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A Genetic Algorithm Method for Optical Wireless

Channel Control
Matthew D. Higgins, Roger J. Green, Senior Member, IEEE, and Mark S. Leeson, Senior Member, IEEE

Abstract—A genetic algorithm controlled multispot transmitter
is proposed as an alternative approach to optimising the power
distribution for single element receivers in fully diffuse mobile
indoor optical wireless communication systems. By specifically
tailoring the algorithm, it is shown that by dynamically altering
the intensity of individual diffusion spots, a consistent power
distribution, with negligible impact on bandwidth and rms
delay spread, can be created in multiple rooms independent
of reflectivity characteristics and user movement patterns. This
advantageous adaptability removes the need for bespoke system
design, aiming instead for the use of a more cost effective, optimal
transmitter and receiver capable of deployment in multiple
scenarios and applications. From the simulations conducted it
is deduced, that implementing a receiver with a FOV = 55

◦ in
conjunction with either of two notable algorithms, the dynamic
range of the rooms, referenced against the peak received power,
can be reduced by up to 26% when empty, and furthermore to
within 12% of this optimised case when user movement perturbs
the channel.

Index Terms—Genetic algorithm, optical communication, wire-
less LAN.

I. INTRODUCTION

O
NE of the most challenging design aspects of an indoor

optical wireless (OW) system, using an infrared (IR)

carrier, is overcoming the limitations imposed by the transmis-

sion channel. Conventional diffuse configurations, pioneered

by Gfeller [1], suffer from intersymbol interference (ISI), wide

ranging levels of received power throughout the room and

intense quantities of IR ambient radiation [2]. These channel

characteristics inhibit the ability to provide high performance

OW systems that meet the needs of today’s growing demand

for mobile multimedia device connectivity. Furthermore, the

transmission channel characteristics are dependent upon the

room size, stationary and moving objects, material properties

of every surface the radiation is incident upon, and the number

and type of illumination sources present [3], such that a single

system design may have different performance capabilities

when implemented in different locations.

To overcome these performance issues, research in the field

has led to several possible solutions. Quasi-diffuse configu-

rations employing multispot diffusion (MSD) and diversity

receivers [4] improve the bandwidth and ambient noise rejec-

tion through the use of an array of photodetector’s coupled to

either, a single imaging lens [5], or several optical concentra-

tors [6]. Implementation of automatic gain control (AGC) can
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compensate for the variations in received power at different

positions within the room [7]. Modulation techniques such

as trellis-coded pulse-position modulation [8], and amplitude

shift key digital demodulation [9] are capable of mitigating the

effects of ISI, and noise from fluorescent lamps, respectively.

More recently the use of intelligent techniques have been

shown to be beneficial, using neural networks and pattern

recognition wavelet analysis to overcome channel induced

distortion [10]. Following this, a modified genetic algorithm

(GA), based on simulated annealing [11], has been shown

to produce highly optimised computer generated holograms,

reducing the variation in received power distribution [12], [13].

The most practical OW system architecture is the cellular

approach, where a given room has a transceiver base station

linked to the backbone network. It is presumed that there are

multiple end users in the cell, each with a battery powered

portable OW receiver, such as mobile phone, laptop or PDA.

Therefore whilst the application of each of the aforementioned

techniques has respective performance merits compared to

a conventional diffuse OW system, one has to weigh these

benefits against the added complexity, cost and physical size

of each receiver within the system. This is especially apparent

when the number of receivers becomes large, as the cost

overhead of a system, will be influenced more by the number

of receivers, than the single base station.

In this paper a GA controlled MSD transmitter is proposed,

but instead of pairing it with a diversity receiver, a simpler

single element receiver is implemented. It will be shown

that the GA can dynamically optimise the power distribu-

tion for multiple stationary and mobile users within multiple

environments, by controlling the power of each diffusion

spot. This advantageous adaptability, independent of environ-

mental characteristics and user movement patterns, removes

the need for bespoke system design and allows for easier

system deployment increasing end user friendliness. Moreover

the ability to produce a consistent power distribution at all

locations within multiple environments contributes towards

uniform system performance characteristics. These perfor-

mance characteristics then become less dependent upon the

ACG capabilities of the receiver, as the transmitter becomes

responsible for maximising the signal to noise ratio (SNR)

and data rate. The inevitable trade off in the work presented

here is the lack of substantial bandwidth gains compared to

implementing diversity receivers, but in applications where

mobility and cost are paramount, this method aid in the design

of an optimum, standardised receiver design realisable for

mass product integration.

The remainder of this paper is organised as follows. Section
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II briefly overviews the general system model, applicable

transmitter techniques, and impulse response definitions. Sec-

tion III introduces the channel model theory followed by sec-

tion IV detailing the GA implementation. Section V provides

the results and associated analysis of using the proposed GA.

Concluding remarks are presented in section VI.

II. SYSTEM MODEL

A. Source, Receiver and Reflector Model

We define our system environment to be an arbitrary indoor

rectangular room enclosing a transmitter capable of firstly

forming a diffusion spot geometry upon the ceiling and

secondly, that each spot intensity can be dynamically and in-

dependently controlled. To the best of the authors’ knowledge,

holographic diffusers [14], whilst being capable of generating

predefined spot intensities and/or geometries, such as uniform,

diamond or line-strip [15], have static characteristics removing

its suitability for the work presented here.

Multiple optical sources [16] allow for any spot pattern

geometry to be installed on the ceiling of the room, and whilst

it is possible to control the distribution of emitted radiation

from each source though the use of lenses or other diffuser

techniques [17], traditionally the optical source is a LED,

which emits radiation with a generalised Lambertian radiation

intensity pattern [18]. Dynamic control of an individual spot

intensity is also possible. The installation of multiple optical

sources may seem ‘bespoke’, but the use of white LEDs which

not only act as transmission sources, also serve to illuminate

the environment, and have beneficial properties such as low

power consumption, heat dissipation and cost.

A 2-D vertical cavity surface emitting Laser diode (VCSEL)

or resonant cavity LED (RCLED) array, flip-chip bonded to

CMOS driver circuitry, allows for a highly-integrated trans-

mitter solution [19], [20]. The driver circuitry is capable of

controlling each element’s emitted power, along with any other

signal processing techniques currently realisable in CMOS.

Furthermore, it is possible to integrate beam shaping and

steering optics, that can control the position of each of the

resultant projected spots on the ceiling, which will then be

reflected, according to the reflection properties of the ceiling.

Assuming that the majority of surfaces in our environment

exhibit a fully diffuse, as supposed to specular [21]–[23],

reflection characteristic that can be described by Lambert’s

reflection model [24], we can apply the following simpli-

fication. Regardless of whether the transmitter is composed

of multiple optical sources or a 2-D VCSEL/RCLED array,

the resultant diffusion spots on the ceiling will exhibit a

Lambertian radiation intensity pattern, and therefore from this

point onwards, each of the I diffusion spots on the ceiling will

themselves be considered independent sources Si. The only

error induced with this assumption is a delay and propagation

loss between the emitting element of an 2-D VCSEL/RCLED

array and the diffusion spot position. In an arbitrary room, the

number of possible transmitter and diffusing spot positions

is essentially infinite, and so this assumption also serves to

simplify our argument for using the GA whilst maintaining

generality to the application. Referring to figure 1, each source

Si will therefore have an associated position vector rSi
,

unit length orientation vector n̂Si
, power PSi

and uniaxial

symmetric, with respect to n̂Si
, Lambertian radiation intensity

profile R(φ) given by

R(φ) =
n+ 1

2π
PSi

cosn(φ) for θ ∈ [−π/2, π/2] (1)

Where the mode number, n = 1 for a pure Lambertian diffuser,

such as the ceiling, and n > 1 for a diffusion pattern from an

LED with higher directionality.

The aim of this work is to control the power distribution

of radiation, enabling the use of a single optimal receiver

design at all locations in multiple locations. Therefore, for a

given environment we model the existence of J single element

receivers Rj . Knowing that receivers Rj and Rj+1 are of

the same design, we can simultaneously simulate and readily

interchange between describing a system with J receivers

at multiple locations and a system with one receiver at J
locations. To attain a highly detailed system model, we set

J = 1024 and uniformly distributed the position vectors rRj

of the receivers Rj over the width x, length y, at a height

z = 1m. Each receiver has a vertical orientation vector n̂Rj
,

active optical collection area ARj
and a field of view FOVRj

defined as the maximum uniaxial symmetric incident angle

of radiation with respect to n̂Rj
, that will generate a current

in the photodiode. As we have assumed all surfaces within

the environment exhibit Lambertian reflection characteristics,

which are independent of the angle of the incident radiation,

we follow the technique described in [25], and partition all

surfaces into L elements El with position rEl
, orientation n̂El

,

and size AEl
= 1/∆A2(m2) where ∆A is the desired number

of elements per meter. A given element will sequentially

behave, firstly as a receiver ER
l with a hemispherical FOV, for

which we can determine the received power PEl
, and secondly

as a source ES
l , with a radiation intensity profile R(φ) is given

by (1) setting n = 1 and PSi
= ρEl

PEl
, where ρEl

is the

reflectivity of the element.

B. Impulse Response Calculations

The IR radiation incident upon a receiver Rj will be the

result of the radiation emitted from a source Si that has prop-

agated directly through an unobstructed LOS path, and/or from

the radiation that has undergone a finite number, k, reflections

off the surfaces within the environment. It is also known [24],

[25] that, for an intensity modulation, direct detection (IM/DD)

channel, where the movement of transmitters, receivers or

objects in the room is slow compared to the bit rate of the

system, no multipath fading occurs, and, as such, can be

deemed an LTI channel. The impulse response h(t;Si,Rj)
is given by [25], [26]

h(t;Si,Rj) =

k
∑

k=0

hk(t;Si,Rj) (2)

where hk(t;Si,Rj) is the impulse response of the system for

radiation undergoing k reflections between Si and Rj .

To determine the impulse response, we assume our source

Si emits a unit impulse at t = 0, i.e setting PSi
= 1W, then
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Fig. 1. Source, receiver and reflector geometry, adapted from [25]

the LOS (k = 0) impulse response is given by the scaled and

delayed Dirac delta function

h0(t;Si,Rj) ≈ R(φij)
cos(θij)ARj

Dij

V (
θij

FOVRj

)δ(t−
Dij

c
)

(3)

Where, referring to figure 1, Dij = ||rSi
−rRj

|| is the distance

between source and receiver, c is the speed of light. φij and

θij are the angles between n̂Si
and (rRj

− rSi
) and between

n̂Rj
and (rSi

− rRj
) respectively. V (x) represents the the

visibility function, where V (x) = 1 for |x| ≤ 1, and V (x) = 0
otherwise.

For radiation undergoing k > 0 bounces, the impulse

response is given by

hk(t;Si,Rj) =
L
∑

l=1

h(k−1)(t;Si, E
R
l ) ∗ h0(t; ES

l ,Rj) (4)

Where ∗ denotes convolution, and the k− 1 impulse response

h(k−1)(t;Si, E
R
l ) can be found iteratively [26] from

hk(t;Si, E
R
l ) =

L
∑

l=1

h(k−1)(t;Si, E
R
l ) ∗ h0(t; ES

l , E
R
l ) (5)

Where all the zero order (k = 0), responses in (4) and

(5) are found by careful substitution of the variables in

(3). The computational time required for calculation of the

impulse response using this iterative method is proportional

to k2 [27], and we will firstly limit ourselves to the a third

order impulse response (k = 3), and secondly change the

segmentation resolution of the environment for each reflection,

setting ∆A1 = 20, ∆A2 = 6 and ∆A3 = 2. It should also be

noted that the resultant impulse response in (2) will result in

the finite sum of scaled delta functions which need to undergo

temporal smoothing by subdividing time into bins of width ∆t,
and summing the total power in each bin [25]. For this work,

we assume a single time bin width of ∆t = 0.1ns.

III. THE CHANNEL MODEL

A. Scaling Factors

For a nondirected IR channel employing IM/DD, a source

Si which emits an instantaneous optical power Xi(t), will

produce a instantaneous photocurrent Yij(t) at receiver Rj

with photodiode responsivity rj , in the presence of an additive,

white Gaussian shot noise Nj(t), and can modelled as the

linear baseband system given by [28]

Yij(t) = rjXi(t) ∗ h(t;Si,Rj) +Nj(t) (6)

Where h(t;Si,Rj) is the impulse response given by (2), and

is fixed for a given system configuration of Si and Rj .

Assuming that all I sources Si emit an identical signal

waveform, such that X1(t) = X2(t) = . . . = XI(t), but

whose magnitude is individually scaled by a factor ai, the

instantaneous photocurrent generated at a given receiver Yj(t)
is simply the summation of (6) for all sources:-

Yj(t) =
I

∑

i=1

(rjaiXi(t) ∗ h(t;Si,Rj)) +Nj(t) (7)

Furthermore, as we are only concerned with a single re-

ceiver design, the photodiode responsivity rj is constant for

each receiver or receiver location, such that there may exist a

set of I scaling factors ai, that can be applied to the I identical

signal waveforms Xi(t), that will allow for the J receivers, to

attain the same or very similar instantaneous photocurrents

Y1(t) ≈ Y2(t) ≈ . . . ≈ YJ(t) (8)

Knowing that the channel is linear we can rewrite (7) as

Yj(t) =

I
∑

i=1

(rjXi(t) ∗ aih(t;Si,Rj)) +Nj(t) (9)

Such that we can solve (8) by solving

I
∑

i=1

aih(t;Si,R1) ≈

I
∑

i=1

aih(t;Si,R2) ≈ . . .

. . . ≈
I

∑

i=1

aih(t;Si,RJ ) (10)

By inspection of equations (7) to (10), it can be seen that a

solution may require some scaling factors of ≤ 1, lowering the

total received power, compared to if all sources were the same.

Furthermore solving (8) for different environments, will yield

non-identical sets of scaling factors implying the magnitude

of received power, although equal at all locations within, will

be different.

Under IEC825 regulations [29], the maximum acceptable

exposure limit (AEL), is based upon variable factors such

as wavelength, exposure duration, pulse characteristics and

image size [30]. Two source factors in particular, diameter and

divergence, can be increased allowing for a higher AEL [4]. A

2-D VCSEL/RCLED array will emit multiple low divergence

beams upon the ceiling. The divergence of the emitted beams,

coupled with the Lambertian reflection characteristics of the

ceiling, and the fact that the human eye cannot subtend all

the resultant diffusion spots simultaneously, increases the AEL
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compared to a conventional point source. The same logic can

also be applied when using multiple LEDs, as they have a

larger diameter than a point source. Whilst the GA will adapt

the power of each diffusion spot, the system must still be

within the AEL at the worst case of all spots at maximum.

Drawing parallels with the IEEE 802.11a WiFi physical

layer specification, that incorporates multi-rate transmission

of up to 54Mbit/s [31], and recent work on rate-adaptive

transmission [32] in the IR domain, if it is found that several

environments have different received powers the following

method can be applied. Firstly by normalising the I scaling

factors, the equality result of (8) is independent of receiver

power magnitude, and secondly for different environments we

can adjust for example, the pulse characteristic, in order to

increase or decrease the received power to make the power

distributions equal. This then allows for the same optimal

receiver design to be used in different environments, albeit

under the compromise of variable data rates in the same

manner as most other variable data rate systems.

To illustrate the final problem simplification we have ap-

plied, consider for example an environment such as config-

uration A in [25], with dimensions x = 5m, y = 5m, z =
3m. In calculating a third order reflection impulse response

(k = 3), the longest time of flight for the radiation to travel

is t = (4(52 +52 +32)0.5)/c ≈ 102.4ns, when it undergoes a

path reflecting off the opposite corners of the room. Using an

impulse response bin width ∆t = 0.1ns, would produce 1024
samples for each impulse response train, for every combination

of I sources and J receivers in (10).

In the general case, proposing a GA that can solve (10)

for the possibly infinite number of source and transmitter

configurations would prove to be too unwieldy. By replacing

the need to evaluate each bin of the impulse response train,

with the need to find only the scaling factor solution for

the time integral or the DC value of the frequency response

H(0;Si,Rj) =
∫∞

−∞
h(t;Si,Rj)dt, equation (10) reduces to

I
∑

i=1

aiH(0;Si,R1) ≈

I
∑

i=1

aiH(0;Si,R2) ≈ . . .

. . . ≈
I

∑

i=1

aiH(0;Si,RJ ) (11)

The power distribution optimisation should not be achieved

at the expense of bandwidth and rms delay spread. As (11)

only quantifies the total power received, not when the power

was received we will feed back the solution into the original

system model to quantify our worst case bandwidth and rms

delay spread, defined as the smallest and largest values at any

location within the room respectively. The rms delay spread

can be found from the original impulse response using [33]

σ =

√

√

√

√

∫∞

−∞
(t− ω)2h2(t)dt
∫∞

−∞
h2(t)dt

(12)

Where ω is defined as:

ω =

∫∞

−∞
th2(t)dt

∫∞

−∞
h2(t)

(13)

IV. THE GENETIC ALGORITHM

GAs should not be considered off-the-peg, ready to use

algorithms, but rather a general framework that needs to be

tailored to a specific problem [34]. Below we describe our

methodology and justifications for decisions made in adapting

the representation, fitness function, selection, recombination

and mutation routines found in a so-called canonical GA.

A. Representation

The genotype represents all the information stored in the

chromosome and allows us to describe an individual at the

level of the genes. Our aim is to find a set of scaling factors

that can be used to solve (11), such that if we allow ai∀i ∈
{1, . . . , I} to take on a value in the set {0, 0.01, . . . , 1}, we

can define our genotypic search space Φg = {0, 0.01, . . . , 1}I ,

which will provide |Φg| = 101I possible solutions [35]. We

further define a population Ψ(t) at time t, of µ chromosomes

aν = (a1, . . . , aI) ∈ Φg, ∀ν ∈ {1, . . . , µ} which provide our

basic representation of a possible solution in a form that can be

operated on by the GA. The initial population of chromosomes

is formed by a uniform pseudo random number generator

capable of only generating numbers in the set {0, 0.01, . . . , 1},

such that the larger the population the better the chance of an

initialisation with a uniform distribution of possible solution

values. However, this would also require a larger memory

overhead on the hardware implementation, and so we need to

find the smallest population size that will not adversely affect

the GAs performance when some ratios are not initialised, and

subsequently cannot be evaluated as a possible solution. We

will therefore evaluate population sizes µ = {50, 100, 200}.

We are also going to investigate what is known as chromo-

some epistasis, which refers to a problem-dependent condition

in the genotype structure where genes are highly interdepen-

dent, such that a good solution may only be found when the

value of the genes occur in a particular pattern [36]. Consider

for example a system with I = 16, such that our chromosome

will contain 16 scaling factors as in figure 2(a), which translate

to the sources on the ceiling in two ways depending upon how

we define our genotype structure G. Implementing a wrap-

around, (G = WA) structure the scaling factors translate to

their respective sources as in figure 2(b), and it can be seen that

scaling factors a4 and a5, a8 and a9 etc. are physically far apart

in application, but adjacent in the chromosome. Alternatively, a

concertina (G = CON) structure as in figure 2(c), now shows

this problem is alleviated, but other scaling factors, such as

a1 and a8, are now physically close, whilst further apart in

the chromosome. We will test for this condition by applying

identical GAs for each genotype structure.

B. The Fitness Function

Whereas the genotype describes an individual on the level of

the genes, the phenotype describes its outward appearance, and

it is this phenotypic appearance that determines an individuals

success in life. The GAs genetic operators, such as recom-

bination and mutation, work on the level of the genes, but

offspring of parents do not inherit the phenotypic properties,
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Fig. 2. Chromosome epistasis. (a) Chromosome structure. (b) Wrap around
genotype structure. (c) Concertina genotype structure.

only the genotypic properties which still require evaluation at

the level of the phenotype [35]. This evaluation is commonly

known as the fitness, or objective function, F , which, for the

results presented here, is given by

F (aν) = 100−

(

100

(

maxH(0;aν)−minH(0;aν)

maxH(0;aν)

))

(14)

Where maxH(0;aν) and minH(0;aν) are the maximum

and minimum DC frequency responses at any receiver in

the environment after application of the scaling factors aν to

the source powers, respectively. It can be seen that we are

measuring the percentage change or deviation from the peak

power in the room, for an individual aν , whose source scaling

factors will produce a perfectly uniform power distribution

within the room and will have a fitness of 100%. Furthermore,

we can define our global maximum optimal solution âν to be

âν = max
aν∈Φg

F (aν) (15)

In general the choice of a fitness function is one of the more

difficult steps in constructing an optimal GA, as the decision

is not only problem specific but inherently dependent upon

the genotype representation used. Therefore whilst we have

applied, for the reasons given in section III-A, a normalised

fitness function, based upon a maximum and minimum values

of the power deviation, it would be theoretically feasible to

use any of a number of mathematical measures, such as mean

deviation, provided it fits within the users overall GA structure.

C. Selection

The primary objective of the selection operator is to em-

phasise the fitter solutions, with either an explorative or

exploitative bias, such that their genotypic information is

passed onto the next generation [37]. We implement three

selection routines in this work namely, roulette, stochastic

uniform sampling (SUS) [38] and tournament selection.

The roulette and SUS selection schemes assign a probability

of selection proportional to an individual’s relative fitness

within the population, such that an individual’s probability of

selection, pprop
ν , is given by

pprop
ν =

F (aν)
∑µ

ν=1 F (aν)
(16)

These probabilities are then contiguously mapped onto a

wheel, such that
∑µ

ν=1 p
prop
ν = 1. A uniform random number

is then generated in the interval [0, 1], and the individuals

whose cumulative probability within the population that spans

the number is chosen. The process is repeated µ times, until

a new population has been selected. The roulette wheel is

unbiased but suffers from a possible infinite spread, in that

statistically any member of the population with pprop
ν > 0 can

be chosen µ times for the next generation. SUS overcomes this

by generating µ uniformly spaced numbers in the range [0, 1],
and applying a single randomly generated offset value, that

moves the position of the numbers such that each individual

is still selected based upon its cumulative probability position

relative to others in the population. It thus maintains zero bias,

but now it is not possible for a given individual to be chosen

beyond its expected number [38].

Tournament selection is carried out by first ranking all

members in the population Ψ(t) = {a1, . . . ,aµ} by their

absolute fitness in the population F (aν), where a1 is the fittest,

and aµ is the least. Then, by randomly selecting q members,

we choose the best for the next generation. The probability of

a member aν being selected is given by [37]

ptorn
ν =

1

µq
((µ− ν + 1)

q
− (µ− ν)

q
) (17)

Increasing the size of the tournament q increases the selective

pressure, giving fitter members of the population a higher

probability of selection. With our chosen population sizes, we

can expect that, as we are going to implement tournament

selection with q = 2 and q = 3, we will lose approximately

40% and 50% of the genetic material, respectively, through

the selection process alone [39]. This gives rise to a very

exploitative algorithm, but it looses genetic diversity and

risks finding a non optimal solution. However, as tournament

selection does not require proportional fitness assignments as

in (16), the algorithm operates faster. As previously mentioned

the size of the population will dictate hardware memory

requirements, but for a mobile applications the speed of the

algorithm equates to adaptive latency, vital to usability of the

system for both receivers within, entering or leaving the room.

D. Reproduction

Crossover imitates the principles of natural reproduction,

and is applied with a probability of ρc to randomly selected

individuals chosen by the selection routine. Its purpose is

to form new individuals for the next generation which have

some parts of the genotypic information as their parents. For

this work we apply a single point m = 1 and double point

m = 2 crossover. In a single point crossover, a random

crossover point in the range {1, . . . , I − 1} is chosen, and

two new individuals are formed by swapping the substrings

about that point. For a double point crossover, a similar method

is applied, but by generating two unique random numbers in

the range {1, . . . , I − 1}, and sorting into ascending order,

followed by exchanging substrings between successive cross

over points. For this work we maintain ρc = 0.7.
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E. Mutation

Mutation was originally developed as a background operator

[34], able to introduce new genetic material into the search

routine such that the probability of evaluating a string in

Φg will never be zero. Thus it would still be possible to

recover good genetic information that may have been lost

through selection [35]. Unlike the crossover operator, mutation

is seen as a local search method, because it can only modify

elements of an individual, perturbing its genetic information

in a much smaller way than crossover, which allows the

combining of genotypic information from different parents. As

we are going to evaluate different selection routines, we will

apply the mutation operator to each gene in each individual

with varying probabilities ρm = {0, 0.05, 0.1, 0.2}, such that

when a random number is generated that is less than the

chosen probability, we replace that gene with a new randomly-

generated value in the set {0, 0.01, . . . , 1}. We will attempt to

find the highest possible value aiding in the search, but not too

high that we encounter what is know as mutation interference

defined as when the mutation rate is so high that solutions are

so frequently or drastically mutated that the algorithm never

manages to explore any region of the search space thoroughly

as good solutions, rather than being formed by mutation, are

rapidly destroyed [36].

F. Feedback, Termination and Repeatability

Some feedback loop must exist that passes back information

regarding the effectiveness of a solution at each generation.

Presently the simulation will simply return the DC gain at

each receiver location to the fitness function. In a practical

system we envisage two methods. Firstly that the receiver,

or more precisely transceiver, returns the DC gain or SNR

using a supervisory audio tone similar to GSM techniques,

or secondly if this optimisation process has been simulated

on many scenarios, and the best and worst case powers are

known, the transceiver could simply return a ‘too high’ or ‘too

low’ command, informing the transmitter some change should

be made to the ratios. Either method could be applied as and

when needed, or within some predefined protocol space, and

would be suitable when one or many receivers are present.

Moreover, both methods are applicable when users enter or

leave the room, since in theory, they too have the same receiver

design that requires the same power distribution to operate.

In general, a GA is run over many generations until the

algorithm converges or the result has satisfied some defined

solution criteria. As we were unaware of what the minimum

power deviation for a given room will be, we decided upon

5000 generations, as this was a reasonable compromise be-

tween computational effort, and allowing the algorithm to

search for better solutions. As will be shown in section V, all

GAs (that would converge) converged within this time frame.

Due to the stochastic nature of the GA, for each simulation

the results were inevitably slightly different, meaning that

to allow presentation of results that are both representative

of the GAs performance and repeatable for the reader to

follow, we conducted each simulation 30 times, such that each

Fig. 3. Empty algorithm test room power, bandwidth and rms delay
spread distributions. (a) Non optimised power distribution. (b) Optimised
power distribution. (c) Non optimised bandwidth distribution. (d) Optimised
bandwidth distribution. (e) Non optimised rms delay spread distribution. (f)
Optimised rms delay spread distribution.

performance value presented within section V is the average

and the associated standard deviation after the 30 retrials.

V. RESULTS

A. Algorithmic Properties

To begin to understand how the GA optimisation would

perform, we began by simulating the impulse response of the

empty algorithm test room similar to configuration A in [25],

with width x = 5m, depth y = 5m and height z = 3m,

each wall and ceiling having a reflectivity ρ = 0.8, and

the floor having a reflectivity of ρ = 0.3. 16 sources were

uniformly distributed over the ceiling, orientated towards the

floor, with a Lambertian radiation profile n = 1. At a height

of z = 1m, 1024 receivers, with a FOVRj
= 45◦ and area

ARj
= 0.0001m2 were orientated towards the ceiling. The

power, bandwidth and rms delay spread distribution can be

seen in figures 3(a), 3(c) and 3(e), where a peak and minimum

power of 41µW and 22µW, respectively, can be observed,

equating to 19µW, or 46% power deviation from the peak.

The bandwidth varies between 14MHz and 134MHz whilst

the rms delay spread ranges between 0.6ns and 1.5ns.
Considering our primary concern of how well a certain set

of GA parameters can reduce the deviation of received power

relative to peak power, such that the best GA is the one that

produces the lowest deviation (LwD). Table I presents these
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TABLE I
THE 12 BEST ALGORITHMS

Algorithm Selection Method µ ρm m G LwD (St.D)

1 Roulette 50 0.1 2 CON 36(1.8)
2 Roulette 100 0.1 2 WA 34(1.0)
3 Roulette 200 0.05 2 WA 32(0.9)
4 SUS 50 0.05 2 CON 31(0.8)
5 SUS 100 0.05 1 CON 31(0.5)
6 SUS 200 0.05 2 CON 30(0.3)
7 Tournament (2) 50 0.2 2 CON 33(1.3)
8 Tournament (2) 100 0.2 2 WA 32(1.0)
9 Tournament (2) 200 0.2 2 CON 31(1.0)
10 Tournament (3) 50 0.2 2 CON 33(1.2)
11 Tournament (3) 100 0.1 2 CON 32(1.1)
12 Tournament (3) 200 0.2 2 CON 32(0.8)

best parameters from section IV for a given selection scheme

and population size. The LwD from peak power is related to

the fitness function in (14) by LwD = 100− F (aν), thus the

LwD values are measured as a %.

The most effective optimisation for this scenario came from

applying algorithm 6, as it found the LwD of power and

with the lowest standard deviation, implying a high degree of

repeatability giving us confidence in its ability to constantly

return the best solution. Applying the source scaling factors

provided by algorithm 6, as in figures 3(b), 3(d), and 3(f),

the received power now deviated 32% between 17µW and

25µW. This improvement in power distribution also led to a

change in bandwidth and rms delay spread distribution. The

bandwidth now varied between 14MHz to 110MHz, which,

while it showed a 24MHz reduction in the peak bandwidth,

our worst case performance criteria, the lowest bandwidth

remained the same. The rms delay spread ranged from 0.5ns
to 1.4ns, little changed from the baseline case.

In terms of how each selection routine performed relative to

each other, figure 4 shows the convergence curves of the best

individual within the population for algorithms 2, 6 and 11 of

table I at each generation. The curves shown are typical for

a given selection scheme, with only the point of convergence

changing by varying the parameters such as mutation rate,

number of crossover points and genotype structure. The insert

to figure 4 details the normalised ratios found in the final

generation of algorithm 6 in their respective positions upon

the ceiling. These ratios can be used to produce the results

of figures 3(b), 3(d), and 3(f). An interesting result of these

ratios and their positions is the apparent symmetry of the

ratios, around the center of the ceiling. Whereas the work

described in this paper, relies on fixed spot position and

varying intensities, other work has been presented [40], [41],

that varies spot position at fixed intensities. The elegance of

applying the GA does not rule out reproducing, albeit not

perfectly due to spacing of our uniform spot distribution, any

of these established spot patterns, such as uniform, diamond

or line-strip [15], by simply setting some of the ratios to be 0
and some to 1. However the GA ratios are not restricted to any

spot pattern and so, as will be shown in section V-C, could

prove to be more adaptable in the event of user movement, or

alternative environments.

SUS selection routines performed the most predictably and

with the best overall results. The slow and gradual convergence

to a solution was always achievable, even at higher mutation

Fig. 4. Convergence curves for algorithms 2, 6 and 11. Insert depicts the
16 normalised ratios for the respective spot positions provided by the last
generation of algorithm 6.

rates (ρm = 0.1), although best performances were always

found when ρm = 0.05. They also performed better with the

concertina genotypic structure (G = CON), achieving around

1− 2% improvement over a routine with identical parameters

and a wrap around structure (G = WA). The use of a double

point cross over (m = 2) improved the standard deviation,

that is, its repeatability, but seemed to have little effect on

the ability to converge to better solutions. Finally the highest

population size (µ = 200), appeared to be preferential in

gaining lower power deviation, compared to setting µ = 100.

Tournament selection, with either 2 or 3 tournament candi-

dates, tended to quickly but sub-optimally converge. As can

be seen from figure 4, beyond 500 generations, the selection

routine will not allow for new solutions to be considered,

even when using a high mutation rate (ρm = 0.2) in order

to overcome the predicted 50% loss of diversity encountered

from the greedy nature of the selection scheme. This high level

of genotypic information removal also meant that performance

was very similar when µ = 100 and µ = 200 for a given set

of parameters, as regardless of the information formed upon

initialisation, the algorithm had no time to thoroughly search

the solution space. Very little dependence was shown upon the

number of crossover points used, but generally produced better

results using the concertina genotype structure (G = CON).
Roulette selection was by far the worst performing of all

tested, showing no consistency or pattern towards either how

well an algorithm would perform, or to why a performance

level was achieved. Variation of one parameter resulted in

contradictory behaviour for any other developed parameter

relations. Figure 4 illustrates the chaotic nature of the conver-

gence curve for algorithm 2, seemingly losing good genetic

information from one generation to the next.

B. Source Number and FOV Variations

Continuing with the same room, we now vary the number of

sources from 9 to 25, and the receiver’s FOV between 10◦ and

85◦, to draw out more optimisation relationships. As the GA
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TABLE II
EMPTY TEST ROOM POWER OPTIMISATION USING ALGORITHM 6 FOR

VARYING NUMBER OF SOURCES AND RECEIVER FOV’S

No. Spots
9 16 25

FOV NOD OLD(St.D) NOD OLD (St.D) NOD OLD (St.D)

10◦ 98 98(0.0) 96 96(0.0) 94 94(0.0)
15◦ 95 95(0.0) 92 91(0.0) 92 92(0.0)
25◦ 90 90(0.0) 54 54(0.2) 60 59(0.4)
35◦ 62 56(0.2) 61 49(0.3) 66 42(1.4)
45◦ 54 36(0.4) 46 30(0.3) 45 29(0.3)
55◦ 45 25(0.4) 46 25(0.3) 44 23(0.4)
65◦ 44 30(0.2) 45 29(0.4) 45 27(0.3)
75◦ 42 30(0.2) 42 26(0.4) 42 25(0.3)
85◦ 42 30(0.2) 42 27(0.3) 42 26(0.3)

technique will add some complexity to the transmitter driver

electronics, we resisted the urge to go beyond 25 sources, so

as still to keep the system cost effective. Table II presents the

results for the optimised lowest deviation (OLD) from peak

power as a % and the standard deviation of the multiple runs

using algorithm 6, compared to the non optimised deviation

from peak power (NOD)(%).
For a receiver with a FOVRj

< 35◦, virtually no optimi-

sation can be achieved. This is down to the fact that at these

small FOV’s, the receiver does not detect much power from

the multiple reflections off the surfaces of the environment, as

for example figures 5(a) and 5(b) which show the before and

after optimisation of a receiver with a FOVRj
= 15◦ under

16 spots. In contrast to this is a receiver with a slightly higher

FOVRj
= 35◦ under 25 spots, which is the configuration that

can be optimised the most, the power being reduced from a

deviation of 66%, to 42%, as in figures 5(c) and 5(d). Using

a receiver with a FOVRj
= 55◦ under 25 spots provides the

configuration with the lowest optimised change in power from

peak at only 23%, which can be seen in 5(e) and 5(f).

As in previous results, using the GA to reduce the deviation

of the received power has negligible effects on the bandwidth

and RMS delay spread. As shown in figure 6, for the lower

FOV’s, where no optimisation is achieved, both the optimised

and non optimised, minimum bandwidth and largest rms delay

spread remain the same. For higher FOV’s, the maximum rms

delay spread is relatively unchanged, and the bandwidth has

been reduced by around 2MHz at some FOV’s.

One affirmation to make with the bandwidth results of

figure 6, is that they show our performance criteria of lowest

possible bandwidth at any receiver position within the room.

Whilst it can be observed that the bandwidth increases slightly

with increasing FOV, a concept that may seem contrary to

traditional thought, these worst case results are found near

the walls of the room, as can be seen in figure 3(c-d). At

these positions, a receiver and ceiling diffusion spot, are 8cm
and at least 50cm from the wall, respectively. This means

that at the lower FOV’s, there is no direct LOS link present,

consequently all incident radiation is a result of multiple

reflections, lowering the bandwidth. As the FOV increases,

more LOS links are formed, and the power from the LOS

links is larger, relative to the power from reflections, increasing

bandwidth. Finally, at the very large FOV’s, the worst case

bandwidth reduces slightly as the magnitude of power from

reflections increase relative to that from the LOS links.

Fig. 5. Empty test room power optimisation using algorithm 6 for varying
number of sources and receiver FOV’s. (a) Non optimised, FOVRj

= 15◦, 16
spots. (b) Optimised, FOVRj

= 15◦, 16 spots. (c) Non optimised, FOVRj
=

35◦, 25 spots. (d) Optimised, FOVRj
= 35◦, 25 spots. (e) Non optimised,

FOVRj
= 55◦, 25 spots. (f) Optimised, FOVRj

= 55◦, 25 spots.

C. Moving Objects

Using a simple ray tracing intersection algorithm [42], an

object, representing a person with a height z = 1.8m, shoulder

to shoulder width x = 0.7m, front to back depth y = 0.4m
and reflectivity ρ = 0.3 [26], was modelled undertaking

two different movement patterns as shown in figure 7. To

quantify the GAs ability to work in real world scenarios,

we implemented movement pattern 1 in our established en-

vironment, and movement pattern 2 in an environment of the

same dimensions, but reducing the reflectivity of the ceiling

to ρ = 0.75, north wall to ρ = 0.7 and east wall to ρ = 0.6.

We reiterate that although the person is moving, they are not

moving fast enough to break the multipath fading criteria set

out in section III. Based on the results of section V-B, we

implemented a system with 25 ceiling spots, with a receiver

FOVRj
= 55◦, such that we are using the configuration we

thought could attain the lowest possible power deviation.

Given that our receiver locations are in fixed uniformly

distributed positions, and that objects are now placed within

the environments, the fitness function may not correctly handle

a receiver inside an object, as the incident power will be zero.

To accommodate this we place an exclusion zone, where no

information is passed back to the GA, around the person of

10cm which is roughly the minimum distance that a portable

receiver, such as a mobile phone could be placed next the body.
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Fig. 6. Empty test room bandwidth and rms delay spread optimisation using algorithm 6 for varying number of sources and receiver FOV’s. (a) 9 spots. (b)
16 spots. (c) 25 spots.
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Fig. 7. The nine movement positions. (a) Pattern 1. (b) Pattern 2.

This issue is a limitation of the GA, not the channel response

simulation, or intersection algorithm which handled receiver’s

blocked by objects correctly. We also tested algorithm 11 in

table I, as it uses a tournament 3 selection routine. It was

shown to be capable of finding solutions to within a few % of

algorithm 6 using a lower population size and without the need

to compute proportional fitnesses, therefore allowing simpler

transmitter hardware implementation, or just as importantly,

exhibit a lower adaptation latency.

Considering an empty environment 1, the deviation from

peak power is just under 45%, as shown in figure 8(a), and

optimising using algorithm 6 and algorithm 11, reduces the

deviation by around 21% and 18% respectively. Environment

2 when empty, as shown in figure 8(b), has a slightly higher

power deviation at 52% with algorithm 6 and algorithm 11
reducing the power deviation by 26% and 24% respectively.

Similar to the results of table I, algorithm 6 outperforms

algorithm 11 by a few percent, highlighting the consistency in

the GAs performance characteristics when scaled to different

environments. When the person is moving in either room,

they perturb the power distribution, as they themselves become

reflectors, up to an influence of 19% change. We stress that

this power deviation is a measure of the difference between

maximum and minimum over all locations within the room,

not just the receiver in use by the moving person, such that it

is possible that all users are affected by the movement.

Furthermore from figure 8, both algorithms, in both envi-

ronments, when exposed to different user movement patterns,

manage to track the movement, and not only maintain an

optimised power distribution below the original empty room,

but also now keep the effect of the moving person down

to a perturbation of 12% for environment 1 and 18% for

environment 2. Position 9 of environment 2 may show the

first signs of the what is still a technique limited to what is

physically achievable. While the algorithm has managed to

reduce the deviation from peak power by 25%, it happened

to be at a position in the room where the influence of the

person was such that they had a very large effect on the

power distribution, influencing the largest change out of all

the positions in both rooms.

Figure 9 shows the relationship between the non-optimised

bandwidth (NOB), rms delay spread (NOrms) and optimised

bandwidth (OB) and rms delay spread (Orms) for both envi-

ronments while empty (/E), and with movement (/M). The

results reinforce further that, while the GA is capable of

optimising the received power around the room, it will not

alter the worst case bandwidth or rms delay spread by more

than 3 MHz, and < 0.3 ns, respectively, which may be an

acceptable compromise for the purposes of an OW system,

given the advantages this technique might provide for a single

optimal hardware solution to multiple dynamic environments.

The final question based on these results is what FOV a

designer may choose to use? For the scenarios simulated here,

a receiver design would be based upon a FOVRj
= 55◦ as the

GA is most effective, for our chosen metric in (14), at this

FOV. However the GA method proposed, although shown to

be viable and advantageous in its application, is only one stage

in the design process. A specific product deployment scenario

may have constraints, such as higher than average ambient

light conditions, that excludes the use of a FOVRj
= 55◦.

Ideally the simulations would need to be completed in rooms

encompassing the end users, their movement patterns, and the

commonly found materials in the systems targeted deployment

environment. The final FOV decision would then be based

upon the results generated in conjunction with any ancillary

considerations.

VI. CONCLUSION

This paper has demonstrated the novel approach of using

a GA controlled MSD transmitter, capable of optimising
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Fig. 8. Power distribution in two dynamic environments. (a) Environment
1, movement pattern 1. (b) Environment 2, movement pattern 2.

the received power distribution in multiple dynamic environ-

ments. Careful analysis of the GA performance has resulted

in several relationships between population size, selection

scheme, mutation rate and genotype structure. Two algorithms

in particular have been highlighted as possible candidates

for a final application solution. In an empty room algorithm

6 produced a highly repeatable improvement in the power

distribution, reducing deviation by up to 24%, whilst algorithm

11 produced marginally lower improvements, but benefited

from being a much more practical algorithm to implement.

In the mobile scenarios shown, the GA managed to reduce

power deviation by up to 26%, and forming, while the user

perturbed the channel, a consistent power distribution to within

12%. Furthermore, the optimisation of the power distribution

was carried out with only negligible impact to bandwidth and

rms delay spread. Based upon the simulation conducted, work

could be carried out on producing a optimal receiver design

with regards to complexity, power efficiency and cost, using

a FOVRj
= 55◦ for mass product integration.

Fig. 9. Bandwidth and rms delay spread in two dynamic environments. (a)
Environment 1, movement pattern 1. (b) Environment 2, movement pattern 2.
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[34] T. Bäck, U. Hammel, and H. P. Schwefel, “Evolutionary computation:
Comments on the history and current state,” IEEE Trans. Evol. Comput.,
vol. 1, no. 1, pp. 3–17, 1997.

[35] F. Rothlauf, Representations for genetic and evolutionary algorithms.
Physica-Verlag, 2002.

[36] F. O’Karray and C. W. D. Silva, Soft computing and intelligent systems

design : theory, tools, and applications. Pearson/Addison Wesley, 2004.
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