Graphical Abstract

Figure 1. Receptors 1, 2 and guanosine derivative, 3 used for binding studies; TIPS = triisopropylsilyl.

Figure 2. Dimers of 1 and 2, 1-1 and 2-2; respectively.

Figure 4. Curve fitting from NMR dilution of **1** in CDCl₃; $K_{1-1} = 83\pm 3$ M⁻¹.

Figure 5. Self-association model of lipophilic guanosine 3 in chloroform.

Figure 6. Curve fitting for NMR dilution of **3** in CDCl₃. The three titration curves (**A**) N3-H (**B**) H-8 and (**C**) NH₂ are fitted simultaneously to give $K_{3\cdot3}$ of 370±72 and $K_{3\cdot3\cdot3\cdot3}$ of 15±1 M⁻¹.

Figure 7. Complexation of receptors 1 or 2 with 3; TIPS = triisopropylsilyl.

$$H + G \xrightarrow{K_{HG}} HG$$

$$HG + G \xrightarrow{K_{HGG}} HGG$$

$$H + H \xrightarrow{K_{HH}} HH$$

$$G + G \xrightarrow{K_{GG}} GG$$

$$GG + GG \xrightarrow{K_{G4}} G4$$

Scheme 1. Equilibria in the binding studies between 2 and 3.

Figure 8. Curve fitting of NMR titration in CDCl₃ between 2 and 3. $K_{2\cdot3}$ 8100 ± 380; $K_{2\cdot3\cdot3}$ 1170 ± 80 M⁻¹.

Figure 9. Speciation curve for receptor 2 upon addition of 3 in CDCl₃, showing monomeric 2, dimeric 2, 1:1 complex (2•3) and 1:2 complex (2•3•3).

Figure 10. Curve fitting of NMR titration in CDCl₃ between 1 and 3. $K_{1\cdot3} = 5180 \pm 210$, $K_{1\cdot3\cdot3} = 4800 \pm 170$ M⁻¹.

Figure 11. Speciation curve for 1 upon addition of 3 in CDCl₃.

Figure 12. Summary of equilibria in deuterochloroform for monoalkyne receptor 1.

Figure 13. Summary of equilibria in deuterochloroform for dialkyne receptor 2.

Figure 14. C-P-K models of 1 at $E_{min}(left)$ dihedral $\approx 30^{\circ}$ showing interactions between TIPS groups and E_{max} (right)

dihedral $\approx 165^{\circ}$.

Figure 15. Torsional energy vs. dihedral angle for monoalkyne 1

Figure 16. Torsional energy vs. dihedral angle for dialkyne 2