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Faster 3D FETD - Floquet ABC Modelling using Recursive

Convolution and Vector Fitting

Y. Cai and C. Mias

Abstract: A recursive convolution (RC) based on the vector fitting (VF) method and triangular temporal basis
functions is employed to compute the Floquet absorbing boundary condition (FABC) formulation in the vector 3D
finite element time domain (FETD) modelling of doubly periodic structures. This novel implementation
(VF-RC-FETD-FABC) results in significantly lower computation time requirements than the standard convolution
(SC) implementation. The numerical examples presented show reduction in computation time requirements by a
factor of at least 3.5. In addition, a time window in excess of 50,000 time-steps is recorded over which practically
stable results are obtained. This temporal window is sufficiently large to allow the modelling of many practical
problems. Results from four such problems are presented confirming the accuracy and speed of the

VEF-RC-FETD-FABC software.

1 Introduction

Recently, a finite element time domain (FETD) formulation was proposed to model plane wave scattering from
3D infinite doubly periodic structures [1]. The formulation was based on the accurate Floquet absorbing boundary
condition (ABC) which was shown [1] to be superior in versatility and accuracy than the simple ABC [2]. The
computation of the Floquet ABC formulation in [1] is, however, time consuming as the convolution integrals
present in the formulation are computed in a standard fashion henceforth called the standard convolution (SC). In
this paper we show how this time consuming computation can be significantly improved using recursive
convolution (RC) [3]. We present numerical results that demonstrate a reduction of computation time by at least a
factor of 3.5.

Our research has shown that if the multi-section (4-section) RC (MS-RC) with trapezoidal integration, proposed
in the scalar 2D simulations of [4], is employed in the vector 3D FETD-FABC simulations it leads to an early
onset of instability. Hence, we propose a more accurate single-section RC implementation based on the vector
fitting (VF) method [5] and triangular temporal basis functions [6]. Using this new RC methodology we
demonstrate numerically that time windows of practical stability in excess of 50,000 time steps can be achieved.
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Such temporal windows enable us to employ the proposed VF-RC-FETD-FABC method to simulate many
practical doubly periodic problems.

In section II we present a detailed description of our finite element formulation as our time domain boundary
integral formulation and the convolution implementation are significantly different from those of [1]. This
difference is mainly due to the final form of our frequency domain boundary integral formulation (see eq.(73))
prior to applying the inverse Laplace transform (ILT). This form is necessary in order to readily implement the RC
methodology. We also employ the reciprocal weighting function approach proposed in [7,8] which does not lead to
the stability problem associated with eq.(16) of [1]. Section III considers the RC implementation. In section IV
numerical results are presented demonstrating the accuracy, speed and stability for practical time windows of the

developed VF-RC-FETD-FABC code. Section V concludes the paper.

2 Formulation

2.1 Floquet harmonic expansion

Referring to Fig.1, the propagation vector, ky, of the incident wave is determined by the elevation angle, ™, and
the azimuth angle, ¢™. The direction of the electric field vector, E™, is determined by ko and the polarisation angle
#™. The incident electric field can be expressed in the frequency domain, where the assumed exp(jot) time

variation is suppressed, as

inc

_ COS?]mC Sin¢mc)ﬁ
inc _ s\, —Jkger __ . inc inc inc inc inc \a —jkger (1)
E™(r)=0, +1,2 =1,| +\sinn™ cos 8™ sin g™ +cosn™ cos¢@ e

—sinn™ sin @™ 2

(sin n" cos 8" cos ¢

In (1), r=xX+y§y+z2Z and I, is the amplitude of the incident field. Tangential and normal components to the
non-periodic surfaces S; and S, (see Fig.1) are indicated by the subscripts ‘#” and ‘7’ respectively. S is located at z =
z1. Sp1s located at z = 2.

From Floquet’s theorem [9], the field within the unit cell of the infinite planar doubly periodic structure (Fig. 1)
illuminated by the aforementioned plane wave can be expressed as

E(r)=E, (r)e /o™ 6)

where E; is the periodic part of the electric field. k, = ‘k ®/c is the wavenumber in free space and c is the

0‘:

speed of light in free space. The tangential vector 7 is defined as
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3
T=7X+7,§=sin0" cosg™ X +sinf" sing"™ § 3)
Along the periodic boundary pairs PB, and PB, (see Fig.1) E, satisfies the periodic boundary conditions:
PB,: E, (x+D,.y.2)=E,(x,7.2) @
PB,: Ep(x,y+Dy,z)=Ep(x, y,z) )

where Dy and D, are the periods along the x and y directions respectively. Using Fourier series, the periodic part of
the reflected and transmitted scattered fields E;ff and EZ“" at S; and S, respectively are expanded as an infinite

summation of Floquet harmonics

0 0

E;{f (X, Y, & ) = Z Z (Rt,mn + Rz,mni)e_jpl'nm 're+jk;v,,,,,zl (6)

m=—0 n=—00
0 0

Et]Z‘m (.X, V> 2, ) = Z Z (Tl,mn + Tz,mn i)eijpf """ .reijk;'m"zz (7)

m=—00 n=—0

where R,, +R. .2 and T +T 2 are the vector amplitudes of the reflected and transmitted (m,n)th Floquet

t,mn

harmonics. The tangential vector p, ., is defined as

_ . - 2mm . 2m
pt,mn _px,mx+p)',ny - D X+D_y (8)

x y

For the (m,n)th propagating or evanescent Floquet harmonic

k(? - kt,mn ’ k(? 2 kt,mn ’ propagating (9)
) = J\VK, ’ —k(f ko2 <K, evanescent
and
k,,, = (korx + P )f( + (kor}, +P,, )y (10)

The periodic part of the incident field is defined at S, as
EL;C (x, y’Zl):(InOO + I‘~4,ooi)e7jk:wz1 (1D

Starting from Gauss’ Law in free space (VegiE = 0), the following equation is valid for each (m,n)th Floquet
harmonic [8]

kl,rnn ® Xl,rnn (12)

z,mn

I
+

z,mn

where X is R, T or I. The —/+ sign denotes propagation in the +/— z-direction respectively.
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Using orthogonality relations, over the non-periodic boundary surfaces S, and S,, the tangential components of
the vector amplitudes of the reflected (m,n)th Floquet harmonic and the transmitted (m,n)th Floquet harmonic can

be obtained

1 +iPrm® = jk. 2 =2 jk, 002
Rl‘mn :gJ‘S,EI)'l (Zl)e o e e dS _é‘nm‘OOIAOO e e (13)
1 +Ji or +jk. .2
Tt,mn = S EPJ (ZZ ) 4 P e ez dS (14)
a 2

where =D, D,- The E, (z;) and E, (z») are the tangential components of the periodic part of the total field on

S and S,. The Kronecker delta function is given as

Soron ={1 (m.n)= (8’0) (15)

2.2  Finite Element Frequency Domain formulation

The Galerkin weighted residual method is employed to solve the vector wave equation [8]. The weighted residual

is integrated over the computation domain and the divergence theorem is applied to obtain

i[(vxw).(vXE)]dV—kgj &,(WeE)dV :§‘Wo{i(VxE)xﬁ}dS (16)
Vi, v ‘ M,

where 1, and ¢, are the relative permeability and relative permittivity respectively. h is the normal vector to the
unit cell surface S and points outwards. For simplicity, it is assumed that the computation domain is lossless and
source free.

In (16), W is the reciprocal weighting function [7, 8],
W(r)=W, (r)e e 17
where W(r) satisfies the periodic boundary conditions (4,5)

PB: Wp(x+DX,y,z)=Wp(x,y,z) (18)
PB: W, [xy+D,,z)=W, (x72) (19)

By making use of (2) and (17), we obtain

Vsze_jkO"r[(Vpr)— jko(‘erp)] (20)

Vx W =e " [(Vx W )+ jk,(tx W )] @1)
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WeE=W ¢E (22)
Eqs.(20-22) are substituted into (16) in order to re-write (16) in terms of E;, and W, as follows
jV;[(v xW,)e (VxE, lav -k; [ [e, —Si“;emJ(wp oE,)dv —kng;(r oW )oK, )av
+ jkOJ‘V;[(‘rxWp)o(Vpr)—(TxEP)O(Vpr)] av=f W, 0{;[(VXEP)—jkO(TxEP)]xﬁ}dS
U¥(w)
(23)

The periodic part of the field, E, , is chosen as the working variable. The time-domain justification for doing so
is given in [10] where the Finite Difference Time Domain method was applied to the modelling of periodic
structures. For each periodic boundary pair, the normal unit vectors fi of the boundaries have opposite directions.

Because of this fact and the boundary conditions, egs. (4, 5, 18, 19), the surface integral terms in (23) along the

periodic boundaries cancel out each other. Hence the surface integral term U* (o) is reduced to

1 , . 1 °E,, .
001, Wye Lk ok Jeafas [, Lw, ol T (v, s
(24
where W, =W, &+W, 5 E,, is the normal component of the periodic part of the total field on §; or

$,.V, =d/axx+9/dyy denotes the tangential gradient operator. Using (6, 7, 13, 14), the normal derivative terms of

E,;in (24) are expressed as

OE . 1 & 2 . o ] =i or
ap :(_2}/2,00)1[’008 72,0021 +— Z z }/z,mn[J.S Ep,t(zl)e]pt’mn ds :le JPtmn (25)
< M am:—oon:—oo 1
Ep 1 ¢ < Pt or| —iprmer 26
65 = _; Z Z 7z,mn|:,|.52 EPJ(Z2) e’ntm T dS :le fmn (26)
Sy m=—00 n=—00
where v = JK; n -
Using (12), the following relation is derived
. —_ k[ mn

Vt)(z,mn - .]kOTXz,mn =+ 7/ : (kt,mn i Xt,mn) (27)

By making use of (6, 7, 13, 14) and (27) the second term in the square brackets in (24) can be re-written as

IET Review Copy Only



IET Microwaves, Antennas & Propagation Page 6 of 35

6
2k o
(VZEP,Z - jkOTEp,z) s, - }/Zyoo(kr’oo .IZ,OO e 7:‘00&1)
z,00
+— +Z.C +Z.C }/tmn { o ® |:.[S Ep.z (Zl)ejp“"".r’dS':|ejpr‘m".r}
(28)
) 400 +o0 K mn oot ] g e
(VtEp’z—jk()TEp’ )‘ :—— Z Z {kt,mn.|:_[S2Ep,t(Z2)e tmn ®F 4o }e tmn }
n—foom —00 Zmn
(29)

Note E,,=-E,.on S;and E,,= E, . on S, Eqgs. (25, 26, 28, 29) are employed to re-write the surface integral (24)

as follows
U ()= F*(0)-Q'(0)-Q* (@) (30)

where

F*(0)= 27/100( I, wp_,dsj-(l,_we*““*" )- }/2 (k,voo f, Wp_,dS)(k,voo oL ye7o)  GD
z,00

Q'(0) and Q?(w) are given by (72) in the Appendix.

2.3  Finite Element Time Domain formulation

By applying the ILT to (23), we obtain

ol w, oo, Jav L o, 9’"‘j{w-2 SRR e

C :Llr
OF
LY. [(rxwp).[w atf’j—(ww - i~

}dV FS()-Q'()-Q*(t)

C v /’lr
(32)
where E, is now a time dependent variable and
inc Hinc
Fs(t)z 2cosd ( S Wp,,ds)'d{lr,oo(f— cosf"z, H
C 1 d[ C (33)

Hinc
+L_(r- Wp,dS) R P O P L)
cosf"c S0 dt| ~ c

The time-domain terms Q'(z) and Q7(r) are given by (81) in the Appendix where their derivation is also

shown.
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The computation domain is discretised using 6 degree of freedom (d.o.f.) tetrahedral and 3 d.o.f. triangular edge
elements [11]. The field within an edge element e is interpolated as

0

[~

Ni(r)E, () (34)

=1

~.

where (Q =6 for a tetrahedral element and (Q, =3 for a triangular element. The vector test (weighting)
functions are also chosen from the same set of basis functions [8, 11]
W, (r)=N:(r). i=1....0, (35)

Following discretisation of (32) using (34, 35), the following matrix equation is obtained (note that for a periodic

boundary pair the boundaries have identical finite element meshes)

1A O o - o) o)

dr’

where the superscript V indicates the volume region matrices. [ ] and { } denote a matrix and column vector
respectively. [TV], [BV] and [SV] are given in [2, eqgs.(21, 22, 24)]. Here, we focus on the discretisation of the
surface integral formulation at the right-hand side of (36) which is different from [1]. Along the non-periodic

boundaries S; and S, the test and basis functions are expressed as follows
NJ(xy)= N (xy)&+ N7, (xy)§ (37)
Ni(xy)= N (xy)R+ N, (xy)3 (38)
where the subscripts i and j and superscripts k and / denote the ith edge in the kth element and jth edge in the /th
element respectively. Using (37, 38), the entries of the column vectors {FS (z)} and { 8 (t)} in eq.(36) are

obtained as

FS = 2cosd US Nfds).d{lnoo{t_cosﬁ Z H
C k dt C (39)
+#(TOJ. Nf.‘dS) ‘roi I, 0. t_cos&le
cosf"c S dat| c

3|5 S5 l£,0

m=—0n=-w0 g=1

(40)
3 Mp o Ne
zZ{ z ZZ[ ij,mn mn ]}*E ()
j=1 \m=—Mp n=—Np g=1

where the symbol ‘*’ denotes the convolution operator. Note that in the computations a finite number of Floquet
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harmonics is considered (—Mg < m < Mg and —Ng < n < Ng).

In (40), the time independent terms riﬁ'qrzm are given as

Fl&r)nn = J.SA N),c(,i e’]lh,mn"'dS". N)l( e*]l’z.mn"'dS
ko =Pt +w, ,,,,, or
-+LkN;i dsj ds
*' £mn T 1 TPt oT
r?, j N, ds L} N' e ds

(B) _ k =iPim®T I +iPim®T
Ly = S, N e ds S N, e ds

T =], Vo

+J‘ N g e*! 1.nm.rdSI N)l( A€+jpl,/11n.rdS
s,V s, o/

mn ®T ! P ®T
dS[ N et ds

The 5,51) (t) functions in (40) are derived in the Appendix,

& 1)= 3 (0) + CPCs 1)+ jey'cy), 5()

where 5(t) and §'(¢) are the Dirac delta function and its first order time derivative respectively.

The terms T and ér(nl{l) (t) have the property

ij,mn
(9) T (@) (9) — £l
FU -m-n Ej mn gfmfn(t)_ gmn (t)
where F,E are the complex conjugates of T',& respectively.

Thus, we have

rzgfln)mé:lim)( )+rl§ )m—né:(m) ( 2Re[ ij,mn

where Re[ ] denotes the real part of [ ]. Hence, (40) is re-written as

Since

IET Review Copy Only
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(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
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eq.(48) can be expressed, using (45), as

3 dE . 3
Q(r)=2_B; dt(t) + Y SSE, )+ ¥ 0) (50)
J=l j=1

J=
where the matrix entries B; ,S US and ‘Pis are given as follows

4 My, Ny 4
5 -STpcico}2 ¥ Srdrincocil S § Srdriacocy] s

g=1 n=1 _g=1 m=l n==Np g=1
(m=0)

NF
(:;::10) g=1 m=1 n=-Np q=1
3 Np 4 £ Nr
= ZZ z zRe rl_] mn mn ] *E Z{Z Z ZRC[ ij,mn mn ]} E ( ) (53)
J=1 q=1 j=1 | m=1 n=-N g¢=1
o
Using (50), (36) can be re-written as
(KRN K N PR NS 4

The time functions are discretised with the aid of the Newmark-beta method [12, 13] which employs three time
steps: M+1, M and M-1. M+1 is the future step at which the field will be evaluated. As in [4], the Newmark-beta

time discretisation is applied to all time functions except {Fs } and the convolution terms in {\115 } The latter are

evaluated at t = MAt. Thus, the following time discretised matrix equation is obtained

(0, B Bl peo (2] Blyg pe [ I B Bl ooy

Ar? 2At Ar? 2 A2 2Ar 4

(55)

where [T]=[T"], [B]=[B"+B"] and [S]=[S"+S"].

3 VF-RC Formulation

The convolution term hy(nqn) (;)* E,, (z) in (53) is evaluated using a single section RC. The RC has lower computer

memory requirements than the SC in [1]. In addition, although the single section RC uses more exponential terms
than the multi-section RC (MS-RC) approach described in [4] it maintains the speed advantage of the RC over the
SC. Furthermore, as the single-section RC requires the memory storage of two time-step values of the working

variable at the non-periodic boundaries, it needs less computer memory than the MS-RC and dispenses with the
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need to decide the various section limits and the number of exponential terms per section that was necessary in [4].
The use of a single section RC over a large time window is made possible using the vector fitting (VF) method [5].
As it will be numerically demonstrated in section IV, the accuracy of the VF method coupled with the use of
triangular basis functions results in a 3D RC-FETD method that exhibits practical stability over a longer time
period than the one achieved using the 4-section MS-RC with trapezoidal integration proposed in [4]. Details of
the VF-RC implementation follow.

In our 3D FETD-FABC simulations, there are three time functions (98-100) that need to be expressed by a

summation of exponential functions. For clarity, let y=w,,t. The functions are re-written as

Fiz) =" 1 (7) (56)
f2,mn (Z) = ja)ahe j(“’u/("ah )l‘ll (z) (57)
f3,mn (l) = a)jbe j(”’u/“’ub )Z ‘,l (Z)/l (58)

To use the VF method, the Bessel function terms must first be transformed in the Laplace domain
LI, (2)]=1/4s> +1 (59)
L =1/ s 1)l + 45 1)) (60)
L7, (2)/ 2] =As> +1-s 1)

The MATLAB software package ‘VECTFIT’, available in the public domain [14], is then employed to obtain

rational approximations of the Laplace transforms (59-61). For example, the function (59) is approximated as

Ly (=17 v 123 4 ©)

i=1 h) _bi

where the coefficients (a;, b;) are complex numbers and Q denotes the number of exponential terms in the
approximation.

Similar approximations hold for the other functions. For the purpose of repeating the work, some of the
computed coefficients, obtained by VECFIT, are listed in Table-1 along with the input parameters to obtain these
coefficients. Note that the coefficients of each function are generic as they are the same for all harmonics (m, n)
and for all structures. For example, the coefficients of Table-1 were used for all the models in section IV. From

(56) and the ILT of (62), the approximated time-domain function f; ,,(y) can be expressed as

~ ) Q Y
fl,mn (Z) = ej(wa/wab)l Zaiebil = ZAieBiZ (63)
i=1 i=1
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Similar expressions can be obtained for the functions fma(x) and f5mn()). The absolute approximation errors,
e(y) =l f() - f( 1, of the VF method are, for all functions, smaller than those using the 4-section MS approach of
[4]. The lower these errors are the larger is the achieved time window of practical stability.

The discrete form of the VF-RC formulation will now be obtained. Note that the convolution integral is
performed for all the d.o.f. associated with the non-periodic boundary surfaces and the time functions h,gfn)(t)
associated with each harmonic. However, for simplicity we will consider only one d.o.f , E, (), of the working

variable vector {Ep(;)} and only the function fl’mn () of (63). Similar discrete formulations hold true for the other

d.o.f. and time functions. Using (63), the single section RC formulation is
RY = iﬁ?M = i {er”"”Ath_l }+ i {fMAt [A‘eB"'”"”(MAt_T)]E ‘(r)dr} (64)
i=1 l i=1 l i=1 (-t "
where R" is the convolution value at the current Mth time step and R; is the convolution value associated with each
exponential term. The formulation is derived in [4].
The evaluation of the integral term in (64) affects the stability of the FETD method [1]. The use of the
trapezoidal integration is shown in [4]. Here, we present the evaluation of this term using the more accurate

triangular temporal basis functions [6]. Using the triangular temporal basis function, the field variable is

interpolated over a single time-step period, 7, _; <t <1, as follows

E, (t)= Effj{— Ai(t ~1, )} +EY, {1 (-1, )} (65)

t At
Using (65) we can analytically evaluate, following [15], the single step integral term of (64) for the ith exponential

function as

[ Iaeresincnls, (oae= A | Fr (B, At = e 1]
( 1 p.J

(66)
o (Byoy, P At | + EY (%% — B oo, Ar—1)

This convolution implementation leads to a FETD formulation that is faster than the one presented in [1] where

two convolutions, one internal and one external, need to be computed.

4 Numerical Results

In this section, numerical results are presented to demonstrate the accuracy, stability and speed of the

VE-RC-FETD-FABC code. Four models are considered: an infinitely thin perfectly electrically conducting (PEC)
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metallic grating (2D structure with y-direction uniformity) [16], a dielectric block periodic structure [17], an
annular aperture FSS [18] and a microstrip patch FSS [1]. In the simulations, a desktop PC with CPU speed
2.79GHz and 2.5Gbytes of memory was used. In all models, the non-periodic boundaries S, and S, are placed in
free space and it is assumed that z; = 0.

The time variation of the incident field is

I, (t) = exp{— O.S[ZZI“] 1 sin(27yﬂ.t) (67)

where the parameter 7, denotes a time delay, ¢, determines the pulse width and f. is the central frequency. These
parameters as well as the number of harmonics, the time step and the number of time steps (NTS), for each of the
models, are listed in Table-2.

For the post-processing, the frequency domain tangential component of the vector amplitude of the (m,n)th

reflected and transmitted harmonics at the two non-periodic boundaries is calculated as follows (refer to (13) and

(14))
R, = DFT[IIS E,(z ,t)e”"'v'""’rds} e temit _ 5 WDFTL, o (£)] e 2 68)
(04 1
T = DFT{II E, f(zz,t)e”"”"""ds} ¢ e (69)
: o L

where DFT stands for the discrete Fourier transform. Using (12), the normal component of the vector amplitude of
the (m,n)th scattered harmonic in (6-7) is calculated. The normalized reflected and transmitted power carried by

the (m,n)th propagating Floquet harmonic is

A2
Pref — kz,mn Rt,mn + Rz,mnz (70)
mn |, 2
* Ko Lo +1. 02
A2
tran — kz,mn TIA,mn + T’z,mnz (71)
mn | 12
7,00 Iz,()() + Iz,()oz

where k, ., has a non-negative real value.

The first model is an infinitely thin PEC grating which is uniform along the y-direction. This is a 2D problem.
Its periodic unit cell geometry and dimensions are given in [16]. This model has low computation requirements and
allows a comparison to be made between the 3D VF-RC-FETD-FABC results and those obtained from a

previously validated 2D FETD code [19]. The 3D unit cell geometry is obtained by uniformly extruding the 2D

IET Review Copy Only

Page 12 of 35



Page 13 of 35

IET Microwaves, Antennas & Propagation
13

unit cell geometry along the y-direction by a distance D,. D, = 0.05m and D, = 0.005m. The distance between a
non-periodic boundary and the infinitely thin PEC grating is d,=0.25D,. In Fig.2, assuming (6™,4™) = (0°, 0°), the
results of two VF-RC-FETD-FABC simulations, one using a coarse mesh and the other using a refined mesh, are
compared with CST 3D results [20], 3D FEFD results, Finite Difference Time Domain (FDTD) results [16] and 2D
FETD results [19]. There is a good agreement between all results. The excellent agreement between the 3D
VE-RC-FETD-FABC and 3D FEFD results confirms the correct functioning of the proposed recursive convolution
implementation of the time-domain FABC with the aid of VFE. Fig.2 shows that the accuracy of the 3D
VE-RC-FETD-FABC results is improved if more finite elements are used (i.e. if a finer mesh is employed). This is
also true for the 2D FETD simulations. Furthermore, for a given number of finite elements, more accurate results
are obtained by using higher order elements. This is illustrated in references [21, 22].

The second structure is a dielectric slab with periodically implanted dielectric blocks [17]. The dimensions of
the unit cell and the material properties are shown in Fig.3. The incident plane wave is TM polarised (#"=90°) and

the angle of incidence is (6™,4™) = (30°, 0°). The magnitude of the co-polarised reflection coefficient of the

=R, 0 ‘ /

VE-RC-FETD-FABC results are compared with those of [17] and the CST [20]. Note that a very good agreement

I .|, refer to (13) and (1). It is plotted in Fig.4. The

Lo ™
fundamental harmonic is given by ‘1“00 00

is observed between the VF-RC-FETD-FABC and the CST results for this all-dielectric periodic structure.

The third model is a PEC plate of finite thickness perforated with annular apertures [18]. The unit cell is shown
in Fig.5. The incident wave is assumed to be TM (5""=90°) polarised. The angle of incidence is (6™,4™) = (25°, 0°).
The non-periodic FE mesh boundaries are deliberately made to coincide with the plate faces (d, = 0) in order to
reduce the FE mesh size. Therefore, the Floquet absorbing boundary condition must contain a significant
number of evanescent higher order harmonics. In Fig.6 the normalised total transmitted power is shown. It is
obtained by summing up the normalised powers carried by all the propagating transmitted harmonics. There is a
good agreement between the VF-RC-FETD-FABC results and those of [18] and the CST. The accuracy of the
VF-RC-FETD-FABC results improves as the number of evanescent harmonics, taken into account in the FABC,
increases. This is demonstrated in Fig.6 where it can be seen that the accuracy of the FETD results is improved by
increasing the number of harmonics from (Mg= Ng=3) to (Mg= Nr=5). Assuming all propagating harmonics are
accounted for, the number of (Mg, Nr) harmonics can be kept small provided that the non-periodic FE mesh

boundaries are placed sufficient away from the periodic structure so that the evanescent field value at these
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boundaries is negligible. However, this means that a larger number of finite elements must be employed. Due
to computer memory constrains and the fact that the correct functioning of the 3D VF-RC-FETD-FABC code
has already been demonstrated, which is the aim of our paper, an extended mesh was not employed.

The fourth structure is an FSS consisting of an array of rectangular PEC microstrip patches [1]. The patches are
embedded in a dielectric slab. The dimensions of the unit cell and the material properties are shown in Fig.7. The
incident plane wave is TE polarised (5°=0°) and the angle of incidence is (8™,4"™) = (30°, 0°). In Fig.8, the
VE-RC-FETD-FABC results for the normalized reflected power carried by the (m,n) = (0,0) fundamental Floquet
harmonic are compared with those of [1] and the CST. Although due to computer memory constrains, a modest
number of elements was employed, there is a good agreement between all sets of results. The shift, in Fig.8
between our results and those of [1] and CST, at low frequencies, is not due to the RC but to the FE spatial
discretisation accuracy, i.e. more accurate results are expected if the mesh is refined and higher order elements are
employed [21, 22]. In [23] (page 392) a similar shift is obtained between two sets of results when modeling a similar
structure. The first set of results was obtained using the 6 d.o.f. tedrahedral element employed in this paper and the
second set of results was obtained using a higher order element.

We consider the model in Fig.7 in order to demonstrate the achieved time window of practical stability. The arrow
in its unit cell mesh indicates the edge, located on surface S;, at which the transient results are recorded. In Fig.9,
the transient results of four methodologies are compared: (i) the 3D MS-RC-FETD-FABC method which employs
the trapezoidal integration rule in the RC computation and it is based on [4]; (ii) the VF-RC-FETD-FABC method
which employs the trapezoidal integration rule in the RC computation; (iii) the 3D MS-RC-FETD-FABC method
which employs the triangular temporal basis function (65) in the RC computation; and (iv) the
VEF-RC-FETD-FABC method which employs the triangular temporal basis function in the RC computation. The
figure shows that the latter methodology achieves a remarkably large time window of practical stability, at least 10
times larger than those of the other methodologies for this model. The reason was found to be the improved
accuracy of the convolution computation through the use of the triangular functions and the VF method. In
addition, a small time step leads to better accuracy in the calculation of the convolution.

The Courant limit (Table-2) provides a good initial estimation for the time step value Az. The actual value of
At (Table-2) was determined heuristically such that the early onset of instability is avoided. It was also heuristically
found that Ar may be larger that the Courant limit value (dielectric blocks model, Table-2). Since the size of time

step depends on the FE mesh, the frequency range of interest, the number of Floquet harmonics and the angle of
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incidence [19], the heuristically chosen value of Ar may need to be reduced further as the order of the harmonics
taken into account in the FABC or the angle of incidence increases.

The computational speed of the proposed method is demonstrated by comparing, for 5000 time steps, the
simulation time of the 3D VF-RC-FETD-FABC code with that of a code using SC with trapezoidal integration.
The recorded times do not include the assembly and inversion of the global finite element matrix which is done
prior to the time marching process. The times are listed in Table-3. For these simulations, the 3D
VE-RC-FETD-FABC is faster by a factor of at least 3.5. The 3D VF-RC-FETD-FABC simulation time for 20000
time steps is also shown indicating that there is a linear increase of computation time with the number of time steps.
As expected, Table-3 shows that the simulation time increases when the mesh density and the number of Floquet

harmonics increase.

5 Conclusion

It is shown that the VF-RC-FETD-FABC formulation is faster than the SC formulation. Furthermore, since the
proposed VF-RC is a single section RC, it dispenses with the time taken to decide the number and the limits of the
sections in the MS RC implementation in [4].

The proposed 3D VF-RC-FETD-FABC method is practically stable over a temporal window that is larger than
that of the 3D MS-RC-FETD-FABC. Thus for many practical problems, as suggested in [24], a stability
correction scheme is not necessary. This is particularly true when extrapolation can be employed [25]. It is
expected that the combination of recursive convolution and extrapolation will result in a very fast software
and it is the subject of a future paper.

For problems requiring long FETD simulation times, further research is needed to develop a suitable stability
correction scheme (similar to the one employed in [24] for simple FETD problems) for our fast
VF-RC-FETD-FABC code.

It must be noted that the stability analysis of the VF-RC-FETD-FABC is a difficult task because of the

complexity of the VF-RC-FETD-FABC formulation and it will also be the subject of future research.

6  Appendix

From (25-26, 28-29), the frequency domain expression of Q¥ (0)) is obtained
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Qf (a))‘g:LZ = Zﬂc: Zﬂc: [}/Tam”j(js‘ Wp,t e_jP,_ ,,,,, -rde . (J‘Sg Epyxe*'jpf- 11111 'rdsj

m=—o0n=—0

(72)

Prior to obtaining the time domain expression of Q¥ (m), (72) is expanded and re-written as follows with s = jo.

Qf (s] g=1,2 = i i grflln) ( S{J‘S” WW efjp"”‘”quj ° (J‘s” Epwr eﬂp"m”'rdS)
fr(ni) ( S)(_[S Wp,xeijp"“m.rds)(.[s Epvxe*'jpz,,y,,,.rdsj

P (73)
- 3 e[ wemas |, B, e eas |
=Pt ®T + 7Pt mn T
e (L W, e’ dS)(J‘Sg E, " dS)
+ z z gmn ( ) . .
The four frequency dependent functions ﬁ(qu (s) in (73) are
£0(6)= 20" = j )+ 4
coa
Og)= 1 (5 + jcpu,) (75)
ERNTT T ey o
5(3)(Y) _ 1 (Tys + jcpyn)z (76)
" carcos O™ J(Y —jo,) +a
i ], + a,,
5(4)( ): 1 (sz + jep,,, Xrys +Jjep,, ) 77)
" cacosf™ (s—jo, )+,
where
o,=c (rxpxm +7,0,, )/cos2 0" (78)
o, =c’ (pf,m + o )/0052 0" (79)

0, =0, +o; (80)

Applying the ILT to (73), Q¢ (t) is obtained
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o (), :zwzw( o o merds oy U E,, (e 'dS)
Y W, e rde @ ( E, (e de
mgwn w(J. mn J. 1),\() (81)
+Y U W, e dsjg““) U E, (e = rde
L U W, e e ds}f(“) ( [ E,, @e 'dsj
I
m=—o0 n=— (J’ W e = iPrm ds)fr(ni)(t)*(.[ EI,A(t)e”p’ ,,,,, rdS)
where the symbol ‘*’ denotes the convolution operator.
The time domain functions gggg(t) in (81) are now derived. Consider first g%(z) . Let us rewrite (74) as
(. cos@" V. 2 - ;
Guls)=——1ls-ja, ) +a, ~(s—ja,) |+(s-ja,) (82)
ca

Consider also the following ILT [26],

L [(m ”HZW (k=12,-) (83)

L'(s)=5"() (84)

L) =35 (85)
where J; () is the kth order Bessel function of the first kind. S(t) and 5'(t) are the Dirac delta function and its

time derivative respectively. Using (83-85) we can obtain the time domain expression of (82)

£0() =" [, e 1 (w,1))1+50) jeo,5(0)] (86)

ca

To find g( )( ) we make use of the ILT

mn

L !\/82 +a’ —s!

vl a“J (ar) (k=012 ®7)
from which we can derive the following
L 212} ~ 7, (at) (88)
Vs +a
L2 |=—aJ,(ar)+5(t) (89)
Vs +a’ } 1
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L{ s } W) 2 (ar) 576) ©0)
s’ +a’ !
We now expand the s-fraction term in (75) as
. 2 . 2 . 2
(sz—‘rjcpxm) :Tf (S—](Oa) +[2].T/Y(waa+cpxm) (s_-]a)a) _ (Txa)a +cpxm)
(s_ja)a)z +a)3[7 (s_ja)a )2 +a)azh \/(s_ja)a )2 +a);h \/(s_ja)a)z +a)§b
On
Applying the ILT and (88-90) to (91), we obtain
. 2
L—l (sz + ]Cpx,m ) — Tfejw“t |:a)ah‘/1 (a)aht) _ 6031,]0 (wabt)"" §r(t):|
(S_ja)a)z-’ra)sz f
+ [ijx (Tx wa + Cpx,m )k ot [_ a)ab‘ll (waht)+ 5(t)] (92)

- [(Txa)a TCPim )2 ] [e s (wabt)]
By making use of the relation [26]
f(e)5(e)= £(0)5(e) ©3)

and the product rule the following equations can be proved
12 5(r) = 8(r) (94)

e (1) = — joo,8(t)+8'(r) (95)
Thus, from (92,94,95), we obtain
[_ (20)5 + a): )Tf - 2ca)a px,mz—x - Czpf,m jwﬂt‘]() (a)aht)
5(2) (l‘) _ COSs einc + [_ 2a)a Tf - 2cpx,m Tx ]ja)ahejm“r‘]l (a)aht) (96)
" ca + Tf a)abejwat ‘]l (a)abt)/t
+ Tjé"(t) + j(chx,mz-x + a)a T? )é(t)
The time domain expressions for (76) and (77) can be obtained in a similar way. All time functions (74-77) can be

expressed in the following general form

(’f(q)(l‘) _ C(()q){cl(;];?n fl,mn (t)+ C2(fln)m f2,mn (t)+ ng)f&mn (t)}

+C05'(0)+ jcl), () ©7
= h)(0)+ cics )+ et o)
where the coefficients are given in Table-4 and
fl,mn (t) =e Joul JO (a)abt) (98)
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f2,mn (t) = ja)abejwat‘ll (wabt) (99)
Frm(1)= 0,87\ (@,1)]1 (100)
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Figure Captions:

Fig.1: Schematic diagram of a doubly periodic structure under oblique plane wave incidence. The unit vectors
u and v are perpendicular to each other and perpendicular to the direction of plane wave propagation k, . u is
perpendicular to the plane of incidence.

Fig. 2: PEC metallic grating: normalised transmitted power of each propagating Floquet harmonic, (6™,4"™) =
(0°, 0°). Solid line: VF-RC-FETD-FABC, refined mesh, NTS = 40000. Dotted line: VF-RC-FETD-FABC,
coarse mesh, NTS = 40000. Dashed line: CST. Circles: FDTD [16]. Triangles: 3D FEFD. Dotted dashed line:
2D SC-FETD [19]. The inset is a magnified version of the rectangular region enclosed by a dashed line.

Fig.3: The unit cell of the dielectric block periodic structure. Dy = Dy = d =20mm, h=2mm, a=10mm, &,=10g,
g,=4¢y, d,=6mm.

Fig.4: Dielectric block periodic structure: reflection coefficient of a TM polarised incident plane wave,
(0™,4™) = (30°, 0°). Solid line: VF-RC-FETD-FABC. Dashed line: CST. Circles: [17].

Fig.5: The unit cell of the annular aperture FSS. D= Dy = d =1m, h=0.1d, a=0.45d, a/b=1.125, d,=0.

Fig.6: Annular aperture FSS: normalised total transmitted power for a TM polarised incident plane wave,
(6", ¢"™) = (25°, 0°). Solid line: VF-RC-FETD-FABC, Mg= Ng= 5. Dotted line: VF-RC-FETD-FABC, M= Ng
= 3. Dashed line: CST. Circles: [18].

Fig.7: The unit cell of the rectangular patch FSS and its FE mesh. &,=2¢), Dy = Dy = d =10mm. a=2.5mm,
b=5mm, h=2mm, d,=8mm.

Fig.8: Microstrip Patch FSS: normalised reflected power carried by the (m, n) = (0, 0) Floquet harmonic,
(6"™,4™) = (30°, 0°). Solid line: VF-RC-FETD-FABC. Dashed line: CST. Circles: [1].

Fig.9: Microstrip Patch FSS: the transient result of a field variable at the incident port. Solid line: VF-RC using
the triangular basis function. Dotted-dashed line: MS-RC using the triangular basis function. Dashed line:
VE-RC using the trapezoidal integration. Dotted line: MS-RC using the trapezoidal integration.

Table Captions:

*

Table 1: The complex coefficients of some of the exponential terms computed using VECTFIT
Table 2: Simulation Parameters
Table 3: Comparison of simulation times using SC and RC schemes

Table 4: The coefficients of the 5;572 (t) functions
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i a;

1 1.279626495406034x107> —j 1.261470741789042x10~*

40 1.692232579061624x107" +j 4.616465130321906x10*

Jo(x) - b
I | —1.925991503098565x10°2 + | 9.997590587172485x10""
40 _1.140988539120197 — j 4335711675669561x10”"
i a;
1| —2.592296266238222x10° — ] 3.573479902713371x10°2
o 40 | 1.445282983410766x107 + 8.698222798656163x10°

i b
1 ~1.107723835947839x10™"  +j 9.932592820027151x10™"

40 —1.003372046142869 —j 3.612988278778275x107"
i a;

1 2.114140046169769x10™" —j 9.277612166889937x10~*

I | 24| —1.601181589839314x10°+] 1.651034541296722x10°°
i b
1 ~8.437603910879161x10™" + 2.823005633683934x10™"

24 | -2.349904170513284x10~* - j 9.999950227350590x10”"
* VECTFIT parameters: (i) number of frequency points 30000; (ii) 20 iterations. (iii) the angular
frequency range: 0<w<0.5n for functions Jy(y) and Ji(y) ando<w<1.5n for Ji(y)/y; (iv) Q=40 for
functions Jy(y) and J,(y) and O=24 for J,(y)/y.
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Courant
inc inc | Polarisa ty |t 1 Ar | AL" | Limit(ps)
nc nc w C
Model | 0%0™ 1" ion | MENE | (an) | (an) | (GH2) | (ps) | (m) AL NTS
3
Infinitely
‘EI‘;;ES 0°,0° ™ 20 | 240 | 60 6 12 | 83e-4 1.6 40000
grating
Dl‘jfccglc 30°,0° ™ 22 | 160 | 40 10 1.5 | 5.0e-4 0.96 50000
33 [ 160 | 40 | 03 | 32 65500
A“E“Iar 25°,0° ™ 1.67e-2 32
apertures 55 | 440 | 110 | 03 12 95000
g&rlf;tgg 30°,0° TE 22 | 400 | 100 | 15 | 03 | 2.1e-4 0.4 40000

* AL denotes the minimum edge length in the tetrahedral finite element mesh.
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‘ . NTS Simulation
Model No. of FE edges | 6", 4™ Mg, Ng Method (10%) Time
(min)
Infinitely thin .3 1823 0°, 0° 2,0 RC 20 447
. (refined mesh)
PEC metallic 13857
grating (coarse mesh) 0°0 2,0 RC 20 24.9
. . SC 5 233
Dgifcclgm 38693 30°, 0° 22 Re 5 61
20 256
SC 5 245
Annular o no 33 5 69
apertures >885 2550 RC 20 276
5,5 RC 20 701
. . SC 5 279
Microstrip 2,2
34951 30°, 0° ’ 5 45
Patch FSS RC 20 181
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ClV = cos 0"'“/ (ca)

&) | ¢ =Cl, =0
dd- . =-o,
= 1/ (c 9’"‘ca)
lmn = (Za) +a)b)1, -2co,p, 7, —czpim
£90) | € =20,7] ~2cp,, 7,
e =cf-r:
), =2p,, 7, +0,7
¥ =1/ (cos&i”"ca)
i, =-ea + @) ~2w,p,,5,-p),
S0) P =207 -2cp, 7,
eV =c =1
Cszm =2p,, 7, +0,7;
cW =1/ (cosHi"‘ca)
i =—Lal+@)rr, —colp,r + . )-Cpp.
£0) | €l =220, —clp,,7, + p,.7.)

=l =ryz,

- |
CS,mn =C px,mTy +py,nTx +quxTy
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