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Abstract 1 

Dimethylsulfide (DMS) plays a major role in the global sulfur cycle. It has 2 

important implications for atmospheric chemistry, climate regulation, and 3 

sulfur transport from the marine to the atmospheric and terrestrial 4 

environment. In addition, DMS acts as an info-chemical for a wide range of 5 

organisms ranging from microorganisms to mammals. Microorganisms that 6 

cycle DMS are widely distributed in a range of environments, for instance oxic 7 

and anoxic marine, freshwater and terrestrial habitats. Despite the importance 8 

of DMS that has been unearthed by many studies since the early 1970s, the 9 

understanding of the biochemistry, genetics and ecology of DMS-degrading 10 

microorganisms is still limited. This review examines current knowledge on the 11 

microbial cycling of DMS and points out areas for future research that should 12 

shed more light on the role of organisms degrading DMS and related 13 

compounds in the biosphere. 14 

 15 

DMS and related organic sulfur compounds 16 

Volatile sulfur compounds play an important role within the biogeochemical cycle of 17 

sulfur. In being able to transfer from the liquid into the gas phase and vice versa, 18 

reduced volatile sulfur compounds have particular importance for affecting the 19 

composition and chemistry of the atmosphere. Although carbonyl sulfide (COS) has 20 

the highest concentration of the reduced volatile sulfur compounds in the atmosphere, 21 

dimethylsulfide (DMS) has the highest source strength (Watts 2000) and is thought of 22 

as a climate cooling gas (Charlson et al. 1987). DMS is produced by a variety of 23 

chemical and biological processes, both natural and man-made, and it is itself subject 24 

to a wide variety of chemical and biological transformations in the environment. 25 

Some aspects of the microbial metabolism of the related compounds (see Table 1) 26 
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dimethylsulfoniopropionate (DMSP), dimethylsulfoxide (DMSO), dimethylsulfone 27 

(DMSO2),  methanethiol (MT) and methanesulfonic acid (MSA) are also considered 28 

where appropriate as these occur as precursors and/or degradation products of DMS. 29 

 30 

Industrial roles of DMS and related compounds.  31 

From an anthropocentric point of view, DMS and the related compounds DMSO and 32 

DMSO2 are of particular interest in terms of their roles as flavour compounds and 33 

their industrial applications. DMS is a colourless liquid with a boiling point of 41°C. 34 

and has a disagreeable odour akin to that of rotting cabbage. In our daily lives it is 35 

often present at low concentrations as an important flavour compound in a wide range 36 

of foods, including raw and processed fruits and vegetables such as tomatoes, 37 

sweetcorn, grapes, asparagus and brassicas (Bills and Keenan 1968; Buttery et al. 38 

2002; Kubec et al. 1998; Miers 1966; Segurel et al. 2004; Ulrich et al. 2001; Wong 39 

and Carson 1966), cheeses (McGugan 2002; Milo and Reineccius 1997) honey (de la 40 

Fuente et al. 2007), and truffles (Talou et al. 1987), for instance. DMS is equally 41 

important as a flavour compound in a variety of beverages including beers (Meilgaard 42 

2002), wines (e.g. Segurel et al. 2004), orange and grapefruit juice (Shaw et al. 1980), 43 

and is also found in roast coffee (Rhoades 2002) and processed milk (Keenan and 44 

Lindsay 1968). DMS can be part of the essential aroma profile but also be of concern 45 

as it can contribute to off-notes.  46 

DMSO is a water-soluble polar organic solvent that is useful in a range of 47 

industries, and is also relevant as a pharmaceutical drug delivery agent that can 48 

facilitate the movement of various compounds across lipid membranes (Leake 1967). 49 

Both DMSO and DMSO2 are found in a wide range of foods including milk (Pearson 50 

et al. 1981). Humans excrete 4-11mg of DMSO2 per day via urine. Marketed as 51 
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methylsulfonylmethane, it is also a constituent of some dietary supplements (see 52 

Parcell 2002 for a review). 53 

 54 

Environmental significance of DMS and related compounds 55 

The roles of C1-sulfur compounds in an industrial and human context described above 56 

are eclipsed by the major functions of these compounds in the environment, which 57 

have stimulated a substantial body of research over the last three decades. Chemical 58 

weathering of rock and the water solubility of sulfate lead to loss of sulfur from the 59 

continents due to surface water runoff to the oceans. The oceans are rich in sulfur, 60 

having a sulfate concentration of approximately 28mM. Emission of sulfur species 61 

from the marine environment into the atmosphere, their atmospheric transport and 62 

subsequent deposition by wet and dry deposition on the continents are thus an 63 

important link in the sulfur cycle, affording sulfur transport from the oceans to the 64 

continents (compare Figure 1). Prior to the work by Lovelock and colleagues it was 65 

assumed that hydrogen sulfide was the volatile sulfur compound emitted into the 66 

atmosphere that provided a precursor for sulfate aerosols in marine air (Saltzman and 67 

Cooper 1989), however Lovelock and colleagues showed that dimethylsulfide was 68 

much more abundant in the marine boundary layer than hydrogen sulfide (Lovelock et 69 

al. 1972). Based on these findings it was realised that DMS provides a route for sulfur 70 

transport between the oceans and the terrestrial environment (Nguyen et al. 1978). It 71 

is now well established that DMS is the most abundant form of biogenic sulfur input 72 

into the atmosphere; estimates range from 19 to 50 Tg of sulfur that are emitted as 73 

DMS from the marine environment per annum (Andreae 1990), which translates to 74 

around 200 million tons of sulfur, or roughly to 0.66 tons of sulfur emitted per km2 of 75 

ocean surface on average.  76 
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 77 
Atmospheric oxidation of DMS and the CLAW hypothesis  78 

In the atmosphere, DMS is subject to chemical and photochemical oxidation resulting 79 

in a range of organic and inorganic sulfur species, mainly sulfate, sulfur dioxide and 80 

methanesulfonic acid (MSA) (Hatakeyama et al. 1982; Panter and Penzhorn 1980; 81 

Pham et al. 1995), but DMSO and DMSO2 are also formed (Harvey and Lang 1986; 82 

Zhu et al. 2003), and DMSO has been detected in rain water (Kiene and Gerard 1994; 83 

Ridgeway et al. 1992; Sciare et al. 1998). The atmospheric residence time of DMS is 84 

short, only about a day, and the main atmospheric sinks are believed to be the daytime 85 

oxidation with hydroxyl radicals and reaction with nitrate radicals during the night; 86 

however, it appears that the reactions removing DMS and their rate constants are 87 

complex and not yet well understood in detail (see Barnes et al. 2006 for a review). 88 

As indicated above, the atmospheric transport and subsequent dry and wet deposition 89 

of these sulfur compounds on the continents provide an important link in the global 90 

sulfur cycle. In soils, atmospherically derived sulfur contributes to the pool of sulfur 91 

available for assimilation as a plant nutrient, directly as sulfate, or indirectly after 92 

microbial regeneration of sulfate from organic sulfur compounds such as MSA, 93 

DMSO and DMSO2 (see Kertesz 2000 for a review). The atmospheric oxidation 94 

products of DMS form aerosol particles which have direct and indirect effects that 95 

lead to negative temperature forcing of the Earth-atmosphere system, directly 96 

reflecting solar radiation and indirectly by providing particles that can act as cloud 97 

condensation nuclei (CCN) in the atmosphere. An increase in the number of CCN 98 

facilitates the formation of clouds that have a higher number of relatively smaller 99 

water droplets, thereby increasing the cloud albedo and decreasing the amount of solar 100 

radiation to reach the Earth surface. Hence, atmospheric DMS has been linked to 101 

climate regulation and is considered as a climate-cooling gas (Charlson et al. 1987). 102 
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Charlson and colleagues hypothesised that production of DMSP by phytoplankton in 103 

the oceans was the basis of a geophysiological feedback loop that regulates global 104 

climate, also known as the CLAW hypothesis according to the first letters of the 105 

authors’ surnames (Charlson et al. 1987). The CLAW hypothesis states that an 106 

increase in solar irradiation and climate warming stimulates phytoplankton growth in 107 

the oceans and leads to an increased production of DMSP in the surface ocean causing 108 

a greater flux of DMS into the atmosphere. The associated increase of DMS-derived 109 

aerosol particles in the atmosphere causes more solar radiation to be reflected, either 110 

directly by aerosols or indirectly through intensified formation of high albedo clouds; 111 

ultimately these consequences of DMS emission are predicted to cause a cooling of 112 

the Earth’s climate. Climate cooling and reduction of the amount of 113 

photosynthetically active radiation reaching the ocean surface, due to increased 114 

albedo, cause a decrease in phytoplankton growth and lead to a reduction of DMSP 115 

production in the ocean, a concomitant decrease in DMS emission and therefore an 116 

easing of the aforementioned negative temperature forcing; the phytoplankton 117 

DMSP/DMS system is therefore suggested to form a negative feedback loop 118 

(Charlson et al. 1987).  119 

Vallina and Simó found that marine DMS concentrations are positively 120 

correlated with solar radiation dose (Vallina and Simó 2007) which might lend 121 

support to the CLAW hypothesis as an increase of solar radiation would be expected 122 

to cause climate warming and increased DMS emission. Different approaches of 123 

modelling the expected increase of marine DMS production under global warming 124 

scenarios, however, have suggested only a modest 1-2% increase in DMS production, 125 

which is much weaker than observable seasonal variations of DMS (Bopp et al. 2003; 126 

Vallina et al. 2007). Nevertheless, studies have confirmed that DMS-derived aerosol 127 
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can be a significant source of CCN especially in the remote marine atmosphere that 128 

receives little dust and aerosol from the continents (Ayers et al. 1991; Vallina et al. 129 

2006), but the interactions and pathways in atmospheric DMS oxidation are complex 130 

and not fully understood precluding quantitative modelling (Ayers et al. 1997). The 131 

view that emissions of DMS from the marine environment have implications for 132 

climate and atmospheric chemistry is widely supported, but there is as yet no 133 

unambiguous evidence for the validity of the CLAW hypothesis. 134 

 135 

Sources of DMS  136 

Marine environment 137 

Various estimates of the flux of DMS to the atmosphere have been made (range of 15-138 

109 Tg a-1) but a review of the sources of DMS suggests to adopt a figure of 139 

approximately 24.49 +/- 5.3 Tg a-1(Watts 2000). The strength of the marine 140 

environment as a source of DMS has been estimated at around 21 Tg a-1 and is 141 

therefore by far the most important source totalling around 80% of the total DMS 142 

flux, the remaining 20% originate from vegetation, salt marshes and estuaries, soils, 143 

wetlands and also include anthropogenic sources (Watts 2000). 144 

Dimethylsulfoniopropionate (DMSP) is the main source of DMS in the marine 145 

environment. DMSP is a metabolite of certain species of macroalgae (Challenger and 146 

Simpson 1948; Van Alstyne and Puglisi 2007) and phytoplankton, in particular in 147 

dinoflagellates and in species such as the Haptophytes Emilinia huxleyi and 148 

Phaeocystis (Liss et al. 1994; Malin and Kirst 1997). Algae can accumulate DMSP to 149 

high internal concentrations reaching to hundreds of mM (reviewed in Stefels 2000; 150 

Yoch 2002). Corals and their zooxanthellae also contain large amounts of DMSP (Hill 151 

et al. 1995), which can be the source of high local DMS concentrations (approx 1µM) 152 
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in coral reefs, for instance in coral mucus ropes (Broadbent and Jones 2004). It has 153 

been suggested that DMSP has a role as an osmolyte (Kiene et al. 2000; Stefels 2000), 154 

an antifreeze compound (Kirst et al. 1991) or an antioxidant (Sunda et al. 2002), but 155 

its exact role remains unresolved and it is possible that it serves distinct roles in 156 

different organisms (Otte et al. 2004). Some vascular plants also contain DMSP, for 157 

instance some halophytes of the genus Spartina and Wollastonia biflora contain 158 

significant amounts of DMSP, and the molecule has also been detected in sugar cane 159 

(see Otte et al. 2004 for a review).   160 

Upon lysis of DMSP-containing organisms, for instance by viral attack (Malin 161 

et al. 1998) or zooplankton grazing (Wolfe et al. 1994; Wolfe and Steinke 1996), 162 

DMSP becomes dissolved in seawater. Microbial degradation of dissolved DMSP 163 

occurs through a number of different pathways (Howard et al. 2006; Johnston et al. 164 

2008) (compare Figure 2), and the majority of DMSP is not degraded to DMS 165 

(González et al. 1999; Kiene et al. 2000; Moran et al. 2003; Yoch 2002). Until 166 

recently, the enzyme cleaving DMSP was generally referred to as “DMSP lyase”, but 167 

the exact mechanisms by which DMS is formed from DMSP had not been 168 

investigated in any detail. Using genetic analysis of bacteria that form DMS from 169 

DMSP, Johnston and coworkers have described three different pathways of DMSP-170 

dependent DMS formation that involve enzymes that are members of different 171 

enzyme families (Curson et al. 2008; Johnston et al. 2008; Todd et al. 2009; Todd et 172 

al. 2007).   173 

Dissolved DMSP and/or DMS derived from it has been shown to be a 174 

powerful signalling molecule that attracts certain bacteria, e.g. chemotaxis by 175 

Silicibacter TM1040 (Miller et al. 2004), but also affects the swimming (copepods, 176 

harbour seals, coral reef fish) and flying (petrels, shearwaters) behaviour of a range of 177 
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organisms presumably as a foraging cue (see review by Johnston et al. 2008). A role 178 

of DMS as an info-chemical is also indicated by studies demonstrating that it allowed 179 

dogs and pigs to detect truffles in soil (Talou et al. 1990) and a study that showed the 180 

importance of volatile organic sulfur compounds including DMS, DMDS and 181 

dimethyltrisulfide (DMTS) in the “bouquet of death” that attracted burying beetles to 182 

carcasses of mice (Kalinová et al. 2009).  183 

The majority of DMS emission is from open ocean environments, but microbial 184 

mats and intertidal sediments are also important sources of DMS (Steudler and 185 

Peterson 1984). Several studies have investigated the cycling of DMS and related 186 

compounds in such ecosystems (Jonkers et al. 1998; Kiene 1988; 1990; Kiene and 187 

Capone 1988; Lymio et al. 2009; Visscher et al. 2003; Visscher et al. 1991).  DMSP-188 

producing plants and macroalgae, e.g. the salt marsh cord grass Spartina alterniflora 189 

or the green algal seaweed Ulva spp., can contribute to the production of DMS in such 190 

ecosystems (Kiene and Capone 1988 and references therein), however, other 191 

pathways of DMS formation may be more important in anoxic sediments, including 192 

reduction of DMSO, metabolism of sulfur-containing amino acids, and methylation of 193 

sulfide (Jonkers et al. 1996; Kiene and Capone 1988; Lomans et al. 1997; Visscher et 194 

al. 2003; Visscher et al. 1991). 195 

 196 

Terrestrial sources of DMS 197 

DMS formation also occurs in terrestrial and freshwater environments, and, with 198 

exceptions (see below), DMS formation in these environments is not due to DMSP 199 

degradation. As noted above for coastal sediments, the processes involved are 200 

respiratory reduction of DMSO (Zinder and Brock 1978c), degradation of sulfur-201 

containing amino acids (Kadota and Ishida 1972; Kiene and Capone 1988), and 202 
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anaerobic degradation of methoxylated aromatic compounds (Bak et al. 1992; 203 

Lomans et al. 2001). Methylation of sulfide in aerobic microorganisms due to the 204 

action of thiol-S methyltransferase has been demonstrated and predominantly gives 205 

rise to MT (Drotar et al. 1987). 206 

Overall, the emission of DMS from terrestrial and freshwater sources has not 207 

been studied as intensively as that from the marine environment and as yet there is not 208 

a clear view of the relative importance of different production mechanisms. Wetland 209 

emission rates of volatile sulfur compounds, including DMS, were subject to diel 210 

variations and an influence of plant communities was noted; in most wetlands, 211 

emission rates were insignificant compared to those measured in intertidal sediments 212 

dominated by Spartina (Cooper et al. 1989). Sphagnum-dominated peat bogs were 213 

shown to evolve both DMS and MT, the formation of both compounds was 214 

biological, and methylation of MT was the main source of DMS (Kiene and Hines 215 

1995). Soils may also emit volatile organic sulfur compounds including DMS and 216 

fluxes can be enhanced by waterlogging (Banwart and Bremner 1976), but soils are 217 

not considered a major source of atmospheric sulfur (Andreae 1990; Watts 2000) and 218 

volatilisation of sulfur compounds  is not thought to contribute significantly to loss of 219 

sulfur from soils (Banwart and Bremner 1976). Recently, DMS formation and 220 

degradation was observed in deeper layers (mainly below 1 m depth) along the profile 221 

of an agricultural soil in Australia. The so-called agricultural sulfate soil investigated 222 

in that study is in close proximity to a tidal inlet, may receive sporadic inputs of 223 

seawater and thus is characterised by relatively high sulfate concentrations. It was 224 

suggested that DMS might be a potential source of the SO2 emissions that have been 225 

observed from this type of soils (Kinsela et al. 2007). The decomposition of plant 226 

residues in soil, especially those of crucifer species with a high content of sulfur-227 
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containing glucosinolates, can generate a number of volatile sulfur compounds 228 

including DMS, MT and DMDS (Lewis and Papvizas 1970). Such locally enhanced 229 

production of volatile sulfur compounds after amendation of soils with crucifer 230 

residues can be exploited in controlling soil borne phytopathogenic fungi. The bio-231 

fumigant effects of crucifer tissue amendation were suggested to be mainly due to 232 

isothiocycanates (e.g. Gamliel and Stapleton 1993) with additional contribution by 233 

less toxic volatile sulfur species such as DMDS (Bending and Lincoln 1999). A 234 

combination of isothiocyanates and DMS was potent in inhibiting the activity of soil 235 

nitrifying bacteria (Bending and Lincoln 2000).  236 

In freshwater environments, DMS and MT production may occur in anoxic 237 

regions of stratified lakes and their sediments, as a result of sulfide methylation and/or 238 

degradation of methoxylated aromatic compounds (Fritz and Bachofen 2000; Lomans 239 

et al. 2001b; Lomans et al. 1997; Richards et al. 1991), but production of DMS has 240 

also been detected in oxic layers of freshwater lakes (e.g. Richards et al. 1991). DMS 241 

in oxic freshwater lakes may be derived from phytoplankton and DMS release by 242 

phytoplankton cultures was stimulated by methionine (Caron and Kramer 1994). 243 

Although DMSP is not generally considered a major DMS precursor in freshwater 244 

environments, DMS production in Lake Kinneret (Israel) appeared to be due to 245 

blooms of the DMSP-containing freshwater dinoflagellate Peridinium gatunense 246 

(Ginzburg et al. 1998). In a study of freshwater river sediments, Yoch and colleagues 247 

found that DMS was produced upon addition of DMSP to sediment slurries and 248 

identified DMS-producing Gram-positive bacteria (Yoch et al. 2001), demonstrating 249 

that the genetic potential for DMSP degradation was present far away from the marine 250 

environment, although it was noted by the authors that the enzyme systems 251 

responsible for DMS production could have cognate substrates other than DMSP. 252 
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 253 

DMS production by plants 254 

Plants may be the main source of DMS in the terrestrial environment with a source 255 

strength estimated at 3.2 Tg a-1, of which half is thought to be derived from tropical 256 

forests (Watts 2000). Plants emit a range of volatile sulfur compounds including H2S, 257 

DMS, MT, COS, and CS2, with H2S and DMS usually the dominant species, but 258 

emission rates are variable and dependent on many factors (reviewed by Schröder 259 

1993). In a study of environmental conditions that affect volatile sulfur emissions 260 

from plants, Fall and coworkers (Fall et al. 1988) showed that DMS was the dominant 261 

sulfur compound emitted by a range of crops including corn, alfalfa and wheat. Sulfur 262 

fluxes were positively correlated with temperature and light intensity but were 263 

independent of the pCO2 (Fall et al. 1988). A similar correlation of DMS emission 264 

rates and temperatures was found in a study of the gas exchange of DMS and COS of 265 

trees, but DMS emission was not a universal feature across the tree species tested and 266 

it was concluded that the contribution of tree-derived DMS to the global sulfur budget 267 

is negligible in temperate regions (Geng and Mu 2006). 268 

 269 

Anthropogenic sources of DMS 270 

In an industrial context, DMS and other reduced sulfur compounds such as 271 

methanethiol, dimethyldisulfide (DMDS) and hydrogen sulfide are products in the 272 

wood pulping process, e.g. in the paper industry, and can occur in significant amounts 273 

in liquors of the so-called Kraft process where it is a byproduct of the Swern oxidation 274 

of alcohols to aldehydes (Omura and Swern 1978). The food and brewing industry, 275 

agriculture and animal farming are also responsible for DMS emissions (Kim et al. 276 

2007; Rappert and Müller 2005).  Anthropogenic sources of DMS are thought to be 277 
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responsible for less than 1% of the total sources, but the emission of volatile sulfur 278 

compounds can be significant at the local scale. Due to the low odour thresholds of 279 

volatile organic sulfur compounds these can be a cause of nuisance odours (Zhu et al. 280 

2002), for instance from wastewater treatment of paper manufacture (Catalan et al. 281 

2008), or in the treatment of other sewage with high DMSO concentrations, caused by 282 

reduction of DMSO to DMS under anaerobic conditions (Glindemann et al. 2006). 283 

Industrial operations providing composts for mushroom production (Derikx et al. 284 

1990; Noble et al. 2001), field spreading of manure and application of biosolids, as 285 

well as livestock operations are further DMS sources linked to the agriculture and 286 

farming industries (Rappert and Müller 2005). DMS is also emitted from landfills, but 287 

is less abundant than hydrogen sulfide (Kim et al. 2005).  288 

 289 

 290 
Sinks for DMS and related compounds 291 

Given the role ascribed to DMS in affecting atmospheric chemistry and climate, it is 292 

of interest to understand the factors that control the flux of DMS to the atmosphere. In 293 

surface seawater the DMS concentration is determined by the rate of production 294 

(mainly) from DMSP, and a variety of loss terms. Sea-to-air transport is dependent on 295 

hydrological and meteorological parameters, for instance wind speed (Liss and 296 

Merlivat 1986) and wave action (Watson et al. 1991). DMS is also photochemically 297 

oxidised in surface water to DMSO (Brimblecombe and Shooter 1986). Although 298 

large quantities of DMS are produced in the upper mixed layer of the oceans, only a 299 

small fraction of DMS escapes to the atmosphere, while the majority (estimated at 300 

~90%) is degraded in the mixed surface layer due to microbial processes, including its 301 

use as either a carbon or sulfur source, or its biological degradation to DMSO (Archer 302 
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et al. 2002; Hatton et al. 2004; Kiene and Bates 1990). The microorganisms and the 303 

microbial metabolism of DMS are discussed below. 304 

 305 

DMS-degrading microorganisms 306 

The first insights into the microbiology of DMS-degrading organisms were obtained 307 

by studies of Thiobacillus and Hyphomicrobium species beginning in the 1970s with 308 

the isolation of Thiobacillus strains from a pine bark biofilter that was used to remove 309 

odorous compounds such as H2S, MT, DMS and DMDS from effluents of a paper 310 

pulp factory in Finland where these compounds were produced from methoxy groups 311 

of lignin in the paper pulping process (Sivelä and Sundman 1975). Further 312 

Thiobacillus species and isolates of Hyphomicrobium were then obtained that grew on 313 

DMS as sole carbon source (De Bont et al. 1981; Kanagawa and Kelly 1986; Pol et 314 

al. 1994; Smith and Kelly 1988; Suylen and Kuenen 1986). A diverse range of 315 

microorganisms able to degrade DMS has since been isolated from a wide variety of 316 

environments, including soils, plant rhizospheres, activated sludge, biofiltration 317 

operations, seawater, cultures of marine algae, marine and freshwater sediments, 318 

microbial mats and also humans from which DMS degraders have been isolated from 319 

feet and mouth samples. Table 2 lists species that have been shown to grow at the 320 

expense of DMS, while Figure 3 illustrates the identity of DMS-degrading organisms 321 

in a phylogenetic context for representative strains with known 16S rRNA genes.  322 

 323 

Microbial metabolism of DMS  324 

There are numerous biological pathways that contribute to DMS degradation in the 325 

environment; in principal these serve (i) the utilisation of DMS as a carbon and 326 

energy source, (ii) its oxidation to DMSO by phototrophic or heterotrophic organisms, 327 
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(iii) and its utilisation as a sulfur source. Various types of DMS degradation pathways 328 

have been reported in the literature, some of these featuring MT and/or H2S as 329 

intermediates, while other pathways do not give rise to volatile sulfur compounds. 330 

The scheme in Figure 4 provides an overview of the conversions of DMS and related 331 

C1-sulfur compounds that occur in a wide range of different organisms. Details of 332 

specific biochemical conversions of DMS and microorganisms carrying them out are 333 

presented below.  334 

 335 

Utilisation of DMS as a carbon and energy source for bacterial growth.  336 

Utilisation of DMS as a carbon and energy source is thought to occur by one of two 337 

pathways that have been suggested which contain either a DMS monooxygenase (De 338 

Bont et al. 1981) or a presumed methyltransferase (Visscher and Taylor 1993b) 339 

carrying out the initial oxidation of DMS. It has been suggested that the 340 

methyltransferase is inhibited by chloroform while the DMS monooxygenase was 341 

suggested to be inhibited by methyl-tert butyl ether (Visscher and Taylor 1993b).  342 

 343 

DMS monooxygenase pathway. The work by De Bont and colleagues suggested that 344 

DMS metabolism in Hyphomicrobium S involved an initial NAD(P)H dependent step 345 

of DMS oxidation by a DMS monooxygenase (DMO), yielding formaldehyde and 346 

methanethiol (De Bont et al. 1981). DMO has also been suggested to be responsible 347 

for initial DMS degradation in some Thiobacillus strains (Visscher and Taylor 348 

1993b). Formaldehyde is either directly assimilated into biomass or further oxidised 349 

via formate to CO2 in order to provide reducing power. Assimilation of the 350 

formaldehyde produced during DMS and MT degradation in methylotrophic bacteria 351 

is accomplished by the serine or ribulose monophosphate cycles (e.g. Anthony 1982; 352 



 16

De Bont et al. 1981), while in DMS-degrading autotrophs that have been analysed 353 

formaldehyde is oxidised to CO2, part of which is then assimilated into biomass via 354 

the Calvin-Benson-Bassham cycle (Kelly and Baker 1990). Methanethiol produced by 355 

DMS monooxygenase in the first step is degraded by MT oxidase to formaldehyde, 356 

hydrogen peroxide and sulfide (Gould and Kanagawa 1992; Suylen et al. 1987). 357 

Formaldehyde is again either assimilated directly into biomass or oxidised to CO2 358 

while sulfide is converted to sulfite either by methanethiol oxidase (in the case of 359 

Hyphomicrobium spp.) or sulfide oxygenase (in case of Thiobacillus spp.) which is 360 

then oxidised to sulfate (via sulfite oxidase). Hydrogen peroxide is reduced to water 361 

and oxygen by catalase and the growth on DMS of organisms utilising MT oxidase is 362 

usually inhibited by the catalase inhibitor 3-amino-1,2,4-triazole.  363 

The biochemistry and genetic basis of DMS and methanethiol degradation in 364 

these isolates has remained largely uncharacterised, although methanethiol oxidase 365 

was purified from several species including Hyphomicrobium EG (Suylen et al. 366 

1987), Thiobacillus thioparus Tk-m (Gould and Kanagawa 1992), and Rhodococcus 367 

rhodochrous (Kim et al. 2000). MT oxidase from Hyphomicrobium strain EG (Suylen 368 

et al. 1987) was reported not to require any co-factors for activity. The insensitivity of 369 

this MT oxidase towards the metal-chelating agents EDTA and neocuproine 370 

suggested that the enzyme did not contain metal ions or haem co-factors. It was 371 

suggested that the native Hyphomicrobium enzyme was a monomer with a molecular 372 

weight of 40-50 kDa, but MT oxidase from Thiobacillus thioparus sp. Tk-m (Gould 373 

and Kanagawa 1992) appeared to be a monomer of 29-40 kDa. Two more recent 374 

studies reported purification of MT oxidase from Rhodococcus rhodochrous (Kim et 375 

al. 2000) and a reassessment of the MT oxidase from Thiobacillus thioparus Tk-m 376 

(Lee et al. 2002), giving molecular weights for these enzymes of ~61 kDa. It is not 377 
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clear whether different forms of methanethiol oxidase with different molecular weight 378 

may exist; in any case there is still a considerable lack of understanding of the 379 

biochemistry of methanethiol oxidation in bacteria. 380 

Although the activity of DMS monooxygenase in methylotrophs and autotrophs 381 

degrading DMS under aerobic conditions was reported in a number of studies (Anesti 382 

et al. 2005; Anesti et al. 2004; Borodina et al. 2000; De Bont et al. 1981; Moosvi et 383 

al. 2005), further information about the enzyme has not been forthcoming as it 384 

appeared to be unstable and no purification has been achieved. No genes encoding a 385 

DMS monooxygenase have been identified.  386 

 387 

Methyltransferase pathway. Thiobacillus ASN-1 used an alternative initial step of 388 

DMS degradation which was independent of oxygen and which was suggested to be 389 

due to a methyltransferase (Visscher and Taylor 1993b). It was suggested that the 390 

methyl group was transferred to an acceptor molecule and then further oxidised via 391 

folate-bound intermediates. The methyl accepting factor was suggested to be 392 

cobalamin related although it was not identified (Visscher and Taylor 1993a; b). 393 

Further oxidation of the remaining methanethiol appeared to follow the same scheme 394 

as in the DMS monooxygenase pathway described above. 395 

 396 

DMSO2 and DMSO oxidation via DMS. In the initial study of Hyphomicrobium X 397 

by De Bont and colleagues (De Bont et al. 1981) one of the substrates for growth of 398 

the strain was DMSO, which was reduced to DMS and thus fed into the DMS 399 

monooxygenase pathway. Subsequently, it was shown that DMSO2 could also be 400 

degraded by some methylotrophs via DMS, as enzyme activities for DMSO2 401 

reductase, DMSO reductase and DMS monooxygenase were detected in cell-free 402 
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extracts of Hyphomicrobium sulfonivorans and Arthrobacter sulfonivorans growing 403 

on these compounds (Borodina et al. 2000; Borodina et al. 2002). 404 

 405 

Growth on DMS under anoxic conditions 406 

Several bacterial and archaeal strains able to degrade DMS and MT under anoxic 407 

conditions have been isolated (Finster et al. 1992; Kiene et al. 1986; Lomans et al. 408 

1999b; Lyimo et al. 2000; Ni and Boone 1991; Tanimoto and Bak 1994; Visscher and 409 

Taylor 1993a). The thermodynamic aspects of growth of SRB and methanogens on 410 

methylated sulfur compounds have been reviewed in detail elsewhere (Scholten et al. 411 

2003). SRB and methanogens are thought to be responsible for anaerobic DMS 412 

oxidation in anoxic sediments of coastal salt marshes, estuaries, and freshwater 413 

sediments (Kiene and Capone 1988; Kiene et al. 1986; Lomans et al. 1999a; Zinder 414 

and Brock 1978b), but the degradation of DMS has also been reported with nitrate as 415 

electron acceptor (Haaijer et al. 2008; Tanimoto and Bak 1994; Visscher and Taylor 416 

1993a). The characteristics of methanogenic Archaea growing on DMS and MT have 417 

been reviewed previously, isolates belonged to the genera  Methanolobus, 418 

Methanomethylovorans, Methanosarcina and Methanosalsus (Lomans et al. 2002). 419 

Compared to methanogens, relatively few SRB growing on DMS have been isolated. 420 

Tanimoto and Bak (1994) obtained Gram positive, spore-forming SRB from 421 

thermophilic fermenter sludge which they classified as Desulfotomaculum species. 422 

These isolates were also able to grow on DMS using nitrate as electron acceptor 423 

(Tanimoto and Bak 1994). Based on slurry incubations with tungstate and 424 

bromoethanesulfonate addition to selectively inhibit SRB and methanogens, 425 

respectively, Lymio and coworkers found that the degradation of DMS and MT in 426 

anoxic mangrove sediments was dominated by SRB (Lymio et al. 2009). A strain was 427 
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isolated, the first SRB from a marine environment, which was closely related to 428 

Desulfosarcina sp. and exhibited very slow growth rates on DMS, but which had a 429 

high affinity for DMS. The authors concluded that due to the extremely slow growth 430 

observed, such SRB might be outcompeted by methanogens in enrichments and slurry 431 

incubations when relatively high DMS concentrations are used since methane 432 

production increased exponentially during slurry incubations.  433 

The biochemical and genetic basis of DMS degradation in SRB remains 434 

uncharacterised. More data are available for methanogens. It was shown that during 435 

growth on acetate of the methanogen Methanosarcina barkeri the cells also converted 436 

DMS and methylmercaptopropionate (MMPA) to methane and a corrinoid protein 437 

functioned as a co-enzyme M methylase capable of DMS and MMPA degradation 438 

(Tallant and Krzycki 1997). Fused corrinoid/methyl transfer proteins have been 439 

implicated in methyl sulphide metabolism in Methanosarcina acetivorans 440 

(Oelgeschlaeger and Rother 2009). 441 

 442 

Oxidation of DMS to DMSO 443 

In phototrophic bacteria, the oxidation of DMS to DMSO can be used to provide 444 

electron donors for carbon dioxide fixation as suggested by a study of DMS 445 

degradation by a culture of an anoxygenic phototrophic purple sulfur bacterium that 446 

converted DMS stoichiometrically to DMSO (Zeyer et al. 1987). Similarly, DMS can 447 

be utilised by certain phototrophic green sulfur bacteria when growing on reduced 448 

sulfur compounds such as thiosulfate and hydrogen sulfide (Vogt et al. 1997). 449 

DMS to DMSO conversion by heterotrophic bacteria was first described by 450 

Zhang et al (Zhang et al. 1991) in Pseudomonas acidovorans DMR-11 (reclassified as 451 

Delftia acidovorans).  In this strain DMSO was stoichiometrically formed from DMS 452 
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as a product of co-oxidation during heterotrophic metabolism, for instance during 453 

growth on a range of organic compounds, but no carbon from DMS was assimilated. 454 

DMS removal in cell free extracts of strain DMR-11 was dependent on the presence 455 

of NADPH, which could not be replaced by NADH. Complete conversion of DMS to 456 

DMSO was also shown in the marine heterotrophic bacterium Sagittula stellata E-37 457 

(González et al. 1997) in cells grown on glucose, irrespective of additional organic 458 

carbon being added during the assay. The enzymes responsible for the conversion of 459 

DMS to DMSO in both Sagittula stellata and Delftia acidovorans are unknown. 460 

 461 

DMS dehydrogenase. The biochemistry and genetics of DMS to DMSO oxidation in 462 

phototrophic metabolism in which DMS serves as an H donor have been studied in 463 

detail in Rhodovulum sulfidophilum (Hanlon et al. 1996; McDevitt et al. 2002). In this 464 

strain, DMS-dependent DMSO formation is mediated by DMS dehydrogenase 465 

(DMSDH), a heterotrimeric enzyme comprising three subunits (DdhABC) in which a  466 

molybdopterin co-factor is bound to the A subunit (Hanlon et al. 1996). The enzyme 467 

is encoded by the ddh operon containing the genes ddhABCD, which encode the A, B 468 

(containing putative [Fe-S] clusters) and C (containing a b-type haem) subunits, and 469 

ddhD is thought to encode a polypeptide that could be responsible for the maturation 470 

of the molypdopterin-containing enzyme (McDevitt et al. 2002).  471 

 472 

Oxidation of DMS to DMSO by methanotrophs and nitrifying bacteria. DMS 473 

oxidation has also been observed in resting cell suspensions of methane-grown 474 

methanotrophic isolates of Methylomicrobium (Fuse et al. 1998; Sorokin et al. 2000) 475 

and in Methylomicrobium pelagicum the product was identified as DMSO. The 476 

nitrifying bacteria Nitrosomonas europaea and Nitrosococcus oceani (Juliette et al. 477 
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1993) also converted DMS to DMSO and some evidence suggests that ammonia 478 

monooxygenase (AMO) is the enzyme co-oxidising DMS to DMSO in these bacteria. 479 

While the co-oxidation of MT by purified methane monooxygenase (MMO), the key 480 

enzyme in aerobic methanotrophic bacteria, has been reported (Colby et al. 1977), it 481 

is still unclear whether DMS is co-oxidised by MMO, although this seems likely 482 

given the close evolutionary relationship of AMO and particulate MMO (Holmes et 483 

al. 1995). 484 

 485 

Reduction of DMSO to DMS by DMSO reductase. A range of microorganisms can 486 

couple the oxidation of organic carbon compounds to respiratory reduction of DMSO 487 

to DMS under anoxic conditions (Zinder and Brock 1978a). The enzyme 488 

dimethylsulfoxide reductase, which reduces DMSO to DMS, was first purified and 489 

characterised from Rhodobacter sphaeroides. In this strain, it is a soluble periplasmic 490 

single subunit enzyme of 82 kDa that contains a molybdopterin co-factor (Satoh and 491 

Kurihara 1987), which can also reduce trimethylamine oxide (Styrvold and Strom 492 

1984). It is encoded by the gene dmsA (Yamamoto et al. 1995). A similar enzyme was 493 

purified from Rhodobacter capsulatus (McEwan et al. 1991). The DMSO reductase in 494 

E. coli is rather different. It is a heterotrimeric enzyme expressed under anaerobic 495 

conditions, which is anchored in the periplasmic membrane. It is encoded by the 496 

operon dmsABC (Bilous et al. 1988), in which the genes encode the active catalytic 497 

subunit DmsA (82 kDa) that contains the molybdopterin co-factor, an electron 498 

transfer protein DmsB (23.6 kDa) and a membrane anchor DmsC (22.7 kDa)  499 

(Sambasivarao et al. 1990). Despite the differences in enzyme structure, the catalytic 500 

subunits of R. spharoides and E. coli share 29% sequence identity at the amino acid 501 

level (Yamamoto et al. 1995).  In Hyphomicrobium sulfonivorans a membrane-bound 502 
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DMSO reductase that reduced DMSO to DMS was expressed during aerobic growth 503 

on DMSO2, thus not having a role in anaerobic respiration under these conditions. 504 

Only a weak cross-reaction was reported for the immunoblotting of H. sulfonivorans 505 

membrane fraction with an antibody against the R. capsulatus enzyme (Borodina et 506 

al. 2002). The observation that DMSO reductase activity was present in the 507 

membrane fraction would suggest that it might be similar to the E. coli type DMSO 508 

reductase, but that it is regulated differently to the E. coli enzyme. 509 

DMSO reductase may carry out the reverse reaction in which DMS is reduced 510 

to DMS, so it might be a candidate for DMS degradation in the environment. 511 

However, although the enzyme from R. capsulatus can carry out the reverse reaction 512 

in vitro, its Ks for DMS is high (1 mM) and DMSO strongly inhibits this reaction 513 

(Adams et al. 1999), so it would appear unlikely to be relevant under physiological 514 

conditions. The E. coli enzyme is expressed constitutively under anaerobic conditions 515 

(Weiner et al. 1992). Overall, at this point there is little support to suggest that DMSO 516 

reductases could provide a route of DMS degradation in, for instance, the oxic mixed 517 

surface layer of the oceans. 518 

 519 

Assimilation of C1 sulfur compounds as a sulfur source 520 

In addition to serving as substrate for growth of aerobic and anaerobic 521 

microorganisms, DMSO and DMS can also be used as a source of sulfur. A strain of 522 

Marinobacter was able to utilise DMS as a sulfur source with the aid of light, 523 

probably using a flavoprotein (Fuse et al. 2000). Pseudomonas aeruginosa can grow 524 

with methanesulfonate as a sole sulfur source, using the flavin-linked 525 

methanesulfonate monooxygenase MsuED (Kertesz et al. 1999) that is repressed by 526 

sulfide, sulfite and sulfate. It is closely related to the alkanesulfonate monooxygenase 527 
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(SsuED) that is induced during the sulfate-starvation response in E. coli (Eichhorn et 528 

al. 1999). Bacterial sulfur assimilation by these enzymes has been reviewed in detail 529 

(Kertesz 2000). In a strain of Acinetobacter, DMS degradation via DMSO which led 530 

to the assimilation of sulfur was observed. The enzyme oxidising DMS to DMSO was 531 

related to multi-component monooxygenases oxidising toluene and similar substrates. 532 

It was termed DMS monooxygenase by the authors (Horinouchi et al. 1997), but this 533 

is inappropriate as the degradation of DMS by this enzyme does not generate MT and 534 

formaldehyde. Similarly Rhodococcus strain SY1 utilised DMS, DMSO and DMSO2 535 

as sulfur sources and in both strains the sequence of oxidation started with DMS 536 

oxidation to DMSO which was oxidised to DMSO2 and further to MSA (Omori et al. 537 

1995). Work on Pseudomonas putida DS1 suggested the latter was then a substrate 538 

for a SsuED type enzyme (Endoh et al. 2003).  539 

 540 

MSA catabolism 541 

A different kind of methanesulfonate monooxygenase exists in methylotrophic 542 

bacteria such as Methylosulfonomonas methylovora which can grow on MSA as a sole 543 

source of carbon and energy (Kelly and Murrell 1999). Its MSA monooxygenase is 544 

composed of four distinct polypeptides. The hydroxylase subunit was composed of a 545 

48 and 20 kDa subunits making up a native protein of around 210 kDa of a α3/β3 546 

structure. Further components were identified as a ferredoxin (32 kDa) and a 547 

reductase (38 kDa). The enzyme subunits are encoded by the genes msmABCD (De 548 

Marco et al. 1999) and the closely linked msmEFGH operon encodes proteins 549 

involved in transport of MSA (Jamshad et al. 2006). Transcriptional analysis showed 550 

that msmEFGH operon was expressed constitutively while msmABCD was induced by 551 

MSA (Jamshad et al. 2006). 552 
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 553 

Ecology of microorganisms degrading DMS and related compounds 554 

Early studies suggested that microorganisms catabolising DMS mainly belonged to 555 

the genera Hyphomicrobium, and Thiobacillus, additional isolation studies have 556 

significantly extended the range of organisms able to grow on DMS (Table 1). In 557 

addition to the shortcomings of microbial community analyses by cultivation-558 

dependent approaches, there are particular difficulties that are often encountered in 559 

isolation of DMS-degrading bacteria (e.g. Smith and Kelly 1988; Suylen and Kuenen 560 

1986). The diversity of cultivable DMS-oxidising bacteria still precludes delineation 561 

of major patterns in their distribution. It is almost certain that the true extent of the 562 

phylogenetic diversity of  DMS-degrading organisms has not yet been identified, 563 

either because organisms are recalcitrant to culturing conditions or due to the capacity 564 

to degrade DMS being a phenotypic trait that is only rarely tested, even in studies of 565 

methylotrophic bacteria. This is most likely due to the low attraction of working with 566 

this smelly compound. The ability to degrade DMS is usually not conserved among 567 

closely related species, i.e. there is no perfect correlation of phylotype and phenotype. 568 

This largely negates the direct application of the widely used cultivation-independent 569 

ribosomal RNA approach for studying DMS degrading microbial populations in the 570 

environment. Nevertheless some investigations on relevant environments, using 16S 571 

rRNA genes as  markers have shown the presence of microbial populations that might 572 

degrade DMS, based on their relatedness to known DMS-degrading strains. For 573 

example, bacteria were found in marine DMS enrichment cultures (Vila-Costa et al. 574 

2006) that were related to marine DMS degrading Methylophaga isolates (Schäfer 575 

2007). Also,  populations of related bacteria were detected in stable isotope probing 576 

experiments with 13C-DMS following a DMSP-producing phytoplankton bloom of 577 
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Emiliania huxleyi in the English Channel (Neufeld et al. 2008).  Further application of 578 

SIP will allow improved definition of the phylogenetic diversity of DMS-degrading 579 

microbial populations in environmental samples, but the approach can only detect 580 

those organisms that assimilate the carbon from DMS. Additional tools that target key 581 

enzymes of DMS metabolism will therefore be required to map the diversity and 582 

activity of DMS degrading microorganisms. This will require new insights into the 583 

metabolism of DMS at a molecular level including studying the biochemistry and 584 

genetics of suitable model organisms in order to obtain a detailed understanding of the 585 

enzymes and genes underpinning DMS degradation across a range of isolates. 586 

Molecular methods targeting functional genes of DMS metabolism will not only allow 587 

the elucidation of patterns in the distribution of DMS-degrading microorganisms in 588 

nature independent of cultivation, but will also highlight particular microbial 589 

populations for targeted isolation. Studying environmentally relevant model 590 

organisms in more detail should also be useful in delineating the physiological 591 

response of DMS degrading microorganisms and their potential to degrade DMS 592 

under varying environmental conditions. Many of the known DMS-degrading bacteria 593 

(compare Table 2) are able to grow on a range of substrates. DMS-degrading 594 

Methylophaga species, for instance, also grow on methanol and methylated amines 595 

(De Zwart et al. 1996; Schäfer 2007), two compounds which are present in the marine 596 

environment in concentrations as high as 50-250nM in the case of methanol in the 597 

tropical Atlantic (Williams et al. 2004). These concentrations are similar to or exceed 598 

those of DMS which are typically in the low nanomolar range (Kettle et al. 1999). 599 

Being presented with more than one growth substrate may have important effects and 600 

the physiological and transcriptional responses of DMS-degrading organisms under 601 

such conditions require further study.  602 
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 603 

Interactions of DMS-degrading microorganisms and plants 604 

The focus of most research on the synthesis and catabolism of DMS has been on the 605 

marine system. There is some evidence for production of DMS and other volatile 606 

sulfur species by plants, but there are few data on emissions from vegetation in 607 

temperate and boreal regions (Watts 2000). The association with plants of microbial 608 

populations degrading DMS and related compounds is therefore of particular interest 609 

for future study.  Aboveground interactions of plants and bacteria occur in the 610 

phyllosphere, which is the site of volatile sulfur emission. Previously, it was shown 611 

that plants harbour diverse populations of epiphytic and endophytic  612 

Methylobacterium species (e.g. Abanda-Nkpwatt et al. 2006; Knief et al. 2008), 613 

which are thought to thrive on methanol released from pectin metabolism in the cell 614 

wall (Galbally and Kirstine 2002). Similarly, it might be expected that DMS emission 615 

from leaves could help to sustain populations able to degrade this substrate. Such 616 

phyllosphere populations would likely affect the net flux of DMS and other volatile 617 

sulfur compounds emitted from plants. Whatever the function is of volatile sulfur 618 

release by plants, organisms degrading these compounds have the potential to affect 619 

the functioning of the biological systems that might rely on volatile compounds. 620 

Emission of volatile sulfur has been suggested as a route for removal of excess sulfur 621 

(see review of Rennenberg 1984) or toxic HS- ions (Saini et al. 1995). A recent report 622 

suggests a role for H2S emission as a plant defence signal in the context of sulfur 623 

induced resistance of crops (Papenbrock et al. 2007). As a major volatile sulfur 624 

species emitted by plants, DMS may have a role that has to be determined as yet.  625 

There is also potential for interactions between plants and C1-sulfur compound 626 

degrading microorganisms belowground. The activity of soil microbial populations 627 
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involved in cycling of organic sulfur compounds is of particular importance for 628 

contributing to soil fertility as the preferred sulfur source of plants is sulfate, but the 629 

majority of sulfur in soils is bound in organic form (Kertesz and Mirleau 2004). 630 

Recent improvements with respect to anthropogenic emissions of sulfur from fossil 631 

fuel combustion have lead to a reduction in man-made sulfate aerosols in the 632 

atmosphere and to a concomitant decrease in the rate of deposition of atmospheric 633 

sulfur (Irwin et al. 2002). In some areas, the decrease in atmospheric S deposition is 634 

leading to increasing incidences of sulfur deficiency for a range of agricultural crops, 635 

such as oilseed rape (Schnug et al. 1995). Evidence for a decline of “natural” sulfur 636 

fertilisation of soils derived from atmospheric sulfur due to fossil fuel combustion is 637 

provided by changes of the sulfur isotope ratio in wheat straw (Zhao et al. 2003). 638 

Consideration of future SO2 emission rates (McGrath and Zhao 1995) or future 639 

climate scenarios indicates that the potential for sulfur starvation in crops is likely to 640 

increase (Hartmann et al. 2008) with important consequences for agricultural 641 

productivity. Previous research has demonstrated that bacterial organosulfur 642 

compound degrading populations in the rhizosphere play an important role in 643 

regenerating sulfate for uptake by crop-plants for instance, but work has so far 644 

focussed on the utilisation of alkane- and arylsulfonates and –sulfates as sulfur 645 

sources for bacteria (Kertesz and Mirleau 2004; Schmalenberger et al. 2008; 646 

Schmalenberger et al. 2009). Further work is needed to fully appreciate the role of 647 

microbial populations degrading C1-sulfur compounds such as DMSO, DMSO2 and 648 

MSA, and the utilisation of these compounds as both sulfur and carbon sources in the 649 

rhizosphere needs to be investigated. The potential importance of DMSO2 and DMSO 650 

degrading methylotrophs in the rhizosphere of plants has been demonstrated by the 651 

work of Borodina et al. (Borodina et al. 2000; Borodina et al. 2002). 652 
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 653 

Outlook 654 

DMS-degrading microorganisms are widely distributed in the environment, but there 655 

is still a lack of insight into their phylogenetic and functional diversity. The 656 

development and application of functional gene probes and stable isotope probing 657 

experiments will allow to decipher patterns in the distribution of DMS degrading 658 

microorganisms in nature. Functional genetic markers based on key enzymes of DMS 659 

metabolism and that of related compounds will also allow to investigate in more detail 660 

the role of DMS degrading organisms in controlling fluxes of volatile sulfur to the 661 

atmosphere and will help to assess their contribution to metabolising organically 662 

bound sulfur and returning inorganic sulfur back to the environment. Clearly, the 663 

emission of DMS from the marine environment is controlled significantly by the 664 

activity of microorganisms. Microbial DMS metabolism affects the flux of DMS to 665 

the atmosphere and thus the composition of the atmosphere and global climate, 666 

therefore, the activity of marine microbial DMS-degrading microorganisms is 667 

ultimately also an important factor that influences the amount of sulfur transported to 668 

the continents where it affects the levels of sulfur in soils. Establishing the 669 

phylogenetic affiliation of DMS degrading organisms in the environment and 670 

identification of the pathways used by microbial populations to remove DMS from the 671 

water column will help to identify the environmental regulation of marine microbial 672 

DMS oxidation. This will contribute to gaining a better understanding of the complex 673 

microbial processes involved in controlling the flux of sulfur from the oceans into the 674 

atmosphere and should be useful to improve the prospects of modelling marine DMS 675 

emissions under future climatic scenarios.  676 

 677 
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Table 1. DMS and related organic sulfur compounds 1312 

Compound Formula 

Dimethylsulfide (DMS) (CH3)2-S 

Dimethylsulfonio-propionic acid (DMSP) (CH3)2-S-CH2-CH2-COOH 

Dimethylsulfoxide (DMSO) (CH3)2-SO 

Dimethylsulfone (DMSO2) (CH3)2-SO2 

Methanethiol (MT) CH3-SH 

Dimethyldisulfide (DMDS) CH3-S-S-CH3 

Methanesulfonic acid (MSA) CH3-SO3H 
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Table 2. Bacterial isolates capable of growth on DMS as a sole source of carbon and energy.   1313 
Species Strain [DMS]MAX  Isolated from Isolation 

substrate 
(concentration) 

Reference 

Klebsiella pneumoniae1 ATCC 9621 N.D. Unknown2 Unknown (Rammler and Zafferoni 
1967) 

Thiobacillus sp. MS1 2.4mM Pinus sp. bark biofilter from a 
cellulose mill. 

DMS (1.6mM) (Sivelä and Sundman 
1975) 

Hyphomicrobium sp. S  N.D. Soil (Wageningen, 
Netherlands) 

DMSO 
(12.8mM) 

(De Bont et al. 1981) 

Thiobacillus thioparus Tk-m 2mM Activated sludge Thiometon 
(6mM) 

(Kanagawa et al. 1982; 
Kanagawa and Kelly 
1986) 

Hyphomicrobium sp. EG 0.1mM Papermill biofilter DMSO (10mM) (Suylen and Kuenen 
1986) 

Thiobacillus sp. E1 2mM Commercial peat DMS (2mM) (Smith 1987) 
Thiobacillus sp. E3 2mM Garden compost DMS (2mM) (Smith 1987) 
Thiobacillus sp. E4 2mM Cattle manure DMS (2mM) (Smith 1987) 
Thiobacillus sp. E5 2mM Marine mud (Plymouth, UK) DMS (2mM) (Smith 1987) 
Thiobacillus sp. E7 2mM Sphagnum sp. moss from a 

deodorisation unit 
DMDS (2mM) (Smith 1987) 

Thiobacillus thioparus E6 2mM Pond water (Coventry, UK) DMDS (2mM) (Smith and Kelly 1988) 
Hyphomicrobium sp. I55 N.D. Peat biofilter DMS (1mM) (Zhang et al. 1991) 
Thiobacillus thioparus DW44 N.D. Peat biofilter Thiosulfate 

(20mM) 
(Cho et al. 1991) 

Thiobacillus sp. K4 N.D. Biofilter CS2 (Plas et al. 1991) 
Thiobacillus sp. T5 1.3mM Marine microbial mat (Texel, 

Netherlands) 
Thiosulfate 
(10mM) 

(Visscher et al. 1991) 

                                                 
1 “Aerobacter aerogenes”. 
2 Isolation details of this strain do not appear in the literature. 
N.D. not determined 
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Thiobacillus sp. ANS-1 N.D. Tidal sediment (Georgia, 
USA) 

DMS (0.5mM) (Visscher and Taylor 
1993b) 

Hyphomicrobium sp. VS 1mM Activated sludge DMS (15µM) (Pol et al. 1994) 
Desulfotomaculum sp. TDS2 N.D. Thermophilic fermenter sludge DMS (5mM) 

and 10mM 
sulfate) 

(Tanimoto and Bak 1994) 

Desulfotomaculum sp. SDN4 N.D. Thermophilic fermenter sludge DMS (5mM) 
and 5mM 
nitrate 

(Tanimoto and Bak 1994) 

Methylophaga sulfidovorans RB-1 2.4mM Marine microbial mat (Texel, 
Netherlands) 

DMS (1.5mM) (de Zwart et al. 1996) 

Hyphomicrobium sp. MS3 N.D. Garden soil (Ghent, Belgium) DMS/DMDS 
(1.4/1.1mM) 

(Smet et al. 1996) 

Xanthobacter tagetidis TagT2C 2.5mM Tagetes patula rhyzosphere T2C(2.5mM) (Padden et al. 1997) 
Pseudonocardia asaccharolytica 580 N.D. Animal rendering plant 

biofilter 
DMDS (1mM) (Reichert et al. 1998) 

Pseudonocardia sulfidoxydans 592 N.D. Animal rendering plant 
biofilter 

DMS (0.5mM) (Reichert et al. 1998) 

Starkeya novella3 SRM N.D. Sewage (Kwangju, South 
Korea) 

Thiosulfate 
(63mM) 

(Cha et al. 1999) 

Thiocapsa roseopersicina M11 1mM Marine microbial mat 
(Mellum, Germany) 

Sulfide 
(1.6mM) 

(Jonkers et al. 1999) 

Methylobacterium podarium FM1 N.D. Homo sapiens foot MMA (20mM) (Vohra 2000) 
Hyphomicrobium sulfonivorans S1 N.D. Garden soil (Warwickshire, 

UK) 
DMSO2 
(10mM) 

(Borodina et al. 2002) 

Arthrobacter sulfonivorans ALL/A N.D. Allium aflatunense 
rhyzosphere 

DMSO2 
(10mM) 

(Borodina et al. 2002) 

Arthrobacter sulfonivorans ALL/B N.D. Allium aflatunense 
rhyzosphere 

DMSO2 
(10mM) 

(Borodina et al. 2002) 

Arthrobacter methylotrophus TGA N.D. Tagetes minuta rhyzosphere DMSO2 (Borodina et al. 2002) 

                                                 
3 “Thiobacillus novellus”. 
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(10mM) 
Methylobacterium podarium FM4 1mM Homo sapiens foot MMA (20mM) (Anesti et al. 2004) 
Hyphomicrobium sulfonivorans CT N.D. Homo sapiens teeth DMS (1mM) (Anesti et al. 2005) 
Hyphomicrobium sulfonivorans DTg N.D. Homo sapiens tongue DMS (1mM) (Anesti et al. 2005) 
Methylobacterium thiocyanatum MM4 N.D. Homo sapiens tongue MMA (20mM) (Anesti et al. 2005) 
Methylobacterium extorquens MM9 N.D. Homo sapiens tongue Methionine 

(5mM) 
(Anesti et al. 2005) 

Methylobacterium sp. MM10 N.D. Homo sapiens tongue Cysteine 
(5mM) 

(Anesti et al. 2005) 

Micrococcus luteus MM7 N.D. Homo sapiens teeth MMA (20mM) (Anesti et al. 2005) 
Bacillus licheniformis 3S(b) N.D. Homo sapiens gingivae DMS (1mM) (Anesti et al. 2005) 
Bacillus licheniformis 2Tgb N.D. Homo sapiens tongue DMS (1mM) (Anesti et al. 2005) 
Brevibacterium casei 3Tg N.D. Homo sapiens tongue DMS (1mM) (Anesti et al. 2005) 
Brevibacterium casei 3S(a) N.D. Homo sapiens gingivae DMS (1mM) (Anesti et al. 2005) 
Mycobacterium 
fluoranthenivorans 

DSQ3 N.D. River sediment (London, UK) DMA (10mM) (Boden 2005; Boden et 
al. 2008) 

Methylophaga sp. DMS001 N.D. Emiliania huxleyi culture DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS002 N.D. Emiliania huxleyi culture DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS003 N.D. Emiliania huxleyi culture DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS004 N.D. Emiliania huxleyi culture DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS007 N.D. Emiliania huxleyi culture DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS009 N.D. Emiliania huxleyi culture DMS (50µM) (Schäfer 2007) 
“Methylophaga thiooxidans”4 DMS010 N.D. Emiliania huxleyi culture DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS011 N.D. Emiliania huxleyi culture DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS021 N.D. Rock pool water (Coral Beach, 

UK) 
DMS (50µM) (Schäfer 2007) 

Methylophaga sp. DMS026 N.D. Sea water (English channel) DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS039 N.D. Sea water (Achmelvich, UK) DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS040 N.D. Sea water (Achmelvich, UK) DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS043 N.D. Sea water (Achmelvich, UK) DMS (50µM) (Schäfer 2007) 

                                                 
4 “Methylophaga sp. DMS010”. 
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Methylophaga sp. DMS044 N.D. Sea water (Achmelvich, UK) DMS (50µM) (Schäfer 2007) 
Methylophaga sp. DMS048 N.D. Rock pool water (Coral Beach, 

UK) 
Formate 
(10mM) 

(Schäfer 2007) 

Methylophaga 
aminisulfidivorans5 

MP* N.D. Sea water (Mokpo, South 
Korea) 

Methanol 
(220mM) 

(Kim et al. 2007) 

Hyphomicrobium facile - N.D. Marsh sediment (De Bruuk, 
Netherlands) 

DMS (50µM) (Haaijer et al. 2008) 

Microbacterium sp. NTUT26 N.D. Wastewater sludge from a 
wood pulp factory (Taiwan) 

DMS (1.6mM) (Shu and Chen 2009) 

Desulfosarcina sp. SD1 N.D. Mangrove sediment 
(Tanzania)  

DMS (initially 
20µM, 
additions rising 
to 100 µM ) 

(Lyimo et al. 2009) 

 1314 
 1315 

1316 

                                                 
5 “Methylophaga aminosulfidovorans” 
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 1317 
Table 3. Bacterial isolates that are capable of oxidising DMS to DMSO 1318 

Species Strain DMS oxidation 
product 

Isolated from Isolation substrate Metabolism producing 
DMSO 

Reference 

Thiocystis A DMSO Salt Pond (MA, 
USA) 

Sulfide Anoxygenic photosynthesis Zeyer et al. 1987 

Delftia acidovorans DMR-11 DMSO Peat biofilter Peptone Anaerobic 
chemoheterotrophy 

Zhang et al. (1991) 

Nitrosomonas 
europaea 

 DMSO    Juliette et al.  

Methylomicrobium 
pelagicum 

NI DMSO Seawater (Japan) Methane Aerobic methane oxidation Fuse 1998 

Sagittula stellata E-37 DMSO Seawater enrichment 
culture on high 
molecular weight 
fraction of pulp mill 
effluent 

Yeast 
extract/tryptone 

Aerobic heterotrophic  
growth 

Gonzalez et al. 1997 

Rhodovulum 
sulfidophiulum 

SH1 DMSO Seawater Bicarbonate Anoxygenic phototrophic 
growth 

Hanlon et al. 1994 

Acinetobacter sp. 20B DMSO Soil (Japan) Succinate  Horinouchi et al. 
1997 

Pseudomonas 
fluorescens 

76 
DMSO 

Unknown Unknown Heterotrophic growth Ito et al. 2007 

Thiocapsa 
roseopersicina 

M1 DMSO Marine microbial 
mat (Mellum, 
Germany) 

Sulfide Phototrophic growth Visscher and van 
Gemerden 1991 
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Figure captions 1319 

 1320 

Figure 1. Simplified scheme of the major pathways of DMS production and 1321 

transformation in the marine environment. DMS emission into the atmosphere is a 1322 

source of heat-reflecting aerosols that can serve as cloud condensation nuclei and 1323 

thereby affect the radiative balance of the Earth, thus linking DMS production to 1324 

climate regulation. Atmospheric transport of DMS and its oxidation products and 1325 

deposition in the terrestrial environment provides an important link in the global 1326 

sulfur cycle. The role of microbes as sinks for DMS is discussed in the text. 1327 

 1328 

Figure 2. Major pathways of dimethylsulfoniopropionate (DMSP) degradation. 1329 

DMSP can be demethylated to methylmercaptopropionic acid (MMPA), which can be 1330 

either demethylated to mercaptopropionic acid (MPA) or demethiolated to acrylate. 1331 

The pathway leading to DMS from DMSP is also known as the ‘cleavage’ pathway, 1332 

the responsible enzymes have been referred to as DMSP-lyases, but are in fact 1333 

enzymes belonging to different protein families and exhibit different activities. These 1334 

give rise to acrylate or 3-hydroxypropionate (3-HP). DMS can be oxidised by 1335 

methyltransferases or DMS monooxygenases to methanethiol, or is oxidised to 1336 

DMSO, for instance by DMS dehydrogenase. Refer to text for references. 1337 

 1338 

Figure 3. Phylogenetic tree depicting the genetic diversity of bacterial isolates 1339 

capable of assimilating carbon from DMS (overlayed in pink) or degrading DMS to 1340 

DMSO (green). The tree is based on an alignment of small subunit ribosomal RNA 1341 

gene sequences and was derived using the Neighbour joining option in MEGA4. 1342 

Bootstrap values are of 100 replicates.  1343 
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 1344 

Figure 4. Scheme showing the biochemical and chemical interconversions of C1-1345 

sulfur compounds and key intermediates in carbon and sulfur metabolism that have 1346 

been observed across a wide range of microorganisms, refer to Table 1 for chemical 1347 

formulae of the C1-sulfur compounds. Either the enzymes/processes are given or an 1348 

organism in which the conversion has been observed are given as an example, for 1349 

further detail refer to text. 1, MSA monooxygenase; 2, FMNH2-dependent DMSO2 1350 

monooxygenase (Endoh et al. 2005); 3, DMSO2 dehydrogenase, 4, Rhodococcus SY1 1351 

(Omori et al. 1995); 5 DMSO reductase; 6, DMS dehydrogenase; 7, DMS 1352 

monooxygenase / DMS methyltransferase; 8 methylation of MT; 9, chemical 1353 

oxidation of MT to DMDS; 10, DMDS reductase (Smith and Kelly 1988); 11, MT 1354 

oxidase; 12, bacterial inorganic sulfur oxidation pathways; 13, sulfite oxidase; 14, 1355 

formaldehyde oxidation (various enzymes); 15, formate dehydrogenase; 16, Calvin-1356 

Benson-Bassham cycle; 17, serine cycle or ribulose monophosphate cycle. 1357 

1358 
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Figure 1 1359 
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Figure 2 1363 
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Figure 3. 1367 
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Figure 4 1370 
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