
 

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap 

 

This paper is made available online in accordance with 
publisher policies. Please scroll down to view the document 
itself. Please refer to the repository record for this item and our 
policy information available from the repository home page for 
further information.  

To see the final version of this paper please visit the publisher’s website. 
Access to the published version may require a subscription. 

Author(s):  David A. Croydon and Takashi Kumagai, 

Article Title: Random walks on Galton-Watson trees with infinite 
variance offspring distribution conditioned to survive  
Year of publication: 2008 
Link to published article:  
http://128.208.128.142/~ejpecp/archive.php 

Publisher statement: None 
 

http://go.warwick.ac.uk/wrap


E l e c t r o n
i

c

J
o

u
r

n a l

o
f

P
r

o
b a b i l i t y

Vol. 13 (2008), Paper no. 51, pages 1419–1441.

Journal URL

http://www.math.washington.edu/~ejpecp/

Random walks on Galton-Watson trees with infinite

variance offspring distribution conditioned to survive

David Croydon∗and Takashi Kumagai†

Abstract

We establish a variety of properties of the discrete time simple random walk on a Galton-Watson

tree conditioned to survive when the offspring distribution, Z say, is in the domain of attraction

of a stable law with index α ∈ (1,2]. In particular, we are able to prove a quenched version

of the result that the spectral dimension of the random walk is 2α/(2α− 1). Furthermore, we

demonstrate that when α ∈ (1,2) there are logarithmic fluctuations in the quenched transition

density of the simple random walk, which contrasts with the log-logarithmic fluctuations seen

when α= 2. In the course of our arguments, we obtain tail bounds for the distribution of the nth

generation size of a Galton-Watson branching process with offspring distribution Z conditioned

to survive, as well as tail bounds for the distribution of the total number of individuals born up

to the nth generation, that are uniform in n.
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1 Introduction

This article contains an investigation of simple random walks on Galton-Watson trees conditioned

to survive, and we will start by introducing some relevant branching process and random walk

notation. Let Z be a critical (EZ = 1) offspring distribution in the domain of attraction of a stable

law with index α ∈ (1,2], by which we mean that there exists a sequence an ↑ ∞ such that

Z[n]− n

an

d
→ X , (1)

where Z[n] is the sum of n i.i.d. copies of Z and E(e−λX ) = e−λ
α

. Note that, by results of [8],

Chapters XIII and XVII, this is equivalent to Z satisfying

E(sZ) = s+ (1− s)αL(1− s), ∀s ∈ (0,1), (2)

where L(x) is slowly varying as x → 0+, and the non-triviality condition P(Z = 1) 6= 1 holding.

Denote by (Zn)n≥0 the corresponding Galton-Watson process, started from Z0 = 1. It has been

established ([20], Lemma 2) that if pn := P(Zn > 0), then

pα−1
n L(pn)∼

1

(α− 1)n
, (3)

as n → ∞, where L is the function appearing in (2). It is also well known that the branching

process (Zn)n≥0 can be obtained as the generation size process of a Galton-Watson tree, T say, with

offspring distribution Z . In particular, to construct the random rooted graph tree T , start with an

single ancestor (or root), and then suppose that individuals in a given generation have offspring

independently of the past and each other according to the distribution of Z , see [17], Section 3,

for details. The vertex set of T is the entire collection of individuals, edges are the parent-offspring

bonds, and Zn is the number of individuals in the nth generation of T . By (3), it is clear that T

will be a finite graph P-a.s. However, in [14], Kesten showed that it is possible to make sense of

conditioning T to survive or “grow to infinity”. More specifically, there exists a unique (in law)

random infinite rooted locally-finite graph tree T ∗ that satisfies, for any n ∈ Z+,

E
�

φ(T ∗|n)
�

= lim
m→∞

E
�

φ(T |n)|Zm+n > 0
�

, (4)

where φ is a bounded function on finite rooted graph trees of n generations, and T |n, T ∗|n are the

first n generations of T , T ∗ respectively. It is known that, for any n ∈ Z+, we can also write

E
�

φ(T ∗|n)
�

= E
�

φ(T |n)Zn

�

, (5)

for any bounded function φ on finite rooted graph trees of n generations (see [14], Lemma 1.14,

for example), which demonstrates that the the law of the first n generations of T ∗ is simply a size-

biased version of the law of the first n generations of the unconditioned tree T . Finally, from the

characterisation of T ∗ at (4), it is clear that the generation size process (Z∗n)n≥0 of T ∗ is precisely

the Q-process associated with (Zn)n≥0 (see [2], Section I.14), which is commonly referred to as the

Galton-Watson process conditioned to survive.

Given a particular realisation of T ∗, let X = ((Xm)m≥0, PT ∗

x , x ∈ T ∗) be the discrete time simple ran-

dom walk on T ∗. Define a measure µT ∗ on T ∗ by setting µT ∗(A) =
∑

x∈A degT ∗(x), where degT ∗(x)
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is the graph degree of the vertex x in T ∗. The measure µT ∗ is invariant for X , and the transition

density of X with respect to µT ∗ is given by

pT ∗

m (x , y) :=
PT ∗

x (Xm = y)

µT ∗({y})
, ∀x , y ∈ T ∗, m ∈ Z+.

Throughout this article, we use the notation

τR :=min{m : dT ∗(X0, Xm) = R},

where dT ∗ is the usual shortest-path graph distance on T ∗, to represent the first time that X has

traveled a distance R ∈ N from its starting point.

The behaviour of X , started from the root ρ of T ∗, and (τR)R≥1 was first considered in [14], where

Kesten showed that, under the annealed law

P :=

∫

PT ∗

ρ (·)dP,

if the offspring distribution has finite variance, then the rescaled height-process defined by

(n−1/3dT ∗(ρ, X⌊nt⌋))t≥0 converges weakly as n → ∞ to a non-trivial continuous process (the full

proof of this result appeared in [15]). In [14], it was also noted that

lim
λ→∞

inf
R≥1
P

�

λ−1R
2α−1

α−1 ≤ τR ≤ λR
2α−1

α−1

�

= 1, (6)

whenever the offspring distribution is in the domain of normal attraction of a stable law with index

α ∈ (1,2], by which we mean that there exists a constant c ∈ (0,∞) such that (1) occurs with

an = cn
1

α (the full proof was given in the case α= 2 only). More recently, in the special case when Z

is a binomial random variable, a detailed investigation of X was undertaken in [5], where a variety

of bounds describing the quenched (almost-sure) and expected behaviour of the transition density

and displacement, dT ∗(ρ, Xm), were established. Many of these results have since been extended to

the general finite variance offspring distribution case, see [10].

In this article, we continue the above work by proving distributional, annealed and quenched bounds

for the exit times, transition density and displacement of the random walk on T ∗ for general off-

spring distributions satisfying (1). Similarly to the arguments of [5] and [10], to deduce properties

of the random walk, it will be important to estimate geometric properties of the graph T ∗ such as

the volume growth and resistance across annuli (when T ∗ is considered as an electrical network

with a unit resistor placed on each edge). In particular, once we have established suitable volume

growth and resistance bounds, we can apply the results proved for general random graphs in [16]

to obtain many of our random walk conclusions. It should be noted that the techniques applied in

[16] are simple extensions of those developed in [4], which apply in our case when α= 2.

In terms of the branching process, we are required to derive suitably sharp estimates on the tails

of the distributions of Z∗n and
∑n

m=0 Z∗m, which we do in Section 2. In [10], bounds for these

quantities were obtained in the finite variance offspring distribution case using moment estimates

which fail in the more general case that we consider here. We are able to overcome this problem

using more technical arguments, which involve analysis of the generating functions of the relevant

random variables. The statement of our results depends on the non-extinction probabilities of the
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branching process (pn)n≥0 via a “volume growth function” (see Section 3 for a justification of this

title), v : R+→ R+, which is defined to satisfy v(0) = 0,

v(R) := Rp−1
R , ∀R ∈ N, (7)

and is linear in-between integers. Our first result yields the tightness of the suitably rescaled distri-

butions of (τR)R≥1, (ET ∗

ρ τR)R≥1, (pT ∗

2m(ρ,ρ))m≥1 and (dT ∗(ρ, Xm))m≥1 with respect to the appropriate

measures; along with all the subsequent theorems of this section, it is proved in Section 3.

Theorem 1.1. The random walk on T ∗ satisfies

lim
λ→∞

inf
R∈N
P

�

λ−1h(R)≤ τR ≤ λh(R)
�

= 1, (8)

lim
λ→∞

inf
R∈N

P
�

λ−1h(R)≤ ET ∗

ρ τR ≤ λh(R)
�

= 1,

lim
λ→∞

inf
m∈N

P
�

λ−1 ≤ v(I ((m))pT ∗

2m(ρ,ρ)≤ λ
�

= 1,

lim
λ→∞

inf
m∈N
P

�

λ−1I (m)≤ 1+ dT ∗(ρ, Xm)≤ λI (m)
�

= 1, (9)

where h(R) := Rv(R) and I (m) := h−1(m).

We remark that, from (3), we have that v(R) = R
α
α−1 ℓ(R) for some function ℓ which is slowly varying

as R → ∞ (see Lemma 2.3 below). Thus the functions bounding the exit time, transition density

and displacement in the above result are of the form:

h(R) = R
2α−1

α−1 ℓ1(R), v(I (m)) = m
α

2α−1 ℓ2(m), I (m) = m
α−1

2α−1 ℓ3(m),

where ℓ1, ℓ2 and ℓ3 are slowly varying at infinity. In particular, when Z is in the domain of normal

attraction of a stable law with index α, then we have that pn ∼ cn−
1

α−1 for some constant c, and

hence (8) provides an alternative proof of the result of Kesten’s stated at (6). We highlight the fact

that the α of Kesten’s article corresponds to our α− 1.

The annealed bounds that we are able to obtain include the following. Further off-diagonal estimates

for the transition density, which extend the estimate at (11) are presented in Section 4.

Theorem 1.2. For every β ∈ (0,α − 1), γ ∈ (0,1 − α−1) and δ ∈ (0,α−1), there exist constants

c1, . . . , c6 ∈ (0,∞) such that

c1h(R)β ≤ E

�

�

ET ∗

ρ τR

�β
�

≤ c2h(R)β , ∀R ∈ N, (10)

c3v(I (m))−γ ≤ E
�

pT ∗

2m(ρ,ρ)γ
�

≤ c4v(I (m))−γ, ∀m ∈ N, (11)

c5I (m)
δ ≤ E

�

dT ∗(ρ, Xm)
δ
�

≤ E

�

max
0≤k≤m

dT ∗(ρ, Xk)
δ

�

≤ c6I (m)
δ, ∀m ∈ N. (12)

In the finite variance case, it is known that (10) and (11) hold with β ,γ = 1 (see [10], Theorem

1.1). Furthermore, in [5], it was established that when the offspring distribution is binomial, then
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(12) holds with δ = 1. The proofs of (10) and the corresponding results in [5] and [10] all rely on

the bound ET ∗

ρ τR ≤ 2(R+ 1)
∑R+1

m=0 Z∗m. However, the right-hand side of this expression has infinite

expectation under P when α ∈ (1,2), and so we can not use the same technique to deduce the result

for β = 1 in general. A similar problem occurs in the proof of (11), where, to establish the result

for γ = 1, we need an estimate on the negative moments of
∑R

m=0 Z∗m of orders larger than we can

prove. We cannot prove if (10) and (11) actually fail to hold or not in general when β = γ = 1.

We also do not know whether, when δ = 1, the expectations in (12) can be bounded above by a

multiple of I (m) uniformly in m in general.

In addition to the above annealed bounds, we will also establish quenched bounds for the random

walk on T ∗ as follows. Note that part (b) implies that for P-a.e. realisation of T ∗, the random walk

on T ∗ is recurrent.

Theorem 1.3. There exist constants a1, . . . , a4 ∈ (0,∞) such that for P-a.e. realisation of T ∗ the

following properties are satisfied.

(a) If x ∈ T ∗, then PT ∗

x -a.s.,

h(R)(logR)−a1 ≤ τR ≤ h(R)(logR)a1 , for large R.

Moreover,

h(R)(logR)−a2 ≤ ET ∗

x τR ≤ h(R)(logR)a2 , for large R.

(b) If x ∈ T ∗, then

v(I (m))−1(log m)−a3 ≤ pT ∗

2m(x , x)≤ v(I (m))−1(log m)a3 , for large m.

(c) If x ∈ T ∗, then PT ∗

x -a.s.,

I (m)(log m)−a4 ≤ max
0≤k≤m

dT ∗(x , Xk)≤ I (m)(log m)a4 , for large m.

From the preceding theorem we are easily able to calculate the exponents of the leading order

polynomial terms governing the exit time, transition density decay and maximum displacement.

We are also able to determine the exponent according to which the size of the range of the simple

random walk grows.

Theorem 1.4. For P-a.e. realisation of T ∗ , we have that

lim
R→∞

logτR

log R
= lim

R→∞

log ET ∗

x (τR)

log R
=

2α− 1

α− 1
, PT ∗

x -a.s. for every x ∈ T ∗, (13)

ds(T
∗) := lim

m→∞

−2 log pT ∗

2m(ρ,ρ)

log m
=

2α

2α− 1
, (14)

lim
m→∞

log max0≤k≤m dT ∗(x , Xk)

log m
=
α− 1

2α− 1
, PT ∗

x -a.s. for every x ∈ T ∗, (15)

and if the range W = (Wm)m≥0 of the simple random walk is defined by setting Wm := {X0, . . . , Xm},

then

lim
m→∞

logµT ∗(Wm)

log m
= lim

m→∞

log #Wm

log m
=

α

2α− 1
, PT ∗

x -a.s. for every x ∈ T ∗.
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We remark that the quantity ds(T
∗) introduced in the above result is often taken as a definition

of the spectral dimension of (the random walk on) T ∗. Famously, in [1], Alexander and Orbach

conjectured that the random walk on the “infinite cluster [of the bond percolation model on Zd]

at the critical percolation concentration” has spectral dimension 4/3, independent of the spatial

dimension d. Although a precise definition of the percolative graph considered did not appear in [1],

it is now commonly interpreted as the incipient infinite cluster of critical percolation, as constructed

in [14] for d = 2 and in [12] for large d. The validity of the Alexander-Orbach conjecture has since

been challenged in small dimensions [13], but it is still widely believed to hold above a certain

critical dimension (it has in fact been established in the case of spread-out oriented percolation in

high dimensions [4]). Justification for such a conviction is provided by the known results about

the geometry of the incipient infinite percolation cluster on Zd (see [11] and [12], for example),

which suggest that it is closely related to the incipient infinite percolation cluster on an N -ary tree

or, equivalently, the Galton-Watson tree with binomial offspring distribution, parameters N and

p = N−1, conditioned to survive, where versions of the Alexander-Orbach conjecture are known to

hold. For example, for the more general offspring distributions considered in [14], Kesten explains

how the result at (6) implies that the Alexander-Orbach conjecture holds for T ∗ if and only if α =

2, presenting the discussion in terms of distributional scaling exponents. Contributing to these

developments, it is worthwhile to observe that the limit result at (14) yields a quenched version

of this dichotomy between the cases α = 2, where the Alexander-Orbach conjecture holds, and

α ∈ (1,2), where it does not.

Finally, in Section 5, we investigate the fluctuations in the volume growth and the quenched tran-

sition density of the simple random walk on T ∗. In particular, when α ∈ (1,2) we show that the

volume of a ball of radius R, centered at ρ, has logarithmic fluctuations about the function v(R),

P-a.s., and when α = 2 there are log-logarithmic fluctuations, P-a.s. It follows from estimates in

Section 2 and [5] that these results are sharp up to exponents. We also note that these asymptotic

results are analogous to the results proved for the related stable trees in [7], where it is shown that

the Hausdorff measure of a stable tree with index α ∈ (1,2) has logarithmic corrections, in contrast

to the log-logarithmic corrections seen when α= 2. Furthermore, by standard arguments, it follows

that, with positive probability, the quenched transition density of the simple random walk on T ∗ has

logarithmic fluctuations when α ∈ (1,2), and log-logarithmic fluctuations when α = 2. In general,

these results are also sharp up to exponents in the fluctuation terms.

2 Branching process properties

To establish the properties of the simple random walk on T ∗ that are stated in the introduction

we start by studying the associated generation size process (Z∗n)n≥0. That the rescaled sequence

(pnZ∗n)n≥0 converges in distribution to a non-zero random variable was proved as [18], Theorem 4.

Furthermore, if we define (Y ∗n )n≥0 by setting

Y ∗n =

n
∑

m=0

Z∗m,

then it is possible to deduce that (n−1pnY ∗n )n≥0 converges in distribution to a non-zero random

variable by applying Theorem 1.5 of [6], (in fact, [6], Theorem 1.5 also provides an alternative
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description of the limit random variable of (pnZ∗n)n≥0). However, although these results are enough

to demonstrate that Theorem 1.1 is true, to deduce the remaining results of the introduction, we

need to ascertain tail estimates for Z∗n and Y ∗n that are uniform in n, and that is the aim of this section.

We start by stating a moment estimate for the unconditioned Galton-Watson process (Zn)n≥0.

Lemma 2.1 ([9], Lemma 11). For β ∈ (0,α− 1), there exists a finite constant c such that

E
�

Z1+β
n

�

≤ cp−βn , ∀n ∈ N.

A polynomial upper bound for the tail of the distribution of Z∗n near infinity is an easy consequence

of this result. When α ∈ (1,2), we are also able to deduce a polynomial lower bound by first proving

a related bound for the generating function of Z∗n .

Proposition 2.2. For β1 ∈ (0,α− 1), there exists a finite constant c1 such that

P
�

Z∗n ≥ λp−1
n

�

≤ c1λ
−β1 , ∀n ∈ N,λ > 0. (16)

Moreover, for α ∈ (1,2), β2 > (α−1)/(2−α), there exists a strictly positive constant c2 and integer n0

such that

P
�

Z∗n ≥ λp−1
n

�

≥ c2λ
−β2 , ∀n≥ n0,λ≥ 1. (17)

Proof. Fix β1 ∈ (0,α−1). Applying the size-biasing result that appears at (5), it is possible to deduce

that

P
�

Z∗n ≥ λp−1
n

�

= E
�

Zn1{Zn≥λp−1
n }

�

≤ λ−β1 pβ1
n E
�

Z1+β1
n

�

.

Combining this bound and Lemma 2.1 yields the upper bound at (16).

To prove (17), we start by demonstrating that for each ǫ > 0 there exists a constant c1 and integer

n0 such that

E
�

e−λpnZ∗n
�

≤ 1− c1λ
α−1+ǫ, ∀n≥ n0,λ ∈ [0,1]. (18)

Let f (s) = E(sZ), denote by fn the n-fold composition of f , and set

U(s) = lim
n→∞

fn(s)− fn(0)

fn(0)− fn−1(0)
, ∀s ∈ [0,1). (19)

That such a limit exists for each s ∈ [0,1) is proved in [20], where it is also established that the

resulting function U (which is actually the generating function of the stationary measure of the

branching process Z) satisfies

U( f (s)) = U(s) + 1, ∀s ∈ [0,1), (20)

and we can write

U(s)−1 = (α− 1)(1− s)α−1M(1− s), (21)

where M(x) is slowly varying as x → 0+. Let g be the inverse of U(1− ·), and define

Θ(t) :=−

∫ t

0

log f ′(1− g(s))ds, ∀t ≥ 1.
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Noting that the size-biasing result at (5) yields E(sZ∗n) = s f ′n(s) = s
∏n−1

m=0 f ′( fm(s)), we are able to

proceed as in the proof of [18], Theorem 2, to deduce that

E
�

sZ∗n
�

= s∆n(s)exp {Θ(U(s))−Θ(n+ U(s))} , ∀s ∈ [0,1),

where ∆n(s) ≤ 1. Furthermore, as computed in [18], the asymptotic behaviour of U described at

(21) implies that Θ(t) = α(α− 1)−1 log t + r(t), where the remainder term satisfies r ′(t) = o(t−1)

as t →∞. In particular, it follows that

E
�

sZ∗n
�

≤

�

1+
n

U(s)

�−
α

α−1
exp {r(U(s))− r(n+ U(s))} , ∀s ∈ [0,1). (22)

By definition, U is an increasing function and therefore if λ ∈ [0,1], then U(e−λpn) ≥ U(e−pn) ≥

U(1− pn) = n, where the final equality is easily checked by applying (20) and the fact that pn =

1− fn(0). Consequently, given η ∈ (0,1), since r ′(t) = o(t−1), there exists an integer n0 such that

r(U(e−λpn))− r(n+ U(e−λpn))≤ ηan(λ), ∀n≥ n0,λ ∈ [0,1],

where we define an(λ) := n/U(e−λpn). Letting c2 be a constant such that ex ≤ 1+ c2 x for x ∈ [0,1],

then the above inequality and the bound at (22) imply that

E
�

e−λpnZ∗n
�

≤
1+ c2ηan(λ)

�

1+ an(λ)
�

α

α−1

, ∀n≥ n0,λ ∈ [0,1].

Since c2 is independent of the choice of η, if we are given ǫ′ ∈ (0, α

α−1
), then for small enough η,

we have that 1+ c2ηx ≤ (1+ x)ǫ
′

for every x ∈ [0,1], and therefore

E
�

e−λpnZ∗n
�

≤
�

1+ an(λ)
�−
�

α

α−1
−ǫ′
�

≤ 1− c3an(λ), ∀n≥ n0,λ ∈ [0,1],

for some constant c3. Thus, to complete the proof of (18), it remains to obtain a suitable lower

bound for an(λ). It follows from (21) and the monotonicity of U that

an(λ) =
n

U(e−λpn)
≥

U(1− pn)

U(1− c4λpn)
= c5λ

α−1
M(c4λpn)

M(pn)
≥ c6λ

α−1+ǫ, ∀n≥ n0,λ ∈ [0,1],

for suitably chosen constants c4, c5, c6, where to deduce the final inequality we use the representation

theorem for slowly varying functions (see [19], Theorem 1.2, for example). This completes the proof

of (18).

For any non-negative random variable ξ we have that

1− E
�

e−θξ
�

=

∫ ∞

0

P(ξ≥ x)θ e−θ x d x , ∀θ > 0,

from which it easily follows that

1− E
�

e−θξ
�

≤ x + P(ξ≥ x/θ), ∀θ , x > 0.

For β ∈ (0,1), taking ξ = pnZ∗n , θ = λ−1/(1−β) and x = λθ in the above inequality, we obtain from

(18) that

P
�

Z∗n ≥ λp−1
n

�

≥ c1λ
−(α−1+ǫ)/(1−β) −λ−β/(1−β), ∀n≥ n0,λ≥ 1.

Now, assume that α ∈ (1,2) and β2 > (α−1)/(2−α). By setting β = α−1+2ǫ for ǫ chosen suitably

small, the result follows.
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To prove a polynomial lower bound for the tail of the distribution of Y ∗n near infinity, we will use the

fact that (pn)n≥0 is regularly varying as n→∞, which follows from (3).

Lemma 2.3. We can write pn = n−
1

α−1 ℓ(n), where ℓ(n) is a slowly varying function as n → ∞.

Moreover, if ǫ > 0, then there exist constants c1, c2 ∈ (0,∞) such that

c1

�

n

m

�−ǫ

≤
ℓ(n)

ℓ(m)
≤ c2

�

n

m

�ǫ

,

whenever 1≤ m≤ n.

Proof. That pn = n−
1

α−1 ℓ(n), where ℓ(n) is a slowly varying function as n → ∞, follows from (3)

by applying 5o of [19], Section 1.5. The remaining claim can be proved using the representation

theorem for slowly varying functions (see [19], Theorem 1.2, for example).

We will also apply the subsequent adaptation of [5], Lemma 2.3(a), which establishes the result in

the case when the offspring distribution is binomial.

Lemma 2.4. There exist strictly positive constants c1 and c2 such that

P
�

Y2n ≥ c1np−1
n

�

≥ c2pn, ∀n ∈ N.

Proof. First observe that

1+ 2n= E(Y2n) = E(Y2n1{Zn=0}) + E(Y2n1{Zn>0})

≤ E(Yn) + pnE(Y2n|Zn > 0)

= n+ 1+ pnE(Y2n|Zn > 0).

In particular, this implies that

np−1
n ≤ E(Y2n|Zn > 0).

Furthermore, if β ∈ (0,α− 1), then

E(Y
1+β

2n |Zn > 0)≤ p−1
n E(Y

1+β
2n )≤ p−1

n (2n+ 1)1+βE

�

max
m≤2n

Z1+β
m

�

.

Since (Zn)n≥0 is a martingale, we can apply Doob’s martingale norm inequality to obtain from this

that

E(Y
1+β

2n |Zn > 0)≤

�

1+ β

β

�1+β

p−1
n (2n+ 1)1+βE

�

Z
1+β
2n

�

≤ c1

�

np−1
n

�1+β
,

for some finite constant c1, where we apply Lemma 2.1 to bound E(Z
1+β
2n ) by c2p

−β
2n and Lemma 2.3

to show that p
−β
2n ≤ c3p

−β
n .

Now, let ǫ ∈ (0,1) and ξ be a non-negative random variable, then by Hölder’s inequality we have

that

(1− ǫ)E(ξ)≤ E
�

ξ1{ξ≥ǫE(ξ)}
�

≤ E
�

ξ1+β
�1/(1+β)

P (ξ≥ ǫE(ξ))β/(1+β) , (23)

1427



assuming that the appropriate moments are finite. Applying this bound to Y2n with respect to the

conditioned measure P(·|Zn > 0), the above estimates yield

P
�

Y2n ≥ ǫnp−1
n |Zn > 0

�

≥ c4 > 0, ∀n ∈ N,

for some constant c4. Hence, we have that

P
�

Y2n ≥ ǫnp−1
n

�

≥ pnP
�

Y2n ≥ ǫnp−1
n |Zn > 0

�

≥ c4pn, ∀n ∈ N,

which completes the proof.

We can now prove our first tail bounds for Y ∗n . To obtain the upper polynomial tail bound near infin-

ity, we apply the size-biased interpretation of the law of the first n generations of T ∗ and a standard

martingale bound. In the proof of the corresponding lower bound, we rely on decomposition of T ∗

that appears in [14]. The same decomposition will also be applied in Proposition 2.7 and Lemma

2.8 below. Henceforth, we will use the notation Bin(N , p) to represent a binomial random variable

with parameters N and p.

Proposition 2.5. For β1 ∈ (0,α− 1), there exists a finite constant c1 such that

P
�

Y ∗n ≥ λnp−1
n

�

≤ c1λ
−β1 , ∀n ∈ N,λ > 0. (24)

Moreover, for α ∈ (1,2), β2 > (α−1)/(2−α), there exists a strictly positive constant c2 and integer n0

such that

P
�

Y ∗n ≥ λnp−1
n

�

≥ c2λ
−β2 , ∀n≥ n0,λ≥ 1. (25)

Proof. Fix β1 ∈ (0,α− 1). It follows from the size-biasing result at (5) that

E
�

Y ∗n
β1

�

= E
�

Y β1
n Zn

�

≤ (n+ 1)β1E

�

max
m≤n

Z1+β1
m

�

.

Applying Doob’s martingale norm inequality and Lemma 2.1, we consequently obtain that there

exists a finite constant c1 such that

E
�

Y ∗n
β1

�

≤ c1(np−1
n )
β1 . (26)

The result at (24) is readily deduced from this bound.

Now assume that α ∈ (1,2), β2 > (α− 1)/(2−α), and let c1 and c2 be the constants of Lemma 2.4.

Clearly, we have that

P
�

Y ∗3n ≥ λnp−1
n

�

≥ P
�

Y ∗3n ≥ λnp−1
n |Z

∗
n ≥ c3λp−1

n

�

P
�

Z∗n ≥ c3λp−1
n

�

, ∀n ∈ N,λ≥ 1,

for an arbitrary constant c3 ≥ 2. By [14], Lemma 2.2, the tree T ∗ has a unique infinite line of

descent, or backbone, and the descendants of the individuals in the nth generation of T ∗ which

are not on the backbone have the same distribution as the unconditioned T , independently of each

other; hence the first factor above is bounded below by P(Y2n[⌊c3λp−1
n ⌋ − 1] ≥ λnp−1

n ), where

Y2n[m] is the sum of m independent copies of Y2n. Thus, applying Lemma 2.4, we obtain

P
�

Y ∗3n ≥ λnp−1
n |Z

∗
n ≥ c3λp−1

n

�

≥ P
�

Bin
�

⌊c3λp−1
n ⌋ − 1, c2pn

�

≥ c−1
1 λ

�

.
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Taking c3 large enough, the “reverse Hölder” inequality of (23) implies that the right-hand side is

bounded below by a strictly positive constant c4 uniformly in n ∈ N and λ ≥ 1. Consequently, by

(17),

P
�

Y ∗3n ≥ λnp−1
n

�

≥ c4P
�

Z∗n ≥ c3λp−1
n

�

≥ c5λ
−β2 , ∀n≥ n0,λ≥ 1.

From this we can deduce (25) by applying the monotonicity of (Y ∗n )n≥0 and Lemma 2.3.

We now consider the tail near 0 of the distributions of the random variables Z∗n . In particular, to

deduce a polynomial upper bound, we follow a generating function argument in which we apply

the known asymptotics of the sequence of survival probabilities (pn)n≥0.

Proposition 2.6. For β ∈ (0,α− 1), there exists a finite constant c such that

P
�

Z∗n ≤ λp−1
n

�

≤ cλβ , ∀n ∈ N,λ > 0.

Proof. Fix β ∈ (0,α− 1). We will start by showing that there exists a finite constant c1 such that

E
�

e−λpnZn |Zn > 0
�

≤ c1λ
−β , ∀n ∈ N,λ ∈ [1, p−1

n ]. (27)

Clearly, we have that

E
�

e−λpnZn |Zn > 0
�

= 1−
1− E

�

e−λpnZn

�

pn

.

Choose an integer k = k(n,λ) ≥ 0 as in the proof of [20], Theorem 1, to satisfy pk ≥ 1− e−λpn >

pk+1, then, by the Markov property of (Zn)n≥0,

E
�

e−λpnZn

�

≤ E
�

(1− pk+1)
Zn

�

= 1− pn+k+1.

Hence,

E
�

e−λpnZn |Zn > 0
�

≤ 1−
pn+k+1

pn

.

In the proof of [20], Theorem 1, it is observed that

pm+1p−1
m ≥ 1− c2m−1, ∀m ∈ N,

for some finite constant c2. Applying this bound and the inequality (1 − x)n ≥ 1 − nx for every

x ∈ [0,1] and n ∈ N, it is possible to deduce the existence of a finite constant c3 such that

E
�

e−λpnZn |Zn > 0
�

≤ c3(k+ 1)n−1,

for every n ∈ N and λ ≥ 1. To estimate (k + 1)n−1, we first choose c4 small enough so that

e−x ≤ 1 − c4 x for x ∈ [0,1], which implies pk ≥ c4λpn for every n ∈ N and λ ∈ [1, p−1
n ]. This

inequality allows us to apply Lemma 2.3 to demonstrate that there exists a finite constant c5 such

that k+ 1≤ c5λ
−βn for every n ∈ N and λ ∈ [1, p−1

n ], which completes the proof of (27).

Before continuing, note that a simple coupling argument allows us to obtain that

P
�

Zn+m > 0|Zn ∈ (0,λ]
�

≤ P
�

Zn+m > 0|Zn > 0
�

,
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for any m, n ∈ N and λ > 0. By Bayes’ formula, this is equivalent to

P
�

Zn ≤ λ|Zm+n > 0
�

≤ P
�

Zn ≤ λ|Zn > 0
�

,

for any m, n ∈ N and λ > 0. Thus,

P
�

Z∗n ≤ λp−1
n

�

= lim
m→∞

P
�

Zn ≤ λp−1
n |Zm+n > 0

�

≤ P
�

Zn ≤ λp−1
n |Zn > 0

�

≤ E
�

e1−λ−1pnZn |Zn > 0
�

≤ c6λ
β ,

whenever n ∈ N and λ ∈ [pn, 1]. Since the claim of the proposition is trivial for λ < pn and λ > 1,

the proof is complete.

This result allows us to prove a tail bound near 0 for Y ∗n that is uniform in n.

Proposition 2.7. For γ ∈ (0,1−α−1), there exists a finite constant c such that

P
�

Y ∗n ≤ λnp−1
n

�

≤ cλγ, ∀n ∈ N,λ > 0.

Proof. Fix γ ∈ (0,1− α−1) and choose β ∈ (0,α− 1) large enough so that γ′ = γ/β < α−1. Let

c1 and c2 be the constants of Lemma 2.4. We will prove the result for λ ∈ [pn, c1], from which the

result for any λ > 0 follows easily. We can write

P
�

Y ∗3n ≤ λnp−1
n

�

≤ P
�

Z∗n ≤ λ
γ′p−1

n

�

+ P
�

Y ∗3n ≤ λnp−1
n , Z∗n > λ

γ′p−1
n

�

.

By Proposition 2.6, there exists a finite constant c3 such that the first term here is bounded above

by c3λ
γ for any n ∈ N and λ > 0. By applying the decomposition of T ∗ described in the proof

of Proposition 2.5, we have that the second term is bounded above by P(Y2n[⌊λ
γ′p−1

n ⌋] ≤ λnp−1
n ),

where Y2n[m] is the sum of m independent copies of Y2n. If we choose m = m(n,λ) to be the

smallest integer such that λnp−1
n < c1mp−1

m , then m≤ n and, applying Lemma 2.4, we obtain that

P
�

Y ∗3n ≤ λnp−1
n , Z∗n > λ

γ′p−1
n

�

≤ P
�

c1mp−1
m Bin(⌊λγ

′

p−1
n ⌋, c2pm)≤ λnp−1

n

�

≤ P
�

Bin(⌊λγ
′

p−1
n ⌋, c2pm)< 1

�

= (1− c2pm)
⌊λγ
′
p−1

n ⌋

≤ e−c2pm⌊λ
γ′ p−1

n ⌋.

It is an elementary exercise to apply Lemma 2.3 to deduce that our choice of m implies that if

γ′′ ∈ (γ′,α−1), then there exists a constant c4 > 0 such that pmp−1
n ≥ c4λ

−γ′′ for every n ∈ N and

λ ∈ [pn, c1]. Consequently,

P
�

Y ∗3n ≤ λnp−1
n

�

≤ c3λ
γ + e−c5λ

(γ′−γ′′)

≤ c6λ
γ, ∀n ∈ N,λ ∈ [pn, c1],

from which the result follows by applying the monotonicity of (Y ∗n )n≥0 and Lemma 2.3.
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Finally, we prove a tail bound for the number of individuals in the nth generation of T ∗ that have

descendants in the 2nth generation, which we denote by M2n
n .

Lemma 2.8. For every β ∈ (0,α− 1), there exists a finite constant c such that

P
�

M2n
n ≥ λ

�

≤ cλ−β , ∀n ∈ N,λ > 0.

Proof. Fix β ∈ (0,α− 1). If we condition on the first n generations of T ∗, denoted by T ∗|n, and the

backbone B, then [14], Lemma 2.2 implies that

P
�

M2n
n ≥ λ | T ∗|n, B

�

= P
�

Bin(N , pn)≥ λ− 1
�

|N=Z∗n−1.

Consequently,

P
�

M2n
n ≥ λ

�

≤ P
�

pnZ∗n ≥ λ/2
�

+ P
�

Bin(⌈ λ
2pn
⌉, pn)≥ λ− 1

�

.

Thus, Proposition 2.2 and Chebyshev’s inequality imply that there exists a finite constant c such that

P
�

M2n
n ≥ λ

�

≤ cλ−β +
⌈ λ

2pn
⌉pn

(λ− 1− ⌈ λ
2pn
⌉pn)

2
.

The result follows.

3 Proof of initial random walk results

In this section we complete the proofs of Theorems 1.1, 1.2, 1.3 and 1.4, though we first introduce

some further notation that we will apply. The volume of a ball of radius R about the root of T ∗ is

given by

V (R) := µT ∗(B(R)),

where B(R) := {x ∈ T ∗ : dT ∗(ρ, x) ≤ R} and µT ∗ is the invariant measure of X defined in the

introduction. Let E be a quadratic form on RT ∗ that satisfies

E ( f , g) =
1

2

∑

x ,y∈T ∗

x∼y

( f (x)− f (y))(g(x)− g(y)),

where x ∼ y if and only if {x , y} is an edge of T ∗. The quantity E ( f , f ) represents the energy

dissipation when we suppose that T ∗ is an electrical network with a unit resistor placed along each

edge and vertices are held at the potential f . The associated effective resistance operator can be

defined by

Re f f (A, B)−1 := inf{E ( f , f ) : f |A = 1, f |B = 0},

for disjoint subsets A, B ⊆ T ∗.

Recall the volume growth function v defined at (7), and let r : R+→ R+ be the identity function on

R+. It is clear that v and r are both strictly increasing functions, r satisfies r(R)/r(R′) = R/R′ for
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every 1 ≤ R′ ≤ R <∞, and, by applying Lemma 2.3, we can check that for each ǫ > 0 there exist

constants c1, c2 ∈ (0,∞) such that

c1

�

R

R′

�
α
α−1
−ǫ

≤
v(R)

v(R′)
≤ c2

�

R

R′

�
α
α−1
+ǫ

,

whenever 1 ≤ R′ ≤ R < ∞. Consequently, the conditions required on v and r in [16] are fulfilled

(in [16], it was also assumed that v(1) = r(1) = 1, but we can easily neglect this technicality by

adjusting constants as necessary), and to deduce many of the results about the random walk on T ∗

stated in the introduction, it will suffice to check that the relevant parts of [16], Assumption 1.2 are

satisfied. More specifically, we will check that, if we denote by

J(λ) := {R ∈ [1,∞] : λ−1v(R)≤ V (R)≤ λv(R),Re f f ({ρ}, B(R)c)≥ λ−1r(R)},

for λ ≥ 1, then the probability that R ∈ J(λ) is bounded below, uniformly in R, by a function of λ

that increases to 1 polynomially. This result explains why v can be thought of as a volume growth

function for T ∗. Note that, in [16], J(λ) has the extra restriction that Re f f (ρ, x) ≤ λr(dT ∗(ρ, x))

for every x ∈ B(R). However, since T ∗ is a tree, this condition always holds, and so we omit it.

Lemma 3.1. T ∗ satisfies Assumptions 1.2(1) and 1.2(3) of [16]. In particular, for every γ ∈ (0,1−

α−1), there exists a finite constant c such that

inf
R≥1

P (R ∈ J(λ))≥ 1− cλ−γ, ∀λ≥ 1.

Proof. Fix γ ∈ (0,1−α−1). First note that, since T ∗ is a tree, we have that

Y ∗R ≤ V (R)≤ 2Y ∗R+1, ∀R ∈ N. (28)

Therefore it will be adequate to prove the result for R ∈ N and V (R) replaced by Y ∗R . That

inf
R∈N

P
�

λ−1v(R)≤ Y ∗R ≤ λv(R)
�

≥ 1− c1λ
−γ, ∀λ≥ 1,

for some finite constant c1 is an easy consequence of Propositions 2.5 and 2.7. By imitating the

proof of [5], Lemma 4.5, it is possible to prove that

Re f f (ρ, B(2R)c)≥
R

M2R
R

,

for every R ∈ N. Thus, applying Lemma 2.8, we have that

inf
R≥1

P
�

Re f f (ρ, B(R)c)≥ λ−1r(R)
�

≥ 1− c2λ
−γ, ∀λ≥ 1,

for some finite constant c2, and the lemma holds as claimed.

Proof of Theorem 1.1. Apart from (8), the limits can all be obtained using [16], Proposition 1.3.

Since dT ∗(ρ, Xm) ≥ R implies that τR ≤ m, the right-hand inequality of (8) follows from the left-

hand inequality of (9). Consequently it remains to show that

lim
λ→∞

inf
R∈N
P

�

λ−1h(R)≤ τR

�

= 1.
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By [16], Proposition 3.5(a), there exist constants c1, c2, c3, c4 ∈ (0,∞) that depend only λ such that,

if ǫ < c1 and R,ǫR, c2ǫR ∈ J(λ), then

PT ∗

ρ

�

τR ≤ c3ǫ
βh(R)

�

≤ c4ǫ,

for some deterministic constant β > 0. Hence, for any λ > 0,

lim
ǫ→0

lim sup
R→∞

P
�

τR ≤ ǫh(R)
�

= lim
ǫ→0

lim sup
R→∞

P

�

τR ≤ c3ǫ
βh(R)

�

≤ lim
ǫ→0

lim sup
R→∞

�

c4ǫ+ 1− P
�

R,ǫR, c2ǫR ∈ J(λ)
�	

≤ 3 sup
R≥1

P (R 6∈ J(λ)) .

Since λ is arbitrary, we can make this upper bound as small as we choose by applying Lemma 3.1,

and so limǫ→0 lim supR→∞ P(τR ≤ ǫh(R)) = 0. The desired conclusion is readily deduced from this

limit.

Proof of Theorem 1.2. The proofs of the lower bounds at (10), (11) and (12) require only straight-

forward adaptations of the proofs of the lower bounds in [16], Proposition 1.4, and are omitted. As

in [5], Proposition 4.4, for example, we have that ET ∗

ρ τR ≤ (R+ 1)V (R). Since V (R) ≤ 2Y ∗R+1 (see

(28)), it follows that

E

�

�

ET ∗

ρ τR

�β
�

≤ 2β(R+ 1)βE
�

Y ∗R+1
β
�

, ∀R ∈ N.

Thus the upper bound at (10) follows from the estimate of the β-moments of (Y ∗n )n≥0 that appears

at (26).

Similarly to the proof of [16], Remark 1.6.1, it is possible to deduce that there exists a finite constant

c1 such that

E
�

pT ∗

2m(ρ,ρ)γ
�

≤
c1

v(I (m))γ
E

�

1+
v(R)γ

Y ∗R
γ

�

, ∀m ∈ N, (29)

where R = R(m) is chosen to satisfy 1

2
h(R) ≤ m ≤ h(R), and we have again applied (28). By the tail

bound of Proposition 2.7, if γ is in the range (0,1−α−1), then we can bound the expectation on the

right-hand side of the above expression uniformly in R by a constant. This completes the proof of

(11).

It remains to prove the upper bound at (12). First, let τ̃R be the first hitting time of the vertex on

the backbone at a distance R from the origin, i.e.

τ̃R :=min{n : Xn ∈ B, dT ∗(ρ, Xn) = R}, (30)

where B ⊆ T ∗ is the backbone of T ∗ (the unique non-intersecting infinite path in T ∗ which starts

at the root ρ). By (8), it is clear that ǫ > 0 can be chosen small enough so that P
�

τ̃R ≤ ǫh(R)
�

≤

P
�

τR ≤ ǫh(R)
�

≤ 1

2
for every R ∈ N, which implies that

P
�

τ̃R ≤ t
�

≤
1

2
+

t

ǫh(R)
, ∀R ∈ N, t > 0.
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Now observe that if we define, for i,R ∈ N,

τ̃i
R := #{n ∈ [τ̃(i−1)R, τ̃iR) : Xn, Xn+1 equal b(i−1)R or are descendents of b(i−1)R},

where b(i−1)R is the vertex on the backbone at a distance (i − 1)R from ρ, then with respect to

the annealed measure P the elements of the sequence (τ̃i
R)i≥1 are independent and have the same

distribution as τ̃R (this follows from the description of T ∗ given in Lemma 2.2 of [14]). Thus, since

τ̃nR ≥
∑n

i=1 τ̃
i
R, we can apply Lemma 1.1 of [3] to obtain that

logP
�

τ̃nR ≤ t
�

≤ 2

�

2nt

ǫh(R)

�1/2

− n log 2, ∀n,R ∈ N, t > 0.

In particular, by setting t = c2nh(R) for constant c2 chosen suitably small, it follows that

P
�

τ̃nR ≤ c2nh(R)
�

≤ e−c3n, ∀n,R ∈ N, (31)

where c3 is a strictly positive constant.

For m ∈ N, write R= ⌊I (m)⌋, then, for every λ ∈ N, ǫ ∈ [0,1] and η > 0,

P

�

max
0≤k≤m

dT ∗(ρ, Xk)≥ λI (m)

�

≤ P
�

τλR ≤ m
�

≤ P
�

τλR ≤ m, MλR
⌊ǫλR⌋

= 1
�

+P
�

MλR
⌊ǫλR⌋

> 1, Z∗
⌊ǫλR⌋
≤ ηp−1

⌊ǫλR⌋
+ 1
�

+P
�

Z∗
⌊ǫλR⌋

> ηp−1
⌊ǫλR⌋

+ 1
�

, (32)

where, generalising the notation of the previous section, M m+n
n is the number of individuals in the

nth generation of T ∗ that have descendants in the (m+n)th generation. On the event {MλR
⌊ǫλR⌋

= 1},

of the vertices in generation ⌊ǫλR⌋, only the one on the backbone has descendants in generation

λR; thus if X has reached generation λR no later than time m, then X must have already visited the

vertex on the backbone at a distance ⌊ǫλR⌋ from the root. Hence, if c2ǫλ ≥ 1, then it is possible to

check that

P

�

τλR ≤ m, MλR
⌊ǫλR⌋

= 1
�

≤ P
�

τ̃⌊ǫλR⌋ ≤ m
�

≤ P
�

τ̃⌊ǫλR⌋ ≤ c2ǫλm
�

≤ e−c4ǫλ,

for some constant c4 > 0, where we apply the bound at (31) to deduce the final inequality. For the

second term at (32), we proceed similarly to the proof of Lemma 2.8 to obtain that

P
�

MλR
⌊ǫλR⌋

> 1, Z∗
⌊ǫλR⌋
≤ ηp−1

⌊ǫλR⌋
+ 1
�

≤ P
�

Bin(⌈ηp−1
⌊ǫλR⌋
⌉, pλR−⌊ǫλR⌋)> 0

�

= 1−
�

1− pλR−⌊ǫλR⌋

�⌈ηp−1
⌊ǫλR⌋
⌉

≤ pλR−⌊ǫλR⌋⌈ηp−1
⌊ǫλR⌋
⌉.

For β ∈ (0,α− 1), we can bound the third term of (32) by c5η
−β by Proposition 2.2. Combining

these bounds, we have that

P

�

max
0≤k≤m

dT ∗(ρ, Xk)≥ λI (m)

�

≤ e−c4ǫλ + pλR−⌊ǫλR⌋⌈ηp−1
⌊ǫλR⌋
⌉+ c5η

−β ,
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whenever c2ǫλ≥ 1.

Finally, fix δ ∈ (0,α−1) and let δ′ ∈ (δ,α−1). Choose θ1 ∈ (0,1) and β ∈ (0,α− 1) large enough so

that θ1β(1+β)
−1(α−1)−1 ∈ (δ′,α−1), and set θ2 = θ1(1+β)

−1(α−1)−1. In the above argument,

if we let ǫ = λ−θ1 and η= λθ2 , then we see that, for every m ∈ N,

P

�

max
0≤k≤m

dT ∗(ρ, Xk)≥ λI (m)

�

≤ e−c4λ
1−θ1
+ c6λ

θ2−
θ1

α−1
ℓ(⌊λ1−θ1R⌋)

ℓ(λR)
+ c5λ

−θ2β ,

≤ c7λ
−δ′ ,

whenever c2λ
1−θ1 ≥ 1, for some finite constant c7. Note that, to deduce the inequalities above, we

have applied the description of the non-extinction probabilities provided by Lemma 2.3. Clearly, by

increasing c7 if necessary, we can extend this bound to hold for any λ > 0. The upper bound at (12)

is an easy consequence of this result.

Remark 1. We note that the upper bound for P
�

max0≤k≤m dT ∗(ρ, Xk)≥ λI (m)
�

obtained in the

above proof also implies that (9) holds when dT ∗(ρ, Xm) is replaced by max0≤k≤m dT ∗(ρ, Xk).

Proof of Theorem 1.3. This is an immediate application of Lemma 3.1 and [16], Theorem 1.5.

Proof of Theorem 1.4. Since for a slowly varying function ℓ, we have that logℓ(n)/ log n converges

to 0 as n→∞ (see [19], Section 1.5, for example), the claims at (13), (14) and (15) follow from

Theorem 1.3 and Lemma 2.3. Furthermore, that logµT ∗(Wm)/ log m converges to α/(2α− 1), P T ∗

x -

a.s. for every x ∈ T ∗, for P-a.e. realisation of T ∗ is also proved in [16], Theorem 1.5. Since we

know from (28) that Y ∗R ≤ V (R) ≤ 2Y ∗R+1, the proof of the remaining limit involving #Wm can be

obtained by making only minor changes to the proof of the previous result, and so is omitted.

4 Annealed off-diagonal transition density

In addition to the on-diagonal transition density behaviour that we have already established, it is of

interest to determine how the transition density of the simple random walk decays away from the

diagonal, and in this section we consider the annealed version of this problem. In [5], for the case

of a binomial offspring distribution, bounds for the expectation of the off-diagonal transition density

pT ∗

n (x , y), conditional on the tree T ∗ containing the arguments x and y , were proved. However, it

seems difficult to transfer the arguments used in [5] to the case of a general offspring distribution,

even one with finite variance, as doing so would require good uniform control of the laws of T ∗ con-

ditioned on containing particular vertices. To avoid this issue, we will study the annealed transition

density along the backbone of T ∗. Since this path is P-a.s. present, no conditioning is required in

the bounds we prove. Throughout this section, we will denote the backbone by {ρ = b0, b1, b2, . . . },

where br is the vertex on the backbone satisfying dT ∗(ρ, br) = r. We start by proving an annealed

upper transition density bound along the backbone.

Proposition 4.1. If γ ∈ (0,1−α−1), then there exist constants c1, c2 ∈ (0,∞) such that

E
�

pT ∗

2m(ρ, b2r)
γ
�

1

γ ≤ c1v(I (m))−1 exp

½

−
c2r

v−1(m/r)

¾

, ∀m, r ∈ N.

1435



Proof. For any m, r ∈ N, a standard argument (see proof of [5], Theorem 4.9, for example) yields

pT ∗

2m(ρ, b2r)≤
PT ∗

ρ

�

X2m = b2r , τ̃r ≤ m
�

µT ∗({b2r})
+

PT ∗

b2r

�

X2m = ρ, τ̃r−1 ≤ m
�

µT ∗({ρ})
, (33)

where τ̃r is the stopping time for the random walk defined at (30). Applying the Markov property

of X , we can bound the first of these terms as follows:

µT ∗({b2r})
−1PT ∗

ρ

�

X2m = b2r , τ̃r ≤ m
�

≤ µT ∗({b2r})
−1ET ∗

ρ

�

1{τ̃r≤m}P
T ∗

br

�

X2m−τ̃r
= b2r

�
�

≤ PT ∗

ρ

�

τ̃r ≤ m
�

sup
m′∈[m,2m]

pT ∗

m′
(br , b2r)

≤ PT ∗

ρ

�

τ̃r ≤ m
�

�

pT ∗

2⌊m/2⌋
(br , br)p

T ∗

2⌊m/2⌋
(b2r , b2r)

�
1

2 ,

where we use the Cauchy-Schwarz inequality and the monotonicity of p2k(x , x) in k to deduce the

third inequality. Now, if γ ∈ (0,1−α−1), we can choose β > 1 large enough so that γ(1+β)> 1 and

also γ′ := γ(1+ β)β−1 < 1− α−1. Consequently, applying Hölder’s inequality with the exponents

1+ β , 2(1+ β)/β and 2(1+ β)/β to the random variables P T ∗

ρ (τ̃r ≤ m)γ, pT ∗

2⌊m/2⌋
(br , br)

γ/2 and

pT ∗

2⌊m/2⌋
(b2r , b2r)

γ/2 respectively, we have that

E
�

µT ∗({b2r})
−γPT ∗

ρ

�

X2m = b2r , τ̃r ≤ m
�γ
�

≤ P
�

τ̃r ≤ m
�

1

1+β sup
r ′∈N

E
�

pT ∗

2⌊m/2⌋
(br ′ , br ′)

γ′
�

β

1+β , (34)

where we also have used the fact that PT ∗

ρ

�

τ̃r ≤ m
�γ(1+β)

≤ PT ∗

ρ

�

τ̃r ≤ m
�

. To bound the expecta-

tions in this expression, we proceed as at (29) to deduce the existence of a constant c1 such that

E
�

pT ∗

2m(br , br)
γ′
�

≤
c1

v(I (m))γ
′ E

 

1+
v(R)γ

′

V (br ,R)
γ′

!

, ∀m, r ∈ N,

where V (br ,R) := {x ∈ T ∗ : dT ∗(br , x) ≤ R} and R = R(m) is chosen to satisfy 1

2
h(R) ≤ m ≤ h(R).

By considering only the descendants of br , it is clear that V (br ,R) stochastically dominates Y ∗R for

every r ∈ N. Thus, adjusting c1 as necessary, it follows that

sup
r∈N

E
�

pT ∗

2⌊m/2⌋
(br , br)

γ′
�

β

1+β ≤
c1

v(I (m))γ
, ∀m ∈ N.

We now look to bound the first factor of the upper bound at (34). Recall the bound on the distribu-

tion of τ̃r from (31) and let c2, c3 be the constants of this inequality. If c2h(r)≤ m, then it is easy to

check that exp(−r/v−1(m/r))≥ c−1
4 > 0, thus

P(τ̃r ≤ m)≤ c4 exp(−r/v−1(m/r))

in this case. We now assume that c2h(r) > m, choose n to be the largest integer such that

c2nh(⌊ r

n
⌋)≥ m, and set R= ⌊ r

n
⌋, so that (31) implies that

P(τ̃r ≤ m)≤ P(τ̃nR ≤ c2nh(R))≤ e−c3n.
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Applying this and the previous bound, it is elementary to check that there exist constants c5, c6 such

that

P(τ̃r ≤ m)

1

1+β ≤ c5 exp(−c6r/v−1(m/r)), ∀m, r ∈ N. (35)

Thus we have so far demonstrated that

E
�

µT ∗({b2r})
−γPT ∗

ρ

�

X2m = b2r , τ̃r ≤ m
�γ
�

≤
c7

v(I (m))γ
exp(−c6r/v−1(m/r)),

for every m, r ∈ N, for some finite constant c7. To complete the proof, it remains to obtain a similar

bound for the second term at (33), which can be done by following a similar argument to the one

above. The one point that requires checking is that (35) holds when P(τ̃r ≤ m) is replaced by

Pb2r
(τ̃r−1 ≤ m), where Pb2r

:=
∫

PT ∗

b2r
(·)dP. Clearly, we have that Pb2r

(τ̃r−1 ≤ m) = Pbr+1
(τ̃0 ≤ m),

and so it will suffice to estimate the right-hand side of this inequality. Now define, for each r ∈ N,

the subset

T ∗r := {x ∈ T ∗ : x is br or a descendant of br},

and set T ∗(r) = T ∗\T ∗r+1. By the description of T ∗ in [14], Lemma 2.2, we know that the subtrees

growing out of the backbone of T ∗ are independent and identically distributed. Applying this fact,

it is an elementary exercise to check that the law of τ̃0 under
∫

P
T ∗(r)

br
(·)dP is the same as the law of

τ̃r under
∫

PT ∗(r)
ρ (·)dP, which in turn is the same as the law of τ̃r under P. In particular, we have

that
∫

P
T ∗(r)

br
(τ̃0 ≤ m)dP = P(τ̃r ≤ m) for every m, r ∈ N. Furthermore, by construction, we have

that the left-hand side of this identity is equal to Pbr
(τ̃′0 ≤ m), where

τ̃′0 := #{n ∈ [0, τ̃0) : Xn, Xn+1 ∈ T ∗(r)}.

Since τ̃0 ≥ τ̃
′
0, it follows that Pbr

(τ̃0 ≤ m)≤ Pbr
(τ̃′0 ≤ m) = P(τ̃r ≤ m), and the result follows.

In the case when the offspring distribution is binomial, it is straightforward to check that the upper

bound deduced in the above proposition is sharp up to constants by applying estimates of [5]. In

general, however, we are only able to prove the corresponding lower bound holds near the diagonal.

That we can not extend the chaining argument of [5] to obtain the full off-diagonal lower bound

(even along the backbone) results from the fact that we only have a polynomial tail bound for the

probability that T ∗ admits “bad” subsets, whereas, in the binomial case, proving an exponential tail

bound is possible.

Proposition 4.2. If γ > 0, then there exist constants c1, c2 ∈ (0,∞) such that

E
�

pT ∗

2m(ρ, b2r)
γ
�

1

γ ≥ c1v(I (m))−1,

whenever 1≤ r ≤ c2I (m).

Proof. By a standard argument (cf. [5], Proposition 4.4), there exists a deterministic constant c1

such that if T ∗ satisfies, for some R≥ 2, λ≥ 8,

V (λR) ∈ [λ−1v(λR),λv(λR)], V (R)≥ λ−1v(R), Re f f (B(R), B(λR)c)≥ 4R, (36)

then, for m ∈ [1

2
λ−1h(R− 1), 1

2
λ−1h(R)],

pT ∗

2m(x , x)≥ c1λ
−θ1 v(I (m))−1, ∀x ∈ B(R),
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where θ1 := 19/(α− 1). This is easily extended (cf. [5], Theorem 4.6(c)) to the result that

pT ∗

2m(ρ, b2r)≥ c2λ
−θ1 v(I (m))−1,

for every 1 ≤ r ≤ c3λ
−θ1I (m), for some constants c2 and c3. A straightforward adaptation of the

proof of Lemma 3.1 allows it to be proved that the conditions at (36) hold with probability greater

than 1

2
for some λ ≥ max{8, v(1)}, uniformly in R ≥ 2. Using this choice of λ, if m ∈ N, we can

choose R ≥ 2 that satisfies m ∈ [1

2
λ−1h(R− 1), 1

2
λ−1h(R)], and applying the lower bound above, it

follows that

E
�

pT ∗

2m(ρ, b2r)
γ
�

1

γ ≥ c4v(I (m))−1,

for 1≤ r ≤ c5I (m), which completes the proof.

Summarising the two previous results using the expressions for v and I presented in the intro-

duction, we have the following bounds for the transition density of the simple random walk on

T ∗.

Corollary 4.3. If γ ∈ (0,1−α−1), then there exist constants c1, c2 ∈ (0,∞) and slowly varying functions

ℓ1, ℓ2 and ℓ3 such that

E
�

pT ∗

2m(ρ, b2r)
γ
�

1

γ ≤ c1m
−
α

2α−1 ℓ1(m)exp











−







r
2α−1

α−1

m







α−1

α

ℓ2

�

m

r

�











,

for every m, r ∈ N, and also

E
�

pT ∗

2m(ρ, b2r)
γ
�

1

γ ≥ c2m
−
α

2α−1 ℓ1(m),

whenever 1≤ r ≤ m
−
α

2α−1 ℓ3(m).

5 Volume and transition density fluctuations

To establish that the transition density of X exhibits logarithmic fluctuations when α ∈ (1,2), and at

least log-logarithmic fluctuations when α = 2, which is the aim of this section, we start by showing

that the same is true of the volume growth on the tree T ∗.

Lemma 5.1. (a) If β1 ∈ (0,α− 1), then P-a.s. realisation of T ∗ satisfies

lim sup
R→∞

V (R)

v(R)(logR)1/β1
= 0.

(b) If α ∈ (1,2) and β2 > (α− 1)/(2−α), then P-a.s. realisation of T ∗ satisfies

lim sup
R→∞

V (R)

v(R)(logR)1/β2
=∞.
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If α= 2 and ǫ > 0, then P-a.s. realisation of T ∗ satisfies

lim sup
R→∞

V (R)

v(R)(log log R)1−ǫ
=∞.

Proof. Clearly, by (28), it will suffice to prove the result with Y ∗R in place of V (R). By the Borel-

Cantelli lemma, part (a) is an easy consequence of Proposition 2.5. To prove (b), we consider the

sequence of subsets (An)n≥0 of T ∗ defined by

An := {x ∈ T ∗ : dT ∗(ρ, x) ∈ [2n, 2n+1), x is b2n or a descendant of b2n},

where b2n is the point on the backbone at a distance 2n from the root. By [14], Lemma 2.2, (#An)n≥0

is a sequence of independent random variables, and #An is equal in distribution to Y ∗
2n+1−2n−1

. Thus,

if α ∈ (1,2) and β2 > (α− 1)/(2− α), we can apply the second Borel-Cantelli lemma and (25) to

obtain that Y ∗
2n+3 ≥ #An+2 ≥ v(2n)n1/β2 infinitely often, P-a.s., and the first claim follows. In the

case when α = 2, note that Proposition 2.6 allows us to choose strictly positive constants c1 and c2

such that P(Z∗n > c1p−1
n ) ≥ c2 for every n ∈ N. By considering a decomposition of T ∗ similar to the

one applied in the proof of Proposition 2.5, it follows that, for every n ∈ N, λ > 0,

P
�

Y ∗2n ≥ λnp−1
n

�

≥ c2P
�

Y ∗2n ≥ λnp−1
n |Z

∗
n > c1p−1

n

�

≥ c2P
�

Bin(⌊c1p−1
n ⌋, c3pn)≥ c4λ

�

,

for suitably chosen c3, c4. Straightforward estimates (cf. [5], (2.18)) subsequently imply that

P
�

Y ∗
2n+1 ≥ v(2n)(log n)1−ǫ

�

≥ c5n−1, ∀n ∈ N,

for some c5 > 0. This estimate allows us to apply the second Borel-Cantelli lemma, as in the case

α ∈ (1,2), to complete the proof.

In addition to the above lemma, note that Fatou’s Lemma and the moment estimate for Y ∗R at (26)

implies that lim infR→∞ V (R)/v(r) <∞, P-a.s. Hence there are P-a.s. asymptotic fluctuations about

v(R) in the volume growth on T ∗ of at least log-logarithmic order when α = 2 and of at least

logarithmic order when α ∈ (1,2). Furthermore, from the previous lemma we are immediately able

to determine the following asymptotic result for the transition density of X , which can be proved

in the same way as [5], Lemma 5.1. In conjunction with (11), these results demonstrate that with

positive probability there are fluctuations in the transition density about v(I (m))−1.

Corollary 5.2. If α ∈ (1,2), then there exists an ǫ1 > 0 such that, P-a.s., the transition density of X

satisfies

lim inf
m→∞

v(I (m))(log m)ǫ1 pT ∗

2m(ρ,ρ) = 0.

If α= 2, then there exists an ǫ2 > 0 such that, P-a.s., the transition density of X satisfies

lim inf
m→∞

v(I (m))(log log m)ǫ2 pT ∗

2m(ρ,ρ) = 0.

1439



Acknowledgements

The authors thank the anonymous referees for carefully reading the first draft and for suggesting

various improvements.

References

[1] S. Alexander and R. Orbach, Density of states on fractals: “fractons”, J. Physique (Paris) Lett.

43 (1982), L625–L631.

[2] K. B. Athreya and P. E. Ney, Branching processes, Springer-Verlag, New York, 1972, Die

Grundlehren der mathematischen Wissenschaften, Band 196. MR0373040

[3] M. T. Barlow and R. F. Bass, The construction of Brownian motion on the Sierpiński carpet, Ann.
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