNaught for
5 days (from 3rd of February, ∼ day 34), this data is excluded from the analysis.

The time period in February 2007, during which ULSSES passed through the

tail of comet McNaught is also shown, the details of this encounter can be found in

Neugebauer et al. (2007). Figure 4-2 shows the difference in power between the 2

minima North polar passes for the radial magnetic field component. A comparison

of the 1994 and 2007 South passes yields a similar behaviour.
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Figure 4-2: Log-log plot of the radial magnetic field component power spectra
for a representative 10 day interval from each of Ulysses’ minima North polar
passes in 1995 and 2008. The intervals were chosen such that Ulysses was at a
similar heliospheric distance in all cases. There is a noticeable decrease in power
by ∼ −42% between the two minima. The inset figure show S3/τ against τ on
semilog axis for all polar passes.

The inset of Figure 4-2 is a plot of the compensated third order structure

functions, S3/τ , versus log10(τ) for all 4 polar passes for the radial component. If

Kolmogorov’s 4/5ths law is exact, i.e. that S3 = −4/5ǫl, where here we use the

Taylor hypothesis to relate spatial scales l and temporal scales τ and the radial

component is assumed to be similar to a longitudinal component, then we would

expect to see a flattening of the curves over the inertial range. This relationship

holds for hydrodynamic turbulence and in the limit of infinite Reynolds number,

and indeed Gagne et al. (2004) show the convergence to 4/5ths of compensated

S3,max with increasing Reynolds number for different types of flow (grid turbu-

lence, jet and ONERA) with known energy dissipation rates and inner and outer

cascade scales. We do not know the energy dissipation rates ǫ in the solar wind

here, however we do know that we are in a large Reynolds number system. Even-

though, we are not in a hydrodynamic flow, we assume that the 4/5ths law holds

roughly and that ǫ is then simply proportional to the difference between S3/τ and

4/5. We can see in the inset to Figure 4-2, that the North and South polar passes

for each minima are similar to each other yet very different between the minima.
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The curves for the 2007 − 2008 solar minima are a factor ∼ 2 below the curves

for the 1994− 1995 minima. This implies a similar difference between the energy

dissipation rates, confirming the PSD results.

4.2 Generalized Similarity

The focus of this Chapter is on in situ observations of fast quiet polar flows

from the Ulysses spacecraft, with a homogeneous flow velocity ∼ 750 km/s at

heliospheric distances ∼ 2 AU and which are free from large transient coronal

events. We compare 10 day intervals of ∼ 13, 000 points each of one minute

averaged magnetic field RTN component measurements for each polar pass. This

length of data is sufficent to explore the inertial range scaling and its transition to

“1/f” at lower frequencies. We consider days 260− 269 of 1994 and days 60− 69

of 2007 (South pole passes) and days 240 − 249 of 1995 and days 40 − 49 of 2008

(North pole passes). These intervals were chosen such that Ulysses was at a similar

heliographic range (∼ [2.15 − 2.2] AU) and latitude (∼ [75 − 79o]) for all passes.

In order to check the results found for the North polar pass of 1995 in Chapter 3,

we also examine for each pass, six 10 day contiguous intervals encompassing these

days. The details of these passes are summarised in Table 4-1.
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Table 4-1: Characteristics of all Ulysses polar passes analysed here during periods
of solar minima. The range of the six contiguous intervals of 10 days is given as
well as the heliographic and heliospheric ranges over that time. The numbers in
parenthesis under the maximum heliographic latitude indicate the day(s) upon
which Ulysses passed this point. All the data is obtained from the Ulysses home
page (http://ulysses-ops.jpl.esa.int/ulysses/archive/vhm_fgm.html).

Polar Pass days heliographic heliographic heliospheric

range (°) latitude max. range (AU)

South 1994 210 − 269 −79.17°−(−79.60°) −80.22° 2.6141 − 2.2041

(256 − 257)

North 1995 190 − 249 74.56°−77.22° 80.22° 1.8665 − 2.2882

(212 − 213)

South 2007 10 − 69 −77.72°−(−76.24°) −79.7° 2.5632 − 2.1572

(38)

North 2008 1 − 59 78.55°−72.34° 79.8° 1.9792 − 2.4146

(14)

In order to probe the statistical properties of the fluctuations, we again use

extended self-similarity and we anticipate a generalised similarity of the form

Sm(τ) = Sm(τ0)[g(τ/τ0)]
ζ(m) (4-1)

Previous work (Nicol et al., 2008; Chapman et al., 2009a) has shown this to hold

for both the North and South polar passes of Ulysses’ first polar pass at solar

minima. We now compare all the polar passes from both solar minima observed

by Ulysses for fluctuations over τ = 1−60 minutes. This range easily encompasses

the inertial range, which is expected to have an upper scale limit of τ ∼ 15 minutes.

For finite datasets with non-Gaussian PDFs, these statistics can be affected by the

presence of large outliers in the PDF tails. To verify the robustness of our results

against any bias introduced by this source of uncertainty, the method detailed in

(Kiyani et al., 2006) is used.

In Figure 4-3, we show a plot of the compensated third and fourth order structure

functions, S3/τ and S4/τ , versus log10(τ) for all 4 polar passes and components.
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The structure functions are normalised here to their maximum values, i.e. S3 =

S3/S3,max.

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05
(S

3/S
3,

m
ax

)/
τ

log
10

τ(min.)

 

 

days 260−269, South 1994
days 240−249, North 1995
days 60−69, South 2007
days 40−49, North 2008

10
0

10
1

10
2

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(S
4/S

4,
m

ax
)/

τ

log
10

τ(min.)

 

 

days 260−269, South 1994
days 240−249, North 1995
days 60−69, South 2007
days 40−49, North 2008

Figure 4-3: Compensated GSF S3/τ and S4/τ (linear scale) versus τ (logarithmic
scale) for all field components for the four polar passes for intervals chosen such
that Ulysses was at a similar heliospheric distance in all cases.

Generally, Figure 4-3 allows us to determine the regions where S3 ∼ τ or

S4 ∼ τ . In the inertial range, for τ ≤ 10 minutes, S3 seems to flatten, which is

evidence for ζ(3) = 1. In order to further unravel this, we now examine whether

the function g(τ/τ0) is a universal function and generic property of solar wind

turbulence.

Equation 4-1 can be tested to reasonable precision for low orders m = 1 to 4. Struc-

ture functions become less reliable for higher order moments (e.g. Arenas & Chorin,

2006), which is why we further restrict our analysis to m = 1− 4 here. In theory,

to obtain g(τ/τ0), we simply need to invert equation 4-1. In practice, the structure

function analysis shows that the IR scaling is not a good power law, we cannot

therefore obtain independent measures of the ζ(m).
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Figure 4-4: GSFs of the third order structure function S3 against τ on loglog axis
for 5 consectutive 10 intervals from the North polar pass of 2008 for τ = 1 − 60
minutes. The inset figure shows ESS plots of S3 against S2 on loglog axis, the
different intervals are shifted for clarity and the τ range shown starts at τ = 2
minutes.

Figure 4-4 shows the third order structure functions for the six contiguous 10

day intervals while Ulysses was over the North solar pole in 2007. Again, we see a

shift with heliospheric range, as with time, Ulysses moves further away from the

Sun. However, similarly to our results for the 1995 North polar pass (Chapter

3), the functional form of the inertial range scaling remains remarkably similar

between the passes. In constrast to the “1/f” region, which appears far more

variable. The black line highlights the non-linear nature of the inertial range

region. The inset to Figure 4-4 shows the corresponding ESS plots, shifted for

clarity. Again, linear scaling behaviour is recovered, however it is not possible to

differentiate clearly between different scaling regions using ESS, as any dependence

on τ or g(τ) is now eliminated and we can only obtain ratios of scaling exponents

ζ(3)/ζ(m). In table 4-2, the exponents ζ(3)/ζ(m), and their associated errors,

obtained from linear regression fits to the ESS plots for τ = 2 to τ = 14 minutes

are shown.
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Table 4-2: ζ(3)/ζ(m) exponents for representative 10 day intervals from the 1995
and 2007 South polar passes and the 1995 and 2008 North polar passes. During
these times, the Sun was at a periods of minimum solar activity. The data show
is for linear fits to ESS plots, which have been conditioned by 0.1%.

Polar Pass Date Bi
ζ(3)
ζ(1)

± ζ(3)
ζ(2)

± ζ(3)
ζ(3)

± ζ(3)
ζ(4)

±
South 1994 BR 2.404 0.021 1.350 0.007 1 0 0.826 0.003

days 260 − 269 BT 2.262 0.026 1.303 0.006 1 0 0.849 0.003

BN 2.200 0.028 1.280 0.009 1 0 0.866 0.006

North 1995 BR 2.404 0.017 1.342 0.006 1 0 0.833 0.006

days 240 − 249 BT 2.225 0.027 1.290 0.007 1 0 0.859 0.005

BN 2.255 0.019 1.303 0.005 1 0 0.846 0.003

South 2007 BR 2.524 0.034 1.380 0.009 1 0 0.808 0.005

days 60 − 69 BT 2.336 0.014 1.325 0.004 1 0 0.838 0.005

BN 2.253 0.026 1.299 0.007 1 0 0.855 0.005

North 2008 BR 2.299 0.028 1.314 0.008 1 0 0.840 0.006

days 40 − 49 BT 2.148 0.044 1.270 0.012 1 0 0.867 0.009

BN 2.260 0.037 1.308 0.010 1 0 0.842 0.003

Equation 4-1 is then manipulated to give

[

Sm(τ)

Sm(τ0)

]

ζ(3)
ζ(m)

= g(τ/τ0)
ζ(3) (4-2)

We choose τ0 = 10 minutes as the normalization scale as this is a scale within the

inertial range, yet close to the outer scale. We plot in Figure 4-5, equation 4-2 for

m = 1 − 4 for all components and all minima polar passes.
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Figure 4-5: [Sm(τ)/Sm(τ0)]
ζ(3)/ζ(m) versus τ/τ0 for m = 1 to 4 for all components

are shown for representative 10 day intervals of all minima Ulysses polar passes:
South 1994 (days 260 − 269), North 1995 (days 240 − 249), South 2007 (days
60 − 69) and North 2008 (days 40 − 49). τ0 = 10 minutes is chosen as this lies
within the inertial range (∼ τ = 1 − 15 minutes.

Figure 4-5 shows that all components and different order structure functions

collapse onto the same function g(τ/τ0)
ζ(3) within the inertial range. One can

clearly see the crossover from the IR, where the curves diverge, the “1/fα” scaling

has an α, which is known to vary (e.g. Nicol et al., 2008). Intriguingly, the inertial

range appears more extended for the South 1994 and North 2008 polar passes, this

might be linked to predominantly inwards pointing magnetic field lines, however

there is no conclusive evidence as to why this should be so. We further test whether

this is the same function for all polar passes by overlaying the inertial range in

Figure 4-6 for the third order moment.
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Figure 4-6: [S2(τ)/S2(τ0)]
ζ(3)/ζ(2) versus τ/τ0 for all components are shown for a

representative 10 day interval for all overlayed minima Ulysses polar passes: South
1994 (days 260 − 269), North 1995 (days 240 − 249), South 2007 (days 60 − 69)
and North 2008 (days 40−49). Both linear (left) and loglog (right) axis are shown
and the τ range shown on the the x-axis is reduced to τ = 1 − 20 minutes.

We fit a function of the form g(τ/τ0)
ζ(3) = a(τ/τ̂ )τ/τ0

b

to the curves shown in

Figure 4-6 where τ0 = 10 minutes is an outer scale and τ̂ = 1 minute is a normali-

sation. This functional form is suggested by finite size scaling considerations. We

find a good agreement between g(τ/τ0) with fitting parameters a = 0.101± 0.001

and b = 0.10 ± 0.01 and the IR of the curves shown in Figure 4-6. The curves

coincide to good precision for all components and polar passes, confirming the

universal nature of the fluctuations, despite the different solar properties between

the 2 considered solar minima.

Statistical properties of in situ turbulence can also be seen directly from the PDF

of fluctuations (here of δB), we will now directly examine these PDFs. In Figure

4-7, we compare the functional form of the PDFs by normalizing to σ to give

dimensionless axis.
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Figure 4-7: The PDFs for the RTN magnetic field component is shown for rep-
resentative 10 day intervals of all minima Ulysses polar passes: South 1994 (days
260 − 269), North 1995 (days 240 − 249), South 2007 (days 60 − 69) and North
2008 (days 40 − 49). South passes are red lines, whereas North passes are black
lines. Solid lines denote the solar minimum of 1994 − 1995 whereas dashed lines
show the minimum of 2007− 2008. Loglog axis are used and a Gaussian fit to the
data is also plotted.

The normalised PDFs in Figure 4-7 overlay quite well, and do not seem to

show any strong variations between the successive minima. Any deviations can be

further quantified by comparing the PDFs’ statistical properties such as standard

deviation σ, excess kurtosis (flatness) S4(τ)/S2(τ)2 − 3, and skew (asymmetry)

S3(τ)/S2(τ)3/2, signed structure functions are now used. A Gaussian distribution

has an excess kurtosis of zero and a skew of zero, computing these parameters

therefore allows us to estimate the deviation from Gaussian of the considered

distribution. As mentioned previously, outliers in the tails of the PDFs can cause

large variations in the calculation of moments. We therefore use 0.1% conditioned

data for the following calculations. We find that for all quantities and passes,

the skew is negligibly small, consistent with the symmetric PDFs observed in

Figure 4-7. The standard deviation for the δBR fluctuations varies from ∼ 0.37
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nT for both polar passes of the first solar minimum to ∼ 0.3 nT for the second

solar minimum passes. The δBT and δBN fluctuations show similar behaviour

and their standard deviations vary from ∼ 0.52 nT for the first minimum to

∼ 0.42 nT for the second minimum. There is therefore a small, but consistent

anisotropy between the radial and normal components, present for both solar

passes as well as this decrease in standard deviation by about ∼ 25%. In contrast,

the kurtosis k shows little or no variation within errors between the minima; for

δBR, kR ∼ [1.84− 1.97]± [0.38− 0.26]; for δBT , kT ∼ [1.78− 2.40]± [0.14− 0.25]

and finally for δBN , kN ∼ [1.87− 2.26]± [0.12− 0.22]. These values are also very

different from 0 and clearly establish the non-Gaussian nature of the PDFs in

Figure 4-7, which is a well-know feature of small scale solar wind turbulence (e.g.

Marsch & Tu, 1997). Table 4-2 summarises these properties for all components

and passes.

Table 4-3: Summary of standard deviation, excess kurtosis and skew for the PDFs
shown in Figure 4-6 for τ = 6 minutes and all polar passes and components for
0.1% conditioned data. The skew errors are negligible and are therefore not shown.

Polar Pass Date Bi σ(nT ) Kurtosis ± Skew

South 1994 BR 0.37 1.89 0.24 0.15

days 260 − 269 BT 0.53 2.31 0.15 −0.07

BN 0.53 1.87 0.12 0.04

North 1995 BR 0.36 1.97 0.26 −0.01

days 240 − 249 BT 0.49 1.78 0.14 0.13

BN 0.53 2.32 0.15 −0.05

South 2007 BR 0.30 1.86 0.37 0.04

days 60 − 69 BT 0.41 2.40 0.25 −0.11

BN 0.45 2.26 0.20 0.15

North 2008 BR 0.29 1.84 0.38 0.02

days 40 − 49 BT 0.42 2.24 0.22 0.07

BN 0.39 2.14 0.25 0.18
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4.3 Scaling Exponents

We can now estimate the ζ(m) scaling exponents by plotting Sm against g(τ/τ0)
ζ(3).

We consider linear regression fits to τ = 2−14 minutes. The errors are again com-

puted by fitting to τ = 7− 9 minutes and successively extending the fitting range

by ±1 minute until the range τ = 2 − 14 minutes is reached. We also consider

the error in the fitting parameter b by computing the ζ exponents for the differ-

ent limits of b. The differences in the exponents are then considered in the error

calculation. In Figure 4-8, we show the scaling exponents for a single component

from a representative interval of the 1995 North polar pass.
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Figure 4-8: The top left panel shows Sm versus g(τ/τ0)
ζ(3) for δbR for days 240−249

of the 1995 North polar pass computed for τ = 1 to τ = 60 minutes in steps of 1
for and 0.1% conditioned data fitted to τ = 2 to τ = 14. The top right panel shows
how the fitting range is tested by fitting between τ = 7 to 9 minutes and then
increasing the fitting range on either side to the next consecutive τ , up to τ = 2 to
τ = 14 minutes. The bottom panels show the scaling exponents ζ(m) plotted as
a function of moment m = 1 to 4 for different percentages of removed points (left
panel) and ζ(2) plotted against the percentage of removed points (right panel).

The other components and other passes show similarly good linear fits to the

GSFs and multifractal behaviour of the ζ(m) exponents, inferred from the non-

linear beahaviour of the ζ(m) plots in Figure 4-8 and the divergence of ζ(2). We

again fit a p-model to the ζ(m) curves for the 0.1% conditioned data.
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Figure 4-9: A p-model is fitted to each representative 10 day interval of all minima
Ulysses polar passes: South 1994 (days 260 − 269), North 1995 (days 240 − 249),
South 2007 (days 60−69) and North 2008 (days 40−49) for all three components
and for 0.1% conditioned data. ζ(m) here is ζ(m) = ζ(m)/ζ(3)

The ζ(m) curves shown in Figure 4-9 show relatively good fits to the p-model

and demonstrate once again the similarity between the different passes, whose

ζ(m) values are all within errors of each other. The values of p used in the p-

model fit (ζ(m) = 1 − log2(p
m/3 + (1 − p)m/3)) are summarised in table 4-4.

98



CHAPTER 4. UNIVERSALITY

Table 4-4: Summary of p-model fit parameter for the fits shown in Figure 4-9 for

all components and polar passes and for 0.1% conditioned data.

Polar Pass Date Bi p ±
South 1994 BR 0.81 0.04

days 260 − 269 BT 0.84 0.20

BN 0.87 0.09

North 1995 BR 0.82 0.01

days 240 − 249 BT 0.86 0.03

BN 0.85 0.10

South 2007 BR 0.76 0.11

days 60 − 69 BT 0.82 0.15

BN 0.85 0.20

North 2008 BR 0.84 0.01

days 40 − 49 BT 0.88 0.05

BN 0.85 0.05

Within errors, the values reported in table 4-4 are very similar for each com-

ponent. Once again, there is evidence of anisotropy as the p values for the R

components are consistently lower than for the T and N components. This is sim-

ilar to our observations at the end of Chapter 3, where the same variation trend

between the components was noticed.

4.4 Conclusions

We have compared the statistical properties of the magnetic field components of

Ulysses polar passes over 2 successive solar minima. The most recent solar mini-

mum is found to be very different, with significantly lower power levels (decrease

of ∼ −42%) and level of fluctuations. We use this to test for universal proper-

ties of solar wind turbulence, which is a finite size, finite RE system. Ulysses

allows us to compare quiet fast solar wind from successive polar passes at sim-
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ilar heliospheric range and latitude. Furthermore, the cadence used covers the

IR to “1/f” crossover, this is the physics of the “largest eddies” of the evolving

turbulence. This physics is captured by a function g(τ/τ0) of the scale of the fluc-

tuations, which is suggestive of universal behaviour however needs to be tested

more widely. This is corroborated by the PDFs, which show the same functional

from and by the kurtosis, which shows small or no variation between the 2 min-

ima. In contrast, the standard deviation show a drop of ∼ 25%, confirming the

difference in the fluctuation levels between 1994 − 1995 and 2007 − 2008. ESS

is then a robust feature of evolving MHD turbulence. The physics of the largest

coherent structures is universal.

We have also shown that the scaling exponents from this g(τ/τ0) fit are consistent

with a multifractal p-model, which reflects the known intermittent and anisotropic

nature of the solar wind.
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Chapter 5

ACE results

5.1 Introduction

In the previous chapter, we used Ulysses observations to study the inertial range

of turbulence in the fast solar wind emanating from the solar polar coronal holes

(Nicol et al., 2008). We now focus on in situ solar wind velocity and magnetic

field measurements in the ecliptic plane at ∼ 1AU and at longer timescales (lower

frequencies), i.e. in the flatter “1/f”-like scaling range (Matthaeus & Goldstein,

1986).

The solar wind also has a background magnetic field and is therefore a highly

anisotropic plasma environment (Shebalin et al., 1983; Oughton et al., 1994). The

strength of this background field relative to the amplitude of the fluctuations de-

termines whether the turbulence is “strong”, i.e the amplitude of fluctuations

is comparable to that of the background magnetic field (Sridhar & Goldreich,

1994; Goldreich & Sridhar, 1995) or “weak”, i.e the background magnetic field

is dominant (Ng & Bhattacharjee, 1997; Galtier et al., 2000). The power spec-

tral density (PSD) of the “1/f” range in the interplanetary magnetic field has

been extensively studied by Matthaeus & Goldstein (e.g. 1986) and at 1 AU in

the magnitude of the solar wind bulk velocity v and magnetic field B by for ex-

ample Burlaga & Forman (2002). There is also an extensive body of work on the

Gaussian and non-Gaussian properties of PDFs of fluctuations in solar wind pa-

rameters at these very large scales (e.g. Marsch & Tu, 1997; Burlaga & Forman,

2002; Sorriso-Valvo et al., 2004; Bavassano et al., 2005) and over a wide range of

heliospheric radii. Burlaga & Forman (2002) used large scale velocity fluctuations

at 1 AU on timescales of one hour to a year to quantify the standard deviation,

kurtosis and skewness of PDFs over these scales. Studies of the “1/f” range in the

solar wind thus provide a unique perspective on the physics of coronal processes
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over the solar cycle. For the first time we consider components of v and B defined

relative to the local magnetic field, and we systematically distinguish between in-

tervals of fast and slow solar wind at solar maximum and minimum. Here we will

focus on the anisotropy of the fluctuations by using a novel decomposition tech-

nique, and will take advantage of the long timeseries available from the Advanced

Composition Explorer (ACE) spacecraft to compare not only fast and slow solar

wind streams but also periods of minimum and maximum solar activity.

In the inertial range, vector quantities such as in situ velocity and magnetic

field can be resolved for components both parallel and perpendicular with re-

spect to the background magnetic field B. The duration of the timescale over

which the background field is computed is important and both large scale B

(Matthaeus et al., 1990) and average local B as a function of the scale of the fluc-

tuations (Chapman & Hnat, 2007; Horbury et al., 2008) have been considered in

the context of inertial range turbulence. These approaches to quantifying scaling

are generic, and the focus of the present paper is to incorporate these ideas in

statistical studies of the “1/f” range, since we anticipate that coronal processes

and the transport or propagation of coronal structures will depend on orientation

with respect to the background magnetic field. We will also examine v orien-

tated coordinates in Chapter 6. The observed scaling would also be anticipated

to depend quantitatively on solar cycle and to differ between fast (∼ 750 km/s)

or slow (∼ 350km/s) solar wind streams. We will perform generalised structure

function analysis (GSF) on datasets spanning these intervals in order to quantify

the scaling properties of the magnetic and velocity field fluctuations both parallel

and perpendicular to the background magnetic field B.

The location of the spectral breakpoint between the inertial and “1/f” ranges

differs in fast and slow streams (Horbury et al., 2005; Bruno & Carbone, 2005),

presumably because at a given heliocentric distance the turbulence in the slow so-

lar wind has had more time to develop than in the fast solar wind. Furthermore,

the crossover between IR and “1/f” is much clearer in fast than in slow solar

wind. Here, we will see that projecting velocity and magnetic field parallel and

perpendicular to B provides a clear indicator of where this crossover occurs. We

compare the position of this breakpoint in fast and slow solar wind streams and
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at periods of maximum and minimum solar activity. We first see that the PSDs of

the vector components of the velocity v and magnetic field B suggest anisotropy

in the “1/f” range. We then decompose v and B into parallel and perpendicular

fluctuations with respect to the local background magnetic field B. For the sim-

ple case of quiet fast solar wind, we compare the PDFs of the fluctuations to see

which components may or may not share the same underlying generating process.

For completeness, we also consider the PDF for the density fluctuations δρ. We

compare the GSFs for fast and slow solar wind at solar maximum and minimum.

Finally, using the GSFs, we obtain values for the scaling exponents in the “1/f”

range and find that these are clearly distinct for δv‖,⊥ and δb‖,⊥.

5.2 The Datasets

The advanced composition explorer (ACE) spacecraft (Stone et al., 1998) orbits

the Lagrangian point sunwards of the earth (∼ 1AU). For the present analysis

we study plasma parameters (magnetic field B and velocity v) averaged over

64 seconds from the MAG/SWEPAM teams (Smith et al., 1998; McComas et al.,

1998a): for the year 2007, representative of a period of minimum solar activity; and

for the year 2000, which was a period of maximum solar activity. This provides

datasets of ∼ 4.8 × 105 samples per year. In order to separate fast and slow

solar wind behaviour yet still preserve a dataset with sufficient points to perform

GSF to explore the “1/f” dynamic frequency range, we divide the datasets into

intervals (≥ 6000 points or 4.5 days) of fast and slow streams, where the cut-off

between fast and slow is taken at 450 km/s (e.g. Horbury et al., 2005). These

intervals then form one long fast solar wind dataset of ∼ 7.4 × 104 points, and

one long slow solar wind dataset of ∼ 1.4 × 105 points for the year 2007 and a

fast dataset of ∼ 4.1 × 104 points and a slow dataset of ∼ 1.1 × 105 points for

the year 2000. To evaluate spectral properties, we apply Fourier techniques to

the original continuous intervals of fast and slow solar wind. When we perform

statistical analysis using the probability density functions (PDFs) of fluctuations

in section 3, each dataset is treated as a single ensemble. As we preserve the
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time indicators for the data, the pairs of datapoints are always drawn from within

continuous intervals of fast or slow streams.

We first provide an overview of the “1/f” range of these data intervals by plotting

the power spectral density F (f) of the components of v and B in the RTN

coordinate system. Generally, for a signal x(t) of length N , the power spectrum

F (f) from the fast Fourier transform (FFT) to frequency space is given by

F (f) =
1

N
|

N
∑

t=1

x(t)e−2iπ(t−1)(f−1)/N |2 (5-1)

for a range of frequencies f = n
Nfs

where n = [0 : N/2] and fs is the sampling

frequency. We take our original intervals of fast and slow solar wind and truncate

(or cut) them such that they all have the same length of 6000 datapoints. Each

interval is then split up into windows of 212 = 4096 points with a 50% overlap on

the previous window. A Hamming window is applied to each of these sub-intervals

and the FFT is computed. An average is then taken of these sub-interval FFTs to

obtain the power spectrum for each interval. The power spectra for all intervals

are then averaged to obtain the PSDs for fast and slow solar wind at both solar

maximum and minimum. At lower frequencies, the magnetic field power spectrum

F (f) ∼ fα shows a spectral slope α ∼ −1. Plotting F (f)/fα, α = −1 should

therefore give a horizontal line (on average) if α ∼ −1. These plots are known as

compensated power spectra and are shown for the various solar wind conditions

in Figure 5-1.
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Figure 5-1: Compensated power spectral density F (f)/fα, α = −1 for velocity
and magnetic field fluctuation components in the RTN coordinate system for
the frequency range 10−5.5 − 10−3Hz. Results for the fast (continous line) and
slow (dashed line) are displayed separately. The dotted vertical lines delimit the
frequency range 10−5−10−4Hz; this is expected to lie within the “1/f” range, with
the breakpoint between the inertial and “1/f” ranges ∼ 10−4Hz (Marsch & Tu,
1990; Horbury et al., 1996a). The three panels on the left-hand side are for solar
maximum, while the right-hand side is solar minimum. The errors are found by
considering one standard deviation of the datasets over which the averages are
taken.
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Figure 5-1 covers the expected region of transition in the spectral index of v

and B between the IR and “1/f” frequency ranges. However it is difficult to tell

precisely whether, for example, the PSD behaviour between 10−5Hz and 10−4Hz

really is “1/fα, α = 1”, particularly in the slow solar wind. It also evident from

Figure 5-1 that in some cases in the “1/fα” range α varies with the solar cycle

and with solar wind speed, and that for both v and B the α can vary from one

component to another, and between v and B. This implies anisotropy in the

fluctuations and distinct scaling between v and B.

From a statistical point of view, let us now characterize this anisotropy by decom-

posing the velocity (or magnetic) field fluctuations into parallel and perpendicular

components relative to the background magnetic field. We adopt the Taylor hy-

pothesis (Taylor, 1938) to relate spatial and temporal scales and fluctuations over

a time lag τ in the velocity (or magnetic field) vector components, defined as

δv(t, τ) = v(t + τ) − v(t). A vector average for the magnetic field direction

b̂(t, τ) = B/|B| is formed from a vector sum B(t) of all the observed vector B

values between t−τ/2 and t+3τ/2. It follows that in computing fluctuations over

τ , the background field is averaged over τ ′ = 2τ , which then defines the minimum

(Nyquist) interval necessary to capture wavelike fluctuations (Chapman & Hnat,

2007). Using this definition of b̂, the inner product

δv‖ = δv · b̂ = δvRb̂R + δvT b̂T + δvN b̂N (5-2)

vanishes for fluctuations which generate a velocity displacement that is purely

perpendicular to the background magnetic field B as defined. The perpendicular

fluctuation amplitude is then obtained from

δv⊥ =

√

δv · δv −
(

δv · b̂
)2

(5-3)

We use these definitions to construct differenced timeseries δv⊥(t, τ), δb⊥(t, τ),

δv‖(t, τ) and δb‖(t, τ) over a range of τ intervals within the “1/f” range, that is τ

from a few hours up to a day.

We note that our definition of the perpendicular component is a scalar unsigned

quantity, this can be thought of as an angle averaged component in the plane per-

pendicular to the background field B0. This relies on the assumption of isotropy

in this plane. In order to test this we decompose the perpendicular fluctuations
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into two signed orthogonal components and compare their PDFs. We first define

two orthogonal unit vectors in the perpendicular plane as

ê⊥1 =
b̂ × 〈u〉

|b̂ × 〈u〉|
(5-4)

and

ê⊥2 =
b̂ × ê⊥1

|b̂ × ê⊥1|
=

b̂ × (b̂ × 〈u〉)

|b̂ × (b̂ × 〈u〉)|
(5-5)

where 〈u〉 is the mean velocity over the total considered time period and b̂ is

a unit vector in the direction of the local background magnetic field as defined

previously. Velocity fluctuations along these axis are then formed by the following

inner products

δv⊥1 = δv · ê⊥1 (5-6)

and

δv⊥2 = δv · ê⊥2 (5-7)

These quantities are computed for the entire τ range examined and normalised by

their mean and standard deviation in order to be compared. Figure 5-2 shows the

corresponding PDF on semilog axis.
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Figure 5-2: Perpendicular velocity fluctuations δv⊥1 (“·”) and δv⊥2 (“×”) in the
fast solar wind at solar minimum for the “1/f” range. For clarity, plots for only
three representative values of τ are shown for each component, whereas the fitted
curve is computed using all the τ intervals between 320 and 1003 minutes. A
Gaussian fit to the normalised PDF curves for both δv⊥1 and δvperp2 is shown
using semilog y axes.

Figure 5-2 shows that any anisotropy present in the PDFs of the components

in the perpendicular plane is weak. The PDFs have the same functional form,
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justifying our use of a scalar, unsigned perpendicular fluctuation as defined by

equation 5-3. The fluctuations can also be seen to be non-Gaussian, this is par-

ticularly obvious when we consider the behaviour of the PDF tails, which are

asymmetric and show considerable scatter.

5.3 PDF Analysis

We first examine the PDFs of these fluctuations and explore their possible func-

tional forms. In order to compare the different fluctuations, we recall that the

PDFs can be renormalised using (e.g. Greenhough et al., 2002a)

P [(y− < y >)] = σ−1P [σ−1(y− < y >)] (5-8)

where < · · · > denotes the ensemble mean and σ is the standard deviation of the

distribution. From a statistical point of view, where fluctuations arise from a single

physical process, rescaling of PDFs using equation 5-8 leads to the “collapse” of the

PDFs for the different τ onto a single function that characterizes the underlying

process (e.g. Greenhough et al., 2002b; Dudson et al., 2005; Dendy & Chapman,

2006; Dewhurst et al., 2008; Hnat et al., 2008). Let us apply this technique to

parallel and perpendicular velocity and magnetic field fluctuations in the fast

solar wind at solar minimum. Figure 5-3 shows that the PDFs for the δv‖ and

δv⊥ components each collapse onto single curves that are distinct from each other.

The PDF for δv‖ is asymmetric about δv‖ = 0, and we have investigated this

asymmetry by sorting the fluctuations with respect to the sign of δvR into δv+
‖

and δv−
‖ . The resulting GSFs and scaling exponents display the same fractal

characteristics as δv‖, implying that δv+
‖ and δv−

‖ arise from the same physical

process.
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Figure 5-3: Parallel (upper) and perpendicular (lower) velocity fluctuations δv‖,⊥
in the fast solar wind at solar minimum for the “1/f” range. The left panels show
the PDFs of raw fluctuations sampled across intervals τ between 320 and 1003
minutes. The right panels show the same curves normalised using equation 5-8.

Figure 5-4 shows that the PDFs for δb‖ and δb⊥ each collapse approximately

onto single curves that are distinct from each other. The curve for δb‖ is distinct

from that for δv‖ and the PDF has stretched exponential tails, which implies

that these fluctuations may originate in multiplicative or fractionating process

(Frisch & Sornette, 1997). The curves for δb⊥ and δv⊥ look remarkably similar

and we will explore this later.

109



CHAPTER 5. ACE RESULTS

−20 −15 −10 −5 0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

δb
||

P
(δ

b ||)

 

 

δb
||

τ
minimum

=320min.

τ
maximum

=1003min.

(a)

−6 −4 −2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

[δb
||
−<δb

||
>]/σ

P
([

δb
||−

<
δb

||>
]/σ

)

 

 

δb
||

τ
minimum

=320min.

τ
maximum

=1003min.

(b)

0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

δb
⊥

P
(δ

b ⊥
)

 

 

δb
⊥

τ
minimum

=320min.

τ
maximum

=1003min.

(c)

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

[δb
⊥
−<δb

⊥
>]/σ+<δb

⊥ ,max
>/σ

max

P
([

δb
⊥
−

<
δb

⊥
>

]/σ
+

<
δb

⊥
,m

ax
>

/σ
m

ax
)

 

 

δb
⊥

τ
minimum

=320min.

τ
maximum

=1003min.

(d)

Figure 5-4: Parallel (upper) and perpendicular (lower) magnetic field fluctuations
δb‖,⊥ in the fast solar wind at solar minimum for the “1/f” range. The left panels
show the PDFs of raw fluctuations sampled across intervals τ between 320 and
1003 minutes. The right panels show the same curves normalised using equation
5-8.

The functional forms of these distributions are investigated in Figure 5-5. A

Gaussian distribution (Wadsworth, 1998)

1

σ
√

2π
e

−(x−µ)2

2σ2 (5-9)

approximately fits the normalised PDFs of the δv‖ fluctuations in the “1/f” range

shown in Figure 5-3 with the following fitting parameters and 95% confidence

bounds: µ = 0± 0.003 (mean) and σ = 1± 0.002 (standard deviation). Note that

since we normalised the curves to µ and σ, an exact fit would have been µ = 0 and

σ = 1 here. In contrast, the normalised PDFs of the δv⊥ fluctuations in the “1/f”

range also shown in Figure 5-3 are clearly not Gaussian. Here they are fitted with
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three different heavy-tailed distributions: gamma (Wadsworth, 1998) defined by

f(x|a, b) =
1

baγ(a)
xa−1e−x/b (5-10)

with fitting parameters from maximum likelihood estimates a = 3.083±0.008 and

b = 0.580±0.002 where the errors are from 95% confidence bounds; the generalised

extreme value PDF (Wadsworth, 1998) defined by

f(x|k, µ, σ) =
1

σ
exp

(

−
(

1 + k
(x − µ)

σ

)
1
k

)

(

1 + k
(x − µ)

σ

)−1− 1
k

(5-11)

with fitting parameters k = 0.027 ± 0.001 (shape), µ = 1.324 ± 0.002 (location)

and σ = 0.764 ± 0.001 (scale). The generalised extreme value (gev) distribution

combines three simple extreme value distributions, types I, II and III, in a single

form. The value of the shape parameter k determines the type of the distribution.

In the case k → 0, the distribution is type I, or inverse Gumbel and equation 5-11

simplifies to

f(x|k, µ, σ) =
1

σ
exp

(

−exp

(

−(x − µ)

σ

)

− (x − µ)

σ

)

(5-12)

This distribution corresponds to a maximum extreme value distribution or the

limiting distribution of samples obtained be repeatedly selecting the maximum

from an ensemble of events, which in turn, have a distribution with finite variance,

e.g. Gaussian or exponential (Sornette, 2004). Types II (k > 0) and III (k < 0)

of the generalised extreme value distribution correspond respectively to Fréchet

and inverse Weibull distributions. Finally a lognormal distribution (Wadsworth,

1998) defined by

f(x|µ, σ) =
1

xσ
√

2π
e

−(lnx−µ)2

2σ2 (5-13)

is fitted with parameters µ = 0.410± 0.001 and σ = 0.625± 0.001. It can be seen

from Figure 5-5 that either the gamma distribution or the inverse Gumbel give

good fits to the PDF of the δv⊥ fluctuations. Physically, the gamma distribution

is related to the PDF of waiting times of events generated by a Poisson process

(Wadsworth, 1998), as noted for the analysis of plasma turbulence by Graves et al.

(2002).

Turning to the magnetic field, Figure 5-5 shows that, unlike δv‖, for δb‖ there is

a strong departure from the Gaussian distribution in the tails of the PDF, which
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are closer to stretched exponential, reminiscent of turbulence. The PDFs of the

δb⊥ fluctuations in the “1/f” range are fitted with the same three heavy-tailed

distributions as δv⊥: gamma with fitting parameters from maximum likelihood

estimates a = 3.047 ± 0.008 and b = 0.585 ± 0.002 where the errors are from

95% confidence bounds; generalised extreme value with fitting parameters k =

0.017±0.002, µ = 1.325±0.002 and σ = 0.770±0.001; and lognormal with fitting

parameters µ = 0.406 ± 0.001 and σ = 0.633 ± 0.001. There is little difference

between the raw and collapsed PDFs, as δv = b‖,⊥ is closer to “1/f” scaling.

112



CHAPTER 5. ACE RESULTS

−5 0 5
−3

−2.5

−2

−1.5

−1

−0.5

0

[δv
||
−<δv

||
>]/σ

lo
g 10

(P
([

δv
||−

<
δv

||>
]/σ

)

 

 

δv
||

τ
minimum

=320min.

τ=661min.
τ

maximum
=1003min.

Gaussian

(a)

0 2 4 6 8 10
−3

−2.5

−2

−1.5

−1

−0.5

0

[δv
⊥
−<δv

⊥
>]/σ+<δv

⊥ ,max
>/σ

max

lo
g 10

(P
([

δv
⊥
−

<
δv

⊥
>

]/σ
+

<
δv

⊥
,m

ax
>

/σ
m

ax
))

 

 

δv
⊥

τ
minimum

=320min.

τ=661min.
τ

maximum
=1003min.

Gamma
Gumbel
Lognormal

(b)

−6 −4 −2 0 2 4 6 8
−3

−2.5

−2

−1.5

−1

−0.5

0

[δb
||
−<δb

||
>]/σ

lo
g1

0(
P

([
δb

||−
<

δb
||>

]/σ
))

 

 

δb
||

τ
minimum

=320min.

τ=661min.
τ

maximum
=1003min.

Gaussian

(c)

0 1 2 3 4 5 6 7 8
−3

−2.5

−2

−1.5

−1

−0.5

0

[δb
⊥
−<δb

⊥
>]/σ+<δb

⊥ ,max
>/σ

max

P
([

δb
⊥
−

<
δb

⊥
>

]/σ
+

<
δb

⊥
,m

ax
>

/σ
m

ax
)

 

 

δb
⊥

τ
minimum

=320min.

τ=661min.
τ

maximum
=1003min.

Gamma
Gumbel
Lognormal

(d)

Figure 5-5: Parallel and perpendicular velocity and magnetic field fluctuations
δv‖,⊥ and δb‖,⊥ in the fast solar wind at solar minimum for the “1/f” range. For
clarity, plots for only three representative values of τ are shown for each compo-
nent, whereas the fitted curves are computed using all the τ intervals between 320
and 1003 minutes. The left panels show a Gaussian fit to the normalised PDF
curves for both δv‖ (upper) and δb‖ (lower) using semilog y axes. The right panels
show the normalised curves δv⊥ (upper) and δb⊥ (lower) fitted with three differ-
ent distributions gamma (red); Gumbel (blue); and lognormal (grey) on semilog y
axis. For the perpendicular components, the renormalisation with µ means that
the PDFs are shifted so that they are centered on zero, however the gamma dis-
tribution can only have positive arguments. It is therefore necessary to shift the
PDFs by < δv⊥,max > /σmax.
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Figure 5-6: Perpendicular magnetic field fluctuations δb⊥ (“·”) and δv⊥ (“×”) in
the fast solar wind at solar minimum for the “1/f” range. The gamma and Gumbel
distributions are used to fit the normalised curves for δb⊥ (red) and δv⊥ (blue).
Only three representative values of τ are shown for each component, whereas the
fitted curves are computed using all the τ intervals. The left panel shows the
PDFs on linear axis, whereas the right panel shows the normalised curves on a
semilog y axis.

As we have seen, δb⊥ and δv⊥ appear to be strongly similar in their statistics

and Figure 5-6 overlays the normalised PDFs for δb⊥ and δv⊥ in the fast quiet

solar wind. We see that they are almost identical and also not simply Maxwellian

(i.e. Gaussian process). A possible interpretation is that both sets of fluctuations

have the same physical process at their origin.

For completeness, we also examine the ion density fluctuations δρ in the fast

quiet solar wind. From Matthaeus et al. (2007), one might expect these to show

similar scaling behaviour to the δb‖,⊥ fluctuations, however in Figure 5-7 we see

that this is not the case. The density PDFs have very sharp peaks with extended

tails and are asymmetric. The rescaling collapse works well at the centre of the

PDFs, but not towards the tails. This is suggestive of some scaling process in

the small-scale density fluctuations. Indeed (Carbone et al., 2009) use density-

weighted Elsässer variables from Ulysses measurements of fast solar wind to show

the effect of compressibility and low amplitude density flucutations on solar wind

scaling laws for temporal ranges of a few minutes to a day.
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Figure 5-7: Ion density fluctuations δρ in the fast solar wind at solar minimum
for the “1/f” range. The left panel shows the PDFs of raw fluctuations sampled
across intervals τ between 320 to 1003 minutes normalised using equation 5-8.
The right panel shows the normalised curves on a semilog y axis.

To conclude this section, let us summarise our analysis of the PDFs of fluctu-

ations in the fast quiet solar wind. Figures 5-3 and 5-4 (right-hand sides) show

scaling collapse for δv‖,⊥ and δb‖,⊥. Figure 5-5 (left-hand side) shows that δv‖ and

δb‖ are distinct. This is manifest in both a different functional form of the rescaled

PDFs and different scaling of the moments, which we discuss next. In particu-

lar, δb‖ is nearly symmetric and has stretched exponential tails, consistent with a

multiplicative process, whereas δv‖ is more asymmetric and is close to Gaussian.

Figure 5-6 shows that δv⊥ and δb⊥ have the same PDF functional form and are

reasonably well fitted by the gamma and Gumbel distributions with similar fitting

parameters, suggesting a common source for the fluctuations.

5.4 GSF Analysis for Comparison of Quiet Fast

and Slow Streams

Scaling is again quantified by computing the generalised structure functions (GSFs)

of the fluctuations. We anticipate scaling for the datasets considered here, given

the indication of a “1/f” range in the PSDs in Figure 5-1, however power spectra

alone cannot distinguish between fractal and multifractal behaviour (Chapman et al.,
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2005a).

We now apply these methods to the observations. Figure 5-8 shows the GSFs up

to m = 4 for δv‖, δv⊥, δb‖ and δb⊥ for fast and slow solar wind at solar mini-

mum. The series is differenced over τ = n × 640 s for n = 1 to 160, that is for a

range covering ten to 1706 minutes (∼ 28 hours). The finite length of the datasets

considered means that the statistics calculated for any given single ensemble can

in principle be affected by the presence of large outliers, which are insufficiently

numerous to be fully sampled. We check that this does not bias our results via

the method of Kiyani et al. (2007), which by subtracting outliers verifies whether

calculated exponents are robust against statistical fluctuations in the outliers. The

raw and 0.4% conditioned GSFs are shown for comparison in Figure 5-8. For the

low-order moments that we consider here, we see that the difference is small, so

that the finite length of our datasets does not significantly affect our conclusions.

The raw data is used for the plots of the probability densities of the fluctuations

in section 3.
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Figure 5-8: Comparison of scaling properties of fluctuations in the fast solar wind
(upper) and in the slow solar wind (lower) at solar minimum in 2007. Generalised
structure functions Sm are plotted on log-log axes versus sampling interval τ for
τ = 10 to 1706 minutes and m = 1 to 4. Left panels show parallel components of
fluctuations in velocity (blue) and magnetic field (red); right panels show corre-
sponding perpendicular components. The raw data is shown by “·”, whereas “·”
denote data which has been conditioned by 0.4% (the difference in these curves
quantifies finite size effects). Linear regression fits to the “1/f” range over τ = 320
to 1002 minutes are shown. The transition from the IR to the “1/f” range occurs
at ∼ 178 minutes and is shown by the dashed line.

Figure 5-8 is consistent with the results shown previously, namely that v and

B fluctuations exhibit very different behaviour in the “1/f” range, which corre-

sponds to large τ intervals. A simple self-affine noise process with PSD∼ 1/fα,

α ∼ 1 would on such a plot have ζ(2) → 0 since α = 1+ζ(2). If the process is frac-

tal then ζ(m) = αm → 0 for all m. Thus we see that at τ > 178 min., the GSFs

for δb‖,⊥ “flatten” in the ∼ 1/f range, consistent with previously reported results

based on the PSD (Matthaeus & Goldstein, 1986; Matthaeus et al., 2007). The
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δv‖,⊥ GSFs on the contrary steepen at τ > 178 minutes, showing a scaling process

and exponents distinct from those of δb‖,⊥. These are closer to a value of ζ(2) ∼ 1,

which, again for a simple noise process, is consistent with PSD∼ 1/f 2. This is

what we have seen in the PDF curve renormalization of the previous section: the

δb‖,⊥ raw PDFs were close to the renormalised PDFs, since the normalization is

with respect to the first two moments S1 and S2, which for δb‖,⊥ vary weakly as a

function of scale τ . The scaling behaviour of the process is contained in the ζ(m)

exponents, given by the slopes of the GSFs. We obtain these values by linear fits

to the log-log GSF plots.

Whilst these results confirm the “1/f” scaling of fluctuations in B on long timescales,

reported previously by for example Matthaeus & Goldstein (1986), they also high-

light the distinct scaling of v, which we will investigate next. These GSF plots

of fluctuations oriented with respect to the background field also clearly show the

crossover between the IR and “1/f” for fast and slow solar wind. The “1/f” range

is much shorter in the slow streams, consistent with previous observations (e.g.

Bruno & Carbone, 2005; Horbury et al., 2005). The minimum value of τ that we

will use for the following analysis can be seen to be greater than the breakpoint

τ for both velocity and magnetic field fluctuations. For δv‖ and δb‖ in both fast

and slow wind, the timescale τ at which the GSFs diverge is & τ = 128 minutes,

the spectrally inferred breakpoint between IR and “1/f”. In contrast, the diver-

gence between the GSFs of δv⊥ and δb⊥ begins at a significantly shorter timescale

τ ∼ 100 minutes. This is particularly apparent when one considers the higher

order moments such as m = 3, 4 in Figure 5-8. It is also interesting to note that

although the PDFs of δv⊥ and δb⊥ in the fast quiet solar wind show the same

functional form (Figure 5-6), their GSF scalings are very different. This may sug-

gest that the fluctuations δv⊥ and δb⊥ originate in a common coronal source, but

their subsequent development differs in the evolving and expanding solar wind.

Figures 5-9 and 5-10 compare the GSFs for fast and slow solar wind streams at

solar maximum (2000) and minimum (2007); for clarity only the 0.4% conditioned

results are shown.
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Figure 5-9: Comparison of scaling properties of parallel fluctuations between fast
(upper) and slow (lower) solar wind at solar maximum (left) in 2000 and solar
minimum (right) in 2007. Generalised structure functions Sm are plotted on log-
log axes versus sampling interval τ for τ = 10 to 1706 minutes and m = 1 to 4.
Parallel components of fluctuations in velocity (blue) and magnetic field (red) are
shown.
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Figure 5-10: Comparison of scaling properties of perpendicular fluctuations be-
tween fast (upper) and slow (lower) solar wind at solar maximum (left) in 2000
and solar minimum (right) in 2007. Generalised structure functions Sm are plotted
on log-log axes versus sampling interval τ for τ = 10 to 1706 minutes and m = 1
to 4. Perpendicular components of fluctuations in velocity (blue) and magnetic
field (red) are shown.

Figures 5-9 and 5-10 suggest that the scaling properties of δv⊥ and δb⊥ do

not change with solar cycle in fast solar wind. However δv‖ does, while the solar

cycle dependence of δb‖ is indeterminate. The divergences at τ & 103 in the fast

solar wind at solar maximum may be due to finite size effects: the dataset for

solar maximum is shorter than for solar minimum, because there are fewer long

continuous time periods of fast solar wind. Figures 5-9 and 5-10 also show that

the scaling properties of all four fluctuating quantities in the slow solar wind differ

between solar maximum and minimum, due to different scaling exponents or a

different breakpoint location.

Let us summarise our conclusions from the GSF analysis. First, the breakpoints
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between the scaling properties measured by GSF analysis are different between fast

and slow solar wind streams, and between periods of maximum and minimum solar

activity. These breakpoints do not necessarily coincide with the breakpoint be-

tween IR and “1/f” ranges inferred from spectral analysis, however as mentioned

earlier, it is difficult to extract precise quantitative information from the power

spectra plots. The IR extends to longer timescales in slow solar wind streams and

at periods of maximum solar activity (e.g. Horbury et al., 2005). These trends

are particularly clear in the GSFs of the perpendicular components in Figure

5-10. The inertial range remains relatively robust for both slow and fast solar

wind streams and is independent of solar cycle. This is to be expected if the IR

is established by a turbulent cascade within the evolving expanding solar wind,

rather than by initial conditions in the corona. Intriguingly, δv⊥ and δb⊥ have the

same behaviour in the “1/f” range for fast solar wind at both solar maximum and

minimum. Their scaling looks similar for the slow solar wind, but the breakpoint

moves to longer timescales at solar maximum. All four quantities vary between

fast and slow solar wind and solar minimum and maximum.

5.5 Quantifying the Scaling Exponents

Let us now quantify the observed scaling by measuring the slopes of the GSFs

to obtain estimates of the values of the scaling exponents, ζ(m); the robustness

of the scaling will also be tested. In principle, values for ζ(m) are obtained from

the gradients of the log-log plots of Sm versus τ . In practice, these are affected

by the fact that both the length of the dataset, and the range of τ over which we

see scaling, are finite. The data conditioning method developped by Kiyani et al.

(2006) is again used on the ACE data, in an identical fashion to the Ulysses data

in chapter 3.

5.5.1 Fast Quiet Solar Wind Scaling

We now quantify the scaling exponents of δv‖ and δv⊥ fluctuations in the fast

solar wind at solar minimum. The corresponding GSFs are plotted in the top

right panels of Figures 5-9 and 5-10. We plot the exponents ζ(m), which are the
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gradients of the fitted power laws, from τ = 320 to 1002 minutes in Figure 5-11. In

the lower panels we show how the value of ζ(2) changes as outliers are successively

removed. Comparing with the results for fractal/multifractal processes presented

in chapter 2, we infer that δv‖ is fractal within errors and δv⊥ is only very weakly

multifractal (almost monofractal). For the exponents, we obtain ζ‖(2) close to 1,

suggestive of near Gaussian behaviour and (if the relation α = 1 + ζ(2) holds)

a PSD∼ 1/f 2. In contrast, the exponent for perpendicular fluctuations ζ⊥(2) is

close to 0.5, implying a PSD∼ 1/f 3/2.
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Figure 5-11: Scaling properties of fluctuations δv‖ and δv⊥ in the “1/f” range,
τ = 320 to 1002 minutes, in the fast solar wind at solar minimum. The upper
panels show the ζ(m) exponents plotted as a function of moment m = 1 to 4 for
different percentages of removed points for δv‖ (left) and δv⊥ (right). The bottom
panel shows ζ(2) plotted against the percentage of removed points for δv‖ (blue,
upper) and δv⊥ (red, lower).

Figure 5-12 compares the scaling exponents ζ(2) for δv‖ and δv⊥ in fast and

slow solar wind streams at solar minimum. The corresponding GSFs are plotted
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in the right-hand pairs of panels in Figures 5-9 and 5-10. Fluctuations of δv‖ in the

slow solar wind appear more strongly multifractal than in the fast wind. For δv⊥

the slow solar wind displays a much higher exponent value for slow (ζ(2) ∼ 0.8)

than for fast (ζ(2) ∼ 0.5) streams, reflecting the intrinsic differences between the

fast and slow solar wind, and the coronal plasma conditions and magnetic field

configuration at their origin.
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Figure 5-12: Comparisons of ζ(2) at solar minimum in the “1/f” range as a
function of the percentage of removed points for fast (red) and slow (blue) solar
wind streams for δv‖ (left) and δv⊥ (right). The slow solar wind scaling appears
to be more strongly multifractal.

To summarize the observed results: Analysis of the scaling exponents reveals

fractal or weakly multi-fractal (very close to monofractal) scaling in the fluctu-

ations of velocity components in the fast solar wind, with very different values

for δv‖ (ζ(2) ∼ 0.95) and δv⊥ (ζ(2) ∼ 0.5) at solar minimum. In the slow solar

wind at solar minimum, the scaling exponent ζ(2) of δv⊥ nearly doubles from

∼ 0.5 to ∼ 0.8. In contrast, the scaling of δv‖ remains quantitatively similar to its

value in the fast wind (Figure 5-12), i. e. ζ(2) ∼ 0.95 but has a less well-defined

monofractal character. Finally, if we assume a regime in which the PSD f−α scal-

ing exponent α is related to ζ(2) by α = 1 + ζ(2), then we obtain for the fast

quiet solar wind: α ∼ 1 for δb‖,⊥ (as expected from Figure 5-1), α ∼ 2 for δv‖ and

α ∼ 1.5 for δv⊥.
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5.6 Conclusions

We have examined the scaling of the parallel and perpendicular velocity and mag-

netic field fluctuations measured in the solar wind at ∼ 1 AU by ACE, which we

have decomposed with respect to a locally averaged background magnetic field.

Power spectra, GSFs and PDF collapse have been used to qualify and quantify

the nature of the observed scaling in the low frequency “1/f” range. Slow and

fast solar wind streams have been compared at both solar maximum in 2000 and

solar minimum in 2007. The slow solar wind is found to be more multifractal and

complex than the fast solar wind.

The magnetic field fluctuations display a flattening of the GSFs for τ ≥ 178 min-

utes and a spectral index ∼ 1, consistent with ∼ 1/f behaviour found previously

(Matthaeus & Goldstein, 1986; Matthaeus et al., 2007). In contrast, the velocity

fluctuations show strong anisotropy, with scaling behaviour distinct from that of

the B field and characterized by steepening of the GSFs in the “1/f” range (Fig-

ure 5-8) consistent with ∼ 1/fα, α 6= 1.

For the fast quiet solar wind, δv‖ and δv⊥ have different scaling exponents: δv‖

exhibits fractal scaling with ζ(2) ∼ 0.95 ± 0.02 whereas δv⊥ is weakly multifrac-

tal with ζ(2) ∼ 0.49 ± 0.03 (Figure 5-11). The PDFs for these quantities also

rescale relatively well. Also in the fast quiet solar wind, the PDF of δv‖ is close

to Gaussian, whereas δb‖ is nearly symmetric and has stretched exponential tails,

consistent with a multiplicative process. The rescaled PDFs for δv⊥ and δb⊥ in

the fast solar wind can be fitted with the same distribution function, which is close

to gamma or inverse Gumbel (see Figure 5-6). However their scaling exponents

revealed by GSFs differ substantially (see Figure 5-10). We can speculate that

this is consistent with a common coronal source for the fluctuations but a differ-

ent spatiotemporal evolution out to 1 AU. The functional form of the PDF then

constrains the mechanism that generates the fluctuations at the corona, gamma

having points of contact with turbulence in confined plasmas (see for example

Graves et al., 2005; Labit et al., 2007, and references therein) and Gumbel, as an

extremal process.

The breakpoint between the inertial range and “1/f” ranges differs between fast

and slow solar wind streams and between periods of maximum and minimum solar
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activity. The inertial range extends to longer timescales in slow solar wind streams

and at periods of maximum solar activity. The values of the inertial range scaling

exponents remain unaffected by changes in the solar cycle (Figure 5-9 and Figure

5-10), consistent with locally generated turbulence.

Our results clearly show very different behaviour between the magnetic and ve-

locity fluctuations in the “1/f” range. The fractal nature of δv‖ points to distinct

physical processes in the corona, and to their mapping out into the solar wind.

Further work would involve relating the fractal scaling observed at ∼ 1AU with

fractal stirring of magnetic footpoints in the corona. The different scaling ob-

served in δv⊥ points to different dynamics perpendicular to the background field

(possibly field line interactions) with a possible common coronal origin of the δv⊥

and δb⊥ fluctuations in fast quiet solar wind.
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ACE RTN results

6.1 Introduction

At the large temporal/spatial scales considered in the “1/f” region, we are not

directly concerned simply with in situ turbulence, rather then some other scaling

signal which is a consequence of a combination of remote processes at the corona

and transport convection as well as active mixing. The “natural” coordinate set is

therefore far from clear. In Chapter 5, we explored the idea that the background

magnetic field orders these processes (both MHD turbulent mixing and convection)

and is the relevant coordinate system to quantify the anisotropy of the fluctuations.

However there are other preferred directions of interest in the solar wind, such as

the bulk velocity flow direction. Indeed, if one has in mind in situ hydrodynamic

turbulence then this is the natural coordinate system. At 1 AU, the Parker spiral

geometry of the interplanetary magnetic field, means that the magnetic field and

the mainly radial bulk flow velocity direction are at an angle of ∼ 45o. As we

are looking at fast solar wind flow in the solar ecliptic plane, we expect the bulk

velocity flow direction to be similar to the heliospheric radial direction.

We therefore consider here the scaling behaviour of the velocity and magnetic field

fluctuations in the RTN coordinate system. The PDF, GSFs and corresponding

scaling exponents are computed for the fast solar wind at solar minimum (2007).

The same ACE data ananlysed in Chapter 5 is used for the present work, in order

to compare the 2 coordinate systems.
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Figure 6-1: The frozen-in field lines result in the Parker spiral interplanetary mag-
netic field lines geometry. The R (red), T (green) and N (black) components are
compared to components parallel and perpendicular to the background magnetic
field with directions given by ê‖ = B/|B|, ê⊥1 = (B × 〈u〉)/(|B × 〈u〉|) and
ê⊥2 = (B× (B×〈u〉))/(|B× (B×〈u〉)|). “×” indicate vectors pointing towards
the page and “•” indicate vectors pointing out of the page. Both coordinate sys-
tems are orthogonal and different colours (red, green and black) show the different
components.

Figure 6-1 shows the two coordinate systems looking down on the ecliptic

plane. Same colours indicate the components, which are to be compared, i.e. the

radial component (red) is compared to the component parallel to the background

magnetic field B (red) as these are the components in the flow direction.

6.2 PDF Analysis

Fluctuations in the velocity, δvi = vi(t + τ) − vi(t), and magnetic field, δbi =

Bi(t + τ) − Bi(t), are computed for i = R, T&N in the RTN coordinate system

over a range of τ = 320−1003 minutes (∼ 5−17 hours). These are then compared

to the background magnetic field aligned coordinate system of Chapter 5, we

compare R to ê‖, T to ê⊥2 and N to ê⊥1. This comparison is chosen as following

Figure 6-1, R, ê‖, T and ê⊥2 all lie in the ecliptic plane, whereas N and ê⊥1 lie in

a plane perpendicular to the ecliptic. The PDFs are renormalised using e.g. 5-8,

again if the fluctuations are from a single physical process, we expect a collapse

of the PDFs onto a single characteristic function. Figure 6-2 shows the raw and

normalised PDFs for δvR,T,N .
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Figure 6-2: Radial (upper), tangential (middle) and normal (lower) velocity and
magnetic field components’ fluctuations δvR,T,N and δbR,T,N in the fast solar wind
at solar minimum are compared to δv‖,⊥2,⊥1 and δb‖,⊥2,⊥1 for the “1/f” range. The
fluctuations are sampled across intervals τ between 320 and 1003 minutes and the
PDF curves are also normalised using equation 5-8.

Most of the renormalised PDFs collapse relatively well, however there is a large

scatter in the tails and some variation between the different coordinate systems.

δvR displays a strong asymmetry and shows far more variation between the PDFs

for the different τ than either δvT or δvN . The asymmetry is possibly indicative
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of a bimodal structure, arising from the presence of distinct physical processes. It

is interesting to note that this is only present in the radial component, supporting

the idea that we are seeing the signature of different coronal structures carried out

radially into the solar wind. δvT and δvN collapse well onto single curves and do

not exhibit the variability seen in δvR. The right panels of Figure 6-2 show the

same analysis for δbR,T,N . All the magnetic field components appear similar and

collapse onto single curves. The renormalisation of the PDFs makes if difficult to

distinguish between the coordinate systems as at these large scales the velocity

distributions are all tending towards Gaussian shapes around their peaks. We now

then consider these PDFs fitted with a Gaussian distribution, given by equation

5-9. The corresponding curves on semilog axis are shown in Figure 6-4.
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Figure 6-3: Radial, tangential and normal velocity and magnetic field components’
fluctuations δvR,T,N and δbR,T,N in the fast solar wind at solar minimum for the
“1/f” range. For clarity, plots for only three representative values of τ are shown
for each component. Gaussian fits to the normalised PDF curves for both δvR,T,N

(left) and δbR,T,N (right) are shown using semilog y axes.

The magnetic field fluctuations δbR are not Gaussian and still display quite

heavy tails, with a lot of scatter. This is consistent with previous results such as

(Padhye et al., 2001) for example, who found slight departures from Gaussianity
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for magnetic field fluctuations decomposed with respect to the background field

and (Burlaga & F.-Viñas, 2004), who use ACE magnetic field magnitude flucu-

tations over scales from 1 hour to 171 days to demonstrate their non-Gaussian

nature. The magnetic field fluctuations δbT,N and the velocity field fluctuations

δvT are similar to Gaussian in their peak regions, however the PDF tails still

display heavy tails. Again Burlaga & F.-Viñas (2004) observed that the velocity

magnitude tended to a Gaussian distribution at larger τ scales (> 24 hours or 960

minutes).

In summary, we see that δvR and δbR are distinct as their PDFs rescale differently.

This is similar to our result from Chapter 5, where we showed that δv‖ and δb‖

were distinct. We also note that δv‖ and δvR are different, with δv‖ showing a

reduced asymmetry and a closer fit to Gaussian than δvR. In contrast, δb‖ and δbR

both exhibit non-Gaussian PDFs with stretched exponential tails. The behaviour

normal to the ecliptic plane is the same. However, the plane containing B and

v is less clear, with mixing components remaining an open question. In order to

further investigate any scaling differences, we turn to GSF analysis.

6.3 GSF Comparison

As in the previous Chapters, we perform GSF analysis on the two different coordi-

nate systems for both velocity and magnetic field and compare the corresponding

curves.
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Figure 6-4: Comparison of scaling properties of fluctuations in RTN coordinates
(blue) and B aligned coordinates (red) in the fast solar wind at solar minimum
in 2007 for velocity (left) and magnetic field (right) fluctuations. The generalised
structure functions Sm are plotted on log-log axes versus sampling interval τ for
τ = 10 to 1706 minutes and m = 1 to 4. Only the 0.4% conditioned data is shown
for clarity.

Figure 6-4 shows that the inertial range scaling is different between the two

coordinate systems and components except for N and ê⊥2, consistent with the
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anisotropic nature of the inertial range. The large scale magnetic field still shows

a characteristic flattening in both reference frames. We can also note the N and

ê⊥2 fluctuations overlay in a near identical way, consistent with our picture in

Figure 6-1 that these components both lie normal to the ecliptic plane. T has a

behaviour similar to the magnetic field at large scales and ê⊥1 has a behaviour

closer to the radial velocity field scaling. this is consistent with the fact that T is

approximately normal to the bulk velocity flow but therefore there is some mixing

with the parallel and perpendicular components and similarly ê⊥1 is normal to

the magnetic field but there is some mixing with the radial and tangential com-

ponents. Indeed it is between the velocity fluctuations in T and ê⊥1 that the

strongest difference is observed. Also ê⊥1 and ê⊥2 velocity fluctuations have a

different scaling, in Chapter 5 the scaling we observe is then a mix of perpen-

dicular fluctuations. However we argue that the difference between parallel and

perpendicular fluctuations is still real and the averaging over the perpendicular

components does not affect this result or the PDF analysis of Chapter 5. Rather,

it tells us that these fluctuations have a common source but evolved differently

depending on whether they were in the ecliptic plane or normal to it. To quantify

the scaling in the “1/f” range, we use linear regression fits over τ = 320 to 1002

minutes to extract the ζ(m) scaling exponents. In Figure 6-5, we plot ζ(2) as a

function of the percentage of removed points.
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Figure 6-5: The ζ(2) exponents extracted from the linear fits to τ = 320 to
1002 minutes for different percentages of removed points are shown for the RTN
coordinates (blue) and the ê‖,⊥2,⊥1 coordinates (red) for the fast solar wind at
solar minimum (2007).

Figure 6-5 confirms that that the N and ê⊥1 components are the same within

errors with ζ(2) ∼ 0.20 ± 0.05 for the velocity fluctations and ∼ 0 for the the

magnetic field fluctuations, these results are consistent with the observed flattening
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of the GSFs. Generally, the ζ(2) exponents for the magnetic field show little

variation between the two coordinate sets and have consistently small values with

ζ(2) ∼ [0 − 0.2] ± 0.05. In contrast for the velocity fluctuations. R and ê‖

are distinct with ζ(2)R ∼ 1.05 ± 0.01 and ζ(2)‖ ∼ 0.95 ± 0.02. However, as

observed previously, the strongest variation is between the velocity T and ê⊥2

components, where ζ(2)T ∼ 0.23± 0.02 (similar to the magnetic field scaling) and

ζ(2)⊥2 ∼ 0.7 ± 0.04 (closer to the radial velocity scaling).

Finally, we show in Figure 6-6 the compensated third order structure function

S3/τ against τ on a semilog axis, the plots are in no way shifted for comparison as

in Figure 6-5. This is the same process as used in Figure 4-1 and although we are

no longer just considering the inertial range here, this plot nevertheless provides

a useful comparison of the power levels between the different components.
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Figure 6-6: S3/τ against τ on semilog axis for τ = 10 to 1706 minutes for the
velocity (left panel) and magnetic field (right panel) for the fast solar wind at
solar minimum (2007). The breakpoint between the inertial range and the “1/f”
region is clearly visible in the velocity plot at τ ∼ 102.25 minutes or about 3 hours.

Again this plot is another clear indicator of the spectral breakpoint between the

inertial range and the “1/f” region, which occurs at τ ∼ 102.25 minutes or about

3 hours. After the breakpoint, the velocity field fluctuations seem to diverge, in

contrast to the magnetic field fluctuations. We still observe the near-identical

behaviour of the N and ê⊥1 components for both velocity and magnetic field.

We also observe that the velocity components in both coordinate systems still

preserve a strong anisotropy between the parallel and perpendicular components
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and the radial and the tangential and normal components. This is consistent with

our observations in Chapter 5, where we found δv‖ and δv⊥ to have very different

scaling.

6.4 Conclusions

We have compared the scaling of velocity and magnetic field fluctuations in the

fast ecliptic solar wind in two different frames of reference: the RTN coordinate

system, where R is radial from the Sun and assumed to be approximately aligned

with the bulk velocity flow direction and a coordinate system decomposed into

parallel and perpendicular components with respect to the local background mag-

netic field.

The PDF analysis revealed the radial velocity fluctuations to be more strongly

asymmetric than the parallel velocity fluctuations. The T and N fluctuations are

close to Gaussian, however the magnetic field T and N components and the ve-

locity T component still have quite strong scatter in the PDF tails. In order to

quantify any differences, we need to use GSFs.

We find that the magnetic field and velocity field flucutations are distinct from

each other in the “1/f” region. This is most apparent in the radial/parallel com-

ponents shown in the top panels of 6-4.

In the “1/fα” region, the characteristic flattening of the GSFs (consistent with a

power spectral exponent α close to 1) is again observed for all magnetic field com-

ponents and both coordinate sets. The scaling exponents are similar for δb⊥1,⊥2

and δbT,N (Figure 6-5), the strongest difference is between the radial and parallel

components.

Both coordinate systems have a component in the plane normal to the ecliptic, N

and ê⊥2, and these also scale in an identical way for velocity and magnetic field.

The other components all lie in the ecliptic plane and are affected by the different

preferred directions present of the background magnetic field curved in the Parker

spiral, and the heliocentric radial expansion. The radial and parallel velocity fluc-

tuations’ components are distinct but nevertheless have relatively close values,

consistent with scaling dominated by the outwards expansion of the solar wind.
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The tangential component, also in the ecliptic plane, shows scaling similar to the

magnetic field, whereas the ê⊥2 component (normal to the background field) has

scaling closer to the radial velocity fluctuations.

The anisotropy between the parallel and perpendicular velocity field components

(Figure 6-6) is also observable between the radial and the normal and tangential

components. Whether the radial velocity component fluctuations are a result of

parallel and perpendicular flucutations mixing or vice-versa is still an open ques-

tion. It is then difficult to say which coordinate system is preferable, as both carry

signatures of the preferred directions present. The S3/τ plots also clearly show

the differences between velocity and magnetic field scaling, in particular in the

“1/fα” region.
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Conclusions

7.1 Thesis summary

7.1.1 Ulysses

We have examined a range of temporal scales in polar and ecliptic solar wind for

different solar conditions such as fast/slow solar wind and periods of different solar

activity.

We first considered Ulysses polar magnetic field measurements in the RTN co-

ordinate system as we were looking at small scale fluctuations (temporal scales

of 1 to 15 minutes) on open field lines emanating from the polar coronal holes.

We analysed ten day intervals over which time the timeseries could be considered

stationary and the variation in Ulysses radial and heliographic position is small.

First the north polar pass of 1995 is examined using power spectra (Figure 3-1),

generalised structure functions (Figures 3-2, 3-3 and 3-4) and extended self-similarity

(Figures 3-6, 3-8 and 3-9). These methods were previously tested in Chapter 2 on

model timeseries (Brownian walk, Lévy Flight and multifractal p-model).

We conclude that the inertial range (energy cascade) of fast quiet polar solar wind

does not show straight-forward power law behaviour, rather it can be fitted by

the same function g(τ) (Figure 3-12) for all components. The g(τ) function was

observed not to have any radial or latitudinal dependence over the ranges consid-

ered. An initial fit of quadratic form was estimated for g(τ), however this had

little physical significance and proved problematic in the limit of small τ .

The analysis was further extended to include all Ulysses solar minima magnetic

field measurements for the South passes of 1994 and 2007 and the North pass of

2008. The most recent solar minima is particularly interesting, as the Sun was

observed to be much quieter, with much lower density and magnetic field strength
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measurements. We find a decrease in the power output between the two successive

minima by almost a factor of two (Figure 4-2). Our analysis however showed that

the statistical properties of the magnetic field fluctuations in the inertial range

were identical for all passes.

We further refined our g(τ) function by fitting a simpler function g(τ/τ0)
ζ(3) =

a(τ/τ̂ )τ/τ0
b

, ζ(3) ∼ 1, which now incorporates a normalisation scale of τ̂ = 1

minute and the approximate outer scale of the inertial range τ0 = 10 minutes.

The fitting parameters a = 0.101 ± 0.001 and b = 0.10 ± 0.01 show good agree-

ment with the experimental data (Figure 4-6). We now extend this fitting to find

the scaling exponents ζ(m). The ζ(m) are found to be well fitted by a p-model

with ζ(3) = 1 (Figure 4-9).

We have demonstrated the importance of finite-size effects on the scaling in the

inertial range of solar wind turbulence. We have then shown that although the

solar wind is a spatially extended system, the finite Reynolds number and large

scale structures can affect the scaling, especially for higher order moments. To

our knowledge, this is the first observation of this effect in the solar wind. Fur-

ther work would involve investigating the presence of g(τ/τ0) in other turbulent

systems. This would give more insight into the possible universal nature of this

function in inertial range turbulence.

7.1.2 ACE

ACE measurements provide an unique opportunity to study solar wind fluctua-

tions at 1 AU in the solar ecliptic plane. We analysed magnetic field and velocity

fluctuations in a frame orientated with respect to the background magnetic field.

At 1 AU the Parker spiral means that magnetic field lines are twisted due to

the solar rotation and can not be thought of as radial. We choose a magnetic

field aligned coordinate system, however there are also other preferred directions

present in the solar wind, such the bulk flow direction, and we also consider this

in Chapter 6.

Chapter 5 focuses on the large scale fluctuations in the so called “1/f” temporal

range of the solar wind. This region is characterised by the a “1/fα” magnetic

field power spectra with α ∼ 1 (Figure 5-1).
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We consider periods of high and low solar activity and fast and slow solar wind

streams separately. Our observations show α ∼ 1 in our magnetic field aligned

coordinate system for the magnetic field fluctuations however a very different be-

haviour is observed in the velocity field. The velocity field GSFs show a strong

steepening (Figure 5-8), also reflected in the power spectra. The velocity parallel

and perpendicular components are also different, with different scaling exponents,

ζ(2)‖ ∼ 0.95 ± 0.02 whereas ζ(2)⊥ ∼ 0.49 ± 0.03 (Figure 5-11). This is evidence

of strong anisotropy at these scales.

In the fast solar wind at solar minimum, PDF analysis reveals the parallel ve-

locity fluctuations to be close to Gaussian (Figure 5-5, top panels), whereas δb‖

is closer to a multiplicative process, with stretched exponential tails (Figure 5-5,

bottom panels). The rescaled PDFs for δv⊥ and δb⊥ in the fast solar wind can

be fitted with the same inverse Gumbel (or gamma) distribution function (Figure

5-6, which is an extremal process. GSF analysis however shows that their scaling

exponents differ substantially. We hypothesis that this is evidence of a common

coronal source for the fluctuations but a different spatiotemporal evolution out to

1 AU.

Our analysis also unexpectedly reveals an extremely sensitive indicator of the

breakpoint between the inertial range of turbulence and the “1/f” energy con-

taining scales. Upon comparing the GSFs of the magnetic field and velocity

fluctuations, a clear divergence in behaviour beyond the spectral breakpoint is

observed (Figures 5-8, 5-9 and 5-10).

The inertial range scaling remains similar between the δb‖,⊥ and δv‖,⊥ fluctuations

and has no dependence on solar cycle, which is what we would expect for in situ

generated turbulence. The value of the scaling exponents in the inertial range do

vary between fast and slow streams by approximately a factor of 2 higher in the

slow solar wind. This is again due to the different level of turbulent evolution

between the fast and slow solar wind. We would expect the slow solar wind to be

more evolved than the fast streams. The longest inertial range observed extended

to τ ∼ 300 minutes (Figure 5-10), in the slow solar wind during solar maximum

and the shortest inertial range was ∼ 100 minutes for the fast solar wind at solar

minimum. Again this is consistent with the more highly evolved state of the slow
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solar wind.

Finally in Figure 7-1, we summarise the behaviour of ζ(2) scaling exponent for

the fast and slow velocity solar wind streams at periods of maximum (2000) and

minimum (2007) solar activity.
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Figure 7-1: Comparisons of ζ(2) at solar maximum (left panel) minimum (right
panel) in the “1/f” range as a function of the percentage of removed points for
fast (red) and slow (blue) solar wind streams for δv‖ (“×”) and δv⊥ (“·”).

Firstly, Figure 7-1 shows that at solar maximum all the components are simil-

iar (within errors) between fast and slow and there is only a very weak anisotropy

between the parallel and perpendicular components. If we think of a simple ide-

alised picture of the solar wind, with a highly complex topological magnetic field

at solar maximum, with reconnection events, flares, and highly twisted magnetic

field lines then this similarity between all the components is consistent with all the

components being “mixed in”, or almost isotropic. In both slow and fast streams,

these are the dominant processes, which govern the scaling. We are therefore see-

ing a mixture of transport and source, which we cannot untangle.

At solar minimum, the first thing to note is that the scaling is different between

parallel and perpendicular components and also is very different in the parallel

direction from the solar maximum. Our simple picture here of the solar wind

is that there are no complicated structures affecting the flow or large transient

coronal structures. We are therefore seeing the direct signature of the coronal or-

ganisation carried out into the expanding solar wind and which has not been lost

by interaction with other structures. The different scaling behaviour between fast
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and slow, both in the fractal/multifractal nature of δv‖ and the different values of

ζ(2) for δv⊥ point to the different mechanisms at the origin of the two different

types of wind.

The fractal nature of δv‖ points to distinct physical processes in the corona, and

to their mapping out into the solar wind. This scaling could then be mapped back

to the fractal scaling of the “magnetic carpet” known to exist in the solar corona.

In Chapter 6, we compare the RTN coordinate system with a system decomposed

into parallel and perpendicular fluctuations with respect to the background mag-

netic field. We find that our assumption of isotropy in the perpendicular plane

for the velocity fluctuations does not hold for the GSF scaling exponents (Fig-

ures 6-5 and 6-6), eventhough we showed in Chapter 5 that the fluctuations in

ê⊥2,⊥1 have the same functional form. Again this points to a common origin

but different evolution. However the result from Chapter 5, namely that there

is a distinct anisotropy in the fast solar wind between parallel and perpendicular

velocity fluctuations still holds. This is also apparent between the R and the T

and N components (Figures 6-5 and 6-6). It is then possible to argue that the

RTN coordinate sytem is a better system in which to study velocity fluctuations,

whereas the background magnetic field aligned coordinates are more suited to a

study of the magnetic field fluctuations. However, if we wish to compare the scal-

ing of these fluctuations we need the same coordinate system for both.

All of these results show that generic timeseries analysis tools such as structure

functions and PDFs can be used to extract information over a wide range of scales

and conditions in the solar wind. We have shown the effect of finite Reynolds num-

ber on inertial range scaling and we have probed the solar cycle and solar wind

speed dependence of velocity and magnetic field fluctuations. The results point to

different mechanisms behind the origin of these streams and the topological solar

differences between periods of maximum and minimum solar activity.
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