

University of Warwick institutional repository: http://go.warwick.ac.uk/wrap

This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information.

To see the final version of this paper please visit the publisher's website. Access to the published version may require a subscription.

Author(s): Hendrik Schäfer, Natalia Myronova and Rich Boden Article Title: Microbial degradation of dimethylsulphide and related C1sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere

Year of publication: 2010 Link to published version: http://dx.doi.org/ 10.1093/jxb/erp355 Publisher statement: *This is a pre-copy-editing, author-produced PDF of an article accepted for publication in* Journal of Experimental Botany *following peer review. The definitive publisher-authenticated version* Schäfer, H. et al. (2010). Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. Journal of Experimental Botany, Vol. 61(2), pp. 315-334 is available online at: *http://jxb.oxfordjournals.org/cgi/content/full/61/2/315* Microbial degradation of dimethylsulfide and related C₁-sulfur compounds: organisms and pathways controlling fluxes of sulfur in the biosphere

Hendrik Schäfer^{*1}, Natalia Myronova¹, Rich Boden²

¹ Warwick HRI, University of Warwick, Wellesbourne, CV35 9EF, UK ² Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK

* corresponding author Warwick HRI University of Warwick Wellesbourne CV35 9EF

> Tel: +44 2476 575052 <u>H.Schaefer@warwick.ac.uk</u>

For submission to: Journal of Experimental Botany

1 Abstract

2 Dimethylsulfide (DMS) plays a major role in the global sulfur cycle. It has 3 important implications for atmospheric chemistry, climate regulation, and 4 sulfur transport from the marine to the atmospheric and terrestrial 5 environment. In addition, DMS acts as an info-chemical for a wide range of 6 organisms ranging from microorganisms to mammals. Microorganisms that 7 cycle DMS are widely distributed in a range of environments, for instance oxic 8 and anoxic marine, freshwater and terrestrial habitats. Despite the importance 9 of DMS that has been unearthed by many studies since the early 1970s, the 10 understanding of the biochemistry, genetics and ecology of DMS-degrading 11 microorganisms is still limited. This review examines current knowledge on the 12 microbial cycling of DMS and points out areas for future research that should 13 shed more light on the role of organisms degrading DMS and related 14 compounds in the biosphere.

15

16 **DMS and related organic sulfur compounds**

17 Volatile sulfur compounds play an important role within the biogeochemical cycle of 18 sulfur. In being able to transfer from the liquid into the gas phase and vice versa, 19 reduced volatile sulfur compounds have particular importance for affecting the 20 composition and chemistry of the atmosphere. Although carbonyl sulfide (COS) has 21 the highest concentration of the reduced volatile sulfur compounds in the atmosphere, 22 dimethylsulfide (DMS) has the highest source strength (Watts 2000) and is thought of 23 as a climate cooling gas (Charlson *et al.* 1987). DMS is produced by a variety of 24 chemical and biological processes, both natural and man-made, and it is itself subject 25 to a wide variety of chemical and biological transformations in the environment. 26 Some aspects of the microbial metabolism of the related compounds (see Table 1)

dimethylsulfoniopropionate (DMSP), dimethylsulfoxide (DMSO), dimethylsulfone
(DMSO₂), methanethiol (MT) and methanesulfonic acid (MSA) are also considered
where appropriate as these occur as precursors and/or degradation products of DMS.

31 Industrial roles of DMS and related compounds.

32 From an anthropocentric point of view, DMS and the related compounds DMSO and 33 DMSO₂ are of particular interest in terms of their roles as flavour compounds and 34 their industrial applications. DMS is a colourless liquid with a boiling point of 41°C. 35 and has a disagreeable odour akin to that of rotting cabbage. In our daily lives it is 36 often present at low concentrations as an important flavour compound in a wide range 37 of foods, including raw and processed fruits and vegetables such as tomatoes, 38 sweetcorn, grapes, asparagus and brassicas (Bills and Keenan 1968; Buttery et al. 39 2002; Kubec et al. 1998; Miers 1966; Segurel et al. 2004; Ulrich et al. 2001; Wong 40 and Carson 1966), cheeses (McGugan 2002; Milo and Reineccius 1997) honey (de la 41 Fuente et al. 2007), and truffles (Talou et al. 1987), for instance. DMS is equally 42 important as a flavour compound in a variety of beverages including beers (Meilgaard 43 2002), wines (e.g. Segurel et al. 2004), orange and grapefruit juice (Shaw et al. 1980), 44 and is also found in roast coffee (Rhoades 2002) and processed milk (Keenan and 45 Lindsay 1968). DMS can be part of the essential aroma profile but also be of concern 46 as it can contribute to off-notes.

DMSO is a water-soluble polar organic solvent that is useful in a range of
industries, and is also relevant as a pharmaceutical drug delivery agent that can
facilitate the movement of various compounds across lipid membranes (Leake 1967).
Both DMSO and DMSO₂ are found in a wide range of foods including milk (Pearson *et al.* 1981). Humans excrete 4-11mg of DMSO₂ per day via urine. Marketed as

methylsulfonylmethane, it is also a constituent of some dietary supplements (seeParcell 2002 for a review).

54

55 Environmental significance of DMS and related compounds

56 The roles of C_1 -sulfur compounds in an industrial and human context described above 57 are eclipsed by the major functions of these compounds in the environment, which 58 have stimulated a substantial body of research over the last three decades. Chemical 59 weathering of rock and the water solubility of sulfate lead to loss of sulfur from the 60 continents due to surface water runoff to the oceans. The oceans are rich in sulfur, 61 having a sulfate concentration of approximately 28mM. Emission of sulfur species 62 from the marine environment into the atmosphere, their atmospheric transport and 63 subsequent deposition by wet and dry deposition on the continents are thus an 64 important link in the sulfur cycle, affording sulfur transport from the oceans to the 65 continents (compare Figure 1). Prior to the work by Lovelock and colleagues it was 66 assumed that hydrogen sulfide was the volatile sulfur compound emitted into the 67 atmosphere that provided a precursor for sulfate aerosols in marine air (Saltzman and 68 Cooper 1989), however Lovelock and colleagues showed that dimethylsulfide was 69 much more abundant in the marine boundary layer than hydrogen sulfide (Lovelock et 70 al. 1972). Based on these findings it was realised that DMS provides a route for sulfur 71 transport between the oceans and the terrestrial environment (Nguyen et al. 1978). It 72 is now well established that DMS is the most abundant form of biogenic sulfur input 73 into the atmosphere; estimates range from 19 to 50 Tg of sulfur that are emitted as 74 DMS from the marine environment per annum (Andreae 1990), which translates to around 200 million tons of sulfur, or roughly to 0.66 tons of sulfur emitted per km² of 75 76 ocean surface on average.

78 Atmospheric oxidation of DMS and the CLAW hypothesis

79 In the atmosphere, DMS is subject to chemical and photochemical oxidation resulting 80 in a range of organic and inorganic sulfur species, mainly sulfate, sulfur dioxide and 81 methanesulfonic acid (MSA) (Hatakeyama et al. 1982; Panter and Penzhorn 1980; 82 Pham et al. 1995), but DMSO and DMSO₂ are also formed (Harvey and Lang 1986; 83 Zhu et al. 2003), and DMSO has been detected in rain water (Kiene and Gerard 1994; 84 Ridgeway et al. 1992; Sciare et al. 1998). The atmospheric residence time of DMS is 85 short, only about a day, and the main atmospheric sinks are believed to be the daytime 86 oxidation with hydroxyl radicals and reaction with nitrate radicals during the night; 87 however, it appears that the reactions removing DMS and their rate constants are 88 complex and not yet well understood in detail (see Barnes *et al.* 2006 for a review). 89 As indicated above, the atmospheric transport and subsequent dry and wet deposition 90 of these sulfur compounds on the continents provide an important link in the global 91 sulfur cycle. In soils, atmospherically derived sulfur contributes to the pool of sulfur 92 available for assimilation as a plant nutrient, directly as sulfate, or indirectly after 93 microbial regeneration of sulfate from organic sulfur compounds such as MSA, 94 DMSO and DMSO₂ (see Kertesz 2000 for a review). The atmospheric oxidation 95 products of DMS form aerosol particles which have direct and indirect effects that 96 lead to negative temperature forcing of the Earth-atmosphere system, directly 97 reflecting solar radiation and indirectly by providing particles that can act as cloud 98 condensation nuclei (CCN) in the atmosphere. An increase in the number of CCN 99 facilitates the formation of clouds that have a higher number of relatively smaller 100 water droplets, thereby increasing the cloud albedo and decreasing the amount of solar 101 radiation to reach the Earth surface. Hence, atmospheric DMS has been linked to 102 climate regulation and is considered as a climate-cooling gas (Charlson et al. 1987).

103	Charlson and colleagues hypothesised that production of DMSP by phytoplankton in
104	the oceans was the basis of a geophysiological feedback loop that regulates global
105	climate, also known as the CLAW hypothesis according to the first letters of the
106	authors' surnames (Charlson et al. 1987). The CLAW hypothesis states that an
107	increase in solar irradiation and climate warming stimulates phytoplankton growth in
108	the oceans and leads to an increased production of DMSP in the surface ocean causing
109	a greater flux of DMS into the atmosphere. The associated increase of DMS-derived
110	aerosol particles in the atmosphere causes more solar radiation to be reflected, either
111	directly by aerosols or indirectly through intensified formation of high albedo clouds;
112	ultimately these consequences of DMS emission are predicted to cause a cooling of
113	the Earth's climate. Climate cooling and reduction of the amount of
114	photosynthetically active radiation reaching the ocean surface, due to increased
115	albedo, cause a decrease in phytoplankton growth and lead to a reduction of DMSP
116	production in the ocean, a concomitant decrease in DMS emission and therefore an
117	easing of the aforementioned negative temperature forcing; the phytoplankton
118	DMSP/DMS system is therefore suggested to form a negative feedback loop
119	(Charlson <i>et al.</i> 1987).
120	Vallina and Simó found that marine DMS concentrations are positively
121	correlated with solar radiation dose (Vallina and Simó 2007) which might lend
122	support to the CLAW hypothesis as an increase of solar radiation would be expected
123	to cause climate warming and increased DMS emission. Different approaches of
124	modelling the expected increase of marine DMS production under global warming
125	scenarios, however, have suggested only a modest 1-2% increase in DMS production,
126	which is much weaker than observable seasonal variations of DMS (Bopp et al. 2003;
127	Vallina et al. 2007). Nevertheless, studies have confirmed that DMS-derived aerosol

128	can be a significant source of CCN especially in the remote marine atmosphere that
129	receives little dust and aerosol from the continents (Ayers et al. 1991; Vallina et al.
130	2006), but the interactions and pathways in atmospheric DMS oxidation are complex
131	and not fully understood precluding quantitative modelling (Ayers et al. 1997). The
132	view that emissions of DMS from the marine environment have implications for
133	climate and atmospheric chemistry is widely supported, but there is as yet no
134	unambiguous evidence for the validity of the CLAW hypothesis.
135	
136	Sources of DMS
127	Marina anvironment
137	Marine environment
137	Various estimates of the flux of DMS to the atmosphere have been made (range of 15-
138	Various estimates of the flux of DMS to the atmosphere have been made (range of 15-
138 139	Various estimates of the flux of DMS to the atmosphere have been made (range of 15-109 Tg a ⁻¹) but a review of the sources of DMS suggests to adopt a figure of
138 139 140	Various estimates of the flux of DMS to the atmosphere have been made (range of 15-109 Tg a^{-1}) but a review of the sources of DMS suggests to adopt a figure of approximately 24.49 +/- 5.3 Tg a^{-1} (Watts 2000). The strength of the marine
138 139 140 141	Various estimates of the flux of DMS to the atmosphere have been made (range of 15-109 Tg a^{-1}) but a review of the sources of DMS suggests to adopt a figure of approximately 24.49 +/- 5.3 Tg a^{-1} (Watts 2000). The strength of the marine environment as a source of DMS has been estimated at around 21 Tg a^{-1} and is
138 139 140 141 142	Various estimates of the flux of DMS to the atmosphere have been made (range of 15-109 Tg a^{-1}) but a review of the sources of DMS suggests to adopt a figure of approximately 24.49 +/- 5.3 Tg a^{-1} (Watts 2000). The strength of the marine environment as a source of DMS has been estimated at around 21 Tg a^{-1} and is therefore by far the most important source totalling around 80% of the total DMS

146 environment. DMSP is a metabolite of certain species of macroalgae (Challenger and

147 Simpson 1948; Van Alstyne and Puglisi 2007) and phytoplankton, in particular in

148 dinoflagellates and in species such as the Haptophytes *Emilinia huxleyi* and

149 *Phaeocystis* (Liss *et al.* 1994; Malin and Kirst 1997). Algae can accumulate DMSP to

150 high internal concentrations reaching to hundreds of mM (reviewed in Stefels 2000;

151 Yoch 2002). Corals and their zooxanthellae also contain large amounts of DMSP (Hill

152 *et al.* 1995), which can be the source of high local DMS concentrations (approx 1μ M)

153 in coral reefs, for instance in coral mucus ropes (Broadbent and Jones 2004). It has 154 been suggested that DMSP has a role as an osmolyte (Kiene et al. 2000; Stefels 2000), 155 an antifreeze compound (Kirst et al. 1991) or an antioxidant (Sunda et al. 2002), but 156 its exact role remains unresolved and it is possible that it serves distinct roles in 157 different organisms (Otte et al. 2004). Some vascular plants also contain DMSP, for 158 instance some halophytes of the genus Spartina and Wollastonia biflora contain 159 significant amounts of DMSP, and the molecule has also been detected in sugar cane 160 (see Otte et al. 2004 for a review). 161 Upon lysis of DMSP-containing organisms, for instance by viral attack (Malin 162 et al. 1998) or zooplankton grazing (Wolfe et al. 1994; Wolfe and Steinke 1996), 163 DMSP becomes dissolved in seawater. Microbial degradation of dissolved DMSP 164 occurs through a number of different pathways (Howard et al. 2006; Johnston et al. 165 2008) (compare Figure 2), and the majority of DMSP is not degraded to DMS 166 (González et al. 1999; Kiene et al. 2000; Moran et al. 2003; Yoch 2002). Until 167 recently, the enzyme cleaving DMSP was generally referred to as "DMSP lyase", but 168 the exact mechanisms by which DMS is formed from DMSP had not been 169 investigated in any detail. Using genetic analysis of bacteria that form DMS from 170 DMSP, Johnston and coworkers have described three different pathways of DMSP-171 dependent DMS formation that involve enzymes that are members of different 172 enzyme families (Curson et al. 2008; Johnston et al. 2008; Todd et al. 2009; Todd et 173 al. 2007). 174 Dissolved DMSP and/or DMS derived from it has been shown to be a 175 powerful signalling molecule that attracts certain bacteria, e.g. chemotaxis by 176 Silicibacter TM1040 (Miller et al. 2004), but also affects the swimming (copepods, 177 harbour seals, coral reef fish) and flying (petrels, shearwaters) behaviour of a range of

178 organisms presumably as a foraging cue (see review by Johnston et al. 2008). A role 179 of DMS as an info-chemical is also indicated by studies demonstrating that it allowed 180 dogs and pigs to detect truffles in soil (Talou et al. 1990) and a study that showed the 181 importance of volatile organic sulfur compounds including DMS, DMDS and 182 dimethyltrisulfide (DMTS) in the "bouquet of death" that attracted burying beetles to 183 carcasses of mice (Kalinová et al. 2009). 184 The majority of DMS emission is from open ocean environments, but microbial 185 mats and intertidal sediments are also important sources of DMS (Steudler and 186 Peterson 1984). Several studies have investigated the cycling of DMS and related 187 compounds in such ecosystems (Jonkers et al. 1998; Kiene 1988; 1990; Kiene and 188 Capone 1988; Lymio et al. 2009; Visscher et al. 2003; Visscher et al. 1991). DMSP-189 producing plants and macroalgae, e.g. the salt marsh cord grass Spartina alterniflora 190 or the green algal seaweed Ulva spp., can contribute to the production of DMS in such 191 ecosystems (Kiene and Capone 1988 and references therein), however, other

192 pathways of DMS formation may be more important in anoxic sediments, including

193 reduction of DMSO, metabolism of sulfur-containing amino acids, and methylation of

194 sulfide (Jonkers et al. 1996; Kiene and Capone 1988; Lomans et al. 1997; Visscher et

195 *al.* 2003; Visscher *et al.* 1991).

196

197 Terrestrial sources of DMS

198 DMS formation also occurs in terrestrial and freshwater environments, and, with

199 exceptions (see below), DMS formation in these environments is not due to DMSP

- 200 degradation. As noted above for coastal sediments, the processes involved are
- 201 respiratory reduction of DMSO (Zinder and Brock 1978c), degradation of sulfur-
- 202 containing amino acids (Kadota and Ishida 1972; Kiene and Capone 1988), and

anaerobic degradation of methoxylated aromatic compounds (Bak *et al.* 1992;

Lomans et al. 2001). Methylation of sulfide in aerobic microorganisms due to the

action of thiol-S methyltransferase has been demonstrated and predominantly gives
rise to MT (Drotar *et al.* 1987).

207 Overall, the emission of DMS from terrestrial and freshwater sources has not 208 been studied as intensively as that from the marine environment and as yet there is not 209 a clear view of the relative importance of different production mechanisms. Wetland 210 emission rates of volatile sulfur compounds, including DMS, were subject to diel 211 variations and an influence of plant communities was noted; in most wetlands, 212 emission rates were insignificant compared to those measured in intertidal sediments 213 dominated by Spartina (Cooper et al. 1989). Sphagnum-dominated peat bogs were 214 shown to evolve both DMS and MT, the formation of both compounds was 215 biological, and methylation of MT was the main source of DMS (Kiene and Hines 216 1995). Soils may also emit volatile organic sulfur compounds including DMS and 217 fluxes can be enhanced by waterlogging (Banwart and Bremner 1976), but soils are 218 not considered a major source of atmospheric sulfur (Andreae 1990; Watts 2000) and 219 volatilisation of sulfur compounds is not thought to contribute significantly to loss of 220 sulfur from soils (Banwart and Bremner 1976). Recently, DMS formation and 221 degradation was observed in deeper layers (mainly below 1 m depth) along the profile 222 of an agricultural soil in Australia. The so-called agricultural sulfate soil investigated 223 in that study is in close proximity to a tidal inlet, may receive sporadic inputs of 224 seawater and thus is characterised by relatively high sulfate concentrations. It was 225 suggested that DMS might be a potential source of the SO₂ emissions that have been 226 observed from this type of soils (Kinsela et al. 2007). The decomposition of plant 227 residues in soil, especially those of crucifer species with a high content of sulfur-

228	containing glucosinolates, can generate a number of volatile sulfur compounds
229	including DMS, MT and DMDS (Lewis and Papvizas 1970). Such locally enhanced
230	production of volatile sulfur compounds after amendation of soils with crucifer
231	residues can be exploited in controlling soil borne phytopathogenic fungi. The bio-
232	fumigant effects of crucifer tissue amendation were suggested to be mainly due to
233	isothiocycanates (e.g. Gamliel and Stapleton 1993) with additional contribution by
234	less toxic volatile sulfur species such as DMDS (Bending and Lincoln 1999). A
235	combination of isothiocyanates and DMS was potent in inhibiting the activity of soil
236	nitrifying bacteria (Bending and Lincoln 2000).
237	In freshwater environments, DMS and MT production may occur in anoxic
238	regions of stratified lakes and their sediments, as a result of sulfide methylation and/or
239	degradation of methoxylated aromatic compounds (Fritz and Bachofen 2000; Lomans
240	et al. 2001b; Lomans et al. 1997; Richards et al. 1991), but production of DMS has
241	also been detected in oxic layers of freshwater lakes (e.g. Richards et al. 1991). DMS
242	in oxic freshwater lakes may be derived from phytoplankton and DMS release by
243	phytoplankton cultures was stimulated by methionine (Caron and Kramer 1994).
244	Although DMSP is not generally considered a major DMS precursor in freshwater
245	environments, DMS production in Lake Kinneret (Israel) appeared to be due to
246	blooms of the DMSP-containing freshwater dinoflagellate Peridinium gatunense
247	(Ginzburg et al. 1998). In a study of freshwater river sediments, Yoch and colleagues
248	found that DMS was produced upon addition of DMSP to sediment slurries and
249	identified DMS-producing Gram-positive bacteria (Yoch et al. 2001), demonstrating
250	that the genetic potential for DMSP degradation was present far away from the marine
251	environment, although it was noted by the authors that the enzyme systems
252	responsible for DMS production could have cognate substrates other than DMSP.

254 DMS production by plants

255	Plants may be the main source of DMS in the terrestrial environment with a source
256	strength estimated at 3.2 Tg a ⁻¹ , of which half is thought to be derived from tropical
257	forests (Watts 2000). Plants emit a range of volatile sulfur compounds including H ₂ S,
258	DMS, MT, COS, and CS ₂ , with H_2S and DMS usually the dominant species, but
259	emission rates are variable and dependent on many factors (reviewed by Schröder
260	1993). In a study of environmental conditions that affect volatile sulfur emissions
261	from plants, Fall and coworkers (Fall et al. 1988) showed that DMS was the dominant
262	sulfur compound emitted by a range of crops including corn, alfalfa and wheat. Sulfur
263	fluxes were positively correlated with temperature and light intensity but were
264	independent of the pCO ₂ (Fall et al. 1988). A similar correlation of DMS emission
265	rates and temperatures was found in a study of the gas exchange of DMS and COS of
266	trees, but DMS emission was not a universal feature across the tree species tested and
267	it was concluded that the contribution of tree-derived DMS to the global sulfur budget
268	is negligible in temperate regions (Geng and Mu 2006).
260	

269

270 Anthropogenic sources of DMS

271 In an industrial context, DMS and other reduced sulfur compounds such as

272 methanethiol, dimethyldisulfide (DMDS) and hydrogen sulfide are products in the

273 wood pulping process, e.g. in the paper industry, and can occur in significant amounts

in liquors of the so-called Kraft process where it is a byproduct of the Swern oxidation

- 275 of alcohols to aldehydes (Omura and Swern 1978). The food and brewing industry,
- agriculture and animal farming are also responsible for DMS emissions (Kim *et al.*
- 277 2007; Rappert and Müller 2005). Anthropogenic sources of DMS are thought to be

278	responsible for less than 1% of the total sources, but the emission of volatile sulfur
279	compounds can be significant at the local scale. Due to the low odour thresholds of
280	volatile organic sulfur compounds these can be a cause of nuisance odours (Zhu et al.
281	2002), for instance from wastewater treatment of paper manufacture (Catalan et al.
282	2008), or in the treatment of other sewage with high DMSO concentrations, caused by
283	reduction of DMSO to DMS under anaerobic conditions (Glindemann et al. 2006).
284	Industrial operations providing composts for mushroom production (Derikx et al.
285	1990; Noble et al. 2001), field spreading of manure and application of biosolids, as
286	well as livestock operations are further DMS sources linked to the agriculture and
287	farming industries (Rappert and Müller 2005). DMS is also emitted from landfills, but
288	is less abundant than hydrogen sulfide (Kim et al. 2005).
200	

290

291 Sinks for DMS and related compounds

292 Given the role ascribed to DMS in affecting atmospheric chemistry and climate, it is 293 of interest to understand the factors that control the flux of DMS to the atmosphere. In 294 surface seawater the DMS concentration is determined by the rate of production 295 (mainly) from DMSP, and a variety of loss terms. Sea-to-air transport is dependent on 296 hydrological and meteorological parameters, for instance wind speed (Liss and 297 Merlivat 1986) and wave action (Watson et al. 1991). DMS is also photochemically 298 oxidised in surface water to DMSO (Brimblecombe and Shooter 1986). Although 299 large quantities of DMS are produced in the upper mixed layer of the oceans, only a 300 small fraction of DMS escapes to the atmosphere, while the majority (estimated at 301 \sim 90%) is degraded in the mixed surface layer due to microbial processes, including its 302 use as either a carbon or sulfur source, or its biological degradation to DMSO (Archer

- *et al.* 2002; Hatton *et al.* 2004; Kiene and Bates 1990). The microorganisms and the
 microbial metabolism of DMS are discussed below.
- 305

306 DMS-degrading microorganisms

307 The first insights into the microbiology of DMS-degrading organisms were obtained 308 by studies of *Thiobacillus* and *Hyphomicrobium* species beginning in the 1970s with 309 the isolation of *Thiobacillus* strains from a pine bark biofilter that was used to remove 310 odorous compounds such as H₂S, MT, DMS and DMDS from effluents of a paper 311 pulp factory in Finland where these compounds were produced from methoxy groups 312 of lignin in the paper pulping process (Sivelä and Sundman 1975). Further 313 Thiobacillus species and isolates of Hyphomicrobium were then obtained that grew on 314 DMS as sole carbon source (De Bont et al. 1981; Kanagawa and Kelly 1986; Pol et 315 al. 1994; Smith and Kelly 1988; Suylen and Kuenen 1986). A diverse range of 316 microorganisms able to degrade DMS has since been isolated from a wide variety of 317 environments, including soils, plant rhizospheres, activated sludge, biofiltration 318 operations, seawater, cultures of marine algae, marine and freshwater sediments, 319 microbial mats and also humans from which DMS degraders have been isolated from 320 feet and mouth samples. Table 2 lists species that have been shown to grow at the 321 expense of DMS, while Figure 3 illustrates the identity of DMS-degrading organisms 322 in a phylogenetic context for representative strains with known 16S rRNA genes. 323 324 Microbial metabolism of DMS 325 There are numerous biological pathways that contribute to DMS degradation in the

- environment; in principal these serve (i) the utilisation of DMS as a carbon and
- 327 energy source, (ii) its oxidation to DMSO by phototrophic or heterotrophic organisms,

328	(iii) and its utilisation as a sulfur source. Various types of DMS degradation pathways
329	have been reported in the literature, some of these featuring MT and/or H_2S as
330	intermediates, while other pathways do not give rise to volatile sulfur compounds.
331	The scheme in Figure 4 provides an overview of the conversions of DMS and related
332	C ₁ -sulfur compounds that occur in a wide range of different organisms. Details of
333	specific biochemical conversions of DMS and microorganisms carrying them out are
334	presented below.
335	
336	Utilisation of DMS as a carbon and energy source for bacterial growth.
337	Utilisation of DMS as a carbon and energy source is thought to occur by one of two
338	pathways that have been suggested which contain either a DMS monooxygenase (De
339	Bont et al. 1981) or a presumed methyltransferase (Visscher and Taylor 1993b)
340	carrying out the initial oxidation of DMS. It has been suggested that the
341	methyltransferase is inhibited by chloroform while the DMS monooxygenase was
342	suggested to be inhibited by methyl-tert butyl ether (Visscher and Taylor 1993b).
343	
344	DMS monooxygenase pathway. The work by De Bont and colleagues suggested that
345	DMS metabolism in <i>Hyphomicrobium</i> S involved an initial NAD(P)H dependent step
346	of DMS oxidation by a DMS monooxygenase (DMO), yielding formaldehyde and
347	methanethiol (De Bont et al. 1981). DMO has also been suggested to be responsible
348	for initial DMS degradation in some Thiobacillus strains (Visscher and Taylor
349	1993b). Formaldehyde is either directly assimilated into biomass or further oxidised
350	via formate to CO_2 in order to provide reducing power. Assimilation of the
351	formaldehyde produced during DMS and MT degradation in methylotrophic bacteria
352	is accomplished by the serine or ribulose monophosphate cycles (e.g. Anthony 1982;

353	De Bont et al. 1981), while in DMS-degrading autotrophs that have been analysed
354	formaldehyde is oxidised to CO ₂ , part of which is then assimilated into biomass via
355	the Calvin-Benson-Bassham cycle (Kelly and Baker 1990). Methanethiol produced by
356	DMS monooxygenase in the first step is degraded by MT oxidase to formaldehyde,
357	hydrogen peroxide and sulfide (Gould and Kanagawa 1992; Suylen et al. 1987).
358	Formaldehyde is again either assimilated directly into biomass or oxidised to CO_2
359	while sulfide is converted to sulfite either by methanethiol oxidase (in the case of
360	Hyphomicrobium spp.) or sulfide oxygenase (in case of Thiobacillus spp.) which is
361	then oxidised to sulfate (via sulfite oxidase). Hydrogen peroxide is reduced to water
362	and oxygen by catalase and the growth on DMS of organisms utilising MT oxidase is
363	usually inhibited by the catalase inhibitor 3-amino-1,2,4-triazole.
364	The biochemistry and genetic basis of DMS and methanethiol degradation in
365	these isolates has remained largely uncharacterised, although methanethiol oxidase
366	was purified from several species including Hyphomicrobium EG (Suylen et al.
367	1987), Thiobacillus thioparus Tk-m (Gould and Kanagawa 1992), and Rhodococcus
368	rhodochrous (Kim et al. 2000). MT oxidase from Hyphomicrobium strain EG (Suylen
369	et al. 1987) was reported not to require any co-factors for activity. The insensitivity of
370	this MT oxidase towards the metal-chelating agents EDTA and neocuproine
371	suggested that the enzyme did not contain metal ions or haem co-factors. It was
372	suggested that the native Hyphomicrobium enzyme was a monomer with a molecular
373	weight of 40-50 kDa, but MT oxidase from Thiobacillus thioparus sp. Tk-m (Gould
374	and Kanagawa 1992) appeared to be a monomer of 29-40 kDa. Two more recent
375	studies reported purification of MT oxidase from Rhodococcus rhodochrous (Kim et
376	al. 2000) and a reassessment of the MT oxidase from Thiobacillus thioparus Tk-m
377	(Lee et al. 2002), giving molecular weights for these enzymes of ~61 kDa. It is not

378 clear whether different forms of methanethiol oxidase with different molecular weight

379 may exist; in any case there is still a considerable lack of understanding of the

380 biochemistry of methanethiol oxidation in bacteria.

Although the activity of DMS monooxygenase in methylotrophs and autotrophs degrading DMS under aerobic conditions was reported in a number of studies (Anesti *et al.* 2005; Anesti *et al.* 2004; Borodina *et al.* 2000; De Bont *et al.* 1981; Moosvi *et al.* 2005), further information about the enzyme has not been forthcoming as it appeared to be unstable and no purification has been achieved. No genes encoding a DMS monooxygenase have been identified.

387

388 Methyltransferase pathway. *Thiobacillus* ASN-1 used an alternative initial step of 389 DMS degradation which was independent of oxygen and which was suggested to be 390 due to a methyltransferase (Visscher and Taylor 1993b). It was suggested that the 391 methyl group was transferred to an acceptor molecule and then further oxidised via 392 folate-bound intermediates. The methyl accepting factor was suggested to be 393 cobalamin related although it was not identified (Visscher and Taylor 1993a; b). 394 Further oxidation of the remaining methanethiol appeared to follow the same scheme 395 as in the DMS monooxygenase pathway described above. 396 397 DMSO₂ and DMSO oxidation via DMS. In the initial study of *Hyphomicrobium* X

398 by De Bont and colleagues (De Bont *et al.* 1981) one of the substrates for growth of

399 the strain was DMSO, which was reduced to DMS and thus fed into the DMS

400 monooxygenase pathway. Subsequently, it was shown that DMSO₂ could also be

401 degraded by some methylotrophs via DMS, as enzyme activities for DMSO₂

402 reductase, DMSO reductase and DMS monooxygenase were detected in cell-free

- 403 extracts of *Hyphomicrobium sulfonivorans* and *Arthrobacter sulfonivorans* growing
- 404 on these compounds (Borodina *et al.* 2000; Borodina *et al.* 2002).
- 405

406 Growth on DMS under anoxic conditions

407 Several bacterial and archaeal strains able to degrade DMS and MT under anoxic 408 conditions have been isolated (Finster et al. 1992; Kiene et al. 1986; Lomans et al. 409 1999b; Lyimo et al. 2000; Ni and Boone 1991; Tanimoto and Bak 1994; Visscher and 410 Taylor 1993a). The thermodynamic aspects of growth of SRB and methanogens on 411 methylated sulfur compounds have been reviewed in detail elsewhere (Scholten et al. 412 2003). SRB and methanogens are thought to be responsible for anaerobic DMS 413 oxidation in anoxic sediments of coastal salt marshes, estuaries, and freshwater 414 sediments (Kiene and Capone 1988; Kiene et al. 1986; Lomans et al. 1999a; Zinder 415 and Brock 1978b), but the degradation of DMS has also been reported with nitrate as 416 electron acceptor (Haaijer et al. 2008; Tanimoto and Bak 1994; Visscher and Taylor 417 1993a). The characteristics of methanogenic Archaea growing on DMS and MT have 418 been reviewed previously, isolates belonged to the genera *Methanolobus*, 419 Methanomethylovorans, Methanosarcina and Methanosalsus (Lomans et al. 2002). 420 Compared to methanogens, relatively few SRB growing on DMS have been isolated. 421 Tanimoto and Bak (1994) obtained Gram positive, spore-forming SRB from 422 thermophilic fermenter sludge which they classified as *Desulfotomaculum* species. 423 These isolates were also able to grow on DMS using nitrate as electron acceptor 424 (Tanimoto and Bak 1994). Based on slurry incubations with tungstate and 425 bromoethanesulfonate addition to selectively inhibit SRB and methanogens, 426 respectively, Lymio and coworkers found that the degradation of DMS and MT in 427 anoxic mangrove sediments was dominated by SRB (Lymio et al. 2009). A strain was

428 isolated, the first SRB from a marine environment, which was closely related to

429 Desulfosarcina sp. and exhibited very slow growth rates on DMS, but which had a

430 high affinity for DMS. The authors concluded that due to the extremely slow growth

- 431 observed, such SRB might be outcompeted by methanogens in enrichments and slurry
- 432 incubations when relatively high DMS concentrations are used since methane
- 433 production increased exponentially during slurry incubations.

434 The biochemical and genetic basis of DMS degradation in SRB remains

- 435 uncharacterised. More data are available for methanogens. It was shown that during
- 436 growth on acetate of the methanogen *Methanosarcina barkeri* the cells also converted
- 437 DMS and methylmercaptopropionate (MMPA) to methane and a corrinoid protein
- 438 functioned as a co-enzyme M methylase capable of DMS and MMPA degradation
- 439 (Tallant and Krzycki 1997). Fused corrinoid/methyl transfer proteins have been
- 440 implicated in methyl sulphide metabolism in *Methanosarcina acetivorans*
- 441 (Oelgeschlaeger and Rother 2009).
- 442
- 443 Oxidation of DMS to DMSO
- 444 In phototrophic bacteria, the oxidation of DMS to DMSO can be used to provide
- 445 electron donors for carbon dioxide fixation as suggested by a study of DMS
- 446 degradation by a culture of an anoxygenic phototrophic purple sulfur bacterium that
- 447 converted DMS stoichiometrically to DMSO (Zeyer et al. 1987). Similarly, DMS can
- 448 be utilised by certain phototrophic green sulfur bacteria when growing on reduced
- sulfur compounds such as thiosulfate and hydrogen sulfide (Vogt *et al.* 1997).
- 450 DMS to DMSO conversion by heterotrophic bacteria was first described by
- 451 Zhang et al (Zhang et al. 1991) in Pseudomonas acidovorans DMR-11 (reclassified as
- 452 *Delftia acidovorans*). In this strain DMSO was stoichiometrically formed from DMS

453 as a product of co-oxidation during heterotrophic metabolism, for instance during 454 growth on a range of organic compounds, but no carbon from DMS was assimilated. 455 DMS removal in cell free extracts of strain DMR-11 was dependent on the presence 456 of NADPH, which could not be replaced by NADH. Complete conversion of DMS to 457 DMSO was also shown in the marine heterotrophic bacterium Sagittula stellata E-37 458 (González et al. 1997) in cells grown on glucose, irrespective of additional organic 459 carbon being added during the assay. The enzymes responsible for the conversion of 460 DMS to DMSO in both Sagittula stellata and Delftia acidovorans are unknown. 461 462 DMS dehydrogenase. The biochemistry and genetics of DMS to DMSO oxidation in 463 phototrophic metabolism in which DMS serves as an H donor have been studied in

464 detail in *Rhodovulum sulfidophilum* (Hanlon et al. 1996; McDevitt et al. 2002). In this

465 strain, DMS-dependent DMSO formation is mediated by DMS dehydrogenase

466 (DMSDH), a heterotrimeric enzyme comprising three subunits (DdhABC) in which a

467 molybdopterin co-factor is bound to the A subunit (Hanlon et al. 1996). The enzyme

468 is encoded by the *ddh* operon containing the genes *ddhABCD*, which encode the A, B

469 (containing putative [Fe-S] clusters) and C (containing a *b*-type haem) subunits, and

470 *ddhD* is thought to encode a polypeptide that could be responsible for the maturation

471 of the molypdopterin-containing enzyme (McDevitt *et al.* 2002).

472

473 Oxidation of DMS to DMSO by methanotrophs and nitrifying bacteria. DMS

474 oxidation has also been observed in resting cell suspensions of methane-grown

- 475 methanotrophic isolates of *Methylomicrobium* (Fuse *et al.* 1998; Sorokin *et al.* 2000)
- 476 and in *Methylomicrobium pelagicum* the product was identified as DMSO. The
- 477 nitrifying bacteria Nitrosomonas europaea and Nitrosococcus oceani (Juliette et al.

1993) also converted DMS to DMSO and some evidence suggests that ammonia
monooxygenase (AMO) is the enzyme co-oxidising DMS to DMSO in these bacteria.
While the co-oxidation of MT by purified methane monooxygenase (MMO), the key
enzyme in aerobic methanotrophic bacteria, has been reported (Colby *et al.* 1977), it
is still unclear whether DMS is co-oxidised by MMO, although this seems likely
given the close evolutionary relationship of AMO and particulate MMO (Holmes *et al.* 1995).

485

486 Reduction of DMSO to DMS by DMSO reductase. A range of microorganisms can 487 couple the oxidation of organic carbon compounds to respiratory reduction of DMSO 488 to DMS under anoxic conditions (Zinder and Brock 1978a). The enzyme 489 dimethylsulfoxide reductase, which reduces DMSO to DMS, was first purified and 490 characterised from *Rhodobacter sphaeroides*. In this strain, it is a soluble periplasmic 491 single subunit enzyme of 82 kDa that contains a molybdopterin co-factor (Satoh and 492 Kurihara 1987), which can also reduce trimethylamine oxide (Styrvold and Strom 493 1984). It is encoded by the gene *dmsA* (Yamamoto *et al.* 1995). A similar enzyme was 494 purified from *Rhodobacter capsulatus* (McEwan et al. 1991). The DMSO reductase in 495 E. coli is rather different. It is a heterotrimeric enzyme expressed under anaerobic 496 conditions, which is anchored in the periplasmic membrane. It is encoded by the 497 operon *dmsABC* (Bilous *et al.* 1988), in which the genes encode the active catalytic 498 subunit DmsA (82 kDa) that contains the molybdopterin co-factor, an electron 499 transfer protein DmsB (23.6 kDa) and a membrane anchor DmsC (22.7 kDa) 500 (Sambasivarao et al. 1990). Despite the differences in enzyme structure, the catalytic 501 subunits of *R. spharoides* and *E. coli* share 29% sequence identity at the amino acid 502 level (Yamamoto et al. 1995). In Hyphomicrobium sulfonivorans a membrane-bound

503	DMSO reductase that reduced DMSO to DMS was expressed during aerobic growth
504	on DMSO ₂ , thus not having a role in anaerobic respiration under these conditions.
505	Only a weak cross-reaction was reported for the immunoblotting of H. sulfonivorans
506	membrane fraction with an antibody against the R. capsulatus enzyme (Borodina et
507	al. 2002). The observation that DMSO reductase activity was present in the
508	membrane fraction would suggest that it might be similar to the E. coli type DMSO
509	reductase, but that it is regulated differently to the E. coli enzyme.
510	DMSO reductase may carry out the reverse reaction in which DMS is reduced
511	to DMS, so it might be a candidate for DMS degradation in the environment.
512	However, although the enzyme from R. capsulatus can carry out the reverse reaction
513	<i>in vitro</i> , its K_s for DMS is high (1 mM) and DMSO strongly inhibits this reaction
514	(Adams et al. 1999), so it would appear unlikely to be relevant under physiological
515	conditions. The E. coli enzyme is expressed constitutively under anaerobic conditions
516	(Weiner et al. 1992). Overall, at this point there is little support to suggest that DMSO
517	reductases could provide a route of DMS degradation in, for instance, the oxic mixed
518	surface layer of the oceans.
519	
520	Assimilation of C_1 sulfur compounds as a sulfur source
521	In addition to serving as substrate for growth of aerobic and anaerobic
522	microorganisms, DMSO and DMS can also be used as a source of sulfur. A strain of
523	Marinobacter was able to utilise DMS as a sulfur source with the aid of light,
524	probably using a flavoprotein (Fuse et al. 2000). Pseudomonas aeruginosa can grow

- 525 with methanesulfonate as a sole sulfur source, using the flavin-linked
- 526 methanesulfonate monooxygenase MsuED (Kertesz *et al.* 1999) that is repressed by
- 527 sulfide, sulfite and sulfate. It is closely related to the alkanesulfonate monooxygenase

528	(SsuED) that is induced during the sulfate-starvation response in E. coli (Eichhorn et
529	al. 1999). Bacterial sulfur assimilation by these enzymes has been reviewed in detail
530	(Kertesz 2000). In a strain of Acinetobacter, DMS degradation via DMSO which led
531	to the assimilation of sulfur was observed. The enzyme oxidising DMS to DMSO was
532	related to multi-component monooxygenases oxidising toluene and similar substrates.
533	It was termed DMS monooxygenase by the authors (Horinouchi et al. 1997), but this
534	is inappropriate as the degradation of DMS by this enzyme does not generate MT and
535	formaldehyde. Similarly <i>Rhodococcus</i> strain SY1 utilised DMS, DMSO and DMSO ₂
536	as sulfur sources and in both strains the sequence of oxidation started with DMS
537	oxidation to DMSO which was oxidised to DMSO ₂ and further to MSA (Omori <i>et al.</i>
538	1995). Work on <i>Pseudomonas putida</i> DS1 suggested the latter was then a substrate
539	for a SsuED type enzyme (Endoh et al. 2003).
540	
540	
541	MSA catabolism
	MSA catabolism A different kind of methanesulfonate monooxygenase exists in methylotrophic
541	
541 542	A different kind of methanesulfonate monooxygenase exists in methylotrophic
541 542 543	A different kind of methanesulfonate monooxygenase exists in methylotrophic bacteria such as <i>Methylosulfonomonas methylovora</i> which can grow on MSA as a sole
541 542 543 544	A different kind of methanesulfonate monooxygenase exists in methylotrophic bacteria such as <i>Methylosulfonomonas methylovora</i> which can grow on MSA as a sole source of carbon and energy (Kelly and Murrell 1999). Its MSA monooxygenase is
 541 542 543 544 545 	A different kind of methanesulfonate monooxygenase exists in methylotrophic bacteria such as <i>Methylosulfonomonas methylovora</i> which can grow on MSA as a sole source of carbon and energy (Kelly and Murrell 1999). Its MSA monooxygenase is composed of four distinct polypeptides. The hydroxylase subunit was composed of a
 541 542 543 544 545 546 	A different kind of methanesulfonate monooxygenase exists in methylotrophic bacteria such as <i>Methylosulfonomonas methylovora</i> which can grow on MSA as a sole source of carbon and energy (Kelly and Murrell 1999). Its MSA monooxygenase is composed of four distinct polypeptides. The hydroxylase subunit was composed of a 48 and 20 kDa subunits making up a native protein of around 210 kDa of a α 3/ β 3
 541 542 543 544 545 546 547 	A different kind of methanesulfonate monooxygenase exists in methylotrophic bacteria such as <i>Methylosulfonomonas methylovora</i> which can grow on MSA as a sole source of carbon and energy (Kelly and Murrell 1999). Its MSA monooxygenase is composed of four distinct polypeptides. The hydroxylase subunit was composed of a 48 and 20 kDa subunits making up a native protein of around 210 kDa of a $\alpha 3/\beta 3$ structure. Further components were identified as a ferredoxin (32 kDa) and a
541 542 543 544 545 546 546 547 548	A different kind of methanesulfonate monooxygenase exists in methylotrophic bacteria such as <i>Methylosulfonomonas methylovora</i> which can grow on MSA as a sole source of carbon and energy (Kelly and Murrell 1999). Its MSA monooxygenase is composed of four distinct polypeptides. The hydroxylase subunit was composed of a 48 and 20 kDa subunits making up a native protein of around 210 kDa of a $\alpha 3/\beta 3$ structure. Further components were identified as a ferredoxin (32 kDa) and a reductase (38 kDa). The enzyme subunits are encoded by the genes <i>msmABCD</i> (De
 541 542 543 544 545 546 547 548 549 	A different kind of methanesulfonate monooxygenase exists in methylotrophic bacteria such as <i>Methylosulfonomonas methylovora</i> which can grow on MSA as a sole source of carbon and energy (Kelly and Murrell 1999). Its MSA monooxygenase is composed of four distinct polypeptides. The hydroxylase subunit was composed of a 48 and 20 kDa subunits making up a native protein of around 210 kDa of a α 3/ β 3 structure. Further components were identified as a ferredoxin (32 kDa) and a reductase (38 kDa). The enzyme subunits are encoded by the genes <i>msmABCD</i> (De Marco <i>et al.</i> 1999) and the closely linked <i>msmEFGH</i> operon encodes proteins

554 Ecology of microorganisms degrading DMS and related compounds 555 Early studies suggested that microorganisms catabolising DMS mainly belonged to 556 the genera Hyphomicrobium, and Thiobacillus, additional isolation studies have 557 significantly extended the range of organisms able to grow on DMS (Table 1). In 558 addition to the shortcomings of microbial community analyses by cultivation-559 dependent approaches, there are particular difficulties that are often encountered in 560 isolation of DMS-degrading bacteria (e.g. Smith and Kelly 1988; Suylen and Kuenen 561 1986). The diversity of cultivable DMS-oxidising bacteria still precludes delineation 562 of major patterns in their distribution. It is almost certain that the true extent of the 563 phylogenetic diversity of DMS-degrading organisms has not yet been identified, 564 either because organisms are recalcitrant to culturing conditions or due to the capacity 565 to degrade DMS being a phenotypic trait that is only rarely tested, even in studies of 566 methylotrophic bacteria. This is most likely due to the low attraction of working with 567 this smelly compound. The ability to degrade DMS is usually not conserved among 568 closely related species, i.e. there is no perfect correlation of phylotype and phenotype. 569 This largely negates the direct application of the widely used cultivation-independent 570 ribosomal RNA approach for studying DMS degrading microbial populations in the 571 environment. Nevertheless some investigations on relevant environments, using 16S 572 rRNA genes as markers have shown the presence of microbial populations that might 573 degrade DMS, based on their relatedness to known DMS-degrading strains. For 574 example, bacteria were found in marine DMS enrichment cultures (Vila-Costa et al. 575 2006) that were related to marine DMS degrading Methylophaga isolates (Schäfer 576 2007). Also, populations of related bacteria were detected in stable isotope probing experiments with ¹³C-DMS following a DMSP-producing phytoplankton bloom of 577

578	Emiliania huxleyi in the English Channel (Neufeld et al. 2008). Further application of
579	SIP will allow improved definition of the phylogenetic diversity of DMS-degrading
580	microbial populations in environmental samples, but the approach can only detect
581	those organisms that assimilate the carbon from DMS. Additional tools that target key
582	enzymes of DMS metabolism will therefore be required to map the diversity and
583	activity of DMS degrading microorganisms. This will require new insights into the
584	metabolism of DMS at a molecular level including studying the biochemistry and
585	genetics of suitable model organisms in order to obtain a detailed understanding of the
586	enzymes and genes underpinning DMS degradation across a range of isolates.
587	Molecular methods targeting functional genes of DMS metabolism will not only allow
588	the elucidation of patterns in the distribution of DMS-degrading microorganisms in
589	nature independent of cultivation, but will also highlight particular microbial
590	populations for targeted isolation. Studying environmentally relevant model
591	organisms in more detail should also be useful in delineating the physiological
592	response of DMS degrading microorganisms and their potential to degrade DMS
593	under varying environmental conditions. Many of the known DMS-degrading bacteria
594	(compare Table 2) are able to grow on a range of substrates. DMS-degrading
595	Methylophaga species, for instance, also grow on methanol and methylated amines
596	(De Zwart et al. 1996; Schäfer 2007), two compounds which are present in the marine
597	environment in concentrations as high as 50-250nM in the case of methanol in the
598	tropical Atlantic (Williams et al. 2004). These concentrations are similar to or exceed
599	those of DMS which are typically in the low nanomolar range (Kettle et al. 1999).
600	Being presented with more than one growth substrate may have important effects and
601	the physiological and transcriptional responses of DMS-degrading organisms under
602	such conditions require further study.

604 Interactions of DMS-degrading microorganisms and plants

605 The focus of most research on the synthesis and catabolism of DMS has been on the 606 marine system. There is some evidence for production of DMS and other volatile 607 sulfur species by plants, but there are few data on emissions from vegetation in 608 temperate and boreal regions (Watts 2000). The association with plants of microbial 609 populations degrading DMS and related compounds is therefore of particular interest 610 for future study. Aboveground interactions of plants and bacteria occur in the 611 phyllosphere, which is the site of volatile sulfur emission. Previously, it was shown 612 that plants harbour diverse populations of epiphytic and endophytic 613 Methylobacterium species (e.g. Abanda-Nkpwatt et al. 2006; Knief et al. 2008), 614 which are thought to thrive on methanol released from pectin metabolism in the cell 615 wall (Galbally and Kirstine 2002). Similarly, it might be expected that DMS emission 616 from leaves could help to sustain populations able to degrade this substrate. Such 617 phyllosphere populations would likely affect the net flux of DMS and other volatile 618 sulfur compounds emitted from plants. Whatever the function is of volatile sulfur 619 release by plants, organisms degrading these compounds have the potential to affect 620 the functioning of the biological systems that might rely on volatile compounds. 621 Emission of volatile sulfur has been suggested as a route for removal of excess sulfur 622 (see review of Rennenberg 1984) or toxic HS⁻ ions (Saini et al. 1995). A recent report 623 suggests a role for H₂S emission as a plant defence signal in the context of sulfur 624 induced resistance of crops (Papenbrock et al. 2007). As a major volatile sulfur 625 species emitted by plants, DMS may have a role that has to be determined as yet. 626 There is also potential for interactions between plants and C₁-sulfur compound 627 degrading microorganisms belowground. The activity of soil microbial populations

628	involved in cycling of organic sulfur compounds is of particular importance for
629	contributing to soil fertility as the preferred sulfur source of plants is sulfate, but the
630	majority of sulfur in soils is bound in organic form (Kertesz and Mirleau 2004).
631	Recent improvements with respect to anthropogenic emissions of sulfur from fossil
632	fuel combustion have lead to a reduction in man-made sulfate aerosols in the
633	atmosphere and to a concomitant decrease in the rate of deposition of atmospheric
634	sulfur (Irwin et al. 2002). In some areas, the decrease in atmospheric S deposition is
635	leading to increasing incidences of sulfur deficiency for a range of agricultural crops,
636	such as oilseed rape (Schnug et al. 1995). Evidence for a decline of "natural" sulfur
637	fertilisation of soils derived from atmospheric sulfur due to fossil fuel combustion is
638	provided by changes of the sulfur isotope ratio in wheat straw (Zhao et al. 2003).
639	Consideration of future SO ₂ emission rates (McGrath and Zhao 1995) or future
640	climate scenarios indicates that the potential for sulfur starvation in crops is likely to
641	increase (Hartmann et al. 2008) with important consequences for agricultural
642	productivity. Previous research has demonstrated that bacterial organosulfur
643	compound degrading populations in the rhizosphere play an important role in
644	regenerating sulfate for uptake by crop-plants for instance, but work has so far
645	focussed on the utilisation of alkane- and arylsulfonates and -sulfates as sulfur
646	sources for bacteria (Kertesz and Mirleau 2004; Schmalenberger et al. 2008;
647	Schmalenberger et al. 2009). Further work is needed to fully appreciate the role of
648	microbial populations degrading C_1 -sulfur compounds such as DMSO, DMSO ₂ and
649	MSA, and the utilisation of these compounds as both sulfur and carbon sources in the
650	rhizosphere needs to be investigated. The potential importance of DMSO ₂ and DMSO
651	degrading methylotrophs in the rhizosphere of plants has been demonstrated by the
652	work of Borodina et al. (Borodina et al. 2000; Borodina et al. 2002).

Outlook

655	DMS-degrading microorganisms are widely distributed in the environment, but there
656	is still a lack of insight into their phylogenetic and functional diversity. The
657	development and application of functional gene probes and stable isotope probing
658	experiments will allow to decipher patterns in the distribution of DMS degrading
659	microorganisms in nature. Functional genetic markers based on key enzymes of DMS
660	metabolism and that of related compounds will also allow to investigate in more detail
661	the role of DMS degrading organisms in controlling fluxes of volatile sulfur to the
662	atmosphere and will help to assess their contribution to metabolising organically
663	bound sulfur and returning inorganic sulfur back to the environment. Clearly, the
664	emission of DMS from the marine environment is controlled significantly by the
665	activity of microorganisms. Microbial DMS metabolism affects the flux of DMS to
666	the atmosphere and thus the composition of the atmosphere and global climate,
667	therefore, the activity of marine microbial DMS-degrading microorganisms is
668	ultimately also an important factor that influences the amount of sulfur transported to
669	the continents where it affects the levels of sulfur in soils. Establishing the
670	phylogenetic affiliation of DMS degrading organisms in the environment and
671	identification of the pathways used by microbial populations to remove DMS from the
672	water column will help to identify the environmental regulation of marine microbial
673	DMS oxidation. This will contribute to gaining a better understanding of the complex
674	microbial processes involved in controlling the flux of sulfur from the oceans into the
675	atmosphere and should be useful to improve the prospects of modelling marine DMS
676	emissions under future climatic scenarios.

678 Acknowledgements

- 679 We are grateful for funding provided by the Natural Environment Research Council
- 680 provided through a studentship to R.B. and fellowships for H.S. (NE/B501404/1 and
- 681 NE/E013333/1) and invaluable guidance, support and mentorship provided by Colin
- 682 Murrell and Don Kelly.

684 **References**

685	Abanda-Nkpwatt D, Musch M, Tschiersch J, Boettner M and Schwab W. 2006.
686	Molecular interaction between Methylobacterium extorquens and seedlings:
687	growth promotion, methanol consumption, and localization of the methanol
688	emission site. Journal of Experimental Botany 57, 4025-4032.
689	Adams B, Smith AT, Bailey S, McEwan AG and Bray RC. 1999. Reactions of
690	dimethylsulfoxide reductase from <i>Rhodobacter capsulatus</i> with dimethyl sulfide
691	and with dimethyl sulfoxide: Complexities revealed by conventional and stopped-
692	flow spectrophotometry <i>Biochemistry</i> 38 , 8501-8511.
693	Andreae MO. 1990. Ocean-atmosphere interactions in the global biogeochemical
694	sulfur cycle. Marine Chemistry 30, 1-29.
695	Anesti V, McDonald IR, Ramaswamy M, Wade WG, Kelly DP and Wood AP.
696	2005. Isolation and molecular detection of methylotrophic bacteria ocurring in the
697	human mouth. Environmental Microbiology 7, 1227-1238.
698	Anesti V, Vohra J, Goonetilleka S, McDonald IR, Sträubler B, Stackebrandt E,
699	Kelly DP and Wood AP. 2004. Molecular detection and isolation of facultatively
700	methylotrophic bacteria, including <i>Methylobacterium podarium</i> sp. nov., from the
701	human foot microflora. <i>Environmental Microbiology</i> 8 .
702	Anthony C. 1982. The biochemistry of methylotrophs. Academic Press, London.
703	Archer SD, Smith GC, Nightingale PD, Widdicombe CE, Tarran GA, Rees AP
704	and Burkill PH. 2002. Dynamics of particulate dimethylsulphoniopropionate
705	during a Lagrangian experiment in the northern North Sea. Deep Sea Research
706	Part II: Topical Studies in Oceanography 49, 2979-2999.
707	Ayers GP, Ivey JP and Gillett RW. 1991. Coherence between seasonal cycles of
708	dimethyl sulphide, methanesulphonate and sulphate in marine air. <i>Nature</i> 349 ,
709	404-406.
710	Ayers GP, Cainey JM, Gillett RW and Ivey JP. 1997. Atmospheric sulphur and
711	cloud condensation nuclei in marine air in the Southern Hemisphere.
712	Philosophical Transactions of the Royal Society B 352 , 203-211.
713	Bak F, Finster K and Rothfuß F. 1992. Formation of dimethylsulfide and
714	methanethiol from methoxylated aromatic compounds and inorganic sulfide by
715	newly isolated anaerobic bacteria. Archives of Microbiology 157, 529-534.
716	Banwart WL and Bremner JM. 1976. Volatilization of sulfur from unamended and
717	sulfate-treated soils. Soil Biology & Biochemistry 8, 19-22.
718	Barnes I, Hjorth J, and Mihalopoulos. 2006. Dimethyl sulfide and dimethyl
719	sulfoxide and their oxidation in the atmosphere. <i>Chemical Reviews</i> 106 , 940-975.
720	Bending GD and Lincoln SD. 1999. Characterisation of volatile sulphur-containing
721	compounds produced during decomposition of <i>Brassica juncea</i> tissues in soil.
722	Soil Biology & Biochemistry 31 , 695-703.
723	Bending GD and Lincoln SD. 2000. Inhibition of soil nitrifying bacteria
724	communities and their activities by glucosinolate hydrolysis products. <i>Soil</i>
725	Biology & Biochemistry 32 , 1261-1269.
726	Bills DD and Keenan TW. 1968. Dimethyl sulfide and its precursor in sweet corn.
727	Journal of Agricultural and Food Chemistry 16, 643-645.
728	Bilous PT, Cole ST, Anderson WF and Weiner JH. 1988. Nucleotide sequence of
729	the <i>dmsABC</i> operon encoding the anaerobic dimethylsulphoxide reductase of
730	Escherichia coli. Molecular Microbiology 2, 785-795.
730	Bopp L, Aumont O, Belviso S and Monfray P. 2003. Potential impact of climate
731	change on marine dimethylsulfide emissions. <i>Tellus B</i> 55 , 11-22.
154	change on marme uniterryisumue emissions. <i>Tenus D 55</i> , 11-22.

733	Boden R. 2005. Isolation and characterisation of bacteria capable of growth on
734	methylated amines as sole source of carbon, nitrogen and energy. BSc
735	Dissertation, King's College, London (UK).
736	Boden R, Thomas E, Savani P, Kelly DP and Wood AP. 2008. Novel
737	methylotrophic bacteria isolated from the River Thames (London, UK).
738	Environmental Microbiology 10, 3225-3236.
739	Borodina E, Kelly DP, Rainey FA, Ward-Rainey NL and Wood AP. 2000.
740	Dimethylsulfone as a growth substrate for novel methylotrophic species of
741	Hyphomicrobium and Arthrobacter. Archives of Microbiology 173, 425-437.
742	Borodina E, Kelly DP, Schumann P, Rainey FA, Ward-Rainey NL and Wood
743	AP. 2002. Enzymes of dimethylsulfone metabolism and the phylogenetic
744	characterization of the facultative methylotrophs Arthrobacter sulfonivorams sp.
745	nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans
746	sp. nov. Archives of Microbiology 177, 173-183.
747	Brimblecombe P and Shooter D. 1986. Photooxidation of dimethylsulfide in
748	aqueous solution. Marine Chemistry 19, 343-353.
749	Broadbent AD and Jones GB. 2004. DMS and DMSP in mucus ropes, coral mucus,
750	surface films and sediment pore waters from coral reefs in the Great Barrier Reef.
751	Marine And Freshwater Research 55, 849-855.
752	Buttery RG, Guadagni DG, Ling LC, Seifert RM and Lipton W. 2002. Additional
753	volatile components of cabbage, broccoli, and cauliflower. Journal of
754	Agricultural and Food Chemistry 24, 829-832.
755	Caron F and Kramer JR. 1994. Formation of volatile sulfides in freshwater
756	environments. The Science of the total Environment 153, 177-194.
757	Catalan L, Lian V, Johnson A, Jia C, O'Connor B and Walton C. 2008.
758	Emissions of reduced sulphur compounds from the surface of primary and
759	secondary wastewater clarifiers at a Kraft Mill. Environmental Monitoring and
760	Assessment. DOI 10.1007/s10661-008-0461-9
761	Cha JM, Cha WS and Lee JH. 1999. Removal of organo-sulphur odour compounds
762	by Thiobacillus novellus SRM, sulphur-oxidizing microorganisms. Process
763	Biochemistry 34 , 659-665.
764	Challenger F and Simpson MI. 1948. Studies on biological methylation. Part XII. A
765	precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata. dimethyl-
766	2-carboxyethylsulphonium hydroxide and its salts. Journal of the Chemical
767	<i>Society</i> 3 , 1591-1597.
768	Charlson RJ, Lovelock JE, Andreae MO and Warren SG. 1987. Oceanic
769	phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655-
770	661.
771	Cho KS, Hirai M and Shoda M. 1991. Degradation characteristics of hydrogen-
772	sulfide, methanethiol, dimethyl sulfide and dimethyl disulfide by Thiobacillus-
773	thioparus DW44 isolated from peat biofilter. Journal of Fermentation and
774	Bioengineering 71, 384-389.
775	Colby J, Stirling DI and Dalton H. 1977. The soluble methane mono-oxygenase of
776	Methylococcus capsulatus (Bath): Its ability to oxygenate n-alkanes, n-alkenes,
777	ethers and alicyclic, aromatic and heterocyclic compounds. Biochemical Journal
778	165 , 395-402.
779	Cooper DJ, Cooper WJ, de Mello WZ, Saltzman ES and Zika RG. 1989.
780	Variability in biogenic sulfur emissions from Florida wetlands. In Biogenic sulfur
781	in the environment. Eds. Saltzman ES and Cooper WJ. pp 31-43. ACS.

782	Curson ARJ, Rogers R, Todd JD, Brearley CA and Johnston AWB. 2008.
783	Molecular genetic analysis of a dimethylsulfoniopropionate lyase that liberates
784	the climate-changing gas dimethylsulfide in several marine alpha-proteobacteria
785	and Rhodobacter sphaeroides. Environmental Microbiology 10, 757-767.
786	De Bont JAM, van Dijken JP and Harder W. 1981. Dimethyl sulphoxide and
787	dimethyl sulphide as a carbon, sulphur and energy source for growth of
788	Hyphomicrobium S. Journal of General Microbiology 127 , 315-323.
789	de la Fuente E, Sanz ML, Martinez-Castro I, Sanz J and Ruiz-Matute AI. 2007.
790	Volatile and carbohydrate composition of rare unifloral honeys from Spain. Food
791	<i>Chemistry</i> 105 , 84-93.
792	De Marco P, Moradas-Ferreira P, Higgins TP, McDonald I, Kenna EM and
793	Murrell JC. 1999. Molecular analysis of a novel methanesulfonic acid
794	monooxygenase from the methylotroph <i>Methylosulfonomonas methylovora</i> .
795	Journal of Bacteriology 181, 2244-2251.
796	Derikx PJL, Op Den Camp HJM, Van Der Drift C, Van Griensven LJLD and
797	Vogels GD. 1990. Odorous sulfur compounds emitted during production of
798	compost used as a substrate in mushroom cultivation. Applied & Environmental
799	<i>Microbiology</i> 56 , 176-180.
800	De Zwart JMM, Nelisse PN and Kuenen JG. 1996. Isolation and characterization of
801	Methylophaga sulfidovorans sp. nov.: an obligately methylotrophic, aerobic,
802	dimethylsulfide oxidizing bacterium from a microbial mat. FEMS Microbiology
803	<i>Ecology</i> 20 , 261-270.
804	Drotar A, Burton GA, Jr., Tavernier JE and Fall R. 1987. Widespread occurrence
805	of bacterial thiol methyltransferases and the biogenic emission of methylated
806	sulfur gases. Applied & Environmental Microbiology 53, 1626-1631.
807	Eichhorn E, van der Ploeg JR and Leisinger T. 1999. Characterization of a two-
808	component alkanesulfonate monooxygenase from Escherichia coli. Journal of
809	Biological Chemistry 274, 26639-26646.
810	Endoh T, Habe H, Yoshida T, Nojiri H and Omori T. 2003. A CysB-regulated and
811	σ 54-dependent regulator, SfnR, is essential for dimethyl sulfone metabolism of
812	Pseudomonas putida DS1. Microbiology 149, 991-1000.
813	Endoh T, Habe H, Nojiri H, Yamane H, and Omori T. 2005. The σ^{54} -dependent
814	transcriptional activator SfnR regulates the expression of the Pseudomonas putida
815	sfnFG operon responsible for dimethyl sulphone utilization. <i>Molecular</i>
816	Microbiology 55, 897-911. Fall R, Albritton DL, Fehsenfeld FC, Kuster WC
817	and Goldan PD. 1988. Laboratory studies of some environmental variables
818	controlling sulfur emissions from plants. Journal of Atmospheric Chemistry 6,
819	341-362.
820	Finster K, Tanimoto Y and Bak F. 1992. Fermentation of methanethiol and
821	dimethylsulfide by a newly isolated methanogenic bacterium. Archives of
822	<i>Microbiology</i> 157 , 425-430.
823	Fritz M and Bachofen R. 2000. Volatile organic sulfur compounds in a meromictic
824	alpine lake. Acta hydrochimica hydrobiologica 28 , 185-192.
825	Fuse H, Takimura O, Murakami K, Yamoaka Y and Omori T. 2000. Utilization
826	of dimethyl sulfide as a sulfur source with the aid of light by <i>Marinobacterium</i>
827	sp. strain DMS-S1. Applied & Environmental Microbiology 66, 5527-5532.
828	Fuse H, Ohta M, Takimura O, Murakami K, Inoue H, Yamaoka Y, Oclarit JM
829	and Omori T. 1998. Oxidation of trichloroethylene and dimethyl sulfide by a
830	marine <i>Methylomicrobium</i> strain containing soluble methane monooxygenase.
831	Bioscience Biotechnology and Biochemistry 62, 1925-1931.

832 Galbally IE and Kirstine W. 2002. The production of methanol by flowering plants 833 and the global cycle of methanol. Journal of Atmospheric Chemistry 43, 195-229. 834 Gamliel A and Stapleton JJ. 1993. Characterization of antifungal volatile 835 compounds evolved from solarized soil amended with cabbage residues. 836 Phytopathology 83, 899-905. 837 Geng CM and Mu YJ. 2006. Carbonyl sulfide and dimethyl sulfide exchange 838 between trees and the atmosphere. Atmospheric Environment 40, 1373-1383. 839 Ginzburg B, Chalifa I, Gun J, Dor I, Hadas O and Lev O. 1998. DMS formation 840 by dimethylsulfoniopropionate route in Freshwater. Environmental Science & 841 Technology 32, 2130-2136. 842 Glindemann D, Novak J and Witherspoon J. 2006. Dimethyl sulfoxide (DMSO) 843 waste residues and municipal waste water odor by dimethyl sulfide (DMS): the 844 North-East WPCP Plant of Philadelphia. Environmental Science and Technology 845 40, 202-207. 846 González JM, Kiene RP and Moran MA. 1999. Transformation of sulfur 847 compounds by an abundant lineage of marine bacteria in the alpha -subclass of 848 the class Proteobacteria. Applied & Environmental Microbiology 65, 3810-3819. 849 González JM, Mayer F, Moran MA, Hodson RE and Whitman WB. 1997. 850 Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a 851 coastal environment. International Journal of Systematic Bacteriology 47, 773-852 780. 853 Gould WD and Kanagawa T. 1992. Purification and properties of methyl mercaptan 854 oxidase from Thiobacillus thioparus TK-m. Journal of General Microbiology 855 138, 217-221. 856 Haaijer SCM, Harhangi HR, Meijerink BB, Strous M, Pol A, Smolders AJP, 857 Verwegen K, Jetten MSM and den Camp H. 2008. Bacteria associated with 858 iron seeps in a sulfur-rich, neutral pH, freshwater ecosystem. ISME Journal 2, 859 1231-1242. 860 Hanlon SP, Toh TH, Solomon PS, Holt RA and McEwan AG. 1996. 861 Dimethylsulfide:acceptor oxidoreductase from Rhodobacter sulfidophilus - The 862 purified enzyme contains *b*-type haem and a pterin molybdenum cofactor. 863 European Journal of Biochemistry 239, 391-396. 864 Hartmann K, Lilienthal H and Schnug E. 2008. Risk-mapping of potential sulphur 865 deficiency in agriculture under actual and future climate scenarios in Germany. 866 Aspects of Applied Biology 88, 113-121. 867 Harvey GR and Lang RF. 1986. Dimethylsulfoxide and dimethylsulfone in the 868 marine atmosphere. *Geophysical Research Letters* **13**, 49-51. 869 Hatakeyama S, Okuda M and Akimoto H. 1982. Formation of sulfur dioxide and 870 methanesulfonic acid in the photooxidation of dimethyl sulfide in the air. 871 Geophysical Research Letters 9, 583-586. 872 Hatton AD, Darroch L and Malin G. 2004. The role of dimethylsulphoxide in the 873 marine biogeochemical cycle of dimethylsulphide. In Oceanography And Marine 874 Biology: An Annual Review. pp 29-55. 875 Hill RW, Dacey JWH and Krupp DA. 1995. Dimethylsulfoniopropionate in reef 876 corals. Bulletin of Marine Science 57, 489-494. 877 Holmes AJ, Costello A, Lidstrom ME and Murrell JC. 1995. Evidence that 878 particulate methane monooxygenase and ammonia monooxygenase may be 879 evolutionarily related. FEMS Microbiology Letters 132, 203-208.

880	Horinouchi M, Kasuga K, Nojiri H, Yamane H and Omori T. 1997. Cloning and
881	characterization of genes encoding an enzyme which oxidizes dimethyl sulfide in
882	Acinetobacter sp. strain 20B. FEMS Microbiology Letters 155, 99-105.
883	Howard EC, Henriksen JR, Buchan A, Reisch CR, Buergmann H, Welsh R, Ye
884	WY, Gonzalez JM, Mace K, Joye SB, Kiene RP, Whitman WB and Moran
885	MA. 2006. Bacterial taxa that limit sulfur flux from the ocean. Science 314, 649-
886	652.
887	Irwin JG, Campbell G and Vincent K. 2002. Trends in sulphate and nitrate wet
888	deposition over the United Kingdom: 1986-1999. Atmospheric Environment 36,
889	2867-2879.
890	Jamshad M, De Marco P, Pacheco CC, Hanczar T and Murrell JC. 2006.
891	Identification, mutagenesis, and transcriptional analysis of the methanesulfonate
892	transport operon of Methylosulfonomonas methylovora. Applied and
893	Environmental Microbiology 72, 276-283.
894	Johnston AWB, Todd JD, Sun L, Nikolaidou-Katsaridou MN, Curson ARJ and
895	Rogers R. 2008. Molecular diversity of bacterial production of the climate-
896	changing gas, dimethyl sulphide, a molecule that impinges on local and global
897	symbioses. Journal of Experimental Botany 59 , 1059-1067.
898	Jonkers HM, Koopmans GF and van Gemerden H. 1998. Dynamics of dimethyl
899	sulfide in a marine microbial mat. <i>Microbial Ecology</i> 36 , 93-100.
900	Jonkers HM, van der Maarel MJEC, van Gemerden H and Hansen T. 1996.
901 902	Dimethylsulfoxide reduction by marine sulfate-reducing bacteria. <i>FEMS</i>
902 903	<i>Microbiology Letters</i> 136 , 283-287. Juliette LY, Hyman MR and Arp DJ. 1993. Inhibition of ammonia oxidation in
903 904	Nitrosomonas europaea by sulfur compounds - thioethers are oxidized to
904	sulfoxides by ammonia monooxygenase. Applied and Environmental
905	Microbiology 59, 3718-3727.
907	Lyimo TJ, Pol A, Op den Camp HJM, Harhangi HR and Vogels GD. 2000.
908	Methanosarcina semesiae sp. nov., a dimethylsulfide-utilizing methanogen from
909	mangrove sediment. International Journal of Sytematic and Evolutionary
910	Microbiology 50, 171-178.
911	Lymio TJ, Pol A, Harhangi HR, Jetten MSM and Op den Camp HJM. 2009.
912	Anaerobic oxidation of dimethylsulfide and methanethiol in mangrove sediments
913	is dominated by sulfate-reducing bacteria. FEMS Microbiology Ecology
914	Kadota H and Ishida Y. 1972. Production of volatile sulfur compounds by
915	microorganisms. Annual Review of Microbiology 26, 127-138.
916	Kalinová B, Podskalská H, Růžička J and Hoskovec M. 2009. Irresistible bouquet
917	of death - how are burying beetles (Coleoptera: Silphidae: Nicrophorus) attracted
918	by carcasses. Naturwissenschaften DOI 10.1007/s00114-009-0545-6.
919	Kanagawa T and Kelly DP. 1986. Breakdown of dimethyl sulfide by mixed cultures
920	and by Thiobacillus thioparus. FEMS Microbiology Letters 34, 13-19.
921	Kanagawa T, Dazai M and Fukuoka S. 1982. Degradation of O,O-dimethyl
922	phosphorodithioate by Thiobacillus thioparus TK-1 and Pseudomonas AK-2.
923	Agricultural Biology and Chemistry 46, 2571-2578.
924	Keenan TW and Lindsay RC. 1968. Evidence for a dimethyl sulfide precursor in
925	milk. Journal of Dairy Science 51, 112-113.
926	Kelly DP and Baker SC. 1990. The organosulphur cycle: aerobic and anaerobic
927	processes leading to turnover of C ₁ -sulphur compounds. FEMS Microbiology
928	<i>Reviews</i> 87 , 241-246.

929	Kelly DP and Murrell JC. 1999. Microbial metabolism of methanesulfonic acid.
930	Archives of Microbiology 172, 341-348.
931	Kertesz MA. 2000. Riding the sulfur cycle - metabolism of sulfonates and sulfate
932	esters in Gram-negative bacteria. FEMS Microbiology Reviews 24, 135-175.
933	Kertesz MA and Mirleau P. 2004. The role of soil microbes in plant sulphur
934	nutrition. Journal of Experimental Botany 55, 1939-1945.
935	Kertesz MA, Schmidt-Larbig K and Wüest T. 1999. A novel reduced flavin
936	mononucleotide-dependent methanesulfonatase encoded by the sulfur-regulated
937	msu operon of Pseudomonas aeruginosa. Journal of Bacteriology 181, 1464-
938	1473.
939	Kettle AJ, Andreae MO, Amouroux D, Andreae TW, Bates TS, Berresheim H,
940	Bingemer H, Boniforti R, Curran MAJ, DiTullio GR, Helas G, Jones GB,
941	Keller MD, Kiene RP, Leck C, Levasseur M, Malin G, Maspero M, Matrai
942	P, McTaggart AR, Mihalopoulos N, Nguyen BC, Novo A, Putaud JP,
943	Rapsomanikis S, Roberts G, Schebeske G, Sharma S, Simó R, Staubes R,
944	Turner S and Uher G. 1999. A global database of sea surface dimethylsulfide
945	(DMS) measurements and a procedure to predict sea surface DMS as a function
946	of latitude, longitude, and month. Global Biogeochemical Cycles 13, 399-444.
947	Kiene RP. 1988. Dimethyl sulfide metabolism in salt marsh sediments. FEMS
948	Microbiology Ecology 53, 71-78.
949	Kiene RP. 1990. Dimethyl sulfide production from dimethylsulfoniopropionate in
950	coastal seawater samples and bacterial cultures. Applied and Environmental
951	Microbiology 56 , 3292-3297.
952	Kiene RP and Capone DG. 1988. Microbial transformations of methylated sulfur
953	compounds in anoxic salt marsh sediments. Microbial Ecology 15, 275-291.
954	Kiene RP and Bates TS. 1990. Biological removal of dimethyl sulfide from sea-
955	water. <i>Nature</i> 345 , 702-705.
956	Kiene RP and Gerard G. 1994. Determination of trace levels of dimethylsulfoxide
957	(DMSO) in seawater and rainwater. Marine Chemistry 47, 1-12.
958	Kiene RP and Hines ME. 1995. Microbial formation of dimethyl sulfide in anoxic
959	Sphagnum peat. Applied and Environmental Microbiology 61, 2720-2726.
960	Kiene RP, Linn LJ and Bruton JA. 2000. New and important roles for DMSP in
961	marine microbial communities. Journal of Sea Research 43, 209-224.
962	Kiene RP, Oremland RS, Catena A, Miller LG and Capone DG. 1986.
963	Metabolism of reduced methylated sulfur compounds in anaerobic sediments an
964	by a pure culture of an estuarine methanogen. Applied and Environmental
965	<i>Microbiology</i> 52 , 1037-1045.
966	Kim HG, Doronina NV, Trotsenko YA and Kim SW. 2007. Methylophaga
967	aminisulfidivorans sp nov., a restricted facultatively methylotrophic marine
968	bacterium. International Journal of Systematic and Evolutionary Microbiology
969	57 , 2096-2101.
970	Kim KH, Choi YJ, Jeon EC and Sunwoo Y. 2005. Characterization of malodorous
971	sulfur compounds in landfill gas. Atmospheric Environment 39 , 1103-1112.
972	Kim KY, Ko HJ, Kim HT, Kim YS, Roh YM, Lee CM, Kim HS and Kim CN.
973	2007. Sulfuric odorous compounds emitted from pig-feeding operations.
974	Atmospheric Environment 41 , 4811-4818.
975	Kim S-J, Shin H-J, Kim Y-C, Lee D-S and Yang J-W. 2000. Isolation and
976	purification of methyl mercaptan oxidase from <i>Rhodococcus rhodochrous</i> for
977	mercaptan detection. Biotechnology Bioprocess Engineering 5, 465-468.

978	Kinsela AS, Reynolds JK and Melville MD. 2007. Agricultural acid sulfate soils: a
979	potential source of volatile sulfur compounds? Environmental Chemistry 4, 18-
980	25.
981	Kirst GO, Thiel C, Wolff H, Nothnagel J, Wanzek M and Ulmke R. 1991.
982	Dimethylsulfoniopropionate (DMS) in ice-algae and its possible role. Marine
983	<i>Chemistry</i> 35 , 381-388.
984	Knief C, Frances L, Cantet F and Vorholt JA. 2008. Cultivation-independent
985	characterization of Methylobacterium populations in the plant phyllosphere by
986	automated ribosomal intergenic spacer analysis. Applied and Environmental
987	<i>Microbiology</i> 74 , 2218-2228.
988	Kubec R, Drhova V and Velisek J. 1998. Thermal degradation of S-methylcysteine
989 990	and its sulfoxide important flavor precursors of <i>Brassica</i> and <i>Allium</i> vegetables. <i>Journal of Agricultural and Food Chemistry</i> 46 , 4334-4340.
991	Leake CD. 1967. Introductory remarks. Ann. N.Y. Adac. Sci. 141, 1-3.
992	Lee H-H, Kim S-J, Shin H-J, Park J-Y and Yang J-W. 2002. Purification and
993	characterisation of methyl mercaptan oxidase from <i>Thiobacillus thioparus</i> for
994	mercaptan detection. <i>Biotechnology Bioprocess Engineering</i> 7, 375-379.
995	Lewis JA and Papvizas GC. 1970. Evolution of volatile sulfur-containing
996	compounds from decomposition of crucifers in soil. Soil Biology & Biochemistry
997	2 , 239-246.
998	Liss PS and Merlivat L. 1986. Air-sea gas exchange rates: introduction and
999	synthesis. In The role of air-sea exchange in geochemical cycling. Ed. Buat-
1000	Menard P. pp 113-127. D. Reidel, Dordrecht.
1001	Liss PS, Malin G, Turner S and Holligan PM. 1994. Dimethyl sulfide and
1002	Phaeocystis: A review. Journal of Marine Systems 5, 41-53.
1003	Lomans BP, Op den Camp HJ, Pol A, van der Drift C and Vogels GD. 1999a.
1004	Role of methanogens and other bacteria in degradation of dimethyl sulfide and
1005	methanethiol in anoxic freshwater sediments. Applied & Environmental
1006	<i>Microbiology</i> 65 , 2116-2121.
1007	Lomans BP, Smolders AJP, Intven LM, Pol A, Op Den Camp HJM and Van Der
1008	Drift C. 1997. Formation of dimethyl sulfide and methanethiol in anoxic
1009	freshwater sediments. Applied and Environmental Microbiology 67, 4741-4747.
1010	Lomans BP, Maas R, Luderer R, Op den Camp HJ, Pol A, van der Drift C and
1011	Vogels GD. 1999b. Isolation and characterization of <i>Methanomethylovorans</i>
1012	<i>hollandica</i> gen. nov., sp. nov., isolated from freshwater sediment, a
1013 1014	methylotrophic methanogen able to grow on dimethyl sulfide and methanethiol.
1014	Applied & Environmental Microbiology 65, 3641-3650. Lomans BP, Leijdekkers P, Wesselink J-J, Bakkes P, Pol A, van der Drift C and
1015	Op den Camp HJ. 2001. Obligate sulfide-dependent degradation of
1010	methoxylated aromatic compounds and formation of methanethiol and dimethyl
1017	sulfide by a freshwater sediment isolate, <i>Parasporobacterium paucivorans</i> gen.
1010	nov., sp. nov. Applied & Environmental Microbiology 67 , 4017-4023.
1019	Lovelock JE, Maggs RJ and Rasmussen RA. 1972. Atmospheric dimethyl sulphide
1020	and the natural sulphur cycle. <i>Nature</i> 237 , 452-453.
1021	Malin G and Kirst GO. 1997. Algal production of dimethyl sulfide and its
1022	atmospheric role. <i>Journal of Phycology</i> 33 , 889-896.
1024	Malin G, Wilson WH, Bratbak G, Liss PS and Mann NH. 1998. Elevated
1025	production of dimethylsulfide resulting from viral infection of cultures of
1026	Phaeocystis pouchetii. Limnology and Oceanography 43, 1389-1393.

1027	McDevitt CA, Hugenholtz P, Hanson GR and McEwan AG. 2002. Molecular
1028	analysis of dimethyl sulphide dehydrogenase from Rhodovulum sulfidophilum: its
1029	place in the dimethyl sulphoxide reductase family of microbial molybdopterin-
1030	containing enzymes. <i>Molecular Microbiology</i> 44, 1575-1587.
1031	McEwan AG, Ferguson SJ and Jackson JB. 1991. Purification and properties of
1032	dimethyl sulphoxide reductase from Rhodobacter capsulatus. A periplasmic
1033	molybdoenzyme. Biochemical Journal 274, 305-307.
1034	McGrath SP and Zhao FJ. 1995. A risk assessment of sulphur deficiency in cereals
1035	using soil and atmospheric deposition data. Soil Use and Management 11, 110-
1036	114.
1037	McGugan WA. 2002. Cheddar cheese flavor. Review of current progress. Journal of
1038	Agricultural and Food Chemistry 23, 1047-1050.
1039	Meilgaard MC. 2002. Prediction of flavor differences between beers from their
1040	chemical composition. Journal of Agricultural and Food Chemistry 30, 1009-
1041	1017.
1042	Miers JC. 1966. Formation of volatile sulfur compounds in processed tomato
1043	products. Journal of Agricultural and Food Chemistry 14, 419-423.
1044	Miller TR, Hnilicka K, Dziedzic A, Desplats P and Belas R. 2004. Chemotaxis of
1045	Silicibacter sp. strain TM1040 toward dinoflagellate products. Applied &
1046	Environmental Microbiology 70, 4692-4701.
1047	Milo C and Reineccius GA. 1997. Identification and quantification of potent
1048	odorants in regular-fat and low-fat mild cheddar cheese. Journal of Agricultural
1049	and Food Chemistry 45, 3590-3594.
1050	Moosvi AS, McDonald IR, Pearce DA, Kelly DP and Wood AP. 2005. Molecular
1051	detection and isolation from Antarctica of methylotrophic bacteria able to grow
1052	with methylated sulfur compounds. Systematic and Applied Microbiology 28,
1053	541-554.
1054	Moran MA, González JM and Kiene RP. 2003. Linking a bacterial taxon to sulfur
1055	cyling in the sea: studies of the marine Roseobacter group. Geomicrobiolgy
1056	Journal 20 , 375-388.
1057	Neufeld JD, Boden R, Moussard H, Schäfer H and Murrell JC. 2008. Substrate-
1058	specific clades of active marine methylotrophs associated with a phytoplankton
1059	bloom in a temperate coastal environment. Applied & Environmental
1060	<i>Microbiology</i> 74 , 7321-7328.
1061	Nguyen BC, Gaudry A, Bonsang B and Lambert G. 1978. Reevaluation of the role
1062	of dimethyl sulphide in the sulphur budget. <i>Nature</i> 275 , 637-639.
1063	Ni SS and Boone DR. 1991. Isolation and characterization of a dimethyl sulfide-
1064	degrading methanogen, Methanolobus siciliae Hi350, from an oil-well,
1065	characterization of <i>M. siciliae</i> T4/Mt, and emendation of <i>M. siciliae</i> .
1066	International Journal of Systematic Bacteriology 41, 410-416.
1067	Noble R, Hobbs PJ, Dobrovin-Pennington A, Misselbrook TH and Mead A. 2001.
1068	Olfactory response to mushroom composting emissions as a function of chemical
1069	concentration. Journal of Environmental Quality 30 , 760–767.
1070	Oelgeschlaeger E and Rother M. 2009. In vivo role of three fused corrinoid/methyl
1071	transfer proteins in <i>Methanosarcina acetivorans</i> . <i>Molecular Microbiology</i> 72 ,
1072	1260-1272.
1073	Omori T, Saiki Y, Kasuga K and Kodama T. 1995. Desulfurization of alkyl and
1074	aromatic sulfides and sulfonates by dibenzothiophene-desulfurizing <i>Rhodococcus</i>
1075	sp strain SY1. Bioscience Biotechnology and Biochemistry 59, 1195-1198.

1076	Omura K and Swern D. 1978. Oxidation of alcohols by "activated" dimethyl
1077	sulfoxide. A preparative, steric and mechanistic study. Tetrahedron 34, 1651-
1078	1660.
1079	Otte ML, Wilson G, Morris JT and Moran BM. 2004.
1080	Dimethylsulphoniopropionate (DMSP) and related compounds in higher plants.
1081	Journal of Experimental Botany 55, 1919-1925.
1082	Padden AN, Rainey FA, Kelly DP and Wood AP. 1997. Xanthobacter tagetidis sp
1083	nov, an organism associated with Tagetes species and able to grow on substituted
1084	thiophenes. International Journal of Systematic Bacteriology 47, 394-401.
1085	Panter R and Penzhorn RD. 1980. Alkyl sulfonic acids in the atmosphere.
1086	Atmospheric Environment 14, 149-151.
1087	Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN and Schmidt A.
1088	2007. Characterization of cystein-degrading and H ₂ S-releasing enzymes of higher
1089	plants - from the field to the test tube and back. <i>Plant Biology</i> 9, 582-588.
1090	Parcell S. 2002. Sulfur in human nutrition and applications in medicine. <i>Alternative</i>
1091	Medicine Review 7, 22-44.
1092	Pearson TW, Dawson HJ and Lackey HB. 1981. Natural occurring levels of
1093	dimethyl sulfoxide in selected fruits, vegetables, grains, and beverages. Journal
1094	of Agricultural and Food Chemistry 29 , 1089-1091.
1095	Pham M, Muller JF, Brasseur GP, Granier C and Megie G. 1995. A three-
1096	dimensional study of the tropospheric sulfur cycle. Journal of Geophysical
1097	<i>Research-Atmospheres</i> 100 , 26061-26092.
1098	Plas C, Wimmer K, Jelinek E, Danner H, Holubar P, Harant H and Braun R.
1099	1991. Microbial oxidation of carbondisulfide. Medical Faculty Landbouw,
1100	University Gent 56 , 575-577.
1101	Pol A, Op den Camp HJM, Mees SGM, Kersten MASH and van der Drift C.
1102	1994. Isolation of a dimethylsulfide-utilizing Hyphomicrobium species and its
1103	application in biofiltration of polluted air. <i>Biodegradation</i> 5, 105-112.
1104	Rammler DH and Zafferoni A. 1967. Biological implications of DMSO based on a
1105	review of its chemical properties. Annals of the New York Academy of Science
1106	141 , 13-23.
1107	Rappert S and Müller R. 2005. Odor compounds in waste gas emissions from
1108	agricultural operations and food industries. Waste Management 25, 887-907.
1109	Reichert K, Lipski A, Pradella S, Stackebrandt E and Altendorf K. 1998.
1110	Pseudonocardia asaccharolytica sp. nov. and Pseudonocardia sulfidoxydans sp.
1111	nov., two new dimethyl disulfide-degrading actinomycetes and emended
1112	description of the genus Pseudonocardia. International Journal of Systematic
1113	<i>Bacteriology</i> 48 , 441-449.
1114	Rennenberg H. 1984. The fate of excess sulfur in higher plants. Annual Review of
1115	Plant Physiology and Plant Molecular Biology 35 , 121-153.
1116	Rhoades JW. 2002. Coffee volatiles - analysis of the volatile constituents of coffee.
1117	Journal of Agricultural and Food Chemistry 8, 136-141.
1118	Richards SR, Kelly CA and Rudd JWM. 1991. Organic volatile sulfur in lakes of
1119	the Canadian Shield and its loss to the atmosphere. <i>Limnology & Oceanography</i>
1120	36 , 468-482.
1121	Ridgeway RG, Thornton DC and Bandy AR. 1992. Determination of trace aqueous
1122	dimethylsulfoxide concentrations by isotope-dilution gas-chromatography mass-
1123	spectrometry - application to rain and sea-water. <i>Journal of Atmospheric</i>
1124	<i>Chemistry</i> 14 , 53-60.

1125	Saini HS, Attieh JM and Hanson AD. 1995. Biosynthesis of halomethanes and
1126	methanethiol by higher plants via a novel methyltransferase reaction. Plant, Cell
1127	and Environment 18, 1027-1033.
1128	Saltzman ES and Cooper DJ. 1989. Dimethyl sulfide and hydrogen sulfide in
1129	marine air. In Biogenic sulfur in the environment. Eds. Saltzman ES and Cooper
1130	WJ. pp 330-351. ACS.
1131	Sambasivarao D, Scraba DG, Trieber C and Weiner JH. 1990. Organization of
1132	dimethyl sulfoxide reductase in the plasma membrane of Escherichia coli.
1133	Journal of Bacteriology 172, 5938-5948.
1134	Satoh T and Kurihara FN. 1987. Purification and properties of dimethylsulfoxide
1135	reductase containing a molybdenum cofactor from a photodenitrifier,
1136	Rhodopseudomonas sphaeroides f.s. denitrificans. Journal of Biochemistry 102,
1137	191-197.
1138	Schäfer H. 2007. Isolation of <i>Methylophaga</i> spp. from marine dimethylsulfide-
1139	degrading enrichment cultures and identification of polypeptides induced during
1140	growth on dimethylsulfide. Applied & Environmental Microbiology 73, 2580-
1141	2591.
1142	Schmalenberger A, Hodge S, Hawkesford MJ and Kertesz MA. 2009. Sulfonate
1143	desulfurization in Rhodococcus from wheat rhizosphere communities. FEMS
1144	Microbiology Ecology 67, 140-150.
1145	Schmalenberger A, Hodge S, Bryant A, Hawkesford MJ, Singh BK and Kertesz
1146	MA. 2008. The role of Variovorax and other Comamonadaceae in sulfur
1147	transformations by microbial wheat rhizosphere communities exposed to different
1148	sulfur fertilization regimes. Environmental Microbiology 10, 1486-1500.
1149	Scholten JCM, Kelly DP and Murrell JC. 2003. Growth of sulfate-reducing
1150	bacteria and methanogenic archaea with methylated sulfur compounds: a
1151	commentary on the thermodynamic aspects. Archives of Microbiology 179, 135-
1152	144.
1153	Schnug E, Booth E, Haneklaus S and Walker KC. 1995. Sulphur supply and stress
1154	resistance in oilseed rape. In Proceedings of the 9 th International Rapeseed
1155	Congress, Cambridge, 1995. pp 229-231, Cambridge.
1156	Schröder P. 1993. Plants as Sources of Atmospheric Sulfur. Sulfur Nutrition and
1157	Assimilation in Higher Plants, 253-270.
1158	Sciare J, Baboukas E, Hancy R, Mihalopoulos N and Nguyen BC. 1998. Seasonal
1159	variation of dimethylsulfoxide in rainwater at Amsterdam island in the southern
1160	Indian Ocean: Implications on the biogenic sulfur cycle. Journal of Atmospheric
1161	<i>Chemistry</i> 30 , 229-240.
1162	Segurel MA, Razungles AJ, Riou C, Salles M and Baumes RL. 2004. Contribution
1163	of dimethyl sulfide to the aroma of syrah and grenache noir wines and estimation
1164	of its potential in grapes of these varieties. Journal of Agricultural and Food
1165	<i>Chemistry</i> 52 , 7084-7093.
1166	Shaw PE, Ammons JM and Braman RS. 1980. Volatile sulfur compounds in fresh
1167	orange and grapefruit juices: Identification, quantitation, and possible importance
1168	to juice flavor. <i>Journal of Agricultural and Food Chemistry</i> 28 , 778-781.
1169	Shu CH and Chen CK. 2009. Enhanced removal of dimethyl sulfide from a
1170	synthetic waste gas stream using a bioreactor inoculated with Microbacterium sp
1171	NTUT26 and Pseudomonas putida. Journal of Industrial Microbiology &
1172	<i>Biotechnology</i> 36 , 95-104.
1173	Sivelä S and Sundman V. 1975. Demonstration of <i>Thiobacillus</i> -type bacteria, which
1174	utilize methyl sulfides. Archives of Microbiology 103, 303-304.

1175	Smet E, Chasaya G, VanLangenhove H and Verstraete W. 1996. The effect of
1176	inoculation and the type of carrier material used on the biofiltration of methyl
1177	sulphides. Applied Microbiology and Biotechnology 45, 293-298.
1178	Smith NA. 1987. Metabolism of dimethyl disulfide, carbon disulfide and other
1179	volatile sulphur compounds by chemolithoautotrophic sulphur bacteria. PhD
1180	Thesis, University of Warwick, Coventry.
1181	Smith NA and Kelly DP. 1988. Isolation and physiological characterization of
1182	autotrophic sulfur bacteria oxidizing dimethyl disulfide as sole source of energy.
1183	Journal of General Microbiology 134, 1407-1417.
1184	Sorokin DY, Jones BE and Kuenen JG. 2000. An obligate methylotrophic,
1185	methane-oxidizing Methylomicrobium species from a highly alkaline
1186	environment. Extremophiles 4, 145-155.
1187	Stefels J. 2000. Physiological aspects of the production and conversion of DMSP in
1188	marine algae and higher plants. Journal of Sea Research 43, 183-197.
1189	Steudler PA and Peterson BJ. 1984. Contribution of gaseous sulfur from salt
1190	marshes to the global sulfur cycle. Nature 311 , 455-457.
1191	Styrvold OB and Strom AR. 1984. Dimethylsulfoxide and trimethylamine oxide
1192	respiration of proteus-vulgaris - evidence for a common terminal reductase
1193	system. Archives of Microbiology 140, 74-78.
1194	Sunda W, Kieber DJ, Kiene RP and Huntsman S. 2002. An antioxidant function
1195	for DMSP and DMS in marine algae. <i>Nature</i> 418 , 317-320.
1196	Suylen GMH and Kuenen JG. 1986. Chemostat enrichment and isolation of
1197	Hyphomicrobium EG a dimethyl sulfide oxidizing methylotroph and reevaluation
1198	of Thiobacillus MS1. Antonie Van Leeuwenhoek 52, 281-293.
1199	Suylen GMH, Large PJ, Vandijken JP and Kuenen JG. 1987. Methyl mercaptan
1200	oxidase, a key enzyme in the metabolism of methylated sulfur-compounds by
1201	Hyphomicrobium EG. Journal of General Microbiology 133, 2989-2997.
1202	Talou T, Delmas M and Gaset A. 1987. Principal constituents of black truffle
1203	(Tuber melanosporum) aroma. Journal of Agricultural and Food Chemistry 35,
1204	774-777.
1205	Talou T, Gaset A, Delmas M, Kulifaj M and Montant C. 1990. Dimethyl sulfide -
1206	the secret for black truffle hunting by animals. Mycological Research 94, 277-
1207	278.
1208	Tanimoto Y and Bak F. 1994. Anaerobic degradation of methylmercaptan and
1209	dimethyl sulfide by newly isolated thermophilic sulfate-reducing bacteria.
1210	Applied and Environmental Microbiology 60, 2450-2455.
1211	Todd JD, Curson ARJ, Dupont CL, Nicholson P and Johnston AWB. 2009. The
1212	<i>dddP</i> gene, encoding a novel enzyme that converts dimethylsulfoniopropionate
1213	into dimethyl sulfide, is widespread in ocean metagenomes and marine bacteria
1214	and also occurs in some Ascomycete fungi. Environmental Microbiology 11,
1215	1376-1385.
1216	Todd JD, Rogers R, Li YG, Wexler M, Bond PL, Sun L, Curson ARJ, Malin G,
1217	Steinke M and Johnston AWB. 2007. Structural and regulatory genes required
1218	to make the gas dimethyl sulfide in bacteria. Science 315, 666-669.
1219	Ulrich D, Hoberg E, Bittner T, Engewald W and Meilchen K. 2001. Contribution
1220	of volatile compounds to the flavor of cooked asparagus. European Food
1221	Research and Technology 213, 200-204.
1222	Vallina SM and Simó R. 2007. Strong relationship between DMS and the solar
1223	radiation dose over the global surface ocean. Science 315 , 506-508.

1224	Vallina SM, Simó R and Gassó S. 2006. What controls CCN seasonality in the
1225	Southern Ocean? A statistical analysis based on satellite-derived chlorophyll and
1226	CCN and model-estimated OH radical and rainfall. Global Biogeochem. Cycles
1227	20 , GB1014
1228	Vallina SM, Simó R and Manizza M. 2007. Weak response of oceanic
1229	dimethylsulfide to upper mixing shoaling induced by global warming.
1230	Proceedings of the National Academy of Sciences of the United States of America
1231	104 , 16004-16009.
1232	Van Alstyne KL and Puglisi MP. 2007. DMSP in marine macroalgae and
1233	macroinvertebrates: Distribution, function, and ecological impacts. Aquatic
1234	Sciences 69, 394-402.
1235	Vila-Costa M, Del Valle DA, González JM, Slezak D, Kiene RP, Sánchez O and
1236	Símo R. 2006. Phylogenetic identification and metabolism of dimethylsulfide
1237	degrading marine bacteria. Environmental Microbiology 8, 2189-2200.
1238	Visscher PT and Taylor BF. 1993a. Aerobic and anaerobic degradation of a range of
1239	alkyl sulfides by a denitrifying marine bacterium. Applied and Environmental
1240	Microbiology 59 , 4083-4089.
1241	Visscher PT and Taylor BF. 1993b. A new mechanism for the aerobic catabolism of
1242	dimethyl sulfide. Applied and Environmental Microbiology 59, 3784-3789.
1243	Visscher PT, Quist P and van Gemerden H. 1991. Methylated sulfur compounds in
1244	microbial mats: in situ concentrations and metabolism by a colorless sulfur
1245	bacterium. Applied and Environmental Microbiology 57, 1758-1763.
1246	Visscher PT, Baumgartner LK, Buckley DH, Rogers DR, Hogan ME, Raleigh
1247	CD, Turk KA and Des Marais DJ. 2003. Dimethyl sulfide and methanethiol
1248	formation in microbial mats: potential pathways for biogenic signatures.
1249	Environmental Microbiology 5, 296-308.
1250	Vogt C, Rabenstein A, Rethmeier J and Fischer U. 1997. Dimethyl sulphoxide
1251	reduction with reduced sulphur compounds as electron donors by anoxygenic
1252	phototrophic bacteria. <i>Microbiology-Uk</i> 143 , 767-773.
1253	Vohra J. 2000. Physiological, biochemical and molecular characterisation of novel
1254	methylotrophs isolated from the foot. MSc Thesis, King's College, London (UK).
1255	Watson AJ, Upstill-Goddard RC and Liss PS. 1991. Air-sea gas exchange in rough
1256	and stormy seas measured by a dual-tracer technique. <i>Nature</i> 349 , 145-147.
1257	Watts SF. 2000. The mass budgets of carbonyl sulfide, dimethyl sulfide, carbon
1258	disulfide and hydrogen sulfide. Atmospheric Environment 34, 761-779.
1259	Weiner JH, Rothery RA, Sambasivarao D and Trieber CA. 1992. Molecular
1260	analysis of dimethylsulfoxide reductase: a complex iron-sulfur molybdoenzyme
1261	of Escherichia coli. Biochimica et Biophysica Acta (BBA) - Bioenergetics 1102,
1262	1-18.
1263	Williams J, Holzinger R, Gros V, Xu X, Atlas E and Wallace DWR. 2004.
1264	Measurements of organic species in air and seawater from the tropical Atlantic.
1265	Geophysical Research Letters 31 , L23S06.
1266	Wolfe GV and Steinke M. 1996. Grazing-activated production of dimethyl sulfide
1267	(DMS) by two clones of Emiliania huxleyi. Limnology and Oceanography 41,
1268	1151-1160.
1269	Wolfe GV, Sherr EB and Sherr BF. 1994. Release and consumption of DMSP from
1270	Emiliania huxleyi during grazing by Oxyrrhis marina. Marine Ecology Progress
1271	Series 111 , 111-119.
1272	Wong FF and Carson JF. 1966. Isolation of S-methyl methionine sulfonium salt
1273	from fresh tomatoes. Journal of Agricultural and Food Chemistry 14, 247-249.

1274	Yamamoto I, Wada N, Ujiiye T, Tachibana M, Matsuzaki M, Kajiwara H,
1275	Watanabe Y, Hirano H, Okubo A, Satoh T and Yamazaki S. 1995. Cloning
1276	and nucleotide-sequence of the gene encoding dimethyl-sulfoxide reductase from
1277	Rhodobacter sphaeroides f. sp. denitrificans. Bioscience Biotechnology and
1278	Biochemistry 59 , 1850-1855.
1279	Yoch DC. 2002. Dimethylsulfoniopropionate: its sources, role in the marine food
1280	web, and biological degradation to dimethylsulfide. Applied & Environmental
1281	<i>Microbiology</i> 68 , 5804-5815.
1282	Yoch DC, Carraway RH, Friedman R and Kulkarni N. 2001. Dimethylsulfide
1283	(DMS) production from dimethylsulfoniopropionate by freshwater river
1284	sediments: phylogeny of Gram-positive DMS-producing isolates. FEMS
1285	Microbiology Ecology 37 , 31-37.
1286	Zeyer J, Eicher P, Wakeham SG and Schwarzenbach RP. 1987. Oxidation of
1287	dimethyl sulfide to dimethyl sulfoxide by phototrophic bacteria. Applied &
1288	Environmental Microbiology 53, 2026-2032.
1289	Zhang L, Hirai M and Shoda M. 1991. Removal characteristics of dimethyl sulfide,
1290	methanethiol and hydrogen-sulfide by Hyphomicrobium sp 155 isolated from peat
1291	biofilter. Journal of Fermentation and Bioengineering 72, 392-396.
1292	Zhang L, Kuniyoshi I, Hirai M and Shoda M. 1991. Oxidation of dimethyl sulfide
1293	by Pseudomonas acidovorans DMR-11 isolated from a peat biofilter.
1294	Biotechnology Letters 13, 223-228.
1295	Zhao FJ, Knights JS, Hu ZY and McGrath SP. 2003. Stable sulfur isotope ratio
1296	indicates long-term changes in sulfur deposition in the Broadbalk experiment
1297	since 1845. Journal of Environmental Quality 32, 33-39.
1298	Zhu JY, Chai XS, Pan XJ, Luo Q and Li J. 2002. Quantification and reduction of
1299	organic sulfur compound formation in a commercial wood pulping process.
1300	Environmental Science & Technology 36 , 2269-2272.
1301	Zhu L, Nicovich JM and Wine PH. 2003. Temperature-dependent kinetics studies
1302	of aqueous phase reactions of hydroxyl radicals with dimethylsulfoxide,
1303	dimethylsulfone, and methanesulfonate. Aquatic Sciences 65, 425-435.
1304	Zinder SH and Brock TD. 1978a. Dimethyl sulfoxide as an electron acceptor for
1305	anaerobic growth. Archives of Microbiology 116, 35-40.
1306	Zinder SH and Brock TD. 1978b. Production of methane and carbon dioxide from
1307	methane thiol and dimethyl sulfide by anaerobic lake sediments. Nature 273, 226-
1308	228.
1309	Zinder SH and Brock TD. 1978c. Dimethyl sulphoxide reduction by micro-
1310	organisms. Journal of General Microbiology 105, 335-342.
1311	

1312 Table 1. DMS and related organic sulfur compounds

Compound	Formula
Dimethylsulfide (DMS)	(CH ₃) ₂ -S
Dimethylsulfonio-propionic acid (DMSP)	(CH ₃) ₂ -S-CH ₂ -CH ₂ -COOH
Dimethylsulfoxide (DMSO)	(CH ₃) ₂ -SO
Dimethylsulfone (DMSO ₂)	(CH ₃) ₂ -SO ₂
Methanethiol (MT)	CH ₃ -SH
Dimethyldisulfide (DMDS)	CH ₃ -S-S-CH ₃
Methanesulfonic acid (MSA)	CH ₃ -SO ₃ H

Species	Strain	[DMS] _{MAX}	Isolated from	Isolation substrate (concentration)	Reference
Klebsiella pneumoniae ¹	ATCC 9621	N.D.	Unknown ²	Unknown	(Rammler and Zafferon 1967)
Thiobacillus sp.	MS1	2.4mM	<i>Pinus</i> sp. bark biofilter from a cellulose mill.	DMS (1.6mM)	(Sivelä and Sundman 1975)
Hyphomicrobium sp.	S	N.D.	Soil (Wageningen, Netherlands)	DMSO (12.8mM)	(De Bont <i>et al.</i> 1981)
Thiobacillus thioparus	Tk-m	2mM	Activated sludge	Thiometon (6mM)	(Kanagawa <i>et al.</i> 1982; Kanagawa and Kelly 1986)
Hyphomicrobium sp.	EG	0.1mM	Papermill biofilter	DMSO (10mM)	(Suylen and Kuenen 1986)
Thiobacillus sp.	E1	2mM	Commercial peat	DMS (2mM)	(Smith 1987)
Thiobacillus sp.	E3	2mM	Garden compost	DMS (2mM)	(Smith 1987)
Thiobacillus sp.	E4	2mM	Cattle manure	DMS (2mM)	(Smith 1987)
Thiobacillus sp.	E5	2mM	Marine mud (Plymouth, UK)	DMS (2mM)	(Smith 1987)
Thiobacillus sp.	E7	2mM	<i>Sphagnum</i> sp. moss from a deodorisation unit	DMDS (2mM)	(Smith 1987)
Thiobacillus thioparus	E6	2mM	Pond water (Coventry, UK)	DMDS (2mM)	(Smith and Kelly 1988)
Hyphomicrobium sp.	155	<i>N.D.</i>	Peat biofilter	DMS (1mM)	(Zhang et al. 1991)
Thiobacillus thioparus	DW44	N.D.	Peat biofilter	Thiosulfate (20mM)	(Cho et al. 1991)
Thiobacillus sp.	K4	<i>N.D.</i>	Biofilter	CS_2	(Plas et al. 1991)
Thiobacillus sp.	T5	1.3mM	Marine microbial mat (Texel, Netherlands)	Thiosulfate (10mM)	(Visscher et al. 1991)

Table 2. Bacterial isolates capable of growth on DMS as a sole source of carbon and energy. 1313

¹ "Aerobacter aerogenes". ² Isolation details of this strain do not appear in the literature.

N.D. not determined

Thiobacillus sp.	ANS-1	N.D.	Tidal sediment (Georgia, USA)	DMS (0.5mM)	(Visscher and Taylor 1993b)
Hyphomicrobium sp.	VS	1mM	Activated sludge	DMS (15µM)	(Pol <i>et al.</i> 1994)
Desulfotomaculum sp.	TDS2	N.D.	Thermophilic fermenter sludge	DMS (5mM) and 10mM sulfate)	(Tanimoto and Bak 1994)
Desulfotomaculum sp.	SDN4	N.D.	Thermophilic fermenter sludge	DMS (5mM) and 5mM nitrate	(Tanimoto and Bak 1994)
Methylophaga sulfidovorans	RB-1	2.4mM	Marine microbial mat (Texel, Netherlands)	DMS (1.5mM)	(de Zwart et al. 1996)
Hyphomicrobium sp.	MS3	N.D.	Garden soil (Ghent, Belgium)	DMS/DMDS (1.4/1.1mM)	(Smet et al. 1996)
Xanthobacter tagetidis	TagT2C	2.5mM	Tagetes patula rhyzosphere	T2C(2.5mM)	(Padden et al. 1997)
Pseudonocardia asaccharolytica	580	N.D.	Animal rendering plant biofilter	DMDS (1mM)	(Reichert et al. 1998)
Pseudonocardia sulfidoxydans	592	N.D.	Animal rendering plant biofilter	DMS (0.5mM)	(Reichert et al. 1998)
Starkeya novella ³	SRM	<i>N.D</i> .	Sewage (Kwangju, South Korea)	Thiosulfate (63mM)	(Cha et al. 1999)
Thiocapsa roseopersicina	M11	1mM	Marine microbial mat (Mellum, Germany)	Sulfide (1.6mM)	(Jonkers et al. 1999)
Methylobacterium podarium	FM1	N.D.	Homo sapiens foot	MMA (20mM)	(Vohra 2000)
Hyphomicrobium sulfonivorans	S 1	N.D.	Garden soil (Warwickshire, UK)	DMSO ₂ (10mM)	(Borodina et al. 2002)
Arthrobacter sulfonivorans	ALL/A	N.D.	Allium aflatunense rhyzosphere	$DMSO_2$ (10mM)	(Borodina et al. 2002)
Arthrobacter sulfonivorans	ALL/B	N.D.	Allium aflatunense rhyzosphere	$DMSO_2$ (10mM)	(Borodina et al. 2002)
Arthrobacter methylotrophus	TGA	N.D.	<i>Tagetes minuta</i> rhyzosphere	DMSO ₂	(Borodina et al. 2002)

³ "Thiobacillus novellus".

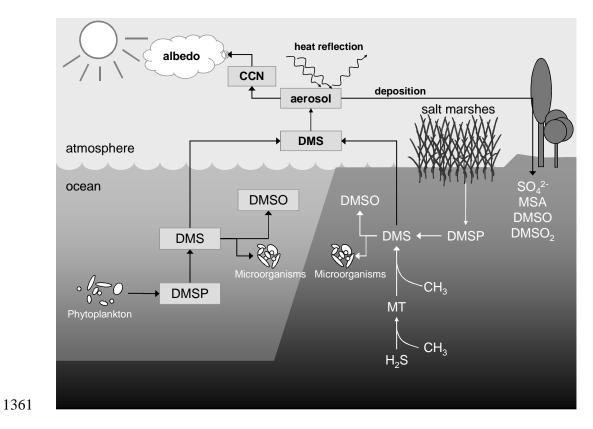
				(10mM)	
Methylobacterium podarium	FM4	1mM	Homo sapiens foot	MMA (20mM)	(Anesti et al. 2004)
Hyphomicrobium sulfonivorans	CT	N.D.	Homo sapiens teeth	DMS (1mM)	(Anesti et al. 2005)
Hyphomicrobium sulfonivorans	DTg	<i>N.D.</i>	Homo sapiens tongue	DMS (1mM)	(Anesti et al. 2005)
Methylobacterium thiocyanatum	MM4	N.D.	Homo sapiens tongue	MMA (20mM)	(Anesti et al. 2005)
Methylobacterium extorquens	MM9	N.D.	Homo sapiens tongue	Methionine (5mM)	(Anesti <i>et al.</i> 2005)
Methylobacterium sp.	MM10	N.D.	Homo sapiens tongue	Cysteine (5mM)	(Anesti <i>et al.</i> 2005)
Micrococcus luteus	MM7	N.D.	Homo sapiens teeth	MMA (20mM)	(Anesti et al. 2005)
Bacillus licheniformis	3S(b)	N.D.	Homo sapiens gingivae	DMS (1mM)	(Anesti et al. 2005)
Bacillus licheniformis	2Tgb	N.D.	Homo sapiens tongue	DMS (1mM)	(Anesti et al. 2005)
Brevibacterium casei	3Tg	N.D.	Homo sapiens tongue	DMS (1mM)	(Anesti et al. 2005)
Brevibacterium casei	3S(a)	N.D.	Homo sapiens gingivae	DMS (1mM)	(Anesti et al. 2005)
Mycobacterium	DSQ3	N.D.	River sediment (London, UK)	DMA (10mM)	(Boden 2005; Boden et
fluoranthenivorans					al. 2008)
Methylophaga sp.	DMS001	N.D.	Emiliania huxleyi culture	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS002	N.D.	Emiliania huxleyi culture	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS003	N.D.	Emiliania huxleyi culture	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS004	N.D.	Emiliania huxleyi culture	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS007	N.D.	Emiliania huxleyi culture	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS009	N.D.	Emiliania huxleyi culture	DMS (50µM)	(Schäfer 2007)
"Methylophaga thiooxidans" ⁴	DMS010	<i>N.D.</i>	Emiliania huxleyi culture	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS011	N.D.	Emiliania huxleyi culture	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS021	N.D.	Rock pool water (Coral Beach, UK)	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS026	N.D.	Sea water (English channel)	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS039	N.D.	Sea water (Achmelvich, UK)	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS040	<i>N.D.</i>	Sea water (Achmelvich, UK)	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS043	N.D.	Sea water (Achmelvich, UK)	DMS (50µM)	(Schäfer 2007)

⁴ "Methylophaga sp. DMS010".

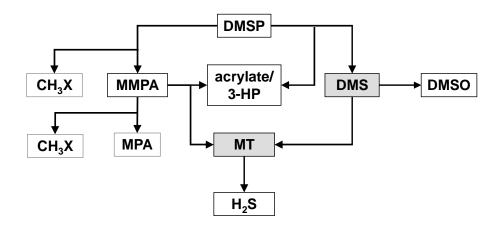
Methylophaga sp.	DMS044	N.D.	Sea water (Achmelvich, UK)	DMS (50µM)	(Schäfer 2007)
Methylophaga sp.	DMS048	N.D.	Rock pool water (Coral Beach, UK)	Formate (10mM)	(Schäfer 2007)
Methylophaga aminisulfidivorans ⁵	MP*	N.D.	Sea water (Mokpo, South Korea)	Methanol (220mM)	(Kim et al. 2007)
Hyphomicrobium facile	-	N.D.	Marsh sediment (De Bruuk, Netherlands)	DMS (50µM)	(Haaijer et al. 2008)
Microbacterium sp.	NTUT26	N.D.	Wastewater sludge from a wood pulp factory (Taiwan)	DMS (1.6mM)	(Shu and Chen 2009)
<i>Desulfosarcina</i> sp.	SD1	N.D.	Mangrove sediment (Tanzania)	DMS (initially 20μ M, additions rising to 100μ M)	(Lyimo <i>et al.</i> 2009)

⁵ "Methylophaga aminosulfidovorans"

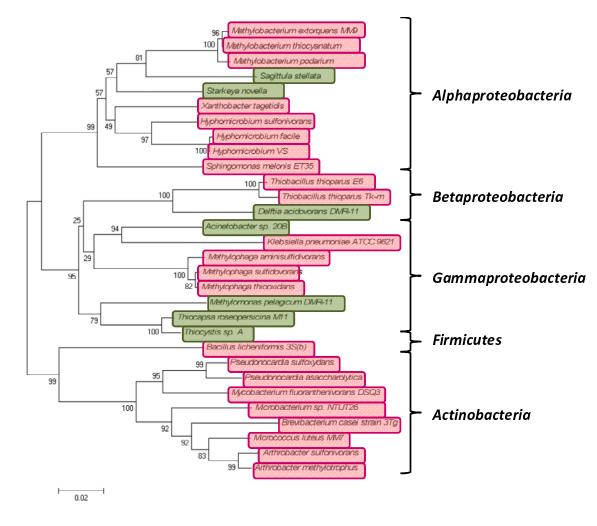
Species	Strain	DMS oxidation product	Isolated from	Isolation substrate	Metabolism producing DMSO	Reference
Thiocystis	А	DMSO	Salt Pond (MA, USA)	Sulfide	Anoxygenic photosynthesis	Zeyer et al. 1987
Delftia acidovorans	DMR-11	DMSO	Peat biofilter	Peptone	Anaerobic chemoheterotrophy	Zhang et al. (1991)
Nitrosomonas europaea		DMSO				Juliette et al.
Methylomicrobium pelagicum	NI	DMSO	Seawater (Japan)	Methane	Aerobic methane oxidation	Fuse 1998
Sagittula stellata	E-37	DMSO	Seawater enrichment culture on high molecular weight fraction of pulp mill effluent	Yeast extract/tryptone	Aerobic heterotrophic growth	Gonzalez et al. 1997
Rhodovulum sulfidophiulum	SH1	DMSO	Seawater	Bicarbonate	Anoxygenic phototrophic growth	Hanlon et al. 1994
Acinetobacter sp.	20B	DMSO	Soil (Japan)	Succinate		Horinouchi et al. 1997
Pseudomonas fluorescens	76	DMSO	Unknown	Unknown	Heterotrophic growth	Ito et al. 2007
Thiocapsa roseopersicina	M1	DMSO	Marine microbial mat (Mellum, Germany)	Sulfide	Phototrophic growth	Visscher and van Gemerden 1991

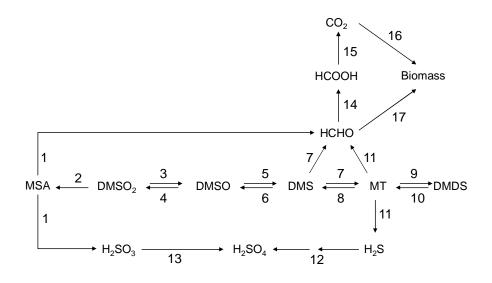

13171318 Table 3. Bacterial isolates that are capable of oxidising DMS to DMSO

1319 Figure captions


1320

1321	Figure 1. Simplified scheme of the major pathways of DMS production and
1322	transformation in the marine environment. DMS emission into the atmosphere is a
1323	source of heat-reflecting aerosols that can serve as cloud condensation nuclei and
1324	thereby affect the radiative balance of the Earth, thus linking DMS production to
1325	climate regulation. Atmospheric transport of DMS and its oxidation products and
1326	deposition in the terrestrial environment provides an important link in the global
1327	sulfur cycle. The role of microbes as sinks for DMS is discussed in the text.
1328	
1329	Figure 2. Major pathways of dimethylsulfoniopropionate (DMSP) degradation.
1330	DMSP can be demethylated to methylmercaptopropionic acid (MMPA), which can be
1331	either demethylated to mercaptopropionic acid (MPA) or demethiolated to acrylate.
1332	The pathway leading to DMS from DMSP is also known as the 'cleavage' pathway,
1333	the responsible enzymes have been referred to as DMSP-lyases, but are in fact
1334	enzymes belonging to different protein families and exhibit different activities. These
1335	give rise to acrylate or 3-hydroxypropionate (3-HP). DMS can be oxidised by
1336	methyltransferases or DMS monooxygenases to methanethiol, or is oxidised to
1337	DMSO, for instance by DMS dehydrogenase. Refer to text for references.
1338	
1339	Figure 3. Phylogenetic tree depicting the genetic diversity of bacterial isolates
1340	capable of assimilating carbon from DMS (overlayed in pink) or degrading DMS to
1341	DMSO (green). The tree is based on an alignment of small subunit ribosomal RNA
1342	gene sequences and was derived using the Neighbour joining option in MEGA4.
1343	Bootstrap values are of 100 replicates.


1345	Figure 4. Scheme showing the biochemical and chemical interconversions of C_1 -
1346	sulfur compounds and key intermediates in carbon and sulfur metabolism that have
1347	been observed across a wide range of microorganisms, refer to Table 1 for chemical
1348	formulae of the C1-sulfur compounds. Either the enzymes/processes are given or an
1349	organism in which the conversion has been observed are given as an example, for
1350	further detail refer to text. 1, MSA monooxygenase; 2, $FMNH_2$ -dependent $DMSO_2$
1351	monooxygenase (Endoh et al. 2005); 3, DMSO ₂ dehydrogenase, 4, <i>Rhodococcus</i> SY1
1352	(Omori et al. 1995); 5 DMSO reductase; 6, DMS dehydrogenase; 7, DMS
1353	monooxygenase / DMS methyltransferase; 8 methylation of MT; 9, chemical
1354	oxidation of MT to DMDS; 10, DMDS reductase (Smith and Kelly 1988); 11, MT
1355	oxidase; 12, bacterial inorganic sulfur oxidation pathways; 13, sulfite oxidase; 14,
1356	formaldehyde oxidation (various enzymes); 15, formate dehydrogenase; 16, Calvin-
1357	Benson-Bassham cycle; 17, serine cycle or ribulose monophosphate cycle.
1358	


1363 Figure 2

1367 Figure 3.

1370 Figure 4

