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Social Network Theory, Broadband and the Future of the World
Wide Web

Abstract

This paper aims to predict some possible futures for the World Wide Web based on sev-
eral key network parameters: size, complexity, cost and increasing connection speed through
the uptake of broadband technology. This is done through the production of a taxonomy
specifically evaluating the stability properties of the fully-connected star and complete net-
works, based on the Jackson and Wolinsky (1996) connections model, modified to incorporate
complexity concerns. The taxonomy demonstrates that when connection speeds are low nei-
ther the star nor complete networks are stable, and when connection speeds are high the
star network is usually stable, while the complete network is never stable. For intermediate
speed levels much depends upon the other parameters. Under plausible assumptions about
the future, the taxonomy suggests that the Web may be increasingly dominated by a single

intermediate site, perhaps best described as a search engine.

1 Introduction

Recently in economics, a literature has emerged looking at how networks develop in society. A good
survey can be found in Jackson (2003) focusing on social networks, and Bloch (2003) which provides a
useful list of applications to industrial organization. The potential range of application is considerable,
from social networks, information networks in firms, through to physical networks, such as the Internet
or broadband networks, though the Internet has so far received surprisingly sparse attention. Possi-
ble exceptions exist, for example an analysis of peering and transit in the Internet by Badasyan and
Chakrabarti (2003), but still not as much as the size and importance of the Internet might warrant.!
A key feature of the current literature on social network formation is that networks are not necessarily
planned centrally, or even prone to much control, they often simply emerge and evolve, which is a char-
acteristic of the Internet and the World Wide Web. A second related literature looks at what makes

a network optimal, which represents a possible end-state to this process of evolution. Perhaps the key

That is not to say that there are not many excellent studies of the Internet or World Wide Web which use empirical
methods, for example the study of the diameter of the Web by Albert et al (1999).



criterion linking these two literatures is the notion of network stability. Should an individual user be
able to create a new link in a network and should this improve his or her utility then it seems reasonable
to assume that it will be done, at least in the medium to long-run. Eventually however a state might
be reached where no one would benefit from a change to the network structure and this seems a good
candidate for the long-term resting point of the network formation process.

A dichotomy exists between the literature on social network theory which tends to deal with links
between individuals or firms which are often cheap to initiate, and so the de facto cost may come in
terms of congestion or complexity, and physical networks where links are often very expensive to build
and maintain and hence have a high direct cost. Take for instance the decision to make a work colleague
aware of your area of expertise, versus the decision to build a new road, gas pipeline, or railway line. The
big cost in the first case might be the concern that once identified you might face a greater work-load,
in terms of the second case there is a considerable cost even to building the link. The Internet provides
an interesting hybrid. It is a genuinely physical network, but one where connecting to a given existing
network is relatively cheap in terms of direct cost, with much of the analysis taking place in terms of
associated costs like complexity or network externality effects on others which might seem more relevant
concerns for the social network literature.

This paper seeks to use some of the existing tools of social network theory to analyze the World
Wide Web and broadband access. A taxonomy of predictions for the future of the Web is developed in
which the impact of high speed broadband access can be judged. To give an overview, first the Jackson
and Wolinsky (1996) connections model, an archetypal social network model, is modified to incorporate
differing connection speeds and complexity costs. Secondly, this new model is applied to the World
Wide Web and a taxonomy of predictions for the future of the Web is formulated. Finally, a residual,
but important, aim of the paper is to show how social network theory can assist in assessing the future
impact of broadband access, and is by no means an exhaustive attempt to complete the task, rather
it presents a number of starting points for research. Section 2 develops a connections model for the
Web, defining notation, and examining the archetypal networks to be used throughout, and ends with a
particularly important list of limitations and potential extensions to the underlying model used in this
paper. Section 3 examines the key concept of stability, and sections 4 and 5 apply this concept to the
star network and complete network in turn. Section 6 summarizes the main findings of the paper and

section 7 concludes.



2 A Connections Model of the Web

A user accessing the World Wide Web can derive utility by accessing the web-sites of others, or more
specifically the information contained on those sites. The Internet allows connection to distant resources,
which raises the value of the Internet as more and more users join and allow further interconnection.
For simplicity, consider web-sites to offer two basic services: either they provide information; or they
provide access to another web-site which in turn may provide information, or further access. Then it
might seem reasonable to model the Web as a series of connected nodes, each of which is of value for the
information contained in each node, and the access to further nodes which is granted. In this way the
Web is well modelled as a collection of nodes connected by edges on a graph: the classic modus operandi
of the social network literature.

Crucially in the social network literature the cost of forming links is relatively low, and hence there is
a clear distinction between road and rail networks for which the cost of establishing a link is so significant
that notions of stability are very different. In particular it may not be possible for users to connect to
each other; the network may be under the direct control of others who are not themselves nodes. The
World Wide Web with its series of interconnected web-sites is much more like a social network in practice,
perhaps typified by a network of familial or social connections, or a firm with a series of connections
across different workplaces. On the Web, users can and do control the links on their own web-sites, and
can and will alter those links if they wish to re-optimize, making notions of individual stability important
at the level of individual nodes.

The model begins with some simple definitions of what is meant by nodes, edges, links, etc. applied
to the Internet, and also what is meant by the Internet, World Wide Web, broadband, etc. Then there
are two examples of how social network theory can be applied to Internet usage, and how the move from
slow connection speeds to faster broadband links alter these decisions.

The paper directly applies a modified version of the model of Jackson and Wolinsky (1996) to the
World Wide Web. The web is simply characterized as a complex graph in which nodes represent web-
sites, and edges represent hyper-links between sites. One major issue for a Web user is how quickly the
relevant information can be obtained. Here the focus is on the number of clicks required to reach a page
containing the information needed, and the level of complexity a user must negotiate when searching for
information on the Web. In each case these considerations are proxied using the standard tools of social
network theory plus a few modifications.

Consider a user who wishes to find a certain piece of information and so decides to search the Web.



For simplification assume that each user begins his search on his own home-page, which may itself contain
some information which might make it the end point of someone else’s quest for knowledge. The user is
assumed to know exactly where the information rests and indeed the shortest route to travel. The user
then has several considerations: firstly the number of pages which have to be traversed; secondly, the
level of complexity of each page which might slow the search, and finally the cost of maintaining any

links which enable other web-pages to be accessed. To summarize the key parameters:

1. The distance between nodes is measured as the minimum number of clicks between a user and the

information he seeks;

2. Complexity is measured in terms of the number of superfluous hyper-links on each site, which can

be time-consuming to navigate;

3. Direct cost is a constant measure of the cost associated with keeping and maintaining direct links

from the user’s home-page to other sites;

4. Finally, connection speed between nodes is of considerable importance and acts together with the

distance between nodes.2

Each of these measures will be introduced and explained. It will be shown that this model can
be used to address questions about the network, such as how broadband technology might impact on
the network, through a unilateral increase in the speed parameter. Note that throughout there is the
assumption of the perfect reliability of links, so the notion of superfluous links does not factor in any
benefits from redundancy.

Figure 1 gives an example of a simple representation through which a single user can gain a required
piece of information. Any site with many links, especially the centre of the star like structure in Figure
1 might represent a search engine, which potentially links to all sites on the network. This is complex

to navigate but ensures a link to virtually anywhere a user wishes to go.

[insert FIGURE 1 here]

On the Internet if a user wishes to travel from one node to another it is quite possible that the information he wishes to
access will actually travel via an alternative route. However, the focus here is on the actual experience of the user. To give
an example, consider a user wishing to navigate from his home-page, node A, to node C, via node B. First, the user finds
the link to node B on his home-page and clicks this link. Then the user waits for node B, the new webpage, to appear, and
must navigate this site searching for the link to node C. Once this is found the user clicks the link and waits for node C to
appear. So the user has traversed from A to C via B, and even if the connection speeds when clicking the links to B and C
were such that connection was instantaneous, the user still had to search through the websites to find the links to B and C,
and it is this searching time which provides one of the novel aspect of this paper. It is important to note that this paper
is mainly concerned with these metaphorical travels by users through the Web, and not necessarily the flow of information
from node to node.



2.1 The Basic Model

The model starts with the network model given in Jackson and Wolinsky (1996). Let N = {1, 2,..,N% }
be the finite set of nodes on the World Wide Web (or simply the Web) with the cardinality of this set of
nodes (or network size) as N¥. Examples of such nodes include web-sites containing information of use,
the home-pages of users themselves, ISP home-sites to which users subscribing to those services initially
connect, and search engines, which are represented as nodes with a particularly large number of edges or
central stars (representing their aim to allow connection to a wide variety of sites, for example on 10th
May 2004, Google claimed to be able to search 4,285,199,774 web-pages). The next definitions consider

the graph and edges.

Definition 1 The complete graph, denoted gV is the set of all subsets of N of size 2. The set of all

possible graphs on N is then {g | g C g™}
Definition 2 Denote the subset of N containing nodes i and j as the (hyper)link or edge ij.

So if ij € g then the nodes or sites 7 and j are directly connected while if ij ¢ g then the nodes or sites
are not directly linked, though they may be connected indirectly (via other sites). Denote the addition
or subtraction of a node or site from a network via the notation g + ij = g U {ij} or g —ij = g\ {ij}

respectively. Let N (g) = {i | 3j s.t. ij € g}. The next important concept is the path connecting nodes.

Definition 3 A path in g connecting i1 and i, is a set of nodes {i1,i2,...,in} C N (g) s.t. {i1i2,1213,
cenyin—1in} C g. The graph ¢’ C g is a component of g, if for alli € N (¢'), i # j, there exists a path in

g’ connecting i and j, and for any i € N (¢') and j € N (g), ij € g implies that ij € ¢'.
Finally, the following definitions consider individual stability and individual defeat.?

Definition 4 The graph g is individually stable if: (i) for allij € g, u; (g) > u; (9 —ij); and (ii) for all

ij & g, ui(g) > ui(g +ij)-

This is simply the requirement that any individual node ¢ in the network does not strictly benefit

from breaking a link or establishing a link with any other node j # 1.

Definition 5 The graph g is individually defeated by ¢' if ¢ = g —ij and (i) is violated for ij, or if

g =g+1ij and (ii) is violated for ij.

3 Jackson and Wolinksy specifically focus on pairwise stability, efficiency, value and allocation functions, but since the focus
here is individual stability there is no need to define these terms.



Both individual stability and individual defeat are more relevant concepts for the network than the
concept of pairwise stability as defined in Jackson and Wolinsky (1996), since in the application each
individual i can make or break a link ij without the express permission of individual j. An alternative
methodology might be to consider the concept of Nash networks which typically refer to networks that
result when agents are free to delete multiple links rather than a single link, and can be used to analyze
static and dynamic settings. For example, Bala and Goyal (2000) use Nash networks, and specifically
assume that agents choose links in response to what happened in the previous period, and further assume
that there is very little discounting of time by agents. For more discussion on the stability condition see

section 2.4.2.

2.2 Costs and Benefits

Next, the utility function in the Jackson and Wolinsky model needs to be modified to take account
of the complexity of web-browsing. Furthermore, since the model considers mainly directed links, so
the network will look slightly different from each user’s perspective, which partly explains the use of
individual stability as indicated in later sections.

Consider the shortest distance t;; between ¢ and j to be the main measure of distance, and § € (0, 1) to
be a connection speed variable, so as ¢ rises the connection speed rises, rendering distance less important,
but as ¢ falls sites several links away become hard to reach and provide relatively low utility. This is
represented by the function §%. In particular while the speed variable is restricted to lie in the unit
interval under normal circumstances, a broadband high speed connection is represented in the model
by simply allowing § = 1 and comparing the impact with lower levels of § achievable under a dialup
connection.? Note that if there is no path between i and j then t;j = oo and st = 0.

The notion of the cost of setting up links is a more complex procedure than simply setting a fixed
cost per link of ¢;; or ¢, as the main cost comes in terms of the ensuing complexity of sites with large
numbers of links, which add text and time to negotiate the site. Even fast connection times will not
alter the need to spend time and effort negotiating a complex site. On the other hand the direct cost
to setting up a link is small, though positive. Therefore for simplicity the model incorporates a fixed
cost of ¢;; = ¢ € (0,1) for all links, but adds to this a complexity cost (1 — ") where 3 € (0,1) and

hij is a direct measure of the number of irrelevant links on intermediate sites (including ¢) on the path

* Note of course that § = 0 literally means zero connection speed, and § = 1 literally means instantaneous connection
speed. However, by considering the limits values of § at 0 and 1 the impact of slowing connection speeds right down, or
moving towards instantaneous connections can be proxied, and that is the approach taken in this paper. This paper also
considers intermediate speeds throughout, but the extremes are often useful in revealing the ultimate impact of increasing
or decreasing speeds.



between ¢ and j. For example, a simple line from ¢ to j with no other links contains no complexity, so
h;j = 0, and BMi = 1, therefore producing an overall complexity cost of 0. However, adding a link to
node k at node ¢ renders the node ¢ more complex to negotiate, so the complexity cost rises to 1 — 3,
and so on as links are added from intermediate nodes on the geodesic between i and j.> Figure 2 gives
an example of the minimally complex route between i and k in network A, and a much more complex
route between 7 and k in network B, even though the distance, ¢;; = 2, remains the same across both
networks. Note that the model does not include “doubling-back” in the measure of complexity since it
seems reasonable that a user can recognize their own site, or where they have come from, so need not
worry about doubling-back in error.> Hence for network A there is no complexity cost as hi; = 0 and so

(1 — 50) = 0, but for network B there is positive complexity as h;; = 4 and so (1 — ﬁ4) > 0.
[insert FIGURE 2 here]

Denote the total number of links from i as N and N = 3. N(g) NF as the total number of links
in the network (which is a possible proxy measure of the overall complexity of the network), and the
total number of nodes or sites in g as N (which is defined earlier as the cardinality or total size of the
network).” Superfluous links can then be identified as the number of links along the shortest route from
¢ to j minus the minimal distance ¢;;, so

tij—1

hig = (NE=1) + (N5 =2) + o+ Nk, —2)| = NF+1-265+ Y NE (1)

z=1

Where ki, ..., kt;;—1 are the t;; — 1 intermediate nodes which lie on the shortest path between ¢ and

4.8 Let 1, (9) C N be the set of nodes to which a path from i exists. The total utility to 7 from network

Note that if the perfect reliability of links is assumed there is no gain from the existence of irrelevant links. It is of course
feasible that an alternative route, which would require superfluous links, would be worthwhile, but for simplicity this is
ignored.

Allowing users to return along their path of travel trivially seems appropriate given the existence of a “back” key on most
browsers. This explains why the model does not consider the return path back to the last site as a superfluous link, and
therefore excludes going back as part of the complexity cost, since the user can differentiate hitting the “back” button,
rather than following a new link. It is also clearly not superfluous in any sense. For a search engine, a user might of course
encounter the site he came from, but we can reasonably assume he would recognize this and instantly hit “back”.

The formulation of complexity costs given below is here concave in IV, and so once the number of linked sites becomes large,
the increase in complexity costs will be small.

Note that where required the model assumes a lexicographic ordering whereby firstly a shortest distance is determined and
secondly complexity is calculated, no user is assumed to opt for a longer route no matter how much lower the complexity
cost. If there are multiple shortest distances then the least complex is used. Note that this assumption can be justified on
two grounds. Firstly, users may have some idea of the distance, but not necessarily the complexity of the route. Secondly
and far more significantly, note that under the two key architectures to be used this requirement is not important. For the
star network there is effectively no alternative route, and when a new route is constructed through an additional link 45 it
provides both a shorter and less complex route from ¢ to j. For a complete network since there are multiple routes from
to 7 when the direct link ¢j is removed, any one of the shortest remaining routes is always no more complex than any other.



g can therefore be given as:

wilg) =3 0% = Nfe— 30 (1-8") (2)

J#i j€vi(9)
2.3 Specific Network Architectures

This section defines some standard network architectures which will form the bulk of the analysis.

Definition 6 In a (fully-connected) star all sites connect to the centre star (cs) and no other node, so

NE =1 for alli# cs, and NL = NS — 1. The shortest distances between i and j is

2 forizj,cs;j # cs
lij=9 1 fori=cs;j+#cs 3)

1 forizcs;j=cs

and by equation 1 the number of superfluous links is

NS —3 fori#j cs;j#cs
hij=< NS —2 fori=cs;j+#cs (4)

0 fori#cs;j=cs

So for a star, movement to cs is very short and not complex, movement via (or from) cs is also short

but complex. Next consider a symmetric network.

Definition 7 In a symmetric network every node (site) has the same number edges (links) of, N* =N
for all i, and therefore by equation 1 the number of superfluous links between the shortest distance between
i and j are simply given by

tij—1

hijINZL+1—2tij+ZN;@Z(W—Q)tZ‘j—Fl (5)

z=1

One example of a symmetric network is a circle, where every node has two edges, another special
type of symmetric network called the complete network is one in which every node is connected to every

other node, so in particular NiL = NS —1.

Definition 8 In a complete network every node (site) links to every other node (site). Therefore for all

i # j the shortest distance between i and j is t;j; = 1 and by equation 1 the number of superfluous links
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hij=NE—1=N%-2

In a complete network all sites are very close, but direct costs are high.

2.4 Limitations and Extensions

Before going on to examine stability, it is important to examine the limitations of this paper, which are

addressed in a series of inter-linked sections.

2.4.1 Network Architectures

This paper is very focused on predicting the shape of the Web, and in particular limiting itself to the two
most well-known possible resting places for the evolution of any network: the complete network and the
fully-connected star. It is of course feasible that other long-term solutions can and will exist. It is also
clear that changes in technology may render a network unstable from an initial point of stability. Should
technological change occur at a rate greater than the speed of movement towards a stable architecture,
then stability may never occur, with changes constantly altering the end-point of the process, so it can

never be reached.

2.4.2 Pairwise and Individual Stability

Simply removing complexity as an issue does not reduce this paper to a retelling of Jackson and Wolinsky
(1996) in a different setting, as the stability conditions are different. This paper assumes that anyone can
link to anyone else’s site, or browse the information contained on that site. This may seem a reasonable
approximation, but many sites can and do restrict access through passwords, or the blocking of access
from certain IP addresses. If this is increasingly the case, then it makes sense to move to pairwise stability
as in Jackson and Wolinsky (1996) rather than individual stability as defined in section 2. Alternatively
there is the concept of Nash networks which typically refer to networks that result when agents are
free to delete multiple links rather than a single link, and can be further refined to analyze static and
dynamic settings. For example, Bala and Goyal (2000) use Nash networks, allowing agents with a very

low rate of time-discounting to best respond to what occurred in the previous time period.

2.4.3 The Centre of the Star

In many ways the central node in a fully-connected star network is very different in this paper, than

simply a node that happens to be at the centre of the network. Consider the argument that especially



with a network of huge size why should the central node wish to link to every single web-site? Costs
might become prohibitive, and traffic through the site might also reach prohibitive levels. The answer
for the purposes of this paper is that the central node is implicitly considered to be different from all
other nodes: it has a rationale for existing that is not based on sharing information with other nodes,
rather it is itself a firm attempting to win business as the central node and it has a profit function that
is increasing in the number of sites it links. The various candidate central nodes such as Google, Yahoo
and others, provide ample justification for the quest to have a higher searching capacity than rivals. For
this reason the model does not specifically model the stability properties of the central node when it
forms the centre of a star network, rather it might be more sensible to treat its rationale as very distinct
from other typical nodes.

Future work might include looking more closely at the rationale behind the actions of the central
node in a star network, or “search engines”, and model their actions directly. For example, a future
model might explicitly examine a profit function that is positively related to the number of links, in an
effort to capture advertising revenue, direct revenue through services which attract fees or even issues of
content control.

Additionally, a future model might include an explanation for the appearance of such a site in a
network, either through some evolution of a “standard node”, or through the direct insertion of a search
engine into the network. Historically there have been many such sites, though often only a small number
have been dominant. In many respects the simplicity of this paper cannot justify the long-run existence

of more than one such site.

2.4.4 Efficiency

The main issue for this paper concerns stability, as the focus is on making long-run predictions. However
efficiency is traditionally at least as important a concern. One major feasible point (made in Jackson
and Wolinsky) concerns the contradictions between these two concepts. In particular the most efficient
network may not be stable, or the only stable network may not be efficient. Future work will and should
examine the implications for the shape of the World Wide Web. Since the Web evolves, rather than
being planned, stability may well be the more important predictive concept, but if a final prediction

involves an inefficient structure there may be important policy implications.

10



2.4.5 Small Worlds

Recent related work (Goyal, 2004), provides an alternative framework from Jackson and Wolinsky (1996).
Goyal starts with the notion of co-authors working together, with some highly regarded authors who link
to others providing something like the central nodes of star networks. This provides some interesting
results, which recall the small world argument, that no two people (or authors, or nodes) are likely to be
too distant in equilibrium, because of the existence of highly regarded authors. Even lowly economists
might co-author with someone who has co-authored with someone who has co-authored with a highly
regarded economist. This might equally well be a good basis for a model of web-links, and in particular
incorporates a form of congestion cost (based on the limit of what the central authors can hope to

achieve) that might relate well to web-browsing.

2.4.6 Speed and Content

This paper makes an assumption that broadband is well-modelled in terms of a large speed increase.
Add to this the assumption that broadband will become increasingly popular and an assumption could
be made that speeds will rise over time. Taken to its logical extreme, the paper moves towards predicting
what the Web will look like when connection times are instantaneous. However, throughout there is an
assumption that content does not change, or at least if it does, not sufficiently quickly to counterbalance
increases in speed. It may well be that this is incorrect. Greater use of video streaming, online gaming
and other high bandwidth content, can undoubtedly limit the rises in connection speed produced by
greater use of broadband. To attempt to second guess the advances of such content is beyond the scope

of this paper, but it may provide an upper limit to effective speed increases.

2.4.7 Heterogenous Nodes and Users

In this paper it is assumed for simplicity that nodes are homogenous, however, in reality nodes on the
Web are in fact heterogeneous. Hence, the value of information contained in a node differs between one
node and another and with regard to one user relative to another. Users may not be sure where they
wish to go, and may even resort to random browsing, and this is not considered in the model. Secondly,
users themselves are treated homogeneously in this paper (with the marked exception of the discussion
of the central node in a star network), however, again, in reality there is heterogeneity between users.
In particular, there is a significant difference between users who provide content and users who browse

the Web. Here the focus is on the latter.

11



3 Stability in an Example Network

The model examines network stability properties under the assumption that any node can break or
make additional links, making the relevant notion of stability, individual stability. This paper argues
that stability should be a very important consideration for the World Wide Web, even though the Web is
necessarily changing and growing as time progresses. The primary rationale is that, especially in terms
of the impact of faster connection speeds, stability might provide a reference point from which to begin
predicting the long-term future shape of the Web.

In this section the method for determining the stability of an example network is examined before
going on in the following sections to examine the stability properties of the star network and the complete
network.

Figure 3 shows a network g;. Define go = g1 +ij (i.e. g2 is the network g; in addition to the dotted
link 7).

[insert FIGURE 3 here]

To determine the individual stability requirement for g; consider the addition of a single link at 4j.
The gain in terms of proximity to j for i would be given by the difference § — 62, while there is an extra
cost both direct, ¢, and indirect through added complexity. Denote the gain in terms of distance from

the change from g; to g2 as AD (g1, g2). In this case the gain in distance is simply
AD (g1,92) = stii(g2) _ gstiz(91) — 5 _ 52
Denote the change in direct cost and complexity as AC (g1, g2) which is

AC(g1,92) = c+ [(1 - 5“’]"92)) + (1 — B’“k(”)) + (1 - 5hil(gz>>
+ (1 _ ﬁhz‘m(gﬂ)} _ [(1 — Bhij(91)> + (1 _ IBhik(gl)) + (1 _ Bhil(91)> + (1 _ ﬁhim(gl))]
= c+3(8*-p%)

The net stability condition requires that the change in cost outweighs the benefit in reduced distance,

so yielding the condition

g1 is stable relative to go < AC (g1,92) > AD (g1,92) < ¢+ 3 ([32 — 53) > — 62

12



The first term ¢ is just the direct cost, which added to the term 3(52 — 63) gives the additional
complexity for ¢ of the new network. Put simply, when ¢ wishes to travel to any node other than j, a
slight increase in complexity is faced as a new superfluous link has been added. On the other hand, j
is closer by (6 — ¢%), and the route to j has remained as complex as before and so is not considered.
Now note that if 3 = 1 and § = 0 so the connection speed becomes instantaneous and concern for
complexity falls away, then g; is stable for any ¢ > 0. Similarly for all other extreme combinations such
as {#=0,0=0}, {=1,0=1} and {8 =0,6 = 1}. For intermediate values of 5 and ¢ the network
can become unstable for low values of c¢. Given that ¢ (the direct cost of establishing a hyper-link on a
web-site) is likely to be quite low, stability in the network is only ensured by extreme values of 8 and §.
Note that by switching from dialup to broadband, the approximation of § = 1 might be used, and will
move the network some way towards stability.

To complete the discussion of stability from node ¢’s perspective consider the prospect of removing
links. Assume that node m has sufficient worth to i since this would remove m from the network
altogether and so the model rules out removing link im by assumption.? That leaves removing links ik
and il, which are assessed in turn. Consider g; — ¢k to be the g; network minus the link ¢k. In this case
the reduction in distance applies to both the shortest route between ¢ and k and between ¢ and j and

equals

AD (91 _ ik‘,gl) — 5tik(91) + 5ti]’(91) _ 5tik(91*ik) _ 5tij(91*ik) —5—6

Now denote the reduction in direct cost and complexity as AC (g1 — ik, g1) which is

AC (g1 —ik,q1) = c— [(1 _ 5hz‘j(9rik)) + (1 _ Bhik(grik)) + (1 _ Bhiz(grik)) _ (1 _ Bhim(glfik)ﬂ
+ [(1 _ Bhij(gl)) + (1 _ 5hik(91)> + (1 _ 5%‘1(91)) + <1 _ 5hz‘m(91)>}

= 48367~ Pt

So from the point of view of deleting link ik, the reduction in costs needs to be less significant than

the reduced distance:
g1 is stable relative to g1 — ik <48 —-332 - +c<d—8°

Finally, consider g; — il to be the g; network minus the link ¢/. In this case the reduction in distance

? This amounts to assuming that § > ¢ + 28 — 28° — 8% + 1 since the utility lost from removing link im is § — ¢ — (1 — 3?)
while there is a gain in terms of the reduction in complexity in paths from 4 to nodes j, k and [ of 28 — 8% — 3.
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applies only to both the shortest route between ¢ and [ and equals
AD (g1 —il, gp) = §tlor=i) _ gtulon) — 5 _ 52
Now denote the reduction in direct cost and complexity as AC (g1 — il, g1) which is

AC (g1 —il,g1) = c— [(1 _ Bhij(gl—il)) 4 (1 _ 5hik(gl—u)> 4 (1 _ ﬁhmgl—m) _ (1 _ ﬁhim@rm)}
+ {(1 — /Bhij(gl)> + (1 _ 5’%(91)) + <1 _ ﬁhu(gl)) + (1 _ Bhim(91)>:|
= 28-02-p+c

So from the point of view of deleting link ¢, the reduction in costs needs to be less significant than

the reduced distance:
g1 is stable relative to g1 —il < 28 — 32 — 2 +c < § — 62

So stability from i’s perspective is only obtained if it makes no sense to add a link to any node to
which ¢ is already connected, and if it makes no sense to cut any links to any nodes to which ¢ is already
connected. In this network each node would have to go through the same process and in each case decide

not to add or subtract any links before it is certain that the network ¢; is stable.

4 Stability in the Star Network

Figure 4 below shows a network g3, and define g4 = g3 + ij. Here and unless otherwise stated, consider

the star network to have only one component and to encompass everyone.
[insert FIGURE 4 here]

This section considers whether the network is individually stable. First, the section considers the
impact of adding a new link, and then follows with the impact of deleting a link. Should both of these
actions result in a lower utility for the node considering the addition or subtraction of a link, then the

network is individually stable.
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4.1 Adding a Link

Starting with the addition of a new link ¢j results in a shorter distance between the nodes ¢ and j, so
AD (g3, g4) = 6%(94) — gtia(98) — § — 52
However, the addition of ij also adds a direct cost and a greater complexity

AC (g3,94) = c+ [(1 _ Bhij(94)> + <1 _ Bhik(g4)> + <1 _ Bhil(g4)> + (1 _ ﬁhim(g4)>]
— {(1 — 5hij(93)> + (1 — Bhik(fh)) + <1 _ Bhil(93)) + (1 _ Bhim(g3)>:|

= c+1-28+3p%-2p°
The total impact of the change from g3 to g4 is therefore
AD (g3,91) — AC (g3,94) = (6 — 6%) —c— (1 — 28+ 338% — 25°)

The first term represents the shorter distance, the second the direct cost ¢, the third term the extra

complexity cost of the new network. Before continuing, note the following useful lemma.
Lemma 1 0.5p" 1 + 0.5p" ! > p" for alln > 0 and p € (0,1).

Proof. Since dp™/dn = p"Inp < 0 and d?p"/dn® = p" (lnp)2 > 0 therefore p" — p"t1 < pn=t — pn

which immediately implies the result. m

Now, since 5 € (0,1), it is the case that 282 > 233, and from lemma 1 it must be that 1+ 8% > 28,
and therefore it must be that (1 —28+38% - 263) > 0. Hence g4 is definitely more complex than g3,

as is expected with the addition of a new link at 7. Now the condition for stability is
gs is stable = ¢+ 1—23+ 33% — 23 > (5 — 62) (6)

Next, generalize expression 6 to give stability conditions for any star network. Any new link ¢j where
neither ¢ nor j are the centres of the star, necessitate a direct cost rise of ¢ and a rise in complexity
costs of (1 — BNS_2> — (1 — BNS_3> for roots between ¢ and k # 7, cs. There are (NS — 3) such nodes.

Complexity costs fall between ¢ and j by (1 - BNS*P’) — (1 — () and rise between i and the cs by (1 — /),
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leaving a final stability condition for a general star network of

stable = c+ (N —3) [(1 - 5NS*2) _ (1 - 5NS*3)} +(1-8)
> (- + [(1-877%) — - )
e+ (NS =3) (1= 2) 4201 8) > (5— %) + (N5 - 2) (1-8V2)
= e+ 1-28+ (N5 —2)8V° 3 — (N5 —3) N2> (6 — 82 (7)

While this is only a necessary condition, and not sufficient for stability, the paper will consider some
extreme values of the relevant parameters in brief now, and look in depth again when the necessary and
sufficient condition is produced below. Note that this collapses to expression 6 when N° = 5.

As complexity concerns grow very important, for instance when 8 = 0 then condition 7 becomes a
requirement for 1 + ¢ > § — 6%, which must be true as 1 > § — 62, for § € (0,1). As complexity becomes
unimportant, so 3 = 1, then the required condition becomes ¢ > § — 62, which is recognizably the same
condition as in Jackson and Wolinsky (1996) which makes sense as their model is similar, but with no
complexity concerns. Note that when 5 = 1 and § = 1, i.e. instantaneous connection, stability is trivially
satisfied for any ¢. As network size shrinks down to a small size, for example N° = 4, then the stability
condition becomes 1 + ¢ > § — 62 + 42 which is certainly satisfied for § = 1.

Usually N° = 4 is considered to be the smallest non-trivial network in this paper, since N¥ = 3
shifts from star to complete with the addition of a link, and N° = 2 shifts to a the empty network
with the subtraction of a link. However, just to check the example for N¥ = 3, the condition becomes
2+ ¢ > 6 — 6%+ 26 which is also trivially satisfied for § = 1. For 8 < 1 and for an arbitrarily large
network (approximated by N — 00) the condition becomes 1 4 ¢ > (5 — 62) + 2 for intermediate 9,

and 1+ ¢ > 20 for extreme values of 9.

4.2 Subtracting a Link

The impact of subtracting a link is immediate for ¢ # cs, since this will remove i from the network, so this
section need only consider whether the network itself provides a positive utility.!’ In effect then u; (g) > 0

is the second criterion for stability. In general this gives u; () = >_; §tii — NEe -3, jevi(g (1= Bhis).

10Tt might be prudent to also consider the prospect of the central node removing a link. However, it seems reasonable to make
the claim that the central node for a network designed to model the World Wide Web might face very different incentives
than a typical node. In particular it is later argued that the closest real-world fit might be something akin to a search engine
or other core content provider. With this in mind the direct modelling of the motivation of the central node is beyond the
scope of this paper, but a profit function might be envisaged that is positively related to the number of connections, perhaps
through issues like advertising revenue, direct revenue through services which attract a fee or issues of content control. See
section 2.4.3 for more on the special properties of the central node.
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In the star network there is only a single link at i # cs, so N* = 1. Furthermore, the distance to any

node j # cs, is simply 2, while the distance to j = cs is simply 1, so

D gt = (N —2)6°+6
J#i
Finally, since there is only one link at i # ¢s but N — 1 links at c¢s then hij = N S 3 for i # cs,

and since it costs nothing in terms of complexity to reach cs, the total complexity costs are

) (1 _thj> — (NS - 2) (1 _/3st3>

J€b;(9)

Totalling these yields a second stability condition
stable = w; () > 0= (N5 = 2) 8+ 5 — ¢ — (N¥ = 2) (1= V") > 0 (8)

Now once again consider some extreme cases, noting of course that this is a necessary but not
sufficient condition for stability. Firstly, consider 6 € (0,1), 5 € (0,1) and ¢ € (0,1). For an arbitrarily
large network (approximated by N° — oo) this gives (1 — 6NS*3) 71 forall B < 1, so u;(g) —
—00 (1 — 52) + 6§ —c < 0. Put simply, as the network size grows the complexity of the central star
becomes so great that journeys via the central star are simply too costly. However, since all journeys
must go via the central star (aside from visiting the centre itself) the entire network becomes too costly

for each node, and each node will have an incentive to drop out.

4.3 Overall Stability

In order to be stable a star network needs to meet both condition 7 and condition 8, and hence the

overall stability condition incorporating both addition and subtraction of a link is

stable < 0 < min{ (NS —2) (52 + BN 1) +—c

14+c—28+ (N%-3) (61\’5*3 —,BNS’z) + 8N (5 - 6%)} 9)

Now it is possible to examine what this final necessary and sufficient condition looks like for various
extreme parameter values.
Appendix 1 works through all the various possible combinations, and show how the stability condition

responds to various parameter values, and here is presented a brief summary of the main results. If speeds
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are low, § = 0, stability is never possible. If speeds are high, 6 = 1, then stability is usually assured.
Stability may not be assured for high speeds if both complexity concerns are intermediate, 5 € (0, 1),
and network size is sufficiently large. For intermediate speed levels, § € (0, 1), then much depends upon

parameter values, though the network is less likely to be stable for large network sizes.!!

5 Stability in the Complete Network

Figure 5 shows a network g5 and also the slightly larger network g = g1 + 4j. Once again the section

considers whether the network is individually stable.

[insert FIGURE 5 here]

5.1 Adding a Link

For the complete network the impact for ¢ of adding a link must result in the duplication of an existing
link, which adds an additional cost of ¢, and additional complexity, but with no gain, and is therefore
clearly not a beneficial change for any parameter values except for ¢ = 0, and 8 = 1, which would render

the analysis trivial.

5.2 Subtracting a Link

More importantly, consider the impact on the utility to ¢ of cutting the link 5. The gain here is in terms
of a reduced direct cost, ¢, a change in overall complexity, and a fall in the shortest distance between
1 and j. Note that all other nodes have a direct link, so the complexity cost across the entire network
would be relatively easy to calculate, since it only impacts on journeys starting from ¢ and the journey
from j to 7. Focusing on i the shortest distance to j falls from & to 62, and direct cost falls by c.

N%=2 51 — 62(Ns_3). Initially, the route involves

The complexity of the link ¢j changes from 1 —
a direct movement from i to j. At i there are N° — 1 links (the network is complete, but there is no
link from i to i) and one of these links is essential, so there are N — 2 superfluous links. When the ij
path is cut movement from i to j is forced to go via an intermediate site k. At i there are now N° — 3
superfluous links since one further link has been removed. At k there are also N° — 3 superfluous links,

since of the N¥—1 links at k, one is essential, and one would involve doubling-back. So there are 2N —6

superfluous links for the route ij in g — ij, as opposed to N¥ — 2 in g.

'When dealing N® — oo limit results are needed and in some cases the use of L'Hopital’s Rule. Appendix 1 goes into more
detail and footnotes 12 and 13 below give some examples.
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Finally, there is an impact on all other routes from 4, which fall in complexity from 1 — 8~ "2 ¢
1-pN =3 for all but the 4 4 link (so for N°¥ — 2 other routes). Overall for a general complete network it

makes sense to cut the ¢j link if:
c+ (NS _2) <IBN573 _BN572> > (5_52) + <5N572 _BZNSfﬁ)

Which gives a stability condition
stable = (5 — 6%) — o4 (V72— gAN770) — (V5 —2) (B0 gV72) > g (10)

5.3 Overall Stability

Since adding a link is not sensible, the conditions relating to removing a link are both necessary and
sufficient to establish individual stability and hence condition 10 can be replaced with the necessary and

sufficient condition:
stable & (8 — 02) — ¢+ (BN° 72— gAN°0) — (NS —9) (8NP gV2) 5 0 (11)

Of course, § —6% > 0 and ¢ > 0. Clearly, since 3 € (0, 1) it must be the case that BNS_?’ > BNS_Q, for
all N¥ > 2. Finally, 5NS—2 = B2N576 for N¥ =4, and BNS*Q > 52NS*6 for all N¥ > 4. By considering
restrictions on 3, § and N° the set of parameter values for which expression 11 is met and the complete
network is stable can be determined.

A full examination of how stability changes for different parameter values is found in Appendix 2. To
provide a brief summary, when 3 < 1, the complete network is never stable for either very fast speeds,
0 = 1, or very slow speeds, § = 0, but may be stable for intermediate speeds depending upon the exact
value of the other parameters. To see this consider 8 < 1 and apply L’Hopital’s Rule to take limits when

NS — o leaving a stability condition of (5 — (52) > .12

12 Consider any function of the form NSBNS and take the limit as N° — co. First note that:

S
lim NSV = lim 2

NS —oo NS —oo /B_N
The applying L’Hopital’s Rule yields
lim N—S = lim _ L
NS —oo ﬁ_N o NS oo (—lnﬁ) BiNs N

And hence in expression 11 taking N¥ — oo for 8 < 1, yields the condition (5 - 52) > c.
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6 A Taxonomy of Stability Results

Here are summarized the stability results of the last two sections together with a taxonomy of predicted
network architectures, including the implications for the move towards broadband access for all Internet
users. The findings are also compared with those of the unmodified Jackson and Wolinsky model.

Of main concern in this paper is the long-run stability of certain archetypal networks: the star network
and the complete network, which have received considerable attention in the literature as possible long-
run stable architectures.

In each case these propositions have already been proved in the main text of sections 4 and 5 or in

Appendices 1 and 2. For a Star Network:

Proposition 1 For 8 < 1, a star network encompassing everyone is stable if and only if (NS — 2) 62+

§—c— (NS —2) (1 . 5N5*3) >0 and 1+ c—28+ (NS —2)pN° 3 — (NS —3)gN 2 _ (5 - 5%) > 0.

The following propositions give some of the sharpest results for certain extreme parameter values of

0 and network size for the star network, all proved in section 4.

Proposition 2 For 8 =0, a star network is never stable if § = 0, and always stable if 6 = 1, regardless
of network size. If B =0 and 6 € (0,1) then the star network may be stable though this becomes less

feasible as N° rises.

Proposition 3 For 8 =1, a star network is never stable if 6 = 0, and always stable if 6 =1, regardless
of network size. If 3 =1 and § € (0,1) then the star network may be stable depending upon parameter

values.

Proposition 4 For § € (0,1), a star network is never stable if § = 0. When 6 = 1, the star is: (i)
stable for small networks; and (ii) for intermediate and large networks will be stable if 1+ ¢ > 28. If
B € (0,1) and § € (0,1) a star network will not be stable if N¥ — oo, and may be stable for lower N°

depending upon parameter values.
For a complete network the main result as proved in section 5, part C is:

Proposition 5 For 8 <1, a complete network is stable if and only if:

(5 - 52) et (/8st2 _B2N376) _ (NS ~2) <5N573 _5N572) > 0.

The following propositions give some results for certain extreme values of 6 and network size for the

complete network, all proved in section 5.
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Proposition 6 For 3 = 0 a complete network will be stable if and only if ¢ < & — 6%, and hence is

certainly not stable for 6 =0 or 6 = 1.

Proposition 7 For = 1 a complete network will be stable if and only if ¢ < § — 62, and hence is

certainly not stable for 6 =0 or § = 1.

Proposition 8 For g € (0,1) a complete network is not stable if 6 =0 or § =1, and for 6 € (0,1) may

be stable depending upon parameter values.

[insert TABLE 1 here]

Finally, summarizing these results produces a taxonomy as described in Table 1. The table lists both
the stability results for different combinations of parameter values and also the location in the appendices
which fully describes each case. Among the most interesting features present in Table 1 are the fact
that in some cases only one of the two standard structures looks likely to survive into the long-run for a
given set of parameter values. For example, when considering extreme complexity concerns, 5 = 0, while
both networks are unstable for low speeds, the star network cannot be stable for intermediate speeds
and N° — 0o, but only the star network is sure to be stable when § = 1. For intermediate complexity
concerns neither network is stable for low speeds, § = 0, but at higher speeds much depends upon the
network size. For example for small networks with intermediate complexity concerns and fast networks,
the star network is stable, while the complete network is not whereas for large networks with intermediate
speeds, the star network structure is not stable, while the complete network might be stable. When there
are no complexity concerns the star network is stable for fast speeds, 6 = 1, while the complete network
is not. For intermediate speeds it all rides on parameter values, while for low speeds neither is stable.

The best use for the table is if some idea of the likely parameter values can be estimated. For
example, if the number of nodes in the system is likely to become extremely large (noting that there
are already many billions of nodes, then N° — oo might provide a good approximation). Next one
prediction might be that with the widespread adoption of broadband technology connection speeds will
only get higher and so § > 0, but not so high that § = 1 is reasonable and so ¢ € (0, 1) seems reasonable.
Finally, there might be some concern for complexity in the future, so 5 € (0, 1). Glancing at the relevant
element in the table reveals that the star network is not stable, though the complete network might be,
and so something closer to the complete than star network, with large numbers of inter-linked nodes,

might be a good prediction based on the predicted parameters. On the other hand predictions for the
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future might be very different, broadband technology might enable almost instantaneous connection
speeds, and complexity concerns might fall as users become more and more used to the complexities of
web-navigation, then the taxonomy would work best with § = 1 and 8 = 1, and so favor the star network

over the complete network.

7 Conclusions and Policy Implications

Social network theory often using fairly restrictive assumptions can provide some insights into the sta-
bility properties of networks, and the Web is one such network that can be analyzed. The seminal paper
by Jackson and Wolinsky (1996), with the addition of complexity costs, is a useful starting point for a
discussion of the long-term shape of the World Wide Web, together with predictions about the future
size of the Web, and the future speed of Internet connections. This paper considers a variety of possible
predictions and modifies the model to incorporate complexity costs and thereby generates a taxonomy
of predictions for the future of the structure of the Web.

To give some examples of how this taxonomy might be used, consider some of the results restated
in more emotive language. Consider a network to be “large” where the number of nodes is finite, but
so great that it can be approximated by considering the limit as N¥ — oo, a network where § < 1
involves concern for complexity, but not if 5 = 1, and a network where § = 1 as having a fast connection
(say, broadband), and otherwise slow (say, dialup). Now, the results show that as networks grow large
in size and connection speeds increase (say everyone has access to broadband, and broadband speeds
continue to rise) social network theory under the assumptions detailed in this paper would predict that
with concern for complexity a star is a more likely end result. With very low connection speeds neither
the complete network nor the star seem plausible stable structures.

What this means for telecommunications policy in practice, requires an examination of what is meant
by stars and complete networks. A star is given here as a model of the Web based around many users
connecting to each other’s web-sites via a central clearing house, well represented by a single ISP or an
all-encompassing search engine, with no need for any other hyper-linking between pages, or even use of
favorites or book-marking. A complete network is very different, a much more decentralized structure
with many large sites containing hyper-links to all pages of interest. Users might travel via hyper-links
on their own pages or choices from their favorites menus directly to where they want to go, with minimal
use of search engines, or centralized sites. The implications of whether either of these archetypes become

dominant are considerable given the role which major online presences such as ISPs, search engines and
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all other forms of centralized structures have to play. The more centralized and star-like the structure,
the more power rests in the hands of fewer sites, while the more complete a network the less controlling
influence such sites can wield over the majority of users.

Perhaps the single most powerful prediction is that as speeds increase with the greater adoption of
broadband technology, the star network will be the more likely architecture to survive into the long-run,
and so there might well be an increasingly centralized structure. Whether this is seen as a problem from
a policy perspective, depends upon a subjective set of priorities, such as whether policy-makers are
concerned about whether it is important that a small number of sites (potentially a single site) hold
positions of vital importance.

At a basic level, what has been provided is a clear tool for predicting whether and when potential
monopoly problems might be expected, or whether the structure of Web can resolve such problems
naturally. At a first pass this paper argues that, if a monopolistic structure is not stable given reasonable
predictions about the likely size, speed and complexity of the Web in the future, then policy-makers do
not need to be as concerned as when a monopolistic star-like structure is indeed stable. The problem
for policy-makers then becomes a simpler one: rather than trying to predict the structure of the World
Wide Web, they need only focus on parameters like size and speed, which are much less complex to
predict.

Though in large part well beyond the scope of this paper, it is important to examine the relationship a
monopoly search engine might have with policy-makers. It is normal in economics to be concerned about
the scope for monopoly power between the provider of a resource and its users which would typically
involve issues about pricing, restriction of supply, quality or choice. For example, the most famous recent
case in the computing world, is perhaps the United States vs Microsoft (1998), in which the Department
of Justice alleged that Microsoft had abused monopoly power in its handling of the Windows operating
system and the web browser Internet Explorer. However, care should be taken since there might also be
uses from a policy perspective of having a small number of pivotal internet sites with which to interact,
since negotiating with every user on the Web would be all but impossible.

Finally, and especially important when considering policy implications, it must be stressed that the
model used in this paper has several limitations which need to be understood before accepting the final
results. The final part of section 3 provides a list of such issues, together with some possible extensions

to the model.
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APPENDIX 1: THE STAR NETWORK

Here are presented the full impact of different assumed parameter values on the stability of the star
network. Note that this appendix considers general network sizes (finite values of N° above 4) but for
contrast will also consider a “small” network to be approximated by N° = 4, and a “large” network to
have an arbitrarily large though finite number of nodes, which for simplicity will be approximated by

N% = ~o to aid intuition.'?

Part A: No Concern for Complexity

Start with the model with no complexity concerns, so 5 = 1. Now condition 9 becomes
stable |5:1(:>0<min{(NS—2) 52+5—c,c—(5+52} (12)

Next consider condition 12 for some variations of the other parameter values.

(i) 6 = 0. When connection speeds are very slow, condition 12 becomes
stable |g=15=0< 0 < min{—¢, c}

Which cannot hold, so the network is definitely not stable. This is immediate given the nature of the
star network: with speeds at zero, a user will wish to build a direct link to j since it is simply to slow
to travel via the central node.

(ii) § € (0,1). Next consider an intermediate level of speed, firstly, combined with a small network,

which produces the stability condition
stable [3_1 5e(0,1),y5=4¢ 0 < min {252 +0—cc—0d+ (52}

Note that the condition requires ¢ < &§ + 262 and ¢ > § — 62, so stability is attained only if ¢ €
(5 — 62,6 + 252). This is feasible but depends upon parameter values. Considering intermediate speed

levels and an intermediate network size yields condition 12 but ruling out extremes

stable |31 5¢(0,1)<> 0 < min { (NS —2)6*+5—c,e— (06— 52)} (13)

3 Note that for the N° — co case limit results are needed, and these are used throughout this and the following appendix.
For example, while 0.c0 is undefined, lim, .o {0.z} is well defined to be zero. Similarly lim,_,o 17 is defined to be 1, etc.

Footnote 12 shows how L’Hopital’s Rule can be sued to deal with the more complex problem of limys_, oo NsﬁNs for g < 1,
to again produce a well defined answer.
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Note that since network size is likely to be considerable, the results for N¥ — co might be the most
compelling, which gives

stable |ﬁ=l,5€(0,1),NS—>oo<:> 0<c— ((5 - 62)

Therefore stability requires ¢ > 6 — §2. However, even for lower network sizes the second half of
condition 13 is likely to be the binding constraint, and so ¢ > § — 62 is likely needed for stability. In
effect then, for intermediate network sizes the star network will be stable, if direct costs are high relative
to the savings to be gained from building a direct route from ¢ to j.

(iii) 6 = 1. With instantaneous connection speeds, and the smallest non-trivial network, condition
12 becomes

stable [5_1 5—1 ys—4© 0 < min {3 — ¢, c}

Again, with immediate connection, and an intermediate network condition 12 becomes
stable [g=1 =14 0 < min {NS —1- c,c}

Finally, with a combination of immediate connection times and an extremely large network condition
12 becomes

stable [3_1 5-1 N5 0o 0 < C

All three conditions are trivially satisfied since ¢ € (0, 1), so the network must be stable when § = 1,
if there is no concern for complexity. Put simply, with instantaneous connection, there is very little to
be gained from building a direct route from 7 to j as going via the central node is so quick, but there is

a direct cost ¢ to be incurred. Hence the star network is stable when speeds are extremely high.

Part B: Some Concern for Complexity

When there are some complexity concerns, consider § € (0,1), and especially values of 8 which are
not too close to either extreme. The basic stability condition is not refined any further here, so starting
with condition 9, and refining it further with additional constraints produces various cases.

(i) 6 = 0, N° = 4. When connection speeds are zero and the network is extremely small condition 9
becomes

stable |B€(071)76:0’NS:4<:> 0< mll’l{2ﬁ — C— 2, 1 “+c— 52}

Clearly since f < 1 and ¢ < 1, then 28 — ¢ — 2 < 0, and so the network is not stable.

(ii) 6 = 0, N¥ intermediate. Once again connection speeds are zero, but now consider intermediate
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network size. Condition 9 becomes

stablege(0,1)9=0 < 0 <min{—c— (NS ~2)(1- BNs,?,)’

1+c—28+ (NS —2)8N° =3 — (NS —3)pN° -2}

Now consider the first half of the condition. —c— (N S 2) (1-pN 3_3) > 0 is necessary for stability.
However for N° > 4 this will be negative, and so the network is not stable.

(iii) 6 = 0, N¥ — oco. Now consider N¥ — oo, with § = 0 and therefore the stability condition
becomes

stable | ge(0,1).0m0,85 =0 < 0 <min lim {—c— (N¥-2) (1 - BNT=3y,
) ) k) N 00

14 c— 28+ (NS —2)8V =3 _ (NS —3)gV°-2}

The first part of this expression must be negative and so results in a network which is not stable.
(iv) 0 € (0,1), N = 4. Next consider an intermediate level of speed, combined with a small network,

which produces the stability condition
stable |5¢(0.1),6¢(0.1), N5 =4 0 < min{26% +6 +28 —c— 2,1+ c— > — 6+ 6°}

A stable network looks unlikely here, but it is possible. For example if ¢ > 1/4 > (5 — (52), then
the second half of the condition must be satisfied, and with a high enough value of ¢ and 3 the first
condition is met, so the network is stable.

(v) 6 € (0,1),N¥ intermediate. Considering both intermediate speed levels and an intermediate
network size simply reproduces condition 9. Stability is possible or not, depending upon the parameter
values. For example, as just seen in (iv) with a low enough value of N S. and various other conditions
in the other parameters, stability is possible, though as is shown next, as N° becomes large stability is
ruled out.

(vi) 6 € (0,1),N¥ — co. With intermediate speed and an infinite network size condition 9 becomes

L s_
stable | c(0,1),6€(0,1),N5—00 & 0 < min nglgl@{& —c— (NS —2)(1-¢6%— 73y,

1428+ (NS —2)8V° =3 - (NS - 3)g"° 2 — (5 - §%)}
Now since the first half of the condition tends towards negative infinity, the network is not stable.
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(vii) 6 = 1,N S = 4. With instantaneous connection speeds, and the smallest non-trivial network,

condition 9 becomes
stable |ge(0,1),6=1,n5=4¢ 0 <min{l —c+ 28,1+ c— 52}
Since ¢ > 0, it must be that 1 — ¢+ 28 > 0, so the condition becomes
stable |e(.1) 521 n5—4> 0 < 1+c— B

Since 8 < 1 the network must be stable.
(viii)) 6 = 1, N S intermediate. With virtually instantaneous connection speeds, and an intermediate

network condition 9 becomes

stable | Be(0,1),0=1 < 0 < min{l — ¢+ (NS — 2) BNS_3,

L+c—28+ (N —2)8N" 7 — (N9 - 3)8"° 2}
The first term, 1 — ¢ + (N S 2) sN 573, must be positive, so focusing on the second yields
stable [ge(0.1)0219 0 < 14 ¢ — 28 + (NS —2)gN° =3 — (NS - 3)pV°~2

For low values of N, the result in (vii) shows that the network will be stable, but for larger values
of N, it is not certain. Since (N — 2),BNS*3 — (NS — B)ﬂNS*2 > 0, it is not certain whether 1+¢ > 28
provides a sufficient condition for stability regardless of the value of N°. If 3 < 1/2 the network will
certainly be stable. This reveals that a low value of 8 or a high value of ¢ can ensure stability.

(ix) 6 = 1,N S — o0o. Finally, with the combination of instantaneous connection speeds and an

infinite network, condition 9 becomes

stable | gc(0,1)6=1,N5 00 & 0 <min lim {1-c+ (NS -2) (ﬁNS_3),

NS —o0

L+c—26+ (N - 28" 70 — (N9 - 3)8%" %)
Since the first half is trivially satisfied the condition becomes

stable |¢(0.1) 621, N5 00 0 < i {1+c—28+ (N5 —2)gN"=3 _ (N5 —3)pN"~2}
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Once again, as in (viii) it is clear that (N —2)[3NS_3 > (N9 — 3)BNS_2 though the two tend towards
each other as N° — oo, s0 as in (viii) 14 ¢ > 2/ ensures stability, though here it is a necessary condition

as well as being sufficient.

Part C: Extreme Concern for Complexity
Now consider an extreme concern for complexity, which is examined in the model by setting 8 = 0

in condition 9 which gives
stable < 0 < min{§ — c — (1 — 62) (NS —2),14c— (6 - 62)} (14)

(i) 6 = 0, N¥ = 4. When connection speeds are zero and the network is extremely small condition

14 becomes

stable |59 s—o ny5—4¢ 0 <min{—c —2,1+c}

This condition fails and the network is not stable.
(ii) 6 = 0, N® intermediate. Once again connection speeds are zero, but now consider intermediate

network size. The condition 14 becomes
stable |3=05=0< 0 < min {2 —c— N5 1+ c}

And so for N°¥ > 4, the network cannot be stable.
(iii) 6 = 0, N5 — co. Now consider N¥ — oo, with § = 0 and so the stability condition becomes

stable [5_0 =0 N5 0o 0 <min lim {2 —c— N9 1+ ¢}
) k) NS*)M

With the condition trivially failing and so the network is not stable.
(iv) 6 € (0,1), N = 4. Next consider an intermediate level of speed, combined with a small network,

which produces the stability condition
stable |g_g 5c(0,1),nN5=4¢ 0 < min{d + 26> —c—2,14+c— (6 —6%)}

This condition can be met, though it very much depends upon parameter values and requires a very
high value of §, and low value of c.
(v) 6 € (0,1), N¥ intermediate. Considering both intermediate speed levels and an intermediate

network size yields condition 14 and so for stability it was shown in (iv) that stability is possible for very
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high values of ¢, but difficult otherwise, and becomes increasingly difficult as N rises.

(vi) § € (0,1), N5 — co. With intermediate speed and an infinite network size condition 14 becomes

stable |g_g 5¢(0,1),N5 00 0 < min 1Sim {6—c—(1- 62) (NS —2),14+c— (6 - 52)}

N~ —o00

‘Which will not hold.

(vii) § = 1. With instantaneous connection speeds, condition 14 becomes
stable |3 s—1 ys—4¢ 0 <min{l —¢,1 +c}

This is not dependent upon N° and is easily met since ¢ < 1, and so the network is stable for any
size if § = 1.
APPENDIX 2: THE COMPLETE NETWORK

Here is presented the full impact of different assumed parameter values on the stability of the complete
network. Again, the focus will be on general network sizes (finite values of N above 4) but for contrast
the appendix will also consider a “small” network to be approximated by the assumption that N = 4,

and a “large” network to have an arbitrarily large though finite number of nodes, which for simplicity

will be approximated by N° — 0o to aid intuition.'

Part A: No Concern for Complexity

Start with the model with no complexity concerns, so 8 = 1. Now condition 11 becomes
stable g1 6 — 6% > ¢ (15)

Note that this is not dependent upon N®, so condition 15 need only be considered for variations of

(i) 0 = 0. When connection speeds are zero, condition 15 becomes
stable [g=15=0< 0> ¢

This is not the case, and hence the network is not stable under extremely slow connection speeds.

Simply put, connection speeds are so low that being connected to another link is too costly.

14 See footnotes 12 and 13 for some comments about the use of limits and L’Hopital’s Rule in the N¥ — oo case.
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(i) 0 € (0,1). Next consider an intermediate level of speed, combined with a small network, which
produces the stability condition

stable |g—1 5e(0,1)¢ 0 — P2 >c

Since infs ((5 — 52) = 0, for § € (0,1), it is the case that as 0 approaches the extreme values of
0 and 1 there will be no level of cost sufficiently small to enable the network to be stable. However,
maxg (6 — 52) = 1/4, when 6 = 1/2, so for values of § approaching 1/2, there are levels of cost sufficiently
low to enable the network to be stable.

(iii) 0 = 1. With instantaneous connection speeds, condition 15 becomes
stable [g=15=1< 0> ¢

Since ¢ > 0, this condition cannot hold, and the network is not stable. Here the speed is so high that
lengthening the path from ¢ to 7 makes no effective difference, but since cutting the direct link saves the

cost ¢, it is worthwhile.

Part B: Some Concern for Complexity

The model examines complexity concerns when 5 € (0,1), and more especially values of 5 are set
not too close to either extreme. The basic stability condition is not refined any further here, so starting
with condition 11 and refining it further with additional constraints yields the following cases.

(i) 6 = 0. When connection speeds are zero and the network is extremely small (say N¥ = 4)

condition 11 becomes

stable ‘,36(0,1),5=0,NS=4<:> —c—2 (6 - B2) >0

This will fail as 8 € (0,1) and ¢ > 0. Considering larger networks, results in a condition
stable |ge(0,1), 5204 —¢ + <5NS_2 _ 52Ns_6> _ (NS _ 2) <5NS_3 _ ﬁNS—2> >0

Which again, fails. Finally, when considering N — oo, with § = 0, failure is even more clear, since

stability requires
S_ S_
stable [ge(0,1),620, N5 00 —C = (NS —2) <ﬁN 8N 2> >0

Therefore with some concern for complexity, and a network where connection speeds equal zero, the

complete network will not be stable, irrespective of network size. To understand this consider the great
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advantage of the complete network: every node is close to every other. This becomes irrelevant when
connection speeds are so slow that even a single link is prohibitively slow to navigate.
(ii) 6 € (0,1). Next consider an intermediate level of speed, combined with a small network, which

produces the stability condition

stable |56(071),56(0,1),NS:4<:> (5 — (52) —c—2 (B — 52) > 0

A stable network is possible for low enough values of 5 and ¢, if § is sufficiently close to the middle

of the range. The best case scenario for stability is where 6 = 1/2, where the stability condition is

stable ’56(0,1),5:1/27NS:4<:> 1/4 >c+2 (ﬁ B 62)

Considering both intermediate speed levels, so § € (0,1), and an intermediate network size, yields
condition 11. Stability is possible or not, depending upon the parameter values. For example, as just
seen for N* = 4, with a low enough value of N°, 3 and c stability is possible. As seen in (i), and (iii) if
0 =0 or § = 1 then stability will fail, so much relies on a connection speed which is not too fast or too
slow. Considering intermediate speed levels, so 0 € (0, 1), but an infinite network, so N S — o0, changes

condition 11 to become

stable |5¢(0,1),5¢(0,1), 7500 (6= 0%) —c— (N® —2) <5NS_3 - ﬁNS_2> >0

Hence, with some concern for complexity and intermediate speeds, the complete network may be
stable, but much depends upon the parameter values.

(iii) 0 = 1. Note that since the only expression in ¢ is § — 62, the case where § = 1, is exactly as
in the case where § = 0. In particular, when § = 1 and with the smallest non-trivial network NS = 4

condition 11 becomes

stable \56(0,1),5:1,1\/5:4*:’ —c—2 (5 - 52) >0

As in case (i) stability fails. For intermediate network sizes, the condition becomes
Stable |ﬁ€(071)7§:1¢> —c+ <5N5_2 _52N5—6> _ (NS _2) <5NS—3 _BNS_2> > 0

So, once again, as in case (i) stability will fail for intermediate values of N 5. Finally, when N — oo,
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condition 11 becomes
S_ S
stable |5¢(0,1) 5=1,85 00 —C— (NS -2) (ﬁN 5 _pN 2) >0

So, as in case (i) stability fails. Irrespective of the size of the network, if there is some concern for
complexity, then stability will always fail when connection speeds are instantaneous. This is perfectly
reasonable given that the major advantage of the complete network is the proximity of each node to each

other, which becomes less and less important as speeds increase.

Part C: Extreme Concern for Complexity
Now consider extreme concern for complexity, which is examined in the model by setting 8 = 0, in

condition 11 to yield a new stability condition
stable [g_g&> (6 —0%) —¢ >0 (16)

Note that this is exactly the same as condition 15. This condition is most likely to be met where § is
not too close to either 0 or 1, in particular if 6 = 1/2, then stability is achieved if ¢ < 1/4. For § =0 or
d = 1, stability is impossible for all ¢ > 0, and if ¢ > 1/4 then stability is impossible for any ¢ € (0, 1).

Note also that N is irrelevant when there is extreme concern for complexity.
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Complexity | Network “Small” Network: N°=4 “Intermediate’” Network: N5 (4,0) “Large’” Network: N5—eo
Concern Type 5=0 (slow) e (0,1) 6=1 (fast) 5=0 (slow) e (0,1) 6=1 (fast) 5=0 (slow) e (0,1) 6=1 (fast)
B=0 Star No Maybe Yes No Maybe Yes No No Yes
(high) App 1C(i) | App 1C(iv) | App1C(vii) | App1C(ii) | App1C(v) | App 1C(vii) | App 1C(iii) | App 1C(vi) | App 1C(vii)
Complete No Maybe No No Maybe No No Maybe No
App2C App 2C App 2C App2C App 2C App 2C App 2C App2C App 2C
Be(0,2) Star No Maybe Yes No Maybe Maybe No No Maybe
(some) App 1B(i) | App1B(iv) | App1B(vii) | App1B(ii) | App1B(v) | App1B(viii) | App1B(iii) | App 1B(vi) | App 1B(ix)
Complete No Maybe No No Maybe No No Maybe No
App2B(i) | App 2B(ii) App 2B(iii) App2B(i) | App 2B(ii) App 2B(iii) App2B(i) | App2B(ii) | App 2B(iii)
B=1 Star No Maybe Yes No Maybe Yes No Maybe Yes
(none) App 1A(i) | App 1A(ii) App 1A(iii) App 1A(i) | App 1A(ii) App 1A(iii) App 1A() | App1A(i) | App1A(iii)
Complete No Maybe No No Maybe No No Maybe No
App 2A(31) | App 2A(ii) App 2A(iii) App 2A(31) | App 2A(ii) App 2A(iii) App 2A(I) | App2A(3ii) | App 2A(iii)

Table 1. A Taxonomy of Stability Results
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Figure 3: Stability in an Example Network



Figure 4: Stability in the Star Network
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Figure 5: Stability in the Complete Network




