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Abstract

Extracellular recordings of single neurons in primary and secondary somatosensory cortices of monkeys in vivo have shown
that their firing rate can increase, decrease, or remain constant in different cells, as the external stimulus frequency
increases. We observed similar intrinsic firing patterns (increasing, decreasing or constant) in rat somatosensory cortex in
vitro, when stimulated with oscillatory input using conductance injection (dynamic clamp). The underlying mechanism of
this observation is not obvious, and presents a challenge for mathematical modelling. We propose a simple principle for
describing this phenomenon using a leaky integrate-and-fire model with sinusoidal input, an intrinsic oscillation and
Poisson noise. Additional enhancement of the gain of encoding could be achieved by local network connections amongst
diverse intrinsic response patterns. Our work sheds light on the possible cellular and network mechanisms underlying these
opposing neuronal responses, which serve to enhance signal detection.
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Introduction

In a series of experiments on somatosensory frequency

discrimination in monkeys, responses of single neurons in

somatosensory cortex to mechanical vibrations on the finger tips

or direct oscillatory electric current stimulation were recorded

[1,2,3,4]. A subset of neurons in primary (S1) and secondary (S2)

somatosensory cortices showed modulations of their firing rates

with the temporal input frequency (F). Most neurons in S1 tune

with a positive slope to the input frequency, but some neurons in

S2 behave in an opposite way, with a high firing rate at low

stimulus frequency which is reduced at high frequency. It is

unclear if these heterogeneous frequency response functions of

neurons in different areas of somatosensory cortex are due to local

neural network properties, receptor properties or input connec-

tivity, or to the intrinsic integrative characteristics of single

neurons.

To investigate the characteristics of single neurons, we

performed whole-cell patch clamp recordings from the somas of

layer 2/3 pyramidal neurons in rat somatosensory cortex in vitro,

[5], and stimulated firing by directly injecting oscillatory artificial

synaptic conductance and current into neurons through the

patch-clamp pipette [6]. We found that some neurons generated

a higher firing rate as stimulus frequency increased, while others

showed a reduced firing rate at high frequency. We also observed

a lot of frequency-insensitive neurons, which fired at a constant

rate as stimulus frequencies vary. In addition, the types of

neuronal responses (increasing, decreasing or constant) were

affected in some cases by the mean, or offset, of stimulus intensity

(see Fig. 1C, stimulus illustration). With the diversity of firing

patterns observed in individual neurons in our experiments, it

appears possible that the intrinsic properties of neurons can

explain much of the diversity of response patterns observed in vivo.

A reasonable goal in modeling these responses would be a simple

model which could generate these different patterns as its

parameters are varied.

The leaky integrate-and-fire (LIF) model is simple, analytically

tractable and computationally efficient, compared with other

complex biophysical models (e.g. Hodgkin-Huxley models). A

number of studies have concluded that LIF neurons can not be

used for simulating temporal frequency coding mechanisms at the

single neuron level [7,8,9,10,11], and that the LIF model is blind

in the temporal domain owing to the fact that its efferent firing

rate is independent of the input temporal frequency [9]. This is

true under certain circumstances, but not all. Here, we have

managed to generate output firing rates in LIF models with three

different patterns (increasing, decreasing or flat) as a monotonic

function of the input frequency F, under a wider, but still

biologically feasible, parameter region than considered previously.

We were able to provide a simple mathematical explanation for

the underlying mechanism of these three different firing patterns in

the LIF model. We suggest that simple networks of these neurons

could enhance the gain of frequency encoding.

Materials and Methods

Ethics Statement
All animals were handled in strict accordance with good animal

practice as defined by the UK Home Office regulations, sacrificed

according to UK Home Office approved Schedule 1 procedures,
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and all animal work was approved by the University of

Cambridge.

Biophysical Experiments
Electrophysiology. 300 mm sagittal slices of somatosensory

cortex were prepared from postnatal days 7–21 Wistar rats

(handled according to United Kingdom Home Office guidelines),

in chilled solution composed of the following (in mM): 125 NaCl, 25

NaHCO3, 2.5 KCl, 1.25 NaH2PO4, 2 CaCl2, and 25 glucose

(oxygenated with 95% O2, 5% CO2). Slices were held at room

temperature for at least 30 min before recording and then perfused

with the same solution at 32–34uC during recording. Whole-cell

recordings were made from the soma of pyramidal neurons in

cortical layers 2/3. Patch pipettes of 5–10 MV resistance were filled

with a solution containing of the following (in mM): 105 K-

gluconate, 30 KCl, 10 HEPES, 10 phosphocreatine, 4 ATP, and

0.3 GTP, adjusted to pH 7.35 with KOH. Current-clamp

recordings were performed using a Multiclamp 700B amplifier

(Molecular Devices, Union City, CA). Membrane potential,

including stated reversal potential for injected conductances, was

corrected afterwards for the pre-nulling of the liquid junction

potential (10 mV). Series resistances were in the range of 10–

20 MV and were measured and compensated for by the Auto

Bridge Balance function of the Multiclamp 700B. Signals were

Figure 1. Experimental results. (A) Infrared differential interference contrast photograph of a whole-cell patch-clamp recording from a regular-
spiking pyramidal neuron: stimulation and recording are carried out through the pipette on the soma. Below: recorded membrane potential (black)
filtered with a Gaussian digital filter when injected constant current (pink) is 300 pA (left) and 2100pA (right). (B) Average tuning curves of neurons
when the offset values of the injected stimuli varies. The output spiking rate is a decreasing function of the input frequency (blue) when stimuli were
of relatively small offset magnitude, and the neuron’s firing rate was steady (red) or even increasing (green) for stimuli with larger offset. (C)
Membrane potential with sinusoidal current injection (pink) of different frequencies of 10, 30 and 50 Hz, respectively (blue: decreasing, red: flat, and
green: increasing).
doi:10.1371/journal.pone.0009608.g001
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filtered at 6–10 kHz (Bessel), sampled at 20 kHz with 16-bit

resolution, and recorded with custom software written in C and

Matlab (MathWorks, Natick, MA).

Conductance injection. Recorded neurons were also stim-

ulated using conductance injection, or dynamic clamp [6,12,13]. A

conductance injection amplifier (SM-1) or software running on a

DSP analog board (SM-2; Cambridge Conductance, Cambridge,

UK) implemented multiplication of the conductance command

signal and the real-time value of the driving force, with a response

time of ,200ns (SM-1) or ,25 ms (SM-2), to produce the current

command signal. Voltage dependence of NMDA current was

simulated by multiplying the command signal by an additional

factor (1+0.33[Mg2+]exp(20.06V))21 [14], where V is the

membrane potential and [Mg2+] is the extracellular magnesium

concentration set to 1 mM. The reversal potentials EAMPA,

ENMDA and EGABA were set to be 0, 0, and 270 mV, respectively.

Stimulus protocol. Randomly permuted sequences of

stimuli were calculated for each combination of different values

of the mean offset, amplitude and frequency of the sinusoidal input

(Fig. 1C, stimulus), either as injected positive current or excitatory

conductance, in order to obviate the effects of any progressive

adaptation to monotonic changes of any single parameter.

Individual sweeps consisted of 2 s of stimulus, with data from

the initial 200 ms [15,16] discarded to eliminate transient onset

responses. A 15 second interval between sweeps was allowed for

recovery. A small hyperpolarizing holding current (,50 pA) was

applied if necessary to ensure a fixed resting potential between

sweeps, usually between 265 to 275 mV. Step current injections

from 2100pA gradually increasing with a step size of 100pA were

applied at the beginning, in order to determine the neuron’s

capacity to stimulus intensity and assess the feasible range of the

current and conductance injection within which neurons were able

to generate action potentials.

Data analysis. The occurrence of spikes was defined by a

positive crossing of a threshold potential, usually 240mV. Spike

rate was calculated as the number of occurrence of spikes over the

total time period (1.8 s). Of 23 cortical neurons recorded, 11

regular-spiking (RS) cells were selected for detailed analysis, whose

average membrane time constant was 22.768.5 ms.

Mathematical Modelling
Single neuron model. Mathematical modeling was based on

a simple but analytically tractable model of a spiking neuron —

the integrate-and-fire model. Action potentials are generated by a

threshold process. Let v(t) be the membrane potential of the

neuron, Vh the threshold, and Vrest the resting potential. Suppose

Vh.Vrest, and when v(t),Vh, the leaky integrate-and-fire model

has the form

dv tð Þ~{
v tð Þ{Vrest

c
dtzdIsyn tð Þ,

v 0ð Þ~Vrest

8<
: ð1Þ

where c is the decay time constant, Isyn(t) is the synaptic input

defined by

dIsyn tð Þ~m tð Þdtzs tð ÞdBt, where m tð Þ§0,s tð Þ§0,

and Bt is standard Brownian motion.

The synaptic current Isyn is composed of two terms: a

deterministic driving force cm that depolarizes the cell to fire,

and a perturbing noise term cs. We assume that a neuron receives

synaptic inputs from Ns active synapses, each sending Poisson

EPSPs (excitatory post-synaptic potentials) inputs to the neuron

with rate

lE tð Þ~ a

2
1zcos 2pFtð Þð Þ,

where a (magnitude), F (temporal frequency) are both constant,

and t is the time. More specifically, l tð Þ~lE tð ÞNs is the input rate,

and the Poisson process inputs are defined by

m tð Þ~l tð Þ and s2 tð Þ~l tð Þ [9]. A refractory period tref from 1 to

5 ms is also introduced in the model, matching the observation of

membrane potentials in the experiment. The input temporal

frequency F is confined within the range of 1 to 50 Hz, consistent

with feasible biological frequencies [1,17]. In this paper we

concentrate on the mean output firing rate with respect to different

input frequencies.

Recurrent excitatory network neurons. In a neural

network of size N, we assume that neuron i is connected to

neuron j by a connection weight wi,j (drawn randomly from a

standard normal distribution), i, j = 1,…, N, and wi,i = 0. Assume

that the ith neuron generates a spike at time tip, 1#p#ki, where ki

is the number of spikes that the ith neuron generated within a

certain time. The ith neuron receives the sensory synaptic current

input Ii,syn(t) and local synaptic input from the other N21 neurons.

The behavior of the membrane potential vi(t) of the ith neuron at

time t is then given by

dvi tð Þ~{
vi tð Þ{Vrest

c
dtzdIi,syn tð Þzdt

X
j~1,j=i

X
tipvtjqvt

wj,id t{tjq

� �
:

When neuron i fires, it induces synaptic current in its connected

neurons in the network, and their membrane potential will either

increase or decrease in proportion to the synaptic connection

weight, depending on the type of the synaptic input (EPSP, IPSP).

Results

Experiment
We carried out experiments to record from neurons in acutely-

isolated slices of somatosensory cortex of the rat. Although in these

conditions, the normal peripheral afferent pathways are of course

removed, the intrinsic spike-generating properties of neurons are

believed to be largely intact, and can be investigated under

controlled conditions. Regular-spiking neurons were selected by

their pyramidal appearance and their membrane potential

responses to constant step current stimuli (Fig. 1A). 113 sets of

stable recordings suitable for analysis in different conditions of

stimulus amplitude, offset and frequency in 11 neurons were

obtained. Of these, 21 out of 113 recordings showed an increasing

firing rate as the input frequency increased from 10 Hz to 50 Hz,

28 recordings showed a decreasing firing rate with respect to the

stimulus frequency, and the remaining 64 recordings showed no

significant changes of firing rate as input frequency was varied.

The averaged response rates of each category of firing pattern as a

function of input frequency are plotted in Fig. 1B (mean 6 STD).

We found that when the stimulus offset was relatively small in

comparison to the neuronal input conductance (see Methods),

some neurons were able to fire at low frequency but decreased

their response rate as the stimulus frequency increased (Fig. 1B,

blue line). In other recordings, neurons fired in proportion to the

stimulus frequency, with a positive slope, when the stimulus offset

was relatively high (Fig. 1B, green line). A pattern in which firing

rate remained constant as stimulus frequency varied was

Frequency Encoding Patterns
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commonly observed as well (Fig. 1B, red line). Fig. 1C shows

examples of the recorded membrane voltage in different types

of response patterns at 10 Hz, 30 Hz and 50 Hz stimulus

frequencies.

In some cases, individual neurons could shift from a decreasing

pattern of response (with increasing stimulus frequency) at low

stimulus offset amplitude, to an increasing pattern, at higher offset

amplitude. This undoubtedly reflects the relationship between the

threshold, the timescale of subthreshold leaky integration, and

stimulus offset amplitude, which is clearly an important feature for

determining the type of response. Such a shift in response pattern

may not be physiologically significant, if the sensory synaptic input

is in a restricted range of amplitudes.

Single Neuron Simulation
We used an integrate-and-fire model for the simulation,

studying the neuronal responses to the deterministic and stochastic

(Poisson noise) oscillatory current stimuli. Every simulation was

run 1000 times for the stochastic Poisson inputs. The simulation

time for each neuron was 1000 ms. The modelling parameter

values are Vh = 20 mV, Vrest = 0 mV, and Ns = 100, unless

otherwise specified. We choose parameter values in agreement

with our experimental data from the single cell recordings and

with data from the literature [9,18].

Constant firing rate. The LIF model had a constant firing

rate when the parameters satisfied C c.Vh, where C = a Ns / 2

(see Appendix S1 for details). With the parameters c= 20 ms,

a = 20.5 Hz, and the refractory period tref = 5 ms, the firing rate

was essentially invariant with respect to the input frequency, no

matter if noise is applied in the model (Fig. 2A, purple) or not

(Fig. 2A, black), consistent with the biological data (Fig. 1B, red

line). Although the tuning curve for spike rate showed a local peak

at around 20 Hz (compare to fluctuations in the flat experimental

response pattern, Fig. 1B), this is smoothed when Poisson noise is

added. Membrane potential responses are plotted in Fig. 2B for

three different input frequency values F = 10 (top), 30 (middle),

and 50 (bottom) Hz, and for both deterministic and noisy input. A

constant efferent firing rate means that no information about the

temporal input frequency F is contained in the output firing rate.

Hence, by reading the efferent firing rate alone, it is impossible to

perform discrimination tasks between various input frequencies,

for this kind of response pattern.

One hypothesis to explain this phenomenon is that the model

averages out the information in time domain. This was proposed

by Feng and Brown (2004) to explain why the integrate-and-fire

model neuron is insensitive to the input temporal frequency in the.

They examined low input rates varying from 1 to 10 Hz, and

found that the output firing rate remained a constant. When F is

Figure 2. Simulation results for single neurons with flat output firing rates. (A) Tuning curve of a simulated neuron with parameter values:
a = 20.5, c= 20 ms, and tref = 5 ms, with (pink) or without (black) noise. (B) Membrane potential responses of the integrate-and-fire model to different
input frequencies (top: F = 10 Hz; middle: F = 30 Hz; bottom: F = 50 Hz). (C) Except at F = 0 Hz, the resting output firing rate remains constant when F
is close to zero.
doi:10.1371/journal.pone.0009608.g002
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high, the firing rate of the neuron model is given by

l tð Þ~ a

2
lim

T??
1z

ðT

0

cos 2pFtð Þdt

T

� �
~

a

2
:

This finding is reproduced here in Fig. 2C. Another interesting

phenomenon is that there is a sudden decrement in the value of

efferent firing rates from F = 0 to F.0 (Fig. 2C), which means that the

integrate-and-fire model can easily detect whether or not an oscillat-

ing signal is present, but cannot tell how fast the period of the signal is.

Decreasing efferent firing rate. When C c,Vh, the

neuronal efferent firing rate is a decreasing function of the

stimulus frequency (Fig. 3A). The parameter values used here are

c= 20 ms, a = 16.8 and tref = 1 ms. The neuron stops firing when

the input frequency reaches the critical value F* = 41 Hz (see

Appendix S1, Eq. 4 for detailed calculation). Membrane potential

responses and input synaptic current are shown in Fig. 3B at three

different frequencies (F = 10 (top), 30 (middle), and 50 (bottom)

Hz), for deterministic and stochastic input. This clearly illustrates

that firing rate decreases with increasing input frequency.

To further elucidate the cause of this decreasing relationship, we

plotted neuronal response rate at three different stimulus

amplitudes a (16.8, 15 and 14) for deterministic input (Fig. 3C,

top) and stochastic input (Fig. 3C, bottom). Before the neuron’s

firing is quenched (when F.F*), even though the output firing rate

is increasing over some segments of the input range (due to the

phase locking under this parameter region, see Appendix S2 for a

detailed explanation), its overall trend is decreasing. When Poisson

noise is added, the relationship is smoothed, giving an almost

monotonically decreasing trend.

Figure 3. Simulation results for neurons with decreasing output firing rate. (A) Simulated output firing rate versus the input frequency at
10, 20, 30, 40 and 50 Hz with (black) and without (pink) noise, when parameters are: a = 16.8, c= 20 ms, and trefr = 1 ms, over the range up to 50 Hz.
(B) Membrane potential responses of the integrate-and-fire model at different input frequencies (top: F = 10 Hz; middle: F = 30 Hz; bottom: F = 50 Hz)
when noise was absent (black) or present (purple). (C) Input-output relation of the output firing rate versus the input frequency from 1–50 Hz
continuously with deterministic input (top panel) and Poisson noise (bottom panel). The parameters are a = 16.8 (red solid line), 15 (green dash line),
and 14 (brown dotted line). Here, c = 20 ms, and the neuronal response rates for Poisson noise were averaged over 1000 runs.
doi:10.1371/journal.pone.0009608.g003
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Increasing firing rate. To generate an increasing spiking

rate with respect to the stimulus frequency, a subthreshold intrinsic

oscillation k cos 2pv0tð Þz1ð Þ is added to the model, where k and

v0 are constant. The peak response rate is reached at the value

where the input frequency F fully resonates with the intrinsic

neuronal frequency v0. Neglecting the noise term in the system,

the model is fully defined by

dv

dt
~{

v tð Þ{Vrest

c
z

dIsyn tð Þ
dt

zk cos 2pv0tð Þz1ð Þ

v 0ð Þ~Vrest

8<
: :

When c = 9 ms, a = 10, tref = 5 ms and k = 1.5, the efferent firing

rate is an increasing function of the temporal input frequency F.

The maximal response rate is reached at F = v0 = 50 Hz (Fig. 4A,

black). When Poisson noise is added, the tuning curve becomes

smoothly monotonically increasing (Fig. 4A, purple). Fig. 4B shows

example membrane potential trajectories for different input

frequency values (F = 10, 30, 50 Hz).

The goal of our mathematical modeling is to seek a simplest

or minimal mechanism to mimic the three response patterns

shown by biological neurons, rather than giving a detailed

biophysical model of spike generation. The simplest LIF model

without any modification is capable of generating constant and

decreasing firing patterns in terms of input frequency. However,

in order to make the spiking rate an increasing function of input

frequency, the minimal addition to the model is to include an

intrinsic oscillation, where firing increases up to a peak value when

the external frequency resonates with the intrinsic oscillatory

frequency.

Mechanism of Various Spiking Patterns
We next analyze the underlying mechanism of these three

different response patterns. The reason for these distinct patterns

can be understood in the relative location of the limit cycle of the

neuronal dynamics, defined by the sinusoidal input and the

‘‘integrate’’ part of the integrate-and-fire model (in the absence of

the spiking mechanism), and the threshold (Fig. 5 and appendix

S1). A limit cycle is obtained when there is no threshold operation

applied to the membrane potential, so that the three-dimensional

dynamical system of the membrane potential is attracted to its

stable trajectory (Appendix S1, Eq. 5).

When the limit cycle is located totally above or below the

threshold, the output firing rates are all constant. In fact, when the

limit cycle is below the value of the threshold, the neuron’s firing

rate would be zero. This is because when the membrane potential

reaches the limit cycle, it will stay there forever, never crossing

threshold. If the limit cycle lies above the threshold, the output

firing rate is roughly constant. This is the case for flat efferent

firing rate (c = 20.5 ms). The limit circle is located above the

threshold (Fig. 5 left column), and consequently, the membrane

potential v(t) reaches the threshold before it reaches the limit circle

and is then reset to the initial value. Thus, the input frequency F

cannot influence the system’s firing rate much. As a result,

whenever the limit cycle is located completely below or above the

threshold, the output firing rate is constant (zero for subthreshold

case) and does not contain any information about the input

frequency. An additional point is that the limit cycle is more tilted

for small values of F ( = 10 Hz) than for big values (50 Hz) (see

Fig. 5 left column and Appendix S1 Eq. 6 for detailed analysis).

When the limit circle intersects with the threshold (Fig. 5,

middle column), the output spiking rate decreases until the input

frequency F increases to the critical frequency F* (see Appendix

S1, Eq. 4), when the firing rate becomes zero. This pattern occurs

because the limit cycle becomes flatter as F goes up, causing slower

spiking, but eventually comes to lie completely below the

threshold, whereupon the neuron stops firing.

An alternative explanation for the constant and decreasing

output firing rate versus input frequency comes from the view of

phase mapping, the mapping from the phase of forcing at one

spike to the next [18]. Keener et al (1981) classified the LIF neuron

responses to oscillatory input into three parameter regions (see

Appendix S2 for an explanation of their work and the relationship

with our model). The parameter values used in our model fall into

region II (piecewise phase locking) and region III (firing

termination) in Keener’s paper. When Poisson noise is added,

the discontinuities due to the piece-wise phase locking pattern in

neuronal firing rate are smoothed out, and the response curves

show a consistently flat or decreasing trend versus input frequency.

Introducing an intrinsic oscillation in the neuron model is

necessary to generate an increasing output spiking pattern as input

frequency increases. The right column of Fig. 5 shows the limit

cycle with an intrinsic oscillation term (at 50 Hz) at input

frequency F = 10 and F = 50 Hz. The threshold value lies between

the maximum and minimum values on the limit cycle.

Gain Enhancement
Network neurons. Even though the single neuron is

sophisticated enough to generate different patterns of firing rate

with various input frequencies, a population of neurons connected

with each other in a network can perform much better than a single

neuron. We assume that neurons in the network are identical,

receive the same input, and are connected with each other by

excitatory synapses [19] (see Fig. 6A for an illustration of the

network structure). The LIF parameters used in the network

neurons are the same as for single neurons, and their connection

weights are assigned randomly from a standard normal distribution.

The simulation results showed that a neural network’s spiking rates

at different input frequencies were more distinguishable than that of

a single neuron. Fig. 6 shows the decreasing and increasing firing

rate patterns of the integrate-and-fire model network with random

connection weights of various sizes (N = 1, 25, and 40 for decreasing

responses; N = 1 and 10 for increasing responses). It can be seen that

the discrimination ability of the network is better than that of a

single neuron since the difference of spike rates between two

frequencies in neural network is much bigger than for a single

neuron, for networks of both decreasing and increasing response

patterns. Neural networks with non-identical neurons whose

threshold values vary (Vh uniformly distributed within range [19.5,

20.5] mV) were also simulated, to test for the robustness of the

network model, and no significant differences were found compared

to identical-neuron networks (data not shown).

Discussion

We measured experimentally the discrimination ability of single

somatosensory neurons in vitro for temporal input frequency, in

terms of their mean response rate. The LIF model was used to

reproduce the results by simulation, allowing us to propose a

simple underlying dynamical basis for the various patterns of

neuronal responses. Our work sheds light on the possible cellular

and network mechanisms of the heterogeneous frequency tuning

of somatosensory cortical neurons.

Experimental Responses
In [1,17], it was found that some neurons in the somatosensory

S2 area have a lower firing rate (around 20 Hz) for high-frequency

Frequency Encoding Patterns
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Figure 4. Simulation of a neuron with increasing output firing rate, when an additional subthreshold intrinsic oscillation (v0 = 0.05,
k = 1.5) is included in the dynamical system. Other parameter values used for modeling are a = 10, c = 9 ms, and tref = 10 ms. (A) Response frequency
rises as input frequency increases. (B) Membrane potential of the integrate-and-fire model with different values of input frequencies (top: F = 10 Hz;
middle: F = 30 Hz; bottom: F = 50 Hz). It is seen that the neuron is more active at high frequency, and has a monotonically increasing firing pattern.
doi:10.1371/journal.pone.0009608.g004
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stimuli compared to the strong responses (around 40 Hz) they

show to the low-frequency stimulus, but high stimulus frequencies

did not completely stop the neurons from firing. However, in the

present experiments, we observed a progressive reduction in firing

rate with increasing input frequency, and in many instances,

quenching of firing at relative high frequency. This dissimilarity

might be from the differences between in vitro and in vivo

conditions, affecting the intrinsic spike-generating dynamics of

neurons, but could also reflect receptor and synaptic adaptation,

and locally-recruited cortical inhibition.

Nevertheless, the quenching of firing observed experimentally is

consistent with the behaviour of the LIF neuronal model.

Experimentally, neurons decreased their firing rate versus the

input frequency only when the injected current offset was close to

the minimal feasible range of stimuli, for which generation of

spikes was guaranteed. This minimal feasible range of stimuli of

real neurons corresponds to the mathematical explanation of

intersection (see Fig. 5, middle column and Appendix S1 for

details) between the threshold value and the limit cycle of the

dynamics. Biological neurons appeared to have a constant or

increasing response versus input frequency when the oscillatory

stimulus offset is in the middle range of the feasible stimuli

intensity, and this is consistent with our model parameter region as

well.

To compare how accurately experimental and modelled

neuronal responses encode stimulus frequency, we compare them

using neurometric performance curves, as shown in Fig. 7. A

detailed description of the generation of neurometric curves can be

found in [17]. In Fig. 7, neurometric curves were generated by

plotting the percentage of each recorded data at different

comparison stimulus frequencies (F = 10, 20, 30, 40 and 50 Hz)

for which the comparison frequency was called higher than the

base frequency, which was fixed at 30 Hz (because it is the middle

point of the stimulus frequency range), as a function of the

comparison frequency. Points near 0% or 100%, where the base

frequency and comparison frequency are very different, corre-

spond to easy discriminations, whereas points near 50%

correspond to difficult discriminations. Both for the increasing

and decreasing neural responses, the neurometric functions of the

modeling were considerably better than the experimental data.

Intrinsic Oscillations in Increasing Response Patterns
An intrinsic oscillation in the frequency range of 40 to 50 Hz of

pyramidal neurons, as is predicted to be required by the model to

generate increasing responses, has not been clearly described in

the literature. However, it should be pointed out that what is

predicted is not necessarily a detectable subthreshold oscillation of

membrane potential, but an intrinsic oscillation within the

suprathreshold spiking dynamics which interacts with and

resonates with an ‘‘integrate-and-fire’’ like component of the

dynamics. A strong candidate for this would be recruitment of the

local fast-spiking inhibitory interneuron network, and its feedback

on the recorded pyramidal neuron [20,21,22]. Thus, it would be

of interest in further studies to characterize input frequency

responses in the presence of synaptic blockers of glutamate and

GABA receptors to disconnect this component of the network.

Biological Function
In the nervous system, encoding and decoding is accomplished

at a system level rather than at a single neuron level. Network

neurons gain an advantage in generating more distinguishable

efferent spike rates at different input frequency levels, by the

connectivity of the neurons in the network: one neuron’s action

potential will contribute to other neurons’ membrane potential in

proportion to the connection weight. As a result, the output firing

Figure 5. Limit cycle plots for the flat, decreasing and increasing firing patterns, when no threshold is applied in the neuron model.
A detailed explanation of this autonomous dynamical system can be found in the Appendix S1, where x axis represents x~C cos 2pFtð Þ, and y axis is
y~C sin 2pFtð Þ. The degree of tilt when F = 10 Hz is much larger than when F = 50 Hz. Threshold value is represented by the grey grid square.
doi:10.1371/journal.pone.0009608.g005
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rate of the whole neural network is boosted by positive feedback

over the output rate of an individual neuron.

What is the biological function of these different, opposed

neural tunings, especially the opposite tuning in the cortex? In

experiments on electric fish [23,24,25], opposite types (increasing

and decreasing) of frequency responses of electroreceptor cells in

the lateral line organs have also been observed, and it was shown

that electric fish recognize objects by centrally comparing the

responses from these two different types of receptor cells. In [17], it

is shown that cortical networks can enhance the neural

representation of features from complementary populations of

cells with positive and negative response slopes. Thus, gain could

in principle be further increased by neurons which integrate the

outputs of excitatory and inhibitory subnetworks.

Other Possible Neural Models
The leaky integrate-and-fire model is not the only model that

is able to decode the input frequency from its efferent firing rate,

although using LIF alone we can account for many biological

phenomena, see for example [26]. One of the other possible

forms is the quadratic integrate-and-fire model [27] that we

have found can make the output firing rate a decreasing

function of the input frequency (data not shown). The principle

is similar to what we analyzed in the leaky integrate-and-fire

neuron. A more biophysically-realistic neuron model is the

Hodgkin-Huxley (HH) model [28]. According to Feng and

Brown (2001), the tuning curve has two maximum points and

one minimum point, but it is not possible to uniquely read out

the input temporal frequency [9]. The reason why the Hodgkin-

Huxley model is able to generate an increasing pattern at low

input frequencies is believed to be that the HH model itself

contains an intrinsic subthreshold oscillation with a defined

frequency, which makes it possible to generate two peaks at

60 Hz and 120 Hz, respectively, for the standard Hodgkin-

Huxley model (refer to the Appendix of [9] for detailed

equations and parameters).

Figure 7. Neurometric functions for the increasing and decreasing responses of the experimental recordings and the mathematical
models. Left: For neuronal response with a positive slope. Continuous curves are sigmoidal fits (x2, p,0.001) to the data points for the five
comparison stimulus frequencies (10, 20, 30, 40 and 50 Hz) paired with a reference stimulus frequency fixed at 30 Hz. y axis is equivalent to the
probability that the comparison frequency is judged higher than the reference frequency (30 Hz). Gray line is neurometric function of experimental
data; black line is of modeling data. Right: Same format as panel on the left, but for neuronal responses with a negative slope.
doi:10.1371/journal.pone.0009608.g007

Figure 6. Network enhancement of response gain. (A) Illustration of the structure of the neural network. (B) The average firing rate of network
neurons, for both the increasing (right) and decreasing (left) patterns. The network neurons revealed a bigger difference between the minimum and
maximum firing rate than that of single neurons, both for increasing and decreasing patterns. The larger the neural network size, the more significant
was the difference among neural response rates at various input frequencies. The connection weights among neurons in the network are randomly
generated following a normal distribution.
doi:10.1371/journal.pone.0009608.g006
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Supporting Information

Appendix S1 Supplementary material for the main article.

Found at: doi:10.1371/journal.pone.0009608.s001 (0.79 MB

RTF)

Appendix S2 Comparison with a circle mapping model.

Found at: doi:10.1371/journal.pone.0009608.s002 (0.11 MB

RTF)
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