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The value of an American option depends on the information that the holder will acquire

over the option’s life. Much of the literature makes restrictive assumptions about

information revelation – for example that the underlying price process is Markov. With a

richer information structure, the American feature becomes more valuable. This paper

identifies the least upper bound on the price of an American option, placing no

assumptions on the information structure. It shows that the American premium in

standard models is a small fraction of its upper bound, and shows what features make the

American feature most valuable. The bounds can be tightened by excluding implausible

processes, and these bounds are enforced by a hedging strategy that is robust to model

error.
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1. INTRODUCTION

American options are valuable precisely because the holder is free to take the exercise

decision using all information about future returns that arrives over the option’s life. The

more information the holder receives, the better the exercise decision, and the more

valuable the timing option. Yet much of the extensive literature on American options

makes the extreme assumption that the underlying asset price follows a Markov process,

and that all information is contained in the current price. With a richer information

structure, where the holder learns about the distribution of future returns, the value of

being American will in general be higher. We investigate how great this extra value could

be by exploring the arbitrage-free upper bound on the price of an American option given

only the contemporaneous prices of all European options. The bound is enforced by a

semi-static hedging strategy. We identify the hedging strategy, and show how it can be

improved, reducing its cost while retaining its robust properties.

American options are the most common and also the most subtle of exotic options. While

many exotic options have pay-offs that are functions of the price path alone, the pay-off

to an American option depends also on the exercise strategy of the holder. The decision

to exercise will depend on the holder’s beliefs about the distribution of future returns at

each point over the life of the option. In the standard Brownian diffusion model, the only

relevant information for the holder of the option is the current asset price. The optimal

exercise strategy is to exercise the option the first time the asset price breaches a barrier –

the immediate exercise boundary (see Broadie and Detemple (2004) for a more formal

treatment). With a richer information structure – for example with stochastic volatility –

the exercise strategy is more complex, and depends on all state variables rather than just

the underlying asset price.

Adding further state variables gives only limited insight into the value of flexibility.

Formal models can only take account of what might be called known unknowns

(Rumsfeld 2002); the value of being American is that the holder is able to respond to any

new information that becomes available prior to expiry – including information on the

unknown unknowns.
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In general, holding the price of European options fixed, the richer the information

structure, the greater the value of the American option. As Longstaff, Santa-Clara and

Schwartz (2001) argue in the context of American and Bermudan style swaptions, the

costs of using a single-factor model to make exercise decisions when the term structure is

driven by multiple factors are substantial. They claim that these costs remain substantial

even if the model is recalibrated to fit the current set of market prices of related derivative

securities (in this case European swaptions) at each possible exercise date. While

Andersen and Andreasen (2001) and Svenstrup (2005) contest this latter conclusion, it is

common ground that a single factor model has to be recalibrated to take account of new

information revealed in the market prices of other derivative securities on the same

underlying when deciding whether to exercise the option.

Repeated recalibration of a model is internally inconsistent. It violates the model’s own

assumption that the parameters are constant. Buraschi and Corielli (2005) show that it is

precisely in the non-Markovian setting in which we are interested that the improvements

from recalibration are smallest.

We therefore follow a different route. To get a bound on how much new information

could matter, we ask: given the prices of European options, how much could an

American option be worth without allowing arbitrage opportunities? In answering the

question, the only assumption we make (apart from the standard assumptions of

frictionless markets and absence of arbitrage) is that interest rates and dividends are

deterministic.

The search for arbitrage-based option pricing bounds goes as far back as Merton (1973)

who shows that the price of an American put option with strike K and maturity T is

bounded below by the equivalent European put option; using obvious notation,

   , ,a eP K T P K T . Brown, Hobson, and Rogers (2001) generalize the question of

pricing bounds by searching for the tightest bounds on a claim (in their case barrier and

lookback options) in the presence of a whole set of other claims (European options with

the same maturity). These bounds are useful because they are enforced by hedging

strategies that are robust, strategies that work however the prices of the instruments used



- 3 -

for hedging evolve. Robust strategies put a floor on potential hedging losses. Being

model free, they avoid the problems highlighted by Green and Figlewski (1999) when

conventional hedging techniques are used with an incorrect model or with poor parameter

estimates.

The bound on the value of the American feature is not in general very close to the price

from standard pricing models. As will be shown in the case of the American put option,

the maximum possible value of the American premium (defined as the premium

compared with the most valuable European option with the same strike and the same or

shorter maturity) can be three times greater than that implied by standard diffusion

models without creating an arbitrage opportunity. Models with richer information

structures may generate American option values that differ substantially from traditional

models, and hedging American options using standard models may lead to significant

error.

The rational bound is enforced by a hedging strategy that is robust, in the sense that the

maximum loss the seller of the option can incur is strictly limited however the asset price

moves. This desirable feature is offset by the fact that the maximum loss can be large,

and alternative hedging strategies may have much smaller mean square error. We show

how the strategy can be improved. By placing weak restrictions on prices at which

options will trade in the future, we show how the maximum loss and the mean square

hedging can be significantly reduced, albeit with some slight loss of robustness.

We use linear programming to find the rational bounds, having first set the problem in a

discrete time, discrete price framework. Exploiting the duality between pricing and

hedging, we show that the cheapest portfolio that dominates the American option is also

the price of the option under the process that values it most highly. Others authors

(Andersen and Broadie (2004), Rogers (2002) and Haugh and Kogan (2004)) exploit the

relationship between the primal problem of pricing, and its dual problem of hedging to

bound the value of an American option. They seek pricing bounds that bracket the true

value of the American option under a known price process by using a near to optimal
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exercise strategy. We differ fundamentally from them in seeking price bounds that are

independent of the price process.

The paper is organized as follows. The upper bound on the general American option is

identified in section 2. Section 3 computes the bound on the price of the American put

option and explores the type of processes that make the American feature most valuable.

Section 4 tightens the bounds by imposing some restrictions on the future level of implied

volatility. In section 5, simulation is used to model the rational bounds hedges and

compare them with conventional delta-gamma hedges. The final section concludes.

2. IDENTIFICATION OF THE BOUNDS

2.1 An informal overview of the argument

Before establishing the model formally in a lattice framework, we present the key ideas

informally in a continuous time setting. Interest rates are constant. There is a single risky

asset that pays no dividends. We work throughout with discounted prices; the price of the

asset at time t is denoted by St. At time 0, a bank sells an American option to an investor.

The investor can choose to exercise the option at any time t before maturity T. On

exercise, the holder receives a discounted sum, A(St, t). There is a complete set of

European options (all strikes and maturities) available.

A general portfolio of European options that expire at or before T is characterized by the

function V with V(S,T) = 0; the interpretation of V is that the portfolio generates cash at

the rate -V/t (so the portfolio generates V(St,t) from time t onwards if the asset price

remains constant until the option expires; in this example we assume that V is

differentiable).

The first proposition below states that, if the function V is convex in S, decreasing in t and

greater than A (the pay-out to the American option) throughout the domain, then the

European portfolio V dominates A. The argument is based on arbitrage. Suppose at time 0

the agent is long the European portfolio and short the American option. The agent does

nothing until time t* when the option is exercised; she then delta hedges the European
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portfolio by going long V/S units of the underlying. The cash flow from time 0 to

maturity is:

(1)

 

   
   
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*
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The price of the European portfolio is an upper bound on the price of the American

option. The second proposition then states that the cheapest such portfolio provides the

lowest possible bound on the price of the American option.

Consider for example the case of an American put option with strike K. The function A is:

(2)
   , max ,0 ,

where .

t

rt
t

A S t K S

K Ke

 



V = A satisfies the requirements of proposition 1. It corresponds to a portfolio that pays at

rate rKt while St  Kt, and 0 otherwise; and also pays max{KT-ST, 0} at maturity. The

hedging strategy is to do nothing until the option is exercised at time t*. The bank then

borrows Kt*, buys one unit of the asset and pays the investor Kt*–St*. While the asset

remains below the strike price, the cash flow from the portfolio pays the interest on the

debt, so the discounted value of the debt is always Kt. At maturity, the portfolio pays KT –

ST, so the bank can sell the asset and repay the debt. If at some time t > t* the option goes

out of the money, so St > Kt, the asset is sold, the debt is repaid, and the bank ends up

with a positive cash position.

We will show that this is sometimes, but not always, the cheapest dominating portfolio.

Having illustrated the approach, we now present the formal model.

2.2 The formal set up

The model is set in a discrete time, discrete space framework. The time index t goes from

0 to T. The interest rate is deterministic. Prices are discounted at the riskless rate to time
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0. There is a single risky security. It pays no dividends1 and is traded in a frictionless

market at (discounted) price St. St can take one of J possible values:

(3)   11,..., for all , with ... .t j JS x j J t x x   

For convenience, the price nodes are spaced geometrically with 1 j jx ux , and the time

periods each of length .

An American option is characterized by a J T pay-off matrix A = {aj,t}. If the option is

exercised at time t, the holder receives a pay-off whose discounted value is aj,t
2 where j is

given by St = xj. Once the option has been exercised, it is dead; it cannot be exercised

again. The holder can chose to let the option expire without exercising it.

For each node (j,t) there is a traded security that pays 1 if St = xj and 0 otherwise3; its

price at time zero is pj,t. The J  T matrix {pj,t} is denoted by P. pj,t can be interpreted as

the risk-adjusted probability of state j occurring at time t, given information at time 0.

The absence of arbitrage implies the existence of a process under which S is a martingale

and Pr{St = xj} = pj,t for all (j, t) (Davis and Hobson 2007).

2.3 Dominating portfolios

A portfolio of elementary securities is represented by E = {ej,t}. The portfolio pays the

holder an amount ej,t at time t if St = xj. The cost of the portfolio, c(E), is the cost of the

elementary securities that compose it:

1 The extension to assets with a constant yield, or a known dividend, is described in 2.4.

2 It is implicitly assumed that the American option cannot be exercised at time 0; this is for notational

convenience and has no effect on the results.

3 We could instead have assumed the existence of a complete set of conventional European call options

(that is an option for each strike xj and each maturity t). The Arrow-Debreu claims we are assuming can be

created from the call options using a butterfly spread – a long position in calls with strikes xj-1 and xj+1 and a

short position in calls with strike xj.
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(4)   , ,
,

.j t j t
j t

c e pE

The following proposition sets out sufficient conditions under which the European

portfolio E dominates the American option A.

PROPOSITION 1: if there exist three J  T matrices E, D and V that satisfy the following

conditions:

(5)
 

,

, , , , 1

, 1

, ,

1) 0 for all , ;

2) for all , , ,

where 0;

3) for all , ,

j t

j t j t j t m j m t

m T

j t j t

e j t

v e d x x v j m t

v

v a j t







   





then the cost of E is an upper bound on the price of the American claim A.

Proof: suppose the proposition is false. An agent writes the American option at time 0,

and uses the proceeds to buy the European option E. The agent does nothing until time t*

when the American option is exercised. At time t  t*, the agent hedges by holding djt of

the underlying asset, where j is given by St = xj.

By assumption, A costs more than E, so the cash flow at inception is strictly positive. At

every period up to time t*, the agent receives an amount ejt which is positive by condition

(1). Condition (2) ensures that the proceeds from the delta hedged portfolio E from time

t* to time T aggregate to at least vj*,t*. Condition (3) ensures that this exceeds aj*,t*, the

exercise cost of the American option. The aggregate cash flow is also strictly positive if

the American option is never exercised. This is an arbitrage strategy. To avoid arbitrage,

the price of the American option must be less than or equal to the price of the European

portfolio. ■ 

vjt can be regarded as the intrinsic value of the European portfolio E at node (j, t). By

delta hedging the portfolio (represented by the matrix D), the holder can ensure that the

hedged cash flow from time t onwards will equal at least vj,t whatever path the asset

subsequently follows. Proposition 1 can be restated as: if the portfolio of European
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options E has positive cash flows only, and if the intrinsic value of E exceeds the

immediate exercise value of the American option in all future states, then E dominates

the American option.

The proposition identifies a set of strategies that bound the price of an American option.

To find the tightest such bound, the problem can be written as a linear program:

 

 

, ,
,

,

, ,

, , , , 1

,

: Find the triplet of matrices , ,

that minimizes

subject to the constraints:

1) 0 for all , ;

2) for all , ;

3) 0 for all , ,

where 0 w

j t j t
j t

j t

j t j t

j t m j j t j t m t

m t

J T

e p

e j t

v a j t

e x x d v v j m t

v









    





LP1 D E V

hen 1.t T 

The feasible set is not empty4. The solution is bounded below by zero; otherwise there

would exist a portfolio E that has positive cash flows in all states of the world, and has a

negative cost, and this would be an arbitrage. So LP1 has a solution; denote the solution

with an asterisk. Proposition 1 implies that the price of the American option is bounded

above by c(E*). The next step is to show that this is the least upper bound.

2.4 Feasible prices

A process for the risky asset is consistent if it is martingale and if the probability of

reaching any node (j,t) is pj,t. The expected pay-off to a contingent claim under a

consistent process is a feasible price in the sense that introducing that claim into the

market at that price cannot lead to arbitrage. We search among a carefully chosen class of

processes for that which maximizes the expected pay-off. We show that this search is the

dual of LP1, and so has the same solution, c(E*). It is both an upper bound and a feasible

price. It must therefore be the supremum.

4 For example, define ej,t = vj,t = max[aj,t , 0] and dj,t =0 for all j and t.
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We model the process as a regime-switching Markov chain. There are two regimes.

Initially, the model is in regime 1. It may switch to regime 2 at some future date; if it does

so, it stays in regime 2. There are J price nodes. At t=1, the probably of being at node j is

pj,1 (given by the price of 1-period options at time 0). The chain is characterized by

specifying the joint probability of successive states (not the conditional probability):

F = {fj,t} is the probability of being at node j at time t and switching from regime

1 to regime 2 at that node;

G = {gj,m,t} is the probability of being at node j at time t in regime 1, and moving

to node m next period;

H = {hj,m,t} is the probability of being at node j at time t in regime 2 and moving

to node m next period.

If the model is in state j in period t then St = xj. Conditional probabilities can be readily

computed; for example the probability of the price moving from xj at time t to xk the

following period under regime 1 is , , , ,j k t j m t
m

g g .

The following conditions are imposed on{F, G, H}:

(6)

   

   
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, , , ,

, , , ,

, , , , , , , , , , 1

, , , , , 1 , ,
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4) 0; 5) 0;

6) ; 7) ( );

8) (with 0 when 0);

for 1,..., and 1,..., .

j t j t j m t

m j j m t m j j m t
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j m t j m t j t m j t m j t j t
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j t j m t m j t m j t
m

f g h

x x g x x h

g h p g h p t T

f h h h t

j J t T





  

   

    

   

 

 

 



Conditions (1-3) ensure that the probabilities are positive; conditions (4-5) ensure that St

is a martingale under both regimes; conditions (6-7) ensure that the probability of

entering a node and the probability of leaving the node are both equal to the probability

of being at that node; condition (8) says that the probability of switching regime at a node
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is equal to the difference between the probability of arriving at the node in regime 2 and

the probability of leaving it in regime 2.

The conditions are both necessary and sufficient to ensure that the process is well-

defined, that S is martingale, and that the probability distribution of St is consistent with

the initial risk-neutral density P. Now suppose that the holder of the American option

decides to exercise it when the regime switches. Under the process {F, G, H}, the value

of the American option is:

(7)   , ,
,

.j t j t
j t

v f aF

v(F) is the value of the American option in a consistent model with a given exercise

strategy. There is no reason to believe the strategy is optimal, but v(F) must represent at

least a lower bound on the feasible price in this model.

Consider the linear program:

LP2: Find the J  T matrix F and the two J  J  T matrices G and

H that maximizes , ,
,

j t j t
j t

f a subject to the constraints in (6).

The feasible set is not empty; consider for example the strategy of never exercising the

American claim, so F = H = 0. G is then just a martingale process for the underlying

asset that is consistent with the prices of the European options; such a process must exist

if the market is free of arbitrage. The problem is also bounded since F is bounded (pj,t 

fj,t  0). So there is a solution v(F*).

PROPOSITION 2: the search for the cheapest dominating portfolio (LP1) is equivalent to

the dual of the search for the process that maximizes the value of the American claim

(LP2). The cost of the cheapest dominating portfolio c(E*) is equal to the maximum

feasible price v(F*), and they are therefore both equal to the least upper bound on the

value of the American claim.
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Proof: the proof involves re-writing the two linear programs in standard form and

showing that they are dual. It is set out in the Appendix. ■ 

2.5 Extending the model

Propositions 1 and 2 apply to an American option on an asset that pays no dividends.

They can readily be extended to assets that do pay dividends, provided that the present

value of the dividend is a known function of the asset price. For example, take the case

where the option is on a share that has a dividend yield of d per period. For the purposes

of the model, the underlying asset is a share with dividends reinvested. By construction,

this notional underlying asset pays no dividends. At node (j, t) the value of the underlying

is xj, the value of one share is  1
t

jx d , and the immediate exercise value of an

American call with nominal strike K is:

(8)
   

,
1 1

j

j t t t

x K
a

d i
 

 

where i is the per period interest rate. The extension to discrete proportional dividends,

and also to known cash dividends is straightforward, as is the extension to time varying

but non-stochastic interest rates and dividend yields.

The model can also be used to bound the price of Bermudan-style options where the

holder’s right to exercise the option is restricted to particular times or periods. If the

holder cannot exercise the option at time t then ajt is set equal to zero for all j. Since the

holder of a live option can chose to allow the option to expire unexercised, it is rational to

defer exercise when a = 0 and so keep the option alive.

3. EXPLORING THE BOUNDS

3.1 Bounds on the American put

We illustrate the model by looking at the bounds on American put options in the presence

of European options whose prices are set by a trinomial process that approximates a

diffusion with constant volatility . The model is in discrete time, with T equal periods
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starting at 0 and ending at . The length of each period is T. The American option

can be exercised at any node; as  goes to zero, the permissible exercise dates converge to

the continuum [0, ].

Price nodes are distributed geometrically with xj+1 = uxj (u > 1). European option prices

are equal to their expected pay-offs when the discounted price of the risky asset follows

the trinomial process:

(9)

 
 

   

1

22

with probability 1

with probability 1

with probability 1

where 0,1 and log .







   






 
 

 

t

t t

t

S u u

S S u u u

S

u

In the following examples, the initial asset price S0 is 100, the time to maturity  is 1 year,

and the annualized volatility  is 10%. There are 50 periods per year. The probability of a

price change at each node, , is set equal to 2/3, and u = 1.0175.

Table I sets out the upper bound on the price of the American put option for different

values of the strike price K and the annual (continuously compounded) interest rate r. The

bound is compared with the conventional valuation of an American option – the expected

pay-off to the option under the process in (9) under the optimal exercise strategy. Two

European put option valuations are also reported. One is the value of a European put

option  ,EP K T with strike K and that matures when the American option expires. The

other is the value of the European put option with strike K and maturity of T or less that

has maximum value,  ,EMax P K t t T   , denoted by  ,EP K T . We define the

American premium as the difference between the American put price and  ,EP K T . It

represents the premium the holder pays for being able to specify the exercise time later,

rather than having to choose the exercise time at inception.

The value of an option depends on the level of the strike relative to the spot. Two

measures of the moneyness of the option are reported, at inception, and at expiry:
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(10)
 

 
0 ln ;

ln .r
T

d S K

d S Ke 

 

 





Table I: Upper Bound on the Value of an American Put

Strike American premium

(K ) Bound Diffusion P
E
(K, ≤T ) P

E
(K, T) (diffusion/bound) d 0 d T

(1) (2) (3) (4) (5) = (2-3)/(1-3) (6) (7)

r = 2%

95 1.67 1.42 1.35 1.35 20% 0.51 0.71

100 3.76 3.22 3.03 3.03 26% 0.00 0.20

105 6.89 6.13 5.68 5.68 37% -0.49 -0.29

110 10.84 10.12 10.00 9.17 15% -0.95 -0.75

r = 5%

95 1.34 0.91 0.77 0.77 25% 0.51 1.01

100 3.44 2.43 1.94 1.94 33% 0.00 0.50

105 6.63 5.33 5.00 3.92 20% -0.49 0.01

110 10.68 10.00 10.00 6.82 0% -0.95 -0.45

r = 10%

95 0.83 0.44 0.26 0.26 31% 0.51 1.51

100 2.90 1.61 1.01 0.79 32% 0.00 1.00

105 6.25 5.00 5.00 1.90 0% -0.49 0.51

110 10.46 10.00 10.00 3.76 0% -0.95 0.05

American European Moneyness

The table shows the upper bound on the value of an American put with maturity of 1
year for various levels of strike and interest rates, when the spot price of the underlying
is 100, and European options are trading on an implied annual volatility of 10%. The
second column shows the price of the American put assuming the asset has constant
volatility; the next two columns show the prices of European options with the same
strike and maturities of either up to 1 year, or of 1 year exactly. Column 5 shows the
ratio of the American option premium under the diffusion process to the maximum
premium. d0 and dT are measures of moneyness, defined in the body of the paper.
Values are calculated using 40 steps/year.

One striking feature of table I is how small is the ratio (shown in column 5) between the

value of being American assuming that the process is a diffusion, and the upper bound on

the value of being American. Taking a crude average across strikes and interest rates, the

standard valuation of model value is only 20% of its rational bound, and for no strike or

interest rate does it rise above 37%, suggesting that the American feature may be

seriously undervalued by standard models.
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With five parameters in the model (S, K, r,), table I appears to sample only a small

part of the parameter space. But relative prices are largely determined by the moneyness

vector (d0, dT); holding the moneyness constant, the option prices, whether American or

European, are approximately proportional to S, so the percentage premium depends

mainly on the (two-dimensional) moneyness vector. The range of parameters in Table I is

chosen to give a suitably wide range of values for the moneyness vector.

To exhibit the bounding European portfolios, the intrinsic value vj,t of the portfolio is

plotted as a function of xj for different values of t. The lines are convex; it follows that the

intrinsic value vj,t is identical to the sum ,

T

j s
s t

e

 . The values of e, the pay-out from the

portfolio in each period, can be read off by looking at the difference between successive

curves. Figure 1 shows these portfolios for an out of the money option (K = 98) and an in

the money option (K = 102). In both cases, using Proposition 1, it is easy to verify that

the portfolios do dominate the American put.

For the out of the money American put, the dominating portfolio takes a particularly

simple form:

(11) ,

, , , 1

;

.

j t t j

j t j t j t

v K x

e v v





   

 

This portfolio is the same as that given in the informal presentation in section 2.1. While

this portfolio always dominates the American put, the lower panel of Figure 1 shows that

it is not the cheapest dominating portfolio for all values of strike.

5 If the discounted exercise price Kt were linear in time, and if the process generating European option

prices had constant variance of price changes, dSt then, holding moneyness constant, prices of all options

(European, American, upper bound) would be exactly proportional to the standard deviation of the terminal

price. In our model, it is lnKt that is linear in time, and ln(dSt) that has constant variance, but for low

interest rates and volatility (small values of r and ) the homogeneity property holds approximately.
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3.2 Extreme Processes

The dominating portfolios give insight into the features of price processes that make

American options particularly valuable. Suppose a bank writes an out of the money

American put, is long the dominating portfolio, and has zero cash. The bank does nothing

until the put is exercised at some time t*. If the bank then delta hedges the European

portfolio until maturity, it will extract its intrinsic value, and end with a net positive cash

position, as already shown. But if the European options are traded, there is an alternative

strategy open to the bank: when the customer exercises the American option, the bank

coan liquidate its own portfolio of European options and use the proceeds to pay its

customer. If there are no arbitrage opportunities, the bank will be able to sell its European

hedge portfolio for at least its intrinsic value, and so still end with positive cash.

A bank following this second strategy will have strictly positive cash if the American

option is still unexercised in any period when the European portfolio is cash generating,

or if, at the point of exercise, the European portfolio is worth more than its intrinsic value.

Processes that maximize the value of the American option, holding the prices of

European options constant, are those that leave the bank with zero cash. These processes

have the property that, in the early exercise region, the European portfolio trades only at

intrinsic value, so its implied volatility is zero. This implies that, conditional on the point

of optimal exercise having been reached (“dead paths”), the volatility of the path should

be low6.

The initial prices of European options determine the forward implied volatility, and hence

the expected future volatility conditional on stock price and time (Britten-Jones and

Neuberger 2000). If the volatility of dead paths is low, then the volatility of live paths

going through the same nodes on the lattice would have to be high.

6 Low, but not necessarily zero. For example, the implied volatility at time t of an option with strike K (> St)

and maturity T will be zero provided that the asset price will, with probability 1, remain below K until

maturity.
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The type of process that supports a high American premium is one where there is a major

source of uncertainty that will be resolved at an unknown time within a fixed period, and

the process of resolution is likely to occur over a short period. For then optimal exercise

will wait until the uncertainty is resolved, and at that time implied volatilities will be very

low. Set in the context of the standard types of process used for modeling asset prices

(stochastic volatility, GARCH, regime switching) this type of process is anomalous in

having volatility being negatively correlated over time. However such behavior is not

wholly implausible in reality. For example the market may believe that within the next

six months there could well be a bid for a particular company, but the timing is uncertain.

The size of any bid may be uncertain, but once a bid is made, much of the uncertainty

would vanish. In currency markets, a fixed exchange rate that is liable to speculative

attack may similarly exhibit a spike of volatility at some unknown time followed by a

period of calm. In such markets, an American option would be particularly valuable

relative to a European option.

To make this insight more concrete, we look at a simple (if rather artificial) process in

which the value of an American option approaches its upper bound. To keep consistency

with the previous Brownian example, the process is designed to deliver broadly similar

European option values.

The Single Jump Process (SJP) for St is defined by:

(12)
2

0

/ 2
0

*

*

where is a standard normal variate and * is uniformly distributed on [0,1].

t

S t t
S

S e t t

t

 






 



St has a lognormally distributed single jump at a random time t*. The distribution of the

asset price at one year is lognormal, with variance parameter 2, so European option

prices with maturity of 1 are identical to Black-Scholes prices. As with standard
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Brownian motion, the variance of returns increases almost linearly with horizon7, but the

distribution prior to maturity is not lognormal.

Under the SJP, the optimal exercise strategy for an out-of-the-money American put

option is to exercise immediately after the jump, if at all. The dominating strategy in (11)

exactly replicates the pay-off to the American option in all states of the world. The SJP

maximizes the value of the American premium under all possible processes consistent

with the same set of European option prices.

Table 2 shows the pricing of American and European options for the same interest rates

and maturities as Table 1. For out of the money options, the American option price is at

its rational bound while under the Markov diffusion process8 that supports the same

European option prices, the American option premium is under half the rational bounds

premium. For in the money options, the option value is well below rational bounds, but is

generally substantially higher than it would be under a Markovian diffusion process.

7 Strictly, the variance of returns over the period [0,t] is  2exp 1t  under Brownian motion and

  2exp 1t   under the SJP.

8 The lognormal is approximated as a 41 node logbinomial. The Markov diffusion is approximated as a

trinomial on the same prices. Since the local implied volatility is unbounded, we use an ever finer time step

as t approaches zero.
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Table 2: American Option Bounds and Prices with a Single Jump Process

Strike

(K ) Bound Jump Diffusion PE(K, ≤T ) PE(K, T) (jump/bound) (diffusion/bound)

(1) (2) (3) (4) (5) (6)=(2-4)/(1-4) (7) = (3-4)/(1-4)

r = 2%

95 1.63 1.63 1.46 1.38 1.38 100% 34%

100 3.51 3.51 3.24 3.08 3.08 100% 36%

105 6.76 6.34 5.99 5.71 5.71 60% 26%

110 10.81 10.03 10.00 10.00 9.20 4% 0%

r = 5%

95 1.27 1.27 1.00 0.78 0.78 100% 47%

100 2.87 2.87 2.34 1.92 1.92 100% 45%

105 6.41 5.40 5.00 5.00 3.89 28% 0%

110 10.65 10.00 10.00 10.00 6.76 0% 0%

r = 10%

95 0.87 0.87 0.60 0.39 0.26 100% 45%

100 2.08 2.08 1.48 1.00 0.79 100% 44%

105 6.01 5.00 5.00 5.00 1.88 0% 0%

110 10.48 10.00 10.00 10.00 3.74 0% 0%

American premiumEuropeanAmerican

European option prices are set as if the underlying follows the Single Jump Process. Of
the three American option prices, the first is the rational bound, the second is the price
under the pure jump process while the third is the price under the Markov diffusion
process that is consistent with the European option prices.

In the first part of this section we showed that the American option premium is a small

fraction of its upper bound when the underlying process is a constant volatility diffusion.

Similar computations (not reported here) using other widely used processes (jump-

diffusion, stochastic volatility) with plausible parameters support the same conclusion.

We then showed that it is possible to get high American premiums, but this necessitates

some kind of two state process where volatility falls sharply at some random time. The

question naturally arises whether the bounds can be tightened significantly by placing

modest restrictions on the process.

4. TIGHTENING THE BOUNDS

In this section we explore the possibility of generating tighter but still robust bounds by

excluding some implausible behavior. The “good-deal” literature starting with Cochrane

and Saá-Requejo (2000) and Bernardo and Ledoit (2000) is motivated by a similar desire

to find restrictions on pricing in incomplete markets that are tighter than no arbitrage.
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They assume that the objective process for the underlying is known, and impose

restrictions on the behavior of the stochastic discount factor. In the context of our model,

the natural way to exclude extreme behavior is to place restrictions on the future prices of

European options. In particular, we restrict the implied volatility on which options will

trade in future.

The empirical justification for this is that while implied volatilities do vary widely over

time, they do not appear to approach zero. For example, the VIX index, which is traded

on the Chicago Board Options Exchange, measures the implied volatility of an at-the-

money option on the S&P 500 Index with 30 days to expiry. Since its introduction in

1993 to March 2009, it has averaged 20% and reached a minimum of 8.6%. Inspection of

the time series of the VIX index in Figure 2 suggests that it should be possible to

nominate some non-trivial floor level for the implied volatility of a European portfolio

over its lifetime without a large sacrifice of robustness.

Avellaneda, Levy, and Paras (1995) examine the impact of bounds on the actual volatility

of the underlying price process on option prices. They assume that the asset follows a

diffusion, and in effect they constrain the quadratic variation of the price path. This

excludes both jumps and periods of price stability. By contrast, we do not exclude any

price process, but instead impose restrictions on the prices of contingent claims that are

likely to be satisfied.

To implement the idea, consider a “local volatility” contract that pays $1 if 1t tS S  , and

zero if the price is unchanged. The more volatile the asset, the higher the price of the

local volatility contract. Now assume that, for each node (j,t), it is known that the price of

the local volatility contract purchased at date t will not fall below some level j,t. With the

minimum total return on a price change in the being of size u this corresponds to a floor

on the implied volatility of the contract at this node of , ln( )j t u  , where  is the

length of the time period.
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This restriction is readily incorporated in the linear program. Recall the matrix H =

{hjmt}, which represents the probability of being at node j at time t, at node m at time t+1

and the option having been exercised by time t. The minimum volatility constraint is:

(13)  , , , , ,1 for all , , ,j j t j t j m t
m

h h j m t  

This modifies LP1 and produces the new problem:

 

   

, ,
,

,

, ,

, , , , , , 1

3: Find the four matrices , , ,

that minimizes

subject to the constraints:

1) 0 for all , ;

2) for all , ;

3) 0 for all , ,

wher

j t j t
j t

j t

j t j t

j t m j j t j t m j j t j t m t

J T

e p

e j t

v a j t

e x x d I y v v j m t  







      



LP D E V Y

,

,

e 0 when 1 and 1 if , and 0 otherwise;

4) 0 for all , .

m t m j

j t

v t T I m j

y j t

    



The interpretation of constraint (3) is that in addition to delta hedging by going long dj,t

units of the underlying, the agent can write yj,t ( 0 by virtue of constraint 4) local

volatility contracts. The constraint exploits the assumption that the price of such a

contract will be at least j,t.

Table III shows that imposing a floor on implied volatility tightens the bounds

substantially. With a floor on the future implied volatility of options set at half the current

level, the bound on the American premium is reduced by around 20% on average, with

the effect being most pronounced for low strike options. As the floor on future implied

volatility approaches 10%, which is today’s forward volatility, so uncertainty about future

volatility is constrained, and the bound approaches the diffusion price.



- 21 -

Table III: Bound on the American Put with a Floor Level of Implied Volatility

Strike
(K)

American,
Diffusion

European

P E (K,≤T)

0% 5% 8% 5% floor 8% floor Diffusion

(1) (2) (3) (4) (5) (6) (7) (8)

r = 2%

95 1.67 1.52 1.44 1.42 1.35 52% 29% 20%

100 3.76 3.51 3.30 3.22 3.03 66% 37% 26%

105 6.89 6.74 6.33 6.13 5.68 87% 54% 37%

110 10.84 10.78 10.51 10.12 10.00 94% 60% 15%

r = 5%

95 1.34 1.13 0.98 0.91 0.77 63% 37% 25%

100 3.44 3.11 2.65 2.43 1.94 79% 48% 33%

105 6.63 6.49 5.92 5.33 5.00 92% 57% 20%

110 10.68 10.63 10.40 10.00 10.00 92% 59% 0%

r = 10%

95 0.83 0.67 0.51 0.44 0.26 72% 45% 31%

100 2.90 2.62 1.97 1.61 1.01 85% 51% 32%

105 6.25 6.13 5.69 5.00 5.00 90% 55% 0%

110 10.46 10.42 10.27 10.00 10.00 91% 58% 0%

American option premium,
relative to robust bound

Bound on American, with
floor on implied vol of

The table shows the upper bound on the value of an American put with maturity of 1 year
for various levels of strike and interest rates, when the spot price of the underlying is 100,
and European options are trading on an implied annual volatility of 10%. The first
column is the unrestricted upper bound, while the second and third assume that European
options will never trade in future on an implied volatility of less than 5% and 8%
respectively. Column four shows the price of the American put assuming the asset
follows the diffusion process; and column five shows the price of the most valuable
European option with the same strike and maturity of up to 1 year. The next three
columns show the American option premiums implicit in columns 2-4 as a proportion of
the premium implicit in the ration bound, column 1. Values are calculated using 40
periods.

In the limit, the lower bound on future volatility could be set equal to today’s forward

volatility; as shown formally below, this corresponds to the hedging strategy of Derman,

Ergener and Kani (1995). If the floor on implied volatility is set higher than this, the

model ceases to be arbitrage free; agents can buy volatility through buying options at

time zero, and subsequently sell it back using local volatility contracts.

For each node define the jump probability:
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(14)

  

, 1 ,

, , 1 ,

1 1 , 1 ,

,1 1

,

,

0 if and 0;

if and 0;

otherwise;

where is the price of a security that pays $1 if ,
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price of a call option with strike and maturity .jx t

LEMMA

If , 1F
j t  for all j and t, there exists a martingale process Q for St where:
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 
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   
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under which   ,Pr for all , .t j j tS x p j t 

PROOF: this result is due to Dupire (1994), and Derman and Kani (1994). The process is

well-defined provided that  , 0,1F
j t  . 1F  by assumption; 0F  since, in (14), the

absence of arbitrage ensures that pj,t  0 and cj,t+1  cjt. The process is clearly martingale.

The consistency with the {pj,t} can be proved by induction: if   ,Pr u j j uS x p  for all j

and all u < t, then substitution of (14) into (15) gives   ,Pr u j j uS x p  for u = t.

PROPOSITION 3:

1. if, for some j and t, , ,
F

j t j t  , there is an arbitrage;

2. if, for all j and t, , , 1F
j t j t   , there is no arbitrage;
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3. if, for all j and t, , , 1F
j t j t   , and if the immediate exercise value of the

American option is a convex function of the stock price, then the cost of the

robust hedge is the same as the valuation of the American option under the

diffusion Q. The robust hedge is a portfolio that pays at each node the difference

between the value of the American option at that node and its continuation value.

PROOF: the formal proof is in the Appendix. The first part is demonstrated by buying a

forward volatility contract at time zero, and selling a volatility contract at time t. The

second follows directly from the Lemma: since there is a martingale process that is

consistent with all the restrictions, there is no arbitrage. The last part is due to the fact

that there is just one process that is consistent with all the restrictions, so the upper

bound on the American option is simply its value under that process.

The robust hedge referred in the third part of Proposition 3 is very similar to the static

hedging strategy of Derman, Ergener and Kani (1995; hereafter DEK). They show how

to set up a portfolio of European options that, in a Black-Scholes world has the same

value function as the exotic that is to be hedged; they develop the idea in the context of

using European options to hedge barrier options, but it applies equally to American

options.

5. RATIONAL BOUNDS AND ROBUST HEDGES

A valuable by-product of the search for option pricing bounds is the discovery of robust

hedging strategies that enforce those bounds. We have shown how to create a spectrum of

robust hedging strategies for American options, ranging from the entirely robust but

expensive rational bounds hedge at one extreme to the much cheaper DEK strategy. The

cheaper the strategy the more exposed is the hedger to the risk that future implied

volatility will differ from today’s forward volatility. The balance between robustness and

price depends on the preferences of the hedger. In this section, we use simulation to

explore the distribution of the hedging error with robust hedges and with more

conventional delta-gamma hedges.
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The experiment is set up as follows: the underlying asset price follows a Heston (1993)

stochastic volatility process. At time zero, the bank writes an American put option, and

establishes a hedge. The hedge is liquidated when the option is exercised or expires. The

American option and the European options used for hedging all trade at their fair prices,

and the American option is exercised whenever it is optimal to do so. We consider

different hedging strategies followed by the bank. Under robust hedging the bank sets up

the robust hedge at the time it writes the option and liquidates the hedge when the option

is exercised. We consider both the unrestricted robust hedge that enforces the rational

bounds, and the restricted version described in the previous section where there is a floor

on implied volatility. Under delta-gamma hedging, the bank hedges dynamically from

inception to exercise using two securities: the underlying asset, and the European option

with the same strike and maturity as the American option being hedged.

If the bank knew the true process, then it could hedge perfectly since there are no

frictions, and there are two hedge instruments to hedge two sources of uncertainty. But

the bank mistakenly assumes that the world is Black-Scholes. The bank observes the

price of the hedging option at each point in time, computes its implied volatility using the

Black-Scholes model, and uses that volatility (and the Black-Scholes model) to

determine the hedge ratios. Each period the hedge portfolio is rebalanced to match the

first and second derivatives of portfolio value with asset price (under the Black-Scholes

model) to that of the American option.

The price processes are simulated assuming the risk premia are zero, so the discounted

prices of the asset and of the options follow martingales. With all transactions taking

place at fair price, the mean profit is zero whatever hedging strategy is used. We run

100,000 simulations of both models and report the standard deviation and the 99th

percentile.

The Heston process is:

(16)
 ; ;

. .

s v
t t t t t t t t

s v
t t

dS S v dz dv v dt v dz

E dz dz dt
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We implement it on a three dimensional lattice (asset price, volatility level and time);

each period, the state vector (St, vt) can move to one of six possible nodes (v can go up or

down, while S can go up, down or remain the same). The Black-Scholes implied volatility

of an option is computed as the (constant) jump probability  that generates the market

value of the option. Deltas and gammas are computed using the values of the option one

period ahead9.

To retain comparability with our previous results, the mean of the variance of returns, ,

is 0.01. The volatility mean reversion parameter  is 2 (on an annual basis – so volatility

mean reverts with a time constant of 6 months). The volatility of volatility  is 0.2, so the

standard deviation of the instantaneous variance is equal to its mean. The correlation 

between volatility and price shocks is zero. We also report sensitivities.

We use the same range of strikes and interest rates as before. With a strike of 110,

immediate exercise is optimal. Whatever hedging strategy is used, it is liquidated

immediately and there is zero hedge error.

9 To avoid excessively leveraged hedge portfolios, the holding of the European option under delta-gamma

hedging is constrained to lie in the interval of [-3,+3]; this reduces the hedge error substantially on a small

proportion of paths.



- 26 -

Table III: Hedge errors when hedging an American option using European options

under both delta-gamma and robust hedges

Strike Delta-gamma

(K ) hedge 0% 5% 8% 10%

r=2%

95 0.09 0.36 0.20 0.13 0.11

(0.34) (0.28) (0.14) (0.24) (0.35)

100 0.18 0.54 0.33 0.20 0.19

(0.47) (0.59) (0.38) (0.40) (0.43)

105 0.30 0.63 0.41 0.25 0.25

(0.67) (0.87) (0.66) (0.45) (0.47)

r=5%

95 0.23 0.66 0.41 0.21 0.18

(0.80) (0.40) (0.23) (0.30) (0.62)

100 0.47 0.91 0.66 0.36 0.33

(1.18) (1.02) (0.68) (0.71) (0.99)

105 0.77 0.90 0.75 0.42 0.45

(1.18) (1.30) (1.14) (0.68) (0.65)

r=10%

95 0.36 0.79 0.55 0.30 0.21

(1.29) (0.38) (0.25) (0.30) (0.73)

100 0.78 1.04 0.94 0.50 0.40

(1.79) (1.25) (0.91) (0.77) (1.19)

105 0.00 0.00 0.00 0.00 0.00

(0.00) (0.00) (0.00) (0.00) (0.00)

Hedge Error - Standard deviation and 99%'ile

Robust hedge with floor on imp vol of

The table shows the standard deviation of hedge error, and in parentheses, the
99% worst loss, from a strategy of writing a 1 year American option and hedging
it to expiry or exercise. The underlying follows a Heston stochastic volatility
process with parameters in the text. All options trade at fair value, and the
American option is exercised optimally. The initial price of the underlying is 100.
The runs consist of 100,000 simulations on a grid with 40 periods. Under delta-
gamma hedging, the American option is hedged with a portfolio consisting of the
underlying and the European option with the same strike and maturity as the
American option being hedged; hedge ratios are computed using Black-Scholes to
ensure that the hedged portfolio has zero delta and gamma.

The hedge error under delta-gamma hedging has a much lower standard deviation than

the rational bounds hedge. The distribution of losses under the rational bounds hedge is
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highly skewed; the maximum loss is in several of the cases less than one standard

deviation below zero. The rational bounds hedge tends to have a smaller left hand tail

than the delta-gamma hedge. For hedgers concerned with the possibility of large losses,

the low and predictable maximum loss from the rational bounds hedge is attractive.

The performance of the rational bounds hedge can be much improved by imposing a floor

on implied volatility. This greatly reduces the cost of the hedge (and hence its standard

deviation) while not compromising its robustness, at least when the floor is reasonably

low. If the floor is raised to 10% (the unconditional expected root mean square volatility)

the standard deviation of the hedge error tends to diminish, but its robustness deteriorates.

Table IV shows the sensitivity of these numbers to the choice of parameters. The main

results that come out are the sensitivity of the hedge error under delta-gamma hedging to

the volatility of volatility. Halving  roughly halves the hedge error; if the volatility of

volatility were zero then, with the initial volatility being equal to its unconditional mean,

volatility would be constant and the delta-gamma hedge would be perfect. By contrast,

the rational bounds hedge is virtually unaffected by the volatility of volatility. It has

limited impact on either the cost of the rational bounds hedge or the cost of the American

option, and hence leaves the maximum loss largely unaffected. The robust hedges with

positive floors are more heavily affected by the volatility of volatility since the higher it

is, the greater the likelihood that the liquidation value of the hedge portfolio is

insufficient to meet the exercise value of the American option.

The rate of mean reversion has little impact on the robust hedges, but it does have a

noticeable impact on the delta-gamma hedge. In the table the lower value of  is

accompanied by a reduction in volatility of volatility to keep the unconditional variance

of variance constant. As the rate of mean reversion tends to infinity, the process tends

towards a jump diffusion process, the conditional expectation of future volatility is

constant, and the delta gamma hedge works well.

With volatility (initial and long run mean) doubled, and  increased to maintain the

coefficient of variation of the variance of returns, the delta-gamma hedge error is

essentially unaltered, while the error on the robust hedge is increased substantially.
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Nevertheless it remains the case that by raising the floor, the robust hedge has a

substantially smaller left tail than the delta-gamma hedge.

Table IV: Sensitivity of hedge error to parameter choice

Strike Delta-gamma

(K ) hedge 0% 5% 8% 10%

Base Case 0.47 0.91 0.66 0.36 0.33

(1.18) (1.02) (0.68) (0.71) (0.99)

Low vol of vol 0.26 0.98 0.70 0.30 0.19
s = 0.1(0.2) (0.67) (1.09) (0.77) (0.30) (0.59)

Low mean reversion 0.52 0.93 0.70 0.40 0.35
k,s = 0.5,0.1(2,0.2) (1.57) (1.08) (0.79) (0.77) (1.14)

High volatility 0.48 1.27 1.28 0.91 0.78
v 0 = 20%(10%); s

= 0.1(0.2)

(1.17) (1.39) (1.32) (1.09) (0.88)

High initial volatility 0.49 0.96 0.73 0.44 0.32

v 0 = 14%(10%) (1.46) (1.23) (0.98) (0.74) (0.87)

Negative correlation 0.38 0.91 0.66 0.35 0.25
r = -0.5(0) (1.09) (0.94) (0.66) (0.56) (0.76)

Coarser grid 0.45 0.92 0.68 0.37 0.35
20 periods (40) (1.08) (1.04) (0.76) (0.68) (0.84)

Hedge Error - Standard deviation and 99%'ile

Robust hedge with floor on imp vol of

The table shows the standard deviation of hedge error, and in parentheses, the
99% worst loss, from a strategy of writing a 1 year American option with strike of
100 and hedging it to expiry or exercise. The initial price of the underlying is 100.
The runs consist of 100,000 simulations. The interest rate is 5%. The underlying
follows a Heston stochastic volatility process with parameters in the text. All
options trade at fair value, and the American option is exercised optimally. Under
delta-gamma hedging, the American option is hedged with a portfolio consisting
of the underlying and the European option with the same strike and maturity as
the American option being hedged; hedge ratios are computed using Black-
Scholes to ensure that the hedged portfolio has zero delta and gamma.

The level of initial volatility, of correlation between price and volatility shocks, and the

coarseness of the grid do not appear to have a substantial effect on the conclusions.
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6. CONCLUSIONS

In this paper we have taken seriously the American option holder’s right to adjust the

exercise strategy in the light of information about future asset returns received after the

option has been acquired. Standard models used for pricing American options tend to

make highly restrictive assumptions about future information. In the extreme case of

Black-Scholes, the holder receives no new information at all about the distribution of

future returns.

We have shown how to construct the cheapest strategy that dominates the American

option. It involves buying a portfolio of European options, and delta hedging to extract

their intrinsic value once the American option is exercised. The cost of the European

portfolio is the tightest model-free bound on the price of the American option. The bound

is attainable in the sense that there are processes that are consistent with the initial set of

European option prices under which the American option has a value equal to that bound.

In the case of the American put, the bound on the American premium can be three or four

times the Black-Scholes value.

The type of process that leads to the attaining of the bound was identified. It has two

states, one of high and one of low volatility. The American option is exercised when the

asset moves from the high volatility state to the low volatility state. The Single Jump

Process is an extreme example of this type, and has out-of-the-money puts trading on

their upper bounds.

If plausible restrictions can be put on the level of implied volatility in future, the bounds

on the American option can be tightened. We showed how this could be done. With a

floor on future implied volatility set at half the current forward volatility, the bound on

the American premium is reduced by around 20% on average.

The search for option pricing bounds has a useful by-product: the identification of

hedging strategies that are not dependent on highly specified models, and which are

therefore robust. We use simulation to show that these robust strategies perform well
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compared with more standard delta-gamma hedging strategies, particularly from the

perspective of agents who put heavy weight on avoiding large losses.
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Figure 1: The Cheapest Dominating Portfolios for an American Put

The two charts show the European options that dominate an American put option.

In the top chart the strike price of the American option is 95, while in the bottom it

is 105. The difference between successive lines shows the cash flow that period as a

function of the asset price. The other parameters are: initial asset price 100, risk

free rate 10%, option maturity 1 year, European options have an implied annual

volatility (using a binomial model with a mesh of 1%) of 10%.
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Figure 2: The dynamics of implied volatility
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The VIX index is the implied volatility of a synthetic at-the-money 30 day option on the

S&P500 index, and it is traded on the Chicago Board Options Exchange. It is measured in

annualized percentage points. Data collected from Yahoo Finance.
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APPENDIX

Proof of Proposition 2:

Rewrite the problem LP2 as:

 

   

   

   

, ,
,

, , , , , , , , , ,

, , , , , 1 , , , , , 1

, , , ,

Find that maximizes subject to:

1) ; 2) ;

3) ( ); 4) ( );

5) 0; 6) 0;

7)

 



     

       

    



 
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m j t m j t j t m j t m j t j t
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m j j m t m j j m t
m m

a f

g h p g h p

g h p t T g h p t T

x x g x x g

F,G, H 0

   

   

, , , ,

, , , , , 1 , , , , , 1

, ,

0; 8) 0;

9) 0; 10) 0;

for 1,..., and 1,..., , with 0 when 0.

 

    

      

   

 

 

m j j m t m j j m t
m m

j t j m t m j t j t j m t m j t
m m

m j t

x x h x x h

f h h f h h

j J t T h t

Compare this with the linear program in standard form:

LP3: Find x  0 that maximizes z = cT.x subject to A.x ≤ b,

where x, c are n x 1 vectors, b is m x 1, and A is m x n.

It can be seen that n, the number of variables, is JT + 2J2T, while m, the number of

constraints, is 10JT – 2J. The vector of variables x consists of three blocks: the elements

of F, then the elements of G, and finally the elements of H. The vector c consists of the

elements of A, followed by 2J2T zeros. The vector b consists of the elements of P,

followed by –P, then P again (minus its first row) and the negative of this, followed by

6JT zeros. A is not readily describable in detail, but its general structure is illustrated

below where the blocks of zeros are identified by a minus sign, and the blocks with some

non-zero elements are denoted by a plus sign:
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JT + - +

JT + - +

JT - - +

JT - - +

JT - + -

JT - + -

JT-J - + +

JT-J - + +

JT - + +

JT - + +

JT J2T J2T

The dual of LP3 is:

LP4: Find y  0 that minimizes w = bT.y subject to AT.y ≥ c.

If we break y into 10 blocks so y = (y1, y2, …, y10) then LP4 can be written as:

   

 
    
      

1 2 3 4
, , , , ,

,

9 10
, , ,

1 2 3 4 5 6
, , , , , ,

1 2 3 4 7 8 10 9
, , , , , , , ,

:

Find that minimizes subject to:

1) ;

2) 0;

3)

j t j t j t j t j t
j t

j t j t j t

j t j t j t j t m j j t j t

j t j t j t j t m j j t j t j t j t

y y y y p

y y a

y y y y x x y y

y y y y x x y y y y

   

 

      

        

1 10

LP5

y , ..., y 0

 10 9
, 1 , 1

3 4 9 10
, , , ,

0;

where 0 when 1 and 0 when 1,

for , 1,..., and 1,..., .

m t m t

j t j t m t m t

y y

y y t y y t T

j m J t T

  
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 

The bracketing shows where terms are always associated. Define the four J  T matrices

C, D, V and E as:
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;

;

;

.









5 6

7 8

9 10

1 2 3 4

C y - y

D y - y

V y - y

E y - y + y - y

Then LP5 becomes:

 
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, ,
,

, ,

, ,

, , , , 1

,

:

Find that minimizes subject to:

1) ;

2) 0;

3) 0;

where 0 when 1,

for , 1,..., and 1,..., .

j t j t
j t

j t j t

j t m j j t

j t m j j t j t m t

m t

e p

v a

e x x c

e x x d v v

v t T

j m J t T





  
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 


LP6

C,D,V,E

Consider constraint (2). By setting m = j it is seen to imply that E ≥ 0. But that is all that

(2) implies, because this is the only place in the LP6 where C is mentioned, so provided

E ≥ 0, we can ensure that (2) is satisfied by setting C = 0. The solution to LP6 remains

unchanged if constraint (2) is replaced by ej,t ≥ 0, and C is dropped from the list of

variables. But then the problem is identical to LP1.

Proof of Proposition 4

1. Suppose that for some j and t, , ,  F
j t j t . The following is an arbitrage:

o at time 0, buy
  

1 1

1 1

  

 




 

j j

j j j j

x x

x x x x
calendar spreads, where each

spread is long the call cj,t+1 and short the call cj,t. Also write , j t Arrow-

Debreu securities pj,t. By assumption, this provides strictly positive cash

flow.
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o at time t, pay any liabilities that have fallen due and lay on the following

hedges:

 if St > xj short a units of the underlying;

 if St = xj short  11 j jx x of the underlying, and sell one local

volatility contract;

 if St < xj do nothing;

o at time t+1, liquidate the portfolio. It can readily be shown that the

portfolio is either a wash (if the asset price has moved at most one node

over the preceding period) or strictly positive if it has moved by more.

2. The restrictions are consistent with the martingale process Q in the sense that the

price of any claim is equal to its expected pay-off under Q. Hence there cannot be

an arbitrage.

3. Define v, vc , d, e, and y recursively as follows:

(1)

 

 
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1 1

, 1 , , 1 1, , 1,

1 1 1 1
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, 1, 1 , 1
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;
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j T j T j T
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j t j t j t j t j t j t

j j j j
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j t j t j t

j t j t j t j j
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j t j t j t

j t j t j t j

v Max a v

x x x x
v v v v v

x x x x

v Max v a

d v v x x

e v v

u
y v v v

u u
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   
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  

 

  
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

   

 

  
 

1, 1.t 

v is the conventional American option valuation, vc is the continuation value, and

e is the difference between the two. To show that (1) is a feasible solution to LP*,

note that constraints 1 and 2 of LP* are satisfied trivially. For y  0 (constraint 4),

v must be convex in x. Constraint 3 is satisfied exactly at m = j-1, j and j+1. For it

to be satisfied for other values of m it is again sufficient that v be convex. The
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convexity of v can be proved by induction. Since a is convex, and the maximum

of two convex functions is convex, v.,T is convex.  lies between 0 and 1. If v.,t is

convex, then:

(2)

1 1

, 1 1, 1, , 1

1 1 1 1

1, 1 1, 1, 1

1, 1 1, 1, 1

(max when 1);

(min when 0);

(min when 0).

j j j jc
j t j t j t j t

j j j j

c
j t j t j t
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j t j t j t

x x x x
v v v
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v v

v v
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   

    
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 
  

 

 

 

so vc
.,t-1 is convex. v.,t-1 is the maximum of vc

.,t-1 , which we have just shown to be

convex, and a.,t-1, which is convex by assumption. So v.,t-1 too must be convex.

Proposition 1 applies and v0,0 is an upper bound on the price of the American

option. But it is also the expected value of the option under the trinomial process

Qso it must be the least upper bound.


